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Abstract

We investigate the di�culties associated with the transmission of quantum infor-
mation and correlation through lossy channels, and we propose solutions to com-
pensate the losses in di�erent contexts. The distribution of quantum information
and quantum correlation over distances relevant for telecommunication, enables the
distribution of secure encryption keys and experimental tests of non-locality. In this
work we use optical photons as information carriers, and we employ the theory of
quantum optics to perform theoretical investigations into the distribution of quan-
tum information and correlation.

We propose a Bell test employing an all-optical setup with multiple parties, and
using a probabilistic entanglement swap. The Bell test is designed to be within
reach of current experimental capabilities, and the design of the setup is restricted
to standard quantum optical elements. The parties have dichotomic inputs and out-
puts and we test the W3ZB inequality, and the associated linear inequalities. The
experiment uses displacement-based measurements. The Bell inequality violation is
robust against transmission losses, with violations being possible for transmissions
as low as 10% for the channels connecting the parties. We furthermore investigate
the robustness of the violation toward phase-, amplitude, and dark-count noise.

We then propose a repeater based on light-matter entangled states. We investi-
gate how a two-mode squeezed state that has undergone transmission loss, can be
puri�ed and ampli�ed using an array of noiseless ampli�ers. The noiseless ampli�ers
consist of a light-matter entangled state, and the puri�ed state is transferred directly
from an optical mode to an atomic quantum memory. We present two applications,
one is the creation of entangled qubit registers, and the second is the formation of
a quantum repeater. We calculate secret key rates for the repeater, and �nd con-
ditions under which the repeater can violate the PLOB bound. We then perform
a thorough analysis of the sensitivity of the scheme toward relevant experimental
errors.

We then present unpublished calculations on the generation of Gottesman-Kitaev-
Preskill (GKP) states using an interaction between a collection of qubits and an
oscillator. We present a probabilistic scheme based on an interaction between a
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single qubit and an oscillator. We show that GKP states are �xed points of the
oscillator for this interaction, and therefore result naturally. We then present two
deterministic schemes employing certain quadrature operators de�ned for a set of
qubits. The �rst of these schemes uses a measurement to collapse the oscillator into
a GKP state. The second scheme enables the formation of a GKP state without
using a projective measurement. All of the schemes require that the oscillator is ini-
tially in a squeezed state. Both of the deterministic schemes produce GKP states,
with the width of the gaussian peaks of the GKP state, decreasing exponentially in
the number of used qubits.
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Resumé

I denne afhandling undersøger vi problemerne associeret med transmissionen af
kvanteinformation og korrelation igennem transmissionskanaler med tab, og vi fores-
lår løsninger til at modvirke tabet i forskellige eksperimentelle kontekst. Distribuerin-
gen af kvante- information og korrelation over distancer relevante for telekommu-
nikation, tillader distribuering af krypteringsnøgler og eksperimentelle tests af ikke-
lokalitet. I dette arbejde bruger vi optiske fotoner som informations-bærer, og vi
anvender kvanteoptikken til at gennemføre en teoretisk undersøgelse af hvordan
kvante- information og korrelation kan distribueres.

Vi foreslår en Bell test som kun anvender optiske komponenter, og med en vari-
abel mængde af deltagere. Vi anvender kvantemekanisk forvitring og projektive
målinger til at lave et såkaldt entanglement swap. Bell testen er designet til at kunne
gennemføres med nuværende eksperimentelle begrænsninger, og opstillingen anven-
der standard kvanteoptiske komponenter. Deltagerne bruger dikotomiske inputs og
outputs, og vi tester W3ZB uligheden, og associerede linære uligheder. Eksper-
imentet bruger forskydnings-baserede målinger. Brydningen af Bell uligheden er
robust imod transmissionstab, med brydningen værende mulig for en transmission
helt ned til 10% for de optiske �bre der forbinder deltagerne. Vi undersøger deru-
dover robustheden af brydningen imod fase støj, amplitude støj og detektor fejl
(dark-counts).

Vi foreslår dernæst et design på en såkaldt repeater, baseret på lys-stof forvit-
rede tilstande. Vi undersøger hvordan en tilstand bestående af forvitret klemt lys,
som har undergået transmissionstab, kan blive puri�ed med et array af støjfrie
forstærkere. De støjfrie forstærkere består af lys-stof forvitrede tilstande, og den re-
sulterende puri�ed tilstand bliver overført fra en optisk bærer til en atomar kvante-
hukommelse. Vi præsenterer to anvendelser, den ene er dannelsen af forvitrede qubit
registrer, den anden er en kvante-repeater. Vi beregner rater for distribuering af
krypteringsnøgler med repeateren, og vi �nder betingelser under hvilket repeateren
kan bryde PLOB bounded. Vi gennemfører så en grundig analyse af eksperimentets
følsomhed overfor relevante eksperimentelle fejlkilder.

Endelig præsenterer vi ikke-publicerede beregninger vedrørende præparationen
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af Gottesman-Kitaev-Preskill (GKP) tilstande. Præparationen forløber ved en inter-
aktion imellem en samling qubits og en oscillator. Vi præsenterer en probabilistisk
protokol baseret på en interaktion imellem en enkelt qubit og en oscillator. Vi viser
at GKP tilstande er �kspunkter for oscillatoren i denne interaktion, og derfor op-
står naturligt. Vi præsenterer derefter to deterministiske protokoller, som anvender
visse kvadratur operatorer, de�neret for et sæt qubits. Den første protokol bruger
en måling til at kollapse oscillatoren ned i en GKP tilstand. Den anden protokol
tillader dannelsen af en GKP tilstand uden anvendelsen af en projektiv måling.
Alle protokollerne kræver at oscillatoren til at starte med er i en klemt tilstand.
Begge deterministiske protokoller producerer GKP tilstande, hvor bredden af GKP
tilstandens gaussiske kurver, falder eksponentielt i mængden af anvendte qubits.
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Chapter 1

Introduction

In this thesis we seek solutions to overcoming the di�culties associated with the
transmission of quantum information over distance. We focus on optical commu-
nication, where quantum information is encoded in a quantum optical state, and
then sent through a transmission �ber. The di�culties referred to, are then pri-
marily transmission losses. Our approach in this thesis is analytical, but where we
have been able, we have with scrutiny included experimental sources of error in our
analysis. The question of how to tackle transmission loss is rather open ended, and
di�erent answers can be found within di�erent contexts. We will in this thesis ex-
plore a few.

To introduce the e�ects associated with transmission loss, we give the corre-
sponding transformation of a single-mode Wigner function. We let W0(X) be the
Wigner function of the mode entering a channel of transmission η, then the Wigner
function of the mode exiting the channel Wη(X) is given by [1],

Wη(X) =
1

η

∫
R2

d2ZW0(Z/
√
η)N [X, Vη](Z). (1.1)

where N [X, V ](Z) is the symmetric two dimensional normal distribution of mean
X and variance V ,

N [X, V ](Z) =
1

2πV
exp

[
− 1

2V
(Z −X)T (Z −X)

]
(1.2)

and the variance is given by the transmission,

Vη = 1− η. (1.3)

We see that the e�ect of the lossy channel is to scale the Wigner function W0(X)
in its argument by a factor

√
η, followed by gaussian blurring. The e�ect of this

map on a displaced two-photon state is sketched in Fig. 1.1 for various η. We note
that the e�ect of the lossy channel on a coherent state of amplitude α, is simply to
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Figure 1.1: We sketch the e�ect of loss on the Wigner function of a displaced two-
photon state. η is the transmission of the lossy channel.

generate a coherent state of amplitude
√
ηα.

In classical telecommunication information can be encoded in the central phase and
central amplitude of an optical state, idealized as a strong coherent state. Under
these circumstances, transmission losses can be compensated by the use of a gain
medium, which through stimulated emission increases the amplitude of the incoming
�eld. To show how this works, we letWg(X) be the Wigner function of a single mode
quantum state that has passed through a gain medium with gain g. We let W0(X)
be the Wigner function of the mode prior to the gain medium. The transformation
relating the two Wigner functions is [2],

Wg(X) =
1

g2

∫
R2

d2ZW0(Z/g)N [X, Vg](Z). (1.4)

Vg is related to the gain as,

Vg =
1/2

n1 − n2

(
g2 − 1

)
(1.5)

where n1 is the fraction of the gain medium atoms that are in the excited state,
and n2 is the fraction of the gain medium atoms that are in the ground state. We
see that the e�ect of the gain medium Eq. 1.4 is very similar to the e�ect of the
lossy channel Eq. 1.1. The gain medium can compensate for the rescaling by

√
η

applied in Eq. 1.1, provided g = 1/
√
η, however both the lossy channel and the gain

medium applies gaussian blurring on the Wigner function. In Fig. 1.2 we show the
e�ect of the map in Eq. 1.4 on a displaced 2 photon state (a), and a coherent state of
large amplitude (b). From (b) we �nd that any classical information encoded in the
central phase and central amplitude of the �eld is well preserved under transmission
through the gain medium, given that the gain factor is known. The e�ect on the
displaced 2 photon state (a) is more detrimental, and negative regions of the Wigner
function are entirely washed out for a gain of 2.
While classical information can be encoded in the central phase and amplitude of
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Figure 1.2: g is the ampli�cation factor and the fraction of excited atoms n1 is set to
1. a. The e�ect of a gain medium on the Wigner function of a displaced two photon
state. The Wigner function is scaled by g in the argument, and gaussian smoothing
with radius

√
Vg is applied. b. The e�ect of a gain medium on the Wigner function

of a strong coherent state. We observe no signi�cant increase in phase angle noise,
and the signal-to-noise ratio of the amplitude is nearly unchanged.
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a signal, quantum information can be understood as the information encoded in the
details of the Wigner function. It is now clear that passage through a lossy channel
distorts quantum information, and subsequent passage through a gain medium fur-
ther distorts the information, rather than recovering it.
Evidently gain media cannot be used to recover quantum information that has passed
through a lossy �ber, and new techniques must be developed if we are to distribute
quantum information through lossy channels.

But why should we distribute quantum information over distance ? The techno-
logical answer to this question seems to be, for the purpose of distributing encryp-
tion keys. Quantum information di�ers substantially from classical information, and
while we can freely copy classical information, one �nds that quantum information
cannot in general be copied [3]. This fact forms the basis for many key distribution
protocols based on quantum information [4], [5].

It is in the correlations between subsystems, that we �nd the starkest di�erence
between classical information and quantum information. Correlations between clas-
sical subsystems describe logical relations between unknown parameters, e.g. A and
B. Mathematically, two parameters are mutually dependent if the joint distribution
p(A,B) does not factorize as p(A)p(B). In a classical system A and B would be un-
known because of some random classical process. Correlations in quantum systems
however, can describe logical relations between quantum mechanically uncertain pa-
rameters. This distinction in the underlying reason for the uncertainty in A and B,
embodies quantum correlations with structure that we do not �nd in classical corre-
lations. For a pure quantum system, we assume that the quantum state |ψ⟩ encodes
all information that can be known about the statistics of the observables A and B
[6]. Supposing that A and B are properties of di�erent subsystems, then we may
often assume [A,B] = 0, and we can express |ψ⟩ in a common eigenvector basis of
the observables [3],

|ψ⟩ =
∑
a,b

ca,b |a⟩1 |b⟩2 (1.6)

where |a⟩1 |b⟩2 is an eigenstate of A and B with eigenvalues a and b respectively.
The subscript 1 indicates that a measurement of A acts on this part of the vector
(subsystem 1), and likewise the subscript 2 indicates that a measurement of B acts
on this part of the vector. The joint distribution p(a, b) = |ca,b|2 might not factorize,
and then we would say that A and B are mutually dependent. However, even if
|ca,b|2 factorizes, the two subsystems might still be correlated with respect to other
observables. All these potential dependencies between observables, are encoded in
the quantum state |ψ⟩, and only if the state factorizes with respect to subsystem 1
and 2,

|ψ⟩ = |ψ1⟩1 ⊗ |ψ2⟩2 , (1.7)
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do we know that the subsystems 1 and 2 are independent in all observables. This
correlation structure, encoded in quantum states that do not factorize with respect
to subsystems, is called entanglement. Certain entangled states can violate correla-
tion inequalities called Bell inequalities, and these inequalities can be violated under
conditions where classically correlated systems do not yield a violation [7]. This fact,
which we explore further in chapter 3, implies that correlations between quantum
observables are somehow di�erent than classical correlations. It is therefore of some
scienti�c interest, to see over how long distances entangled states can be prepared.
It is also of practical interest, for the violation of a Bell inequality can be used to
prove the security of an encryption key, by using a device-independent quantum key
distribution protocol [8].

We now outline the structure of this thesis. In chapter 2 we give an account of the
theory of quantum electrodynamics, as it applies to the regime where this thesis op-
erates. We introduce important concepts, such as phase space representations, Fock
states, coherent states, gaussian operations, and the fundamental commutation re-
lation. In this chapter we also give a simpli�ed analysis of a polychromatic squeezer.

In chapter 3 we introduce the concept of the Bell polytope, and we derive the
important W3ZB inequality. Following this, we present the paper Proposal for a
long-distance nonlocality test with entanglement swapping and displacement-based
measurements [9] and the paper Quantum repeater using two-mode squeezed states
and atomic noiseless ampli�ers [10]. We also present some unpublished calculations
for the �rst paper, where we replace the non-linear W3ZB inequality with associated
linear inequalities.

In chapter 6 we present an unpublished paper on how to prepare Gottesman-
Kitaev-Preskill (GKP) states by employing a modular measurement. GKP states
have recently been given some interest as a �ying error correctable qudit for dis-
tributing quantum information [11]. In this connection it is interesting to examine
how they can be prepared. To this end we present three preparation schemes.
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Chapter 2

The theory of quantum optics

In this chapter we outline the theory of quantum electrodynamics as it relates to
the study of quantum optics. We start from Maxwell's equations and separate the
�elds into transverse and longitudinal components, with the transverse components
being the main subject of quantum optics. We introduce the normal modes of the
transverse electromagnetic �eld and we state the equation of motion for the normal
modes. We enforce the fundamental commutation relation on the normal mode op-
erator anp(t) and thereby obtain the annihilation operator of quantum optics.

We introduce the quadratures, Fock states, coherent states and the displacement
operator. The Wigner characteristic function is introduced as the expansion coef-
�cient associated with a particular displacement operator, when one expands the
density matrix in terms of displacement operators. We brie�y discuss the theory
of quadratic Hamiltonians and gaussian transformations, and introduce Bogoliubov
transformations and symplectic matrices. In this context we also de�ne the con-
cept of a mode. We then apply the developed theory to give a simple analysis of a
polychromatic squeezer.

2.1 Correspondence between quantum electrodynam-

ics and classical electrodynamics

In this section we quantize the electromagnetic (EM) �eld and we introduce the most
important operators and observables, along with their commutation relations. The
purpose of this section is to give a physical foundation for the algebra of quantum
optics, and this is accomplished in part by establishing the correspondence between
the classical description of the EM �eld and the quantized description. In particular
we will quantize the EM �eld in the presence of charges and currents. After all,
beamsplitters, squeezers, photodetectors, photoactive two-level systems, these are
all matter systems, and so if we wish to understand the nature of the quantized EM
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�eld in the presence of such systems, we should not seek to quantize the EM �eld in
vacuum, rather we ought to quantize the EM �eld in the presence of currents and
charges.

It is not possible to derive the quantum mechanical description of the EM �eld
by starting from the classical description, for the same reason that classical electro-
dynamics cannot be derived from classical electrostatics. The quantized description
of the electromagnetic �eld is more fundamental, and can at best be guessed from
the classical description. Nevertheless it is illuminating to coax classical electrody-
namics into a form so that it strongly resembles the correct quantized description.
The reason is twofold, �rstly it makes it possible to establish the correspondence
between the classical �eld variables and the quantum operators, for instance we will
show that the annihilation operator of quantum mechanics �nds a correspondence
in the classical normal modes of the EM �eld,

a(kn, t) =

√
ε0
2ℏω

[−iE⊥(kn, t) + ωA⊥(kn, t)] (2.1)

with kn being the wavevector of the �eld, and where E⊥(kn, t) and A⊥(kn, t) are
Fourier coe�cients of the divergence free parts of the electric �eld and vector po-
tential respectively, i.e. ∇E⊥(r, t) = 0 and ∇A⊥(r, t) = 0. We note that both of
these �elds are gauge invariant. Secondly, once the classical description has been
coaxed into the right shape, quantization can be achieved simply by postulating the
correct commutation relations. The following derivations and arguments follow [12]
with some minor modi�cations.

We will assume that the entirety of the �elds and particles are well contained
inside a cube of edge L. Inside the cube we will describe the �elds by their Fourier
series over the discrete set of wavevectors kn, satisfying the condition kn = (2π/L)n,
with n being a vector of integers n =

(
nx ny nz

)
. We also introduce the temporal

frequency ωn = c|kn|. Note that the subscript n refers to the array n, and it will do
so throughout this section.

Given a vector �eld in real space,

V(r, t) =
(
Vx(r, t) Vy(r, t) Vz (r, t)

)T (2.2)

the �eld in reciprocal space is given by,

V(kn, t) =
1

L3/2

∫ L/2

−L/2
d3rV(r, t)e−iknr, (2.3)

and the �eld in real space is obtained as the Fourier series,

V(r, t) =
∑
n∈Z3

1

L3/2
V(kn, t)e

iknr. (2.4)
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Maxwell's equations in reciprocal space can be written as,

(I) ikn · E(kn, t) =
1

ε0
ρ(kn, t) (2.5)

(II) ikn ·B(kn, t) = 0 (2.6)
(III) ikn × E(kn, t) = −∂tB(kn, t) (2.7)

(IV) ikn ×B(kn, t) =
1

c2
∂tE(kn, t) +

1

ε0c2
j(kn, t) (2.8)

ρ(kn, t) is the distribution of charged matter and j(kn, t) is the associated currents,

ρ(r, t) =
∑
α

qαδ(r− rα(t)) (2.9)

j(r, t) =
∑
α

qαvα(t)δ(r− rα(t)) (2.10)

with α labelling a particle of charge qα and velocity vα. We decompose each vector
�eld into a longitudinal and transverse part with respect to the wavevector kn,

V(kn, t) = V||(kn, t) +V⊥(kn, t) (2.11)

introducing κn = kn/|kn| we can de�ne the components as,

V||(kn, t) = κn [κn ·V(kn, t)] (2.12)

V⊥(kn, t) = V(kn, t)−V||(kn, t) = (I− κnκ
T
n )V(kn, t) (2.13)

Converting to real space we have,

V(r, t) = V||(r, t) +V⊥(r, t) (2.14)

Taking the divergence and converting between real and reciprocal space,

∇ ·V(r, t) = ∇ ·V||(r, t) +∇ ·V⊥(r, t)

⇕ ikn ·V(kn, t) = ikn ·V||(kn, t) + ikn ·V⊥(kn, t) = ikn ·V||(kn, t)

⇕ ∇ ·V(r, t) = ∇ ·V||(r, t) (2.15)

hence V⊥(r, t) is the divergence free part of the �eld. Likewise we can take the curl
and convert between real and reciprocal space,

∇×V(r, t) = ∇×V||(r, t) +∇×V⊥(r, t)

⇕ ikn ×V(kn, t) = ikn ×V||(kn, t) + ikn ×V⊥(kn, t) = ikn ×V⊥(kn, t)

⇕ ∇×V(r, t) = ∇×V⊥(kn, t) (2.16)
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and V||(r, t) is the curl free part of the �eld. Applying this decomposition to
Maxwell's equations I and II we arrive at the de�ning equations for the longitu-
dinal �elds,

E||(kn, t) =
−i
ε0
ρ(kn, t)

kn
|kn|2

(2.17)

B||(kn, t) = 0 (2.18)

and E||(kn, t) is seen to be known once the charge distribution ρ(kn, t) has been
speci�ed. In fact, going to real space one �nds that the longitudinal component of
the electric �eld is simply the instantaneous Coulomb �eld of the charges. Examining
the longitudinal components of IV, we arrive at the continuity equation after an
application of Gauss law I,

∂tρ(kn, t) + iknj(kn, t) = 0 (2.19)

expressing the conservation of charge. Turning to the transverse components, we
obtain from III and IV,

∂t

(
E⊥(kn, t)

cκn ×B⊥(kn, t)

)
= iωn

(
0 1
1 0

)(
E⊥(kn, t)

cκn ×B⊥(kn, t)

)
− 1

ε0
j⊥(kn, t)

(
1
0

)
(2.20)

We introduce the rescaled normal modes,

a(kn, t) = −i
√

ε0
2ℏωn

[E⊥(kn, t)− cκn ×B⊥(kn, t)] (2.21)

b(kn, t) = −i
√

ε0
2ℏωn

[E⊥(kn, t) + cκn ×B⊥(kn, t)] (2.22)

where the prefactor
√

ε0
2ℏωn

has been chosen to bring the classical theory into corre-

spondence with the quantized theory, i.e. this choice will yield simple commutator
relations once we quantize the normal modes. In terms of these normal modes, Eq.
2.20 becomes,

∂t

(
b(kn, t)
a(kn, t)

)
= iωn

(
1 0
0 −1

)(
b(kn, t)
a(kn, t)

)
+ i

√
1

2ℏωnε0
j⊥(kn, t)

(
1
1

)
.

(2.23)

It is seen that we can then express B⊥(kn, t) and E⊥(kn, t) as,

E⊥(kn, t) =

√
ℏωn
2ε0

i [a(kn, t) + b(kn, t)] (2.24)

B⊥(kn, t) =

√
ℏωn
2ε0

i

c
[κn × a(kn, t)− κn × b(kn, t)] (2.25)
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Figure 2.1: The two polarization vectors ϵnp associated with a wavevector kn are
orthogonal to the wavevector.

Since E⊥(r, t) and B⊥(r, t) are real, it follows that E⊥(−kn, t) = E∗
⊥(kn, t) and

B⊥(−kn, t) = B∗
⊥(kn, t) and one can show that this implies,

b(kn, t) = −a∗(−kn, t) (2.26)

and our equation for the normal modes Eq. 2.23 becomes just the same equation
twice,

∂ta(kn, t) = −iωna(kn, t) + i

√
1

2ℏωnε0
j⊥(kn, t). (2.27)

We note that since a(kn, t) is entirely transversal, we can decompose it into two
orthogonal components (polarizations) with respect to the kn dependent coordinate
system drawn in Fig. 2.1.

a(kn, t) = ϵn1⟨ϵn1, a(kn, t)⟩+ ϵn2⟨ϵn2, a(kn, t)⟩
= ϵn1a1(kn, t) + ϵn2a2(kn, t) (2.28)

where ϵnp with p ∈ {1, 2} are the two polarization vectors associated with wavevec-
tor kn. We have de�ned the scalar �elds ap(kn, t) as the overlap, ap(kn, t) =
⟨ϵnp, a(kn, t)⟩. From Eq. 2.27 we see that the normal modes can be non-zero even
in the absence of currents and charges. They form the degrees of freedom of the
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electromagnetic �eld, present even when currents and charges are absent. The con-
�guration of the �eld plus matter system is entirely speci�ed by the variables,

{a(kn, t0), rα(t0),
d

dt
rα(t0)} (2.29)

at a single time t0 and for all wavevectors kn and particles α [12]. Since ap(kn, t) has
both a real and an imaginary component, it corresponds to two degrees of freedom.
These are called quadratures xp(kn, t) and yp(kn, t), and in this thesis we de�ne
them by the relations,

xp(kn, t) = ap(kn, t) + a∗p(kn, t)

yp(kn, t) = i
(
a∗p(kn, t)− ap(kn, t)

)
. (2.30)

We note that the normal modes are complex and therefore not observable, however
the quadratures are real and routinely measured in quantum optics experiments.
We will from now on be working in the Coloumb gauge where the vector potential
satis�es,

∇ ·A(r, t) = 0

⇕ ikn ·A(kn, t) = 0 (2.31)

hence A(kn, t) is entirely transversal, A(kn, t) = A⊥(kn, t). We express A⊥(kn, t)
in terms of a(kn, t),

B⊥(kn, t) = ikn ×A⊥(kn, t) (2.32)

So for non-zero kn we obtain

A⊥(kn, t) = i
kn
|kn|2

×B⊥(kn, t) =

√
ℏωn
2ε0

1

ωn
[a(kn, t) + a∗(−kn, t)] (2.33)

E⊥(kn, t) =

√
ℏωn
2ε0

i [a(kn, t)− a∗(−kn, t)] (2.34)

B⊥(kn, t) =

√
ℏωn
2ε0

i

c
κn × [a(kn, t) + a∗(−kn, t)] . (2.35)

Correspondingly we have that,

a(kn, t) =

√
ε0

2ℏωn
[−iE⊥(kn, t) + ωnA⊥(kn, t)] (2.36)

as stated in the beginning of this section. The total (non-relativistic) energy of the
�eld plus matter system can computed as,

H(t) =
∑
α

1

2mα

[pα(t)− qαA⊥(rα, t)]
2 + VCoul

+
∑
n

ℏωn
2

∑
p

[
a∗p(kn, t)ap(kn, t) + ap(kn, t)a

∗
p(kn, t)

]
(2.37)
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with mα being the mass of particle α and,

pα(t) = mαvα(t) + qαA⊥(rα, t) (2.38)

being the conjugate momentum of rα. VCoul is the Coulomb energy associated with
the longitudinal electric �eld E||(kn, t). To ease notation we introduce the following
symbols,

anp(t) = ap(kn, t)

an(t) = a(kn, t)

xnp(t) = xp(kn, t)

En =

√
ℏωn
2ε0L3

(2.39)

Then the �elds in real space are given by their Fourier series,

a(r, t) =
∑
n

∑
p

(
1

L

)3/2

ϵnpanp(t)e
iknr

E⊥(r, t) = i
∑
n

∑
p

Enϵnp
[
anp(t)e

iknr − a∗np(t)e
−iknr

]
B⊥(r, t) = i

∑
n

∑
p

En
c
(κn × ϵnp)

[
anp(t)e

iknr − a∗np(t)e
−iknr

]
A⊥(r, t) =

∑
n

∑
p

En
ωn

ϵnp
[
anp(t)e

iknr + a∗np(t)e
−iknr

]
. (2.40)

2.1.1 Quantization

So far everything has been entirely classical, but we are now in a position to quantize
the theory. We proceed by introducing commutators for the charged particles,

[rαi(t), rβj(t)] = [pαi(t), pβj(t)] = 0 (2.41)
[rαi(t), pβj(t)] = iℏδα,βδi,j (2.42)

where i, j ∈ {x, y, z}, and for the normal modes,

[anp(t), an′p′(t)] = [a∗np(t), a
∗
n′p′(t)] = 0 (2.43)

[anp(t), a
∗
n′p′(t)] = δp,p′δn,n′ , (2.44)

note that a∗np(t) is the adjoint of anp(t), i.e. a
†
np(t) = a∗np(t). This follows from the fact

that xnp(t) and ynp(t) are observable and therefore self-adjoint. anp(t) is called an
annihilation operator and a†np(t) is called a creation operator. Note that the particle
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operators commute with the �eld operators when the operators are evaluated at
equal times. Equivalently, in terms of quadratures we have the commutators,

[xnp(t), xn′p′(t)] = [ynp(t), yn′p′(t)] = 0 (2.45)
[xnp(t), yn′p′(t)] = 2iδp,p′δn,n′ . (2.46)

Finally, the equations of motion can then be found from Heisenberg's equation. For
the annihilation operator we obtain (see [12] for a proof),

d

dt
anp(t) =

1

iℏ
[anp(t), H(t)]

= −iωnanp(t) +
i√

2ε0ℏωn
jnp(t), (2.47)

where we retrieved H(t) from Eq. 2.37. jnp(t) are the Fourier coe�cients of the
symmetrized current projected onto the polarization vector ϵnp,

jnp(t) =
1

L3/2

∫ L/2

−L/2
d3re−iknrϵnpj(r, t) (2.48)

j(r, t) =
1

2

∑
α

qα [vα(t)δ(r− rα(t)) + δ(r− rα(t))vα(t)] (2.49)

Eq. 2.47 is identical to the result obtained from Maxwell's equations Eq. 2.27,
indicating that Maxwell's equations remain valid between operators, although one
should be careful to symmetrize operators (such as the current). This remarkable
result shows that with respect to the transverse �elds at least, Maxwell's equations
are equivalent to a Heisenberg equation.

2.2 Fock states

We de�ne the free EM �eld as the absence of charged particles and currents. Note
that in free space the annihilation operators evolve as anp(t) = e−iωntanp(0). The
Fock states are de�ned as states of the free EM �eld with de�nite energy, hence they
are eigenstates of the Hamiltonian of the �eld,

HEM =
∑
n

ℏωn
2

∑
p

[
a†np(t)anp(t) + anp(t)a

†
np(t)

]
=
∑
n

ℏωn
∑
p

[
a†np(0)anp(0) +

1

2

]
=
∑
n,p

Hnp (2.50)

and the Fock state |m⟩np, associated with a particular polarization p and wavevector
kn = n2π/L, is de�ned to solve the eigenvalue problem,

Hnp|m⟩np = Enm|m⟩np (2.51)
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It follows that the Fock states obey the relation,

a†np(t)anp(t)|m⟩np = a†np(0)anp(0)|m⟩np = m|m⟩np, (2.52)

which de�nes the eigenvaluem. The Fock states |m+1⟩ and |m−1⟩ can be generated
from the Fock state |m⟩ using the creation and annihilation operators,

|m+ 1⟩np =
a†np(0)√
m+ 1

|m⟩np

|m− 1⟩np =
anp(0)√

m
|m⟩np. (2.53)

The ground state |mg⟩np satis�es anp(0)|mg⟩np = 0. This fact together with Eq.
2.52 implies mg = 0. |m = 0⟩np is referred to as the (electromagnetic) vacuum
state. Using the creation operator on |0⟩np to generate the Fock states, we �nd the
eigenvalue spectrum m = 0, 1, 2, 3, .... The energy eigenvalues Enm are then,

Enm = ℏωn (m+ 1/2) . (2.54)

These results follow directly from analogy with the quantum harmonic oscillator
[13]. One can compute the total momentum of the free �eld as,

Pfree = ε0

∫ L/2

−L/2
d3rE⊥(r, t)×B(r, t) =

∑
n

ℏkn
∑
p

a†np(t)anp(t) =
∑
n,p

Pnp (2.55)

and we �nd that the Fock state |m⟩np is also an eigenstate of the free �eld momentum
Pnp with eigenvalue mℏkn, hence Fock states have de�nite momentum. For these
reasons a Fock state |m⟩np is interpreted as representing a free �eld with m photons,
each photon having energy ℏωn and momentum ℏkn.

From here on we will suppress the index np whenever it is not needed. We also
introduce a reference point in time t0 = 0, and an operator U(t) evaluated in t0 will
be written as U(t0) = U . The Fock states are eigenstates of an Hermitian operator
a†a and they form a complete orthonormal basis,

I =
∞∑
m=0

|m⟩⟨m|. (2.56)

The expectation values of the annihilation and quadrature operators are zero for the
Fock states,

⟨m|a|m⟩ = 1

2
⟨m|x+ iy|m⟩ = 0. (2.57)

However it is only the expectation value that is zero, the variances of the quadratures
are non-zero,

⟨m|x2|m⟩ = 2m+ 1. (2.58)
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We note that the even in the case of m = 0 photons do we measure a variance in
the quadratures. However, one should not commit the fallacy of assigning a reality
to the variance of an operator in the absence of a measurement. The variance is
associated with the spread in eigenvalues obtained upon measuring the operator,
and it is fallacious to think that a measurement merely reveals a pre-existing value
[14].

2.2.1 Energy density of the free �eld

We now seek an operational interpretation of the real space normal mode �eld. The
total energy in the free EM-�eld associated with photons is,

Hγ(t) =
∑
n

ℏωna†
n(t)an(t) (2.59)

If the �eld is only excited over a narrow range of frequencies centred on ω, then we
can pull out the frequency,

= ℏω
1

L3

∑
n

(∫ L/2

−L/2
d3ra†(r, t)eiknr

)(∫ L/2

−L/2
d3r′a(r′, t)e−iknr′

)

= ℏω
∫ L/2

−L/2
d3rd3r′a†(r, t)a(r′, t)

1

L3

∑
n

eikn(r−r′)

= ℏω
∫ L/2

−L/2
d3ra†(r, t)a(r, t) (2.60)

So we have the energy density,

uγ(r, t) = ℏωa†(r, t)a(r, t) (2.61)

This last equation is seen to provide us with an operational interpretation of the
magnitude of the normal mode �eld.

2.3 Coherent states, the displacement operator and

the Wigner characteristic function

The normal modes, or rather the annihilation operators, are unobservable. Nev-
ertheless there exists eigenstates associated with these operators. These are called
coherent states and they satisfy the eigenvector equation,

a|α⟩ = α|α⟩ (2.62)
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and solving the equation in the Fock basis yields the expansion,

|α⟩ = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n⟩, (2.63)

where the eigenvalue α is any complex number. We note that the vacuum state |0⟩
is an eigenstate of a with eigenvalue 0. The coherent states are produced by classical
currents, as can be seen by solving Eq. 2.27 with respect to a classical (c-number)
current [12]. The coherent states form an overcomplete (not orthonormal) basis [15],

1

π

∫
C
d2α|α⟩⟨α| = I (2.64)

De�ning λ = Λx + iΛy and Λ =
(
Λx Λy

)T where Λx and Λy are real numbers,
then the displacement operator is de�ned as,

D(Λ) = D(λ) = exp
[
λa† − λ∗a

]
= exp [i (Λyx− Λxy)] , (2.65)

note that D(λ) is unitary and that D(−λ) = D†(λ) (equivalently D(−Λ) = D†(Λ)).
We will shift between complex notation λ and vector notation Λ throughout this
thesis, choosing whichever is the most convenient, with a tendency to work with
complex notation when using a and a†, and vector notation when using the quadra-
tures x and y. The displacement operator transforms the quadratures as,

D†(Λ)xD(Λ) = x+ 2Λx

D†(Λ)yD(Λ) = y + 2Λy

D†(λ)aD(λ) = a+ λ. (2.66)

We can generate the coherent state |λ⟩ from the vacuum using the displacement
operator,

|λ⟩ = |Λ⟩ = D(λ)|0⟩ = D(Λ)|0⟩ (2.67)

The displacement operator can be rewritten in normal ordered form using the Baker-
Campbell-Hausdor� (BCH) lemma,

D(λ) = exp
[
−|λ|2/2

]
exp

[
λa†
]
exp [−λ∗a] (2.68)

The set consisting of a wavevector and a polarization, (kn, ϵnp), is referred to as a
mode of the electromagnetic �eld. We may generalize the displacement operator to
act on n modes by introducing the vectors,

Λ =
(
Λ1x Λ2x · · · Λnx Λ1y Λ2y · · · Λny

)T
=
(
ΛT
x ΛT

y

)T
R =

(
x1 x2 · · · xn y1 y2 · · · yn

)T
=
(
xT yT

)T
λ =

(
λ1 λ2 · · · λn

)T (2.69)

a =
(
a1 a2 · · · an

)T (2.70)
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with Λkx and Λky (or λk) being the displacement associated with mode k. Note
that we have enumerated the modes from 1 to n, rather than designating them by
their wavevector and polarization. Note that R and a are vectors of operators. We
introduce the 2n× 2n matrix,

Ω =

(
0 I
−I 0

)
(2.71)

note that ΩTΩ = ΩΩT = I and ΩΩ = ΩTΩT = −I. Then we de�ne the n-mode
displacement operator as,

D(Λ) = D(λ) =
n⊗
k=1

exp
[
λka

†
k − λ∗kak

]
= exp

[
λTa† − λ∗Ta

]
= exp

[
iRTΩΛ

]
(2.72)

Note that a product of displacements yields the new displacement,

D(Λ1)D(Λ2) = D(Λ1 +Λ2) exp
[
−iΛT

1ΩΛ2

]
. (2.73)

We also de�ne the n-mode coherent basis matrices,

|α⟩⟨β| =
n⊗
k

|αk⟩k⟨βk| (2.74)

The n-mode vacuum can be represented in terms of displacement operators [1],

|0⟩⟨0| =
∫
Cn

d2nλ

πn
exp

[
−1

2
λTλ∗

]
D(λ) (2.75)

as can be veri�ed by using Eq. 2.68 and expanding the exponentials prior to inte-
gration, and then evaluating matrix elements in the Fock basis. From the identity
Eq. 2.75 one can establish a duality between the displacement operators and matrix
elements |α⟩⟨β|,

D(λ) =
1

π2n

∫
Cn

d2nα

∫
Cn

d2nβh∗αβ(λ)|α⟩⟨β|

|α⟩⟨β| =
∫
Cn

d2nλ

πn
hαβ(λ)D(λ)

hαβ(λ) = exp

[
−1

2

(
λTλ∗ +αTα∗ + βTβ∗)] exp [αTβ∗] exp [λ∗Tα− λTβ∗]

hαβ(λ) = h∗βα(−λ), (2.76)

from which one can establish the completeness of the the displacement operators
over λ ∈ Cn, in the sense that an arbitrary operator O with support on the n modes
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can be written as,

O =
1

π2n

∫
Cn

d2nα

∫
Cn

d2nβ⟨β|O|α⟩|β⟩⟨α|

=
1

π2n

∫
Cn

d2nα

∫
Cn

d2nβTr {O|α⟩⟨β|} |β⟩⟨α|

=
1

π2n

∫
Cn

d2nα

∫
Cn

d2nβTr

{
O

∫
Cn

d2nλ

πn
hαβ(λ)D(λ)

}
|β⟩⟨α|

=

∫
Cn

d2nλ

πn
Tr {OD(λ)} 1

π2n

∫
Cn

d2nα

∫
Cn

d2nβhαβ(λ)|β⟩⟨α|

=

∫
Cn

d2nλ

πn
Tr {OD(λ)}D†(λ)

=

∫
R2n

d2nΛ

πn
Tr {OD(Λ)}D†(Λ) (2.77)

which will be referred to as Glauber's formula. Glauber's formula implies the useful
trace identity, Tr {D(Λ)} = πnδ(2n)(Λ). The trace in the integrand is the (Wigner)
characteristic function,

χ[O](Λ) = Tr {OD(Λ)} . (2.78)

and an operator can be represented by its characteristic function. Traces can then
be evaluated as integrals over the characteristic functions [1],

Tr {O1O2} =

∫
R2n

d2nΛ

πn
χ[O1](Λ)χ[O2](−Λ) (2.79)

Given a state ρ composed of two subsystems 1 and 2, composed of n and m modes
respectively. We can write ρ in terms of its characteristic function,

ρ =

∫
R2n

d2nΛ1

πn

∫
R2m

d2mΛ2

πm
Tr {ρD(Λ1)D(Λ2)}D†(Λ1)D

†(Λ2), (2.80)

and we can then trace out subsystem 2 to obtain the reduced density matrix for
subsystem 1, that is ρ1 = Tr2 {ρ},

ρ1 =

∫
R2n

d2nΛ1

πn
Tr {ρD(Λ1)}D†(Λ1) (2.81)

so we have the reduced characteristic function,

χ[ρ1](Λ1) = Tr {ρD(Λ1)} = χ[ρ](Λ1,Λ2 = 0). (2.82)

The Fourier transform of the Wigner characteristic function is the Wigner function
[16],

W [ρ](X) =

∫
R2n

d2nΛ

(2π)2n
exp

[
−iXTΩΛ

]
χ[ρ](Λ) (2.83)
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which is necessarily real, since χ[ρ](Λ)∗ = χ[ρ](−Λ) because ρ is hermitian. X is
of dimension 2n. We decompose X as X =

(
XT
x XT

y

)T
. The Wigner functions

is in correspondence with classical phase space distributions [17], however it can
take on negative values, prohibiting an interpretation of W [ρ](X) as a phase space
distribution. Suppose we want the joint distribution of the measurement outcomes
obtained when observing the quadratures x. The probability that the quadratures
x takes the values Xx is given by a marginal of the Wigner function,

P (Xx) =

∫
Rn

dnXyW [ρ] (X) (2.84)

2.4 Gaussian states

An important class of quantum states with density matrix ρG have characteristic
functions which are (complex) multivariate gaussians in the displacements Λ. Their
characteristic function can be written as,

χ[ρG](Λ) = exp

[
−1

2
ΛTΩVΩTΛ+ i⟨R⟩TΩΛ

]
(2.85)

where ⟨R⟩ is the expectation value of the quadratures,

⟨R⟩ = Tr {ρGR} (2.86)

and V is the (symmetrized) covariance matrix,

Vij = Vji =
1

2
[Cov (Ri, Rj) + Cov (Rj, Ri)]

Cov (Ri, Rj) = ⟨(Ri − ⟨Ri⟩) (Rj − ⟨Rj⟩)⟩ = Tr {ρG (Ri − ⟨Ri⟩) (Rj − ⟨Rj⟩)} .
(2.87)

A single-mode coherent state |Xx + iXy⟩ is a gaussian state with,

V = I

⟨R⟩ = 2
(
Xx Xy

)T
. (2.88)

Single-mode squeezed states are characterized by having reduced variance in one
quadrature and increased variance in the conjugate quadrature, so that the uncer-
tainty relation derived from Eq. 2.46 is satis�ed,

∆xk∆yk ≥ 1 (2.89)

for a mode k. Squeezed states are gaussian, and a single-mode squeezed state has
covariance matrix (up to a phase rotation) [16],

Vsq =

(
e−r 0
0 er

)
(2.90)
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where r is called the squeezing parameter. The special case of a squeezed state
with ⟨R⟩ = 0 is referred to as squeezed vacuum, although this �eld is by no means
empty, in fact the average photon number scales exponentially in r as sinh2(r) [15].
Squeezed vacuum consists of Fock states with even photon number,

|Squeezed vacuum⟩ = 1√
cosh(r)

∞∑
n=0

(
−eiθ

)n √(2n)!

2nn!
tanh(r)n|2n⟩ (2.91)

If we examine the following linear combinations of quadratures from two modes
labelled 1 and 2,

xA =
1√
2
(x1 − x2)

yA =
1√
2
(y1 − y2)

xB =
1√
2
(x1 + x2)

yB =
1√
2
(y1 + y2) (2.92)

then we �nd the commutators,

[xA, xB] = [yA, yB] = [xA, yB] = [yA, xB] = 0

[xA, yA] = [xB, yB] = 2i. (2.93)

from which we infer the possibility of states which have reduced variance in xA and
yB, and a correspondingly increased variance in yA and xB. A class of states called
two-mode squeezed states have the variances,

Var (xA) = Var (yB) = e−2r (2.94)
Var (xB) = Var (yA) = e2r (2.95)

where r is the squeezing parameter. They are characterized by having correlations
between the quadratures associated with mode 1 and 2. I.e. for zero variance in xA
we have that x1 and x2 are perfectly correlated, and if ⟨x1⟩ = ⟨x2⟩ then we have
x1 = x2. Note that these correlations are implied by the quantum state, not by
a classical probability distribution, hence mode 1 and 2 are entangled. Two-mode
squeezed states are gaussian with covariance matrix (up to a phase rotation),

V2sq =


v

√
v2 − 1 0 0√

v2 − 1 v 0 0

0 0 v −
√
v2 − 1

0 0 −
√
v2 − 1 v

 , and v = cosh(2r). (2.96)
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The special case of two-mode squeezed states with ⟨R⟩ = 0 are referred to as two-
mode squeezed vacuum states. They are characterized by perfect photon number
correlations between mode 1 and 2. In the Fock basis we can write the two-mode
squeezed vacuum (TMSV) as,

|TMSV⟩ =
√
1− λ2

∞∑
n=0

einθ(−λ)n|n⟩1|n⟩2, λ = tanh(r). (2.97)

We note that the photon number correlation is in the product structure of the
quantum state, and this implies that mode 1 and 2 are entangled in their photon
numbers.

2.5 Modes

In this section we describe the concept of modes and the associated annihilation
operators and vector �elds. A normal mode consist of an annihilation operator
anp(t), a quantum state |ψ⟩np, and a set of vector �elds g

(E)
np ,g

(B)
np ,g

(A)
np . To ease

notation we will replace the index np by i. We can then write the transverse EM
�elds as,

E⊥(r, t) =
∑
i

(
g
(E)
i (r)ai(t) + g

(E)∗
i (r)a†i (t)

)
B⊥(r, t) =

∑
i

(
g
(B)
i (r)ai(t) + g

(B)∗
i (r)a†i (t)

)
A⊥(r, t) =

∑
i

(
g
(A)
i (r)ai(t) + g

(A)∗
i (r)a†i (t)

)
. (2.98)

By comparison with Eq. 2.40 we identify the vector �elds as,

g
(E)
i (r) = iEiϵieikir

g
(B)
i (r) = i

Ei
c
(κi × ϵi)e

ikir

g
(A)
i (r) =

Ei
ωi
ϵie

ikir. (2.99)

The normal mode annihilation operators ai and their associated state provide a
complete quantum mechanical description of the transverse electromagnetic �eld.
However, it is possible to mix the normal mode annihilation operators together, to
obtain a new set of annihilation operators, and these new operators together with
their associated state, can then also give a complete quantum mechanical account of
the transverse electromagnetic �eld. We examine the following linear combination
of annihilation operators,

bk =
∑
i

viai +
∑
i

uia
†
i = vTa+ uTa† (2.100)
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We then examine the commutator,[
bk, b

†
k

]
=
∑
i

(
|vi|2 − |ui|2

)
, (2.101)

so provided that vHv − uHu = 1 then bk is a ladder operator for the hermitian
operator b†kbk. We can then form a state |ψ⟩k using the basis constructed from
the eigenstates of b†kbk. The expectation value of an operator f(bk, b

†
k) with respect

to |ψ⟩k, can then be evaluated using the commutation relation
[
bk, b

†
k

]
= 1. bk is

an annihilation operator of the EM �eld. We have the special case of annihilation
operators bk for which ui = 0 so that,

bk =
∑
i

viai, (2.102)

in this case the ground state bk|0⟩ = 0 will be the electromagnetic vacuum state,
and the �rst excited state will be,

b†k|0⟩ =
∑
i

v∗i a
†
i |0⟩, (2.103)

corresponding to a single photon spread over a superposition of normal modes. The
second excited state will then consist of two photons and so forth. So if ui = 0
then we can associate n photons with the n'th excited state of b†kbk. Note that the
eigenstates associated with b†kbk do not generally have de�nite energy. The situation
is not as straight forward if ui ̸= 0, since in this case the ground state is not the
vacuum state. In fact if we examine the single-mode annihilation operator,

bk = cosh(r)a1 + sinh(r)eiθa†1 (2.104)

then one can show that [15] the ground state bk|g⟩k = 0 is the single-mode squeezed
vacuum state given in Eq. 2.91, when expressed in the Fock basis associated with
a1. Furthermore one can show that,

bk = S†(ξ)a1S(ξ) (2.105)

when ξ = reiθ and S(ξ) = exp
[
1
2

(
ξa†21 − ξ∗a21

)]
. It then follows that the ground

state satis�es,

S†(ξ)a1S(ξ)|g⟩k = 0 (2.106)

from which we can read o� the solution,

|g⟩k = S†(ξ)|0⟩1 (2.107)
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where |0⟩1 is the ground state of a†1a1. It then follows that the �rst excited state is,

|e1⟩k = b†k|g⟩k = S†(ξ)S(ξ)b†kS
†(ξ)|0⟩1 = S†(ξ)a†1|0⟩1 = S†(ξ)|1⟩1 (2.108)

and so forth for higher excitations. A similar pattern hold in the case of the anni-
hilation operator,

bk = cosh(r)a1 + sinh(r)eiθa†2 (2.109)

where the ground state is a two-mode squeezed vacuum state Eq. 2.97.

We form a set of new annihilation operators b =
(
b1 b2 b3 · · ·

)T ,(
b
b†

)
=

(
V U
U∗ V∗

)(
a
a†

)
= K

(
a
a†

)
(2.110)

where V and U are N × N matrices where N is the number of mode operators in
a. The commutation relations on a can be stated as,(

a
a†

)
⊗
(
aT aH

)
−
(
aT aH

)
⊗
(

a
a†

)
=

(
0 I
−I 0

)
(2.111)

where aH is the conjugate transpose aH =
(
a†)T . In order that the new operators b

can be associated with modes, then the same commutation relations must hold,(
b
b†

)
⊗
(
bT bH

)
−
(
bT bH

)
⊗
(

b
b†

)
=

(
0 I
−I 0

)
(2.112)

Relating b to a we �nd the condition on K,

K

(
0 I
−I 0

)
KT =

(
V U
U∗ V∗

)(
0 I
−I 0

)(
VT UH

UT VH

)
=

(
0 I
−I 0

)
(2.113)

giving the conditions

VUT −UVT = 0

VVH −UUH = I

VHV −UTU∗ = I

VHU−UTV∗ = 0. (2.114)

A complex matrix K satisfying the above conditions is called a Bogoliubov trans-
formation. The inverse relation is,(

a
a†

)
= K−1

(
b
b†

)
=

(
VH −UT

−UH VT

)(
b
b†

)
(2.115)
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We now determine the vector �elds associated to the new annihilation operators b.
To this end we will examine the �eld operator,

F⊥(r, t) =
∑
i

(
g
(F )
i (r)ai(t) + g

(F )∗
i (r)a†i (t)

)
(2.116)

With F being either E,A or B. Shifting to the b modes,

F⊥(r, t) =
∑
i,k

(
g
(F )
i (r)

[
V H
i,kbk(t)− UT

i,kb
†
k(t)
]
+ g

(F )∗
i (r)

[
−UH

i,kbk(t) + V T
i,kb

†
k(t)
])

=
∑
k

(
h
(F )
k (r)bk(t) + h

(F )∗
k (r)b†k(t)

)
. (2.117)

So we can determine the statistics of the �eld from the state associated with the
annihilation operators bk. We associate the annihilation operator bk with the vector
�eld h

(F )
k (r),

h
(F )
k (r) =

∑
i

[
g
(F )
i (r)V H

i,k − g
(F )∗
i (r)UH

i,k

]
(2.118)

We now give the corresponding transformation rules for the quadratures. Given the
vector of quadratures,

Ra =

(
xa
ya

)
=

(
I I

−iI iI

)(
a
a†

)
, (2.119)

we make a shift to the new quadratures Rb given by,

Rb =

(
xb
yb

)
=

(
I I

−iI iI

)(
b
b†

)
= S

(
xa
ya

)
(2.120)

where the transformation S is related to K as,

S =

(
Re {U} Im {U}
Im {U} −Re {U}

)
+

(
Re {V} −Im {V}
Im {V} Re {V}

)
(2.121)

evidently S is a real matrix. The transformation S must preserve the commutation
relation,(

xa
ya

)
⊗
(
xTa yTa

)
−
(
xTa yTa

)
⊗
(

xa
ya

)
= 2i

(
0 I
−I 0

)
(2.122)

Implying that S must satisfy,

S

(
0 I
−I 0

)
ST =

(
0 I
−I 0

)
(2.123)
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and the transformation to new quadratures S is symplectic. We say that a pair of
quadratures q and p are conjugate when,

[q, p] = 2i. (2.124)

Expressing the quadratures as the vector products,

q = vTq R = vTqxx+ vTqyy (2.125)

p = vTpR = vTpxx+ vTpyy, (2.126)

then we may associate the quadratures with the vectors vq = vqx ⊕ vqy and vp =
vpx ⊕ vpy, and these vectors are said to be conjugate when,

vTqxvpy − vTqyvpx =
(
vTqx vTqy

)( 0 I
−I 0

)(
vpx
vpy

)
= vTq Ωvp = 1 (2.127)

for then we have [q, p] = 2i.

2.6 Gaussian operations

Gaussian operations are characterized by being of the form,

U = eiG(a,a†) (2.128)

where G(a, a†) is an hermitian operator that is at most quadratic in the quadrature
operators, or equivalently in the annihilation and creation operators. We now seek
to evaluate the action of a gaussian operation on the ladder operators, and to this
end we attach a dependence on a parameter t ∈ [0, 1] (which we set to 1 in the end),

U(t) = eitG(a,a†) (2.129)

we �nd that under U(t) the ladder operators evolve as,(
a(t)
a†(t)

)
= e−itG(a,a†)

(
a
a†

)
eitG(a,a†) (2.130)

which is the solution to the di�erential equation,

d

dt

(
a(t)
a†(t)

)
= −i

[
G
(
a(t), a†(t)

)
,

(
a(t)
a†(t)

)]
(2.131)

since G
(
a(t), a†(t)

)
is at most quadratic in the ladder operators, then the commu-

tator on the right hand side can at most be linear in the ladder operators. This
implies that we can write the di�erential equation as,

d

dt

(
a(t)
a†(t)

)
= g

(
a(t)
a†(t)

)
+ d (2.132)
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where g is a complex matrix and d is a vector of complex numbers. We can solve
this equation via a matrix exponential by noting the pattern,

d

dt

(
a(t)
a†(t)

)
= g

(
a(t)
a†(t)

)
+ d

⇕ d

dt

[(
a(t)
a†(t)

)
− td

]
= g

[(
a(t)
a†(t)

)
− td

]
+ tgd

⇕ d

dt

[(
a(t)
a†(t)

)
− td− 1

2
t2gd

]
= g

[(
a(t)
a†(t)

)
− td− 1

2
t2gd

]
+

1

2
t2g2d

⇕ d

dt

[(
a(t)
a†(t)

)
− 1

1!
td− 1

2!
t2gd− 1

3!
t3g2d

]
= g

[(
a(t)
a†(t)

)
− 1

1!
td− 1

2!
t2gd− 1

3!
t3g2d

]
+

1

3!
t3g3d

(2.133)

and so forth as

1

1!
td+

1

2!
t2gd+

1

3!
t3g2d+

1

4!
t4g3d+ · · · =

(∑
n=1

1

n!
tngn−1

)
d. (2.134)

If we assume that the n'th extra term (the term outside parenthesis in Eq. 2.133)
1
n!
tngnd vanishes as n tends to in�nity for t ∈ [0, 1], then we have the equation,

d

dt
f(t) = gf(t)

f(t) =

(
a(t)
a†(t)

)
−

(
∞∑
n=1

1

n!
tngn−1

)
d (2.135)

which has the solution f(t) = egtf(0), from which we obtain,(
a(t)
a†(t)

)
−

(∑
n=1

1

n!
tngn−1

)
d = egt

(
a
a†

)
(2.136)

setting t = 1 and rearranging we �nd the sought result,

e−iG(a,a†)

(
a
a†

)
eiG(a,a†) = eg

(
a
a†

)
+

(
∞∑
n=1

1

n!
gn−1

)
d (2.137)

and so the action of a gaussian operation on the ladder operators is equivalent to
a linear transformation. Note that we need only compute a single commutator to
obtain g and d. Note that unitary evolution preserve the ladder operator commuta-
tors, and so it follows that eg must be a Bogoliubov transformation. The equivalent
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transformation on the quadratures is then necessarily given by a symplectic S and
a vector of real numbers α,

e−iG(R)ReiG(R) = SR+α (2.138)

We now investigate how the characteristic function of a state ρi transform as we
apply a gaussian operation on ρi,

ρf = eiGρie
−iG (2.139)

Then

χ[ρf ](Λ) = Tr {ρfD(Λ)} → Tr
{
eiGρie

−iGD(Λ)
}

(2.140)

= Tr
{
ρie

−iGD(Λ)eiG
}
, (2.141)

where we �nd,

e−iGD(Λ)eiG = exp
[
ie−iGRT eiGΩΛ

]
= exp

[
i (SR+α)T ΩΛ

]
= exp

[
iRTSTΩΛ

]
exp

[
iαTΩΛ

]
= exp

[
iRTSTΩSS−1Λ

]
exp

[
iαT (SS−1)TΩSS−1Λ

]
= exp

[
iRTSTΩSS−1Λ

]
exp

[
i(S−1α)TSTΩSS−1Λ

]
= exp

[
iRTΩS−1Λ

]
exp

[
i(S−1α)TΩS−1Λ

]
(2.142)

So we have the transformation,

χ[ρf ](Λ) = Tr
{
ρiD(S−1Λ)

}
exp

[
i(S−1α)TΩS−1Λ

]
(2.143)

note that S−1 = ΩTSTΩ is also symplectic. So we can deduce the relation,

χ[ρf ](Λ) = χ[ρi](S
−1Λ) exp

[
i(S−1α)TΩS−1Λ

]
, (2.144)

and the characteristic function of ρf can be found from the characteristic function
of ρi by displacing by S−1α/2 and then deforming the conjugate quadratures as
Λ → S−1Λ. Using this relation, one can show that the e�ect of a gaussian operation
on a gaussian state is simply to transform the covariance matrix and displacement
as,

Vf = SViS
T (2.145)

⟨Rf⟩ = S⟨Ri⟩+α (2.146)

The beamsplitter transformation is a gaussian transformation which we will use
extensively. Its e�ect on two annihilation operators is to mix them according to an
energy preserving (hence unitary) Bogoliubov transformation,(

a
b

)
→
(

τ ρ
−ρ τ

)(
a
b

)
(2.147)
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where |τ |2+|ρ|2 = 1 and ρτ ∗−ρ∗τ = 0. A second important gaussian transformation
is the phase rotation, a → e−iθa. A phase rotation corresponds to the symplectic
map,

eiθa
†a

(
x
y

)
e−iθa

†a =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x
y

)
(2.148)

2.7 Simpli�ed model of a polychromatic squeezer

We apply some of the concepts and techniques developed in the previous sections to
model the generation of squeezed light in a cavity. To this end we will need a model
for the intracavity �eld, and a model for coupling the intracavity �eld to external
input and output �elds. We assume that the cavity stretches from 0 to d in z, has
cross sectional area A, and we assume that all �elds propagate in z. We will assume
that the cavity has periodic boundary conditions, and our calculations may then be
thought of as a simple model of a ring cavity. We largely follow the work in [18] and
[19]. We divide the intracavity electric �eld into two components,

E(z, t) = Es(z, t) + Ep(z, t) (2.149)

with Es(z, t) being the signal and Ep(z, t) the pump �eld, with the central frequency
of the pump ωp being twice the central frequency of the signal ωs. We will assume
that the speed of light in the cavity is the same for the pump and signal, and this
speed will be labelled by c = c0/nr. The signal �eld is initially empty, but will be
populated by down-converted photons from the pump �eld. We assume that the
�eld remains in the vacuum state at other frequencies than the signal and pump.
We will assume that the pump �eld is bright and it will be described as classical,
whereas the signal �eld is weak.

We assume that the signal �eld is linearly polarized in x and can be approxi-
mately described by a single narrow band mode b(t), so we write the signal �eld
as,

Es(z, t) = f(z)b(t) + f ∗(z)b†(t) (2.150)

b(t) =
∑
n

vnan(t) (2.151)

f(z) = i
∑
n

v∗n

√
ℏωn
2ε0Ad

eiknz (2.152)

E(+)
s (z, t) = f(z)b(t) (2.153)

where an(t) is the annihilation operator associated with the wavevector kn = 2π
d
nẑ

and polarization in x. Likewise we assume that the pump �eld amplitude can ap-
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proximately be factorized as,

Ep(z, t) = g(z)p(t) + g∗(z)p∗(t) (2.154)

E(+)
p (z, t) = g(z)p(t). (2.155)

We will assume that the �elds are to a good approximation plane waves, f(z) ≈
i
√

ℏωs

2ε0Ad
ei

ωs
c
z and g(z) ≈ i

√
ℏ2ωs

2ε0Ad
ei

2ωs
c
z.

We model the evolution of an intracavity plane wave mode an(t) using the Heisen-
berg equation and the Hamiltonian [2],

d

dt
an(t) =

1

iℏ
[an(t), H(t)] (2.156)

H(t) = H0 +HI(t) (2.157)

H0(t) =
∑
n,p

ℏωna†np(t)anp(t) (2.158)

HI(t) = χ

∫ d

0

dz

∫
A

dxdyE(+)
p (r, t)E(−)

s (r, t)2 +H.c (2.159)

where ωn = |kn|c. Since the �elds are approximately plane waves, we have,

HI(t) ≈ −iℏκ
2
p(t)b†(t)2 +H.c (2.160)

κ = χ

√
ℏ
Ad

[
ωs
ε0

]3/2
(2.161)

If the wavevector of the pump is not exactly twice the wavevector of the signal,
then the integral over space would have been reduced by the oscillatory integrand,
e�ectively reducing the coupling constant κ.

From the linearity of the Heisenberg equation we obtain the equation of motion,

d

dt
b(t) =

1

iℏ
[b(t), H(t)] (2.162)

we can then evaluate the commutators,

[b(t), H0(t)] =

[∑
n

vnan(t), H0(t)

]
=
∑
n

ℏωnvnan(t) ≈ ℏωsb(t) (2.163)

and

[b(t), HI(t)] = −iℏκ
2
p(t)

[
b(t), b†(t)2

]
= −iℏκp(t)b†(t) (2.164)
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Figure 2.2: A sketch of the beamsplitter boundary conditions.

So we have the equation of motion,

d

dt
b(t) = −iωsb(t)− κp(t)b†(t) (2.165)

We factor out the central frequencies as b(t) = c(t)e−iωst and p(t) = e−i2ωste(t), then
our equation of motion is,

d

dt
c(t) = −κe(t)c†(t). (2.166)

Before we can solve this equation, we need a model for how the intracavity �eld
couples to an external input �eld E(+)

(in)(z, t) and an external output �eld E(+)
(out)(z, t).

This coupling is modelled as a beamsplitter boundary condition on the cavity at
z = 0,

E
(+)
(out)(0, t) = −ρE(+)

(in)(0, t) +
√

1− ρ2E(+)
s (0, t− τc) (2.167)

E(+)
s (0, t) = ρE(+)

s (0, t− τc) +
√

1− ρ2E
(+)
(in)(0, t) (2.168)

where τc = d/c is the roundtrip time and ρ is the re�ection coe�cient. These

relations are sketched in Fig. 2.2. We multiply through by −i
√

2ε0Ad
ℏωs

eiωst, and for
brevity we will write,

a(out)/(in)(z, t) = −i
√

2ε0Ad

ℏωs
eiωstE

(+)
(out)/(in)(z, t). (2.169)

Let L be the length of the box over which we want to describe the external �elds (with
cross sectional area A). We will assume that L≫ d and that we can approximately
write the central frequency as ωs = 2π

L
sc0, where s is the index we associate with
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ωs. We let rn(t) be a plane wave annihilation operator for the input �eld, associated
with wavevector 2π

L
(s+ n)ẑ. The incoming �eld can then be written,

a(in)(z, t) ≈
√
d

L
eiωst

∆∑
n=−∆

rn(t)e
i 2π
L
(n+s)z (2.170)

where 2∆ is the range of relevant wavevectors, centred on 2π
L
sẑ. Note that the exter-

nal �elds are free �elds, hence we know the time dependence, rn(t) = rn(0)e
−i 2π

L
(n+s)c0t.

We let ln(t) be an annihilation operator associated with the outgoing �eld, having
wavevector −2π

L
(s + n)ẑ. Then we can write the external �elds evaluated in z = 0

as,

a(in)(t) = a(in)(z = 0, t) =

√
d

L

∆∑
n=−∆

rn(0)e
−i 2π

L
nc0t

a(out)(t) = a(out)(z = 0, t) =

√
d

L

∆∑
n=−∆

ln(0)e
−i 2π

L
nc0t (2.171)

Meanwhile we also have,(
−i
√

2ε0Ad

ℏωs
eiωst

)
E(+)
s (0, t− τc) = ϕc(t− τc)e

iωsτc (2.172)

where ϕ =
∑

n v
∗
n. ϕ relates to the amplitude of the intracavity �eld at the boundary.

With this new notation the beamsplitter boundary conditions read,

a(out)(t) = −ρa(in)(t) +
√

1− ρ2eiωsτcc(t− τc) (2.173)

c(t) = eiωsτcρc(t− τc) +
√

1− ρ2a(in)(t). (2.174)

Note that 1/ϕ has been absorbed into aout(t) and ain(t), and we will reintroduce ϕ
later in the calculations. Also note that the above beamsplitter relations assume
that |ϕ| is relatively large, so that the external �elds mainly couple to the intracavity
mode described by b(t). Given that ωs is the central frequency of a resonance then
eiωsτc = 1.

However, we �nd that we can approximately substitute this boundary condition
for a term in our equation of motion when the bandwidth of c(t) is smaller than
1/τc, and the cavity loss per round trip is small. Under this condition we have to a
good approximation,

d

dt
c(t) ≈ c(t)− c(t− τc)

τc
. (2.175)
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We write the change in c(t) generated by the equation of motion, over a round
trip, as,

∆cH(t) = −κe(t)c†(t)τc (2.176)

Likewise there is a change in c(t) generated by the boundary condition, over a round
trip,

∆cB(t) = c(t)− c(t− τc) = (ρ− 1) c(t− τc) +
√

1− ρ2a(in)(t). (2.177)

We write the re�ection coe�cient as ρ = e−γτc ≈ 1 − γτc where γ is the coupling
rate between the external �elds and the intracavity �eld. We write the transmission
coe�cient as,

√
1− ρ2 ≈

√
2γτc. So we �nd,

∆cB(t) = −γτcc(t− τc) +
√

2γτca(in)(t) ≈ −γτcc(t) +
√

2γτca(in)(t) (2.178)

and the total di�erential is then,

∆c(t) = ∆cH(t) + ∆cB(t) (2.179)

from which we obtain a di�erential equation,

∆c(t)

τc
= −κe(t)c†(t)− γc(t) +

√
2γ

τc
a(in)(t). (2.180)

A more rigorous justi�cation for the coupling terms is given in [19]. Finally then,
we state our equation of motion, with a boundary condition, as,

d

dt
c(t) ≈ ∆c(t)

τc
= −κe(t)c†(t)− γc(t) +

√
2γ

τc
a(in)(t) (2.181)

a(out)(t) = −a(in)(t) +
√

2γτcc(t) (2.182)

We eliminate the intracavity �eld using the boundary condtion,

d

dt

[
a(out)(t) + a(in)(t)

]
+ κe(t)

[
a†(out)(t) + a†(in)(t)

]
+ γ

[
a(out)(t)− a(in)(t)

]
= 0.

(2.183)

We now reintroduce the coupling factor ϕ, thereby obtaining,

d

dt

[
a(out)(t) + a(in)(t)

]
+

ϕ

ϕ∗κe(t)
[
a†(out)(t) + a†(in)(t)

]
+ γ

[
a(out)(t)− a(in)(t)

]
= 0,

(2.184)
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we will absorb the phase factor ϕ/ϕ∗ into κ. We can split this equation into frequency
components by multiplying with ei

2π
L
kc0t for k ∈ [−∆,∆], and integrating from

−L/(2c0) to L/(2c0) over t. We introduce the symbols,

αv =
2π

L/c0
v (2.185)

e(αv) =
1

L/c0

∫ L/(2c0)

−L/(2c0)
dte(t)e

−i 2π
L/c0

tv (2.186)

from which we obtain,

−iαk (lk(0) + rk(0)) + κ
∆∑

n=−∆

e (α−n−k)
(
l†n(0) + r†n(0)

)
+ γ (lk(0)− rk(0)) = 0.

(2.187)

We rewrite the above system of equations as a matrix equation, and to this end we
introduce the vectors and matrices,

a(in) =
(
r−∆(0) r−∆+1(0) · · · r∆(0)

)T (2.188)

a(out) =
(
l−∆(0) l−∆+1(0) · · · l∆(0)

)T (2.189)
Dij = δijαi (2.190)
Eij = e (α−i−j) (2.191)

with the indices being in the interval i, j ∈ [−∆,∆] and
(
a(in)

)
i
= ri(0) and(

a(out)

)
i
= li(0). So we obtain the matrix equation,

−iD
(
a(out) + a(in)

)
+ κE

(
a†
(out) + a†

(in)

)
+ γ

(
a(out) − a(in)

)
= 0. (2.192)

Upon rearranging and combining with the conjugate equation we obtain,(
a(out)

a†
(out)

)
=
(
2γM−1 − I

)( a(in)

a†
(in)

)
(2.193)

where we've de�ned the matrix,

M =

(
γI− iD κE
κ∗E∗ γI+ iD

)
. (2.194)

This is a transformation connecting two sets of ladder operators. Since both sets of
ladder operators satisfy the fundamental commutation relations, it follows that the
transformation relating them is a Bogoliubov transform (at least to within the used
approximations). We make a change to quadratures as,(

x
y

)
=

(
I I

−iI iI

)(
a
a†

)
= T

(
a
a†

)
(2.195)
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so Eq. 2.193 becomes, (
x(out)

y(out)

)
=
(
2γL−1 − I

)(x(in)

y(in)

)
, (2.196)

where we've de�ned the matrix,

L = TMT−1 =

(
γI D
−D γI

)
+

(
Re {κE} Im {κE}
Im {κE} −Re {κE}

)
. (2.197)

Since the matrix transform in Eq. 2.196 connects two sets of quadrature operators,
it must be symplectic and we label it as S,

S = 2γL−1 − I. (2.198)

We can obtain the reduced characteristic function for the output modes as,

χ[ρ(out)](Λ) = Tr
{
ρD(out)(Λ)

}
, (2.199)

where ρ is the total density matrix, including the input and output modes, and
ρ(out) is the reduced density matrix for the output modes, and D(out)(Λ) is the
displacement operator for the output modes. If we let R(out) =

(
x(out) y(out)

)T
then we have the displacement operator,

D(out)(Λ) = exp
[
iRT

(out)ΩΛ
]

= exp
[
iRT

(in)ΩS−1Λ
]
. (2.200)

So we can evaluate the output characteristic function as,

χ[ρ(out)](Λ) = Tr
{
ρ exp

[
iRT

(in)ΩS−1Λ
]}

= χ[ρ(in)](S
−1Λ)

= exp

[
−1

2
ΛTS−TS−1Λ

]
= exp

[
−1

2
ΛTΩSSTΩTΛ

]
(2.201)

since the input state was the vacuum state. The density matrix of the output modes
can then be computed as,

ρ(out) =

∫
R2d

d2dΛ

πd
χ[ρ(out)](Λ)D†(Λ) (2.202)

where d = 2∆+ 1.
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Chapter 3

Bell inequalities and non-locality

In this chapter we describe the concept of Bell inequalities and what the implications
are of the experimentally observed violation of said inequalities. We start by intro-
ducing the mathematical structure and philosophy connected with Bell inequalities.
We will mainly use the expositions given in [7], [20], [21], however we will in this
work arrive at the concept of the Bell polytope via a slightly di�erent route than the
cited references. We do this to try and get another perspective on the arguments
leading to the Bell polytope.

We then derive an important Bell inequality, the W3ZB inequality. Follow-
ing this we present an analysis of an all optical setup, designed with the intent of
demonstrating a violation of the W3ZB inequality in a multi-party scenario, with
the participants separated by up to 60 km (assuming a �ber loss of 0.3 dB/km).

The predictions made by quantum mechanics are statistical, in the sense that
the theory predicts probability distributions for observing particular outcomes, with
respect to a particular measurement, rather than giving an exact account of what will
actually occur. These various distributions associated with di�erent measurements
are however not independent, as they are all derivable once the quantum state is
known. It seems a reasonable question to ask, whether it is possible to formulate
a theory of the microscopic which gives more de�nite predictions, rather than just
probability distributions. In particular it seems natural that such a theory should
contain particle-like objects, since such objects are observed in experiment. The
question then becomes how quantum mechanics, a theory of probability, would arise
from such an underlying model. As pointed out by Pitowsky [20], it has been realized
repeatedly that the probabilities predicted by quantum mechanics di�ers somehow
from what we encounter in a probabilistic description of classical physics. That is,
a description of classical physics were certain things, such as detailed trajectories of
the involved particles, are unknown (e.g. the kinetic theory of gases). This di�erence
was noticed for example when it was attempted to reformulate quantum mechanics
as a phase space theory. That is, for a single particle we want to introduce a function
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in the position and momentum W (x, p), such that if an observable Ô is expressed
as a function of the position and momentum operators,

Ô = f(q̂, p̂) (3.1)

then we can compute the expectation value ⟨Ô⟩ as,

⟨Ô⟩ =
∫ ∞

∞
dq

∫ ∞

∞
dpf(q, p)W (q, p) (3.2)

and the operators have been replaced by scalars in f(q, p). Such a function cannot
exist, since the idea is spoiled by the non-commutativity of the position and mo-
mentum operators [22]. Following Ballentine, consider the expectation values of the
Hermitian operators 1

2
(q̂2p̂2 + p̂2q̂2) and 1

4
(q̂p̂+ p̂q̂)2, the existence of a phase space

distribution would imply,〈
1

2

(
q̂2p̂2 + p̂2q̂2

)〉
=

∫ ∞

∞
dq

∫ ∞

∞
dp

1

2

(
q2p2 + p2q2

)
W (q, p)

=

∫ ∞

∞
dq

∫ ∞

∞
dp

1

4
(qp+ pq)2W (q, p) =

〈
1

4
(q̂p̂+ p̂q̂)2

〉
(3.3)

Which is incorrect since,

1

4
(q̂p̂+ p̂q̂)2 =

1

2

(
q̂2p̂2 + p̂2q̂2

)
+

3

4
ℏ2. (3.4)

In general one �nds that a phase space distribution W (α) can be de�ned with re-
spect to a particular mapping from an observable Ĝ to a scalar function g(α) [2],
[15]. An example is the Wigner quasi-probability distribution W (q, p), which is
obtained from the Wigner-Weyl transform of the density matrix, and the function
g(q, p) is then obtained as the Wigner-Weyl transform of the operator Ĝ [1], [17].
However, the Wigner quasi-probability distribution can take on negative values in
general, prohibiting a probabilistic interpretation of the distribution.

Following the pioneering thought experiment due to Einstein, Podolsky and
Rosen [6], [23], it was realized that if the predictions of quantum theory are correct,
then the workings of nature cannot be explained by a local causal hidden variable
model. That is, an event A is not constrained to only depend on other events
contained within the past light-cone of A. To arrive at this conclusion, we follow
Pitowsky [20] and start with the work of the mathematician George Bool. Bool
noted that the probabilities of the occurrence of logically related events, must sat-
isfy linear inequalities as well as equalities.
As an example, let P (E) be the relative frequency of the event E occurring, and
P (E1 ∩ E2) be the relative frequency of the events E1 and E2 co-occurring, then
naturally,

P (E1)− P (E1 ∩ E2) ≥ 0 (3.5)
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Let P (E1 ∪ E2) be the relative frequency of either E1 or E2 (or both) occurring,
then

P (E1) + P (E2) = P (E1 ∩ E2) + P (E1 ∪ E2) (3.6)

From the fact that P (E1 ∪ E2) ≤ 1, we have,

P (E1) + P (E2)− P (E1 ∩ E2) ≤ 1. (3.7)

Finally, we have conditions of positivity and normalization,

1 ≥ P (E1 ∩ E2) ≥ 0 , 1 ≥ P (E1) ≥ 0 , 1 ≥ P (E2) ≥ 0 (3.8)

Boole dubbed such inequalities as 'conditions of possible experience', and their viola-
tion would indicate that the data from which the relative frequencies were extracted,
could not have been obtained from actual observation, "When satis�ed they indicate
that the data may have, when not satis�ed they indicate that the data cannot have,
resulted from actual observation".
Considering the, in principal independent, set of relative frequencies P (E1), P (E2)
and P (E1 ∩ E2) as coordinates in R3, we realize that the above inequalities must
restrict the points (P (E1), P (E2), P (E1 ∩E2)) to a region P of the full space. Since
this region is bounded by linear inequalities it will be a convex polytope. A convex
polytope is describable via a set of linear inequalities, or as a convex sum of the ver-
tices of the polytope. The validity of this duality in arbitrary dimension is known
as the Weyl-Minkowski theorem [20], [24]. One might then wonder, what procedure
would yield the vertices of this polytope. A method proposed by Pitowsky is to
write up the truth table for the logically related events E1, E2, and E1 ∩ E2,

E1 E2 E1 ∩ E2

0 0 0
1 0 0
0 1 0
1 1 1

(3.9)

with 0 corresponding to the event not occurring, and 1 corresponding to the event oc-
curring. Each row corresponds to a scenario where certain events are true. Supposing
that the system under study has a probability of realizing each of these four possi-
ble scenarios, from the top row we might denote these probabilities by p1, p2, p3, p4.
Given that the truth table lists all possibilities, then we have p1 + p2 + p3 + p4 = 1.
The observed relative frequencies (p(E1), p(E2), p(E1 ∩ E2)) will then be given by
the vector sum, p(E1)

p(E2)
p(E1 ∩ E2)

 = p1

0
0
0

+ p2

1
0
0

+ p3

0
1
0

+ p4

1
1
1

 , (3.10)
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Figure 3.1: We sketch the polytope with its vertices given by the rows of table 3.9.

i.e. the probability of a particular event occurring is the sum of all pn that would
result in that event. Hence we see that the region P can be described as a convex
sum of the rows of the truth table. It is well known from geometry that such a
convex sum over vectors will span a polytope, with the vertices of the polytope
corresponding to the vectors [24]. This convex polytope is sketched in Fig 3.1 and
can equally well be described by the above convex sum, or the above inequalities.

3.1 The counter-factual decomposition

We will now analyse a hypothetical experimental record, obtained from measure-
ments on some system. We will write up the experimental outcomes in a truth table
as above. We will attempt to describe the probabilities of particular observations,
via convex sums over scenarios, as in Eq. 3.10.
For our purposes we can think of a measurement on a microscopic system, as being
composed of the stages,

� An input is chosen by the scientists, this input is typically a measurement
setting, i.e. the con�guration of the measurement apparatus. We symbolize
a particular input by an integer x. A particular value of x could for example
correspond to some number of degrees by which we turn a knob.

� Some, usually uncontrolled, physical events unfold.
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� We obtain an output, which could for example be a detector clicking, or a
meter showing a particular value, etc. We symbolize a particular output by
an integer a. That is, a particular value of a implies that some particular
physical condition was met, for example a meter gave a reading lying within
some range.

As an example, we suppose that we have two possible inputs corresponding to x = 1
and x = 2. For brevity we will denote x = 1 as 1x, and x = 2 as 2x. For 1x
we have two possible outputs, 1a (a = 1) and 2a (a = 2). For 2x we have three
possible outputs 1a, 2a and 3a. For experiments where we use input 1x we measure
the probabilities p(1)s for the following scenarios,

1a 2a 1x

1 0 p
(1)
1

0 1 p
(1)
2

(3.11)

where a scenario is a particular row of the above table. The measurement of p(1)s
proceeds simply by noting how often the two scenarios each occur. That is, the
probabilities are de�ned by counting,

p(1)s =
Number of observations of scenario s with input 1x
Total number of observations where the input was 1x

(3.12)

Note that since all possible scenarios are covered, we have
∑

s p
(1)
s = 1.

Likewise for experiments where we use input 2x, we measure the probabilities p(2)s ,

1a 2a 2x

1 0 p
(2)
1

0 1 p
(2)
2

0 0 p
(2)
3

(3.13)

and we likewise have
∑

s p
(2)
s = 1. We de�ne a behaviour B(n) as the set of proba-

bilities, that the outputs speci�ed in the columns occur,

B(1) =

(
p(1a|1x)
p(2a|1x)

)
, B(2) =

(
p(1a|2x)
p(2a|2x)

)
(3.14)

From the tables we can extract the two matrices,

M (1) =

(
1 0
0 1

)

M (2) =

1 0
0 1
0 0

T

=

(
1 0 0
0 1 0

)
. (3.15)
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Letting M (n)
s be the s'th column of M (n), we can compute the behaviours as,

B(n) =
∑
s

M (n)
s p(n)s . (3.16)

We will now make an important assumption. We assume that the observed frequen-
cies p(n)s can be decomposed as,

p
(1)
1 = π11 + π12 + π13

p
(1)
2 = π21 + π22 + π23

p
(2)
1 = π11 + π21

p
(2)
2 = π12 + π22

p
(2)
3 = π13 + π23 (3.17)

where πks, lying in the range [0, 1], are probabilities. The motivation behind the
decomposition will be given in a bit. We note a few important aspects of this
decomposition. The probabilities πks are normalized, since

3∑
s=1

2∑
k=1

πks =
∑
s

p(v)s = 1, (3.18)

for v ∈ {1, 2}. The probability p(1)k is obtained by summing πks over index s, and
p
(2)
s is obtained by summing πks over index k. Lastly, and most importantly, the
decomposition has the symmetry that πks enters in the expansion of both p(1)k and
p
(2)
s . Using this decomposition we can compute the total behaviour B as,

B =

(
B(1)

B(2)

)
=

(∑2
s=1M

(1)
s p

(1)
s∑3

s=1M
(2)
s p

(2)
s

)
=

(∑2
s=1M

(1)
s

∑3
k=1 πsk∑3

s=1M
(2)
s

∑2
k=1 πks

)

=
2∑

k=1

3∑
s=1

πks

(
M

(1)
k

M
(2)
s

)
, (3.19)

and B is given by a convex sum over the vectors
(
M

(1)T
k M

(2)T
s

)T
. We can form a

table with the rows corresponding to
(
M

(1)T
k M

(2)T
s

)
for di�erent k and s,

1x 2x
1a 2a 1a 2a
1 0 1 0 π11
1 0 0 1 π12
1 0 0 0 π13
0 1 1 0 π21
0 1 0 1 π22
0 1 0 0 π23

(3.20)
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where the shading indicates the input, 1x or 2x. That is, the shading indicates
whether this part of the row comes from M

(1)T
k or M (2)T

s . To the far right we

show the probability πks associated with the vector
(
M

(1)T
k M

(2)T
s

)T
making up

the row. We see that the symmetry of the decomposition in Eq. 3.17, results in the
behaviour B being a convex sum over all combinations of the scenarios associated
with input 1x and input 2x. These combinations are counter-factual, for the vector(
M

(1)T
k M

(2)T
s

)T
refers to the idea, that if you had given input 1x you would have

been in scenario k, and if you had given input 2x you would have been in scenario s.
However, in all experimental runs we can only either give input 1x or 2x, never both.
For this reason we will refer to the decomposition Eq. 3.17 as a counter-factual de-
composition, and we refer to table 3.20 as a counter-factual table. πks can then be

interpreted as the probability that the counter-factual scenario
(
M

(1)T
k M

(2)T
s

)T
occur.

The decomposition in Eq. 3.17 has a straightforward interpretation if our mea-
surement can be thought of as revealing the pre-existing properties λ of some ob-
ject(s) S. Then πks is simply the probability, that the properties λ were such, that
if we give input 1x we obtain scenario k, and if we give input 2x then we obtain
scenario s. The probability of obtaining scenario v given input nx, p

(n)
v , is given by

the probability of S having any set of properties that would yield scenario v given
input nx. For example, scenario 1 for input 1x is observed, if λ is such that if you
give input 1x you get scenario 1, and if you give input 2x you obtain either scenario
1, 2 or 3. It follows that,

p
(1)
1 = π11 + π12 + π13, (3.21)

and in general we obtain,

p(1)s =
3∑

k=1

πsk

p(2)s =
2∑

k=1

πks (3.22)

which is the decomposition used in Eq. 3.17. Then as before, it follows that
the behaviour can be described by Eq. 3.19. πks can then be understood as the
frequency by which the properties λ correspond to the counter-factual scenario(
M

(1)T
k M

(2)T
s

)T
.
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3.2 The Clauser-Horne inequalities

We then examine an experiment with 2 inputs x and y. x is assigned one of two
numbers, 1 or 2, dependent on some physical condition being met. Likewise y is
either 1 or 2. We will refer to a pair of inputs x, y as a context. We consider 4
possible contexts labelled as c11, c12, c21 and c22. The four possible contexts are then
given by,

c11 : 1x, 1y

c12 : 1x, 2y

c21 : 2x, 1y

c22 : 2x, 2y (3.23)

We have two outputs symbolized by the variables a and b. In each round of experi-
ment the variables a and b are set to particular integers, dependent on some physical
condition being met. For each of the 4 contexts ck we measure the frequencies p(k)s

of the following scenarios,

1b 1a, 1b 1x, 1y

0 0 p
(11)
1

1 0 p
(11)
2

1 1 p
(11)
3

1a 1a, 1b 2x, 1y

0 0 p
(21)
1

1 0 p
(21)
2

1 1 p
(21)
3

1a 1a, 1b 1x, 2y

0 0 p
(12)
1

1 0 p
(12)
2

1 1 p
(12)
3

1b 1a, 1b 2x, 2y

0 0 p
(22)
1

1 0 p
(22)
2

1 1 p
(22)
3

where the elements of column 1a for example, take the value 1 if the event a = 1
occurs in that scenario, and 0 if it doesn't. 1a, 1b should be understood as the event
where both 1a and 1b occur. Note that for each table the set of scenarios is complete,
i.e. one of the scenarios must occur in each experimental run. We derive a matrix
from the above tables,

M =

0 0
1 0
1 1

T

=

(
0 1 1
0 0 1

)
. (3.24)

We let Ms be the s'th column of M . We de�ne the behaviours for each context,

B(11) =

(
p(1b|1x, 1y)

p(1a, 1b|1x, 1y)

)
, B(12) =

(
p(1a|1x, 2y)

p(1a, 1b|1x, 2y)

)
(3.25)

B(21) =

(
p(1a|2x, 1y)

p(1a, 1b|2x, 1y)

)
, B(22) =

(
p(1b|2x, 2y)

p(1a, 1b|2x, 2y)

)
(3.26)
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As before we propose a counter-factual decomposition of the observed relative fre-
quencies,

p(11)s =
3∑

n,m,k=1

πs,n,m,k

p(12)s =
3∑

n,m,k=1

πn,s,m,k

p(21)s =
3∑

n,m,k=1

πn,m,s,k

p(22)s =
3∑

n,m,k=1

πn,m,k,s (3.27)

where πs,n,m,k are counter-factual probabilities 0 ≤ πs,n,m,k ≤ 1 and the normaliza-
tion

∑3
s=1 p

(k)
s = 1 implies the normalization

∑3
s,n,m,k=1 πs,n,m,k = 1. Then we can

expand the total behaviour B as,

B =


B(11)

B(12)

B(21)

B(22)

 =


∑3

s=1Msp
(11)
s∑3

s=1Msp
(12)
s∑3

s=1Msp
(21)
s∑3

s=1Msp
(22)
s

 =


∑3

n,m,k,s=1Msπs,n,m,k∑3
n,m,k,s=1Msπn,s,m,k∑3
n,m,k,s=1Msπn,m,s,k∑3
n,m,k,s=1Msπn,m,k,s



=
3∑

n,m,k,s=1

πs,n,m,k


Ms

Mn

Mm

Mk

 . (3.28)

As before we have all counter-factual mixes of the various possible scenarios associ-
ated with the 4 contexts. Furthermore, the behaviour B is described by a convex
sum over the possible counter-factual scenarios

(
MT

s MT
n MT

m MT
k

)T . This con-
vex sum can be associated with the counter-factual table,

1x, 1y 1x, 2y 2x, 1y 2x, 2y
1b 1a, 1b 1a 1a, 1b 1a 1a, 1b 1b 1a, 1b
0 0 0 0 0 0 0 0 π1111
0 0 0 0 0 0 1 0 π1112
0 0 0 0 0 0 1 1 π1113
0 0 0 0 1 0 0 0 π1121
0 0 0 0 1 0 1 0 π1122
...

...
...

...
...

...
...

...
...
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which consists of 81 counter-factual scenarios in total.
We will now make an important assumption. We assume that there can be no corre-
lation between x and b, nor between y and a, in any given counter-factual scenario.
We will refer to this as the independence assumption. Under this assumption we
must assign probability zero to counter-factual scenarios such as,

1x, 1y 1x, 2y 2x, 1y 2x, 2y
1b 1a, 1b 1a 1a, 1b 1a 1a, 1b 1b 1a, 1b
0 0 0 0 0 0 1 1 π1113
0 0 0 0 1 0 1 0 π1122
0 0 0 0 1 1 0 0 π1131
...

...
...

...
...

...
...

...
...

(3.29)

For the scenario in the �rst row, if input y does not correlate with output a, then
the event 1a|2x, 1y should occur. Likewise for the scenario in the second row, the
event 1a, 1b|2x, 2y should occur. In the third row the event 1b|1x, 1y should occur,
supposing that input x is not correlated with the output b.
One �nds that under the independence assumption, an input x must match to an
output a in a given counter-factual scenario. Likewise, an input y must match to an
output b in a given counter-factual scenario. We can match two possible outputs,
a = 1 or a ̸= 1, to inputs 1x and 2x. Likewise, we can match two possible outputs,
b = 1 or b ̸= 1, to inputs 1y and 2y. We thereby obtain 24 possibilities. We �nd that
these 16 counter-factual scenarios are,

1x, 1y 1x, 2y 2x, 1y 2x, 2y
1b 1a, 1b 1a 1a, 1b 1a 1a, 1b 1b 1a, 1b
0 0 0 0 0 0 0 0 π1
0 0 0 0 0 0 1 0 π2
0 0 0 0 1 0 0 0 π3
0 0 1 0 0 0 0 0 π4
1 0 0 0 0 0 0 0 π5
0 0 0 0 1 0 1 1 π6
1 0 0 0 1 1 0 0 π7
0 0 1 1 0 0 1 0 π8
1 1 1 0 0 0 0 0 π9
1 0 0 0 0 0 1 0 π10
0 0 1 0 1 0 0 0 π11
1 1 1 0 1 1 0 0 π12
0 0 1 1 1 0 1 1 π13
1 0 0 0 1 1 1 1 π14
1 1 1 1 0 0 1 0 π15
1 1 1 1 1 1 1 1 π16
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and for simplicity we enumerate the associated probabilities πk from 1 to 16. Under
the independence assumption, we have that the marginal p(1b|1x, 1y) is independent
of x, so p(1b|1x, 1y) = p(1b|1y). Similar arguments can be made for the remaining
marginals. We can then compute the behaviour B as the convex sum,

p(1b|1y)
p(1a, 1b|1x, 1y)

p(1a|1x)
p(1a, 1b|1x, 2y)

p(1a|2x)
p(1a, 1b|2x, 1y)

p(1b|2y)
p(1a, 1b|2x, 2y)


=



0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1
0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1
0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1
0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1





π1
π2
π3
π4
...
π14
π15
π16


0 ≤ πk ≤ 1 ,

∑
k

πk = 1. (3.30)

This polytope is referred to as a Bell polytope, and we may eliminate the variables
πk from the above system of linear equalities and inequalities using Fourier-Motzkin
elimination. We perform the elimination in the program PORTA [25], and obtain a
set of inequalities of the form,

p(1a, 1b|nx, ky) ≥ 0 , p(1a|nx) + p(1b|ky)− p(1a, 1b|nx, ky) ≤ 1

p(1a, 1b|nx, ky) ≤ p(1a|nx) , p(1a, 1b|nx, ky) ≤ p(1b|ky) (3.31)

where n, k ∈ {1, 2}, and an additional four inequalities,

−1 ≤ p(1a, 1b|1x, 1y) + p(1a, 1b|1x, 2y) + p(1a, 1b|2x, 1y)
− p(1a, 1b|2x, 2y)− p(1a|1x)− p(1b|1y) ≤ 0

−1 ≤ p(1a, 1b|1x, 1y) + p(1a, 1b|1x, 2y)− p(1a, 1b|2x, 1y)
+ p(1a, 1b|2x, 2y)− p(1a|1x)− p(1b|2y) ≤ 0

−1 ≤ p(1a, 1b|1x, 1y)− p(1a, 1b|1x, 2y) + p(1a, 1b|2x, 1y)
+ p(1a, 1b|2x, 2y)− p(1a|2x)− p(1b|1y) ≤ 0

−1 ≤ −p(1a, 1b|1x, 1y) + p(1a, 1b|1x, 2y) + p(1a, 1b|2x, 1y)
+ p(1a, 1b|2x, 2y)− p(1a|2x)− p(1b|2y) ≤ 0, (3.32)

these last four inequalities, �rst given in [26] in the equivalent correlator form,
are called Clauser-Horne inequalities in the literature [20]. The Clauser-Horne in-
equalities are examples of what is known as Bell inequalities. Together with the
inequalities Eq. 3.31, the Clauser-Horne inequalities provide a representation of the
Bell polytope given in Eq. 3.30.
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Figure 3.2: A source S with properties λ acts on two measurement stations MA and
MB, either through the emission of some objects or through action at a distance.

We will now consider an experiment with two measurement devices MA and MB,
and a source S, arranged as sketched in Fig. 3.2. We will assume that at some
space-time coordinate τλ, de�ned w.r.t to some reference frame, the source S is
characterized by having properties λ (see Fig. 3.3). It is the properties λ we want
to measure. We let the measurement outcome obtained by device MA be given by
the variable a, and likewise b describes the output of the deviceMB. x is the setting
(input) of MA, and y is the setting of MB. We will assume that the input x is
de�ned at space-time point τx, and the input y is de�ned at the space-time point
τy. The outputs a and b are obtained at space-time points τa and τb respectively.

We then make another important assumption. We assume that in a particular
round of experiment, the properties λ correspond to a particular counter-factual
scenario. That is, in any given round of experiment, λ is such that a particular
input x, y maps to a particular output a, b, with this mapping being de�ned for all
possible inputs. Then, as explained at the end of section 3.1, the decomposition
of the behaviour Eq. 3.28 should be understood as stating, that with probabil-
ity πs,n,m,k, the properties λ were such that we obtain the counter-factual scenario(
MT

s MT
n MT

m MT
k

)T . The independence assumption can then be justi�ed when
the experimental events are positioned as shown in Fig. 3.3. According to the
theory of special relativity, no signal can travel faster than the speed of light [27].
This suggests that an event at τa cannot be a�ected by an event at τy, since τa is
outside of the forward light-cone of τy. For the same reason, an event at τb cannot
be a�ected by an event at τx. Assuming that the theory of special relativity holds in
each round of experiment, then the properties λ realized in a round of experiment
must be constrained by the theory. So the counter-factual scenario associated to
particular properties λ, must be constrained so that there is no correlation between
x and b, nor between y and a. This is the content of the independence assumption.

Nevertheless, even though the events are ordered as in Fig. 3.3, we can for-
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Figure 3.3: A particular ordering of experimentally relevant events. The dotted cones
are light-cones. τx is where setting x is chosen, τa is where outcome a is obtained,
τy is where setting y is chosen, τb is where outcome b is obtained. τλ is where the
properties of S are λ. τC is de�ned in the text.
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mulate conditions that would cause the independence assumption to fail. The �rst
possibility is that nature is non-local [28]. In�uences, which apparently travel faster
than the speed of light, connect input x to the output b, and the input y to the
output a. It follows that we were wrong to exclude scenarios such as those listed in
table 3.29. However, these in�uences cannot be controlled for telegraphic purposes,
for the marginal distribution of a remains independent of y according to quantum
mechanics, and the marginal distribution of b remains independent of x [4]. An-
other possibility is that nature is acausal, and colliding systems are correlated both
after and prior to their collision. Acausal physics is discussed in [29]�[31]. Hamil-
ton's principle and the advanced potentials in electromagnetism [27] are examples of
acausal concepts in physics. Within an acausal model x and λ, located at τx and τλ
respectively, can be correlated in a given experimental run due to the measurement
event located at τa. Since b can be correlated with λ, this then implies that b can be
correlated with input x in a given experimental run, and we were wrong to exclude
counter-factual scenarios such as those listed in table 3.29.

It was demonstrated in a sequence of experimental works [32]�[34], that the
Clauser-Horne-Shimony-Holt (CHSH) inequalities are violated by nature. A vio-
lation of the CHSH inequalities is equivalent to a violation of the Clauser-Horne
inequalities given above [7]. For this reason, it seems that we are forced to accept
that one of the above possibilities must be true. However, we note that at least
two other possible explanations for the violation remains. It is possible that the
counter-factual scenarios used to decompose the behaviour, cannot be interpreted
as corresponding to something physical. They are purely mathematical constructs,
and we can therefore not condition them on physical laws, such as the theory of
special relativity. The independence assumption can therefore not be justi�ed. A
second possibility is the existence of a common cause, C, located at the space-time
point τC (see Fig. 3.3), in the backward light cone of τx, τy, τa and τb. There could
be a common cause that determined the experimenters to choose inputs x and y,
and determined the outputs a and b. Clearly then, any experimental record can be
produced, including one that violates one of the Clauser-Horne inequalities.

3.3 The no-signalling polytope

Suppose we perform the experiment sketched in Fig 3.2, and obtain probabilities
p(a, b|x, y) for the co-occurrence of outcomes a and b, given that the physicists A and
B (operating MA and MB respectively) gave inputs x and y. We can then compute
the marginal distribution of a,

p(a|x, y) =
∑
b

p(a, b|x, y). (3.33)
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Supposing the marginal distribution p(a|x, y) depends on setting y, we see that if
A and B share many copies of the system they are measuring on, and B always
measure using the same setting y, then A can infer setting y from comparing the
observed marginal distribution p(a|x, y) to a known theoretical model. But what if
B measured using setting y after A measured ? Then A would be able to predict
which setting B is going to use. If A then tells B to use another setting, we arrive
at a paradox. Hence the above marginal cannot generically depend on setting y, it
can only do so if B measures before A.
It is easily seen that the linear operator algebra of quantum mechanics ensures that
the marginal p(a|x, y) is always independent of y. Let P̂A(a, x) be the projector onto
the state associated with outcome a for setting x, then

p(a, b|x, y) = TrAB

[
ρP̂A(a, x)P̂B(b, y)

]
, (3.34)

where ρ is the quantum state shared by A and B. We may compute the marginal,

p(a|x, y) =
∑
b

p(a, b|x, y) = TrAB

[
ρP̂A(a, x)

∑
b

P̂B(b, y)

]
, (3.35)

provided that some outcome must occur, we have
∑

b P̂B(b, y) = 1, and we can
conclude,

p(a|x, y) = TrA

[
TrB [ρ] P̂A(a, x)

]
, (3.36)

which is clearly independent of y. So we �nd,

p(a|x, y) = p(a|x). (3.37)

This constraint on the marginal is called no-signalling, for its violation would allow
B to send a message to A simply by choosing a particular setting y [35]. We write up
the no-signalling conditions together with conditions of normalization and positivity,∑

b

p(a, b|x, y) =
∑
b

p(a, b|x, y′) ,
∑
a

p(a, b|x, y) =
∑
a

p(a, b|x′, y) (3.38)∑
a,b

p(a, b|x, y) = 1 , 0 ≤ p(a, b|x, y) ≤ 1, (3.39)

which should hold for all inputs x, x′, y, y′, and outputs a, b. We see that the prob-
abilities p(a, b|x, y) are constrained by linear equalities and inequalities, hence the
no-signalling conditions de�ne a convex polytope. In summary, microscopic systems
can yield behaviours that are outside the Bell polytope, but they are always inside
the no-signalling polytope.
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3.4 More than two participants

An important generalization of the CHSH inequalities to the case with more than
two participants (parties for short) was described by Werner and Wolf in [36]. The
inequality carries the name the Werner-Wolf-Weinfurter-Zukowski-Brukner inequal-
ity, or W3ZB for short. The inequality applies to an experiment withN inputs andN
outputs, where each input can take two values, and likewise each output can take two
values. We denote the inputs as xp and the outputs as ap, with p ∈ {A,B,C, · · · }.
We refer to each letter A,B, . . . as a party, giving N parties in total. Each input
can be 0 or 1, and each output can be 0 or 1. We let x be a vector of the inputs,
i.e. x =

(
xA xB · · ·

)
. We let a be a vector of the outputs a =

(
aA aB · · ·

)
. We

will be using binary strings of length N , and we order these numerically so that zk
is the binary string corresponding to the number k. So for example with N = 4,

z3 =
(
0 0 1 1

)
. (3.40)

We denote the set of all binary strings of length N as BN .
The counter-factual table corresponding to the experiment has the columns,

x = z1 x = z2 · · ·
1aA 1aB · · · 1aA 1aB · · · · · ·
0 0 0 0 0 0 · · · π0
...

...
...

...
...

... · · · ...

(3.41)

The W3ZB inequality can then be derived from the assumption that input xp can
only correlate with output ap in a given counter-factual scenario. We introduce a

vector for each p, λp =
(
λ
(0)
p λ

(1)
p

)
, where λ(n)p ∈ {0, 1}. We gather these vectors in

a list λ =
(
λA λB · · ·

)
. We introduce the function,

f(xp, λp) = δ(xp, 0)λ
(0)
p + δ(xp, 1)λ

(1)
p . (3.42)

We can then construct a vector f(x, λ),

f(x, λ) =
(
f(xA, λA) f(xB, λB) · · ·

)
(3.43)

For each λ we can then construct a counter-factual scenario T (λ) (a row of table
3.41) that is consistent with the assumption that ap can only correlate with xp,

T (λ) =
(
f(z1, λ) f(z2, λ) · · ·

)
. (3.44)

This counter-factual scenario is associated with the probability p(λ). All counter-
factual scenarios allowed under our assumption can be constructed in this way, that
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is by choosing di�erent lists λ. Summing over all possible λ, we must then have the
normalization, ∑

λ

p(λ) = 1

p(λ) ≥ 0. (3.45)

Then the probability of obtaining a given inputs x, that is p(a|x), is given by the
probability of obtaining any λ where f(x, λ) = a. This probability is given by,

p(a|x) =
∑
λ

p(λ)
∏

p∈{A,B,C,...}

[
δ(xp, 0)δ(ap, λ

(0)
p ) + δ(xp, 1)δ(ap, λ

(1)
p )
]
, (3.46)

where δ(x, y) is the Kronecker delta function in x and y. Now comes the crucial
trick, we compute the N party correlators,

M(x) =
∑
a∈BN

p(a|x)
∏

p∈{A,B,C,...}

[δ(ap, 0)− δ(ap, 1)] , (3.47)

i.e. if ap is 0 we multiply by +1 and if ap is 1 we multiply by -1. The sum over a
runs over the binary strings zk. Inserting Eq. 3.46 we obtain,

M(x) =
∑
λ

M(x, λ)p(λ), (3.48)

M(x, λ) =
∑
a∈BN

∏
p∈{A,B,C,...}

[
δ(xp, 0)δ(ap, λ

(0)
p ) + δ(xp, 1)δ(ap, λ

(1)
p )
]
[δ(ap, 0)− δ(ap, 1)]

(3.49)

We then evaluate M(x, λ),

M(x, λ) =
∑
a∈BN

∏
p∈{A,B,C,...}

[
δ(xp, 0)δ(ap, λ

(0)
p ) + δ(xp, 1)δ(ap, λ

(1)
p )
]
[δ(ap, 0)− δ(ap, 1)]

=
∑
a∈BN

∏
p∈{A,B,C,...}

[
δ(xp, 0)δ(ap, λ

(0)
p )δ(ap, 0)− δ(xp, 0)δ(ap, λ

(0)
p )δ(ap, 1)

+δ(xp, 1)δ(ap, λ
(1)
p )δ(ap, 0)− δ(xp, 1)δ(ap, λ

(1)
p )δ(ap, 1)

]
, (3.50)
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breaking up the sum we can move it under the product operator,

=
∏

p∈{A,B,C,...}

∑
ap∈B1

[
δ(xp, 0)δ(ap, λ

(0)
p )δ(ap, 0)− δ(xp, 0)δ(ap, λ

(0)
p )δ(ap, 1)

+δ(xp, 1)δ(ap, λ
(1)
p )δ(ap, 0)− δ(xp, 1)δ(ap, λ

(1)
p )δ(ap, 1)

]
=

∏
p∈{A,B,C,...}

[
δ(xp, 0)δ(λ

(0)
p , 0)− δ(xp, 0)δ(λ

(0)
p , 1)

+δ(xp, 1)δ(λ
(1)
p , 0)− δ(xp, 1)δ(λ

(1)
p , 1)

]
=

∏
p∈{A,B,C,...}

[
δ(xp, 0)(−1)λ

(0)
p + δ(xp, 1)(−1)λ

(1)
p

]
=

∏
p∈{A,B,C,...}

(−1)λ
(0)
p

[
δ(xp, 0) + δ(xp, 1)(−1)λ

(0)
p +λ

(1)
p

]
(3.51)

De�ning the vectors λ(0) =
(
λ
(0)
A λ

(0)
B · · ·

)
and λ(1) =

(
λ
(1)
A λ

(1)
B · · ·

)
we can

perform the multiplication and obtain,

M(x, λ) = (−1)|λ
(0)|1(−1)⟨λ

(0)+λ(1),x⟩. (3.52)

where |λ(0)|1 =
∑

p λ
(0)
p , and we've de�ned the inner product, ⟨λ(0) + λ(1), x⟩ =∑

p

(
λ
(0)
p + λ

(1)
p

)
xp. Evidently we �nd that M(x, λ) is uniquely de�ned by the

number, s = (−1)|λ
(0)|1 , and the binary vector b = λ(0) + λ(1) (mod 2). We can

then write,

M(x, λ) =M(x, s, b) = s(−1)⟨b,x⟩. (3.53)

We can group the scenarios λ corresponding to the same s and b, and perform the
sum in Eq. 3.48 over s and b instead,

M(x) =
∑

s∈{−1,1}

∑
b∈BN

M(x, s, b)p(s, b), (3.54)

where we've de�ned,

p(s, b) =
∑

λ∈Ω(s,b)

p(λ) (3.55)

and Ω(s, b) is the domain over λ for which (−1)|λ
(0)| = s and λ(0)+λ(1) (mod 2) = b.

Expanding the summand,

M(x) =
∑

s∈{−1,1}

s
∑
b∈BN

(−1)⟨b,x⟩p(s, b), (3.56)
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we multiply both sides by 2−N(−1)⟨x,y⟩ where y is a binary vector of length N , and
then we sum x over BN . The left side of Eq. 3.56 yields the transformed correlator,

M̃(y) = 2−N
∑
x∈BN

(−1)⟨x,y⟩M(x), (3.57)

whereas the right side of Eq. 3.56 becomes,

2−N
∑

s∈{−1,1}

s
∑
b∈BN

p(s, b)
∑
x∈BN

(−1)⟨x,y+b⟩

=
∑

s∈{−1,1}

s
∑
b∈BN

p(s, b)δ(y, b)

=
∑

s∈{−1,1}

sp(s, y). (3.58)

So we can express the transformed correlators as,

M̃(y) =
∑

s∈{−1,1}

sp(s, y). (3.59)

To understand this equation in more detail, we sketch the associated matrix equa-
tion. Enumerating the possible y as yn, we have,

M̃(y0)

M̃(y1)

M̃(y2)
...

 =


1
0
0
...

 p(1, y0) +


−1
0
0
...

 p(−1, y0)

+


0
1
0
...

 p(1, y1) +


0
−1
0
...

 p(−1, y1) + · · · (3.60)

and so forth. Examining the octahedron sketched in Fig. 3.4 we see that the
octahedron is formed by the convex sum of the vertices

{
(
1 0 0

)
,
(
−1 0 0

)
,
(
0 1 0

)
,
(
0 −1 0

)
,
(
0 0 1

)
,
(
0 0 −1

)
}. (3.61)

Hence we see that the convex sum in Eq. 3.60 is in fact the generalization of the
octahedron to 2N dimensions. Such a convex polytope is called a cross polytope.
The 2N dimensional cross polytope can be de�ned by the inequality [24],

2N−1∑
m=0

|M̃(ym)| ≤ 1. (3.62)
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Figure 3.4: Sketch of an octahedron.

If we express M̃(y) in terms of M(x) we obtain from Eq. 3.62,

2−N
∑
y∈BN

∣∣∣∣∣ ∑
x∈BN

(−1)⟨x,y⟩M(x)

∣∣∣∣∣ ≤ 1 (3.63)

which is called the W3ZB inequality.
Note that we can add a minus in front of any selection of the terms |M̃(ym)| in
Eq. 3.62 and the inequality will still be valid. Hence Eq. 3.62 also implies all the
inequalities,

2N−1∑
m=0

smM̃(ym) ≤ 1 (3.64)

with sm ∈ {−1, 1}. One can easily verify that the above 22
N
inequalities are obeyed

by all vertices of the cross polytope, and that for each inequality we obtain equality
for 2N vertices. These 2N vertices de�ne a facet of the cross polytope associated to
each inequality.
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Chapter 4

Proposal for a long-distance

nonlocality test with entanglement

swapping and displacement-based

measurements

We now present the paper Proposal for a long-distance nonlocality test with entangle-
ment swapping and displacement-based measurements [9]. This paper was authored
by Anders J. E. Bjerrum, Jonatan B. Brask, Jonas S. Neergaard-Nielsen, and Ulrik
L. Andersen. The paper was published in Physical Review A with the reference
Phys. Rev. A 107, 052611 (2023).
A section has been attached to the end of the paper, describing how to convert the
non-linear W3ZB inequality into linear inequalities for particular cases.

4.1 Abstract

We analyze an all-optical setup which enables Bell-inequality violation over long
distances by exploiting probabilistic entanglement swapping. The setup involves
only two-mode squeezers, displacements, beamsplitters, and on/o� detectors. We
describe how events must be arranged to close both the detection and locality loop-
holes. We analyze a scenario with dichotomic inputs and outputs, and check the
robustness of the Bell inequality violation for up to 6 parties, with respect to phase-,
amplitude-, and dark-count noise, as well as loss.

4.2 Introduction

As pointed out already by Boole in his work on probability theory, logical relations
between observable events imply inequalities for the probabilities of their occur-
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rence [20], [37]. Bell later demonstrated that the inequalities implied by a local
causal realist description of nature can be violated within quantum mechanics [21],
[38], implying that quantum mechanics cannot be recast as a local realist theory.
Subsequent experimental investigations by Clauser, Aspect and their collaborators
[32], [33], [39] con�rmed the nonlocal predictions of quantum mechanics, and non-
locality gradually became accepted as an aspect of nature. These early experiments
were however not loophole-free, and while loophole-free violations have since been
realised [34], [40]�[42], it still remains experimentally challenging, with loss and de-
tector ine�ciencies being some of the main obstacles [43].

Loopholes constitute ways in which nature, or an eavesdropper, can arrange ex-
perimental outcomes, such that an experiment appears nonlocal, while in reality
it is not. The detection loophole is relevant when inconclusive measurements are
discarded from the experimental data [7]. Such inconclusive measurements typically
occur due to losses during transmission of the particles, or non-unit e�ciency of
the detectors. It has been demonstrated that discarding inconclusive measurement
rounds renders it possible to violate a Bell inequality using classical optics [44]. The
locality loophole is present if measurements are performed such that a sub-luminal
signal can transfer information between measurement stations during a measure-
ment sequence. Such a sequence includes the act of choosing a measurement basis,
and performing the measurement in this basis. The locality loophole can be closed
by separating the measurement stations and keeping the duration of the measure-
ment sequence short. However, this separation tends to induce losses and noise in
the state shared by the participants of the experiment, and these losses tend to
make the shared quantum state local, i.e. it cannot be used to demonstrate a Bell
inequality violation.

In spite of these di�culties, the utilization of nonlocality is now moving from
fundamental science towards practical applications, where the provable nonlocality
of a quantum state is used in device-independent protocols to certify the security of
a cryptographic key [8], [45]�[49]. Crucial to the realization of device-independent
quantum key distribution is the ability to close relevant loopholes, and to demon-
strate the violation of Bell inequalities across distances relevant for telecommunica-
tion.

In this work we propose an experiment capable of violating a Bell inequality
when the parties are separated by channels of low transmission. Our experiment is
designed to be capable of closing the detection and locality loopholes, and invokes
only standard quantum optics tools, such as two-mode squeezers, displacements,
and click detectors (on/o� detectors). A sketch of the setup with N parties is shown
in Fig. 4.1. The proposed experiment is inspired by the setup in [50], in which
displacement-based measurements are used to demonstrate a Bell inequality vio-
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Figure 4.1: Sketch of the analysed setup with N parties. The left-going modes are
labelled pn and the right-going modes are labelled sn. A detector associated with
a mode is given the same label as that mode. The measurement performed by the
detectors in S e�ectively swaps the N bipartite entangled states, from the two-mode
squeezers, into an N-mode entangled state. ch abbreviates channel.

lation. In our protocol, two-mode squeezers generate weakly squeezed two-mode
squeezed vacuum states with half of each state sent a short distance to an on/o�
detector, and the other half sent to a distant interferometer B. The left-going modes
in Fig. 4.1 are labelled pn and the right-going modes are labelled sn, we group
them into two sets P = {p1, p2, . . . , pN} and S = {s1, s2, . . . , sN}. We use the same
label for a mode and the corresponding detector. Each of the N detectors in P is
considered as a party, with the possible measurement outcomes, click or no click,
corresponding to whether any light arrives at the detector or not. The interferome-
ter B mixes the modes S, so that a photon arriving at one of the input ports of B,
has an equal probability of triggering each of the detectors in S. We then require
that only detector sN clicks, and that the remaining detectors in S do not click.
Hence our protocol is similar to an event-ready scheme [34], [42], [51] based on opti-
cal entanglement swapping [52]�[55], but without the need for quantum memories.
Upon obtaining the correct measurement outcome at S, the measurement outcomes
at the detectors in P are approximately the same as if the detectors measured the
single-photon state 1√

N
(|1, 0, . . . , 0⟩+ |0, 1, . . . , 0⟩+ |0, 0, . . . , 1⟩), in the limit of van-

ishing squeezing. However, due to the presence of dark counts at the detectors it is
not optimal to operate the experiment in the limit of vanishing squeezing, and the
analysed state will only be similar to a W state. The nonlocality of the W state was
analysed in [50], [56]�[58], and we expect to see similar results for the state analysed
in this work. However it is worth noting that the study in [57] focuses on single-run
violations of locality, as opposed to the statistical violation analysed in this work.
Moreover the measurements in [57] involved general qubit measurements, while we
assume the more feasible displacement-based measurements.
Our work also di�ers in key aspects from the protocols in [50], [56], [58]. The pu-
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ri�cation step proposed in the present work is part of the state preparation, i.e.
obtaining the correct measurement outcomes at S will mitigate loss incurred in the
channels chs for suitable values of the squeezing parameters, while at the same time
preparing a N-partite entangled state. In [56], [58] the authors do not introduce
a heralded step to mitigate loss, limiting the distance over which nonlocality can
be demonstrated. In [50] loss is mitigated by each party �ltering their part of the
state using a quantum scissor [59]. However, quantum scissors require single-photon
sources making the idea increasingly less practical as we increase the number of
parties. Our puri�cation step does not involve quantum scissors, hence no single-
photon sources are required for our scheme.
Note that the state preparation in our scheme generates a N-partite entangled state
after the N parties have measured on their parts of the shared state. This implies
that the parties must discard obtained measurement outcomes if the subsequent
heralding measurement at S fails, and this opens the door for the detection loop-
hole. However, as we will show in the following, it turns out to be possible to arrange
the events of the protocol such that the detection loophole is closed.
Prior to each detector in P , either of two di�erent displacements (D in Fig. 4.1) is
applied to the �eld. These displacements make up the two di�erent measurement set-

tings. We write the displacement applied on mode p ∈ P as X(np)
p =

(
x
(np)
p y

(np)
p

)T
,

with np ∈ (0, 1) labelling which of two possible displacements is implemented (mea-
surement setting). We assume that all parties are choosing between the same two
displacements, when the phases of the N two-mode squeezers are the same. This
assumption is invoked to simplify our analysis, and we found no advantage when
deviating from it. The displacement operator for mode p is de�ned as,

Dp

(
X(np)
p

)
= exp

[
i(q̂p y

(np)
p − p̂p x

(np)
p )

]
, (4.1)

where q̂p and p̂p are the quadrature operators for mode p. We follow the con-
vention [q̂k, p̂l] = 2iδkl. From the quadrature operators we obtain the annihila-
tion operator, âp = 1

2
(q̂p + ip̂p). The coherent state generated by the displace-

ment X(np)
p , i.e. the state, |X(np)

p ⟩ = Dp

(
X

(np)
p

)
|0⟩, is centred on the coordinates(

qp pp
)
=
(
2x

(np)
p 2y

(np)
p

)
in phase space. We associate a click at a detector with

the value 1, and no click with the value -1. The observable associated with detector
p is then given by,

Mp = (Ip − |0⟩p⟨0|)− |0⟩p⟨0| (4.2)

= Ip − 2 |0⟩p⟨0| , (4.3)

where Ip is the identity operator associated with mode p. We may transfer the
displacement applied prior to detector p onto the observable to obtain,

M (np)
p = Ip − 2 |−X(np)

p ⟩
p
⟨−X(np)

p | . (4.4)
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Figure 4.2: Space-time diagram of a loophole-free experiment with two parties, show-
ing the space-time ordering of important events (marked by ×). The events Tp1 and
Tp2 correspond to the generation of two-mode squeezed vacuum. Cp1 and Cp2 are the
events where p1 and p2 decide their measurement settings. Mp1 and Mp2 correspond
to events where p1 and p2 measure. Ms correspond to the event where s1 and s2
measure. At the bottom we sketch the experimental setup (compare with Fig. 4.1),
where S corresponds to the swap following the interferometer B.

We attempt to violate the W3ZB (Werner-Wolf-Weinfurter-�ukowski-Brukner) in-
equality [36], [60], [61],

2−N
∑
b

∣∣∣∣∣∑
n

(−1)⟨b,n⟩⟨M (n)⟩

∣∣∣∣∣ ≤ 1. (4.5)

b and n are binary lists of length N , and the sums run over all possible binary
lists. ⟨b, n⟩ is the dot product between b and n. The entries of n label the measure-
ment settings of the involved parties. ⟨M (n)⟩ is the correlator given by the product
⟨M (n)⟩ = ⟨

∏
pM

(np)
p ⟩. We will refer to the left side of Eq. 4.5 as the Bell value of

the W3ZB inequality. The maximal violation of the W3ZB inequality increases with
the number of parties [62]. We therefore expect that when some loss and noise does
not scale with the number of parties, then a violation of a W3ZB inequality with
more parties is more robust against this loss and noise, as compared to a W3ZB
inequality with fewer parties.

To close both the locality and detection loophole with two parties, p1 and p2,
we require that the events of the experiment are positioned as shown in the space-

59



time diagram in Fig. 4.2. The events Tp1 and Tp2 correspond to the generation
of two-mode squeezed vacuum for party p1 and party p2 respectively. These events
occur along a temporal (vertical) line, since the light emitted from the source has
a �nite duration τ . For this reason there exists at each position x a duration of
time where we expect the light to arrive with very high probability, this is marked
with a darker shaded area. The measurements by p1 and p2 are labelled Mp1 and
Mp2 respectively. Ms correspond to the event where s1 and s2 measure. The choos-
ing of measurement setting is labelled Cp1 and Cp2 . The measurements Mp1 and
Mp2 collapse the temporal width of the pulses, as illustrated in the �gure by an
×. The swap Ms occurs with very high probability along the vertical black line
inside the central black and yellow dashed diamond. The backwards light cone for
a swapping event will then typically be bounded by the dashed backwards light cone.

To close the detection loophole, p1 and p2 must choose their measurement set-
tings at a time and place such that information about their choices cannot in�uence
the swapping measurement Ms via a sub-luminal signal. If the experiment is ex-
ecuted in this way, then we anticipate that an eavesdropper cannot tamper with
the swap to falsify nonlocal correlations [63]. Most swapping events will obey this
requirement if Cp1 and Cp2 are outside the dotted backward time cone shown in Fig.
4.2. The critical distance dc, which is the characteristic distance the event Cp2 must
be separated from the two-mode squeezer Tp2 , can be found by geometric arguments
as dc = (1/2)cτ , and is associated with a waiting time tc = (1/2)τ . Ideally p2 could
make her choice of measurement setting at a distance dc from Tp2 , at a time tc after
the light started to be emitted from the squeezer. Then her choice would most likely
not be able to in�uence the swap Ms, while at the same time ensuring that the light
pulse has not passed by her yet.

The experimental constraints discussed above generalize to the scenario where N
parties attempt to obtain a Bell inequality violation, while closing the detection and
locality loophole. That is, the parties should ensure that the events Cpn are outside
the backward timecone for the swapping event Ms. However, one should also ensure
that the parties are su�ciently distant from each other, so that information on the
choice of measurement setting and outcome cannot travel between parties during a
measurement sequence.

4.3 Model

We now give an outline of how we model the optical �eld, and how we include
experimental imperfections in our analysis. A full description can be found in ap-
pendix A1. The �elds generated by the two-mode squeezers are distributed in time
and space according to some mode functions [2]. The amplitudes of these modes are
quantum uncertain with Gaussian statistics described by a covariance matrix σ with
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elements σkl = 1/2⟨{Qk, Ql}⟩ − ⟨Qk⟩⟨Ql⟩, where {., .} denotes the anti-commutator
and Q = QP ⊕QS, where QP =

⊕
p∈P

(
q̂p p̂p

)
with QS =

⊕
s∈S
(
q̂s p̂s

)
[16]. The

corresponding density matrix, also describing the statistics of the �eld, is denoted
ρ. We denote the squeezing parameter of the N squeezers as r and introduce the
symbols, a = sinh(2r) and v = cosh(2r). The covariance matrix of the 2N modes
can be written as,

σ =

(
vI Rϕ

Rϕ vI

)
, (4.6)

where I is the identity matrix of dimension 2N and Rϕ is the block diagonal matrix,

Rϕ =
⊕
p

(
a cos(ϕp) −a sin(ϕp)
−a sin(ϕp) −a cos(ϕp)

)
, (4.7)

where ϕp is the phase angle of the squeezer for party p. The expectation value of the
�eld amplitude is assumed zero. The Wigner characteristic function corresponding
to ρ is given by χρ(Λ) = exp[−(1/2)ΛTΩσΩTΛ] where Λ is a vector of conjugate
quadratures (the Fourier transform dual to the quadratures) for the modes P and
S, i.e. Λ = ΛP ⊕ ΛS, where ΛP =

⊕
p∈P Λp and ΛS =

⊕
s∈S Λs. The conjugate

quadratures for mode k is a vector Λk =
(
λkx λky

)T . We have also introduced the
symplectic form Ω =

⊕2N
k=1 ω, where ω is the antisymmetric matrix,

ω =

(
0 1
−1 0

)
. (4.8)

The modes S are then mixed on the interferometer B, and we assume that the corre-
sponding mode functions are identical and have a high overlap at the beamsplitters
making up the interferometer. Let âs be the amplitude operator for a mode s ∈ S,
the interferometer B is assumed to generate the Bogoliubov transformation,

âs1
âs2
âs3
...

âsN

→ 1√
N


1 ei

2π
N ei2

2π
N . . . ei(N−1) 2π

N

1 ei2
2π
N ei4

2π
N . . . ei2(N−1) 2π

N

1 ei3
2π
N ei6

2π
N . . . ei3(N−1) 2π

N

...
...

...
. . .

...

1 1 1 . . . 1




âs1
âs2
âs3
...

âsN

 (4.9)

We condition the state on obtaining a click at detector sN and no clicks at the
remaining detectors, thereby heralding the conditional state ρc of modes P . The
projector corresponding to this event is Π̂c =

(∏
s∈S̄ |0⟩s⟨0|

)
(IsN − |0⟩sN⟨0|), where

S̄ is the set S̄ = S\{sN}. The conditional state is obtained as ρc = TrS[ρΠ̂c]/P (C),
where P (C) is the normalization, i.e. the probability of obtaining the measurement
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outcomes heralding a successful swap. Π̂c has the characteristic function,

χc(ΛS) = Tr
[
Π̂cDS(ΛS)

]
= E(ΛS̄) ·

(
πδ(2)(ΛsN )− E(ΛsN )

)
, (4.10)

where

E(Λj) = exp

[
−1

2
ΛTj Λj

]
, (4.11)

and δ(2)(Λj) is a delta function. We obtain the characteristic function of the condi-
tional state through integration,

χρc(ΛP ) =
1

πNP (C)

∫
R2N

χρ(Λ)χc(−ΛS)d
2NΛS. (4.12)

We then compute the Bell value of the W3ZB inequality by evaluating the expecta-
tion values ⟨M (n)⟩ = ⟨

∏
p∈P M

(np)
p ⟩, for each setting n. This is done via the integral

[1], 〈∏
p∈P

M (np)
p

〉
= Tr

{
ρc
∏
p∈P

M (np)
p

}

=
1

πN

∫
R2N

χρc(−ΛP )χM (ΛP , XP ) d
2NΛP , (4.13)

where χM (ΛP , XP ) is the characteristic function associated with the observable∏
p∈P M

(np)
p . XP is a vector of the displacements applied prior to the detectors,

XP =
⊕

p∈P X
(np)
p . A closed form expression for ⟨

∏
p∈P M

(np)
p ⟩ can be found in

appendix A1.

Noise model

We now outline how we describe noise relevant to the experiment. We will include
dark-counts in the detectors, loss in the channels, phase noise in the channels and
measurements, and �nally, amplitude noise in the measurements. Amplitude and
phase noise during measurement are expected to arise if imperfect displacements are
applied.

We include dark-counts in our measurement model by adding a noise term to
the observable. Given that pd is the probability of getting a dark-count at a given
detector, then we measure the observable,

M (np)
p = (1− pd)

[
Ip − 2

∣∣−X(np)
p

〉
p

〈
−X(np)

p

∣∣]+ pdIp

= Ip − 2(1− pd)
∣∣−X(np)

p

〉
p

〈
−X(np)

p

∣∣ . (4.14)
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If a given detector in S is triggered by a dark-count with probability pd, then the
swap results in the transformation (see appendix A1),

ρ→ ρc =
1

P (C)
TrS

[
ρΠ̃c

]
. (4.15)

We have introduced the operator Π̃c,

Π̃c = (1− pd)
N−1

(∏
s∈S̄

|0⟩s⟨0|

)
·
(
IsN − (1− pd) |0⟩sN⟨0|

)
. (4.16)

We now describe how channel loss and detector e�ciency is included in our model.
Given that channel chpn has transmission ηpn and channel chsk has transmission ηsk ,
we model loss by a Gaussian map acting on the covariance matrix σ as [1],

σ → G1/2
η σG1/2

η + (I −Gη) , (4.17)

with the diagonal matrix Gη = GηP ⊕GηS , where GηP = Diag
[⊕

p∈P
(
ηp ηp

)]
and

GηS = Diag
[⊕

s∈S
(
ηs ηs

)]
. We will assume that ηpn equals ηP , i.e. the channels

chP = {chp1 ,chp2 ,. . .,chpN} have the same transmission. Likewise we assume that ηsk
equals ηS. ηd is the e�ciency of a detector, and 1−ηd is the loss of the detector. Given
that ηd is the same for all detectors in S, detector loss can then be commuted through
B and absorbed into the transmission of the channels chS = {chs1 ,chs2 ,. . .,chsN}.
Likewise, the detector loss in P can be shifted to be prior to the displacements, if
we attenuate the magnitude of the displacements by the factor

√
ηd.

We now turn to the problem of how to model phase noise. A phase perturbation
of the state ρ, e.g. caused by environmental disturbance, can be modelled as a
stochastic rotation in phase space,

ρ =

∫
dNθP (θ)R(θ)ρ0R(−θ), (4.18)

where ρ0 is the unperturbed state, and θ is a vector of stochastic rotation angles
θp for p ∈ P , each being a perturbation on the phase of the corresponding mode.
Note that phase noise acting on channels chS is shifted to act on channels chP in-
stead. R(θ) is the rotation operator R(θ) =

∏
p∈P Rp (θp). Rpn (θpn) is applied just

prior to the displacement operation on mode pn, and includes phase noise resulting
from propagation in the channels chpn and chsn , and also the phase noise in the
subsequent displacement operation. We make the assumption that the angles θ are
uncorrelated, and model the probability density P (θ) as a product of normal distri-
butions for each angle θp. The variance of θp is labelled as Vθ, and is the same for
all modes. The correlated phase noise resulting from the interferometer B cannot be
entirely captured by this simple model, but we expect that our model is su�ciently
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ηP ηS σA σθ pd
0.9 0.2 3/100 100 mrad 1/10000

Table 4.1: Standard settings for noise parameters. ηP is the transmission of the
channels chP (chp1, chp2 etc.). ηS is the transmission of channels chS. σA is the
standard deviation of the relative amplitude distribution (σ2

A = VA). σθ is the stan-
dard deviation of the phase angle distribution (σ2

θ = Vθ). pd is the probability of
getting a dark-count at a given detector (e.g. pn or sn) during the measurement
interval (which is assumed to be τ in our analysis).

close to reality to indicate the sensitivity of the experiment toward phase noise. We
furthermore assume that the angles θp are small, allowing us to approximate the
rotation of a coherent state by a small linear translation in phase space.
Finally, we describe how we model amplitude noise. Amplitude noise arises from an
imperfect displacement and is modelled similarly to phase noise, with the rotation
operator in Eq. 4.18 replaced by a displacement operator. The stochastic displace-
ment on mode p is given relative to the displacement X(np)

p applied on mode p, i.e.
for mode p we obtain the stochastic displacement ϵpX

(np)
p , where ϵp is referred to as

the relative amplitude. We assume that the relative amplitudes ϵp are normal, inde-
pendent and identically distributed, with variance VA. A more detailed description
of the noise model can be found in appendix A1.

4.4 Results and Discussion

We compute Bell values under varying experimental conditions. In order to obtain
realistic values we must include in the model reasonable experimental errors. We
choose the noise parameters shown in Table 4.1. Unless otherwise stated, these are
the values used for the noise parameters throughout our analysis. E.g. if we vary
ηP , as is done in Fig. 4.6, then the remaining noise parameters are set at the values
listed in Table 4.1.

We maximize the violation of the W3ZB inequality in the squeezing parameter r.
The Bell value as a function of r, for the optimal choice of measurement settings, is
shown in Fig. 4.3. We clearly observe that there exists an optimal squeezing value
for which the Bell value is maximized, and that the optimal squeezing depends on
the number of parties. We also observe that the maximal Bell value increases for
more parties, until 6 parties, at which point the maximal Bell value decreases for
more parties.
While the correlations between all parties lead to a violation of the W3ZB in-

equality at the optimal squeezing, we �nd that, for up to 4 parties, the marginal
outcome probabilities describing any subgroup of parties are inside the Bell poly-
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Figure 4.3: Bell value of the W3ZB inequality against the squeezing parameter r for
di�erent number of parties. The annotation and legend gives the number of parties.
The Bell value is computed for the optimal measurement settings at the given value
of r. We observe a maximum in the Bell value at a particular squeezing. Next to
the legend we list the probability P (C) that an experiment succeeds with that number
of parties, at the corresponding optimal value of r (the value of r giving the largest
Bell value).
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tope, with the used measurement settings. This was evidenced by a linear program
(see appendix A2), and indicates that in these cases nonlocality results from corre-
lations between all parties. An exception can occur for 5 parties if ηP is above 97%,
and for 6 parties if ηP is above 91%, with the used measurement settings. In these
cases a Bell inequality can be broken with a subgroup of 4 and 5 parties respectively.

We �nd the optimal displacements (measurement settings), at the optimal squeez-
ing, for which the violation is maximized. The optimal displacement for party p1
and another party pn, are shown in Fig. 4.4. The phase angles of the two-mode
squeezers belonging to p1 and pn respectively, are labelled as ϕp1 and ϕpn . m

(p1)
0

and m(p1)
1 are the displacements used by party p1, whereas m

(pn)
0 and m(pn)

1 are the
displacements used by party pn. m

(p1)
0 and m(pn)

0 have the same magnitude, but the
displacements are directed along di�erent quadrature axes at an angle ϕp1 − ϕpn ,
likewise for m(p1)

1 and m
(pn)
1 . So the displacements used by a given party pn will

be determined by the phase angle of their squeezer ϕpn . The magnitudes of m(pn)
0

and m(pn)
1 depend on the number of parties and are listed in Table 4.2. The overall

orientation of the quadrature axes is arbitrary, i.e. we can freely rotate Fig. 4.4,
as long as the angle between displacements remain unchanged. In this sense, the
displacements used by party p1 serve as a reference from which we can de�ne the
displacements to be used by the remaining parties.

We note that the optimum in squeezing, seen in Fig. 4.3, is the result of a
competition between the dark-count rate and the multi-photon generation rate. A
dark-count would render the measurements by the parties uncorrelated, thereby
lowering the Bell value. This indicates that it is preferable to have high squeezing,
so that photons from the optical �eld outnumber the dark-counts. However, the
click detectors in S cannot distinguish between 1 or more photons. Multi-photon
emission from the two-mode squeezers therefore create mixedness in the conditional
state generated by the swap, and this mixedness weakens the correlations between
the measurement outcomes obtained by the parties. This mixedness can be avoided
by lowering the degree of squeezing, so that on average less than one photon reaches
the detectors in S. As a result, there is some amount of squeezing where the com-
bined detrimental e�ect of dark-counts and multi-photon generation is minimized.
As we increase the number of parties, the presence of dark-counts becomes more
detrimental due to the increased number of detectors, and the lower probability of
a successful swap P (C). This is the cause of the decrease in maximal Bell value for
7 and 8 parties, as compared to the case with 6 parties.

We investigate the sensitivity of the experiment toward the probability of a
dark-count at a given detector in S, the result can be seen in Fig. 4.5 (left) for
di�erent number of parties. The probability of a dark-count at a given detector in
P is �xed at 0.01%. A dark-count at detector sN would mistakenly herald nonlocal
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Figure 4.4: We show the orientation of the optimal displacements (measurement
settings) that the parties p1 and pn should use to obtain a maximal violation of the

W 3ZB inequality. m
(p1)
0 and m

(p1)
1 are the displacements used by party p1, whereas

m
(pn)
0 and m

(pn)
1 are the displacements used by party pn (any party). pn's displace-

ments should be at the angle ϕp1 − ϕpn relative to p1's displacements, where ϕp1 and
ϕpn are the phase angles of the two-mode squeezers belonging to p1 and pn. The

magnitudes of m
(pn)
0 and m

(pn)
1 depend on the number of parties and are listed in

Table 4.2.

No. of Parties m0 m1

2 0.59 -0.18
3 0.47 -0.20
4 0.41 -0.19
5 0.37 -0.18
6 0.33 -0.17

Table 4.2: Magnitudes of the optimal displacements shown in Fig. 4.4 for the op-
timal value of r. If the detector transmission is ηd, then the magnitudes should be
multiplied by 1/

√
ηd.
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Figure 4.5: Left: Bell value of the W3ZB inequality against the probability of a dark-
count at a given detector in S during the measurement interval. The annotation
indicates the number of parties. Right: Bell value of the W3ZB inequality against
the probability of a dark-count at a given detector in P during the measurement
interval.

correlations between the detectors in P , when no such correlations actually exists.
This erroneous heralding signi�cantly lowers the calculated Bell value. The Bell
value is found to rapidly decrease around 0.02%. At this point, the probability
of getting a dark-count is no longer insigni�cant compared with the probability of
generating the conditional state, which is in the range 0.2% to 0.5%, depending on
the number of parties (see Fig. 4.3). For the case of 2 parties, the decrease in Bell
value proceeds a bit slower, however the lower initial Bell value (1.09) results in
the curve reaching the classical limit of 1 at smaller dark-count probabilities. The
drop in Bell value for increasing probability of a dark-count, is in part due to the
squeezing no longer being optimal. However, our calculations indicate that if pd
exceeds 0.05%, then the experiment cannot be used to violate the W3ZB inequality,
given the remaining errors (Table 4.1), even at the corresponding optimal squeezing
and measurement settings, and for any number of parties.
We also analyse the robustness of the Bell inequality violation against the probability
of a dark-count at a given detector in P , while the probability of a dark-count at a
given detector in S is �xed at 0.01%. A plot of this is shown in Fig. 4.5 (right), and
clearly illustrates that the violation is highly robust against this probability.

The impact of loss on the Bell value of the W3ZB inequality is shown in Fig. 4.6
and Fig. 4.7. In Fig. 4.6 we vary the transmission ηP , and show how the Bell value
changes. The transmission at which the Bell value drop below one, lowers as we
increase the number of parties. This indicates that a demonstration of nonlocality
might be easier to realize when using more parties. In Fig. 4.7 we show the depen-
dence of the Bell value on the transmission ηS. We observe that the Bell value is
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Figure 4.6: We plot how the Bell value of the W3ZB inequality depends on the
transmission of the channels chP, connecting the two-mode squeezers to the detectors
in P . The annotation indicates the number of parties.
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Figure 4.7: We plot how the Bell value of the W3ZB inequality depends on the
transmission of the channels chS, connecting the two-mode squeezers to the swapping
detectors S. The annotation indicates the number of parties. The solid curves
correspond to Bell values and match the left y-axis. The dashed curves are the
corresponding probabilities of generating the conditional state P (C), these drop as
we lower the transmission ηS.

70



Figure 4.8: Left: We plot how the Bell value of the W3ZB inequality depends on
amplitude noise (σA). The annotation indicates the number of parties. Right: We
plot how the Bell value depends on the phase noise (σθ).

only weakly dependent on this transmission until a critical point around a transmis-
sion of 10 %. The probability P (C) of successfully generating the conditional state,
heralded by detector sN clicking and the remaining detectors in S staying silent, is
seen to drop linearly for decreasing transmission. If we assume a �ber loss of 0.3
dB/km, we �nd that a transmission of 10 % corresponds to approximately 30 km.
The maximal achievable separation between two parties will then be around 60 km.

We then check the sensitivity of the experiment against phase and amplitude
noise. The result is shown in Fig. 4.8. In Fig. 4.8 (left) we plot the Bell value
against the standard deviation of the relative amplitude distribution, σA. In Fig.
4.8 (right) we plot the Bell value against the standard deviation of the phase dis-
tribution, σθ. We observe that the Bell value is not very sensitive to amplitude and
phase noise. This implies that the optimal displacements, shown in Table 4.2 and
Fig. 4.4, are not so strict, and that slight deviations from these displacements are
acceptable.

4.5 Conclusion

We have proposed an experiment for demonstrating nonlocality with multiple parties
separated by a set of lossy channels. The experiment utilizes only standard quantum
optical elements, including on/o� detectors, beamsplitters, two-mode squeezers and
displacements. We have given a detailed account of how loss impact the experiment,
and identi�ed critical values for channel transmissions, required for a Bell inequality
violation with dichotomic inputs and outputs. We found that the experiment is
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very robust against loss in the channels connecting the parties (chS), allowing for
transmissions as low as 10%. On the other hand, our calculations indicate that
the nonlocality of the experiment is strongly impacted by loss in the channels con-
necting the two-mode squeezer of each party, to the detector associated with that
party (channels chP). However, we found that the experiment could be made more
robust against loss in channels chP, if the number of parties is increased. With 4
parties we found that the W3ZB inequality could be violated for transmissions of
channels chP as low as 82%. For an experiment with 4 or fewer parties, we found
that the marginal outcome probabilities for all possible subgroups were inside the
Bell polytope, with the used measurement settings.

Due to the heralded nature of the experiment, it is very sensitive toward dark-
counts at the heralding detector. Our calculations indicate that the probability of a
dark-count at a given detector during a measurement must not be much higher than
1 in 10000, or the experiment fails. We then examined the in�uence of amplitude
and phase noise, and found that the experiment is quite robust against these noise
sources. The phase noise could be as high as several hundred milliradians, and the
relative amplitude noise could be in excess of 25%.
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4.7 Appendix

4.7.1 A1

The state ρ is generated by N two-mode squeezers, and occupy the modes S and P .
The characteristic function of ρ is given by χρ(Λ) = exp[−(1/2)ΛTΩσΩTΛ] where Λ
is a vector of conjugate quadratures for the modes in S and P . We introduce the
following decomposition of the covariance matrix of ρ,

σ =

 σP KS̄ KsN

KT
S̄

σS̄ C
KT
sN

CT σsN

 . (4.19)

We also introduce the matrices,

KS =
(
KS̄ KsN

)
, σS =

(
σS̄ C
CT σsN

)
. (4.20)

The subscript refer to the modes described by the relevant submatrix, i.e. σS̄ de-
scribes the marginal distribution of the modes S̄ = S\{sN}.
The modes in S are mixed in the interferometer B, described by the Bogoliubov
transformation in Eq. 4.9. We then condition the state on obtaining a click at
detector sN and no click at the remaining detectors in S (this is referred to as a
swap). If the detectors in S are triggered by a dark-count with probability pd, then
the swap might herald success under three di�erent conditions,

1. No dark-counts occur. Light reaches detector sN and no light reaches the
remaining detectors in S. This event is associated with the projector Π̂1 =(∏

s∈S̄ |0⟩s⟨0|
)
(IsN − |0⟩sN⟨0|).

2. A dark-count occurs at detector sN . Light reaches detector sN and no light
reaches the remaining detectors in S. This event is associated with the pro-
jector Π̂1 =

(∏
s∈S̄ |0⟩s⟨0|

)
(IsN − |0⟩sN⟨0|).

3. A dark-count occurs at detector sN . No light reaches any detectors in S. This
event is associated with the projector Π̂2 =

∏
s∈S |0⟩s⟨0|.

Let P (Π̂n|C) be understood as the probability that the event Π̂n occur, given that
detectors S herald a successful swap C. P (Π̂n) = Tr

[
Π̂nρ

]
is the prior probability

that the event Π̂n occurs. The swap then transform the state ρ into the conditional
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state ρc as,

ρ→ ρc

= TrS

[
P (Π̂1|C)

Π̂1ρΠ̂1

P (Π̂1)
+ P (Π̂2|C)

Π̂2ρΠ̂2

P (Π̂2)

]

= TrS

[
ρ

(
P (Π̂1|C)

Π̂1

P (Π̂1)
+ P (Π̂2|C)

Π̂2

P (Π̂2)

)]
. (4.21)

By Bayes' theorem we have,

P (Π̂n|C)
P (Π̂n)

=
P (C|Π̂n)

P (C)
, (4.22)

which gives another expression for ρc,

ρc = TrS

[
ρ

(
P (C|Π̂1)

P (C)
Π̂1 +

P (C|Π̂2)

P (C)
Π̂2

)]
=

1

P (C)
TrS

[
ρΠ̃c

]
(4.23)

Where we have introduced the operator Π̃c,

Π̃c = P (C|Π̂1)Π̂1 + P (C|Π̂2)Π̂2 (4.24)

The probability of the swap being heralded as successful, given that the event Π̂1

occur, is given by P (C|Π̂1) = (1− pd)
N + (1− pd)

N−1pd, i.e. the swap will succeed
as long as no dark-count triggers any detector other than sN . If no light reaches
any detectors in S, then the swap can only be heralded as successful if a dark-count
triggers detector sN , so P (C|Π̂2) = (1− pd)

N−1pd. Then we have,

Π̃c = (1− pd)
N Π̂1 + (1− pd)

N−1pd(Π̂1 + Π̂2)

= (1− pd)
N−1

(∏
s∈S̄

|0⟩s⟨0|

)[
IsN − (1− pd) |0⟩sN⟨0|

]
(4.25)

Di�erent number of photons could in principle be distinguishable by the detec-
tor, even if the experimenter cannot distinguish the detector states su�ciently
well to obtain this information. We de�ne a projector onto Fock states, Π̂(n) =(∏

s∈S̄ |0⟩s⟨0|
)
|n⟩sN⟨n|. If di�erent Fock states are in principle distinguishable, then
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the transformation of ρ, conditioned on the swap, ought to be,

ρ→ TrS

 ∞∑
n=0

P
(
Π̂(n)|C

) Π̂(n)ρΠ̂(n)

P
(
Π̂(n)

)


= TrS

ρ ∞∑
n=0

P
(
Π̂(n)|C

)
P
(
Π̂(n)

) Π̂(n)

 (4.26)

Using Bayes' theorem we have,

=
1

P (C)
TrS

[
ρ

∞∑
n=0

P
(
C|Π̂(n)

)
Π̂(n)

]
=

1

P (C)
TrS

[
ρΠ̃′

c

]
(4.27)

We then make the assumption that,

P
(
C|Π̂(n)

)
=

{
(1− pd)

N + (1− pd)
N−1pd, if n > 0

(1− pd)
N−1pd, if n = 0

(4.28)

Under this assumption one can show that Π̃′
c = Π̃c, and it doesn't matter whether

we use the transformation in Eq. 4.21 or in Eq. 4.26.
The characteristic function of Π̃c is given by,

χc(ΛS) = TrS

[
Π̃cDS(ΛS)

]
= (1− pd)

N−1E(ΛS̄) ·
(
πδ(2)(ΛsN )− (1− pd)E(ΛsN )

)
(4.29)

Then we have that,

ρc =
1

P (C)
TrS[ρΠ̃c] =

1

P (C)

∫
R4N

DP (−ΛP )χρ(ΛP ,ΛS)χc(−ΛS)
d4NΛ

π2N
. (4.30)

In evaluating the above expression we have used Glauber's formula [1] to express ρ
and Π̃c in terms of their characteristic functions (χρ and χc),

Ô =

∫
R2n

d2nB

πn
χO(B)D†(B), (4.31)

where n is the number of modes. We also used the facts,

Tri[D(Λi)] = πδ(2)(Λi) (4.32)
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D(Λi)D(Λj) = D(Λi + Λj) exp[−iΛTi ωΛj] (4.33)

From Eq. 4.30 we may read o� the characteristic function of the conditional state
ρc,

χρc(ΛP ) =
1

πNP (C)

∫
R2N

χρ(ΛP ,ΛS)χc(−ΛS)d
2NΛS. (4.34)

Inserting the expressions for χρ and χc, we may evaluate the conditional state as,

χρc(ΛP ) =
(1− pd)

N−1

P (C)
[χS̄(ΛP )− (1− pd)χS(ΛP )] . (4.35)

χS̄ and χS are Gaussian and respectively given by

χS̄(ΛP ) =
1

πN

∫
R2N

χρ(ΛP ,ΛS)E(ΛS̄)πδ
(2)(ΛsN )d

2NΛS

= 2N−1||γS̄||−1/2E [VS̄, 0] (ΛP ) (4.36)

χS(ΛP ) =
1

πN

∫
R2N

χρ(ΛP ,ΛS)E(ΛS)d
2NΛS

= 2N ||γS||−1/2E [VS, 0] (ΛP ). (4.37)

Where the brackets ||.|| refer to the determinant and,

E [V, x̄] (B) = exp

[
−1

2
BTΩV ΩTB − i(Ωx̄)TB

]
,

γS̄ = σS̄ + I, γS = σS + I,

VS̄ = σP −KS̄ γ
−1
S̄
KT
S̄ ,

VS = σP −KS γ
−1
S KT

S . (4.38)

The normalization P (C) can be obtained by demanding that χρc(ΛP = 0) = 1.
E [V, x̄] (B) is the characteristic function of a Gaussian state with covariance matrix
V and centred on position x̄ in phase space.

We now derive a closed-form expression for the correlator ⟨
∏

p∈P M
(np)
p ⟩, describ-

ing correlations between the measurement outcomes obtained by the N parties. The
characteristic function of the observable

∏
p∈P M

(np)
p is given by,

χM (Λ, XP )

=
∏
p∈P

{
πδ(2) (Λp)− 2(1− pd)E

[
I,−2X(np)

p

]
(Λp)

}
. (4.39)
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As we will show in the next section, when amplitude or phase noise is present, then
we should instead use the characteristic function,

χM (ΛP , XP )

=
∏
p∈P

{
πδ(2) (Λp)− 2(1− pd)E

[
∆(np)
p ,−2X(np)

p

]
(Λp)

}
, (4.40)

where ∆(np)
p is the covariance matrix describing a noisy displacement for party p. We

form the covariance matrix ∆P , describing the statistics of the noisy displacements
for all N modes. We assume no correlation between noise in di�erent modes, and ∆P

is therefore block diagonal. The above product is rewritten as a sum over products,

χM (ΛP , XP ) =
∑
d

[−2(1− pd)]
|d|
∏
p∈P

K(dp)
p , (4.41)

where the sum runs over all binary lists d = (dp1 , dp2 , . . . , dpN ). |d| is the sum of
d, i.e. the number of ones in the list. K(dp)

p is the piecewise characteristic function
de�ned as,

K(dp)
p =

{
πδ2 (Λp) if dp = 0

E
[
∆

(np)
p ,−2X

(np)
p

]
(Λp) if dp = 1

. (4.42)

Given a Gaussian state ρG with characteristic function E[σG, 0](ΛP ), we evaluate
the expectation value of the observable,

f (σG, XP ) = Tr

{
ρG
∏
p∈P

M (np)
p

}

=
1

πN

∫
R2N

E[σG, 0](−ΛP )χM (ΛP , XP ) d
2NΛP

=
∑
d

[−8π(1− pd)]
|d|G

[
σ
(d)
G +∆

(d)
P , 0

] (
2X

(d)
P

)
(4.43)

σ
(d)
G is the submatrix of σG containing all the modes where d is 1, i.e. if d =

(1, 0, 1, 1) then we extract the covariance matrix describing the marginal distribu-
tion of modes p1, p3 and p4. Likewise, we have for the present example ∆

(d)
P =

Diag
(
∆

(np1 )
p1 ,∆

(np3 )
p3 ,∆

(np4 )
p4

)
and X

(d)
P = X

(np1 )
p1

⊕
X

(np3 )
p3

⊕
X

(np4 )
p4 . We have also

de�ned the normal distribution, G[V, x̄](X) =
[
(2π)D∥V ∥

]−1/2
e−

1
2
(X−x̄)TV −1(X−x̄),

where D is the dimension of V . Applying this result to the conditional state, which
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is a sum of two Gaussians, we obtain〈∏
p∈P

M (np)
p

〉
= Tr

{
ρc
∏
p∈P

M (np)
p

}

=
(1− pd)

N−1

P (C)

[
2N−1 ∥γS̄∥

− 1
2 f (VS̄, XP )

−2N(1− pd) ∥γS∥−
1
2 f (VS, XP )

]
. (4.44)

Which is a closed-form expression for the correlator of the measurements.

Loss

A Gaussian transformation transforms the quadrature operators as Q → SQ + d,
where S is a symplectic matrix, i.e. SΩST = Ω, and d is a displacement [1],
[16]. Correspondingly, one can show that under a Gaussian transformation, the
characteristic function transforms as,

χ(Λ) → exp
[
idTΩΛ

]
χ(S−1Λ). (4.45)

We note that S−1 = ΩTSTΩ. We model loss, acting on the optical modes of the sys-
tem, by mixing said modes with a set of empty (groundstate) environmental modes,
and subsequently trace out the environmental modes. Let the modes be ordered
as Λ = ΛP ⊕ ΛS ⊕ ΛE, where ΛE are the conjugate quadratures for the environ-
mental modes. We assume there is one environmental mode for each system mode
(S, P ). The system modes and environmental modes are mixed using beamsplitter
interactions, described by the symplectic matrix Uη,

Uη =

(
G

1/2
η −

√
I −Gη√

I −Gη G
1/2
η

)
, (4.46)

By using Eq. 4.31, Eq. 4.45, and Uη, we obtain the map corresponding to loss acting
on the system modes. This map transforms the characteristic function as,

χ(Λ) → χ
(
G1/2
η Λ

)
exp

[
−1

2
ΛT (I −Gη)Λ

]
, (4.47)

Eq. 4.17 can be derived from this mapping, and it can also be used to show that
detector loss can be commuted through the interferometer B, given that all detectors
have the same e�ciency.

Phase and amplitude noise

We now evaluate the e�ect of phase and amplitude noise on the computed corre-
lators. Given that the optical state ρ is perturbed in phase by the environment,
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we model this by stochastic rotations in phase space ρ =
∫
dNθP (θ)R(θ)ρ0R(−θ).

Where ρ0 is the unperturbed state, θ =
(
θp1θp2 . . . θpN

)
is a vector of stochastic

rotation angles, and R(θ) is the rotation operator R(θ) =
∏

p∈P Rp (θp). We shift
this stochastic rotation from the state onto the observable:〈∏

p∈P

M (np)
p

〉
= Tr

{∏
p∈P

M (np)
p ρ

}

= Tr

{∏
p∈P

M (np)
p

∫
dNθP (θ)R(θ)ρ0R(−θ)

}

= Tr

{∫
dNθP (θ)R(−θ)

∏
p∈P

M (np)
p R(θ)ρ0

}

= Tr

{∏
p∈P

∫
dθpP (θp)Rp (−θp)M (np)

p Rp (θp) ρ0

}

= Tr

{∏
p∈P

M̃ (np)
p ρ0

}
(4.48)

Where M̃ (np)
p is the noisy observable. By factorizing the probability as P (θ) =∏

p∈P P (θp), we have tacitly assumed that there is no correlation in the phase noise

acting on di�erent modes. Inserting the expression for the observable M (np)
p , we

have

Rp (−θp)M (np)
p Rp (θp)

= Ip − 2 (1− pd)Rp (−θp)
∣∣−X(np)

p

〉
p

〈
−X(np)

p

∣∣Rp (θp) (4.49)

For a coherent state |−X(np)
p ⟩, we have that a small rotation is identical to a dis-

placement acting orthogonal to the amplitude vector −X(np)
p . An orthogonal vector

can be constructed by acting with the symplectic form: −ω(−X(np)
p ). With this in

mind, we make the substitution:

Rp (θp) → Dp

(
θpωX

(np)
p

)
(4.50)

Imprecision in the measurement process, such as a noisy displacement, might lead to
noise in the amplitude. We include this by also applying a stochastic displacement
along the amplitude vector X(np)

p . This stochastic displacement is given as a fraction
ϵp of the amplitude vector X(np)

p , i.e. the stochastic displacement is ϵpX
(np)
p . ϵp is

referred to as the relative amplitude. The noisy observable for party p is then given
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as,

M̃
(np)
p =∫
dθpdϵpP (θp, ϵp)Dp

(
−θpωX

(np)
p

)
Dp

(
−ϵpX

(np)
p

)
M

(np)
p Dp

(
ϵpX

(np)
p

)
Dp

(
θpωX

(np)
p

)
= I − 2 (1− pd)

∫
P (θp, ϵp) ·

∣∣∣− (1 + ϵp + θpω)X
(np)
p

〉〈
− (1 + ϵp + θpω)X

(np)
p

∣∣∣ dθpdϵp
= I − 2(1− pd)β

(np)
p (4.51)

P (θp, ϵp) is the distribution over displacements, and we have introduced the state,

β(np)
p =

∫
P (θp, ϵp) ·

∣∣− (1 + ϵp + θpω)X
(np)
p

〉 〈
− (1 + ϵp + θpω)X

(np)
p

∣∣ dθpdϵp.
(4.52)

We model P (θp, ϵp) as a Gaussian, given by

P (θp, ϵp) =
[
(2π)2 ∥Σp∥

]−1/2
exp

[
−1

2

(
ϵp θp

)
Σ−1
p

(
ϵp
θp

)]
. (4.53)

The covariance matrix is chosen to be diagonal

Σp =

(
VA 0
0 Vθ

)
. (4.54)

VA and Vθ are the relative amplitude and phase angle variances respectively. β(np)
p

has a characteristic function given by,

χ
β
(np)
p

= Tr
{
β(np)
p Dp (Λp)

}
=

∫
P (θp, ϵp) · E

[
I,− (1 + ϵp + θpω) 2X

(np)
p

]
(Λp) dθpdϵp

= E
[
I + VA

(
2X(np)

p

)
⊗
(
2X(np)

p

)T
+ Vθ

(
ωT2X(np)

p

)
⊗
(
ωT2X(np)

p

)T
,−2X(np)

p

]
(Λp) .

(4.55)

So the e�ect of amplitude and phase noise is to broaden the phase space distri-
bution of β(np)

p along 2X
(np)
p and ωT2X(np)

p . We de�ne the covariance matrix of the
state β(np)

p as ∆(np)
p ,

∆(np)
p = I + VA

(
2X(np)

p

)
⊗
(
2X(np)

p

)T
+ Vθ

(
ωT2X(np)

p

)
⊗
(
ωT2X(np)

p

)T
(4.56)
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4.7.2 A2

Let n be a binary list of measurement settings, and g a binary list of measurement
outcomes for the detectors in P , where click corresponds to 1 and no click corre-
sponds to 0. We may then compute the probability of obtaining the outcomes g
using the characteristic function χρc . This probability is given by the expression,

PQ(g|n) =
(1− pd)

N−1

P (C)

[
2N−1 ∥γS̄∥

− 1
2 hg (VS̄)

−2N (1− pd) ∥γS∥−
1
2 hg (VS)

]
, (4.57)

where

hg(V ) = [4π (1− pd)]
|ḡ|
∑
b

[−4π (1− pd)]
|b|G

[
V (b+ḡ)

+∆
(b+ḡ)
P , 2X

(b+ḡ)
P

]
. (4.58)

ḡ is the negation of g, i.e. we replace 1 by 0 and vice versa. The measurement
settings n de�ne the arrays ∆P and XP . The sum runs over all binary lists b of
length N, satisfying the constraint that b takes the value zero in positions where
g takes the value zero. E.g. if g =

(
1, 0, 0, 1

)
, then the sum would run over the

lists b ∈
{(

0, 0, 0, 0
)
,
(
1, 0, 0, 0

)
,
(
0, 0, 0, 1

)
,
(
1, 0, 0, 1

)}
. V (b+ḡ) is the submatrix of

the covariance matrix V , containing all the modes where the vector b+ ḡ takes the
value 1, e.g. if b + ḡ =

(
0, 1, 1, 1

)
then the marginal covariance matrix describing

modes p2, p3 and p4 is extracted. Marginal probabilities for a subset of parties A
can be extracted from PQ(g|n) by summing over outcomes for the remaining parties
B. The measurement settings for subset B should be �xed during this summation,
however the choice of settings for B is arbitrary owing to the no-signalling property
of quantum mechanics [7].

We then want to determine whether the array PQ(g|n) can be expressed as a
convex sum of local response functions. Let L (gp|np, λk) be the local response func-
tion for party p, determined by the hidden variables λk. The response function gives
the probability of party p obtaining a particular outcome gp, given the measurement
setting np and hidden variables λk. We determine whether there exists a set of
coe�cients ck such that [7]:

PQ(g|n) =
∑
k

ck
∏
p∈P

L (gp|np, λk)∑
k

ck = 1

ck ≥ 0 (4.59)
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ck is interpreted as the probability that the hidden variables λk are shared by the
parties in a given measurement round. We use the set of deterministic response
functions, i.e. each response function can be written as a Kronecker delta function,

L (gp|np, λk) = δ(gp, gnp,λk) (4.60)

gp is a potential outcome for party p and gnp,λk is the outcome that is actually
obtained, given the hidden variables λk and the setting np. Whether the set of
requirements in Eq. 4.59 allows for a solution or not, is determined using the
linprog module of the SciPy 1.8.1 package in Python. When no solution is present,
we know that the array of probabilities PQ(g|n), determined by the quantum state,
does not admit a local hidden variable model. In this case PQ(g|n) lies outside the
Bell polytope. However, when a solution is present we know that the system can be
described by a local hidden variable model, and no Bell inequality can be violated.

4.8 Converting the nonlinear W3ZB inequality into

linear inequalities

The nonlinear W3ZB inequality is equivalent to a large set of linear inequalities, as
described by Eq. 3.64, and we now seek to identify which of these linear inequalities
are in fact broken by the analyzed experiment. We let M(s) be the correlators of
the experiment for di�erent binary vectors of settings s, with the setting of p1 being
leftmost in the binary list s. We de�ne the vector M with elements,

M =
(
M(s0) M(s1) M(s2) · · ·

)T
. (4.61)

As before, sk is the binary string of length N (the number of parties) corresponding
to the integer k.

We want to �nd the linear inequality which is the most resilient toward loss
in channels chp, since it is already di�cult to achieve the required transmissions
of 81-87 %. We might go about this task by searching systematically through the
inequalities given in Eq. 3.64, however we run into the problem that with 5 partici-
pants the number of inequalities to search through is 22

5 ≈ 4.3×109, which is rather
cumbersome. Then an alternative strategy could be to decrease the transmission ηp
until the linear program,

M =
∑
λ

M(λ)p(λ) , p(λ) ≥ 0 ,
∑
λ

p(λ) = 1 (4.62)

has a solution, with

M(λ) =
(
M(s0, λ) M(s1, λ) M(s2, λ) · · ·

)T
. (4.63)
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whereM(s, λ) is de�ned in Eq. 3.52. At the point where a solution becomes possible,
the correlators M are given by a convex combination of the vertices M(λ) making
up the relevant facet, and these vertices are readily identi�ed by solving the linear
program. Labelling these vertices as vk, we subtract one of these, labelled as v1,
from the rest. We then combine the resulting displacement vectors in a matrix,

V =

(v2 − v1)
T

(v3 − v1)
T

...

 . (4.64)

If we let v⊥ belong to the null space of V ,

V v⊥ = 0, (4.65)

then the facet inequality is,

⟨v⊥,M⟩ ≤ ⟨v⊥, v1⟩ (4.66)

and equality is obtained for M contained in the facet. Clearly this strategy does
not always work, since M might end up in a hyperedge of the polytope instead of a
hyperplane when we decrease ηp. Nevertheless we succeed in �nding linear relevant
facet inequalities in the case of 2,3,4,5 and 6 parties. We list the relevant facet
inequality for 2-5 parties below, with the inequality being the one that is the most
resilient toward loss in channels chp:
2 parties:

+
1

2
M(0, 0)− 1

2
M(0, 1)− 1

2
M(1, 0)− 1

2
M(1, 1) ≤ 1 (4.67)

3 parties:

−1

2
M(0, 0, 0) +

1

2
M(0, 1, 1) +

1

2
M(1, 0, 1) +

1

2
M(1, 1, 0) ≤ 1 (4.68)

4 parties:

+
3

8
M(0, 0, 0, 0) +

1

8
M(0, 0, 0, 1) +

1

8
M(0, 0, 1, 0)− 1

8
M(0, 0, 1, 1) +

1

8
M(0, 1, 0, 0)

− 1

8
M(0, 1, 0, 1)− 1

8
M(0, 1, 1, 0)− 3

8
M(0, 1, 1, 1) +

1

8
M(1, 0, 0, 0)− 1

8
M(1, 0, 0, 1)

− 1

8
M(1, 0, 1, 0)− 3

8
M(1, 0, 1, 1)− 1

8
M(1, 1, 0, 0)− 3

8
M(1, 1, 0, 1)− 3

8
M(1, 1, 1, 0)

+
3

8
M(1, 1, 1, 1) ≤ 1 (4.69)
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5 parties:

− 1

4
M(0, 0, 0, 0, 0)− 1

8
M(0, 0, 0, 0, 1)− 1

8
M(0, 0, 0, 1, 0)− 1

8
M(0, 0, 1, 0, 0)

+
1

8
M(0, 0, 1, 1, 1)− 1

8
M(0, 1, 0, 0, 0) +

1

8
M(0, 1, 0, 1, 1) +

1

8
M(0, 1, 1, 0, 1)

+
1

8
M(0, 1, 1, 1, 0) +

1

4
M(0, 1, 1, 1, 1)− 1

8
M(1, 0, 0, 0, 0) +

1

8
M(1, 0, 0, 1, 1)

+
1

8
M(1, 0, 1, 0, 1) +

1

8
M(1, 0, 1, 1, 0) +

1

4
M(1, 0, 1, 1, 1) +

1

8
M(1, 1, 0, 0, 1)

+
1

8
M(1, 1, 0, 1, 0) +

1

4
M(1, 1, 0, 1, 1) +

1

8
M(1, 1, 1, 0, 0) +

1

4
M(1, 1, 1, 0, 1)

+
1

4
M(1, 1, 1, 1, 0)− 5

8
M(1, 1, 1, 1, 1) ≤ 1 (4.70)

These inequalities are broken until the critical transmissions given in Fig. 4.6 are
reached.
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Chapter 5

Quantum repeater using two-mode

squeezed states and atomic noiseless

ampli�ers

We now present the paper Quantum repeater using two-mode squeezed states and
atomic noiseless ampli�ers [10]. This paper was authored by Anders J. E. Bjerrum,
Jonatan B. Brask, Jonas S. Neergaard-Nielsen, and Ulrik L. Andersen. The paper
was published in Physical Review A with the reference Phys. Rev. A 107, 042606
(2023).

5.1 Abstract

We perform a theoretical investigation into how a two-mode squeezed vacuum state,
that has undergone photon loss, can be stored and puri�ed using noiseless ampli-
�cation with a collection of solid-state qubits. The proposed method may be used
to probabilistically increase the entanglement between the two parties sharing the
state. The proposed ampli�cation step is similar in structure to a set of quantum
scissors. However, in this work the ampli�cation step is realized by a state transfer
from an optical mode to a set of solid-state qubits, which act as a quantum mem-
ory. We explore two di�erent applications, the generation of entangled many-qubit
registers, and the construction of quantum repeaters for long-distance quantum key
distribution.

5.2 Introduction

Quantum communication is the act of distributing quantum states in a network [64].
It enables the generation of secret encryption keys [65], and perhaps, the establish-
ment of a fully fault-tolerant quantum internet [66], [67]. The di�erent nodes of the
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Figure 5.1: a: Repeater scheme with entanglement swaps (meters) acting on sets of
quantum memories (QM) separated by lossy channels. A single repeater segment is
enclosed by a dashed green box, and will include a puri�cation step. b: Layout of a
quantum scissor. The left beamsplitter is balanced (50:50) and the right beamsplitter
is tunable with transmission cos(θ)2. The transmission may be tuned to purify the
state ρin at the single photon level.

network are usually connected by photonic communication channels owing to the
weak in�uence of the environment on the coherence of optical photons. However,
photons su�er from propagation loss with the probability of successful transmission
decaying exponentially with distance.

The exponential scaling can be mitigated using quantum repeater nodes between
the sender and receiver stations leading to polynomial [52], [68] or even constant-
rate scaling [69] for schemes based on error correction. We consider a quantum
repeater architechture with two-way classical communication and without error cor-
rection, as originally envisioned [52], [68]. In this scheme, entanglement between
parties is established by �rst distributing and purifying entangled states over shorter
segments. These entangled segments then undergo a series of entanglement swaps,
ultimately generating entanglement between the parties (see Fig. 5.1a). However,
due to the probabilistic nature of the puri�cation protocol, quantum memories must
be placed at each repeater node. Many di�erent platforms have been considered for
memories in quantum repeaters including atomic ensembles [70], trapped ions [71],
solid-state systems [72], and mechanical resonators [73]. The basic structure of all
quantum repeaters is largely independent of the type of memory employed, however.

One intriguing approach for the probabilistic puri�cation of a quantum state is
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the protocol of noiseless linear ampli�cation [59]. It has mainly been applied in
continuous-variable (CV) quantum repeater schemes to enable long-distance distri-
bution of quadrature and photon-number entanglement [74]�[80] (see also [81] for a
di�erent approach). In its simplest form, the noiseless linear ampli�er consists of a
single quantum scissor scheme [82] illustrated in Fig. 5.1b. A single photon is split
on a beam splitter to form an entangled state which is subsequently used to purify an
input state (ρin) via quantum teleportation in a truncated two-dimensional Hilbert
space. The achieved puri�cation can be understood intuitively through the fact,
that the projective measurement of the photon-detectors lower the entropy of the
system, while the e�ectuated quantum teleportation preserve the coherences of the
input state. By combining quantum scissor operations with quantum memories and
entanglement swapping via Bell measurements, a quantum repeater network can
be established. In previous CV quantum repeater protocols, the quantum scissors,
the quantum memories and the Bell measurements are typically considered as being
individual and independent physical elements.
In the present work we show that by using light-matter entangled states (for exam-
ple generated by Nitrogen-Vacancy centers in diamond [83]�[85]), it is possible to
perform noiseless linear ampli�cation and storage of the quantum state in a single
operation. In section 5.3 we introduce the operation of noiseless linear ampli�ca-
tion based on a photo-active qubit. We �rst consider the case with a single qubit,
similar to a single quantum scissor operation, and subsequently generalize it to mul-
tiple qubits to explore the e�ect of noiseless linear ampli�cation in a larger Hilbert
space. In section 5.4 we investigate the entanglement generated by our protocol and
measure it using the negativity. In section 5.5 we then introduce the structure of
the quantum repeater scheme, including entanglement swapping. In section 5.6 we
present the results in terms of secret key rates and Bell inequality violations.

5.3 Analysis of a single repeater segment

We start by presenting the repeater segment that forms the core of the quantum
repeater protocol. It corresponds to the part of the repeater array enclosed by a
green dotted box in Fig. 5.1a and is schematically shown in Fig. 5.2 with a single
solid state qubit (diamond) in each register. Our repeater scheme is based on the
distribution of two-mode squeezed vacuum states followed by noiseless linear ampli-
�cation and memorization by means of a photo-active three-level atomic systems.
The basic idea is that the atomic systems produce spin-photon entanglement to be
used as the resource for heralded noiseless ampli�cation similar to the all-optical
approach in Fig. 5.1b where single-photon entanglement is used as the resource.
However, in contrast to the pure optical approach in Fig. 5.1b where the state is
teleported onto another optical mode, in our scheme the state is teleported (and
truncated) into a spin degree of freedom of the atomic system, and thus directly
memorized after puri�cation. While the atomic system could be realised by many
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Figure 5.2: Layout of the entanglement-sharing scheme, with a single qubit in each
register (quantum memory). e is an environmental mode that couples to the �ber.
The drawn setup corresponds to a repeater segment (the green dotted box in Fig. 5.1)

di�erent physical systems, here we focus on the Nitrogen-Vacancy center (NV). In
this case the information is stored in the electronic spin degree of freedom of the
NV center but it can also be swapped to a nearby (and very long-lived) 13C nuclear
spin [84]. In addition to extending the lifetime, the swap also free up the electronic
spin for a subsequent entangling round and it allows for entanglement swapping to
be carried through Bell measurements between the electronic and nuclear spins (as
discussed in section 5.5).

A two-mode squeezed vacuum (TMSV) state shares quadrature and photon num-
ber correlations between the left (L) and right (R) registers. The TMSV state is
expressed in the photon-number basis as

|TMSV⟩ =
∞∑
n=0

cn |n, n⟩ , (5.1)

where the amplitudes cn are the Fock-state amplitudes

cn = (−eiϕ)n
√

⟨n⟩n
(1 + ⟨n⟩)n+1

, (5.2)

⟨n⟩ is average photon number in each of the two modes and ϕ is the phase.
The register qubits have a dark state (|0⟩q) and a bright state (|1⟩q). The bright

state emits a single photon into the optical mode f when excited by some external
mechanism, such as a driving laser, whereas the dark state never emits a photon.
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We initialize the qubit q and optical mode f in the state

|q, f⟩ = cos(θ) |0⟩q |0⟩f + sin(θ) |1⟩q |0⟩f , (5.3)

with |0⟩f being the optical vacuum state. Then we assume we can excite the qubit
such that it emits a photon if it is in the bright state, thereby preparing the state

cos(θ) |0⟩q |0⟩f + sin(θ) |1⟩q |1⟩f . (5.4)

States such as this one were produced experimentally using a NV center in ref.
[86]. We assume that the photons of the TMSV �eld are indistinguishable from the
photons emitted by the qubits. Realistically, this may be a challenge to achieve,
but can in principle be done with proper light source engineering and �ltering. At
each register the TMSV �eld is mixed with the �eld emitted by the register qubit on
a balanced beamsplitter. Two photon-number-resolving detectors (PNR detectors)
measure the outputs of the beamsplitter, and events where exactly one photon is
detected at each register are considered successful. If we assume no loss in channels
chL and chR, then the qubit registers are projected into the entangled state

|ψ⟩ = 1

2
c1 cos(θL) cos(θR) |00⟩+
1

2
c0 sin(θL) sin(θR) |11⟩ , (5.5)

where θL and θR are the superposition angles given in Eq. 5.3, for the left and right
qubit respectively. We note that 4 ⟨ψ|ψ⟩ will correspond to the probability that
the projective measurements (photon detection) in register L and R succeed. The
factor of 4 originates from the fact that the projective measurement can succeed in
2 di�erent ways at both registers, i.e. either the top (T) or bottom (B) detector can
register a single photon. We note that whether the bottom or top detector clicks,
will in�uence the phase of the quantum state, and we assume that this is corrected
for.

We then set the transmission of channel chR, connecting the TMSV source and
register R, to ηR. We will for now assume that the channel chL is lossless. We �nd
that under these conditions, the density matrix describing register L and R, is given
by

ρ =
K1

4


|c1|2ηRc2Lc2R 0 0 c1c

∗
0

√
ηRsRsLcRcL

0 |c1|2(1− ηR)c
2
Ls

2
R 0 0

0 0 0 0
c∗1c0

√
ηRsRsLcRcL 0 0 |c0|2s2Ls2R

 , (5.6)

Where sL = sin(θL), sR = sin(θR), cL = cos(θL), and cR = cos(θR). A deriva-
tion of this result can be found in Appendix A. The basis vectors describing the
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state are |0⟩L |0⟩R, |0⟩L |1⟩R, |1⟩L |0⟩R, |1⟩L |1⟩R. Eg. the matrix element ρ22 =
K1

4
|c1|2(1 − ηR) cos(θL)

2 sin(θR)
2 corresponds to the state |0⟩L |1⟩R ⟨0|L ⟨1|R. K1 is

the normalization and 4/K1 will be the probability that the projective measurements
in register L and R succeed.
The diagonal term ρ22 describes the situation where a photon is lost in the right
channel. Suppose that the TMSV source emits a single photon into both chL and
chR, and that the photon is lost from channel chR. Then a successful measurement
at register R and L implies that the qubit in register L is in the dark state (|0⟩L),
and that the qubit in register R is in the bright state (|1⟩R).
In section 5.4 we show that tuning of the angles θL and θR, can increase (or decrease)
the entanglement shared between the two registers, in a similar fashion as a pair of
quantum scissors would.

In the architecture discussed above and illustrated in Fig. 5.2, the amount of dis-
tributed and puri�ed entanglement is limited due to the restricted four-dimensional
Hilbert space spanned by the two qubits. To circumvent this limitation we con-
sider an expanded version of the two registers where every register now comprises
several qubits and thus enlarges the dimensionality of the quantum memory. The
setup can be seen in Fig. 5.3. At the left register the TMSV state is split evenly
into the N arms of the register. Concurrently with this splitting of the TMSV, we
excite the qubits, such that they will emit a photon if they are in the bright state.
Again, PNR detectors measure on the output, and events where exactly one photon
is detected in each of the N register arms, are considered successful. Conditioned
on all the measurements succeeding, we obtain correlations between the number of
bright-state qubits in the left register, and the number of photons in the right part
of the TMSV state. Repeating the procedure at the right register ultimately creates
entanglement between the two registers.

Our analysis, given in appendix A, reveals that the quantum state of the two
many-qubit registers, when assuming no loss in the connecting channel, is given by

|α⟩ = NN

N∑
n=0

cn∆(n, θL)∆(n, θR) |IN−n⟩L |IN−n⟩R (5.7)

The subscript R/L indicates whether we are referring to the qubits in the left (L)
or right (R) register. The superposition angle θR/L is assumed to be the same for all
qubits in the same register. The vectors |IN−n⟩ are even superpositions of all states
containing N − n bright state qubits and n dark state qubits:

|IN−n⟩ =
(
N

n

)−1/2 ∑
iN−n

|iN−n⟩ (5.8)

where the sum runs over binary lists iN−n of length N with N − n ones. NN is the
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Figure 5.3: Layout of the entanglement-sharing scheme investigated in this work.
Entanglement is distributed to the atomic qubits consituting register R and L via a
two-mode squeezed vacuum state.

normalization, given by

N−2
N =

N∑
m=0

|cm|2|∆(m, θL)|2|∆(m, θR)|2 (5.9)

The value of N−2
N re�ects the probability that the entanglement sharing scheme

succeeds. The amplitude ∆(n, θ) is

∆(n, θ) =

√
N !

2NNn(N − n)!
β(n, θ), (5.10)

where β(n, θ) is
β(n, θ) = cos(θ)n sin(θ)N−n (5.11)

When including loss in both channels, we �nd the density matrix describing the two
registers to be:

ρ =
∞∑

n,m=0

min(n,m)∑
l,r=0

Λ(n,m, l, r)· (5.12)

|IN−n+l⟩L ⟨IN−m+l| ⊗ |IN−n+r⟩R ⟨IN−m+r|

This density matrix is not normalized, and the norm should be interpreted as the
probability that entanglement sharing succeeds. The matrix elements are given by

Λ(n,m, l, r) = cnc
∗
mϵR(n, r)ϵL(n, l)ϵR(m, r)

∗ϵL(m, l)
∗

∆(n− l, θL)∆(n− r, θR)∆(m− l, θL)
∗∆(m− r, θR)

∗

Θ(N + l − n)Θ(N + r − n)Θ(N + l −m)Θ(N + r −m), (5.13)
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where Θ(x) is the step function,

Θ(x) =

{
1 if x ≥ 0

0 if x < 0
(5.14)

ϵ(n, l) is related to the transmission of the channel, ηR/L (for chL and chR), through
the relation,

ϵR/L(n, l) =

√(
n

n− l

)
η
(n−l)/2
R/L (1− ηR/L)

l/2 (5.15)

5.4 Entanglement of the Registers

Based on the above analysis, we now evaluate the amount of entanglement between
the two registers using negativity as the measure of entanglement. The negativity
is de�ned as the absolute value of the sum of negative eigenvalues of the partial
transpose of the density matrix, and can be shown to be an entanglement monotone
[87]. If we have the density matrix ρ, then the partial transpose with respect to Al-
ice's subsystem, ρTA , has the matrix elements ⟨iA, jB|ρTA|kA, lB⟩ = ⟨kA, jB|ρ|iA, lB⟩.
Given that ρTA has the negative eigenvalues µi, then the negativity of the state ρ is
de�ned as

N(ρ) =

∣∣∣∣∣∑
i

µi

∣∣∣∣∣ (5.16)

The negativity is the same regardless of which party was transposed, since
(ρTA)T = ρTB . We will �rst assume the channels to be loss-free, in which case
the superposition angles, θR and θL, are set to the same value due to symmetry.
The average number of photons ⟨n⟩ per party in the TMSV state is �xed at 0.5. In
Fig. 5.4 we plot the negativity as a function of the angle, θR = θL, for a di�erent
number of atomic qubits at each register. We clearly observe a strong dependency
on the superposition angle.

We then �x θL at the value corresponding to the largest negativity, as inferred
from Fig. 5.4, and lower the transmission of the right channel (chR). We allow θR to
change and �nd the angle that maximizes the negativity at di�erent transmissions.
The result can be seen in Fig. 5.5a. We �nd that as the channel transmission, ηR,
is reduced, the angle θR must be changed to maximize the negativity. This can be
understood from the fact that a low transmission reduces the probability that pho-
tons arrive at the right register. This in turn implies, that a successful measurement
outcome at the photodetectors, was entirely due to light emitted from bright state
qubits at the register. This lowers the negativity of the two registers since they
approach a separable state. However, this e�ect can be counteracted by lowering

92



Figure 5.4: The negativity of the two registers as a function of the superposition
angle θ = θR = θL. The di�erent plots correspond to di�erent number of qubits in
the registers. The average number of photons ⟨n⟩ emitted by the TMSV source into
each channel is �xed at 0.5. The superposition angle θ is shown along the x-axis in
units of π/4.
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Figure 5.5: a: The choice of θR (in radians) that maximizes the negativity of the two
registers for a given loss in channel chR. We have �xed ⟨n⟩ at 0.5. The legend and
plot label indicates the number of qubits in each register. b: We plot the probability
of the measurements at all the photodetectors succeeding, at the optimal value of θR.
The legend and plot label indicates the number of qubits in each register.

the probability that the qubits are in the bright state, which is exactly what is done
by lowering θR.
The probability that the measurement outcomes at the photodetectors correspond
to successful entanglement sharing, at the optimal value of θR, is shown Fig. 5.5b.
We observe that the probability of success decreases exponentially in the number
of qubits in the registers, and super-exponentially for decreasing transmission. The
super-exponential decrease in the probability of success, is caused by the scheme
compensating for a low ηR by lowering θR. This implies that our entanglement shar-
ing scheme will be practically infeasible at low transmissions and for registers with
many qubits.
In Fig. 5.6 we show how the negativity of the state shared by the registers depend
on the transmission of channel chR. The negativity is computed at the optimal value
of θR. For reference we plot the negativity of the TMSV state used to share entan-
glement between the registers. We observe that for low transmission, the registers
have a higher negativity than the TMSV state. This is caused by the noiseless am-
pli�cation process. Of course, this comes at a cost of probability, with experiments
performed at low transmissions (ηR) having a very low probability of success. On
the other hand, when the transmission is high and the registers comprise only one or
two qubits, the negativity is in fact decreased by the noiseless ampli�cation process.
This is due to the truncation of the Hilbert space, and this e�ect is mitigated by
increasing the number of qubits in the registers.
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Figure 5.6: We plot how the negativity depends on the transmission of the channel
connecting the registers. The negativity is computed at the optimal value of θR shown
in Fig. 5.5a. The average number of photons emitted by the TMSV source ⟨n⟩ into
each channel is �xed at 0.5. The plot label and legend indicates the number of qubits
in each register.
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Figure 5.7: We generate two pair of entangled registers and label them as L1, R1,
L2, and R2. We assume we can perform a joint measurement on register R1 and
L2.

5.5 Connecting the Segments via Deterministic En-

tanglement Swapping

Having established that the superposition angle θ can be used to increase the neg-
ativity between registers, we investigate the possibility of using these registers as a
memory unit in a quantum repeater. We will focus our analysis on the case of 1
qubit per register. This case is the most relevant considering current technological
limitations. We now show how entanglement swapping between single-qubit reg-
isters is performed. Suppose we have 4 registers, as shown in Fig. 5.7, pairwise
entangled in the state ρ given by Eq. 5.12 with N = 1. The total state Ω is then a
product of two of such states Ω = ρ ⊗ ρ. We label the registers as L1, R1, L2, and
R2. We assume we can perform a deterministic Bell measurement on the registers
R1 and L2. We may join several pairs of registers in series to form a repeater array
as shown in Fig. 5.8a.
We propose that a repeater node (eg. R1 and L2) could consist of two closely

situated (coupled) NV centers, on which we can perform a joint Bell measurement,
and we will analyze the repeater based on this assumption. However, we note that
the qubits making up a repeater node could also be realized as the electronic spin
of a NV center and the spin of a nearby 13C atom coupled to the NV center. In
this case, the repeater protocol would have to be realized step-wise. Eg. referring
to Fig. 5.8a, repeater segment 1 would establish entanglement between the NV
centers at Alice and node 1, and the entangled state would then be transferred to
13C atoms at Alice and node 1. These nuclear qubits make up L1 and R1. Simulta-
neously with this, entanglement would be generated between 13C atoms at node 2
and at Bob using repeater segment 3. These nuclear qubits would in turn make up
L3 and R3. Entanglement is then shared between NV centers at node 1 and node
2 using repeater segment 2, these electronic qubits make up L2 and R2. A swap
is then performed on the NV center and 13C nuclear spin at both node 1 and 2,
thereby generating an entangled state between Alice and Bob's 13C nuclear spins.
The idea is sketched for a longer repeater in Fig. 5.8b. State transfer between the
electronic spin and a coupled 13C nuclear spin was experimentally demonstrated
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Figure 5.8: a: We refer to a pair of registers connected by a TMSV state as a
repeater segment. Pairs of registers capable of undergoing an entanglement swap
forms a repeater node. We may combine repeater segments sequentially to form a
repeater, here shown with 3 repeater segments connecting Alice and Bob. Segments
are highlighted with an enveloping green dashed box, and nodes are indicated with a
blue dotted box. b: If we interpret the two qubits in a given node as an NV-center
and a nearby coupled 13C nuclear spin, then the repeater chain must run step-wise
as sketched. The involved steps are separated by a dotted line and an arrow, moving
from top to bottom. Entanglement between two qubits is indicated by an enveloping
loop. We highlight two repeater segments with a green dashed box, and a node in
a blue dotted box. In the �nal step, entanglement swapping is performed at all the
nodes, generating an entangled state between Alice and Bob.
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in [88]. Their protocol realizes a rotation of either the electronic or nuclear spin,
controlled by the state of the other spin. This enables a CNOT gate, and combined
with the ability to rotate the spins, facilitates a state transfer between the spins (see
also [89], [90]). The same operations enable the realization of a Bell measurement
on the two spins, and this was experimentally realized with a 14N nuclear spin in [91].

Performing entanglement swapping at all the nodes, we �nd the normalized den-
sity matrix after s swaps:

ρs =
[
2 + (s+ 1)(η−1 − 1) tan(θR)

2
]−1

1 0 0
(
−eiϕ

)s+1

0 (s+ 1)(η−1 − 1) tan(θR)
2 0 0

0 0 0 0(
−e−iϕ

)s+1
0 0 1

 (5.17)

Here we assumed that all s Bell measurements projected onto the state ,

|ψ⟩ = 1√
2

(
|0Rn0Ln+1⟩+ |1Rn1Ln+1⟩

)
. (5.18)

The derivation can be found in appendix A. We note that the matrix element corre-
sponding to loss, ((s+ 1)(η−1 − 1) tan(θR)

2), grows linearly in the number of swaps,
and will dominate after many swaps. Of course, other Bell measurement outcomes
than the one considered here will occur. In our reported results we sample swaps
fairly according to the probability at which they occur.

5.6 Performance of the Quantum Repeater

Having described the construction of the entire quantum repeater scheme, we will
now discuss its performance in terms of its ability to generate a secret key between
two parties. We will assume that Alice is the reconcilliator. We will also analyze the
possibility of violating a Bell inequality, which will enable device independent quan-
tum key distribution (DI-QKD). As is derived in Appendix A, when we decrease
θR we increase the purity of the state shared by the single qubit registers, however
this comes at a cost of a lower probability of success. In a realistic scenario, the
experimenter has a �nite number of attempts to set up her repeater channel. If the
scheme has not succeeded within this number of attempts it might be impractical to
use the scheme for sharing secret keys, due to the long waiting time. We take this
into account by de�ning some number of attempts available to the experimenter, A.
Mathematically we impose the constraint that the average experiment succeeds in
A attempts.
Let p be the probability that each pair of registers (Ln, Rn) successfully generate the
shared state given in Eq. 5.12. In order for the whole repeater array to succeed in
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A attempts on average, then p must necessarily be related to A. The exact relation
is given in Appendix C Eq. 5.82. We determine p numerically from A and insert
it into Eq. 5.66 so that we may determine the optimal values of θR, θL and ⟨n⟩.
We then compute the secret key rate for various values of A. An expression for
the secret key rate is derived in Appendix B and C, and given by Eq. 5.83. The
secret key rate can be seen in Fig. 5.9 as a function of distance (assuming a �ber
loss rate of 0.2dB/km). Our calculations imply that the proposed setup, under the
assumed idealizations, might beat the point-to-point capacity bound (also known as
the PLOB bound [92]) at roughly 130 km. However, one should keep in mind that
the repeater requires extensive two-way classical communication between segments,
and key exchange is expected to be slow.

In order to compute the key rates presented in Fig. 5.9, we have numerically
optimized a number of repeater parameters, including the length of a single segment,
the mean photon number of the TMSV, and the angles, θL and θR. The length of
a repeater segment was set to 10 km. This distance was found to be optimal as
revealed by the scans shown in Appendix D Fig. 5.13. Note that the performance
only varies weakly with the segment length. The optimal value of ⟨n⟩ as a function
of the distance is shown in Appendix D Fig. 5.14. The optimal values of θL and θR
are also shown in Appendix D, in Fig. 5.15 and Fig. 5.16 respectively.

5.6.1 Bell Inequality Violation

and Device-Independent QKD

Device independence represents an ultimate level of security where minimal trust
is placed in the implementation of the QKD protocol. A prerequisite for a device
independent proof of security is that Alice and Bob (the end points of the repeater)
can violate a Bell inequality with their shared 2 qubit state, and that the violation
coincide with what they expect based on the quality of the channel in use [49], [93].
We follow the device independent protocol presented in [8]. We note that Alice is
the reconcilliator in our scheme. Alice measures one of the operators

M
(1)
A = σx,

M
(2)
A = σz. (5.19)

Whereas Bob measures one of the operators

M
(0)
B = σx,

M
(1)
B = (σx + σz)/

√
2,

M
(2)
B = (σx − σz)/

√
2. (5.20)
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Figure 5.9: Plot of the secret key rate obtained with 1 qubit per register against
the distance between the two participants attempting to share a secret key. Alice is
the reconcilliator. The secret key rate is computed for di�erent number of allowed
attempts A (legend and plot label). We assume a loss of 0.2 db/km. Each curve
is an average over 15 calculations, where each calculation might di�er due to the
Bell measurement outcomes realized at each swap. The separation of two registers,
forming a repeater segment, is 10 km. For reference we plot the PLOB bound [92]
as a dotted black line.
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A key can be extracted when Alice happens to measure M (1)
A and Bob happens

to measure M (0)
B . If Bob measures either M (1)

B or M (2)
B , then these measurement

outcomes are announced and compared with Alice's measurement outcomes. From
this comparison one can compute the value of the CHSH inequality,

S =⟨M (1)
A M

(1)
B ⟩+ ⟨M (1)

A M
(2)
B ⟩

+ ⟨M (2)
A M

(1)
B ⟩ − ⟨M (2)

A M
(2)
B ⟩ ≤ 2. (5.21)

A requirement for violating the CHSH inequality, and extracting a secret key, is
that Alice and Bob keep track of what swaps occurred in the repeater, and perform
appropriate corrections to the shared quantum state. In Fig. 5.10 to the left we
plot the CHSH value S against the distance between Alice and Bob. We note that
the critical distance, where S drops below the classical bound of 2, is similar to the
distance at which the secret key rate (Fig. 5.9) vanishes for the same value of A. To
investigate this connection further, we determine the distance at which the secret
key rate vanishes for various values of A, and compare it with the distance at which
the CHSH value drops below 2. The two resulting curves are shown as a function
of A in Fig. 5.10 to the right. We note that both curves exhibit a nearly linear
dependence on A, and that the two curves nearly coincide.
We compute the device-independent secret key as [8]

r ≥ 1− h(Q)− h

(
1 +

√
(S/2)2 − 1

2

)
, (5.22)

and normalize by the required number of attempts to set up the repeater. The
rate in Eq. 5.22, while �rst derived for collective attacks, by entropy accumulation
also holds asymptotically for coherent attacks [47]. The quantum bit error rate Q
(QBER) is de�ned as the probability that Alice and Bob get measurement outcomes
that are in disagreement with what they expect, given that they measure M (1)

A and
M

(0)
B . For example, they might obtain di�ering outcomes when they expect the

same outcomes, as inferred from the shared quantum state. We have introduced
the binary entropy function h(x). The computed device-independent key rate can
be seen in Fig. 5.11 to the left. To the right we show the corresponding values of
Q. The device-independent key rate appear to be more sensitive to loss than the
regular key rate (Fig. 5.9), and as a result, vanishes at shorter distances.

5.6.2 Robustness of the Scheme

We then investigate the robustness of the scheme toward various sources of error.
We consider the following 4 errors: Loss in the left channel (chL), loss when coupling
the emission of the NV center to a �ber (channels f), dark counts at the detectors T
and B, and �nally, loss in the detectors T and B. It is di�cult to obtain an analytic
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Figure 5.10: Left: Plot of the CHSH value against the distance between the end
points of the repeater. A CHSH value above 2 is inconsistent with a local model.
The CHSH value is computed for di�erent number of allowed attempts A (legend
and plot label). Each curve is an average over 15 calculations. Right: We plot the
critical distance at which the secret key rate vanishes, and the distance at which the
CHSH value is equal to 2, against the number of allowed attempts A. We observe a
nearly linear dependence on A and the curves are nearly identical.

Figure 5.11: Left: Device-independent secret key rate against the distance between
the end points of the repeater. The rate is computed using Eq. 5.22. The PLOB
bound is drawn as a black dotted line. Right: Quantum bit error rate (Q) against
the distance. The quantum bit error rate is in our case de�ned as the probability
that Alice and Bob get di�erent outcomes given that they measure M

(1)
A and M

(0)
B ,

that is Q = P (a ̸= b|10). The legend and curve annotation indicates the value of A.
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expression for the state when including these errors, due to the large number of
sums involved. Therefore we turn to a numerical simulation using a custom Python
module given on github [94]. We �nd that when including these errors in our model,
it is advantageous to increase the distance of a repeater segment to 60 km, while also
increasing A to 500. By increasing the length of a repeater segment, we decrease
the required number of segments, and therefore the number of errors. Note that
A will vary slightly as we change the error rates, and all key rates are normalized
appropriately. The secret key rates obtained from our simulation can be seen in
Fig. 5.12, from which one can gauge the sensitivity of the repeater toward various
sources of error. Our calculations indicate, that in order to beat the PLOB bound,
loss in channel chL should be kept below about one percent. Likewise, coupling loss
from the NV center to the �ber should also be kept below about one percent. The
loss in the detectors should be less than half a percent, and the probability of a dark
count during a measurement should be less than 0.5 · 10−4 (0.5 · 10−2 percent). We
will not in the present work investigate the robustness of the scheme against noise
and decoherence in the qubit memories. However, we expect that the probability of
a bit �ip must be kept below one percent. We base this expectation on the fact that
coupling loss and loss in the channel chL, has an e�ect on the quantum state which
strongly resemble a bit �ip error. Another potential source of error is phase noise in
the �bers connecting the repeater nodes. Phase noise will reduce the entanglement
of a repeater segment, since the state shared by the registers become a mixture. We
expect that the standard deviation of the phase noise in the state shared by Alice
and Bob after entanglement swapping, will scale as

√
M where M is the number

of repeater segments. Hence, the tolerated phase noise per repeater segment will
be δ/

√
M , where δ is the tolerated phase noise for a repeater consisting of a single

segment. δ is inferred from the particular QKD protocol in use, we estimate that
δ = 200 mrad corresponds to a quantum bit error rate of roughly 1%, when the
phase noise is normally distributed with standard deviation δ, the details can be
found in appendix E. Finally, we estimate that in order to beat the PLOB bound,
the average number of thermal photons in the generated TMSV states must not
be much higher than 10−3. This is around 2 orders of magnitude smaller than the
expected number of non-thermal photons, which is set to be on the order of 0.1.
The details of the calculation can be found in appendix E.

5.7 Conclusion

We have analyzed a protocol for generating entanglement between a pair of multi-
qubit registers, where entanglement is shared by distributing two-mode squeezed
vacuum states followed by noiseless ampli�cation using quantum scissor operations
with atomic qubits. Underlying our analysis is the assumption that the qubits
can occupy a bright and a dark state. With this in mind, we propose that these
registers could be physically realized using NV centers in diamond. We found that
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Figure 5.12: We plot the secret key rate with varying imperfections in the repeater.
The distance between repeater nodes is 60 km, and A (the expected number of at-
tempts) is close to 500 for all plots. The plots are jagged due to the length of a
repeater segment being 60 km. The PLOB bound is drawn as a black dotted line.
Top left: We vary the transmission of the left channel (chL). The assumed trans-
mission of chL is shown in the legend and plot label. Top right: We vary the
transmission when coupling the emission of the NV center to a �ber. The assumed
transmission is shown in the legend and plot label. Bottom left: We vary the prob-
ability of a dark count at the detectors T and B. The assumed probability is shown
in the legend and plot label. Bottom right: We vary the loss of detectors T and B.
The assumed fraction of light collected by the detectors, is shown in the legend and
plot label.
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entanglement can be increased between the registers by purifying the shared state
via tuning of the angles θL and θR, with sin(θL) (sin(θR)) being the amplitude
corresponding to qubits in the left (right) register being in the bright state. We
found that with a single qubit per register it is possible to use the proposed protocol
in a repeater, capable of beating the PLOB bound at around 130 km, under ideal
conditions. We then gauged the sensitivity of the scheme against various sources
of error. We found that in order to beat the PLOB bound, loss of emission from
the NV centers should be kept below 1 percent, and loss in the channel chL should
likewise be below 1 %. Loss in the detectors should be kept below 0.5 %, and the
probability of a dark count during a measurement should be kept below 0.5 · 10−2

%. We computed the value of the CHSH inequality for the analyzed setup, and
found that at the distance where the secret key rate vanishes, it is also possible
to construct a local hidden variable model for the measurement outcomes. Finally,
using the computed CHSH value and the quantum bit error rate, we bounded the
device-independent secret key rate of the repeater for a particular protocol.
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5.9 Appendix

5.9.1 Generating Entangled Registers

We initialize the optical channels (chL and chR) into a TMSV state:

|ψ⟩ =
∞∑
n=0

cn |n⟩L |n⟩R (5.23)

The subscript L and R indicate whether we are referring to the left part of the state
or the right part. The amplitudes are given by:

cn = (−eiϕ)n
√

⟨n⟩n
(1 + ⟨n⟩)n+1

(5.24)

Where ⟨n⟩ is the average number of photons in each arm of the TMSV state. In this
work we consider the case where the phase ϕ is set to 0. Focusing on the left side
of Figure 5.3. We split up the optical mode on N beamsplitters. We intend to split
the optical �eld evenly among the N modes, to do this we use the transmission and
re�ection coe�cients:

tj =

√
j − 1

j
, rj =

√
1

j
(5.25)

Where j is the number of the arm, starting from 1 at the leftmost arm. As a result,
the amplitude operator for the left part of the TMSV, aL, splits into the N arms as:

aL →
√

1

N

N∑
k=1

ak (5.26)

|ψ⟩ then transforms as:

|ψ⟩ =
∞∑
n=0

cn
(a†L)

n

√
n!

|0⟩L |n⟩R (5.27)

→
∞∑
n=0

cn
1√
n!

(√
1

N

)n

(a†1 + a†2 + · · ·+ a†N)
n |0⟩l |n⟩R

Note that we also propagated |0⟩L to |0⟩l with the latter being the empty l modes at
the left register. Using the multinomial theorem, we may rewrite the ladder operator
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product as:

(a†1 + a†2 + · · ·+ a†N )
n |0⟩l

=
∑

j1+j2+···+jN=n

n!

j1!j2! · · · jN !

(
a†1

)j1 (
a†2

)j2
· · ·
(
a†N

)jN
|0⟩l

=
∑

j1+j2+···+jN=n

n!
√
j1!

√
j2! · · ·

√
jN !

j1!j2! · · · jN !
|j1, j2, · · · , jN ⟩l

=
∑
jn

Ωjn |jn⟩l (5.28)

Where the �nal sum
∑

jn
runs over unique strings jn = (j1, j2, · · · , jN) such that

j1 + j2 + · · ·+ jN = n. E.g. if n = 2 and N = 2, then the sum runs over the states
|j2⟩ ∈ {|2, 0⟩ , |1, 1⟩ , |0, 2⟩}. Ωjn is the prefactor given by:

Ωjn =
n!√

j1!
√
j2! · · ·

√
jN !

(5.29)

Using this notation we then write |ψ⟩ as:

|ψ⟩ =
∞∑
n=0

cn
1√
n!

(√
1

N

)n∑
jn

Ωjn |jn⟩l |n⟩R (5.30)

Meanwhile, we initialize the left registry in the state:

|L⟩ =
N∏
k=1

(cos(θL) |0⟩qk |0⟩fk + sin(θL) |1⟩qk |1⟩fk) (5.31)

Where the notation |0⟩qk |0⟩fk indicates that for arm k, the qubit (qk) is in the state
0 and the �ber (fk) coupled to the qubit is occupied by 0 photons.
We may then write |L⟩ as:

|L⟩ =
∑

a1={0,1}

∑
a2={0,1}

· · ·
∑

aN={0,1}

cos(θL)
(1−a1) sin(θL)

a1 · · · cos(θL)(1−aN ) sin(θL)
aN

|a1⟩q1 |a1⟩f1 · · · |aN⟩qN |aN⟩fN
=
∑
a

β(a, θL) |a⟩q |a⟩f (5.32)

Where we've introduced a sum over binary lists
∑

a leaving the registry in a su-
perposition of binary states |a⟩q |a⟩f = |a1⟩q1 |a1⟩f1 · · · |aN⟩qN |aN⟩fN . We've also
introduced the parameter β(a, θL) to take the angle θL into account. We interact
|ψ⟩ and |L⟩ using N beamsplitters acting on the l and f modes, we then measure
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on these modes using the photon resolving detectors T and B for each arm. We
assume a particular measurement outcome (tk, bk)k, indicating that tk photons are
going to detector Tk and bk photons are going to detector Bk in arm k. Subject to
this measurement, the state transforms as:

|ψ⟩ |L⟩ → ⟨t1|T1 ⟨b1|B1
U1 ⟨t2|T2 ⟨b2|B2

U2

· · · ⟨tN |TN ⟨bN |BN
UN |ψ⟩ |L⟩ (5.33)

Where Uk is the beamsplitter in arm k. The bra acting from the left then indicates
the projective action of the photon resolving detectors.
The right part of the TMSV state is entangled with the left registry qubit k if
tk + bk = 1 since the photon could then have come from either the TMSV state or
the bright state of the qubit. Other measurement outcomes tend to yield information
about the state of the registry and the TMSV state, and are expected to lower the
entanglement, though this assumption could be explored further. In this work we
will only accept measurement outcomes where tk + bk = 1 for all N arms of the
registers.
To evaluate the above expression, we let the beamsplitters act on the bra. Eg. we
examine:

⟨tk|Tk ⟨bk|Bk
Uk = (U †

k |tk⟩Tk |bk⟩Bk
)† (5.34)

First let tk = 1 and bk = 0, we assume balanced beamsplitters:

U †
k |1⟩Tk |0⟩Bk

=
1√
2

(
|0⟩fk |1⟩lk + |1⟩fk |0⟩lk

)
(5.35)

When we let tk = 0 and bk = 1, we get:

U †
k |0⟩Tk |1⟩Bk

=
1√
2

(
|0⟩fk |1⟩lk − |1⟩fk |0⟩lk

)
(5.36)

As required by the reciprocity relations of the beamsplitter. Evidently, measuring
tk = 0 and bk = 1 phase shifts registry qubit k by π if it is in the bright state
(since the mode fk is then occupied). We will assume that this phase shift can
be corrected experimentally. For simplicity we examine the situation, where for all
arms, we obtain the measurements tk = 1 and bk = 0. The measurement described
by Eq. 5.33 then transforms the state as:

|ψ⟩ |L⟩ →
(

1√
2

)N N∏
k=1

(⟨0|fk ⟨1|lk + ⟨1|fk ⟨0|lk) |ψ⟩ |L⟩ (5.37)

Note that we haven't renormalized, and the norm of the state has been reduced.
Evidently, if mode lk contains 1 photon, then mode fk is vacant, and the qubit state
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must be |0⟩qk (dark). Vice versa if mode lk contains no photons. We rewrite the
projective measurement as:

N∏
k=1

(⟨0|fk ⟨1|lk + ⟨1|fk ⟨0|lk) =
∑
m

⟨¬m|f ⟨m|l (5.38)

Where m is any binary list of length N . ¬m should be understood as the negation
(not) of m. Using Eq. 5.30, 5.32, 5.37, and 5.38, the result of the measurement is:

|ψ⟩ |L⟩ → |α⟩

=

(
1√
2

)N ∞∑
n=0

∑
jn

∑
a

∑
m

cn
1√
n!

(
1√
N

)n
β(a, θL)Ωjn ⟨¬m|f |a⟩f |a⟩q ⟨m|l |jn⟩l |n⟩R

(5.39)

Since m is a binary list, then the overlap ⟨m|l |jn⟩l is only non-zero when the
optical input from the TMSV state jn is also binary. This implies:

Ωjn = n! (5.40)

Conditioned on the overlap ⟨m|l |jn⟩l being non-zero, we see that a must be the
negation of jn so that ⟨¬m|f |a⟩f is also non-zero. This implies that the state shared
between the right TMSV and the left registry after measurement is:

|α⟩ =
(

1√
2

)N N∑
n=0

∑
in

cn

(
1√
N

)n
β(n, θL)

√
n! |¬in⟩L |n⟩R (5.41)

Where |¬in⟩L is the state of the qubits in the left register, and the sum runs over
binary lists in of length N . in will contain n ones and N−n zeros. in corresponds to
the binary distribution of photons in the lk modes prior to a successful measurement.
The sum over n has been terminated at N , since no binary string in exist for n > N .
We've also used the fact that:

β(a, θL) = β(¬in, θL) = β(n, θL) = cos(θL)
n sin(θL)

N−n (5.42)

We may perform the sum over in by introducing the vector:

∑
in

|¬in⟩L =

(
N

n

)1/2

|IN−n⟩L (5.43)
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Where |IN−n⟩L is normalized and is an even superposition of all binary states con-
taining N −n bright state qubits and n dark state qubits. In terms of these vectors,
we �nd that we may express |α⟩ as:

|α⟩ =
(

1√
2

)N N∑
n=0

cn

(
1√
N

)n
β(n, θL)

√
n!

(
N

n

)1/2

|IN−n⟩L |n⟩R (5.44)

Comparing with the original TMSV state, we see that the left register transforms a
Fock state as:

|n⟩ →
(

1√
2

)N (
1√
N

)n
β(n, θL)

√
n!

(
N

n

)1/2

|IN−n⟩

= ∆(n, θL) |IN−n⟩ (5.45)

Where

∆(n, θL) =

(
1√
2

)N (
N

n

)1/2(
1√
N

)n√
n!β(n, θL) (5.46)

Using this transform, and assuming no loss in the �ber, we may infer that storing
the right part of the TMSV in the right register (see Fig. 5.3), results in the state:

|α⟩ =
N∑
n=0

cn∆(n, θL)∆(n, θR) |IN−n⟩L |IN−n⟩R (5.47)

We may then compute the norm of the state of the two registers:

⟨α|α⟩ =
N∑
m=0

|cm|2|∆(m, θL)|2|∆(m, θR)|2 (5.48)

The probability of successful entanglement sharing between the 2 registries is then
this norm multiplied by the number of measurements that would yield an equiva-
lent state. For each arm we have 2 detector outcomes, (0,1) or (1,0), that would
yield a state equivalent to the one described above. The probability of successful
entanglement sharing is then:

Ps = 2N2N ⟨α|α⟩ = 4N ⟨α|α⟩ (5.49)

Performance with Loss

We initialize the optical channel in a TMSV state:

|ψ⟩ =
∞∑
n=0

cn |n⟩L |n⟩R (5.50)
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We send the right part of the TMSV through a lossy channel modelled by a beam-
splitter with transmission amplitude

√
ηR. The transmission of the �ber is then

given by ηR. Likewise we send the left part of the TMSV state through a lossy
channel of transmission ηL The channels transforms the state as:

|ψ⟩ →
∞∑
n=0

n∑
lR,lL=0

ϵR(n, lR)ϵL(n, lL)cn

|n− lL⟩L |n− lR⟩R |lL⟩eL |lR⟩eR (5.51)

Where eR is a loss channel. The loss amplitude is given as:

ϵR/L(n, lR/L) =

√(
n

n− lR/L

)
η
(n−lR/L)/2

R/L (1− ηR/L)
lR/L/2 (5.52)

Inserting the Fock state transform Eq. 5.45, we arrive at the register state:

|α⟩ =
∞∑
n=0

n∑
lL=0

n∑
lR=0

cnϵL(n, lL)ϵR(n, lR)∆(n− lL, θL)

∆(n− lR, θR)Θ(N + lL − n)Θ(N + lR − n)

|IN−n+lL⟩L |IN−n+lR⟩R |lL⟩eL |lR⟩eR (5.53)

Where we've introduced the step function:

Θ(x) =

{
1 if x ≥ 0

0 if x < 0
(5.54)

The step function takes into account that when more than N photons reach either
registers, then the projective measurement fails.

The corresponding density matrix is:

σ =
∞∑
n=0

∞∑
m=0

n∑
lL=0

m∑
kL=0

n∑
lR=0

m∑
kR=0

cnc
∗
mϵR(n, lR)ϵL(n, lL)ϵR(m, kR)

∗ϵL(m, kL)
∗

∆(n− lL, θL)∆(n− lR, θR)∆(m− kL, θL)
∗∆(m− kR, θR)

∗

Θ(N + lL − n)Θ(N + lR − n)Θ(N + kL −m)Θ(N + kR −m)

|IN−n+lL⟩L ⟨IN−m+kL|L |IN−n+lR⟩R ⟨IN−m+kR |R |lL⟩eL ⟨kL|eL |lR⟩eR ⟨kR|eR (5.55)

We then trace out the loss channels, giving the state:

ρ = Treσ =
∞∑
n=0

∞∑
m=0

min(n,m)∑
l=0

min(n,m)∑
r=0

cnc
∗
mϵR(n, r)ϵL(n, l)ϵR(m, r)

∗ϵL(m, l)
∗

∆(n− l, θL)∆(n− r, θR)∆(m− l, θL)
∗∆(m− r, θR)

∗

Θ(N + l − n)Θ(N + r − n)Θ(N + l −m)Θ(N + r −m)

|IN−n+l⟩L ⟨IN−m+l|L |IN−n+r⟩R ⟨IN−m+r|R (5.56)
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We de�ne the matrix elements:

Λ(n,m, l, r) = cnc
∗
mϵR(n, r)ϵL(n, l)ϵR(m, r)

∗ϵL(m, l)
∗

∆(n− l, θL)∆(n− r, θR)∆(m− l, θL)
∗∆(m− r, θR)

∗

Θ(N + l − n)Θ(N + r − n)Θ(N + l −m)Θ(N + r −m) (5.57)

Such that we may write the state as:

ρ =
∞∑
n=0

∞∑
m=0

min(n,m)∑
l=0

min(n,m)∑
r=0

Λ(n,m, l, r) |IN−n+l⟩L ⟨IN−m+l|L |IN−n+r⟩R ⟨IN−m+r|R

(5.58)

One Qubit Per Register

In the following we will analyse the case of one sided loss. Loss is assumed to only
occur between the TMSV source and the right register. If N = 1 then we have the
density matrix:

ρ =

1

4


|c1|2ηc2θLc

2
θR

0 0 c1c
∗
0

√
ηsθRsθLcθRcθL

0 |c1|2(1− η)c2θLs
2
θR

0 0
0 0 0 0

c∗1c0
√
ηsθRsθLcθRcθL 0 0 |c0|2s2θLs

2
θR

 (5.59)

where cθL = cos(θL), cθR = cos(θR), sθL = sin(θL) and sθR = sin(θR). If we use the
above state for entanglement swapping via Bell measurements, there is an advan-
tage in keeping the matrix elements ρ11 and ρ44 identical. If this is not the case,
series of swaps will tend to make the state more separable and thereby diminish
entanglement. This constraint implies:

|c1|2η cos(θL)2 cos(θR)2 = |c0|2 sin(θL)2 sin(θR)2 (5.60)

This implies a bond between θR and θL.

tan(θL)
2 = tan(θR)

−2η
|c1|2

|c0|2
(5.61)

Utilizing the bond in Eq. 5.61 we may rewrite the density matrix as:

ρ =
1

4

sin(θR)
2|c1|2|c0|2η

tan(θR)2|c0|2 + η|c1|2


1 0 0 −eiϕ
0 (η−1 − 1) tan(θR)

2 0 0
0 0 0 0

−e−iϕ 0 0 1

 (5.62)
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We now want to choose the superposition angle θR such that the state is as
entangled as possible. Evidently we have that if we suppress the loss term, corre-
sponding to matrix element ρ22, then the state of the qubits is a maximally entangled
state. This suggests that we should make tan(θR)

2 as small as possible. However,
there is one more condition to consider. The probability of the measurements at
the photodetectors succeeding, which goes to zero in this limit where θR → 0. The
probability of success is given by the trace of ρ:

P (θR, ⟨n⟩; η) = sin(θR)
2|c1|2|c0|2

2η + (1− η) tan(θR)
2

tan(θR)2|c0|2 + η|c1|2
(5.63)

Where we take into account that the measurements at the photodetectors can suc-
ceed in 4 ways. The optimal choice of θR is then the choice that minimizes tan(θR)2

subject to the condition that:

P (θR, ⟨n⟩; η) ≥ p (5.64)

Where p is the minimum probability of success tolerated by the experimental setup.
We may maximize P (θR, ⟨n⟩; η) in ⟨n⟩ for a given θR and η by choosing the squeezing
of the TMSV source such that we have the equality:

⟨n⟩ =
√

1− η

η + tan (θR)
2 (5.65)

Inserting the optimal choice of ⟨n⟩ into P (θR, ⟨n⟩; η) we obtain the probability
P (θR; η). From numerical investigation we �nd that this probability depends on
the angle θR in a complicated manner. However, for values of |θR| below ∼ 0.66
we have that P (θR; η) decreases monotonically in |θR| for any value of η. In order
to minimize tan(θR)

2 we require low values of θR, and so we expect to be below
this angle. With this consideration, we may infer that the optimal choice of θR is
obtained when:

P (θR; η) = p (5.66)

Which can be rewritten as a quartic polynomial equation in z =
√

1− η
η+tan(θR)2

:

p+ 2pz+η [p− 2] z2 + p [2η − 2] z3

+
[
−p+ (1 + p)η + η2

]
z4 = 0 (5.67)

Which can be solved e�ciently numerically and from which we can �nd θR.

Given that we've made the optimal choice of θR we can investigate how the state
evolves under a sequence of swaps. Suppose we have 4 registers, as shown in Fig.
5.7, pairwise entangled in the state ρ given by Eq. 5.62. The total state Ω is then a
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product of two of such states Ω = ρ⊗ρ. Obtaining the particular Bell measurement
outcome corresponding to the ket |ψ⟩ = 1√

2
(|0R10L2⟩+ |1R11L2⟩) on registers R1 and

L2, we obtain the state:

ρ1 =
1

2
(⟨0R10L2|+ ⟨1R11L2 |)Ω(|0R10L2⟩+ |1R11L2⟩) (5.68)

We may evaluate ρ1 by inserting ρ from Eq. 5.62. We obtain the unormalized state:

ρ1 =
1

2

(
1

4

sin(θR)
2|c1|2|c0|2η

tan(θR)2|c0|2 + η|c1|2

)2


1 0 0

(
−eiϕ

)2
0 2(η−1 − 1) tan(θR)

2 0 0
0 0 0 0(

−e−iϕ
)2

0 0 1


(5.69)

Clearly the state is similar in structure to the original state, with the loss term
having doubled in size relative to the other matrix elements. Continuing this, then
after s swaps we obtain the unnormalized density matrix:

ρs =

(
1

2

)s(
1

4

sin(θR)
2|c1|2|c0|2η

tan(θR)2|c0|2 + η|c1|2

)s+1


1 0 0

(
−eiϕ

)s+1

0 (s+ 1)(η−1 − 1) tan(θR)
2 0 0

0 0 0 0(
−e−iϕ

)s+1
0 0 1

 (5.70)

Of course, other Bell measurement outcomes than the one considered here will occur.
We will numerically simulate swaps by drawing fairly from the four Bell measurement
outcomes.

5.9.2 Secret Key Rate

Having established entanglement between registers we're interested in computing
how large a shared secret key might be extractable from the density matrix. We
will assume that Eve can perform a collective attack [16]. Given that Alice and Bob
each measure their registry qubit, the secret information is then simply the mutual
information between the observed outcomes (a and b) minus the information an
eavesdropper might have of the outcome obtained by the reconcilliator x (Alice or
Bob) [95]. The secret information is given by the Devetak-Winter formula [96]:

K = βI(a : b)− S(x : E) (5.71)
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Where β is the reconcilliation e�ciency, that is, how large a part of the mutual
information that can be distilled into a shared key. The mutual information between
the measurement outcomes obtained by Alice and Bob is simply [4]:

I(a : b) =
∑
a,b

P (a, b) log2

(
P (a, b)

P (a)P (b)

)
(5.72)

Where P (a, b) is the probability of obtaining outcomes a and b, whereas P (a) and
P (b) are the marginal probabilities of obtaining outcomes a and b respectively. S(x :
E) is the Holevo information which upper bounds the information Eve can obtain
about the variable x given her measurement e [5]:

I(x : e) ≤ S(x : E) (5.73)

With the capital E indicating the state on which Eve has not yet measured. We
will assume that Alice is the reconcilliator x = a. The Holevo value is given by

S(a : E) = S(ρE)−
∑
a

P (a)S(ρaE). (5.74)

Where ρaE is the state held by Eve subject to the condition that Alice measures a.
Since Bob puri�es the state ρaE, we have that

S(ρaE) = S(ρaB). (5.75)

Furthermore, since Alice and Bob puri�es the state held by Eve

S(ρE) = S(ρAB). (5.76)

So we may compute the Holevo value simply by knowing the state shared by Alice
and Bob

S(a : E) = S(ρAB)−
∑
a

P (a)S(ρaB). (5.77)

To obtain a secret key rate, we normalize K by the number of channel uses necessary
to generate that secret key. The number of channel uses neccessary will be estab-
lished in Appendix C. We will be assuming a reconcilliation e�ciency β of 1, and
that Alice and Bob either measure σx or σz (e.g. they could use the BB84 protocol).
They can then extract a secret key from measurement rounds where their choice of
basis coincide.

5.9.3 Trials Needed Before M Repeater Segments Succeed

In the previous sections we analyzed a single pair of registers, L1 and R1, and
found the probability p with which we successfully generate the state ρ given in
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Eq. 5.58, with p given by 4NTrρ. Given p we will assume that the probability of
successfully generating ρ after exactly n attempts, follows a geometric distribution,
with probability mass function:

PMF(n) = p(1− p)n−1 (5.78)

The corresponding cumulative distribution function, which should be interpreted as
the probability that ρ has been established in less than or exactly n attempts, is
given by:

CDF(n) = 1− (1− p)n (5.79)

Now we will assume that we have a collection ofM repeater segments, each repeater
segment being a pair of registers, as shown in Fig. 5.8 a. We now want to com-
pute how many attempts are necessary before all M repeater segments successfully
generate the state ρ. The cumulative distribution for M repeaters attempting in
parallel is simply the product:

CDFM(n) = [1− (1− p)n]M (5.80)

The probability of all repeaters having succeeded after exactly n attempts is then:

PDFM(n) = CDFM(n)− CDFM(n− 1)

= [1− (1− p)n]M − [1− (1− p)n−1]M

=
M∑
s=0

(
M

s

)
(1− p)n·s

[
1− (1− p)−s

]
(5.81)

A similar formula may be found in [97].
We then �x p by demanding that the following relation is satis�ed:

A =
∞∑
n=1

n · PDFM(n) (5.82)

Implying that the average experiment succeeds in A attempts.
Assuming that a state ρM is generated fromM−1 deterministic entanglement swaps
using M repeater segments, and that a secret key KM can be extracted from this
state, we normalize this key by the number of attempts necessary to generate ρM .
This gives us the secret key rate KM :

KM =
∞∑
n=1

KM

n
· PDFM(n) = KM

∞∑
n=1

PDFM(n)

n
(5.83)

Where KM is computed from Eq. 5.71.
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Figure 5.13: Left: Plot of the distance where no Bell inequality can be violated for
various register separations with 1 qubit per register. Right: Plot of the distance
where the secret key rate vanishes for various register separations with 1 qubit per
register. The legend and plot label indicates the expected number of attempts A.

5.9.4 Optimal Parameters - 1 Qubit per Register

In Fig. 5.13 to the right we plot the critical distance at which the secret key rate
vanishes, against the separation between registers making up a repeater segment.
In Fig. 5.13 to the left we likewise show the critical distance at which the CHSH
inequality is no longer broken, also against the separation between registers making
up a repeater segment.
We then give the optimal average photon number, the optimal values of θL, and the
optimal values of θR against the distance between the end points of the repeater.
These are shown in Fig. 5.14, 5.15, and 5.16 respectively. Note that the length of a
repeater segment was set to 10 km.

5.9.5 Phase and Thermal Noise

Phase noise in the optical �bers result in the optical TMSV state,

|ψ⟩ =
∞∑
n=0

cne
iγn |n⟩L |n⟩R (5.84)

Where γ is a stochastic phase-shift of the state. γ is the combined phase-shift arising
from phase noise in both arms of the TMSV state. γ can be absorbed into cn, and
in the case of 1 qubit in each register, we obtain the density matrix describing the
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Figure 5.14: The optimal value of ⟨n⟩ for di�erent number of allowed attempts A
(legend and plot label) against the distance between the end points of the repeater.
The length of a repeater segment is set at 10 km.

Figure 5.15: The optimal value of θL for di�erent number of allowed attempts A
(legend and plot label) against the distance between the end points of the repeater.
The length of a repeater segment is set at 10 km.
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Figure 5.16: The optimal value of θR for di�erent number of allowed attempts A
(legend and plot label) against the distance between the end points of the repeater.
The length of a repeater segment is set at 10 km.

registers from Eq. 5.62,

ρ =
1

2


1 0 0 −ei(ϕ+γ)
0 0 0 0
0 0 0 0

−e−i(ϕ+γ) 0 0 1

 = |γ⟩ ⟨γ| , (5.85)

we have assumed no loss (η = 1) and,

|γ⟩ = 1√
2
(|00⟩ − e−i(ϕ+γ) |11⟩). (5.86)

Assuming that the phase error γ is normally distributed with variance δ2, then the
ensemble arising from this stochastic phase error is described by the density matrix,

ρδ =
1√
2πδ

∫ ∞

−∞
dγe−

γ2

2δ2 |γ⟩ ⟨γ| (5.87)

Picking ϕ = π, we compute the quantum bit error rate as,

Q = ⟨+| ⟨−| ρδ |+⟩ |−⟩+ ⟨−| ⟨+| ρδ |−⟩ |+⟩

=
1− e−δ

2/2

2
(5.88)
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For Q = 0.01 we �nd δ = 200 mrad.
Given two copies of |γ⟩ with di�erent stochastic phase shifts γ1 and γ2,

|γ1⟩ =
1√
2
(|0⟩11 |0⟩12 − e−i(ϕ+γ1) |1⟩11 |1⟩12)

|γ2⟩ =
1√
2
(|0⟩21 |0⟩22 − e−i(ϕ+γ2) |1⟩21 |1⟩22) (5.89)

We perform a Bell measurement on qubits 12 and 21 to enact an entanglement swap,

1√
2
(⟨0|12 ⟨0|21 + ⟨1|12 ⟨1|21) |γ1⟩ |γ2⟩

∝ |0⟩11 |0⟩22 + e−i(2ϕ+γ1+γ2) |1⟩11 |1⟩22 , (5.90)

where we assumed a particular Bell measurement outcome. However, independently
of what Bell measurement outcome occurred, we �nd that the stochastic phase an-
gle is a sum or di�erence of γ1 and γ2. We may then deduce that after s swaps,
the accumulated phase error will be a sum of s+ 1 independent random phases. If
each independent random phase γk is normally distributed with variance δ2, then
the accumulated random phase obtained from a repeater with M segments will be
normally distributed with variance Mδ2.

Allowing for the possibility of thermal noise in the repeater, we consider the
presence of thermal photons in the generated TMSV states. The thermal TMSV
states are obtained by two-mode squeezing two thermal states, each with average
photon-number nT . In Fig. 5.17 we show how the secret key rate changes as we
vary the expected number of thermal photons nT .
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Figure 5.17: We vary the expected number of thermal photons nT in both arms of the
TMSV state. The value of nT is annotated to each curve. A is close to 500 for all
plots. The length of a repeater segment is 60 km. We observe that at nT = 5 · 10−3,
the repeater can no longer beat the PLOB bound.
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Chapter 6

Modular interactions and

Gottesman-Kitaev-Preskill states

In this section we present three protocols for realizing an interaction between an
oscillator and a set of qubits, with the interaction being modular, or periodic, in
the q and p quadratures of the oscillator. This interaction is then used to generate
approximate Gottesman-Kitaev-Preskill (GKP) states [98], both with and without
utilizing a projective measurement. The proposed modular interaction can also be
used for error-correcting the GKP states through a modular measurement. The
structure of the section is as follows, we begin by introducing the modular observ-
ables and the GKP states. We then present a simple modular interaction between
a qubit and an oscillator, already employed in experiments, and show how repeated
application of the interaction can be used to probabilistically generate a GKP state
of the oscillator [99]. Subsequently we describe how a collection of qubits can realize
a modular interaction with an oscillator, e�ectively by encoding quadratures into
the joint qubit state. This interaction is then used for deterministically preparing a
GKP state after a single interaction between the qubits and oscillator.

The non-commutativity between the q and p quadrature operators, assumed
by the canonical commutation relation of quantum optics [q, p] = 2i, is a central
aspect of quantum optics and enforces that the spread in q and p associated with
a quantum state, must always satisfy ∆q∆p ≥ 1. However, it has been noted that
the corresponding modular observables qm = q (mod L) and pm = p (mod 2π/L′)
obey the relation,

eimpmL
′
ein2πqm/L = ein2πqm/LeimpmL

′
(6.1)

for L and L′ satisfying L′/L = k/2 where k is an integer. We follow the proof given
in [30]. We consider the exponentiated operators and note the relations,

ein2πqm/Lf = ein2πq/Lf

eimpmL
′
f = eimpL

′
f, (6.2)
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for an arbitrary test function f and for whole numbers n,m ∈ Z. Then it follows,

eimpmL
′
ein2πqm/Lf = eimpmL

′
ein2πqm/Le−impmL

′
eimpmL

′
f

= eimpL
′
ein2πq/Le−impL

′
eimpL

′
f = ein2π(q+2mL′)/LeimpL

′
f

= einm4πL′/Lein2πq/LeimpL
′
f = ein2πqm/LeimpmL

′
f, (6.3)

and we arrive at the sought result. Looking for a common eigenstate of qm and pm
one �nds the family of unnormalizable eigenstates,

|L⟩ =
∞∑

s=−∞

ei
1
2
k(x−sL)|x− sL⟩, (6.4)

for arbitrary x and k, and where |x− sL⟩ is a q-quadrature eigenstate centred on
x − sL. These states have eigenvalues x (mod L) for qm = q (mod L) and eigen-
values k (mod 4π

L
) for pm = p (mod 4π/L). We note that |L⟩ is not normalizable,

and does not constitute a proper quantum state. However, the state can be ap-
proximated, and its approximation has been utilized in the construction of bosonic
codes, namely GKP codes for encoding an error-correctable qubit in an oscillator.
We may generalize |L⟩, de�ning a periodic state as one which can be written,

|L⟩ = N
T∑

s=−T

λsDq(sL) |ψ⟩ , (6.5)

where Dq(d) = e−i
d
2
p is the displacement operator in q and |ψ⟩ is an arbitrary state.

λs are weights and N is the normalization. If |ψ⟩ is localized in the q quadrature,
then we will refer to |L⟩ as a peaked periodic state.
The approximate GKP states are an instance of a periodic peaked state and can be
written as,

|G(ϕ)⟩ = N0

∞∑
s=−∞

e−(κ(2s+ϕ)
√
π)2/2

∫ ∞

−∞
dqπ−1/4∆−1/2e−q

2/(2∆2) |q + (2s+ ϕ)
√
π⟩ ,

(6.6)

where N0 is the normalization. ϕ shifts the GKP state and ϕ = 0 corresponds to
logical 0 and ϕ = 1 corresponds to logical 1. We will be considering states for which
ϕ ∈]0, 1[ as shifted GKP states.

6.1 Peaked periodic states as �xed points

In this section we relate the approximate GKP states to the �xed points of a se-
quence of projective measurements. We show how repeatedly interacting a qubit and
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an oscillator and measuring the qubit, quite generally produces localized periodic
states. This section serves as an introduction to the idea of modular measurements,
and protocols similar to the one described in this section have already been realized
experimentally [99]. The main protocol, which can perform a modular measurement
of an oscillator via a single interaction with the oscillator, will be given in the next
section.

We initialize an oscillator ω in a state |ψ0⟩ω and a qubit in a state in the yz-plane
having the angle v0 with the z-axis. We label this state as |v0⟩q, given by

|v0⟩q = cos(v0/2) |0⟩q + i sin(v0/2) |1⟩q . (6.7)

We then interact the qubit and oscillator using the unitary U = eitgqσx where q is
a quadrature operator of the oscillator, σx is the Pauli x operator for the qubit, g
is the interaction frequency and t is the interaction time. Expanding |ψ0⟩ω in the q
eigenstates |x⟩ω we obtain,

|Ψ⟩ = eitgqσx |ψ0⟩ω |v0⟩q

=

∫ ∞

−∞
dxψ0(x) |x⟩ω

(
cos(gtx+ v0/2) |0⟩q + i sin(gtx+ v0/2) |1⟩q

)
(6.8)

where |0⟩q and |1⟩q are spin up and down along the z axis. We introduce the rescaled
quadrature coordinate θ = 2gtx and obtain,

|Ψ⟩ =
∫ ∞

−∞

dθ

2gt
ψ0 (θ) |θ⟩ω

(
cos

(
θ + v0

2

)
|0⟩q + i sin

(
θ + v0

2

)
|1⟩q
)

=

∫ ∞

−∞

dθ

2gt
ψ0 (θ) |θ⟩ω |v0 + θ⟩q (6.9)

where ψ0 (θ) and |θ⟩ω are shorthand for ψ0

(
θ
2gt

)
and | θ

2gt
⟩
ω
respectively. We notice

that if the wavefunction ψ0(θ) matches a peaked periodic state of period 2π in θ,
then there is no entanglement between the qubit and oscillator. I.e. tracing out the
oscillator we �nd the state of the qubit,

ρq =

∫ ∞

−∞

dθ

2gt
|ψ0(θ)|2

(
cos

(
θ + v0

2

)
|0⟩q + i sin

(
θ + v0

2

)
|1⟩q
)

⊗
(
cos

(
θ + v0

2

)
⟨0|q − i sin

(
θ + v0

2

)
⟨1|q
)
(6.10)

if |ψ0(θ)|2 =
∑∞

s=−∞ |λs|2δ (θ − θ0 + s2π) then,

ρq =

(
cos

(
θ0 + v0

2

)
|0⟩q + i sin

(
θ0 + v0

2

)
|1⟩q
)

⊗
(
cos

(
θ0 + v0

2

)
⟨0|q − i sin

(
θ0 + v0

2

)
⟨1|q
)
. (6.11)
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Figure 6.1: An oscillator (right) interacts with a qubit (middle) via the unitary U
(see text). The qubit is then measured along the direction making the angle Vn with
the z-axis in the yz-plane (left). Then the qubit again interacts with the oscillator
via U , and again we measure the qubit. The sequence is repeated N times in total.

The qubit is observed to be in a pure state and there is no entanglement between the
oscillator and qubit. One might then suspect, that repeatedly interacting an oscil-
lator with a qubit via U , followed by a projective measurement of the qubit, might
evolve the oscillator until it eventually reaches a peaked periodic state, at which
point a measurement of the qubit wont a�ect the oscillator state. The question
is then what sequences of projective measurements will lead the oscillator toward
such a �xed point. To answer this question, we determine the state resulting from
repeatedly interacting the oscillator and the qubit via U and measuring the qubit
state. The projective measurement in round n is assumed to occur along the di-
rection making the angle Vn with the z-axis in the yz-plane, and the result of the
measurement is to project the qubit into a state |vn⟩q, with vn being either Vn or
Vn+ π. See Fig. 6.1 for a sketch of the interaction. The joint state of the qubit and
oscillator evolves as,

|v0⟩q |ψ0⟩ω
U→
∫ ∞

−∞

dθ

2gt
ψ0 (θ) |θ⟩ω |v0 + θ⟩q

M1→
∫ ∞

−∞

dθ

2gt
ψ0 (θ) |θ⟩ω |v1⟩ ⟨v1|v0 + θ⟩ (6.12)

whereM1 implies that we perform measurement 1, projecting onto ⟨v1|. Continuing,

U→
∫ ∞

−∞

dθ

2gt
ψ0 (θ) |θ⟩ω |v1 + θ⟩q ⟨v1|v0 + θ⟩

M2→
∫ ∞

−∞

dθ

2gt
ψ0 (θ) |θ⟩ω |v2⟩q ⟨v2|v1 + θ⟩ ⟨v1|v0 + θ⟩ (6.13)
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and so forth. The oscillator state resulting from N rounds of this sequence is then,

|ψ⟩ =
∫ ∞

−∞

dθ

2gt
ψ0(θ) |θ⟩ω

N∏
n=1

⟨vn|vn−1 + θ⟩q

=

∫ ∞

−∞

dθ

2gt
ψ0(θ) |θ⟩ω

N∏
n=1

⟨vn − vn−1|θ⟩q (6.14)

We rearrange the expression, pulling the projections out front,

|ψ⟩ =
N⊗
n=1

⟨vn − vn−1|n
∫ ∞

−∞

dθ

2gt
ψ0(θ) |θ⟩ω

N⊗
n=1

|θ⟩n (6.15)

We notice that the integrand is an entangled superposition of a particular quadrature
and N qubits (labelled as n) occupying the same position θ on the Bloch's sphere,
located in the yz-plane. Of course there is only a single qubit being cycled, but we
can describe the scheme as an oscillator interacting with N qubits. We de�ne the
qubit states,

|α⟩ =
N⊗
n=1

|vn − vn−1⟩n

|β(θ)⟩ =
N⊗
n=1

|θ⟩n . (6.16)

We note that ⟨α|β(θ)⟩ is periodic in θ since |β(θ + 2π)⟩ = (−1)N |β(θ)⟩. Note that
the state |θ⟩n is given in Eq. 6.7 by the replacement v0 → θ.
We �nd that ⟨β(θ′)|β(θ)⟩ = cos

(
θ′−θ
2

)N
is peaked around θ′− θ = 0 (mod 2π), with

the width of the peaks in θ decreasing for larger N . We Taylor expand to second
order around dθ = θ′ − θ = 0, obtaining,

⟨β(θ + dθ)|β(θ)⟩ ≈
(
1− 1

2
(dθ/2)2

)N
≈ (e−dθ

2/8)N = e−
1
2

dθ2

4/N . (6.17)

So in the limit of large N the peaks will be gaussians of width 2/
√
N . Hence

states |β(θ)⟩ di�ering by dθ > 2/
√
N will be approximately orthogonal and can

be distinguished by a single measurement of the N qubits. Such a measurement
will in turn determine θ (mod 2π) to within an accuracy of 2/

√
N . Since we have

θ = 2gtx we have performed a modular measurement of the q-quadrature of the
oscillator. Such a measurement will indeed projectively prepare a peaked periodic
state, as indicated in Fig. 6.2 a.

Distinguishing the states |β(θ)⟩ corresponds to determining the direction of the
combined spin of the N qubits. In round n we project onto the state |vn − vn−1⟩
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Figure 6.2: Determining θ (mod 2π) projects an oscillator state into a peaked peri-
odic state of period π/gt in the x quadrature, with the envelope over the peaks being
determined by the initial oscillator state. The initial oscillator state is the blue gaus-
sian and the projection is the red dashed lines.

which is either |Vn − Vn−1⟩ or |Vn − Vn−1 + π⟩ corresponding to the two eigenstates
of the spin operator σ(n) = cos(Vn − Vn−1)σ

(n)
z + sin(Vn − Vn−1)σ

(n)
y . For brevity, we

will denote ∆n = Vn − Vn−1. Hence the probability | ⟨α|β(θ)⟩ |2 corresponds to a
particular sequence of outcomes |α⟩, obtained by measuring the N observables σ(n)

of the state |β(θ)⟩. We will now show that a measurement of the N observables σ(n)

resolves θ to within an error scaling as 1/
√
N . It therefore follows that a particular

outcome |α⟩ can typically only be consistent with a range of θ dropping as 1/
√
N .

Hence the amplitudes ⟨α|β(θ)⟩ must typically be localized in θ to within an uncer-
tainty scaling as 1/

√
N .

The average spin direction of the N qubits in the yz-plane is given by the oper-
ator,

σ̄ =
1

N

N∑
n=1

σ(n)

(
cos(∆n)
sin(∆n)

)
, (6.18)

where the �rst element is the z component, and the second is the y component. If we
assume that the angles ∆n cover the circle uniformly then we obtain the following
expectation value,

E[σ̄] = ⟨β(θ)|σ̄|β(θ)⟩ = 1

N

N∑
n=1

⟨θ|σ(n)|θ⟩n
(
cos(∆n)
sin(∆n)

)
≈ 1

2

(
⟨θ|σz|θ⟩q
⟨θ|σy|θ⟩q

)
=

1

2

(
cos(θ/2)2 − sin(θ/2)2

2 cos(θ/2) sin(θ/2)

)
=

1

2

(
cos(θ)
sin(θ)

)
, (6.19)

with the approximations being valid for large N . This expectation value, valid for
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large N , is seen to be independent of N . We also obtain the variance,

Var[σ̄] =
1

N2

N∑
n=1

Var
[
σ(n)

](cos(∆n)
2

sin(∆n)
2

)

=
1

N2

N∑
n=1

(
⟨θ|
(
σ(n)

)2 |θ⟩
n
− ⟨θ|σ(n)|θ⟩2n

)(cos(∆n)
2

sin(∆n)
2

)

≈ 1

N

(
1
2
− 3

8
⟨θ|σz|θ⟩2q − 1

8
⟨θ|σy|θ⟩2q

1
2
− 1

8
⟨θ|σz|θ⟩2q − 3

8
⟨θ|σy|θ⟩2q

)
, (6.20)

with the approximations being increasingly valid for larger N . So as we increase N
the expectation value of σ̄ converges to a θ dependent vector, whereas the variance
converges to zero. From E[σ̄] we may determine θ as θ = arcsin(2E[σ̄y]) and by
linear error propagation we have that the uncertainty in θ scales as,

∆θ ∼ 1√
N
. (6.21)

So for large N a measurement of the N qubits will resolve θ to within an accuracy
that scales as 1/

√
N . It follows that the range of θ consistent with an outcome

|α⟩ will typically scale as 1/
√
N . This implies that the amplitude of the oscillator

ψ(θ) = ψ0(θ) ⟨α|β(θ)⟩ will be increasingly localized around a particular value of θ
(mod 2π) as we increase N . It follows that a large class of measurement sequences,
characterized by the angles Vn, will lead the system into a peaked periodic state.
We now determine numerically the �delity between such peaked periodic states and
GKP states for a particular protocol.

We initialize the oscillator in an anti-squeezed state of standard deviation B,

|ψ⟩ = 1√
π1/2B

∫ ∞

−∞
dx exp

(
− q2

2B2

)
|x⟩ (6.22)

We will be using B = 6. We interact the oscillator with a qubit using the unitary
U . We measure qubit n along the angle Vn = 2π

N

∑n−1
k=0 k with the z-axis in zy-plane.

We sample measurement outcomes according to their probability and �nd that typ-
ical states generated by the measurement sequence are periodic superpositions of
gaussian peaks with period π/gt in the q quadrature. Picking gt =

√
π/2 we obtain

GKP states. Two example states are shown in Fig. 6.3. In Fig. 6.4 a we show
how the standard deviation of the peaks scale in N for even N , we �nd that they
follow a 1/

√
N law as expected. In Fig. 6.4 b we show how the value of (even) N

a�ects the average �delity of the resulting state and the most similar approximate
GKP state, i.e. we optimize over ∆, κ, and ϕ in Eq. 6.6. Note that for odd N the
states prepared by the protocol closely resembles GKP states shifted by

√
π
2

in the
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Figure 6.3: Examples of two states produced by the probabilistic protocol with 12
interactions (N = 12). The leftmost state closely resembles a GKP state, and these
tend to be the most common result.

Figure 6.4: We sample 4 · 104 trajectories corresponding to di�erent measurement
outcomes. a. We show the average of the squeezing parameter ∆ of the most similar
GKP state. b. We show the average �delity between a state generated by the protocol
and the closest GKP state.
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p-quadrature. We see that the protocol prepares approximate GKP states, with the
average �delity and squeezing increasing as N is increased.
Note that the average �delity is reduced by instances where the generated state
is not a periodic superposition of gaussians, but rather a periodic superposition of
some other localized state, as shown in Fig. 6.3 to the right. We label such states
as outliers when the �delity with the closest GKP state is less than 0.9. We �nd
that the probability of obtaining an outlier is around 4-5% for reasonable values of
N , but with a tendency to drop for larger N , with the probability being 1-2% for
N = 100.

6.2 Encoding quadratures into qubits

We now present two protocols for preparing GKP states, based on certain discrete
quadrature operators we can de�ne for a set of qubits. These simulated quadratures
di�ers from continuous variable quadratures by the fact that they are modular,
i.e. the associated displacement operators have periodic boundary conditions, and
displacing the qubits far enough through the eigenstates of the quadratures will
bring the qubits back to the initial state. We will start by introducing some basic
notions of discrete quantum mechanics [5], [100].
Given a collection of dQ qubits we form a qudit of dimension N = 2dQ . We denote
the associated logical basis states as |xk⟩ for k ∈ {−N/2,−N/2 − 1}. Given the
binary state |xk⟩ = |jdQ , jdQ−1, . . . , j2, j1⟩ we will associate the value of k,

k =

dQ∑
k=1

jk2
k−1 −N/2 (6.23)

E.g. with 3 qubits we have the equalities,

|x−4⟩ = |000⟩ , |x−3⟩ = |001⟩
|x−2⟩ = |010⟩ , |x−1⟩ = |011⟩
|x0⟩ = |100⟩ , |x1⟩ = |101⟩
|x2⟩ = |110⟩ , |x3⟩ = |111⟩ (6.24)

We introduce a discrete x-quadrature operator,

XN =

N/2−1∑
k=−N/2

k |xk⟩ ⟨xk| . (6.25)

We label it as a quadrature operator by the fact that it has a linear spectrum with
both positive and negative values. Applying the discrete Fourier transform, i.e. the
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quantum Fourier transform FN (QFT), we may transform the x-quadrature into a
conjugate discrete y-quadrature operator,

YN = FNXNF
†
N (6.26)

where

FN =
1√
N

N/2−1∑
n,m=−N/2

ei2πnm/N |xm⟩ ⟨xn| , (6.27)

and the circuit generating FN is sketched in Fig. 6.5 a [5], where we use the gate
Rk which can be written in the σz-basis as,

Rk =

(
1 0

0 e2πi/2
k

)
, (6.28)

i.e. |0⟩ =
(
1 0

)T is left unchanged by Rk. YN has eigenvectors,

|yn⟩ =
1√
N

N/2−1∑
k=−N/2

ei2πnk/N |xk⟩ , (6.29)

with eigenvalues yn = n ∈ [−N/2;N/2 − 1]. YN is the generator of discrete trans-
lations in the logical basis, i.e. the operator, Dx(d) = e−i

2π
N
YNd, shifts a logical

state by d ∈ Z positions in a modular fashion. This property can be understood
by examining the overlap ⟨xl|Dx(d) |xk⟩. Expanding YN into eigenvectors |yn⟩ we
obtain,

⟨xl|Dx(d) |xk⟩ =
N/2−1∑
n=−N/2

e−i
2π
N
ynd ⟨xl|yn⟩ ⟨yn|xk⟩ =

1

N

N/2−1∑
n=−N/2

ei2πn(l−k−d)/N

=

{
e−iπsN if l − k − d = sN for s ∈ Z
0 otherwise

(6.30)

since ⟨yn|xk⟩ = ⟨xn|F †
N |xk⟩ = e−i2πnk/N/

√
N and yn = n. The above sum is related

to the Dirichlet kernel, and for integral values of l, k, d we �nd that ⟨xl|Dx(d) |xk⟩ is
only non-zero for l− k− d = sN where s is an arbitrary integer. By assumption l is
restricted to the interval [−N/2, N/2−1], so we should pick s such that l = sN+k+d
lies in this interval. Hence we have shifted the logical state by d positions in a
modular fashion. E.g. if N = 8, k = −1 and d = 6, then we �nd l = −3, and we see
that we have shifted the logical basis state by 6 positions. Furthermore, since N is
even by construction, we can set the phase factor e−iπsN to 1.
We note that under certain circumstances Dx(d) can also perform non-integral shifts

131



via interpolation, this property will turn out to be important for our protocol. To
�esh out this property, we de�ne the continuous function v(y) with period N , which
is well described by frequencies smaller than 1/2, such that v has the Fourier series,

v(y) =

N/2−1∑
n=−N/2

1√
N
ei2πny/Nvn (6.31)

where vn is the Fourier coe�cients, and we cut the sum under the assumption that
vn vanishes for |n| ≥ N/2, enforcing that v(y) is described by frequencies smaller
than 1/2. We introduce the vector |v⟩ with amplitudes,

⟨xk|v⟩ =
N/2−1∑
n=−N/2

⟨xk|yn⟩ ⟨yn|v⟩ =
N/2−1∑
n=−N/2

1√
N
ei2πnk/N ⟨yn|v⟩ . (6.32)

Comparing Eq. 6.31 and 6.32 we see that if we pick vn = ⟨yn|v⟩, then we have the
relation,

|v⟩ =
N/2−1∑
k=−N/2

⟨xk|v⟩ |xk⟩ =
N/2−1∑
k=−N/2

v(k) |xk⟩ (6.33)

We then apply the displacement operator to |v⟩,

⟨xl|Dx(d) |v⟩ =
1√
N

N/2−1∑
n=−N/2

ei2πn(l−d)/N ⟨yn|v⟩ = v (l − d) . (6.34)

We observe that the e�ect of the displacement operator is to transform the ampli-
tudes v(l) into v(l − d). Since v(y) is a continuous function, the translation will be
meaningful for continuous values of d, and the displaced amplitudes ⟨xl|Dx(d) |v⟩
are obtained by sampling from a translation of v(y).

Since the discrete system under study is built from qubits, we can construct XN

using the Hamiltonian,

XN = −
dQ∑
n=1

2n−2σ(n)
z − 1/2 (6.35)

where σ(n)
z is the Pauli Z operator for the n'th qubit (with the �rst qubit being right-

most when we write up the ket), i.e. we have, σ(n)
z |0⟩n = |0⟩n and σ

(n)
z |1⟩n = − |1⟩n.

We assume that we have access to Rabi interactions between each of the qubits and
an oscillator, i.e. we will assume we have access to the interaction Hamiltonian,

HI = qXN = −
dQ∑
n=1

2n−2qσ(n)
z − (1/2)q, (6.36)
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where q is the q quadrature of the oscillator. A similar interaction with a single
qubit was used in [101]. The last term in HI then amounts to a p displacement of
the oscillator. Then we observe the following result,

FNe
−iτIHI/2F †

N = e−iτIqYN/2 = Dx

(
NτIq

4π

)
, (6.37)

hence we can displace the qudit through the logical basis states, conditioned on the
quadrature of the oscillator q. Since q has a continuous spectrum, it is advantageous
to study qudit states for which the x-quadrature distribution is well interpolated by
a low frequency function v(y), as described above. We choose the qudit state |v⟩
prepared by the circuit shown in Fig 6.5 b acting on the input state |0, 0, . . . , 0⟩.
We denote the circuit shown in Fig. 6.5 b by the unitary Uv. The angles θk listed
in the circuit in Fig. 6.5 b, are chosen to generate an exponential decay across the
logical basis, with RY(θk) = e−i(θk/2)σ

(k)
y and RZ(ωv) = e−i(ωv/2)σz . The application

of the CNOT gates and the RY(π/2) gate mirror the amplitude distribution, thereby
creating a symmetric double exponential. The angles ϕv and ωv are used to create
an arbitrary superposition of two central positions, as shown in Fig. 6.5 c, with
ϕv controlling the relative amplitude and ωv controlling the relative phase. We will
set θk = π for k > 1, and tune θ1 to mimic a narrow bell curve, we �nd that
θ1 = 2.6 works well. A sketch of the resulting state with 4 qubits is shown in Fig.
6.5 c. In general we may generate a double exponential distribution by picking
θk = 2acot

(
e−2k−1x

)
for arbitrary x. The rationale for these angles come from

considering the product,

(c1 |0⟩+ |1⟩)(c2 |0⟩+ |1⟩)(c3 |0⟩+ |1⟩)
= c1c2c3 |000⟩+ c2c3 |100⟩+ c1c3 |010⟩+ c3 |110⟩+ c1c2 |001⟩

+ c2 |101⟩+ c1 |011⟩+ |111⟩ (6.38)

which is clearly an exponential decay over the logical basis if ck = e−2k−1x. Compar-
ing this with the action of the RY gate, e−i(θk/2)σ

(k)
y |0⟩ = cos(θk/2)|0⟩+sin(θk/2)|1⟩ =

sin(θk/2) (cot(θk/2)|0⟩+ |1⟩) we conclude cot(θk/2) = e−2k−1x.

6.2.1 Measurement-based protocol

We can now describe the measurement based protocol. The protocol is sketched
in Fig. 6.6 a with UI = e−iτIHI/2. Brie�y stated, the measurement based protocol
proceeds as follows,

1. The qubit state is initialized using Uv

2. The inverse QFT is applied to the qubits
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Figure 6.5: a Quantum circuit for the version of the quantum Fourier transform
used in this work. b Circuit for preparing the family of qubit states |v⟩. The circuit
corresponds to the unitary Uv. The controlled gates are controlled not gates. We pick
θk = π for k > 1, and θ1 is chosen so that the resulting state resembles a gaussian
distribution, we �nd that θ1 = 2.6 works well. This distribution can be brought into
an arbitrary superposition of two central positions by tuning the relative amplitude
via ϕv and the relative phase via ωv. c Sketch of a quantum state generated by the
unitary Uv given in b, with 4 qubits initially in the state |0, 0, 0, 0⟩. On the x-axis we
give the logical state of the qubits, and the associated eigenvalue of the XN operator.
The center of the left peak is k0 = −4.5.
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Figure 6.6: a Measurement based protocol. Ψ represents the oscillator and qn are
qubits. A displacement (D) is applied based on the measurement outcomes in the Z
basis. b Measurement-free protocol. A disentangling operation UD is applied on the
oscillator and qubits. The �nal displacement D is to correct for the fact that the
qubit state (Fig. 6.5 c) is not centred on 0 in the XN eigenvalues.

3. The qubits interact with the oscillator through UI

4. The QFT is applied to the qubits

5. A Pauli-Z measurement is applied to each of the qubits. Based on the mea-
surement outcomes a displacement D is applied to the oscillator.

The �nal state of the oscillator is given by,

|ψ⟩ = Dq

(
− 4π

NτI
(l − k0)

)
⟨xl|FNUIF †

N |v⟩ |ψ0⟩ (6.39)

where Dq(d) = e−i
d
2
p is a q displacement of the oscillator by d and k0 = −N/4 −

1/2. |ψ0⟩ is the initial oscillator state and |xl⟩ is the logical state of the qubits
corresponding to the measurement outcomes with eigenvalue l. We can understand
the rationale behind the protocol by breaking |v⟩ into two parts, corresponding to
the two peaks in Fig. 6.5 c |v⟩ = c1 |v1⟩+ c2 |v2⟩, with |v1⟩ being the left-most peak,
given by the superposition,

|v1⟩ =
N/2−1∑
k=−N/2

⟨xk|v1⟩ |xk⟩ . (6.40)

We introduce the continuous amplitude distribution v1(y), described by the Fourier
series,

v1(y) =

N/2−1∑
n=−N/2

1√
N
ei2πny/N ⟨yn|v1⟩ . (6.41)

We will assume that the amplitudes ⟨xk|v1⟩ are approximately described by a gaus-
sian of standard deviation B, i.e. ⟨xk|v1⟩ ≈ N e−(k−k0)2/2B2

, which we assume vanish

135



for |k| ≥ N/2. Note that k0 = −N/4 − 1/2 (see Fig. 6.5 c) and so this is true if
N/4 > B. Then we can evaluate the Fourier coe�cients,

⟨yn|v1⟩ =
1√
N

N/2−1∑
k=−N/2

e−i2πnk/N⟨xk|v1⟩ ≈ N 1√
N

∞∑
k=−∞

e−i2πnk/Ne−(k−k0)2/2B2

= N
√

2πB2

N
e−i2πnk0/N

∞∑
s=−∞

e−2πisk0e−
1
2(

s+n/N
1/(2πB))

2

, (6.42)

where we used the Poisson sum formula. Since n/N is bounded by ±1/2 we can
replace the sum by its argument evaluated in s = 0 provided B > 1/π,

≈ N
√

2πB2

N
e−i2πnk0/Ne−

1
2(

n/N
1/(2πB))

2

, (6.43)

Then we have,

v1(y) ≈
N/2−1∑
n=−N/2

1√
N
ei2πn(y−k0)/N

[
N
√

2πB2

N
e−

1
2(

n
N/(2πB))

2

]
, (6.44)

which is approximately the Fourier series of the gaussian G(y−k0) = N e−
(y−k0)

2

2B2 . It
follows that the continuous function v1(y) is approximately a periodic superposition
of gaussian peaks with period N , a central peak at position k0 = −N/4− 1/2, and
a width of B, provided N/4 > B > 1/π. We then examine the following term,
appearing in Eq. 6.39,

⟨xl|FNUIF †
N |v1⟩ |ψ0⟩ =

∫ ∞

−∞
dq ⟨xl|Dx

(
NτIq

4π

)
|v1⟩ψ0(q) |q⟩

=

∫ ∞

−∞
dqv1

(
l − NτI

4π
q

)
ψ0(q) |q⟩ , (6.45)

and we see that the interaction has the e�ect of modulating the initial oscillator
wavefunction ψ0(q) by a periodic superposition of gaussian peaks v1

(
l − NτI

4π
q
)
. The

function v1
(
l − NτI

4π
q
)
has period Tq = 4π/τI in q and has a central peak centred on

q = q
(1)
0 = Tq

N
(l − k0). Furthermore, the gaussian peaks have width ∆q = TqB/N in

q, and since N grows exponentially in the number of qubits, we see that the width
of the peaks decrease exponentially in the number of qubits. We note that the e�ect
of the interaction on the oscillator wavefunction is equivalent to having performed
a modular measurement of q (mod Tq) obtaining the outcome q (mod Tq) = q

(1)
0

(mod Tq). The underlying reason being, that having observed the logical state |xl⟩
of the qubits, then this observation corresponds to some shift of the initial logical
state (centred on k0), with the shift being generated by some quadrature value
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q = qs. However this shift is not just consistent with q = qs, but it is also consistent
with q = qs + kTq where k is an arbitrary integer, since the displacement through
the logical basis is modular/periodic.
Including the second part of the qubit state, i.e. |v2⟩, we see that we create the
superposition,

⟨xl|FNUIF †
N |v⟩ |ψ0⟩ =

∫ ∞

−∞
dq

[
c1v1

(
l − N

Tq
q

)
+ c2v2

(
l − N

Tq
q

)]
ψ0(q) |q⟩ ,

(6.46)

where v2
(
l − N

Tq
q
)
is also a periodic superposition of gaussians with period Tq in q,

but the central gaussian is centred on q(2)0 = Tq
N
(l + k0 + 1) in q, corresponding to a

shift by −Tq/2 in q relative to q(1)0 .

We then displace the oscillator by −q(1)0 such that the peaks of v1
(
l − N

Tq
q
)
are

centred on q = 0. We let the initial oscillator state be a gaussian ψ0(z) = ψG(z −
z0) = C exp

(
− (z−z0)2

2W 2

)
with C = π−1/4W−1/2. We then obtain,

(6.39) =

∫ ∞

−∞
dqv

(
l − N

Tq
q

)
ψ0(q) |q − q

(1)
0 ⟩

=

∫ ∞

−∞
dzv

(
k0 −

N

Tq
z

)
ψ0

(
z + q

(1)
0

)
|z⟩

=

∫ ∞

−∞
dzv

(
k0 −

N

Tq
z

)
ψG

(
z − z0 + q

(1)
0

)
|z⟩ (6.47)

We pick z0 = −Tq
N
k0 so that ψG

(
z − z0 + q

(1)
0

)
is centred on z = 0 when l = 0,

thereby obtaining,

=

∫ ∞

−∞
dzv

(
k0 −

N

Tq
z

)
ψG

(
z + l

Tq
N

)
|z⟩ . (6.48)

which will approximately be a superposition of a logical 0 and logical 1 GKP state
if we pick τI = 2

√
π. Note that l shifts the envelope ψG, making the state somewhat

lopsided for large |l|. In Fig. 6.7 we show the wavefunctions of a few example states
generated by the protocol for various N with W = 6, using θ1 = 2.6 and θk = π for
k > 1. We note that if the initial oscillator state has a characteristic widthW , and if
the period of the peaks of v

(
k0 − N

Tq
z
)
is larger than this width, i.e. Tq ≫ W , then

the state resulting from the above interaction is approximately a squeezed state of
standard deviation ∆q.
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Figure 6.7: Wavefunctions for states created by the measurement based protocol.
All �gures assume that the initial gaussian has a width of W = 6, corresponding
approximately to 15.5 dB of squeezing, and that ϕv = 0 (de�ned in Fig. 6.5 b). The
small oscillations are due to |v⟩ not being a perfect gaussian, i.e. the amplitudes
⟨xk|v⟩ are not exactly giving by e−(k−k0)2/2B2

. aWavefunction resulting from outcome
l = 0, with 3 qubits corresponding to N = 8. b Wavefunction resulting from outcome
l = 0, with 4 qubits corresponding to N = 16. c Wavefunction resulting from
outcome l = 0, with 5 qubits corresponding to N = 32. d Wavefunction resulting
from outcome l = −8, with N = 16 corresponding to 4 qubits. We observe that the
wavefunction is lopsided, this is a general feature for outcomes l close to ±N/2.

138



6.2.2 Measurement-free protocol

We may convert the above protocol into a measurement-free protocol by introducing
a second interaction between the qubits and the oscillator, as sketched in Fig. 6.6
b,

UD = e−i(τD/2)pXN . (6.49)

Provided that we can pick τD so that τD = −Tq
N
, then UD approximately disentangles

the qubits and oscillator, leaving the oscillator in a periodic superposition of gaussian
peaks. Just prior to the application of UD we have the state of the oscillator and
qubits,

|Ψ⟩ = FNUIF
†
N |v⟩ |ψ0⟩

=

N/2−1∑
l=−N/2

|xl⟩ ⟨xl|FNUIF †
N |v⟩

∫ ∞

−∞
dqψ0(q) |q⟩

=

∫ ∞

−∞
dqψ0(q)

N/2−1∑
l=−N/2

⟨xl|Dx

(
N

Tq
q

)
|v⟩ |xl⟩ |q⟩

=

∫ ∞

−∞
dqψ0(q)

N/2−1∑
l=−N/2

v

(
l − N

Tq
q

)
|xl⟩ |q⟩ . (6.50)

We then apply UD,

UD |Ψ⟩ =
∫ ∞

−∞
dqψ0(q)

N/2−1∑
l=−N/2

v

(
l − N

Tq
q

)
ei

Tq
2N

XNp |xl⟩ |q⟩

=

∫ ∞

−∞
dqψ0(q)

N/2−1∑
l=−N/2

v

(
l − N

Tq
q

)
|xl⟩ |q − l

Tq
N

⟩

=

∫ ∞

−∞
dz

N/2−1∑
l=−N/2

ψ0

(
z +

Tq
N
l

)
v

(
−N
Tq
z

)
|xl⟩ |z⟩ (6.51)

We center v1(−N
Tq
z), such that v has a peak in z = 0, by displacing in q by Tq

N
k0,

Dq

(
Tq
N
k0

)
UD |Ψ⟩

=

∫ ∞

−∞
dz

N/2−1∑
l=−N/2

ψ0

(
z +

Tq
N

(l − k0)

)
v

(
k0 −

N

Tq
z

)
|xl⟩ |z⟩ . (6.52)
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We will assume ψ0(z) = ψG(z − z0) = C exp
(
− (z−z0)2

2W 2

)
with z0 = −Tq

N
k0, then we

obtain,

=

∫ ∞

−∞
dz

N/2−1∑
l=−N/2

ψG

(
z +

Tq
N
l

)
v

(
k0 −

N

Tq
z

)
|xl⟩ |z⟩ (6.53)

Provided that ψG(q) varies slowly in q, so that it doesn't change much over the period
Tq, then we observe that there is only a small amount of entanglement between the
oscillator and the qubits in the above expression, since l is bounded by ±N/2. This
will be approximately true if W ≫ Tq. Under this assumption we can rewrite Eq.
6.53 as,

≈
∫ ∞

−∞
dzψG (z) v

(
k0 −

N

Tq
z

)
|z⟩

N/2−1∑
l=−N/2

|xl⟩ . (6.54)

The state of the oscillator is then,

|ψ⟩ =
∫ ∞

−∞
dzψG (z) v

(
k0 −

N

Tq
z

)
|z⟩ , (6.55)

which is a superposition of a logical zero and logical one GKP state provided that
τI = 2

√
π.

Without invoking the above approximation we can describe the state of the oscillator
using the density matrix,

ρψ =

∫ ∞

−∞
dz

∫ ∞

−∞
dy

N/2−1∑
l=−N/2

ψG

(
z +

Tq
N
l

)
ψG

(
y +

Tq
N
l

)∗

v

(
k0 −

N

Tq
z

)
v

(
k0 −

N

Tq
y

)∗

|z⟩ ⟨y| . (6.56)

We plot the Wigner function of the state in Eq. 6.56 for various values of N and
W , using θ1 = 2.6 and θk = π for k > 1. The results are shown in Fig. 6.8

6.3 Summary

We've introduced three protocols for preparing approximate GKP states, as de�ned
in Eq. 6.6.
The �rst protocol proceeded by repeatedly interacting an oscillator and a qubit via
the unitary U = eitgqσx , and then measuring the spin of the qubit along a particular
direction Vn in round n. We assumed that the directions Vn were di�erent in each
round of interaction, and that the directions Vn were uniformly distributed over the
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Figure 6.8: Wigner functions for states created by the measurement free protocol.
We set ϕv = 0 for all plots except d a Wigner function for 3 qubits with W = 6.
b Wigner function for 4 qubits with W = 8. c Wigner function for 5 qubits with
W = 10. d Wigner function for 4 qubits with W = 8 and ϕv = π/2 and ωv = π/2.
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circle. We showed that the oscillator would then tend toward a peaked periodic state
as we increase the number of rounds of interaction N , regardless of the measurement
outcomes. The resulting peaked periodic state often resembled an approximate GKP
state with the �delity with the most similar GKP state often being in excess of 0.97
.
The second protocol was based on interacting a collection of qubits with an oscillator.
We de�ned quadrature operators for the set of qubits and showed that the sequence
of interactions,

⟨xl|FNUIF †
N |v⟩ |ψ0⟩ (6.57)

performs a modular measurement of the oscillator, i.e. we measure q (mod Tq), if the
qubit state |v⟩ is localized in the eigenvalues of the XN quadrature. This modular
measurement will in turn prepare a GKP state, if the oscillator wavefunction is
initially a broad gaussian in the q quadrature, preferably centred on −Tq

N
k0 in q, and

given that τI = 2
√
π.

Finally, we showed that we don't need the projective measurement of the qubits, if
we instead perform the interaction sequence,

Dq

(
Tq
N
k0

)
UDFNUIF

†
N |v⟩ |ψ0⟩ . (6.58)

In this case we obtain a GKP state if the initial oscillator state |ψ0⟩ is gaussian and
centred on −Tq

N
k0 in q, and has standard deviation W satisfying W ≫ Tq.
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Chapter 7

Conclusion

We have in this thesis proposed a number of experiments. We will now summarize
some of our �ndings, and discuss possible directions for future research.

In chapter 4 we put forward the paper Proposal for a long-distance nonlocality
test with entanglement swapping and displacement-based measurements [9], which
gives an analysis of an experiment for demonstrating nonlocality with multiple par-
ties separated by channels of non-unit transmission. The components used in the
setup were restricted to standard quantum optical elements. This was done to in-
crease the experimental feasibility of the proposal. The analysed setup is resilient
toward transmission losses from propagation in the channels connecting the parties.
We found that the transmission of these channels could be down to 10%, and the
W3ZB inequality could still be broken. The experiment is however, sensitive toward
losses in the channels connecting the detector and two-mode squeezer associated
to each party. However, the setup can be made more resilient toward this loss by
increasing the number of parties. With 4 parties the transmission of these channels
can be as low as 82 %. Dark counts at the heralding detectors was found to be very
detrimental toward the non-locality of the state shared by the parties. We found
that the probability of a dark-count at a heralding detector cannot be much larger
than 1 in 104, or the experiment fails. The experiment is however very robust toward
phase noise. This is in line with the �ndings of the related study [56]. The experi-
ment is also robust toward amplitude noise, with an acceptable relative amplitude
noise of up to around 25 %. The analysed experimental scenario appears well suited
for conference style DI-QKD [102], perhaps with some slight changes that would
make a particular party the preferred reconciliator. This could be a direction for
future research. We thank Masahiro Takeoka of Keio university and his students for
suggestions in this direction.

We then presented a scheme for entanglement generation by distributing two-
mode squeezed states between a pair of qubit registers. This scheme was published
in the paper Quantum repeater using two-mode squeezed states and atomic noiseless
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ampli�ers [10]. The qubits could occupy a bright and a dark state, which facilitated
the generation of a light-matter entangled state. Puri�cation and ampli�cation
was performed using quantum scissor operations. For the case of a single qubit in
each register, we attempted to stack such registers into a repeater, and gauged the
sensitivity of the scheme against various sources of error. We found bounds on ex-
perimental errors that must be met, in order that this repeater can beat the PLOB
bound. Perhaps most critically, loss of emitted photons from the optically active
qubits shouldn't be larger than 1 percent. We expect that this is beyond the reach
of current experimental capabilities. The scheme as presented, is therefore currently
not a viable route to breaking the PLOB bound, unless the scheme is modi�ed to
relax the stated tolerances.

Finally, we've presented three protocols for preparing approximate GKP states.
The �rst protocol proceeded by repeatedly interacting an oscillator and a qubit, and
measuring the spin of the qubit along a particular direction Vn. We assumed that
the directions Vn were di�erent in each round of interaction, and that the directions
Vn were uniformly distributed over the circle. We showed that the oscillator would
then tend toward a peaked periodic state as we increase the number of rounds of
interaction, regardless of the measurement outcomes. The second two protocols were
based on interacting a collection of qubits with an oscillator. We de�ned quadrature
operators for the set of qubits and showed that a particular sequence of interactions
perform a modular measurement of the oscillator. This modular measurement will
in turn prepare a GKP state, if the oscillator is initially in a squeezed state. We
presented both a measurement based and a measurement free protocol. It remains
to be worked out what physical systems could implement the proposed protocols.
In this connection one must include relevant experimental errors to correctly gauge
the feasibility of the protocols. Finally, the protocols must be benchmarked against
existing protocols to establish their relevance. Steps in this direction are being taken
in collaboration with Peter Rabl from the Technical University of Munich.
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