
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 10, 2024

A workflow for standardizing the analysis of highly resolved vessel tracking data

Mendo, T.; Mujal-Colilles, A.; Stounberg, J.; Glemarec, G.; Egekvist, J.; Mugerza, E.; Rufino, M; Swift, R.;
James, M.

Published in:
ICES Journal of Marine Science

Link to article, DOI:
10.1093/icesjms/fsad209

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Mendo, T., Mujal-Colilles, A., Stounberg, J., Glemarec, G., Egekvist, J., Mugerza, E., Rufino, M., Swift, R., &
James, M. (2024). A workflow for standardizing the analysis of highly resolved vessel tracking data. ICES
Journal of Marine Science, 81(2), 390-401. Article fsad209. https://doi.org/10.1093/icesjms/fsad209

https://doi.org/10.1093/icesjms/fsad209
https://orbit.dtu.dk/en/publications/ba304522-37ae-4436-910b-379194a04018
https://doi.org/10.1093/icesjms/fsad209


ICES Journal of Marine Science , 2024, Vol. 81, Issue 2, 390–401 
https://doi.org/10.1093/icesjms/fsad209 
Received: 18 August 2023; revised: 30 November 2023; accepted: 1 December 2023 
Advance access publication date: 11 January 2024 
Original Article 

A w orkflo w f or standar dizing the analysis of highly 

resolv ed v essel tr ac king data 

T. Mendo 

1 ,* , A. Mujal-Colilles 

2 ,* , J. Stounberg 

3 , G. Glemarec 

3 , J. Egekvist 3 , 

E. Mugerza 

4 , M. Rufino 

5 ,6 , R Swift 7 , M. James 

7 

1 School of Geography and Sustainable Development, University of St. Andrews, KY16 9AL St. Andrews, UK 

2 Barcelona School of Nautical Studies, Universitat Politècnica de Catalunya, 08003 Barcelona, Catalunya 
3 National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark 
4 AZTI, Sustainable Fisheries Management, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, 
Bizkaia (Basque Country), Spain 
5 Portuguese Institute for the Sea and the Atmosphere (IPMA), Division of Modelling and Management of Fisheries Resources, Av. Dr. Alfredo 
Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal 
6 Centre of Statistics and its Applications (CEAUL), Faculty of Sciences, University of Lisbon, 1649-004 Lisboa, Portugal 
7 Scottish Oceans Institute, University of St Andrews, East SandsFife KY16 8LB, UK 

∗First authorship and author’s correspondence shared between these authors. Tania.Mendo@st-andrews.ac.uk ; anna.mujal@upc.edu 

Abstract 

Knowledge on the spatial and temporal distribution of the activities carried out in the marine environment is key to manage available 
space optimally . However , frequently , little or no information is available on the distribution of the largest users of the marine space, 
namely fishers. Tracking devices are being increasingly used to obtain highly resolved geospatial data of fishing activities, at intervals 
from seconds to minutes. However, to date no standardized method is used to process and analyse these data, making it difficult to 

replicate analysis. We develop a workflow to identify individual vessel trips and infer fishing activities from highly resolved geospatial 
data, which can be applied for large-scale fisheries, but also considers nuances encountered when working with small-scale fisheries. 
Recognizing the highly variable nature of activities conducted by different fleets, this workflow allows the user to choose a path that best 
aligns with the particularities in the fishery being analysed. A new method to identify anchoring sites for small-scale fisheries is also 

presented. The paper provides detailed code used in each step of the workflow both in R and Python language to widen the application 

of the workflow in the scientific and stakeholder communities and to encourage its improvement and refinement in the future. 

Keywords: small-scale fisheries; geospatial data; fisheries management; marine spatial planning 
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ntroduction 

cosystem-based fisheries management has revealed the need
or much more detailed spatial information about fish distri-
ution and fishing effort at the vessel level, to enable the im-
lementation of fine-scale spatial management (Wilen 2004 ,
telzenmuller et al. 2008 , Parnell et al. 2010 ). This need has
ecome exacerbated in the last few decades due to the in-
reased pressure from human activities in the marine envi-
onment. Indeed, within the ‘blue economy’ agenda, coastal
nd marine regions are seen as grounds for new economic op-
ortunities, such as energy generation, mining, tourism, aqua-
ulture, and fisheries, increasing the pressure exerted on the
arine environment (Bennett et al. 2019 ). The designation of
arine protected areas also represents a spatial constraint and

he pressure to expand these designations is increasing. 
Knowledge on the spatial and temporal distribution of the

ctivities carried out in the marine environment is key to man-
ge available space optimally . However, frequently , little or
o information is available on the distribution of the largest
ser of the marine space, namely small-scale fishers (Trouillet
019 ). Technological developments have enabled the collec-
ion of vessel’s tracking data to represent fisher’s activities
n space. Among the systems used to track vessels, Vessel

onitoring Systems (VMS) are mandatory for all EU vessels
The Author(s) 2024. Published by Oxford University Press on behalf of Interna
rticle distributed under the terms of the Creative Commons Attribution License 
euse, distribution, and reproduction in any medium, provided the original work 
 12 m [EU Fisheries Control Regulation (EC 1224/ 2009 )]
nd transmit the location of the vessel every 2 h. Automated
dentification Systems (AIS), Electronic Monitoring (EM)
ystems, and other high-resolution vessel-tracking systems
eport the position of a vessel at intervals from seconds to
inutes (Lee et al. 2010 , Gerritsen and Lordan 2011 , Burgos

t al. 2013 , Natale et al. 2015 , James et al. 2018 , Behivoke
t al. 2021 , Mujal-Colilles et al. 2022 , Navarrete Forero et
l. 2017 ). These higher-frequency data allow prediction of
essel activity with much higher precision than using VMS.
his is especially important for fisheries that display complex
shing patterns (Muench et al. 2018 ), in areas where spatial
onstraints are dense or in small-scale fisheries (SSF), where
shing operations are relatively short in distance and/or
uration (Katara and Silva 2017 , Mendo et al. 2019a ). 
Tracking systems can produce a significant amount of data,

reating challenges for data transmission, processing, and
nalysis. For VMS data, standardized methods and tools have
een developed to process, analyse, and visualize vessel loca-
ion (Hintzen et al. 2012 , Russo et al. 2014 ). However, for
ighly resolved data, only ad-hoc tools (developed as needed)
ave been used thus far, making it difficult to replicate anal-
ses. Moreover, most of the methods currently in use focus
n large-scale fishing vessels (e.g. Global Fishing Watch), and
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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Figure 1 Workflow showing sequential steps to identify fishing trips. 

 

 

Table 1. Description of the user-input variables. 

Parameter Units Definition 

cum_dist metres Cumulative distance from trip 
extreme points 

crs_wgs84 EPSG EPSG code for WGS84 CRS 
crs_utm EPSG EPSG code for UTM projected 

CRS 
d_interp metres Minimum distance between 

points to interpolate 
dist_travelled kilometres Minimum length of a trip 
lat_max, lat_min decimal degrees Latitude boundaries 
lon_max, lon_min decimal degrees Longitude boundaries 
n_obs number Minimum observations for a 

valid trip 
port_buffer metres Distance within the port where 

points will be discarded 
speed_filter knots Maximum allowed speed for 

vessels 
time_travelled hour Minimum duration of a trip 
t_interp minutes Time interpolation between 

points 
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cannot be used directly in SSF because these operate in very 
different ways. This poses further challenges to developing a 
standardized method for highly resolved geospatial data. This 
standardization is particularly relevant at present, as manda- 
tory tracking of all fishing vessels has been implemented in 

several countries. For example, England and Wales are starting 
to roll out mandatory tracking for all fishing vessels (MMO 

2022 ). In Portugal and Denmark, tracking of bivalve dredge 
fisheries is mandatory. Mandatory tracking of SSF is under 
active consideration in the European Union (EU) (European 

Comission 2018 ). The Trilogue (informal interinstitutional 
negotiation that brings together representatives of the EU Par- 
liament, Council, and Commission) met in May 2023 and 

reached a provisional agreement for the mandatory implemen- 
tation of EU-wide tracking for SSF vessels by all EU Member 
States (European Parliament 2023 ). 

The aim of the current work is to describe a workflow to 

identify individual vessel trips and infer fishing activities from 

highly resolved geospatial data, focusing on SSF. Due to the 
highly variable nature of the trips conducted by SSF vessels,
alternative approaches are proposed to allow adaptation to 

the variability of the fishing operations. This workflow offers 
flexibility for each user to parametrize the variables based on 

a priori knowledge of the fishery. This paper is organized as 
follows: First, we describe the workflow, including each step 

and the rationale behind it. Next, we illustrate the framework 

with specific case studies using different workflow pathways 
according to the fleet behaviour and data collected (and asso- 
ciated tracking systems, i.e. AIS and geopositional trackers).
Finally, we discuss the results, contextualize the work, and 

identify future areas of research. 

Materials and methods 

The proposed workflow consists of a sequence of steps that 
allow the user to prepare vessel tracking data, differentiate in- 
dividual vessel trips, infer fishing operations, and differentiate 
between non-fishing and fishing trips ( Fig. 1 ). It was conceptu- 
lized as a result of the experience gained by dealing with data
btained through several types of tracking devices, namely 
IS, EM, and geopositional trackers to gather geopositional 
ata in different fishing fleets. Each step will be described in
etail in the following subsections. 
Due to the huge volumes of data acquired when tracking

essels at high temporal frequencies, it is fundamental to de-
elop a data management system capable of processing, stor- 
ng, and sharing the data. PostgreSQL and its spatial extension
PostGIS) were selected due to their capacity to deal with any
olume of data, and to share it with common software such
s Excel, GIS, or R (Urbano and Cagnacci 2014 ). The code
o process the data was developed both in R programming
anguage and in Python, which are both free and open-source 
R Core Team 2022 , Python Software Foundation 2023 ). R is
idely used in fisheries and ecological research and several R
ackages exist to manage and analyse spatial data. However,
ue to the large amounts of data generated from highly re-
olved vessel tracking devices, the code was also developed in
ython, which is generally acknowledged to have faster com- 
uting times (Python Software Foundation 2023 ). The R and
ython scripts are available at Supplementary Materials S1 

for R) and S2 (for Python). 

nput data 

ata should be provided in tabular format, with at least, the
ollowing columns: vessel ID, time stamp, and position. Posi- 
ion should be given as decimal latitude and longitude coordi-
ates, using the world geodetic Coordinate Reference System 

CRS) WGS84. The EPSG code for a projected CRS in Univer-
al Transect Meters (UTM), should also be provided, which 

ill depend on the location of the user’s data set. 
Other input data needed area map of the coastline of the

tudy area (a shapefile or a geopackage), also using CRS
GS84. The map resolution will be key to the computational

peed of the data analysis; therefore, users will have to com-
romise between map resolution and computational resources 
vailable. 

Input parameters are needed at different stages in the work-
ow ( Table 1 ). They relate to information i.e. specific to
ach fishery and require expert knowledge on how the fishery

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad209#supplementary-data
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Figure 2 Workflow showing sequential steps used to identify individual trips. Italic text indicates user-required parameters; bold text indicates input data. 
∗ for a detailed workflow to identify fishing trips using logbook data, see Hintzen et al. (2012) . 
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perates. The input parameters needed throughout the work-
ow are: 

dentify individual trips 

rips are defined as the time-series of geospatial data be-
ween two positions, a point of departure and a point of
eturn, which can be in the same geographical space or at
ifferent locations. This section of the methodology con-
ists of segmenting or splitting the time series and iden-
ify whether the segments represent an individual trip (see
upplementary Material , Section 1—Identify_individual_trips
or corresponding R or Python codes). This is done by prepar-
ng the data first, then segmenting the time series, and finally
ost-processing the identified individual trips by removing
purious points and trips ( Fig. 2 ). Each step is described in
etail in the following sub-sections. 

ata preparation 

he first section of the workflow in Fig. 2 a includes standard
rocedures to clean positional data: (i) defining the study ar-
as and removing erroneous positions; (ii) removing duplicate
ecords; (iii) removing points on land; and (iv) removing data
oints associated with unrealistic velocities. It is important to
larify here that the code presented in the supplementary ma-
erials deletes the data during these cleaning procedures but
aves the resulting data as a different file, thus preserving the
aw data. It is highly recommended that a backup copy of the
aw data in the database (e.g. PostgreSQL) is retained. 

As a first step, erroneous lat-lon positions defined as un-
ealistic points recorded outside the operating area, depend-
ng on the device used to record the tracks, are identified and
emoved. None of the tracking systems used by the authors
n this study (AIS, EM, and geopositional trackers) was en-
irely free of these errors. These erroneous positions stemmed
rom the occasional loss of satellite/receiver connection, or
rom the reconnection of the system after having been turned
ff, either automatically to maintain battery life, or manu-
lly if the fisher needed to do so. For example, AIS provides
,0 lat-lon positions when the device has lost satellite signal.
o clean this type of errors, a boundary box was specified
 priori (maximum and minimum latitudes and longitudes)
nd positions outside this box were removed prior to further
nalyses. 

The second step of the pre-processing section consisted of
emoving from the dataset duplicate points in time and space.
uplicate records are common in geospatial datasets, espe-

ially when using AIS data, as more than one land-based re-
eiver may record the same position and timestamp. 

In the third step, inland positions are removed by using a
igh-resolution coastline map. This map needs to be accurate
nough to adequately represent fishing, harbours, anchorages,

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad209#supplementary-data
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bays, and fishing areas. The resolution of the map will deter- 
mine the processing speed. 

The fourth step consists of removing points associated with 

unrealistic speeds. This step implicitly includes the removal of 
spurious lat-lon points that were not detected in the previ- 
ous steps. For example, some tracking devices create spurious 
points when the GPS signal is lost by duplicating the last lat- 
lon recorded point in a timestamp 0.1 s prior to the recovery of 
data. This creates a track segment with unrealistic velocities,
larger than the maximum expected in the specific fishing fleet.
The threshold used as the speed limit requires expert knowl- 
edge but can also be informed by visualizing a histogram of 
the estimated speed between consecutive positions. 

Segmentation 

Following the data preparation steps, the dataset will consist 
of a time series of spatial positions for each vessel, which needs 
to be further segmented into individual vessel trips. A fishing 
trip is further defined as any vessel trip during which at least 
one fishing activity occurs (e.g. setting or hauling, trawling,
and dredging). We recognize three approaches to identify trips,
depending on the information available for each fishing fleet. 

(i) Based on logbooks or sale note information 

If available, logbooks or sales notes provide additional 
(non-geospatial) information on the vessels’ fishing activity 
that can be used to discriminate fishing from non-fishing trips,
e.g. using Hintzen et al. (2012) ( Fig. 2 b). 

(ii) Typical fishing activity of the fleet (hourly method) 

If the fishery operates with a distinct pattern (e.g. only dur- 
ing daylight hours, as is the case for many SSF), we can assume 
that each trip starts with each new day, so that midnight can be 
used to segment data into individual trips. Another alternative 
would be to use the duration of the ‘resting period’ between 

fishing trips to segment the data (Rufino et al. 2023 ). 

(iii) Based on harbours or anchorage sites 

Another approach to define the start/end of a vessel trip is 
by identifying points lying within ports or harbours, mooring 
sites, or, for small-scale fishing vessels, a mooring/anchorage 
site on a bay, a beach, or a small pier ( Fig. 2 b). Here, we de- 
scribe the latter method, which we developed specifically for 
this paper. 

If there is a known list of harbours, moorings, or anchor- 
age sites (hereafter referred to as anchorage sites) coordinates,
a spatial buffer can be created around each of these sites 
to help identify when a vessel is leaving/entering a harbour 
and to segment the data into individual trips. For some fish- 
eries, vessels can start trips from exclusive anchorage sites that 
might or might not be associated with a particular jetty or 
harbour infrastructure. For example, in many small-scale fish- 
eries, vessels are often launched from the beach. This can also 

be the case in some countries with a large number of unre- 
ported/unknown anchorage sites. When a complete list of lat- 
itudes and longitudes for these jetties, mooring, or anchorage 
sites is not available, the list can be inferred from vessel activ- 
ity data using a cluster analysis (see Supplementary Material —
Section 4—potential anchorage sites). The goal of the cluster 
analysis is to obtain a list of the most likely anchorage sites re- 
gardless of whether there is infrastructure associated to them.

The workflow designed for this task must be applied for 
each vessel separately ( Fig. 3 ). Ideally, a time series of data 
s used as input that can capture all different anchorage sites
sed during a representative period (e.g. for the Scottish fleet
xample described below, we used 1 year of data for each ves-
el). Once the script has been run individually for each vessel,
he polygons obtained from this procedure should be joined 

o define each anchorage site and thus to avoid redundant in-
ormation. 

In order to prepare the data for cluster analysis, the data
ave to be cleaned by going through the general data prepa-
ation procedure in Fig. 2 . The data are then filtered using
wo different criteria: speed ( filter_vel ) and land proximity ( fil-
er_dist ), as seen in Fig. 3 . We would not expect vessels to
e moving fast when in port or at an anchorage site located
lose to the coastline. For the devices reporting position with a
ower frequency while in port (when the vessel is not moving
r reduces speed), an interpolation (up sampling) procedure 
o a time interval defined by the user ( t_interp ) is required
t this stage to augment the number of positions in the areas
lose to shore. To avoid unrealistic positions that would result
rom the interpolation process, the interpolation is conducted 

n groups of data. These groups are based on a maximum
istance between observations and maximum time difference 
etween consecutive observations ( dist_limit, time_limit ). For 
evices that gather large amounts of data while in port, e.g.
IS, then the interpolation is used to down sample the data.
he main goal of this interpolation phase is to improve the
lustering accuracy on identifying and classifying the clusters 
if up sampling) or to reduce computing times (if down sam-
ling). 
Once the data are prepared, we propose using an automatic
ethod, such as the Silhouette method (Rousseeuw 1987 ) to
etermine the optimal number of clusters ( k ) representing the
nchorage sites in the data. It is important to bear in mind
hat in cluster analyses, a minimum of two clusters are set by
efault. Once the optimal k is inferred, the k -means method
Forgy 1965 ) is applied to assign the most likely cluster to

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad209#supplementary-data
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Figure 4 Workflow for inferring fishing operations from highly resolved data. Italic text indicates user-required parameters; bold text indicates input data 
needed. 
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ach position. A post-processing step eliminates clusters with
ess than three points ( min_points ). 

The following step in Fig. 3 (Cluster Analysis > Post-
rocess) aims at improving the location of the centroid of each
luster and to detect spurious clusters created by real fishing
ctivity located very close to the coast. Thus, a confidence re-
ion is created for each cluster by drawing a covariance error
llipse, given a pre-defined confidence interval. The ellipse axis
ength and orientation depend on the selected confidence inter-
al and the covariance matrix (eigenvalues and eigenvectors,
espectively) (Draper and Smith 1998 ). In the present exam-
les ( Supplementary Material S2 ), we used a confidence in-
erval of 95%. Once ellipses are created for each vessel, the
izes of the ellipses will be used to remove specific clusters; for
essels that conduct their fishing operations close to land, a
luster might be defined for an area that does not represent
n anchorage site. Clusters associated with this activity usu-
lly have been found with our examples to have a large spa-
ial extension. A threshold size for a potential anchorage site
 max_ellipse_axis ) should thus be defined using expert knowl-
dge. 

For the remaining ellipses, the points outside the ellipses are
onsidered outliers, and the mean latitudes and longitudes of
he positions inside the ellipses are calculated to estimate the
ocation of the anchorage sites. A buffer ( port_buffer ) is set
o these mean positions to produce a shapefile of polygons for
ach vessel. A unique shapefile is created for each vessel, but as
ifferent vessels can share anchorage sites, it is recommended
o find the union between polygons, when overlap occurs, to
reate a final shapefile with the complete list of anchorage sites
n order to speed up the process. Visualization of results is
ighly recommended at this stage and is included in the R and
ython codes. 

ost-processing 
epending on the tracking device you are using, huge amounts
f data may be generated when a vessel is in port or at anchor.
o reduce the amount of data for later analysis, especially be-
ore inferring fishing activities, it makes computational sense
o remove these observations. 

Following the workflow in Fig. 2 , and depending on the
athway taken for segmentation ( Fig. 2 b), there are two
ptions to remove points close or in port: for trips identified
ased on daily activities, we suggest removing data points lo-
ated within a specified distance from the coastline ( cum_dist )
t the beginning and at the end of the trip. The value of
um_dist can be set with prior knowledge on how far the fish-
ry usually operates from the coastline and aided by visual
xploration of the positional data. This approach is recom-
ended, especially if at least some fishing activities can occur

ery close to the shore, where applying a spatial buffer around
he coastline might delete information on fishing operations.

hen a list of ports or mooring sites is available (either from
 pre-existing list or a list generated with the code available
t Supplementary Material —Section 4—potential anchorage
ites), positions inside the spatial buffer created around ports
 port_buffer ) can be deleted. 

A final step in the workflow in Fig. 2 c is to remove un-
ealistic trips. Here we apply some summary statistics about
he trips, and set sensible criteria based on expert knowledge
bout what constitutes a realistic trip. For example, a mini-
um distance travelled ( dist_travelled ), a minimum trip dura-

ion ( time_travelled ), or a minimum amount of positional data
 n_obs ) can serve as suitable criteria to define plausible trips.
 conservative value if n_obs is recommended, and the value
ight be informed by plotting a histogram of the number of
bservations per trip. 

nfer fishing operations 

nce the trips conducted by each fishing vessel have been
dentified, we proceed to infer where and when they are en-
aging in a fishing operation using the workflow to infer fish-
ng operations ( Fig. 4 ; see Supplementary Material , Section
—Infer_fishing_operations for corresponding R or Python
odes). The European Commission defines a fishing opera-
ion as ‘all activities in connection with searching for fish, the
hooting, towing, and hauling of active gears, setting, soak-
ng, removing, or resetting of passive gears and the removal of
ny catch from the gear, keep nets, or from a transport cage to
attening and farming cages’ (European Commission 2011 ). 

ata preparation 

ighly resolved geopositional data can occasionally contain
emporal gaps (e.g. when the AIS units are turned off when

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad209#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad209#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad209#supplementary-data
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Table 2. Number of geopositional data points remo v ed in each step during 
the data preparation section for each case study and percentages shown 
in brackets. 

Case study Pots—Scotland 
Gillnet 

fishery—Denmark 

Initial number of points 253 872 3 046 799 
Geographic boundaries 0 (0%) 380 (0%) 
Duplicates removal 0 (0%) 0 (0%) 
Points on land removal 795 (0.31%) 599 689 (19.6%) 
Unrealistic speeds 3201 (1.27%) 487 (0.01%) 

R

T  

t
l  

r  

fi
(
c
t  

c  

o  

t  

c
p  

c
d
d

I

D
I  

p  

e  

n  

c
a  

p  

t

S
I  

i
t
a
i  

S
t  

r  

w
t

 

w  

a  

t  

p  

t  

w  

d  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/81/2/390/7516127 by D
TU

 Library user on 14 M
arch 2024
fishing). Therefore, before interpolating the tracks into a reg- 
ular temporal frequency for later analysis, it is recommended 

to divide the points into segments within individual trips 
based on the distance between consecutive points. This is done 
to avoid the interpolation of data between two consecutive 
points with a large spatial gap between them that might lead 

to erroneous artificial positions classified as part of a fishing 
operation. Here it is important to note that in some cases, de- 
pending on the research question, it might be useful to further 
look into these gaps, e.g. as an approach to investigate ille- 
gal, unregulated, and unreported fishing activities (Welch et 
al. 2022 ). Once the points in each trip are grouped, positions 
are interpolated within groups to a temporal frequency de- 
fined by the researcher ( t_interp ), which will depend on the 
temporal resolution of the data and the known mean dura- 
tion of a fishing operation in the fishery under scrutiny. For 
example, in Scottish pots and traps fisheries, the optimal tem- 
poral frequency to infer hauling events is 60 s (Mendo et al.
2019a ), whereas for bivalve dredges and octopus traps in Por- 
tugal, it is < 2 min (Rufino et al. 2023 ). Several approaches 
can be used to interpolate the data, ranging from linear inter- 
polation to more powerful methods (e.g. Hintzen et al. 2010 ,
Russo et al. 2011 ). If some of the positions were located close 
to shore, the interpolation might result in positions on land 

and these positions must be removed in a similar manner to 

that described above. 

Model based inference 
Once the data has been pre-processed, as shown in Fig. 4 , the 
user can decide which method to use to infer when fishing 
operations are taking place. There are several options avail- 
able to infer when fishing operations are taking place, such 

as using a speed threshold, using statistical methods, such 

as expectation maximization algorithm or hidden Markov 
models (Mendo et al. 2019b , Rufino et al. 2023 ), or ma- 
chine learning algorithms, such as a random forest model 
(Rodriguez 2023 , Rufino et al. 2023 ). These sources all pro- 
vide R code to perform these analyses. One limitation worth 

noting here, is that most of these approaches are tailored 

to single-gear fishing trips, and multi-gear trips might be 
more challenging when trying to infer fishing activities ade- 
quately. More work is needed to first infer gear used during 
each trip, and then applying the most suitable model to infer 
fishing. 

Post-processing 
After fishing activities have been inferred, a final check ( Fig.
4 ) removes potential spurious fishing locations. This step de- 
pends on the duration of the fishing activity and the gear used,
and expert knowledge. As an example, isolated records or seg- 
ments of the trip that are too short in duration to be associated 

with fishing activities should be reclassified as non-fishing ac- 
tivities. After this step, spatial distribution of fishing activities 
can be mapped. 

Identify fishing trips 

Once fishing activities are inferred, only the trips where fishing 
activities are identified will be categorized as fishing trips (see 
Supplementary Material , Section 3—Identify_fishing_trips for 
corresponding R or Python codes). 
esults 

he general workflow described in Fig. 1 has been applied to
wo case studies: the Scottish pots fishery targeting European 

obster ( Homarus gammarus ) and brown crab ( Cancer pagu-
us ), and the Danish gillnet fishery targeting various demersal
sh, such as European plaice, Atlantic cod, and lumpsucker 
respectively, Pleuronectes platessa , Gadus morhua , and Cy- 
lopterus lumpus ), depending on season a geographic loca- 
ion. Details on each of these fisheries and how they operate
an be found in Supplementary Material S3 . These datasets
nly comprise a subset of these fisheries’ fishing activities, but
hey can be used to illustrate the different types of issues most
ommonly encountered with these data, and how each ap- 
roach described above can be applied. These case studies in-
lude different tracking devices used to gather geopositional 
ata (namely, Teltonika trackers and AIS), collecting data at 
ifferent temporal resolutions. 

dentify individual trips 

ata preparation 

n Table 2 , the number of positions remaining after each data
reparation step in Fig. 2 a is listed. For the Danish gillnet fish-
ry (AIS data), the step ‘points on land’ removes a significant
umber of positions. A visual inspection of the points removed
onfirmed that these points were located within the harbour 
nd inside the coastline, which is to say they are also harbour
oints. This relates to the precision of both the shapefiles and
he geopositional points. 

egmentation and post-processing 
n this section, we present the results obtained after segment-
ng and post-processing the time-series data to define the 
rips. Table 3 compares the real number of trips conducted 

gainst the estimated number of trips resulting when apply- 
ng the two different methods. Real number of trips in the
cottish fishing fleet were verified by individual visual inspec- 
ion of the data. In the case of the Danish fishing fleet the
eal number of trips were verified by going through the same
orkflow, but using the official harbour polygons to define 

rips. 

(i) Based on daily activities 

Data obtained from the Scottish fleet of pots and traps
ere used for this example. This is a fleet that mainly oper-

tes during the daytime (James et al. 2018 ). Segmenting the
rips at midnight resulted in 193 potential trips. During the
ost-processing step ( Fig. 2 c), this number was reduced to 129
rips first by removing the beginning and end parts of each trip
ith the points are located close to the coastline and then re-
uced to 122 by removing all trips with less than a threshold

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad209#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad209#supplementary-data
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Table 3. Upper rows: comparison of the number of trips resulting from applying the daily activities method and cluster analysis. 

Cluster analysis 

Dail y acti vities Scottish fishing fleet Scottish fishing fleet Danish fishing fleet 

Number of vessels 8 8 10 
Real number of trips 123 123 761 
Estimated number of trips 122 126 765 
False positives 0 3 4 
False negatives 1 0 0 
Number of points after step 3.1.1 249 876 249 876 2 446 234 
In-port points removal 2 590 (1.0%) 2 364 (0.9%) 1 898 312 (77.6%) 
Spurious trips removal 872 (0.4%) 2 050 (0.8%) 6 658 (0.2%) 
Final number of points 246 414 245 462 554 580 

Lower rows: number of geopositional data points removed in each step during the segmentation and post-processing section for each case study—percentages 
shown in brackets. 

Figure 5 Clustering detection of anchorage sites in (a) a beach and (b) an island with a lighthouse. 
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umber of points ( n_obs = 50) and those that were too short
 dist_travelled ≤ 5 km and time_travelled ≤ 1 h ). Given the
haracteristics of the tracking device in this case study (set to
nly capture position every hour when no acceleration was de-
ected), most of the trips deleted in the post-processing step,
epresented data points associated to positional data when in
ort or anchorage sites. 
Of the 122 fishing trips estimated in the procedure, one was

 false negative, i.e. two individual trips were wrongly identi-
ed as a unique trip. This situation occurred for a vessel that
onducted a trip between two different ports in the same day,
ut only registered this as an individual trip. 

(ii) Based on harbours or anchorage sites 

In the case of the Scottish pots and traps fishery, the avail-
ble list of ports did not include all the anchorage sites. In fact,
his specific fishery often uses anchoring sites on beaches or
rivate jetties. Therefore, we used the clustering method sum-
arized in Fig. 3 to detect the potential anchorage sites, along
ith harbour infrastructures in the area. Year of data from

ight vessels was used to capture potential anchorage sites. 
For the Scottish fishing fleet, interpolation between low-

elocity points was needed to increase the accuracy of the k -
eans method when clustering. Interestingly, results showed
nknown anchoring sites in unexpected places. Figure 5 a
hows a clustering of positions identifying a mooring area near
 beach, as well as an anchoring site near an island with a
ighthouse ( Fig. 5 b) where some fishers frequently spend the
ight, which was validated with interviews during field trips.
leven anchorage sites were identified for the 10 vessels used

n the case study. Most vessels (six) used between two and
hree anchorage sites per year, one vessel used a single one,
nd another, five. 

The different post-processing steps ( Fig. 2 , delete in port
bservations, minimum number of points per trip, minimum
istance travelled, and minimum time spent per trip) reduce
he number of estimated trips by 70% in this case study. 

The main problem using a list of anchorage sites with a
uffer around them is that it can result in extra trips (false
ositives). As Table 3 shows, this method generated three false
ositives, which accounts for two vessels fishing nearby one of
he anchorage sites. Figure 6 a shows an example where one of
he vessels left port to go east and passed by the harbour buffer
rea in the middle of the trip without actually docking. This
esults in two trips being identified with this method, when
n fact only one trip was conducted. Still, the number of false
ositives represented < 5% of the real cases. 
From AIS data for 10 Danish gillnetters throughout 1 year,

he clustering method was used to identify the harbours, and
ompared to a verified and updated harbour list. From the
osition data of the 10 vessels, 15 anchorage sites were iden-
ified, all within verified harbours. A 400-m buffer around the
ort was used, and as can be seen when more vessels use the
ame harbour, the different polygons were merged to get an
quivalent of the complete harbour polygon ( Fig. 7 ). The four
alse positives resulted from movement out and back into the
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trip1
trip2

(a) (b)

Figure 6 Example of a false positive when using the clustering method to identify anchorage sites (grey circles). Coloured dots represent the 
segmentation of a real single trip into two different trips. (a): Scottish case study, land not shown due to confidentiality issues; (b): Danish case study, 
red square is the original shapefile for the port. 

(a) (b)

Figure 7 Polygons showing inferred anchorage sites from cluster analysis (grey circles) and official verified harbour polygons (red polygons). 
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inferred harbour polygon resulting in two unique trips ( Fig.
6 b). 

Infer fishing operations 

Once the trips are identified, the next step is to discriminate 
whether these trips are including at least one fishing opera- 
tion. To do so, speed thresholds, statistical models, or machine 
earning algorithms can be used to identify the points corre-
ponding to a fishing activity within each trip. Data must be
repared to minimize potential errors in inferring fishing ac- 
ivities ( Fig. 4 ). 

For the Scottish pot fishery, the data were prepared to min-
mize errors, before applying the preferred model. Thus, trips 
ere segmented when there were gaps larger than a predefined 

alue ( dist_interp) to avoid unrealistic points being incorrectly 
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no-fishing
fishing

200 m(a) (b)

Figure 8 Results obtained to infer fishing operations using a speed threshold. (a) Interpolation between points with no constraints on the distances 
between interpolated points; (b) Interpolation constrained to be within segments of points previously ‘cut’. 
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lassified by models, as seen in Fig. 8 . This segmentation is par-
icularly useful when a loss of data is evident. For the Scottish
ot fishery, it was decided that trips would be segmented if the
istance between consecutive observations was > 500 m. This
istance was considered to capture a definite loss of data. Af-
er the segmentation, data were interpolated to regular 1-min
ntervals (Mendo et al. 2019a ). Resulting interpolated points
alling on land were removed afterwards. 

A speed filter was applied to infer fishing operations with a
nal check to remove positions erroneously classified as a fish-
ng operation. For example, if the previous two positions and
ubsequent two positions were classified as non-fishing, then
he one point in between would be corrected to non-fishing,
nd vice versa. This was considered a cautious filter, as the
peration of hauling pots generally lasts longer than 1 min. A
omparison between the results of the method using segmen-
ations vs. without segmentation is shown in Fig. 8 . 

For Danish gillnetters, once a trip has been found and all the
oints in port have been deleted, a speed filter is used to deter-
ine fishing activity; for this particular fishery, the thresholds
sed are from 0 to 4 knots (from expert knowledge). 

dentify fishing trips 

n this section, only trips where a fishing operation was iden-
ified are retained as a fishing trip. 

iscussion 

ighly resolved geo-spatial data are proving useful to assess
ne-scale distribution of fishing activities and fishing effort
McCauley et al. 2016 , Le Guyader et al. 2017 , Behivoke et
l. 2021 ). This information is essential both to evaluate the
otential impacts of fishing activities on particular habitats
Russo et al. 2016 , Ferrà et al. 2018 ) but also to appropriately
nform marine spatial planning, at scales relevant to fisher’s
ctivities (James et al. 2018 , Metcalfe et al. 2018 , Stelzen-
üller et al. 2022 ). While many methods have been used to

nalyse these data, to date, these methods are mainly used on
n ad hoc basis, and do not provide enough detail on the pre-
rocessing steps carried out before the modelling approaches,
hich limits the ability of researchers to replicate analyses.
he present work introduces a workflow to standardize the
nalysis of highly resolved geo-spatial data, specifically focus-
ng on SSF. The development of this framework is particularly
imely, as the number of small-scale, inshore fishing fleets be-
ng systematically tracked are increasing, and countries in Eu-
ope are beginning or are already tracking vessels as part of
eet-wide or nation-wide vessel tracking programmes for SSF
Burgos et al. 2013 , MMO 2022 ). Importantly, the establish-
ent of an EU-wide monitoring programme for vessels under
2 m in length has been provisionally been agreed by represen-
atives of the EU Council, Parliament, and Commission (Eu-
opean Parliament 2023 ). 

Our current framework builds on and expands on semi-
al work done by Hintzen et al. (2012) , and is the outcome
f the knowledge and experience gained by the authors over
everal years working with different kinds of tracking devices
AIS, EM, geopositional trackers, and VMS) that present dif-
erent types of issues (e.g. spurious vessel locations, data gaps)
n a variety of fishing fleets (e.g. with different fishing be-
aviours or levels of information). The framework presented
ere, therefore, allows the user to choose the path that bet-
er aligns with the peculiarities in the fishery being analysed.
or example, if fishers only fish during daylight hours, then a
egmentation of the data into trips is recommended using the
ourly method. If trips can be overnight, then a list of ports
an be used to segment data into trips, or if the list of ports
s unknown or incomplete, a cluster analysis is proposed. Al-
hough the workflow presented can be adapted to different
sheries, there are common points that need to be followed
egardless of the fishery (e.g. cleaning data, segmentation, and
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interpolation). The precision of the coastline shapefile will be 
key in the computational speed of the whole process and all 
the data needs to be prepared and post-processed based on 

expert knowledge. 
The development of the procedure using cluster analysis to 

identify anchorage areas can be very useful for SSF, particu- 
larly in areas where the vessels can use alternative launch sites,
other than ports or jetties. For example, in Scotland, 3 out of 
11 anchorage sites detected using this procedure lacked had 

no physical infrastructure, and were not listed in the official 
list of ports in Scotland (Scottish Government 2023 ). The clus- 
tering method proved to be reliable although it is important to 

get expert input to validate the anchorage sites resulting from 

this analysis, e.g. using interactive maps (e.g. Google Earth).
Some inferred sites might have to be manually removed af- 
ter this validation procedure. With this method, we saw im- 
provements in defining trips, as seen, e.g. with the vessel that 
visited the lighthouse ( Fig. 5 b), as this anchorage site was not 
included in the official list of ports. When implementing the 
clustering method on the AIS data from all the gillnetters in 

this study, there was a very good agreement with the Danish 

official port list checked and used in the Danish ministries. Al- 
though the centroids of all the inferred anchorage sites were 
within the established harbours, the size of the buffer played 

a big role in how well the given harbour was represented. In 

some cases, the buffer of 400 m seemed too small, but in other 
cases, this buffer spilled out of harbour polygon. It is possible 
that if the clustering method where to be run for more vessels,
the estimated harbour polygons would resemble more the es- 
tablished harbour polygons, which could proof to be a better 
approach than increasing the buffer size, as a polygon that 
stretches too far out could result in potential false positives. 

Using a buffer area around ports (either from a known 

list of ports or resulting from cluster analysis) resulted in 

a greater loss of geopositional data than the daily activity 
method (which removes points at the beginning and end of a 
trip). Buffers around ports do not take into consideration the 
time sequence of events, and can remove occasional points 
that might occur during a trip, but near the port (e.g. when 

fishers fish very close to land). The size of the buffer should 

therefore be carefully assessed in each case. 
Given the large amounts of high-resolution data generated 

with vessel tracking systems, we decided to make the code 
available in two commonly used programming languages: R 

and Python. Computationally, R and Python performed sim- 
ilarly; however, Python tended to be quicker when perform- 
ing intersections between polygons (e.g. coastline) and data 
points. While RStudio allows for Python code to be run within 

R, the time required to load data rendered this impractical. R 

performed faster when transforming between coordinate ref- 
erence systems. Overall, there was no difference between the 
two platforms with respect to computational speed. Although 

Python is gaining much interest within the scientific commu- 
nity, R is currently the most common programming language 
used by researchers in fisheries and marine research institutes.
Both Python and R are freely available and have a growing 
list of libraries and packages to analyse and map spatial data.
The tidyverse package was used in R as it provides a suite 
of libraries for cleaning, transforming, visualizing, and mod- 
elling data (Wickham et al. 2019 ). For both languages, there 
are many different approaches that produce the same result,
with different computation time, thus both scripts can be im- 
proved in the future. 
With an increasing focus on small-scale fisheries impacts 
n ecosystems and a general increase in the level of control
nd information required to conform to EU regulations (Eu- 
opean Comission 2009 ), the workflow presented in this pa-
er to process and interpret geospatial data, provides a robust
ethod to estimate fishing effort in SSF fleets using the avail-

ble geospatial data (although see Mendo et al. 2023 for a
etailed method to estimate effort for passive gears). Having 
he possibility to dynamically map where the fishing fleet is
nchored permits the segmentation of the fishing activity of 
he fleet into individual (fishing) trips, which in turn allows
or deriving important control parameters such as days at sea,
shing days, and fishing hours. Not only does this sort of in-
ormation helps assessing fisheries impact at a fine scale, it can
lso provide evidence for fishers that a fishing ground may
onflict with other existing or planned marine activities and 

patial constraints by documenting both the spatial and tem- 
oral extent of the areas essential to fishing in terms of target
pecies and income. We hope that this workflow is refined and
mproved in the future by the scientific and stakeholder com-
unities. 
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