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Abstract
Inverse problems, particularly those governed by Partial Differential Equations
(PDEs), are prevalent in various scientific and engineering applications, and
uncertainty quantification (UQ) of solutions to these problems is essential for
informed decision-making. This second part of a two-paper series builds upon
the foundation set by the first part, which introduced CUQIpy, a Python soft-
ware package for computational UQ in inverse problems using a Bayesian
framework. In this paper, we extend CUQIpy’s capabilities to solve PDE-
based Bayesian inverse problems through a general framework that allows the
integration of PDEs in CUQIpy, whether expressed natively or using third-
party libraries such as FEniCS. CUQIpy offers concise syntax that closely
matches mathematical expressions, streamlining the modeling process and
enhancing the user experience. The versatility and applicability of CUQIpy to
PDE-based Bayesian inverse problems are demonstrated on examples covering

4 Part of the work by F.U. was done while employed at the Technical University of Denmark.
∗

Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

© 2024 The Author(s). Published by IOP Publishing Ltd
1

https://doi.org/10.1088/1361-6420/ad22e8
https://orcid.org/0000-0003-0145-5296
https://orcid.org/0000-0002-6883-9078
https://orcid.org/0000-0003-3203-8874
https://orcid.org/0000-0002-1010-8184
https://orcid.org/0000-0003-3995-3055
https://orcid.org/0000-0002-7333-7216
https://orcid.org/0000-0001-9114-754X
mailto:jakj@dtu.dk
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ad22e8&domain=pdf&date_stamp=2024-3-4
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Inverse Problems 40 (2024) 045010 A M A Alghamdi et al

parabolic, elliptic and hyperbolic PDEs. This includes problems involving the
heat and Poisson equations and application case studies in electrical imped-
ance tomography and photo-acoustic tomography, showcasing the software’s
efficiency, consistency, and intuitive interface. This comprehensive approach
to UQ in PDE-based inverse problems provides accessibility for non-experts
and advanced features for experts.

Keywords: uncertainty quantification, software, computational imaging,
Bayesian statistics, probabilistic programming, partial differential equations

1. Introduction

Inverse problems arise in various scientific and engineering applications, where the goal is to
infer un-observable features from indirect observations. These problems are often ill-posed,
making the inferred solution sensitive to noise in observed data and inaccuracies in forward
models [19, 25]. Characterizing and evaluating uncertainties due to this sensitivity is crucial
when making decisions based on inferred results.

To address these challenges, the field of Uncertainty Quantification (UQ) for inverse prob-
lems is in a phase of rapid growth [6, 39]. In medical imaging, for instance, UQ analysis allows
experts to evaluate the uncertainty in cancer detection, which can directly impact patient treat-
ment decisions [40]. In flood control and disaster management applications, UQ is needed to
assess the risk of floods in specific regions, informing planning and resource allocation [30].

One particularly important category of inverse problems involves those governed by Partial
Differential Equations (PDEs). These problems are encountered in various applications such
as medical imaging [29, 41], seismic imaging [8, 9, 38], subsurface characterization [3, 4, 21],
and non-destructive testing [34]. PDE-based inverse problems involve inferring parameters
in PDE models from observed data, which introduces unique challenges in UQ due to the
complex nature of the governing equations.

The Bayesian framework is widely used for UQ in both PDE-based and non-PDE-based
inverse problems, as it enables the systematic incorporation of prior information, forwardmod-
els, and observed data by characterizing the so-called posterior distribution [3, 4, 9, 11, 31].
This framework provides a comprehensive and unified approach for addressing the unique
challenges of UQ in inverse problems.

1.1. Computational UQ for PDE-based inverse problems with CUQIpy

In this two-part series, we propose a Python software package CUQIpy, for Computational
Uncertainty Quantification in Inverse problems. The package aims to make UQ analysis
accessible to non-experts while still providing advanced features for UQ experts. The first
paper [35] introduces the core library and components, and presents various test cases.

This second paper focuses on usingCUQIpy (version 1.0.0) to solve Bayesian inverse prob-
lems where the forward models are governed by PDEs. While numerous software tools exist
for modeling and solving PDE systems, such as FEniCS [28], FiPy [18], PyClaw [26], scikit-
fem [17], andFiredrake [33], only few tools are specifically designed for PDE-based Bayesian
inverse problems. The FEniCS-based package hIPPYlib [42, 43] is an example of a package
that excels in this task.

To make UQ for PDE-based inverse problem more accessible, we propose a general frame-
work for integrating PDE modeling tools into CUQIpy by defining an application program-
ming interface (API) allowing PDE modeling libraries to interact with CUQIpy, regardless
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of the underlying PDE discretization scheme and implementation. This is possible because a
major concept behind the design of CUQIpy is that the core components remain independ-
ent from specific forward modeling tools. On the other hand, plugins provide a flexible way
to interface with third-party libraries, and in this paper we present CUQIpy-FEniCS as an
example of a PDE-based plugin.

We introduce modules and classes in CUQIpy that enable solving PDE-based Bayesian
inverse problems, such as sampler, distribution, and the cuqi.pde module. In the latter,
the cuqi.pde.PDE class provides an abstract interface for integrating PDE modeling imple-
mentations like FEniCS with CUQIpy, simplifying the construction of PDE-based Bayesian
inverse problems. The modules cuqi.pde.geometry and cuqipy_fenics.pde.geometry
play an essential role, allowing the software to use information about the spaces on which the
parameters and data are defined.

We demonstrate the versatility and applicability of CUQIpy through a variety of PDE-
based examples, highlighting the integration and capabilities of the software. One example
solves a Bayesian inverse problem governed by a one-dimensional (1D) heat equation, which
underscores the intuitiveness of CUQIpy’s interface and its correspondence to the mathemat-
ical problem description. We present an elaborate electric impedance tomography (EIT) case
study using the CUQIpy-FEniCS plugin, illustrating integration with third-party PDE mod-
eling libraries. Finally, we examine a photoacoustic tomography (PAT) case, which shows
CUQIpy’s ability to handle black-box forward models, emphasizing its adaptability to a wide
range of applications in PDE-based Bayesian inverse problems. These examples effectively
represent different classes of PDEs: parabolic, elliptic, and hyperbolic PDEs, respectively.

The examples involve inferring up to 100 parameters (the PAT problem) and solving PDEs
of up to 4× 830 state-variable dimensions (the EIT problem). They showcase different types
of parameterization of the unknowns, namely, step expansion and Karhunen–Loève (KL)
expansion and level set parameterization. The data setup varies in these examples from hav-
ing data everywhere on the domain, having data only on parts of the domain or only on the
boundaries, with noise levels explored of up to 20% of the noiseless data magnitude. The
types of unknowns explored are spatially-varying PDE coefficients, as in the Poison and the
EIT examples; and initial condition profiles, as in the heat and the PAT examples. Utilizing
the flexibility of CUQIpymodeling framework, we demonstrate combining multiple datasets,
namely, data resulting from multiple injection patterns in the EIT example. For simplicity, we
assume these models are exact and we leave treatment of forward model error [7, 10] for future
investigation. We emphasize that the CUQIpy framework is general to explore other types of
unknown parameterizations, priors (e.g. using Markov random fields), and noise models; And
model different unknown quantities, boundary conditions for example. Variations of these fea-
tures are explored in the non-PDE-based Bayesian inverse problems presented in Part I [35]
of this two-part series.

We have sought to design a versatile PDE abstraction layer for modeling a variety of PDE-
based problemswithin the general Bayesian inverse problems framework provided byCUQIpy
with focus on modularity and an intuitive, user-friendly interface. The goal of this paper is to
demonstrate its utility on small to moderate scale problems on which we have found CUQIpy
to perform well. Support for specialized PDE problems of high complexity and large-scale
computing needs is an important area of development for the CUQIpy framework. We believe
that the plugin structure, as exemplified by theCUQIpy-FEniCS plugin presented within, will
provide a route to handle large-scale problems. This will combine the efficiency of dedicated
third-party libraries (such as fluid dynamics solvers or implementations of adjoint equations,
etc) with the convenience of the high-level modeling framework of CUQIpy.
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1.2. A motivating example

We give a brief introductory example of the use of CUQIpy to solve a PDE-based inverse
problem with the Poisson equation modeled in FEniCS using the CUQIpy-FEniCS plugin.
More details of the underlying computational machinery are provided in section 3.

The inverse problem we consider is to infer a two-dimensional electric conductivity field
σ(ξξξ) of a unit square medium that lies in the domain Γ̄ = [0,1]2, from a noisy observation of
the electric potential measurement everywhere in the domain; we denote by u(ξξξ) the electric
potential and by y(ξξξ) the observation of the electric potential, which in this case coincides with
the solution u on the entire domain, but in general may be available on a subset of the domain
or a derived quantity.

The electric potential spatial distribution is governed by the 2D Poisson equation and is
driven by a source term f(ξξξ) and prescribed boundary conditions. The Poisson equation can
be used to model other physical systems. For example, σ can represent the thermal conduct-
ivity of a medium and u its temperature; alternatively, σ can represent the permeability of a
porous medium and u the pore-fluid pressure. The 2D Poisson equation we consider can be
written as

∇·
(
ew(ξξξ)∇u(ξξξ)

)
= f(ξξξ) for ξξξ ∈ Γ = (0,1)2 (1)

written here in terms of the log-conductivity field, i.e. w(ξξξ) = logσ(ξξξ) to ensure positivity
of the inferred conductivity field. In this example, we assume zero boundary conditions on
the left and right boundaries of the square domain and zero Neumann boundary conditions
on the top and bottom boundaries; and a source term f(ξξξ) = 1. The forward problem con-
cerns determining the observation y(ξξξ) from a given log-conductivity w(ξξξ). The inverse prob-
lem becomes the problem of inferring the log-conductivity w(ξξξ) from an observed realization
of y(ξξξ).

In CUQIpy we consider the discretized form of this problem,

y= A(x) , (2)

where A is a nonlinear forward model, which corresponds to solving the discretized PDE to
produce the observation y from a log-conductivity given in terms of a parameter x. CUQIpy
(and in this case CUQIpy-FEniCS) provides a collection of demonstration test problems
including one from which the present forward model can be obtained as:

Here, for brevity we have only shown a couple of the inputs to configure the problem.
The PDE (1) is discretized using the finite-element method (FEM) and implemented using
FEniCS on a structured triangular mesh on the physical domain Γ. The PDE solution and
log-conductivity are approximated on a first-order Lagrange polynomial space, see, e.g. [14].
In this example, we consider the log-conductivity parameterized in terms of a truncated KL
expansion [13] that enforces smoothness, to remedy the inherent instability of inferring coef-
ficients of the Poisson equation [15]. The vector x= [x1, . . . ,xnKL ]

T is the vector of expansion
coefficients, here truncated at nKL = 32.

InCUQIpywe consider x and y vector-valued random variables representing the parameter
to be inferred and the data, respectively. To specify a Bayesian inverse problem, we express
statistical assumptions on variables and the relations between them. Here, we assume an i.i.d.
standard normal distribution on the KL expansion coefficients x and additive i.i.d. Gaussian
noise with known standard deviation snoise on the data:
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x∼ Gaussian(0,I) (3a)

y∼ Gaussian
(
A(x) ,s2noiseI

)
. (3b)

We can specify this in CUQIpy as (with np representing NumPy [20]):

We note the close similarity between the mathematical expressions and the syntax.
Additionally the distributions have been equipped with so-called geometry object G_KL and
G_FEM, which capture the interpretation of x as KL coefficients and y as FEM expansion coef-
ficients; this is elaborated in section 3.

We consider a true log-conductivity as a sample from the prior distribution on x, which we
conveniently generate and plot (figure 1(a)) by

where we note this is displayed as the log-conductivity FEM function, made possible by x
being equipped with the G_KL geometry. The exact data yexact arising from xtrue can be determ-
ined (and plotted) as A(x_true).plot() while a noisy data realization yobs can be obtained
by sampling y conditioned on xtrue (figures 1(b) and (c)):

Again, knowledge of the geometry object G_FEM, in this case, enables visualizing yexact and
yobs as FEM functions. CUQIpy provides a framework for specifying and solving Bayesian
inverse problems through posterior MCMC sampling. In the most high-level case we simply
specify a Bayesian Problem from the random variables y and x, provide the observed data yobs

and run the UQ() method:

Under the hood,CUQIpy applies Bayes’ theorem to construct the posterior distribution, selects
a suitable sampler based on the problem structure (in this case the NUTS sampler [22]),
samples the posterior and produces posterior mean and UQ plots (figure 1).

The results show that the mean is visually a reasonable approximation of the true conductiv-
ity. The variance magnitude is very small and tends to zero as ξξξ gets closer to the left and right
boundaries onwhich the PDE boundary conditions u= 0 are prescribed. Additionally, the com-
puted credibility intervals (CIs) enclose the exact KL expansion coefficients. Approximately,
the first 10 KL expansion coefficients are inferred with high certainty, and the general trend is
that the uncertainty increases as the expansion mode number i increases.
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Figure 1. Results for the 2D Poisson problem, a prior sample xtrue is used as the exact
solution. The noise level in the data is 1%. (a) The exact log-conductivity wtrue =
GKL(xtrue), see section 3 for GKL. (b) The exact data yexact. (c) The observed noisy data
yobs. (d) The log-conductivity mean: the posterior samples mean mapped through GKL.
(e) The log-conductivity variance computed from the posterior samples. (f) The CI plot
showing the 97% CIs for the 32 KL coefficients (blue vertical lines), the exact KL coef-
ficients xtrue (orange circles), and the KL coefficients means (blue circles).

1.3. Overview and notation

Having introduced and given a motivating example of UQ with CUQIpy for a PDE-based
inverse problem in the present section, we present in section 2 our general framework for
integrating PDE-based inverse problems in CUQIpy and illustrate this framework on an
inverse problem governed by the 1D heat equation. In section 3, we describe our CUQIpy-
FEniCS plugin that extends CUQIpy to allow UQ on PDE-based inverse problems modeled
in FEniCS. We finish with two more elaborate case studies: First, in section 4 we demonstrate
how electrical impedance tomography (EIT) with multiple layers of solution parametrization
can be modeled with CUQIpy-FEniCS. Second, in section 5 we show how user-provided
black-box PDE solvers can be used inCUQIpy in an example of Photo-Acoustic Tomography
(PAT). Finally, in section 6 we conclude the paper.

We use the following notation: Calligraphic font such as A denotes a continuous operator.
Bold upper case such as A denotes a discrete operator, with Iℓ denoting the ℓ× ℓ identity
matrix; bold lower case such as x denotes a vector, and lower case such as s and f denotes
a scalar or a scalar function with p denoting a probability density function. We use the same
notation for vectors and scalars to denote random vectors and scalars, to be distinguished by
context. We denote by ξ and ξξξ = [ξ1, ξ2]T the spatial coordinates in R and R2, respectively;
and we denote by τ the time.

In the context of solving Bayesian inverse problems, we refer to the unknown quantity to be
inferred as the parameter and the measured or observed quantities as the data, both considered
random variables. When a superscript is provided for a parameter or a data vector, e.g. xtrue,
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it indicates a particular realization of the parameter or the data, respectively. We refer to a
particular noisy data realization that we use in the inversion, e.g. yobs, as the observed data.

2. Framework for PDE-based Bayesian inverse problems in CUQIpy

In this section, we present our general framework for integrating PDE-based Bayesian
inverse problems in CUQIpy. The framework is designed to be as generic as possible
allowing—in principle—any PDE-based inverse problem to be handled. This includes PDEs
expressed natively inCUQIpy (detailed in the present section), using a third-party PDE library
such as FEniCS [28] (see sections 3 and 4) and through a user-provided black-box PDE-solver
(see section 5). The critical components of this framework are provided by the cuqi.pdemod-
ule, which contains the PDE class and its subclasses, the supporting Geometry classes, and the
PDEModel class, see table 1.

The PDE class provides an abstract interface for representing PDEs, a subclass hereof
is LinearPDE representing linear PDE problems. At present two concrete classes have
been implemented: SteadyStateLinearPDE and TimeDependentLinearPDE from which a
broad selection of steady-state and time-dependent linear PDEs can be handled. The Geometry
classes allow us to parametrize in terms of various expansions to enforce desired properties on
the solution, such as smoothness or as a step-wise function. The PDEModel class provides the
interface to use the PDE as a CUQIpy Model for Bayesian inference. A PDEModel combines
a PDE with two Geometry classes for the domain and range geometry to form a forward model
of an inverse problem.

We illustrate this framework by an example: a Bayesian inverse problem governed by a
1D heat equation, sections 2.1–2.5. We emphasize that a much wider variety of PDEs can be
handled; an example is used only for concreteness of the presentation.

2.1. The 1D heat equation inverse problem

We consider the inverse problem of reconstructing an initial temperature profile g(ξ) at time
τ = 0 of a medium from temperature measurements y(ξ) at a later time τ = τmax. We assume
a medium that can be approximated by a 1D interval, ξ ∈ [0,1]. An example of such medium
is a thin metal rod. The measurements are obtained over the interval (0,1) or a subset of it,
and they are typically polluted by a measurement error. The heat propagation in the medium
from time τ = 0 to time τ = τmax can be modeled by a one-dimensional (1D) initial-boundary
value heat equation, which can be written as:

∂u(ξ,τ)
∂τ

− c2
∂2u(ξ,τ)

∂ξ2
= f(ξ,τ) , ξ ∈ [0,1] , 0⩽ τ ⩽ τmax, (4a)

u(0, τ) = u(1, τ) = 0, (4b)

u(ξ,0) = g(ξ) , (4c)

where u(ξ,τ) is the temperature at time τ and location ξ, c2 is the thermal conductivity (here
taken to be a constant for simplicity), and f is the source term. We assume zero boundary
conditions, (4b), and an initial heat profile g(ξ), (4c).

We define the parameter-to-solution operator S that maps the unknown parameter of the
inverse problem g(ξ) to the PDE solution u(ξ,τ), for 0< τ ⩽ τmax. Applying this operator
is equivalent to solving the PDE (4a)–(4c) for a given initial condition g(ξ). We also define
the observation operator O that maps the PDE solution u(ξ,τ) to the observed quantities, the
temperature measurements y(ξ).
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Table 1. A subset of CUQIpy classes that support integrating PDE-based problems. For
a comprehensive list of classes and modules, see the companion paper [35].

Class name Description

cuqi.pde module:

PDE A class that represents the PDE, it implements
the discretized maps S and O

LinearPDE A class for linear PDE problems
SteadyStateLinearPDE A class for steady-state linear PDE problems
TimeDependentLinearPDE A class for time-dependent linear PDE problems

cuqi.geometry module:

Continuous1D A class that represents a 1D continuous space
Continuous2D A class that represents a 2D continuous space
KLExpansion A class for Karhunen–Loève expansion of functions
StepExpansion A class for step functions

cuqi.array module:

CUQIarray A class for data arrays, subclassed from NumPy
array

cuqi.model module:

PDEModel Forward model the uses a PDE-type class through
calling its assemble, solve and observe methods

cuqi.testproblem module:

Poisson_1D 1D Poisson test problem (finite difference
discretization)

Heat_1D 1D Heat test problem (finite difference
discretization)

2.2. The discretized heat equation in CUQIpy

We discretize the system (4a)–(4c) in space using finite differences (FD). We discretize the
solution u(ξ,τ) at a given time τ on a regular 1D grid of ngrid = 100 interior nodes. The grid
spacing h is approx. 0.01. We create a NumPy array to represent the grid

For simplicity, we use forward Euler for time stepping. For the choice τmax = 0.01, we discret-
ize the time interval [0,0.01] into nτ = 225 uniform time steps each of length ∆τ . We create
a NumPy array to represent the time steps

We write the kth forward Euler step as follows

uk+1 = uk+∆τ
(
Dcuk+ fk

)
, for k= 0, . . . ,nτ , (5)
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where u0 := g is the initial condition g discretized on the 1D grid, i.e. the ith element of g is
g(ξi) where ξi is the coordinate of the ith grid node. Similarly, uk and f k are the PDE solution
and the source term, respectively, at time τ = k∆τ discretized on the 1D grid.Dc is the discret-
ized diffusion operator c2∂2/∂ξ2, obtained using the centered-difference method. We create
NumPy arrays to represent the right-hand side vector f k (zero in this case) and the differential
operator Dc, and fix c= 1 for this example:

We denote by S the discretized parameter-to-solution operator which maps the discretized
initial condition g to the discretized PDE solution u. u denotes the column vector of the time
step solutions u1, . . . ,uk, . . . ,unτ stacked vertically. Additionally, we denote by O the discret-
ized observation operator that maps the discretized PDE solution u to the observation y ∈ Rm,
wherem is the number of measurements at locations {ξobsj }mj=1. These locations might or might
not correspond to the 1D grid points. In this example, they coincide with the set of grid points
{ξi}

ngrid
i=1 or a subset of it.
To represent this discretized PDE equation inCUQIpy, we need to create a PDE-type object

that encapsulates the details of the PDE equation and provides an implementation of the operat-
ors S andO, table 1. Creating a PDE-type class requires a user-provided function that represents
the components of the PDE on a standardized form, denoted by PDE_form. For time-dependent
problems, the PDE_form function takes as inputs the unknown parameter that we want to infer
(in this case g) and a scalar value for the current time: tau_current

The PDE_form returns a tuple of the differential operator and right-hand side at time
tau_current and the initial condition. Note that in this example, both the differential operator
and the right-hand side, zero in this case, are independent of the time τ .

For this 1D time-dependent heat equation, we create a TimeDependentLinearPDE object
from the specific PDE_form and the time step vector tau and spatial grid grid:

The TimeDependentLinearPDE object calls the PDE_form every time step and passes the
current time of the stepping method. The user can specify additional arguments when initial-
izing the TimeDependentLinearPDE object, e.g. the spatial grid for observations, the time
discretization scheme, and the linear solver to be used if the scheme is implicit. By default,
the forward Euler method is used for time stepping and the observations are obtained at time
τmax on the entire solution grid. We can print the PDE object using print(PDE), which gives
information about the object class and its PDE_form:

9
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Figure 2. Illustration of the TimeDependentLinearPDE object’s assemble, solve
and observe methods. (a) Initial condition gcustom, (6), used as input to the assemble
method. (b) PDE solution ucustom = S(gcustom), shown for selected times τ of the legend,
obtained by the solve method. (c) Observation ycustom = (O ◦ S)(gcustom), i.e. the PDE
solution at time τmax = 0.01 in this case, obtained by the observe method.

All CUQIpy PDE-type classes implement three methods: (1) assemble, which performs
any assembling that might be needed to prepare the matrices and vectors required to solve the
PDE problem, (2) solve, which solves the PDE problem using the assembled components
and is equivalent to applying the parameter-to-solution operator S, and (3) observe, which
computes the observations from the PDE solution and is equivalent to applying the observa-
tion operator O. To illustrate these methods, let us consider an initial condition given by the
expression

gcustom (ξ) =
1
30

(
1− cos

(
2π

1− ξ

1

)
+ e−200(ξ−0.5)2 + e−200(ξ−0.8)2

)
. (6)

We denote by gcustom the discretization of gcustom on the grid (see figure 2(a)). We call the
method assemble, then apply the operator S by calling the method solve:

We show the solution u_custom in figure 2(b) where we plot selected time steps for illus-
tration. Now we can apply the observation operatorO, which in this case corresponds, concep-
tually, to a matrix that extracts the final time step solution unτ from the entire PDE solution u.
We denote the observation by ycustom := unτ and show it in figure 2(c):

For time-dependent problems, PDE-type classes additionally implement the method
assemble_step to assemble components that are needed to propagate the solution in time
each time step, e.g. the discretized source term evaluated at time τ . Furthermore, PDE-type

10



Inverse Problems 40 (2024) 045010 A M A Alghamdi et al

classes can be equipped with the gradient of O ◦S with respect to its input, g in this case, in a
given direction.

2.3. The 1D heat forward problem in CUQIpy

We define the discretized forward model of the 1D heat inverse problem

y= A(g) := (O ◦S)(g) , (7)

where A : Rn → Rm. To represent the forward model in CUQIpy, we create an object from the
class PDEModel which is a subclass of Model. To set up a PDEModel we need to specify which
spaces are to be used for the domain and range of A; this is done using the geometry class. In
the simplest case, the parameter g and observation y are simply vectors on the ξ grid, which is
specified by a Continuous1D geometry:

We can now set up the PDE model as

The PDEModel object encapsulates the PDE-type object and implements the forward method
which corresponds toA. The PDEModel is agnostic to the underlying details of the PDE, e.g. the
discretization method, the type of the PDE, and the third-party PDE modeling library used in
the implementing the PDE Python methods. It uses the PDE object through calling the methods
assemble, solve, and observe. One could continue with the present A and solve directly
for g, however here we demonstrate how to parametrize g to enforce some desired properties
on the inferred solution.

2.4. Parametrization by the Geometry class

The domain Geometry object represents the domain space of the forward model A. It can also
be used to parametrize the unknown parameter, here g. As an example, we consider paramet-
erization in terms of coefficients x= [x1, . . . ,xnstep ]

T of an expansion

g=
nstep∑
i=1

xiχi, (8)

where χi for i = 1, . . . ,nstep is the characteristic function of the ith interval of a total of nstep
intervals in an equidistant partitioning of the domain [0,1]. With this (‘step expansion’) para-
meterization of g, the unknown parameter of the inverse problem becomes the coefficients
x. We denote by Gstep the discrete operator that maps x to g. Thus we redefine the forward
operator as

A(x) := (O ◦S ◦Gstep)(x) , (9)
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Figure 3. Illustration of CUQIpy Geometry. (a) StepExpansion function value plot
of gstep = Gstep(xstep). (b) StepExpansion parameter plot of xstep = [0,1,0.5]T. (c)
Continuous1D function value plot of ystep = A(xstep), here with τmax = 0.02.

where now A : Rnstep → Rm. To specify the parameterization (8) in CUQIpy, we set up the
domain geometry as a StepExpansion geometry object and pass the 1D grid and our choice
of the number of steps n_steps = 3 as arguments.

We can represent a function in this expansion by our fundamental data structure
CUQIarray, which essentially contains a coefficient vector and the geometry, e.g.

CUQIarray has a dual representation: a parameter value, referring to the coefficient vector,
here [0, 1, 0.5] and a function value, here the function with three steps considering para-
meters as expansion coefficients in the chosen geometry. A Geometry-type class implements
the method par2fun, an implementation of the operator G, which maps the parameter value
to the function value. It might also implement the method fun2par, the inverse map from the
function to parameter value, G−1, if it exists. It might also implement the gradient of G with
respect to x in a given direction.

A CUQIarray allows convenient plotting of the object in context of the geometry:

By default, plot plots the function value representation of the variable, figure 3(a). That is,
the call x_step.plot() results in calling the underlying Geometry-type object’s par2fun
method with the array values as the input and plotting its output, gstep = Gstep(xstep). To plot
the parameter value representation of the variable x_step, plot_par = True can be passed
as an argument to the plot method, figure 3(b).

To employ the step function expansion we pass it as domain geometry:
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We can print the model A, print(A), and get:

By default, the forward model input name is x. We can apply the forward model on xstep and
plot the result ystep = A(xstep):

The returned y_step is a CUQIarray object equipped with the G_cont geometry (see
figure 3(c)). Note, in this case we choose τmax = 0.02, doubling the number of time steps.

2.5. Specifying and solving the PDE-based Bayesian inverse problem

In our discussion of the Bayesian modeling, we consider x and y to be random variables
of the unknown parameter and the data, respectively. We are interested in a statistical
characterization—the posterior distribution—of the unknown parameter x, given a prior dis-
tribution of x, a distribution of the data y, and a realization of the noisy data yobs, see the
companion paper for background on Bayesian modeling [35].

We define the Bayesian inverse problem, assuming additive Gaussian noise, as:

x∼ Gaussian
(
0,Instep

)
,

y∼ Gaussian
(
A(x) ,s2noiseIm

)
,

where snoise is the standard deviation of the data distribution, which we specify to dictate a
desired noise level relative to the observed data, we assume a 10% noise level in this case. We
use CUQIpy to create the distributions of x and y as follows

We pass the argument geometry = G_step when initializing x to specify that samples from
this distribution are expansion coefficients of the step expansion (8). Similarly, we pass the
argument geometry = G_cont when initializing y. The argument A(x) represents that y is
conditioned on x through the forward model, as shown by print(y):

We can draw five samples from the prior distribution and display these by:
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Figure 4. Results for the Bayesian inverse problem governed by the 1D heat equation in
which we use the StepExpansion geometry and choose τmax = 0.02. (a) Discretized
characteristic functions χ1,χ2, and χ3, the basis functions of the expansion (8) for
nstep = 3. (b) Prior samples plotted on the continuous domain. (c) Posterior samples
plotted on the continuous domain. (d) The exact solution, exact data and noisy data. (e)
The posterior sample mean and CI on the continuous domain. (f) The posterior sample
means and CIs for the step expansion coefficients.

Here, prior_samples is a Samples object with the generated samples. It obtains the
Geometry-type object from the prior x, here G_step. The prior samples are seen in figure 4(b).
By default, the function values of the samples are plotted, i.e. the step functions.

We assume that the true solution is the step function with the coefficients xstep, figure 3(b).
We then generate synthetic noisy data yobs by drawing a sample from the data distribution y
conditioned on x= xstep:

Figure 4(d) shows the exact solution gstep, the exact data ystep, and the noisy data yobs.
Now we have all the components we need to create the posterior distribution. We achieve

this in CUQIpy by creating a joint distribution of the uncertain parameters x and the data y
using the JointDistribution class, then we condition the joint distribution on the data yobs

to obtain the posterior distribution. The joint distribution is given by

p(x,y) = p(y|x)p(x) , (10)

where p(x) is the prior probability density function (PDF) and p(y|x) is the data distribution
PDF. In CUQIpy, this translates to
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Calling print(joint), for example, gives:

CUQIpy uses MCMC sampling methods, provided by its Sampler classes, to approximate
the posterior and compute its moments, in particular, mean and variance. In this example, we
use a component-wise Metropolis Hastings (CWMH) sampler [35, § 2] and set up an instance
of it by simply passing the posterior as input:

Sampler-type classes implement the methods sample and sample_adapt. The latter adjusts
the sampling scale (step size) to achieve a target acceptance rate, which is method dependent.
For the CWMH sampler, the target acceptance rate is approx. 23%.

We generate 50000 samples using the CWMH sampler:

posterior_samples is a Samples object which contains, in addition to the samples and their
corresponding geometry object, the sampling acceptance and rejection information.

2.6. Posterior samples analysis, and visualization

The Samples class provides analysis, and visualization methods that can be used to study the
posterior samples. Some of these methods integrate functionalities from ArviZ, a python pack-
age for exploratory analysis of Bayesian models [27]. For brevity, we only show some of the
visualization features and refer the reader to CUQIpy’s documentation for more information
on visualization.

A basic Samples operation is to plot selected samples (figure 4(c)):

We visualize the samples credibility interval (CI) using the method plot_ci which generates
a plot of the samples CI, the sample mean, and the exact solution of the Bayesian inverse
problem, if provided:

The first argument is the CI expressed in percent, 95% CI in this case, and the second optional
argument is the exact solution. In figure 4(e), we show the CI plot. Note that in this plot, the
CI is plotted over the continuous domain (0,1) and that the CI encloses the exact solution. We
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can alternatively plot the CI for the coefficients xi by passing the argument plot_par = True
to the plot_ci function, see figure 4(f) for the coefficient CI plot. In this coefficient CI plots,
we also note that xstep lies within the CI.

2.7. Parameterizing the initial condition using KL expansion

Here we present a different parameterization of the unknown initial condition g(ξ) to elaborate
on CUQIpy’s modeling capabilities; we use a truncated KL expansion [23, 44]. Using this
representation we are able to impose some regularity and spatial correlation on g(ξ) and reduce
the dimension of the discretized unknown parameter from n to nKL, where nKL ≪ n.

To do this we wish to express our g as a vector-valued random variable following a zero-
mean Gaussian distribution with a carefully constructed covariance matrix C capturing the
desired variance and spatial correlation. In this particular case, C will be constructed as C=
1
a2EΛ

2ET, where the matrix E is an n× nKL matrix with ortho-normal columns, 1/a2 is the
variance, and Λ is an nKL × nKL diagonal matrix with diagonal elements λi = 1/iγ , where γ
is a constant that controls the decay rate of the diagonal elements. The columns of E are often
chosen to be a discretization of continuous functions on a grid. Here, we choose the sinusoidal
basis functions. This choice ensures that the boundary condition (4b) is imposed on the initial
condition g. It can be shown that g follows the desired distribution if we express it as

g=
1
a

nKL∑
i=1

xi
√

λiei. (11)

Here, xi, i = 1, . . . ,nKL are independent standard normal random variables, known as KL
expansion coefficients, and ei is the ith column of E. We show a few basis functions ei dis-
cretized on grid in figure 5(a). The expansion in (11) is known as the KL-expansion and, if
nKL < n, the expansion is truncated and nKL is the truncation size. This parameterization is a
suitable choice for inferring the initial condition in the heat equation because the corresponding
forward model S is a smoothing operator with rapid eigenvalues decay, namely, exponential
decay [15]. Thus, without parameterization or regularization, recovering the oscillatory com-
ponents of the initial condition is unstable.

We denote by GKL the operator which maps the KL expansion coefficients vector x=
[x1, . . . ,xnKL ] to the approximated discretized initial condition g. We set up the domain
geometry as a KLExpansion geometry and pass the arguments decay_rate = 1.5,
normalizer = 10, and num_modes = 20 for γ, a and nKL, respectively:

As in case of the step expansion, we then set up the prior as a Gaussian distribution with zero
mean and identity covariance, passing also the argument geometry = G_KL and sample the
prior and plot its samples, figure 5(b).

We use the custom initial condition gcustom in (6) as the true solution. Then following the
steps in section 2.5, we create the corresponding synthesized data yobs. We study three cases,
using this initial condition: 0.1% noise case (figure 5, second row), 5% noise case (figure 5,
third row), and 5% noise with data available only on the first half of the domain (figure 5,
fourth row). In the first two cases, we have data measurement everywhere in the domain. To
specify the limited observation in the third case, we pass grid_obs = grid[:50] to the
TimeDependentLinearPDE initializer. We also pass grid[:50] when creating the range
geometry, instead of passing the entire grid. We then create the posterior, and sample it using
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Figure 5. Results for the 1D heat equation-based Bayesian inverse problem in which we
use the KLExpansion geometry and the function gcustom (6) as the exact solution; and set
τmax = 0.01. We study three cases: 0.1% noise level case (second row), 5% noise level
case (third row), and 5% noise level case and data available on the interval (0,0.5) only
(fourth row). For the first two cases the data is available everywhere in the domain. (a)
The KL expansion (11) basis functions ei, for i = 1,2,3,4. (b) Prior samples plotted on
the continuous domain. (c) Posterior samples plotted on the continuous domain for the
second case. For each case, the first column shows the exact solution gcustom, the exact
data ycustom and the observed noisy data yobs, the second column shows the posterior
sample mean and CI on the continuous domain, and the third column shows the posterior
sample means and CIs for the KL expansion coefficients.

the CWMH sampler, posterior samples of the second case are shown in figure 5(c). We note
that as the noise level increases, the width of the continuous CI increases and less modes are
reconstructed with high certainty. Also, observing only on the first half of the domain leads to
a significantly wider CI in the part of the domain where we do not have data, figure 5(k), and
higher uncertainties in the mode reconstructions, figure 5(l).
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This concludes our overview of solving PDE-based Bayesian inverse problems with
CUQIpy. We emphasize that the heat equation example was for demonstration and that the
framework can be applied to wide variety of PDE-based inverse problems. In the next section,
we show how to handle problems modeled in the FEM platform FEniCS.

3. CUQIpy-FEniCS plugin

FEniCS [28] is a popular Python package for solving PDEs using the FEM. The extent of its
users, both in the academia and the industry, makes a dedicatedCUQIpy interface for FEniCS
highly desirable. Here we present our interface plugin: CUQIpy-FEniCS, and revisit the 2D
Poisson example discussed in section 1.2 to unpack the underlying CUQIpy and CUQIpy-
FEniCS components that are used in building the example. In section 4, we present an elabor-
ate test case of using CUQIpy together with CUQIpy-FEniCS to solve an EIT problem with
multiple data sets and in section 5 we showcase using some of the CUQIpy-FEniCS features
in solving a PAT problem with a user-provided forward model.

We use the main modules of FEniCS: ufl, the FEniCS unified form language module, and
dolfin, the Python interface of the computational high-performance FEniCS C++ backend,
DOLFIN. We can import these modules as follows:

The CUQIpy-FEniCS plugin structure can be adopted to create CUQIpy plugins integrat-
ing other PDE-based modeling libraries, e.g. the new version FEniCSx [36].

3.1. PDE-type classes

The CUQIpy-FEniCS plugin defines PDE-type classes, see table 2, that represent PDE prob-
lems implemented using FEniCS. To view the underlying PDE-type class that is used in the
2D Poisson example, we call print(A.pde), where A is the CUQIpy PDEModel defined in
section 1.2, and obtain:

Specifically, the Poisson PDE is represented by the SteadyStateLinearFEniCSPDE class.
Similar to the core CUQIpy PDE-type classes, a CUQIpy-FEniCS PDE-type class contains a
PDE form, which is a user-provided Python function that uses FEniCS syntax to express
the PDE weak form; more discussion on building weak forms is provided in section 4 in the
context of the EIT example. The Python function form inputs are w, the unknown parameter
(log-conductivity in the 2D Poisson example), u, the state variable (or trial function), and p,
the adjoint variable (or test function); and f is the FEniCS expression of the source term.

The CUQIpy-FEniCS PDE-type classes follow the interface defined by the core CUQIpy
abstract PDE class by implementing the methods assemble, solve, and observe.
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Table 2. Modules and classes of the CUQIpy-FEniCS plugin.

Class name Description

cuqipy_fenics.pde module:

FEniCSPDE A base (abstract) class that represents PDE
problems defined using FEniCS

SteadyStateLinearFEniCSPDE A class representation of steady state linear
PDE problems defined using FEniCS

cuqipy_fenics.geometry module:

FEniCSContinuous A class representing FEniCS function
spaces

FEniCSMappedGeometry A class with additional mapping applied to
the function values

MaternKLExpansion A class that builds spectral representation of
Matérn covariance operator on a given
space, represented by a
FEniCSContinuous geometry

cuqipy_fenics.testproblem module:

FEniCSDiffusion1D 1D diffusion PDE problem defined using
FEniCS

FEniCSPoisson2D 2D Poisson PDE problem defined using
FEniCS

The assemble method builds the discretized PDE system to be solved, from the provided
PDE form. In the Poisson example, section 1.2, the system that results from discretizing the
weak form of the PDE (1) using the FEM can be written as:

Kwu= f, (12)

where Kw is the discretized diffusion operator, given the discretized log-conductivity field w.
The vector u is the discretized PDE solution, the potential, and f is the discretized source term.

The solve method solves the linear system (12) using a FEniCS linear solver, that can be
specified by the user. As discussed in section 2, this method represents the discretized solution
operator S, which in this case maps the log-conductivity w used in assembling Kw to the PDE
solution u.

Similarly, as discussed in section 2, the method observe represents the discretized obser-
vation operator O. Since, in this case, the observations are obtained on the entire domain, O
is just an identity operator that maps the full solution u to the observations y= u. In general,
however, O can represent observing parts of the solution only, cf section 2, and/or a derived
quantity of interest, cf section 4 for example.

The SteadyStateLinearFEniCSPDE class additionally implements the method
gradient_wrt_parameter that computes the gradient of O ◦S with respect to the para-
meter w in a given direction, using an adjoint-based approach [16]. The software design
concept of the PDE form above and the adjoint-based gradient computation of the PDE form
follows closely the approach used in hIPPYlib [42, 43].

For brevity we do not provide code for building the SteadyStateLinearFEniCSPDE
object here, as it is provided by the CUQIpy-FEniCS test problem FEniCSPoisson2D, and
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stored in A.pde. How to build PDE-like objects is shown in section 2 for the core CUQIpy,
and in section 4 for the CUQIpy-FEniCS plugin.

3.2. Geometry-type classes in CUQIpy-FEniCS

Geometry-type classes, as we discussed in section 2, mainly serve three purposes. First, they
interface forward models with samplers and optimizers by providing a dual representation of
variables: parameter value and function values representations. Second, they provide visualiz-
ation capabilities for both representations. Lastly, they allow re-parameterizing the Bayesian
inverse problem parameter, e.g. in terms of coefficients of expansion for a chosen basis.
CUQIpy-FEniCS Geometry-type classes serve the same goals, see table 2 for a list of these
classes.

There are two main data structures in FEniCS, Function and Vector. The former is a
class representation of FEM approximation of continuous functions, and the latter is a class
representation of the approximation coefficients of expansion. CUQIpy-FEniCS Geometry-
type classes, subclassed from cuqi.geometry.Geometry, interpret these data structures and
interface them with CUQIpy. Additionally, they provide plotting methods by seamlessly util-
izing the FEniCS plotting capabilities. This enables CUQIpy-FEniCS to visualize function
value representation of variables, as in figure 1(a), as well as, parameter value representation
of variables, as in figure 1(f). The plotting implementation details are hidden from the user;
and the user is provided with the CUQIpy simple plotting interface as shown for example in
section 2.

CUQIpy-FEniCS Geometry-type classes provide useful parameterization and mapping
functionalities. Here we discuss the FEniCSContinuous and the MaternKLExpansion
Geometry-type classes, both are used in the 2D Poisson, the EIT, and the PAT examples.
The most basic CUQIpy-FEniCS Geometry-type class is the FEniCSContinuous geometry
which represents FEniCS FEM function spaces. We can write a FEM approximation wFEM(ξξξ)
of a continuous function w(ξξξ) as

w(ξξξ)≈ wFEM (ξξξ) =

nFEM∑
i=1

wFEM
i eFEMi (ξξξ) , (13)

where {eFEMi (ξξξ)}nFEMi=1 are FEM basis functions defined on a given mesh, wFEM =
[wFEM

1 ,wFEM
2 , . . . ,wFEM

nFEM ]
T is the vector of the corresponding FEM coefficients of expansions,

and nFEM is the number of basis functions. The FEniCSContinuous.par2fun method con-
verts a NumPy array to a FEniCS Function object representing wFEM(ξξξ). This is achieved
by interpreting the array elements as the FEM expansion coefficients wFEM. The method
fun2par converts a FEniCS Function objects representing wFEM(ξξξ) to a NumPy array of
the FEM expansion coefficients wFEM. We denote by GFEM the operator implemented by the
par2fun method which maps wFEM to wFEM(ξξξ). We use the FEM coefficient vector notation
wFEM when referring the FEM function wFEM(ξξξ), for simplicity. To create an object of the
FEniCSContinuous class, which we use for example to represent the observations y in the
Poisson example and refer to as G_FEM, we first define the FEniCS function space on which
the parameter is represented
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mesh is the FEniCS computational mesh representing the physical domain of the problem,
and parameter_space is a FEniCS first-order Lagrange polynomial space defined on mesh.
We are now ready to create the FEniCSContinuous object as follows

In some cases, re-parameterizing the Bayesian inverse problem parameter is needed to
enforce certain type of solutions. One such re-parameterization, that is used in the Poisson
example, is to enforce smooth solutions through a KL expansion. In CUQIpy-FEniCS, a
KL parameterization can be represented by a MaternKLExpansion geometry. This geometry
is used to approximate the FEM coefficient of expansion vector wFEM by a truncated KL
expansion w:

wFEM ≈ w=

nKL∑
i=1

xi
√
λieKLi . (14)

Here, x= [x1,x2, . . . ,xnKL ]
T is the KL-expansion coefficient vector, {λi}nKLi=1 are a decreasing

sequence of positive real numbers, and {ei}nKLi=1 is a set of FEM coefficient vectors of ortho-
normal functions. MaternKLExpansion constructs this KL expansion by discretizing a covari-
ance operator—specifically, a Matérn-class covariance operator ( 1

ℓ2 I−∆)−( ν
2 +

d
4 ) with ℓ > 0,

a smoothness parameter ν > 1, and the physical domain spatial dimension d= 1,2 or 3 [13]—
on a FEM function space, parameter_space in this case.We then exploitFEniCS eigenvalue
solvers to obtain the approximate eigenpairs {(

√
λi,ei)}nKLi=1. We refer to (14) as the KL para-

meterization of w with the KL coefficients x. Note that choosing, nKL ≪ nFEM reduces the
dimension of the parameter space which simplifies solving the Bayesian inverse problem and
is typically an accurate approximation in representing smooth fields.

We denote by the operatorGKL_VEC themap from the KL expansion coefficients x to the FEM
expansion coefficients w. The MaternKLExpansion object thus represents the map GKL :=
GFEM ◦GKL_VEC. In the 2D Poisson example, section 1.2, the MaternKLExpansion is internally
created by the FEniCSPoisson2D test problem as

and it is used as the domain geometry of the model A to approximately parametrize the log-
conductivity wFEM(ξξξ) by KL expansion coefficients x. The MaternKLExpansion class addi-
tionally implements the method gradient which computes the gradient of the map GKL with
respect to the coefficients x in a given direction.

3.3. Integration into CUQIpy through the PDEModel class

The CUQIpy-FEniCS PDE-type and Geometry-type objects provide the building blocks
required to create the forward map A, e.g. (2). The CUQIpy PDEModel combines these
FEniCS-dependent objects and interface them to the coreCUQIpy library. We run print(A),
where A is the CUQIpy model defined in section 1.2 to see its contents:
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We note its domain geometry (in the first line) corresponds to G_KL and its range geometry
(second line) is G_FEM. We write A in terms of its components as:

A(x) = (O ◦S ◦GKL)(x) . (15)

PDEModel provides the forward method that corresponds to applying A. Additionally,
it provides a gradient method to compute the gradient of A with respect to the parameter
x, if the underlying Geometry and PDE objects have gradient implementation. This enables
gradient-based posterior sampling such as by the NUTS sampler which we use in section 1.2.

The following section gives an elaborate case study of using CUQIpy-FEniCS to solve an
EIT problem. We provide details of constructing the software components needed to build and
solve the problem using CUQIpy equipped with CUQIpy-FEniCS.

4. CUQIpy-FEniCS example: EIT

EIT is an imaging technique of inferring the conductivity of an object from measurements of
the electrical current on the boundary. This is a non-invasive approach in medical imaging
for detecting abnormal tissues. Similar techniques are used in many other applications, such
as industrial inspection. The underlying mathematical model for EIT is an elliptic PDE. Such
PDEs are some of the most popular models for PDE-based inverse problems, e.g. in model-
ing subsurface flow in a porous medium, and inverse steady-state heat transfer problem with
unknown heat conductivity. Hence, the EIT model can be modified for use in a wide range of
PDE-based inverse problems.

Inferring discontinuous fields is a common problem in many inverse problems applications.
Such fields are used, for example, to model tumors in medical imaging applications, abnormal-
ities in fault detection applications, and inhomogeneity in geophysics applications. A classic
approach to incorporate such fields into a Bayesian inverse problem is to use aMarkov random
field (MRF)-type prior, discussed in detail in [35]. However, such priors often result in a large
set of parameters, yielding inefficient numerical uncertainty quantification methods for fine
discretization levels. Recently, a new class of Bayesian priors has emerged where a discon-
tinuous field is constructed using a non-linear transformation of a continuous prior [2, 13, 24].
A continuous prior can be constructed with a relatively few parameters, e.g. using a KL expan-
sion. A deterministic non-linear transformation is then chosen prior to inference to capture the
properties of the unknown field being inferred. Therefore, efficient numerical inference meth-
ods can be constructed. The level-set prior [24] is one such prior where discontinuities in the
field are defined to be the zeros level-set of a smooth Gaussian random field, e.g. a KL expan-
sion. In this EIT example, we utilize the Bayesian level-set approach to perform uncertainty
quantification for the EIT problem.
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4.1. Mathematical model of EIT

We follow the EITmodel presented in [37] in 2D. LetΓ⊂ R2 be the open unit disk representing
an object, and let σ : Γ̄→ R represent the conductivity of the object, where Γ̄ is the closure of
the set Γ. Suppose we impose a sequence of electric potentials gk(ξ), k ∈ N, at the boundary
∂Γ. We can then find the distribution of the electric potential uk, associated to gk, inside the
object from the elliptic PDE

−∇ · (σ (ξξξ)∇uk (ξξξ)) = 0, ξξξ ∈ Γ,k ∈ N+ (16a)

uk (ξξξ) = gk (ξξξ) = sin

(
karctan

(
ξ2

ξ1

))
, ξξξ ∈ ∂Γ,k ∈ N+. (16b)

Here, σ(ξξξ) is the conductivity as a function of the Cartesian coordinates ξξξ = [ξ1, ξ2]T, and
k ∈ N+ is some spatial frequency of the boundary electric potential. Note that the boundary
condition (16b) for the electric potential is chosen from [5] which is an approximation of the
full-electrode model introduced in [37].

The EIT problem is the inverse problem of inferring the conductivity σ by imposing mul-
tiple boundary potentials gk(ξ), e.g. for k= 1,2,3, . . . , and measuring the corresponding cur-
rent yk(ξξξ), defined by

yk (ξξξ) :=
σ (ξξξ)∂uk (ξξξ)

∂n
, (17)

at the boundary ∂Γ. Here, n is the outward unit vector, orthogonal to the boundary ∂Γ. This
EIT model corresponds to the Dirichlet-to-Neumann EIT model, also known as the shunt
model [37].

We are interested in piece-wise constant conductivity σ with background conductivity value
σ− = 1 and foreground conductivity value σ+ = 10. This contrast between foreground and
background is a common difference between a healthy and an unhealthy (e.g. cancerous) tissue
[5]. We also assume that the foreground represents an inclusion far from the boundaries, sim-
plifying the boundary measurement to

yk (ξξξ) =
∂uk (ξξξ)
∂n

, ξξξ ∈ ∂Γ, (18)

since σ(ξξξ)≡ σ− = 1 on the boundary. We define the parameter-to-solution operator Sk as the
mapping from the conductivity σ(ξξξ) to the solution uk(ξξξ) of the PDE (16). We also define the
observation operatorO that maps the PDE solution uk(ξξξ) to the boundary current measurement
yk(ξξξ), with ξ ∈ ∂Γ. Note that the observation operator O does not explicitly depend on the
frequency k.

In practice only a finite number of frequencies k, in (16), is considered. In this section we
only consider k= 1,2,3 and 4.

4.2. Finite element discretization and FEniCS implementation of EIT

Let H1(Γ) [1] be the Hilbert space in which we expect the solution uk of equation (16) to
belong.We now reformulate (16) to obtain an elliptic PDEwith homogeneous Dirichlet bound-
ary conditions. This can be achieved e.g. using the liftingmethod [32]. This approach simplifies
the finite element approximation of (16).
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We define lifting functions uliftk ∈ H1(Γ), k= 1,2,3 and 4, that satisfy the boundary input
in (16), i.e. uliftk (ξξξ)|∂Γ = uk(ξξξ)|∂Γ = gk(ξ), and vanishes away from the boundary. Introducing
a new variable vk = uk− uliftk allows us to reformulate (16) as

−∇ · (σ (ξξξ)∇vk (ξξξ)) = ∆uliftk (ξξξ) , ξξξ ∈ Γ, k= 1,2,3,4, (19a)

vk (ξξξ) = 0, ξξξ ∈ ∂Γ. (19b)

The potential uk is now recovered from the relation uk = vk+ uliftk , for k= 1,2,3 and 4.
Taking test function t(ξξξ) ∈ H1(Γ), we form the weak formulation [32] of (19) asˆ

Γ

σ∇vk ·∇t dξξξ =−
ˆ
Γ

∇uliftk ·∇t dξξξ. (20)

Similarly, we let H1
p(∂Γ) be the space which the observation function yk belong to. Here,

the subscript ‘p’ denotes the Hilbert space of periodic functions. Taking a test function w ∈
H1

p(∂Γ), we can form the weak form for the boundary measurement as
ˆ
∂Γ

ykw dξξξ =
ˆ
∂Γ

∂vk+ ∂uliftk
∂n

w dξξξ. (21)

Here, we used the relation ∂uk/∂n= ∂(vk+ uliftk )/∂n. Note that due to the lifting approach,
the observation now depends on the frequency k. We emphasize this by introducing the sub-
script k for the observation operator, i.e. we define Ok to be the mapping from vk to yk.

We discretize the domain Γ using a triangulated mesh. Furthermore, we choose first-
order Lagrangian polynomial functions [32] to approximate the basis functions of H1(Γ) and
H1

p(∂Γ). We implement the left-hand-side and the right-hand-side of (20) using FEniCS as

Here, the functions form_lhs and form_rhs1 return the FEniCS weak forms of the left-
hand side and the right-hand side (for k= 1) of (20), respectively. Furthermore, the FEniCS
function u_lift_1 contains the user-defined lifting function. We refer the reader to the codes
accompanying this paper for more details. Note that since vk is the solution to the PDE (20),
we may use the same form_lhs for all frequencies k= 1,2,3 and 4. We construct similar
functions form_rhs2, form_rhs3, and form_rhs4 for the input frequencies k= 2,3 and 4.

We now implement the observation function (21). Let give_bnd_vals be a Python func-
tion that computes function values at the boundaries of Γ. The observation function then takes
the form

Here, n is a FEniCS vector containing the unit outward normal vectors to the cell boundaries
and v1 is a FEniCS function of the solution v1, and w is a FEniCS test function. We construct
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similar functions observation2, observation3, and observation4 for the input frequen-
cies k= 2,3 and 4.

The FEM discretization of (20) results in a finite-dimensional system of equations

Mσvk = bk, k= 1,2,3,4, (22)

and the discretized observation model

yk = Ok (vk) , k= 1,2,3,4. (23)

Here,σ and vk are the FEM expansion coefficients for σ and vk, respectively. Furthermore,Mσ

is the FEM mass matrix, i.e. the discretization of the elliptic operator ∇·σ∇, that depends
on the unknown parameter σ, and bk is the right-hand-side vector containing the estimated
integrals in the right-hand-side of (20). Furthermore, yk is the observation vector, and Ok is a
discretization of the observation map Ok.

We now define the EIT forward maps Ak to be

yk = Ak (σ) := Ok ◦Sk (σ) , k= 1,2,3,4, (24)

where Sk is the FEM discretization of Sk discussed above.

4.3. Parameterization of the conductivity σ

In this section we consider the level-set parameterization for the conductivity σ proposed in
[13]. This approach comprises multiple layers of parameterization. In this section we use the
geometry module in CUQIpy-FEniCS to implement such layered parameterization.

Let us first define the FEniCS function space in which we expect σ to belong

Here, mesh is the computational mesh used for FEniCS. Recall that parameter_space is a
FEniCS function space with linear continuous elements. Similarly, we can define a FEniCS
function space solution_space on which the solutions vk defines a function.

Now we define a discrete Gaussian random field r defined on Γ, i.e. realizations of r are
FEM expansion coefficients of a random functions defined on Γ. One way to define such a
random function is to use a truncated KL-expansion with a Matérn covariance, as discussed in
section 3.2, to approximate r the same way w is approximated in (14).

To construct the geometry associated to the KL parameterization, we first consider the
operator GFEM to be the map from FEM expansion coefficients to a FEniCS function (see
section 3.2). The corresponding geometry is defined as

We now construct the geometry associated with the KL parametrization. This geometry is
associated with the operator GKL defined in section 3.2.

Here length_scale is the length scale constant of the Matérn covariance and num_terms is
nKL, the number of terms in the KL expansion. The geometry G_KL is now the implementation
ofGKL which maps x, the vector containing the KL expansion coefficients in (14) to the vector
r. Note that we used parameter_space as the FEniCS function space associated with r.
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Now to relate the Gaussian function r to the conductivityσwe define the Heaviside function
[45] GHeavi as an additional layer of parameterization

σ = GHeavi (r) :=
1
2

(
σ+ (1− sign(r))+σ− (1+ sign(r))

)
. (25)

This map GHeavi constructs a piece-wise constant conductivity σ. Note that the Heaviside map
must be applied to the function r, the FEM function associated to r, which constructs a con-
ductivity σ. However, in the case of linear Lagrangian FEM elements, we can directly apply
the Heaviside map to the expansion coefficients r and obtain σ as in (25).

We can construct this parameterization in CUQIpy-FEniCS as

Here, heaviside is a Python function that applies the Heaviside map (25), see
the companion code for more implementation details. By passing map = heaviside,
FEniCSMappedGeometry applies heviside to G_KL.

We redefine the forward operators to use the parameterizations discussed:

Ak = Ok ◦Sk ◦GHeavi ◦GKL, k= 1,2,3,4. (26)

We define the range geometry as a Continuous1D geometry:

where m is the dimension of any observation vector y1,y2,y3 or y4. In the experiments in this
section we set m = 94.

4.4. PDEmodel for the EIT problem

Now we have all the components to define a CUQIpy-FEniCS PDE object . We first create a
PDE form by combining the left-hand-side and right-hand-side forms, defined in section 4.2,
in a Python tuple as

Since (19) is a steady state linear PDE, we use the SteadyStateLinearFEniCSPDE class to
define this PDE in CUQIpy-FEniCS.

Recall that solution_space is the FEniCS space for the solution vk in (22), zero_bc is
the FEniCS implementation of the homogeneous Dirichlet boundary conditions for (19), and
observation1 is the observation Python function defined in section 4.2. The key argument
reuse_assembled = True informs CUQIpy-FEniCS to store and reuse matrix factors of
Mσ , for a particularσ, when solving the system (22). This provides a significant computational
acceleration.
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We note that PDE problems (19) for frequencies k= 2,3 and 4 differ from the frequency
k= 1 only in the right-hand-side term and the observation operator. We can exploit this to
construct PDE2, for frequency k= 2, as

And similarly we construct PDE3 and PDE4. Note that the matrix factorization ofMσ is shared
among PDE1, PDE2, PDE3, and PDE4.

Nowwe can create a PDEModel that represents the forward operatorA1 and includes inform-
ation about the parameterization of σ.

Similarly we define A2, A3, and A4 for the input frequencies k= 2,3 and 4 corresponding to
the forward operators defined in (26).

4.5. Bayesian formulation and solution

In this section we formulate the EIT problem in a Bayesian framework. Let x be a vector
containing the expansion coefficients {xi}nKLi=1 in (14). In the Bayesian formulation of the EIT
problem the posterior distribution of the unknown parameter x is the conditional probability
distribution of x given observed data yobs1 ,yobs2 ,yobs3 and yobs4 . Here, we assume white Gaussian
data noise. This Bayesian problem takes the form

x∼ Gaussian(0,InKL) ,

yk ∼ Gaussian
(
Ak (x) ,s2noiseIm

)
, k= 1,2,3,4.

Here, snoise is the standard deviation of the data distribution. We use CUQIpy to implement
these distributions.

and similarly we define y2, y3, and y4 for k= 2,3 and 4. We pass the argument
geometry = G_Heavi when initializing x to specify that samples from this distribution fol-
low the parameterization discussed in section 4.3. We can sample from the prior distribution
and plot the samples using the following:

Examples of prior samples can be found in figure 7. Note that CUQIpy-FEniCS visualizes
these samples as FEniCS functions.

To create simulated data for this EIT problem, we consider the conductivity field σtrue com-
prising 3 circular inclusions. The coordinates of the centers of the inclusions are (0.5,0.5),
(−0.5,0.6) and (−0.3,−0.3) with radii 0.2, 0.1 and 0.3, respectively. We also assume con-
ductivity values of σ+ = 10 and σ− = 1 inside and outside of inclusions, respectively. We
can obtain the FEM expansion coefficients σtrue by projecting σtrue onto the FEM basis. Note
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Figure 6. (a) The true (but assumed unknown) conductivity field σ (left) and the projec-
ted conductivity field onto the FEM space (right). (b) The exact boundary measurement
values and the noisy boundary measurement values for frequencies k= 1,2,3,4. Here
we only present the data collected with 20% noise level.

that we introduce an approximation in this projection. The true and the projected conductivity
phantoms are presented in figure 6(a). Note that this conductivity field is not sampled from
the prior distribution, and thus, there is no true parameters xtrue that gives rise to the exact
conductivity σtrue.

Data is created by adding additive Gaussian noise, with standard deviation snoise, to yexactk :=
Ak(σtrue), for k= 1,2,3,4, at noise levels 5%, 10% and 20%. The true and the noisy data with
20% noise level are presented in figure 6(b).

Now we have all the components we need to create a posterior distribution. We first define
the joint distribution

p(x,y1,y2,y3,y4) = p(x) p(y1|x) p(y2|x) p(y3|x) p(y4|x) , (27)

where p(x) is the prior probability density function (PDF) and p(yk|x), for k= 1,2,3 and 4,
are the data distribution PDF. We obtain the posterior distribution by conditioning the joint
distribution on the data yobsk , for k= 1,2,3 and 4. In CUQIpy this translates to

In this test case, we use the standard Metropolis-Hastings (MH) algorithm [35, § 2] to
sample from the posterior. We pass the posterior as an argument in the initialization and then
compute 106 samples using this sampler.

In what remains in this section we discuss how to use posterior_samples in CUQIpy-
FEniCS to visualize the posterior distribution.
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Figure 7. Samples from the prior and posterior distributions of σ. First column: prior
samples. Second, third and fourth columns: posterior samples of σ with 5%, 10% and
20% noise level, respectively.

4.6. Posterior samples, post-processing and visualization

We analyze and visualize the posterior using CUQIpy equipped with CUQIpy-FEniCS geo-
metries. We first plot some of the posterior samples using the plot method.

This command chooses 5 random posterior samples and plots them.We provide these posterior
samples of the conductivity field σ in figure 7 (second to fourth column), for noise levels 5%,
10% and 20%, respectively, only two samples are shown for each case for brevity. We see that
the reconstruction in the samples degrades, compared to the true conductivity σtrue, for higher
noise levels. In addition, we see the discrepancy between the samples and σtrue happens near
the center of the domain.

Now we want to estimate and visualize the posterior mean as an estimate for the conduct-
ivity field σ. We can achieve this using the command

Note that posterior_samples is equipped with the G_heavi geometry. Therefore,
plot_mean will apply this geometry, i.e. the parameterization GHeavi ◦GKL to the posterior
mean. The mean conductivity field is provided in figure 8(a). We see that for increased noise
level, the posterior mean less resembles the true conductivity field σtrue.
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We use the point-wise variance of the posterior samples as a method for quantifying the
uncertainty in the posterior. We can achieve this in CUQIpy-FEniCS by

Here, the Samples property funvals converts the parameter samples to function value
samples and return them in a new Samples object, i.e. it applies the map GHeavi ◦GKL to
generate the function value samples. Similarly, the Samples property vector converts these
samples to a vector representation, the DOF of the FEniCS functions in this case. Eventually,
the variance is computed over this vector representation and then plotted as a FEniCS func-
tion. The point-wise variance is presented in figure 8(b). We see that the uncertainty in the
reconstruction is associated with the boundaries of the inclusions, as well as, distance from
the domain boundary. Furthermore, adding noise increases the level of uncertainty. This is
consistent with findings of [13].

Finally we visualize the posterior for the expansion coefficients x. We use plot_ci method
to visualize the posterior mean and the 95% CIs associated with the parameters. To indicate
that we are visualizing the posterior for the coefficient (parameter) x, we pass the argument
plot_par = True to the plot_ci method.

In figures 9(a)–(c) we present the CI plots for noise levels 5%, 10% and 20%, respectively.
We see that for the case with 20% noise level, the mean of xi is close to zero, for larger indices
i. This suggests that for higher noise levels, the value of xi follows the prior distribution and
the information associated to these coefficients is lost in the data distribution. This is not the
case for smaller noise levels, e.g. 5%.

5. PAT through user-defined PDE models

In many applications of UQ for inverse problems a well-developed forward problem solver is
created by the user. Therefore, it is of high interest that CUQIpy and CUQIpy-FEniCS can
incorporate such black-box forward solvers.

In this section we discuss how to use a black-box code inCUQIpy andCUQIpy-FEniCS to
quantify uncertainties for inverse problems with PDEs. In addition, we discuss how to exploit
geometries in CUQIpy-FEniCS, in such cases, to visualize uncertainties, without modifying
the original black-box software.

To demonstrate the user-defined features of CUQIpy and CUQIpy-FEniCS, we consider
a 1D PAT problem [41]. In such problems, a short light pulse is illuminated onto an object
to create a local initial pressure distribution. This pressure distribution then propagates in the
object in the form of ultrasound waves. The PAT problem is then to reconstruct the initial pres-
sure distribution from time-varying ultrasound measurements. For the 1D variant, we consider
a 1D pressure profile with r= 2 ultrasound sensors to measure pressure variations.

5.1. Mathematical model of PAT

Let us consider an infinitely long 1D acoustic object with homogeneous acoustic proper-
ties (homogeneous wave speed). Assuming that the illumination duration via a light pulse

30



Inverse Problems 40 (2024) 045010 A M A Alghamdi et al

Figure 8. Estimated conductivity field σ with uncertainty estimates, visualized as
Heaviside-mapped KL expansion. (a) Posterior mean (b) point-wise variance.

Figure 9. Estimation of x, i.e. the first 35 coefficients of the KL expansion in (14) and
their uncertainty. (a) 5% noise (b) 10 % noise (c) 20 % noise.

is negligible compared to the speed of wave propagation, we can approximate the propagation
of waves in the object by the hyperbolic PDE (linear wave equation)

∂2u(τ,ξ)
∂τ 2

=
∂2u(τ,ξ)

∂ξ2
, 0< τ ⩽ 1, ξ ∈ R, (28a)

u(0, ξ) = g(ξ) , ξ ∈ R, (28b)

∂u(0, ξ)
∂τ

= 0, ξ ∈ R. (28c)

Here, u is the pressure distribution, g the initial pressure distribution, and τ the time.
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We place 2 pressure sensors at locations ξL = 0 and ξR = 1 that record the pressure over
time. We define continuous measurements

yL (τ) := u(ξL, τ) , yR (τ) := u(ξR, τ) , 0< τ ⩽ 1. (29)

Let y := [yL,yR] and r= 2 in case of the availability of full-data and y := yL and r= 1 in case
only partial-data is available. The inverse problem is to find the initial pressure g from meas-
urements y.

We define the parameter-to-solution operator S of the PAT problem to be the map that maps
g(ξ) to the solution u(τ,ξ) for all 0< τ ⩽ 1 and ξ ∈ R. Furthermore, we define the observation
operator O to be the mapping that maps (slices) the solution u(τ,ξ) to the measurements y.
Note that the forward operator

A :=O◦S, (30)

is a linear operator. We are interested in recovering the initial pressure profile g(ξ) in the
domain Γ = [ξL, ξR] = [0,1] from the full data, where pressure measurements from both ξL
and ξR is available. In addition, we also investigate reconstructing g from partial data, where
pressure measurement is only available at ξL.

5.2. CUQIpy implementation of PAT

In this section we assume that a discretization S of S is available that approximately solves the
wave equation (28). Furthermore, we assume that the input of S is a vector g which represents
a discretization of g. Note that the discretization S is a generic discretization and we treat it as
a black-box solver. However, the particular discretization used in this paper is available in the
accompanying codes.

We consider a discretization O of the observation operator O. We choose a measure-
ment frequency f = 250 and construct discrete measurement vector y comprising snapshots
[u(ξL, i/f),u(ξR, i/f)] and u(ξL, i/f) for the full-data and partial-data measurement, respectively,
where i = 1, . . . ,m and m= 250.

We consider a simple Bayesian problem where we assume the components of g have a
Gaussian distribution and the pressure measurements are corrupted by additive white Gaussian
noise. We can formulate this problem as

g∼ Gaussian
(
0,Ing

)
,

y∼ Gaussian
(
A(g) ,s2noiseIrm

)
.

Here, ng = 121 is the size of g, and snoise = 0.125 is the standard deviation of the noise.
Furthermore, A represents the user’s discretization of the forward operator A, and PAT is a
black-box Python function applying the photo-acoustic forward model A.

We set up the Bayesian Problem with Gaussian prior and data distribution:

Note that CUQIpy, by default, considers Continuous1D geometry for the initial pressure.
Therefore, we do not explicitly define it. When incorporating black-box forward solvers within
CUQIpy, the user has access to complex priors for g, following examples in the companion
paper [35]. As an example, when the location of jumps in the initial pressure is the quantity
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Figure 10. (b) True initial pressure for the PAT problem. (a) and (c) noisy and noise-free
data collected for the PAT problem with sensors at ξL = 0 and ξR = 1, respectively.

of interest in the inverse problem, we can consider a Markov-random-field-type prior. Using
such prior distributions is discussed in [35].

We consider now a known true initial pressure gtrue and its discretization array g_true from
which we can construct noisy measurements yobs

Figure 10 shows the initial pressure distribution and exact and noisy pressure measurements
for sensors located at ξL = 0 and ξR = 1.

Instead of constructing the posterior and sampling it, we wish to demonstrate how to for-
mulate this same problem using the CUQIpy-FEniCS plugin. Since sampling is done in the
same way, we demonstrate it at the end of the following section.

5.3. CUQIpy-FEniCS implementation of PAT

Here, we assume that PAT is a Python function with a FEniCS implementation of the forward
operator A. We also assume this function take a FEniCS function g as input and computes
the boundary pressure measurement y. Let us first define the FEniCS function space where g
defines a function

Here, mesh is a discretization of the real line and parameter_space is a FEniCS function
space with first order Lagrangian hat-functions. We parameterize g with a KL-expansion with
a Matérn covariance associated to the map GKL (see sections 3.2 and 4.3). We now redefine
the forward operator

A= O ◦S ◦GKL. (31)

We set up a geometry for the KL-expansion with CUQIpy-FEniCS (see section 3.2) as
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The geometry G_KL is the implementation of GKL with Matérn length scale constant ℓ= 0.1
and regularity constant ν= 0.75, and nKL = 100 terms. We set up a FEniCSMappedGeometry
with a map function prior_map to scale the KL mapped field by a scalar value, 15 in this
case. We do this to enable inferring pressure signals with a larger magnitude.

We construct a continuous 2D geometry for the observations in which one axis represents
the observation times and the other axis represents the sensor locations.

where obs_times and obs_locations are arrays of the observation times and locations. Now
we create a CUQIpymodel to encapsulate the forward operator PAT with the parametrization,
represented by the domain geometry, and the range geometry,

Note that in creating this model we are treating PAT as a black-box function. Now, CUQIpy-
FEniCS can utilize the information about domain and range geometries to allow advanced
sampling and visualization.

The parameterized Bayesian problem for the PAT now takes the form

x∼ Gaussian(0,InKL) ,

y∼ Gaussian
(
A(x) ,s2noiseIrm

)
.

where rm is the size of yobs. Note that A now contains the KL-expansion parameterization. We
can set up this Bayesian problem as

In this example we consider the same s_noise, as well as, the same noisy data y_obs as
in section 5.2. Similar to the previous sections we now construct the joint and the posterior
distributions.

Setting up a Bayesian problem for the partial data, e.g. when we place a sensor only on
ξL = 0, is similar. To explore the posterior, we use the preconditioned Crank–Nicolson (pCN)
[12] sampler which is suited for the KL parameterization.

34



Inverse Problems 40 (2024) 045010 A M A Alghamdi et al

Figure 11. Estimated initial pressure profile g together with the uncertainty estimates.
The plots correspond to the (a) full data and (b) partial data.

Figure 12. Estimation of the first 25 components of x, i.e. KL expansion coefficients
in (14), and the uncertainty in this estimation. (a) Full data and (b) partial data.

We can visualize the posterior for g, i.e. the initial pressure distribution, by

This plots the mean function for g and the CIs associated with this estimate in figure 11.We see
that the mean function, in the case with complete data, is a better estimate for the true initial
pressure profile compared to the case with partial data. Furthermore, when data corresponding
the right boundary is missing, the uncertainty in estimating the right boundary increases.

Finally, we plot the mean and 95% CI for the expansion coefficients x:

In figures 12(a) and (b) we present the CI plots for the full data (from both boundaries) and
the partial data (only from the left boundary), respectively. Note that we only show the first 25
components although we estimate all 100 parameters. We see that the uncertainty of the first
coefficient significantly increases for the case with partial data.

6. Conclusion and future work

In this paper we described our general framework for modeling and solving PDE-based
Bayesian inverse problems with the CUQIpy Python software package.We showed how to
express PDEs natively in CUQIpy, or using a user-provided black-box PDE solver. We
also showed how to formulate statistical assumptions about unknown parameters using
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CUQIpy and conduct Bayesian inference and uncertainty quantification. We also presented
our CUQIpy-FEniCS plugin as an example of how to incorporate modeling by third-party
PDE libraries such as the finite-element modeling package FEniCS.

We showed thatCUQIpy andCUQIpy-FEniCS provide a consistent and intuitive interface
to model and solve PDE-based Bayesian inverse problems, as well as analyze and visualize
their solutions. Results were shown for parabolic, elliptic and hyperbolic examples involving
the heat and Poisson equations as well as application case studies in EIT and PAT.

Future work includes expanding support for derivatives across distributions, forward mod-
els, and geometries, as well as integrating PyTorch automatic differentiation into CUQIpy
through the CUQIpy-PyTorch plugin. This will simplify the use of gradient-based samplers
such as NUTS, as in the Poisson example in this paper, to help address the computational chal-
lenge of MCMC-based sampling of high-dimensional and complicated posterior distributions
arising in large-scale inverse problems. The extensible plugin structure can also be used to
integrate more PDE-based modeling libraries.

Overall, we believeCUQIpy and its plugins provide a promising platform for solving PDE-
based Bayesian inverse problems and have a significant potential for further development and
expansion in the future.
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