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ABSTRACT
We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave
method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations,
namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually indepen-
dent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique
among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new fea-
tures and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic
user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the
Bethe–Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation
of the Kohn–Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-
collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal
point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications
to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0182685

I. INTRODUCTION

The electronic-structure (ES) problem, i.e., the solution to the
time-independent Schrödinger equation for a collection of elec-
trons and atomic nuclei, forms the starting point for the quantum-
mechanical treatment of matter. Indeed, all chemical and physical
properties of any substance (solid, molecule, surface, etc.) can, in
principle, be obtained from the energies and wave functions that
constitute the solution. A pioneering step towards solving the many-
body ES problem was the formulation and formal proof of density
functional theory (DFT) by Hohenberg and Kohn in 19641 and a
practical scheme for its solution by Kohn and Sham in 1965.2 At
present, most codes solving the ES problem from first principles
are based on DFT. Such codes are extremely powerful and allow
one to determine the atomic structure of solids and molecules con-
taining hundreds of atoms with a relative error below 1%.3–5 Once
the atomic structure of the compound has been solved, its proper-
ties (electronic, magnetic, optical, topological, etc.) can, in principle,
be determined. The evaluation of properties often involves theo-
ries beyond the formal DFT framework to account for effects such
as temperature and lattice vibrations,6,7 many-body interactions in
excited states,8,9 or time dependence.10,11 As such, first-principles
atomistic calculations often involve two successive phases: the solu-
tion of the ground-state ES problem (including ion dynamics) and
the subsequent evaluation of physical properties. This review is
structured accordingly, as Secs. III and IV deal with the first phase
while Secs. V–IX are devoted to the second.

In recent years, the scientific significance of ES codes has shifted
from a useful tool to describe and understand matter at the atomic
scale to an independent driver of the discovery and development
of new materials.12–16 This change in scope has been fueled by the

exponential increase in computer power accompanied by improved
numerical algorithms17,18 as well as the use of workflow manage-
ment software for high-throughput computations19–22 and the adop-
tion of machine-learning techniques to leverage the rapidly growing
data generated by ES codes.23–25 In parallel with these capacity-
extending developments, continuous progress in the fundamental
description of exchange–correlation effects has advanced the predic-
tive power of ES calculations to a level where they rival experiments
in terms of accuracy for many important properties.26–31

The grid-based projector-augmented wave (GPAW) code was
originally intended as a Python-based multigrid solver of the basic
DFT equations within the projector-augmented wave (PAW) for-
malism.32 The name GPAW, accordingly, was an abbreviation for
“grid-based projector-augmented wave.” At present, other choices
than regular grids for representations of the wave functions exist
in GPAW, but the name has stuck. During the years 2005–2010,
GPAW evolved to a full-blown DFT package33 supporting most
of the functionality expected from a modern ES code, in addition
to a few more specialized features, including real-time propagation
of wave functions34 and an alternative basis of numerical atomic
orbitals [referred to as the linear combination of atomic orbitals
(LCAOs) basis]35 to supplement the real-space grid. In 2011, a
plane-wave (PW) basis set was also implemented. At present, the
possibility to use three different types of basis sets and even com-
bine them within a single run remains a unique feature of GPAW,
rendering the code very versatile.

The implementation of the PW basis set laid the groundwork
for GPAW’s linear-response module, which at present supports
the calculation of linear response functions,36 total energies from
the adiabatic connection fluctuation–dissipation theorem,29,37 the
GW self-energy method for quasiparticle band structures,38 the
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Bethe–Salpeter Equation (BSE) for optical excitations,39 and more.
The code also supports a wide range of features related to the calcu-
lation of magnetism and spin–orbit effects. Examples include spin-
spiral calculations using the generalized Bloch theorem,40 external
magnetic fields, orbital magnetization, magnetic anisotropy,41 adia-
batic magnon dispersions from the magnetic force theorem,42 and
dynamic magnetic response from time-dependent density func-
tional theory (TDDFT).43 For solids, the k-space Berry phases can
be computed directly from the Bloch orbitals and may be used to
obtain spontaneous polarization,44 Born effective charges, piezoelec-
tric response tensors,45 and various indices characterizing the band
topology.46

In addition, GPAW can compute the localization matrices
forming the basis for the construction of Wannier functions with,
e.g., the Atomic Simulation Environment (ASE)47 or Wannier90.48

Electrostatic corrections to the formation energies of charged
point defects in insulators are implemented, as are calculations of
the hyperfine coupling and zero-field splitting for localized elec-
tron spins. GPAW also offers the possibility to perform time-
independent, variational calculations of localized electronic excita-
tions in, e.g., molecules or crystal point defects, using direct orbital
optimization strategies implemented for all three types of basis
sets.49–51 This provides an efficient and robust alternative to tra-
ditional “ΔSCF” approaches. GPAW can also be used to describe
ultrafast electron dynamics within time-dependent density func-
tional theory (TDDFT), with wave functions represented either on
a real-space grid34 or in the LCAO basis.52 The latter can pro-
vide a significant speed-up due to the relatively small size of the
basis.53–55 The LCAO representation also forms the basis for the
calculation of electron–phonon couplings as well as non-linear opti-
cal spectra such as Raman scattering56 (which can alternatively be
obtained in the PW mode as a finite difference of the dielectric
tensor), second-harmonics generation,57 and shift currents58 using
higher-order perturbation theory.

II. WHY GPAW?
A. User’s perspective

There are dozens of electronic-structure codes available for
interested users. The codes differ in their license (in particular,
whether open or proprietary), the underlying programming lan-
guage (e.g., Fortran, C, and Python), their treatment of core elec-
trons (all-electron vs pseudopotentials), the employed representa-
tions of the wave functions (plane waves, atom-centered orbitals,
and real-space grids), and the beyond-DFT features they support.
Why should one choose GPAW?

In this section, we describe some of the features that
make GPAW interesting from the point of view of a com-
mon user who wants to perform electronic-structure calculations.
Section II B focuses on its possibilities for more advanced users,
who may want to modify the code or implement completely new
functionalities.

A first point to note is that GPAW is written almost exclu-
sively in Python and is directly integrated with the Atomic
Simulation Environment. This integration with ASE makes the
setup, control, and analysis of calculations easy and flexible. The
programming language is of course a key issue for develop-
ers, but the common user also benefits from Python and the

ASE/GPAW integration. A typical stand-alone program only offers
a fixed (though, of course, possibly large) set of tasks that it
can perform, while Python scripting allows for a more flexi-
ble use of the code. This could, for example, mean combin-
ing several different GPAW calculations in new ways. Another
advantage is that “inner parts” of the code like the density or
the Kohn–Sham eigenvalues are directly accessible in a struc-
tured format within Python for further analysis. It is even pos-
sible to “open up the main loop” of GPAW and have access to,
inspect, and also modify key quantities during program execution
(see Fig. 1).

As already mentioned in the introduction, GPAW distin-
guishes itself from other available ES codes by supporting three
different ways of representing the wave functions. The most com-
monly used basis set is plane waves (PW), which is appropri-
ate for small or medium-sized systems where high precision is
required. Convergence is easily and systematically controlled by
tuning the cutoff energy. A large number of advanced features
and “beyond-DFT” methods are available in the PW mode. These
include the calculation of hybrid functionals, RPA total ener-
gies, linear-response TDDFT, and many-body perturbation the-
ory techniques like GW and the Bethe–Salpeter equations. The
new graphics processing unit (GPU) implementation also uses the
PW mode.

The wave functions can alternatively be represented on real-
space grids, which was the original approach in GPAW. The imple-
mentation of this so-called finite-difference (FD) mode relies on
multi-grid solutions of the Poisson and Kohn–Sham equations. The
FD mode allows for more flexible boundary conditions than the
PW mode, which is restricted to periodic supercells. The bound-
ary conditions may, for example, be taken to reflect the charge
distribution in the unit cell. Calculations in the FD mode can be
systematically converged through lowering the grid spacing, but the
approach to full convergence is slower than in the PW mode. The
FD mode is particularly well suited for large systems because the
wave-function representation allows for large-scale parallelization
through real-space decomposition. Furthermore, it is possible to

FIG. 1. The variable calc is the ground-state DFT calculator object, and its
icalculate method yields a context object at every self-consistent field (SCF)
step. As seen, one can use this in a for-loop to implement special logic for the
termination of the SCF iterations or for diagnostics. In this example, the memory
usage is written to the log-file for the first 15 SCF iterations.
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perform time-propagation TDDFT, including Ehrenfest dynamics,
in this mode.

The third representation of the wave functions is a basis
of numerical atom-centered orbitals in the linear combination of
atomic orbitals (LCAOs) mode. The size of the basis set can be varied
through the inclusion of more angular momentum channels, addi-
tional orbitals within a channel, or polarization functions. GPAW
comes with a standard set of orbitals, but a basis-set generator is
included with the code so that users may construct different basis
sets depending on their needs and requirements. The LCAO mode is
generally less accurate than the PW and FD modes, but it allows for
the treatment of considerably larger systems—more than ten thou-
sand atoms. It is also possible to study electron dynamics through
the fast implementation of time-propagation DFT, and Ehrenfest
dynamics is under development.

As explained, the different modes have different virtues and
limitations, and it can, therefore, be an advantage to apply several
modes to a project. For larger systems, it is, for example, possible to
divide structure optimization into two steps. First, an optimization
is performed with the fast LCAO basis, leading to an approximately
correct structure. This is then followed by an optimization in either
the PW or FD mode, which now requires much fewer steps because
of the good initial configuration. Due to the ASE/Python interface,
this combined calculation can easily be performed within a single
script.

Since GPAW was originally created with the FD mode only, and
the LCAO mode was added next, some features have been imple-
mented for only those modes. Examples are real-time TDDFT (see
Sec. VII) and electron–phonon coupling (see Sec. VI G). Conversely,
some new features only work for the PW mode, which was added
after the real-space modes. Examples are RPA total energies (see
Sec. VI C) and the calculation of the stress tensor. To summarize,
given the limitations just mentioned, users should most of the time
use PW or LCAO mode, and the choice will depend on the accu-
racy needed and the resources available. The GPAW webpage has
a table showing up-to-date information about which features work
with which modes.59

B. Developer’s perspective
The GPAW source code is written in the Python and C lan-

guages and is hosted on GitLab,60 licensed under the GNU General
Public License v3.0. This ensures the transparency of all features and
allows developers to fully customize their experience and contribute
new features to the community.

An advantage of having Python code is that the Python script
you write to carry out your calculations will have access to every-
thing inside a GPAW calculation. An example showing the power
and flexibility this affords is the possibility of having user-code
inserted inside the self-consistent field (SCF) loop, as demonstrated
in Fig. 1.

At the time of this writing (July 2023), GPAW has two ver-
sions of the ground-state DFT code in the main branch of the code.
There is the older version that has grown organically since the birth
of GPAW: it has many features but also a lot of technical debt that
makes it harder to maintain and less ideal to build new features on
top of. The newer ground-state code addresses these issues by having
a better overall design.

The new design greatly improves the ease of implementing
new features. The goal is to have the new code be feature-complete
so that it can pass the complete test suite and then delete the old
code once that is achieved. At the moment, we recommend that all
production calculations be performed with the old code and that
work on new features be performed on top of the new code, even
though certain features are not yet production-ready. Three new
features, not present in the old code base, have already been imple-
mented based on the new code: GPU implementation of PW mode
calculations (see Sec. III B 9), reuse of the wave functions after unit-
cell changes during cell optimization, and spin-spiral calculations
(see Sec. V E).

GPAW uses pytest61 for its test suite, which currently consists
of ∼1600 unit and integration tests (see Table I). A subset of those
tests runs as part of GitLab’s continuous integration (CI), thereby
checking the correctness of every code change. Unfortunately, the
full test suite is too time-consuming to run as part of CI, so we run
that nightly both in serial as well as in parallel using MPI.

Many of the code examples in GPAW’s documentation, exer-
cises, and tutorials62 require resources [time and number of central
processing units (CPUs)] beyond what would make sense to run as
part of the pytest test suite. For that, we use MyQueue21 to submit
those scripts as jobs to a local supercomputer every weekend. At the
moment, this amounts to ∼5200 core-hours of calculations.

As can be seen from Table I, the majority of the code is written
in Python, which is an interpreted language that is easy to read, write,
and debug.

Interpreter-executed code will not run as efficiently as code
that is compiled into native machine code. It is, therefore, impor-
tant to make sure that the places in the code where most of the
time is spent (hot spots) are in native machine code and not in the
interpreter. GPAW achieves this by implementing the hot spots in
C-code with Python wrappers that can be called from the Python
code. Examples of such computationally intensive tasks are applying
a finite-difference stencil to a uniform grid, interpolating from one
uniform grid to another, or calculating overlaps between projector
functions and wave functions. In addition, we have Python interfaces
to the numerical libraries FFTW,63 ScaLAPACK,64 ELPA,17 BLAS,
Libxc,65,66 libvdwxc,67 and MPI. Finally, GPAW makes heavy use of
the NumPy68 and Scipy69 Python packages. NumPy provides us with
the numpy.ndarray data type, which is an N-dimensional array
that we use for storing wave functions, electron densities, potentials,
matrices like the overlap matrix or the LCAO wave function coeffi-
cients, and much more. The use of NumPy arrays allows us to use the
many sub-modules of SciPy to manipulate data. This also gives us an
efficient memory layout, allowing us to simply pass a pointer to the
memory whenever we need to call the C-code from the Python code.

TABLE I. Number of files and number of lines of code in the git repository of GPAW.
The Python source-code files are split into three parts: the actual code, the test suite,
and code examples in the documentation.

Type of file Files Lines

Python (the code) 513 146 604
C 80 19 719
Python (test suite) 681 47 147
Python (documentation) 744 32 014
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With this strategy, we can get away with having most of the code
written in a relatively slow interpreted language and still have most
of the time spent in highly efficient C-code or optimized numerical
libraries.

The advantage of the original FD-mode, where there are no
Fourier transforms of the wave functions, is that the algorithms
should parallelize well for large systems. In practice, it has turned
out that FD-mode has a number of disadvantages: (1) Due to inte-
grals over the unit cell being performed as sums over grid-points,
there will be a small periodic energy variation as you translate atoms,
and the period of the variation will be equal to the grid-spacing used
(the so-called egg-box error); (2) The system sizes that are typically
most interesting for applications of DFT are too small for the par-
allel scalability to be the decisive advantage; (3) The memory used
to store the wave functions on uniform grids in real-space is signif-
icant. In contrast, the PW mode has practically no egg-box error, is
very efficient for the most typical system sizes, and often uses a factor
of 10 less memory compared to an FD mode calculation of simi-
lar accuracy. The main advantages of LCAO mode are low memory
usage and high efficiency for large systems; for small unit cells with
many k-points, the PW mode is the most efficient. One disadvantage
of LCAO-mode is egg-box errors: LCAO-mode uses the same uni-
form grids as used in FD-mode for integration of matrix elements
like ⟨Φμ∣ṽ∣Φν⟩ and, therefore, has similar egg-box energy variation.
A second disadvantage of LCAO-mode is that, as for any local-
ized basis-set, reaching the complete basis-set limit is more involved
compared to PW and FD modes. This can have severe consequences,
even for ground-state calculations of difficult systems such as Cr2,
for example.70 In PW or FD modes, the complete basis set limit is
easy to reach by simply increasing the number of plane-waves or
grid-points, respectively, which leads to smooth convergence.32 At
the moment, we only provide double-ζ polarized (DZP) basis sets,
and going beyond DZP is left for users to do themselves.

III. GROUND-STATE DFT
A. Projector augmented-wave method

The diverging Coulomb potential causes rapid oscillations in
electronic wave functions near the nuclei, and special care is required
to be able to work with smooth wave functions. The projector
augmented-wave (PAW) method by Blöchl71 is a widely adopted
generalization of pseudopotential methods, utilizing their strength
of smooth pseudo-wave functions while retaining a mapping from
all-electron wave functions (∣ψn⟩) to pseudo-wave functions (∣ψ̃n⟩).

The crux is to define a linear transformation T̂ from pseudo to
all-electron space,

T̂∣ψ̃⟩ = ∣ψ⟩, (1)
where

T̂ = 1 +∑
a
∑

i
(∣ϕa

i ⟩ − ∣ϕ̃
a
i ⟩)⟨p̃

a
i ∣. (2)

Here, p̃a
i (r), ϕa

i (r) and ϕ̃a
i (r) are called projectors, partial waves,

and pseudo-partial waves, respectively. The pseudo-partial waves
and projectors are chosen to be biorthogonal, ∫dr ϕ̃a

i (r)p̃a
j(r)

= δi j , allowing for an approximate closure relation inside the
augmentation sphere

∑
i
ϕ̃a

i (r)p̃
a
i (r
′
) ≈ δ(r − r′), (3)

which is utilized heavily to obtain an efficient, but all-electron, pic-
ture. In addition to biorthogonality, the pseudo and all-electron
partial waves are chosen to be equal outside the PAW augmentation
sphere cutoff radius ϕ̃i(r) = ϕi(r), r > rc.

The basic recipe for converting an operator Ô is ⟨ψn∣Ô∣ψn⟩

= ⟨ψ̃n∣T̂ †ÔT̂
´¹¹¹¹¸¹¹¹¶

ˆ̃O

∣ψ̃n⟩. For example, the all-electron Kohn–Sham equa-

tions

Ĥ[n(r)]∣ψn⟩ = ϵn∣ψn⟩, (4)

where Ĥ is the single-particle all-electron Kohn–Sham Hamiltonian
operator, can be transformed to their PAW counterparts,

T̂ †Ĥ[n(r)]T̂∣ψ̃n⟩ = ϵnT̂ †T̂∣ψ̃n⟩. (5)

We have used Eq. (1) and also multiplied with T̂ † from left to make
its dual space the pseudo one, i.e., ⟨ψ̃∣ ∈ H∗ can act from left. This
results in a PAW Hamiltonian and in PAW overlap operators as
follows:

ˆ̃H = T̂ †Ĥ[n(r)]T̂

= −
1
2
∇

2
+ ṽKS(r) +∑

a
∑
ii′
∣p̃a

i ⟩ΔHa
ii′⟨p̃

a
i′ ∣, (6)

ˆ̃S = T̂ †T̂ = 1 +∑
a
∑
ii′
∣p̃a

i ⟩ΔSa
ii′⟨p̃

a
i′ ∣. (7)

Terms such as ΔHa
ii′ and ΔSa

ii′ represent so-called PAW correc-
tions. In each part of the description that handles a particular kind
of operator, such as kinetic energy, spin-operators, or electrostatic
potential, the respective PAW corrections must be calculated. The
most crucial ones are precalculated, such as overlap, kinetic energy,
and Coulomb, and stored in the “setup” file, which also stores the
partial waves and projectors. As an example, the overlap PAW
corrections are precalculated to setup as follows:

ΔSa
ii′ = ∫ dr ϕa

i (r)ϕ
a
i′(r) − ∫ drϕ̃a

i (r)ϕ̃
a
i′(r). (8)

We further define the atomic density matrices as

Da
σii′ =∑

n
fn⟨ψ̃σn∣p̃a

i ⟩⟨p̃
a
i′ ∣ψ̃σn⟩. (9)

The atomic density matrix contains all the information required
to construct PAW corrections to any local all-electron expectation
value,

⟨O⟩ =∑
n
⟨ψ̃n∣Õ∣ψ̃n⟩ +∑

a
∑
ii′

Da
ii′ΔOa

i′i. (10)

The all-electron atomic density can be constructed as

na
σ(r) =∑

ii′
Da
σii′ϕ

a∗
i (r)ϕ

a
i′(r) + na

core(r), (11)

and the corresponding equation for pseudo-densities holds with
n→ ñ and ϕ→ ϕ̃.
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Since the exchange–correlation (xc) potential is non-linear, the
PAW corrections must be evaluated explicitly. The xc PAW cor-
rections are performed by constructing the atomic all-electron and
pseudo-electron densities as given by Eq. (11):

ΔHa
xc,ii′ = ∫ drϕa

i (r)vxc[na
](r)ϕa

i′(r)

− ∫ drϕ̃a
i (r)vxc[ñ a

](r)ϕ̃a
i′(r). (12)

This integral is numerically evaluated in the Cartesian product
of a Lebedev angular grid and a non-uniform radial grid (a denser
mesh closer to the nucleus) for each atom.

B. Numerical implementation
1. Wave-function representations

GPAW supports three representations for smooth wave func-
tions. The plane wave (PW)

ψ̃kn(r) =∑
G

CnkGei(k+G)⋅r, (13)

and linear combination of atomic orbitals (LCAOs)

ψ̃kn(r) =∑
μ

CnkμΦkμ(r), (14)

representations rely on basis functions. The finite difference (FD)
mode relies on a representation of the kinetic energy operator on a
uniform Cartesian grid.

2. All-electron quantities
The beauty of the PAW method is that you never need to trans-

form the pseudo-wave functions to all-electron wave functions, but
you can do it if you want to. GPAW has tools for interpolating the
pseudo-wave functions to a fine real-space grid and adding the PAW
corrections. A fine real-space grid is needed to properly represent
the cusp and all the oscillations necessary for the wave function to
be orthogonal to all the frozen core states.

GPAW also has tools for calculating the all-electron electro-
static potential. This is useful for transmission electron microscopy
(TEM) simulations.72 Most TEM simulations have relied on the so-
called independent atom model (IAM), where the specimen poten-
tial is described as a superposition of isolated atomic potentials.
While this is often sufficient, there is increasing interest in under-
standing the influence of valence bonding.73 This can be investigated
by a TEM simulation code such as abTEM,74 which can directly use
ab initio scattering potentials from GPAW.

3. Solving the Kohn–Sham equation
The default method for solving the Kohn–Sham equation for

PW and FD modes is to do iterative diagonalization combined with
density mixing; for LCAO mode, we do a full diagonalization of
the Hamiltonian. Alternatively, one can do direct minimization as
described in Sec. III B 5.

For PW and FD modes, we need an initial guess of the wave
functions. For this, we calculate the effective potential from a super-
position of atomic densities and diagonalize an LCAO Hamilto-
nian in a small basis set consisting of all the pseudo-partial waves
corresponding to bound atomic states.

Each step in the self-consistent field (SCF) loop consists of
the following operations: (1) diagonalization of the Hamiltonian in
the subspace of the current wave functions (skipped for LCAO);
(2) one or more steps through the iterative eigensolver (except for
LCAO, where a full diagonalization is performed); (3) update of
eigenvalues and occupation numbers; and (4) density mixing and
symmetrization. See previous work32,33 and Ref. 75 for details.

GPAW has two kinds of Poisson equation solvers: direct solvers
based on Fourier transforms or Fourier-sine transforms, and itera-
tive multi-grid solvers (Jacobi or Gauss–Seidel). The default is to use
a direct solver, whereas iterative solvers may be chosen for larger
systems where they can be more efficient.

For 0-, 1-, and 2-dimensional systems, the default boundary
conditions are to have the potential go to zero on the cell bound-
aries. This becomes a problem for systems involving large dipole
moments. The potential due to the dipole is long-ranged and,
therefore, the converged potential requires large vacuum sizes. For
molecules (0D systems), the boundary conditions can be improved
by adding multipole moment corrections to the density so that the
corresponding multipoles of the density vanish. The potential of
these corrections is added to the obtained potential. The same trick
is used to handle charged systems. For slabs (2D systems), a dipole
layer can be added to account for differences in the work functions
on the two sides of the slab.

Methods for calculating occupation numbers are the
Fermi–Dirac, Marzari–Vanderbilt,76 and Methfessel–Paxton
distributions, as well as the tetrahedron method and the improved
tetrahedron method.77

4. Updating wavefunctions in dynamics
Simulations commonly move the atoms without changing

other parameters. If an atom moves only slightly, we would expect
most of the charge in its immediate vicinity to move along with it.
We use this to compute an improved guess for the wave functions
in the next self-consistency loop with FD or PW mode, where the
eigensolver is iterative.

Near the atoms, the dual basis of pseudo-partial waves and
projectors is almost complete, i.e.,

∑
i
∣ϕa

i ⟩⟨p̃
a
i ∣ = 1 (near atom a). (15)

If an atom moves by ΔRa, the wave functions ψ̃n(r) are updated by
rigidly moving the projection∑i ϕ̃

a
i (r)⟨p̃a

i ∣ψ̃n⟩ along with it, i.e.,

ψ̃new
n (r) = ψ̃n(r) +∑

ai
ϕ̃a

i (r − ΔRa
)⟨p̃a

i ∣ψ̃n⟩ −∑
ai
ϕ̃a

i (r)⟨p̃
a
i ∣ψ̃n⟩.

(16)
As the partial waves on different atoms are not orthonormal,
this expression generally “double-counts” contributions, resulting
in wave functions that are to some extent unphysical. Neverthe-
less, we have found that this simple method achieves a significant
speedup (∼15% in realistic structure optimizations) compared to not
updating the wave functions.

The method could be further improved by using the LCAO
basis set and the overlap matrix to prevent double-counting.

5. Direct minimization
Direct orbital minimization78–81 is a robust alternative to the

conventional eigensolver and density mixing routines. The orbitals
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can be expressed as a unitary transformation of a set of reference, or
auxiliary, orbitals Ψ0,

Ψ = UΨ0. (17)

In the direct minimization (DM) method implemented in
GPAW,50,82 the unitary matrix U is parametrized as an exponential
transformation, i.e., U = eA, where A is an anti-Hermitian matrix
(A = −A†

). The energy can be considered a functional of both
A and Ψ0,

E[Ψ] = F[A,Ψ0]. (18)

Therefore, in general, the optimal orbitals corresponding to the
minimum of the energy functional can be found in a dual-loop pro-
cedure. First, the energy is minimized with respect to the elements of
A, and second, the functional L[Ψ0] = min

A
F[A,Ψ0] is minimized

with respect to Ψ0,

min
Ψ

E[Ψ] = min
Ψ0

min
A

F[A,Ψ0]. (19)

Since anti-Hermitian matrices form a linear space, the inner loop
minimization can use well-established local minimization strategies
such as efficient quasi-Newton methods with inexact line search,
e.g., the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) algorithm. The outer loop minimization follows the gradient
∂L/∂Ψ0 projected on the tangent space at Ψ0.

The GPAW formulation of DM is applicable to all representa-
tions of the orbitals available in GPAW, as well as Kohn–Sham (uni-
tary invariant) and orbital density-dependent (nonunitary invariant)
energy functionals, and can be used for both finite and extended
systems. In LCAO calculations, the reference orbitals are expressed
as a linear combination of the atomic basis functions Φ, Ψ0 = ΦC0,
where the matrix of coefficients C0 is fixed. Therefore, only a mini-
mization with respect to the elements of matrix A is required.82 For
plane wave and real-space grid representations, a minimization in
the space tangent to the reference orbitals is sufficient if the func-
tional is unitary invariant. Otherwise, if the functional is nonunitary
invariant, such as when self-interaction correction is used (see
Sec. III C 5), an inner loop minimization in the occupied–occupied
block of the matrix A is performed to make the energy stationary
with respect to the unitary transformation of the occupied orbitals.50

The DM method avoids diagonalization of the Hamiltonian
at each step, and as a result, it usually involves a smaller compu-
tational effort. The DM method has also been shown to be more
robust than conventional eigensolvers and density mixing in calcu-
lations of molecules and extended systems.82 However, the current
implementation does not support a finite-temperature distribution
of occupation numbers and thus can only be used for systems with a
finite bandgap.

6. Convergence criteria
The modular architecture of GPAW allows the user to have

precise control over how the SCF loop decides that the elec-
tronic structure has converged to sufficient precision. GPAW con-
tains simple keywords for common convergence criteria, such as
“energy,” “forces,” (electron) “density,” and “work function,” which
are sufficient for the most common use cases.

Internally, all convergence criteria are Python objects that are
instances of convergence classes. For each step through the SCF
loop, each convergence object is called. When any convergence
object is called, it is passed a context object that contains the current
state of the calculation, such as the wavefunctions and the Hamilto-
nian. The criterion can thus pull relevant data from the calculation
to decide if it is convergent. Because the convergence criterion itself
is an object, it can store information such as previous values of the
energy for comparison to the new value. When all convergence cri-
teria report that they are converged, the calculation as a whole is
considered to be converged and terminates.

This modular nature gives the user full control over how each
convergence criterion operates. For example, the user can easily ask
the energy criterion to check the differences in the last four values of
the energy rather than the last three. If a convergence criterion itself
is expensive to calculate, it can make sense to not check it until the
rest of the convergence criteria are met. This can be accomplished
by activating an internal “calculate_last” flag within the convergence
criterion.

Users can easily add their own custom convergence criteria to
the SCF loop. If a user would like to use a criterion not included
by default with GPAW, it is straightforward to write a new crite-
rion as a Python class and pass this to the convergence dictionary
of GPAW. For example, if one wanted to be sure the bandgap
of a semiconductor was converged, the criterion could check the
bandgap at each iteration, compare it to stored values from previ-
ous iterations, and report that the calculation is converged when the
peak-to-peak variance among the last n iterations is below a given
threshold.

7. PAW datasets and pseudopotentials
GPAW can read PAW datasets from (possibly compressed)

XML files following the PAW-XML specification.83 Dataset files for
most of the periodic table can be downloaded from the GPAW
webpage or installed with the gpaw install-data command-line
tool. The datasets are available for the local-density approxima-
tion (LDA), Perdew–Burke–Ernzerhof (PBE),3 revPBE,346 RPBE,345

and GLLBSC97 functionals. The electronic structure code Abinit84

also reads the PAW-XML format, allowing GPAW and Abinit to
share PAW dataset collections such as the Jollet–Torrent–Holzwarth
collection.85

Specialized datasets can be generated with the gpaw dataset
command-line tool. This allows one to tweak the properties of a
dataset. Some examples could be: (1) add more/less semi-core states;
(2) increase/decrease the augmentation sphere radius to make the
pseudo-wave functions more/less smooth; (3) add/remove projector
functions and corresponding pseudo and all-electron partial waves;
or (4) base the PAW dataset on a different XC-functional. These
changes will affect the accuracy and cost of the calculations.

GPAW is also able to use norm-conserving pseudopotentials
(NCPP) such as Hartwigsen-Goedecker-Hutter (HGH)86 and pseu-
dopotentials in the Unified Pseudopotential Format (UPF), such as
SG15.87 Non-local NCPPs can be considered an approximation to
PAW: in the PAW description, the non-local part of the Hamilto-
nian [the term containing ΔHa

i j in Eq. (6)] will adapt to the environ-
ment, whereas for a NCPP, ΔHa

i j will be diagonal and have a fixed
value taken from a reference atom. Because of norm-conservation,
NCPPs will have ΔSa

i j = 0.
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8. Parallelization
GPAW can parallelize over various degrees of freedom,

depending on the type of calculation, and it implements multiple
algorithms for achieving good parallel performance and scalability.
In calculations involving k-points, parallelization over them is typ-
ically the most efficient, as little communication is needed during
the summation of wave functions to calculate the density and any
derived quantities. As the number of k-points is often limited, espe-
cially in large systems, parallelization is also possible over real-space
grids in the FD and LCAO modes, as well as over plane waves in
the PW mode. All modes also support parallelization over electronic
bands, which is particularly efficient for real-time TDDFT where the
time-propagation of each band can be carried out independently.
Additional parallelization possibilities exist depending on calcula-
tions, such as over electron–hole pairs in linear-respose TDDFT
calculations.

Parallelization is performed mainly with MPI. In the FD and
LCAO modes, it is possible to use OpenMP within shared-memory
nodes, which can improve performance when the number of CPU
cores per node is large. Dense linear algebra, such as matrix diag-
onalization and Cholesky decomposition, can be carried out with
the parallel ScaLAPACK or ELPA libraries. This applies to both
the direct diagonalization in the LCAO mode as well as to sub-
space diagonalizations in the iterative Davidson and Residual Min-
imization Method with Direct Inversion in the Iterative Subspace
(RMM-DIIS) methods in the FD and PW modes.

For ground-state calculations, GPAW will divide the cores into
three MPI communicators: k-points, bands, and domain. When
parallelizing over k-points and/or bands, all the cores of the k-
point and/or band communicators will have a copy of the den-
sity (possibly distributed over the domain communicator). GPAW
has the option to redistribute the density from the domain-
communicator to all cores so that operations such as evaluating the
XC-energy and solving the Poisson equation can be performed more
efficiently.

For each k-point, all the cores in the band and domain com-
municators will cooperate on calculating the matrix elements of
the Hamiltonian and the overlap operators. Dense-matrix linear-
algebra operations on those matrices can be performed on a
single core (most efficient for small systems) or with ScaLA-
PACK, where the matrices are distributed over either all or some
of the cores from the pool of cores in the band and domain
communicators.

One drawback of Python is that in large parallel calculations, its
import mechanism may incur a heavy load on the filesystem because
all the parallel processes are trying to read the same Python files.
GPAW tries to alleviate this by using a special “broadcast imports”
mechanism: during initial module imports, only a single process
loads the modules; afterward, MPI is used to broadcast the data to
all the processes.

Parallel scalability depends strongly on the calculation mode
and the system. The FD mode offers the best scalability for high core
counts, as only nearest-neighbor communication is needed across
domains over a domain decomposition. In PW mode, the limit-
ing factor is all-to-all communication in parallelization over plane
waves. In LCAO mode, communications arise from multi-center
integrals of basis functions across domains. At best, GPAW scales
to tens or hundreds of nodes in supercomputers.

9. GPU implementation
The GPU implementation of GPAW works both on NVIDIA

and Advanced Micro Devices (AMD) GPUs, targeting either CUDA
or Heterogeneous-Compute Interface for Portability (HIP) back-
ends, respectively. GPAW uses a combination of manually written
GPU kernels, external GPU libraries (such as cuBLAS/hipBLAS),
and CuPy.88 CuPy offers an easy-to-use Python interface for
GPUs centered around a NumPy-like GPU array and makes many
hardware details completely transparent to the end-user.

In the manually written GPU kernels, both GPU back-
ends (CUDA and HIP) are targeted using a header-only port-
ing approach89 in which generic GPU identifiers are translated to
vendor-specific identifiers at compile time. For example, to allocate
GPU memory, the identifier gpuMalloc is used in the code, which
is then translated either to cudaMalloc or hipMalloc depending
on which GPU backend is targeted. This allows us to avoid unnec-
essary code duplication and still target multiple hardware platforms
natively.

An earlier GPU implementation of GPAW90,91 served as the
starting point for the recent work on a new GPU code based
on the rewritten ground-state code. The objects that store quan-
tities like ψ̃n(r), p̃a

i (r), ⟨p̃a
i ∣ψ̃n⟩, Da

ii′ , ñ(r) and ṽ(r) use Numpy
arrays for the CPU code and CuPy arrays when running on a
GPU. At the moment, GPUs can be used for total-energy calcula-
tions with LDA/generalized gradient approximation (GGA) in the
PW mode.

Parallelization to multiple GPUs is performed using MPI.
Each MPI rank is assigned a single GPU, and communication
between the GPUs is handled by MPI. Support for GPU-aware MPI
makes it possible to do direct GPU-to-GPU communication with-
out unnecessary memory copies between the GPU device and the
host CPU.

C. XC-functionals
Exchange–correlation (XC) functionals provide a mapping

between the interacting and non-interacting systems of electrons. In
Kohn–Sham DFT, the density is built from a set of occupied non-
interacting single-particle orbitals ψi: n = ∑i fi∣ψi∣

2, with fi denoting
the occupation numbers, leading to the same density as the inter-
acting system. The total energy in DFT is expressed as a sum of the
density functionals for the different contributions,

Etot[n] = TS[n] + Vext[n] +UH[n] + Exc[n], (20)

where TS[n] denotes the kinetic energy of the non-interacting sys-
tem, Vext[n] the energy of the density in the external potential,
UH[n] the classical Coulomb energy of the density with itself, and
Exc[n] the so-called exchange–correlation energy, which collects all
energy contributions missing in the prior terms and therefore pro-
vides a mapping between the interacting and the non-interacting
system of electrons. While the first three terms can be calculated
exactly, even the form of Exc is unknown, and although proven to
exist and be exact in principle, it has to be approximated in prac-
tice. A huge number of approaches belonging to several families
exist.1,2,92 Several of these approximations are available in GPAW,
and an overview is given in the following.
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1. Libxc and libvdwxc
The libxc library66 provides implementations of several (semi-)

local variants of the XC functional, given by the LDA, GGA,
and meta-GGA (MGGA)91 families. These are available in GPAW
by a combination of their names from libxc, e.g., “GGA_X_PBE
+GGA_C_PBE” for PBE.3 At the moment, using MGGA functionals
from libxc in GPAW requires libxc to be compiled with --disable-fhc.
Most MGGA functionals in libxc do not depend on the laplacian of
the density—those that do are not supported.

Additionally, GPAW provides its own implementation of sev-
eral (semi-)local functionals called by their short names, e.g., TPSS,93

PBE,3 and LDA, the latter with the correlation of Perdew and
Wang.94 Several hybrids (see below) are implemented in GPAW
with the support of the libxc library for their local parts.

For fully non-local van der Waals functionals, like the van der
Waals (vdW)-DF functional,31 GPAW uses the efficient fast Fourier-
transform convolution algorithm by Román-Pérez and Soler95 as
implemented in the libvdwxc library.67

All LDA, GGA, and common MGGA functionals, such as
Strongly Constrained and Appropriately Normed semilocal density
functional (SCAN)28 and TPSS, from libxc can be used in GPAW.

2. GLLB-sc
GPAW has an implementation of the solid-state mod-

ification of the Gritsenko–van Leeuwen–van Lenthe–Baerends
exchange–correlation model potential (GLLB-sc).96,97 This potential
has been shown to improve the description of the bandgap16 and the
d-electron states in noble metals.52,98–100

3. Hubbard U
DFT+U calculations using a Hubbard-like correction can be

performed in GPAW to improve the treatment of Coulombic inter-
actions of localized electrons. This correction is most commonly
applied to the valence orbitals of transition metals to assist with
obtaining experimental bandgaps of oxides,101 which may other-
wise be underestimated.102,103 In addition, formation energies and
magnetic states are often improved due to a more correct descrip-
tion of the electronic structure. It may also be applied to main-
group elements such as N, O, P, or S, but this is less commonly
performed.104

In the formalism chosen in GPAW,105 one uses a single Ueff

parameter rather than separate U and J parameters for on-site
Coulombic and on-site exchange, respectively.106 The correction
influences the calculation by applying an energy penalty to the
system

Ueff
= U − J, (21)

EDFT+U = EDFT +∑
a,i

Ueff
i

2
Tr(ρa

i − ρ
a
i ρ

a
i ), (22)

where the sum runs over the atoms a and orbitals i, for which
the correction should be applied. EDFT is calculated by a standard
GPAW calculation and is corrected to EDFT+U by penalizing the
energy such that fully occupied or fully unoccupied orbitals are sta-
bilized. The magnitude of the correction depends on Ueff

i , and the

atomic orbital occupation matrix (ρa
i ) controls which orbitals con-

tribute to the correction based on their occupation. In principle, any
orbital on any element that is partially occupied can be corrected.

GPAW supports the normalization of the occupation matrix,
accounting for the truncated portion of the wave function out-
side the augmentation sphere. To maintain consistency with other
codes that do not support normalization, this normalization can be
disabled, but large disagreements are expected when applied to p
orbitals. GPAW is one of the few codes that currently supports mul-
tiple simultaneous corrections to orbitals on the same atom; this is
useful when two types of orbitals, such as p and d orbitals, are nearly
degenerate but both are partially occupied.

There is no Ueff that is strictly correct, but methods such
as RPA107 or linear response108,109 can allow for a value to be
calculated from first principles. More commonly, Ueff is chosen
semi-empirically to fit experimental properties such as forma-
tion energy,110 bandgap111 or, more recently, machine learning
predictions.112

4. Hybrids
Hybrid functionals, especially range-separated functionals

(see below), correct problems present in calculations utilizing
(semi-)local functionals such as the wrong asymptotic behavior of
the effective potential leading to an improper description of Rydberg
excitations,113 the improper calculation of the total energy against
fractional charges leading to the charge delocalization error,114 and
the wrong description of (long-range) charge transfer excitations
due to the locality of the exchange hole.115–117

The exchange–correlation energy Exc can be split into the con-
tributions from exchange, Ex, and from correlation, Ec.2,118 Hybrid
functionals combine the exchange from the (semi-)local functionals
with the exchange from Hartree–Fock theory (HF). Global hybrids
such as PBE0119 mix the exchange from DFT with the exchange from
HF by a global fixed amount. Range-separated functionals (RSF) add
a separation function ωRSF

120,121 to express the Coulomb kernel in
the exchange integrals as

1
r12
=

1 − [α + β(1 − ωRSF(γ, r12))]

r12
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

SR

+
[α + β(1 − ωRSF(γ, r12))]

r12
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LR

, (23)

where r12 = ∣r⃗1 − r⃗2∣. Here, α and β are mixing parameters for global
and range-separated mixing, respectively. ωRSF is a soft function
with values ranging from one for r12 = 0 to zero for r12 →∞, where
the decay is controlled by the parameter γ. Long-range-corrected
(LC/LCY) RSFs such as LCY-PBE122 use (semi-)local approxima-
tions for short-range (SR) interaction and apply HF exchange for
long-range (LR) interaction. Short-range-corrected RSFs such as
Heyd-Scuseria-Ernzerhof (HSE)5 reverse this approach. The para-
meter γ is either fixed or can be varied to match the criteria of
the ideal functional, e.g., that the energy of the highest occupied
molecular orbital matches the ionization potential.118,123

Details on the FD-mode implementation of long-range cor-
rected RSF can be found in Refs. 124 and 125. In general, the
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FD-mode implementation of hybrids is limited to molecules, and
forces have not been implemented. The PW-mode implementation
of hybrids handles k-points, exploits symmetries, and can calculate
forces.

5. SIC
A fully self-consistent and variational implementation of the

Perdew–Zunger self-interaction correction (PZ-SIC)126 is avail-
able in GPAW. It corrects the various problems with (semi-)local
Kohn–Sham (KS) functionals mentioned earlier in the context of
hybrid functionals. Atomic forces are available in the GPAW imple-
mentation with all three types of basis sets. A corrected KS functional
has the form

ESIC
[n1, . . . , nn] = EKS

[n] − α
occ

∑
i
(UH[ni] + Exc[ni, 0]), (24)

where the self-Coulomb and self-XC of each occupied orbital den-
sity are subtracted from the Kohn–Sham energy functional. Due
to the explicit dependence on the orbital densities, the corrected
energy functional is not invariant under a unitary transformation
among occupied orbitals and, thereby, not a KS functional. As a
result, the minimization of ESIC requires special direct minimization
techniques (see Sec. III B 5) and delivers a specific set of (typi-
cally localized) optimal orbitals. The calculations should be carried
out using complex orbitals.127–129 The full PZ-SIC has been shown
to give an over-correction to binding energy as well as bandgaps,
and improved results for these properties are obtained by scaling
the SIC by α = 1/2,130,131 while the long-range form of the effective
potential, necessary for Rydberg state calculations, requires the full
correction.132

PZ-SIC has been shown to give accurate results in cases where
commonly used KS functionals fail. This includes, for example, the
Mn dimer, where the PBE functional gives qualitatively incorrect
results while the corrected functional gives close agreement with
high-level quantum chemistry results as well as experimental mea-
surements.133 Another example is the defect state of a substitutional
Al atom in α-quartz.134 In addition, PZ-SIC has been shown to
improve the values of the excitation energy of molecules obtained
in variational calculations of excited states50,135 (see Sec. VIII B).

6. BEEF
A great strength of Kohn–Sham DFT and its extensions is that

a reasonably high accuracy of physical, material, and chemical prop-
erties can be obtained at a relatively moderate computational cost.
DFT is thus often used to simulate materials, reactions, and prop-
erties where, de facto, there is no “better” alternative. Even though
more accurate electronic structure methods in principle might exist
for a given application, the poor scaling of systematically more accu-
rate methods often makes these computationally infeasible at the
given system size that is being studied using DFT. Therefore, one is
often in the situation where the accuracy of a given DFT calculation
of some materials or chemical properties cannot be verified against,
e.g., a more accurate solution of the Schrödinger equation, even on
the biggest available supercomputers.

On the other hand, the wealth of available XC functionals natu-
rally allows one to look at how sensitive a DFT result is to the choice
of functional, and often accuracy is, therefore, being judged primar-
ily by applying a small set of different XC functions, especially if

no accurate benchmark theoretical simulation or experimental mea-
surement is available. A challenge, however, is that the different
available functionals are often known to be particularly good at sim-
ulating certain properties and poor at others. It is thus not at all clear
how much one should trust a given functional for a given simulated
property. The Bayesian Error Estimation (BEE) class of function-
als136 attempts to develop a practical framework for establishing an
error estimate from a selected set of functional “ingredients.”

Assume that the XC model M(a) is a function of a set of
parameters, a, that can be varied freely. If a benchmark dataset,
D, of highly accurate properties established from experiments or
higher-accuracy electronic structure simulations is available, we can
attempt to identify the ensemble of models given by some distri-
bution function, P(M(a)), such that the most likely model in the
ensemble, M(a0), makes accurate predictions for the benchmark
dataset, while the spread of the ensemble reproduces the spread
between the predictions of the most likely model and the benchmark
data.

Bayes’ theorem provides a natural framework to search for the
ensemble distribution. If a joint distribution between M(a) and D
exists, which we would assume, then Bayes’ theorm gives

P(M(a)∣D)∝ P(D∣M(a))P0(M(a)), (25)

where P0(M(a)) is the prior expectation of the distribution of mod-
els before looking at the data, D, and P(D∣M(a)) is the likelihood of
seeing the data given the model. To achieve a useful ensemble, much
care has to be put into finding a large enough set of varied and accu-
rate data for different materials and chemical properties, and much
care has to be applied as to how the ensemble is regularized to avoid
overfitting.137,138

In all the BEE functionals (BEEF), choices are made such that
ultimately the XC functional is linear in a and such that the distribu-
tion of a ends up following a multidimensional normal distribution
given by a regularized covariance matrix Γ,

P(a)∝ exp (−(a − a0)Γ(a − a0)), (26)

where Γ has been scaled in such a way that the ensemble reproduces
the observed standard deviation between M(a0) and D.

Figure 2 shows an ensemble of exchange enhancement fac-
tors Fx(s) from the BEEF-vdW functional, where s = ∣∇n∣/(2kFn)
is the reduced density gradient. The approach has given rise to
several functionals, BEEF-vdW,137 meta-BEEF (mBEEF),138 and
mBEEF-vdW,139 which all include error estimation and are read-
ily available in GPAW. Through the ASE interface, one can, for
example, utilize the error ensembles to establish error estimates on
Python-implemented models that are using DFT simulations for
their parametrization. An example of this is the application of error
estimates to adsorption scaling relations, microkinetics, and material
selection.140

One risk to the approach of establishing error estimates from a
small selected “ensemble” of XC-functionals is clearly that if the sim-
ulated property in question is poorly described by all functionals in
the ensemble, then the error estimate might also become poor. This
could, for example, be the case if one tried to establish an error esti-
mate for bandgaps in oxides or van der Waals bonding of adsorbates
on surfaces based on an ensemble of GGA XC-functionals, since no
GGA functional may be accurate for simulating either property.
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FIG. 2. Bayesian ensemble of XC functionals around BEEF–vdW. The orange
solid line is the BEEF–vdW exchange enhancement factor, while the blue lines
depict Fx(s) for 50 samples of the randomly generated ensemble. Dotted black
lines mark the exchange model perturbations that yield DFT results ±1 standard
deviation away from BEEF–vdW results.

IV. ION DYNAMICS
GPAW can be employed as a “black-box” calculator, supply-

ing energies and forces to other programs such as, e.g., ASE, which
then perform optimization of ground state geometries and reaction
paths or carry out molecular dynamics. In fact, this is a key design
principle behind GPAW. Methodological developments and gen-
eral implementations that are not directly dependent on fast access
to detailed electronic structure information should preferably be
implemented externally by GPAW. This led to the maximal simplic-
ity of the GPAW code itself while also allowing for the external code
to be utilized and tested with other electronic structure codes and
atomistic potentials. A key to the high efficiency of GPAW simula-
tions involving ionic displacements is the versatile implementation
of restraints in ASE. Here, many types of restraints are readily acces-
sible, from the simple removal of degrees of freedom to more exotic
restraints allowing for rigid molecule dynamics,141 harmonic restor-
ing forces,142 spacegroup preservation, and combined ionic-unit cell
dynamics.143 Many algorithms are available for various structure
optimization and molecular dynamics tasks.

A. Structure relaxation
Local structure optimization in GPAW is typically achieved

through the use of an optimizer from ASE. Here, a larger range of
standard optimizers are available, such as quasi-Newton algorithms
including BFGS144–147 and limited-memory BFGS,148 or Newtonian
dynamics-based algorithms such as MDMin and FIRE.149 The fact
that the optimizers have been implemented externally in GPAW
provides benefits in terms of simple procedures for restarting long
simulations and monitoring their convergence. Some optimizers
from SciPy69 are also available through the open-source ASE pack-
age, which provides a simple way to interface any optimizer in
the SciPy format to GPAW. Preconditioning is implemented in
an accessible way,150 which often leads to significant performance
improvements.

Of the classical optimization methods, the quasi-Newton algo-
rithms are often highly competitive. Here, one builds up information
on the Hessian or inverse Hessian matrix from calculated forces,

ultimately leading to an accurate harmonic model of the poten-
tial energy surface in the vicinity of the local minimum. Such
algorithms can, however, have problems both dealing with anhar-
monicity in the potential energy surface and with any noise in the
electronic structure simulations. It often makes sense instead to fit a
Gaussian process to the calculated energies and forces and minimize
the potential within this model. This is implemented as the so-called
GPmin method in ASE and often converges on the order of three
times faster than the best quasi-Newton optimizers.151

B. Reaction paths and barriers
Reliable calculations of energy barriers are of key importance

for determining the rate of atomistic processes. In many quantum-
chemical codes utilizing accurate atom-centered basis functions, this
is achieved using analytical second derivatives in the direct search for
first-order saddle points. This approach is less useful in the plane-
wave based or grid-based modes of GPAW. The Dimer method152 is
implemented in ASE and can be used with GPAW, but often one
would like to have an overview of the entire reaction path of an
atomic-scale process to verify that the correct energy barrier for a
process has been determined and to obtain a full overview of the
atomistic mechanism. For this purpose, the Nudged Elastic Band
(NEB) method is typically employed through the ASE interface to
GPAW. Both the original method153 and a range of later improve-
ments are available.154–159 Special care has to be taken in selecting
the optimizer for a NEB algorithm, as this choice can have a drastic
influence on the convergence rate. For optimization of the reaction
path, drastic performance improvements can be obtained by car-
rying out the optimization in a surrogate machine-learning model
fitted to the potential energy surface.160–162 GPAW has been used to
drive NEB calculations on both surface systems163–166 as well as in
molecules.166,167

C. Global structure optimization
GPAW is integrated with various tools for global optimiza-

tion of structures, compositions, as well as material morphologies.
Some quite generally applicable global optimization tools avail-
able are basin hopping,168 minima hopping,169 and genetic algo-
rithms.170 Some of the most powerful global optimization prob-
lems addressed using GPAW rely on machine-learning accelerated
global-optimization strategies. These strategies have, for example,
been applied to surfaces, clusters,171 and crystal structures gener-
ally.172 In other machine-learning accelerated global-optimization
routines, GPAW was used to generate initial databases of sur-
face and bulk systems and for later model validation in a strategy
that uses Gaussian processes to generate surrogate potential-energy
surfaces. These were then explored with Bayesian-optimization tech-
niques, achieving speed-ups over more conventional methods of
several orders of magnitude in finding the optimal structures of
the systems under investigation.173–175 The method has been aug-
mented by introducing extra (hyper)dimensions by interpolating
between chemical elements, which speeds up the efficiency of the
global search.176 GPAW has been integrated with a Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) framework, pro-
viding energies and forces, generating training data, and evaluating
CMA-ES candidate structures.177
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D. Molecular dynamics and QM/MM
Ab initio molecular dynamics (MD) can be performed and ana-

lyzed through the ASE interface to GPAW. This includes standard
simulations such as constant-NVE, constant-NVT, and constant-
NPT simulations. There is access to, e.g., Langevin-, Andersen-,
Nose–Hoover-, and Berendsen-dynamics. Due to the externaliza-
tion of the dynamics, the development of novel algorithms and
analysis tools becomes facile. Some examples of the use of GPAW
span ab initio MD studies that have explored the liquid structure of
water178 and the water/Au(111) electrochemical interface.179

Furthermore, GPAW is capable of working with external elec-
trostatic potential terms from user-supplied point charge values and
positions, enabling Quantum Mechanical (QM)/Molecular Mechan-
ical (MM) simulations. Since GPAW is from the outset designed
around highly efficient grid operations, the computational over-
head of evaluating this potential as well as the resulting forces
on the MM point charges from the QM density is kept low.180

GPAW has been central in a range of studies of ion dynam-
ics in solution, both in and out of equilibrium. By using the
molecular-dynamics functionality of ASE, researchers have per-
formed QM/MM MD simulations of excited-state bond formation
in photocatalyst model systems181–184 and electron transfer, as well
as coupled solute–solvent conformational dynamics in photosen-
sitizer systems.167,185 Work on polarizable embedding QM/MM
within GPAW is ongoing.186,187

V. MAGNETISM AND SPIN
Many important technological applications utilize magnetic

order or the manipulation of spin in materials. GPAW has a wide
range of functionalities that facilitate the analysis of magnetic prop-
erties. This includes calculations with non-collinear spin, the inclu-
sion of external magnetic fields, spin–orbit coupling, and spin spiral
calculations within the generalized Bloch theorem. The implemen-
tation of these features is described below, while additional methods
for calculating magnetic excitations are described in Sec. VI D.

A. Spin–orbit coupling
The spin–orbit coupling is typically completely dominated by

regions close to the nuclei, where the electrostatic potential becomes
strong. Within the PAW augmentation sphere of atom a, the spin-σ
component of orbital n is given by

ψa
nσ(r) =∑

i
⟨p̃a

i ∣ψ̃nσ⟩ϕa
i (r). (27)

Assuming a spherically symmetric potential, the spin–orbit Hamil-
tonian for atom a is then written as

Ĥa
SOC =

μB

h̵meec2
1
r

dVa
r

dr
L̂ ⋅ Ŝ, (28)

where Va
r is the radial electrostatic potential of atom a. We evalu-

ate Va
r as the spherical part of the XC- and Hartree-potential from

the local expansion of the density given by Eq. (11). Since the par-
tial waves ϕa

i are eigenstates of the scalar-relativistic Hamiltonian,
these are independent of spin, and it is straightforward to evaluate
the action of L̂ on them.

The eigenenergies can be accurately calculated in a non-
selfconsistent treatment of the spin–orbit coupling and may be
obtained by diagonalizing the full Hamiltonian on a basis of
scalar-relativistic orbitals,188

Hmn = ε0
mδmn + ∑

aijσσ′
⟨ψ̃0

mσ ∣p̃
a
i ⟩⟨ϕ

a
i ∣Ĥ

a
SOC,σσ′ ∣ϕ

a
j⟩⟨p̃

a
j ∣ψ̃

0
nσ′⟩. (29)

Here, ε0
m and ψ0

m represent the scalar-relativistic eigenenergies and
eigenstates, respectively. This constitutes a fast post-processing step
for any scalar-relativistic calculation and only requires the projec-
tor overlaps ⟨p̃a

j ∣ψ̃0
nσ′⟩. It should be noted that this approach in

principle requires convergence with respect to the number of scalar-
relativistic states included in the basis, but the eigenvalues typically
converge rather rapidly with respect to the basis. In Fig. 3, we show
the band structure of a WS2 monolayer obtained from PBE with
non-selfconsistent spin–orbit coupling. The W atoms introduce
strong spin–orbit coupling in this material, and the valence band is
split by 0.45 eV at the K point. The spin degeneracy is retained along
the Γ −M line, which is left invariant by two non-commuting mirror
symmetries.

For magnetic materials, the non-selfconsistent treatment of
spin–orbit coupling is convenient for evaluating the magnetic
anisotropy. The magnetic force theorem189 implies that rotating the
magnetic moments away from the ground state configuration yields
a contribution to the energy, which is well approximated by the
change in Kohn–Sham eigenvalues. The change in energy for a given
orientation of the magnetization density can thus be obtained as

ΔEθ,φ
=∑

n
f θ,φ

n εθ,φ
n , (30)

where εθ,φ
n are the eigenvalues obtained from diagonalizing Eq. (29)

with the spins rotated in a direction defined by the angles (θ,φ)
and f θ,φ

n are the associated occupation numbers. This corresponds
to rotating the xc-magnetic field (defined below), which will lead to
different eigenvalues when spin–orbit coupling is included. In two-
dimensional magnets, an easy-axis anisotropy is decisive for mag-
netic order,41,190,191 and Eq. (30) is easily applied to high-throughput
computations of magnetic properties.192,193

FIG. 3. Band structure of the WS2 monolayer obtained from PBE with non-
selfconsistent spin–orbit coupling. The colors indicate the expectation value of Sz

for each state. The gray lines show the band structure without spin–orbit coupling.
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B. Self-consistent non-collinear magnetism
The Kohn–Sham framework for treating non-collinear mag-

netism was developed by Barth and Hedin194 and involves the spin
density matrix

ρσσ′(r) =∑
n

fnψ∗nσ(r)ψnσ′(r), (31)

as the basic variable. The electronic density and magnetization are
then given by n = Tr[ρ] and m = Tr[σρ], respectively. The XC-
potential acquires four components, which are the functional deriva-
tives of the XC-energy with respect to the density matrix and may
be represented as a 2 × 2 matrix acting on spinor Kohn–Sham states.
These can be expressed in terms of density and magnetization, which
lead to the XC-part of the Kohn–Sham Hamiltonian

Hxc = vxc + Bxc ⋅ σ, (32)

where the scalar potential and XC-magnetic field are given by

vxc(r) =
δExc

δn(r)
, Bxc(r) =

δExc

δm(r)
. (33)

In GPAW, the self-consistent treatment of non-collinear spin is
implemented within LDA, where Bxc is approximated as

BLDA
xc (r) =

δELDA
xc

δm(r)
m̂(r). (34)

Here, m(r) = ∣m(r)∣ is the magnitude, and m̂(r) is the direction
of the magnetization. The generalization of Eq. (34) to GGAs is
plagued by formal as well as numerical problems,195,196 and the self-
consistent solution of the non-collinear Kohn–Sham equations is
presently restricted to LDA. It should be emphasized that the PAW
formalism allows for a fully non-collinear treatment that does not
rely on intra-atomic collinearity, which is often imposed in other
electronic structure packages.

Spin–orbit coupling may be included by adding Eq. (28) to the
Kohn–Sham Hamiltonian, and this constitutes a fully self-consistent
framework for spin–orbit calculations within LDA.

C. Orbital magnetization
Current ab initio methods for determining the orbital mag-

netization of a material involve either the modern theory, i.e., a
Berry-phase formula, or the atom-centered approximation (ACA),
where contributions to the expectation value of the angular momen-
tum operator are restricted within atom-centered muffin-tin (MT)
spheres with specified cutoff radii. The PAW formulation of the
wave functions allows for an approximation similar to the MT-ACA,
where only the PAW expansion of the wave functions is assumed
to contribute significantly to the expectation value of the angular
momentum. The orbital magnetic moments can then be calculated
through

ma
orb = −

e
2me
∑

a
∑
ii′
∑
σ

Da
σii′⟨ϕ

a
i ∣L̂∣ϕ

a
i′⟩, (35)

where Da
σii′ are elements of the atomic density matrix as defined in

Eq. (9), ϕa
i (r) are the bound all-electron partial waves of atom a, and

L̂ is the angular-momentum operator.

TABLE II. Calculated and measured values for the orbital magnetization in units of
μB per atom.

Crystal easy axis
bcc-Fe
[001]

fcc-Ni
[111]

fcc-Co
[111]

hcp-Co
[001]

PAW-ACA 0.0611 0.0546 0.0845 0.0886
MT-ACA197 0.0433 0.0511 0.0634 0.0868
Modern theory197 0.0658 0.0519 0.0756 0.0957
Experiment198 0.081 0.053 0.120 0.133

We note that this expression does not entail cutoff radii for the
atomic contributions to the orbital magnetic moments; instead, the
entire all-electron partial wave is included, although the all-electron
atomic expansion is only formally exact inside the PAW spheres.
Additionally, this means that the unbounded, i.e., non-normalizable,
all-electron partial waves must be excluded in Eq. (35).

A prerequisite for nonzero orbital magnetization is broken
time-reversal symmetry, as represented by a complex Hamiltonian
that is not unitarily equivalent to its real counterpart. Practically,
this means that a finite orbital magnetization requires magnetic
order and either the inclusion of spin–orbit coupling or non-
coplanar spin textures. In GPAW, the spin–orbit interaction can
be included either self-consistently in a non-collinear calculation or
as a non-self-consistent post-processing step following a collinear
calculation. The orbital magnetization has been calculated using
Eq. (35) for the simple ferromagnets bcc-Fe, fcc-Ni, fcc-Co, and
hcp-Co, where the spin–orbit interaction is included non-self-
consistently. The PAW-ACA results are displayed in Table II along
with MT-ACA results, modern theory results, and measurements
from experiments, demonstrating mainly that the PAW-ACA can
be an improvement over the MT-ACA and secondly that there is a
decent agreement between the PAW-ACA and the modern theory
for these systems.

D. Constant B-field
The coupling of the electronic spin magnetic moments to a con-

stant external magnetic field B can be included by the addition of a
Zeeman term in the Kohn–Sham Hamiltonian

ΔHB = B ⋅ σ. (36)

As an example, we can consider the spin-flop transition in Cr2O3.
The ground state is anti-ferromagnetic with a weak anisotropy that
prefers alignment of the spins with the z-axis, and if a magnetic field
is applied along the z-direction, it becomes favorable to align the
spins along a perpendicular direction (with a small ferromagnetic
component) at the critical field where the Zeeman energy overcomes
the anisotropy. This is clearly a spin–orbit effect, and one has to
carry out the calculations in a fully non-collinear framework with
self-consistent spin–orbit coupling. In Fig. 4, we show the energy of
the two alignments of spin as a function of the external magnetic
field obtained with LDA+U (U = 2 eV). The minimum energy con-
figuration changes from Sz to Sx alignment at 6 T, i.e., the spin flips at
this critical field. This is in excellent agreement with the experimen-
tal value of Ref. 199. The critical field is, however, rather strongly
dependent on the chosen value of U and increases by a factor of two
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FIG. 4. Spin-flop transition in Cr2O3. The alignment of the spins with respect to
the magnetic field is sketched for small and large magnitudes of the field. The
canting (the small ferromagnetic component after the spin flop) is exaggerated for
visualization. The actual canting is roughly 1○.

in the absence of U. The magnetic anisotropy (per unit cell) can be
read off from the energy difference at B = 0 T.

E. Spin spirals
The ground-state magnetic structure of frustrated and/or chi-

ral magnets is often non-collinear and may be incommensurate with
the chemical unit cell. In the classical isotropic Heisenberg model,
the energy is always minimized by a planar spin spiral.200 The energy
of a general planar spin spiral can be evaluated efficiently within the
chemical unit cell using the Generalized Bloch’s theorem (GBT).201

In the GBT implementation of GPAW,40 there is no restriction
on interatomic collinearity and, therefore, it encodes a rotation of
the all-electron magnetization density by an angle φ = q ⋅ Ri upon
translations of a lattice vector Ri. The Kohn–Sham equations can
then be solved self-consistently for a fixed wave vector q,

Ĥq(k)∣uq,nk⟩ = εq,nk∣uq,nk⟩, (37)

using only the periodic part of the generalized Bloch orbitals, ∣ψq,nk⟩

= U†
q(r)eik⋅r

∣uq,nk⟩, where Uq denotes the spin rotation around the
z-axis:

Uq(r) =
⎛
⎜
⎝

eiq⋅r/2 0

0 e−iq⋅r/2

⎞
⎟
⎠

. (38)

The generalized Bloch Hamiltonian without spin–orbit coupling is
given by

Ĥq(k) = e−ik⋅rUq(r)ĤU†
q(r)e

ik⋅r, (39)

and once Eq. (37) has been solved self-consistently for a given q,
the corresponding spin-spiral energy is evaluated as usual, ESS(q)
= EDFT

q [n, m].
Using the GPAW functionality to compute the spin-spiral

energy as a function of q, one can then search for the ground-state
wave vector Q that minimizes the energy. In Fig. 5, we show that the
monolayer NiBr2 has an incommensurate spin-spiral ground state

FIG. 5. LSDA spin-spiral spectrum of the NiBr2 monolayer (structure taken from the
C2DB15). The ground state has an incommensurate wave vector Q ≃ [0.1, 0.1, 0].
The magnetic moment displays only weak longitudinal fluctuations, and the
bandgap remains finite for all wave vectors q, indicating that a Heisenberg model
description of the material would be appropriate. The inset shows the spin–orbit
correction to the spin-spiral energies (in meV) as a function of the normal vector
n of the planar spin spiral. n is depicted in terms of its stereographic projection in
the upper hemisphere above the monolayer plane. The spiral plane is found to be
orthogonal to Q and tilted slightly with respect to the out-of-plane direction.

and that the local magnetic moment on the Ni atom depends only
weakly on the wave vector q.

Furthermore, the orientation of the ground state spin spi-
ral can be obtained by including spin–orbit coupling non-self-
consistently in the projected spin–orbit approximation202 and search
for the orientation that minimizes the energy. The ordering vec-
tor Q and the normal vector n of the spiral plane thus constitute
a complete specification of the magnetic ground state within the
class of single-q states. The normal vector is of particular inter-
est since spin spirals may lead to spontaneous breaking of the
crystal symmetry, and the normal vector largely determines the
direction of magnetically induced spontaneous polarization.40 In
Fig. 5, we show that n is perpendicular to the wavevector Q in the
monolayer NiBr2 ground state, corresponding to a cycloidal spin
spiral.

VI. RESPONSE FUNCTIONS AND EXCITATIONS
Linear response functions are the bread and butter of con-

densed matter physics. Their applications include the description
of dielectric screening, optical and electron energy loss spectra,
many-body excitations, and ground state correlation energies. In
this section, we describe the methods available in GPAW for cal-
culating electronic response functions as well as GW quasiparticle
band structures and optical excitations from the Bethe–Salpeter
Equation (BSE). In addition to the electronic response func-
tion, GPAW can also calculate the transverse magnetic suscep-
tibility, which holds information about the magnetic excitations,
e.g., magnons, and can be used to derive parameters for classi-
cal Heisenberg spin models and to estimate magnetic transition
temperatures. Finally, we present methods to calculate Raman spec-
tra of solids and quadratic optical response tensors for describ-
ing second harmonics generation and the Pockels electro-optical
effect.
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A. Linear-response TDDFT
To linear order, the change in electron density induced by a

time-dependent external (scalar) potential Vext(r, t) is governed by
the electronic susceptibility, χ,

δn(r, t) = ∫
∞

−∞

dt′ ∫ dr′ χ(r, r′, t − t′)Vext(r′, t′). (40)

The susceptibility is itself given by the Kubo formula203

χ(r, r′, t − t′) = −
i
h̵
θ(t − t′)⟨[n̂0(r, t), n̂0(r′, t′)]⟩0, (41)

where the expectation value is taken with respect to the ground
state at zero temperature and the density operators are cast in the
interaction picture.

In the noninteracting Kohn–Sham system, the susceptibil-
ity can be evaluated explicitly from the Kohn–Sham orbitals,
eigenvalues, and occupations,

χ0(r, r′,ω) = lim
η→0+

2∑
nk
∑
mk′
( fnk − fmk′)

×
ψ∗nk(r)ψmk′(r)ψ

∗

mk′(r
′
)ψnk(r′)

h̵ω − (ϵmk′ − ϵnk) + ih̵η
. (42)

Based on the Kohn–Sham susceptibility, χ0, the many-body suscep-
tibility can be calculated via a Dyson-like equation204

χ(r, r′,ω) = χ0(r, r′,ω) +∬ dr1dr2 χ0(r, r1,ω)

× KHxc(r1, r2,ω)χ(r2, r′,ω). (43)

Here, electronic interactions are accounted for via the Hartree-XC
kernel, which is defined in terms of the effective potentials of time-
dependent DFT (TDDFT),205

KHxc(r, r′, t − t′) = vc(r − r′) + fxc(r, r′, t − t′), (44)

where vc is the Coulomb interaction and fxc is the XC-kernel
defined as

fxc(r, r′, t − t′) =
δvxc(r, t)
δn(r′, t′)

. (45)

In prototypical linear-response TDDFT (LR-TDDFT) calculations,
the exchange–correlation part of the kernel is either neglected [lead-
ing to the random phase approximation (RPA)] or approximated via
the adiabatic local density approximation (ALDA),

vxc(r, t) ≃
∂[ϵxc(n)n]

∂n
∣
n(r,t)

, (46)

where ϵxc(n) denotes the XC-energy per electron of the homoge-
neous electron gas of density n. The ALDA is in fact rather restricted,
as it only ensures a correct description of the kernel for metals in the
long wavelength limit. This implies that it cannot account for exci-
tons in extended systems and, furthermore, it leads to a divergent
XC-hole. The latter problem can be resolved by a simple renormal-
ization of the ALDA that regulates the ontop XC-hole and drastically
improves the description of local correlations over the ALDA (and
RPA).37

1. Implementation for periodic systems
In crystalline systems, the susceptibility is periodic with respect

to translations on the Bravais lattice, χ(r + R, r′ + R,ω) = χ(r, r′,ω).
Consequently, the susceptibility can be Fourier-transformed accord-
ing to

χGG′(q,ω) =∬
drdr′

Ω
e−i(G+q)⋅rχ(r, r′,ω)ei(G′+q)⋅r′ , (47)

translating the Dyson Eq. (43) into a plane-wave matrix equa-
tion, which is diagonal in the wave vector q and can be inverted
numerically.

By using a plane-wave representation, the crux of the imple-
mentation then becomes calculating the reciprocal-space pair
densities

nnk,mk+q(G + q) = ⟨ψnk∣e
−i(G+q)⋅r

∣ψmk+q⟩, (48)

and to Fourier transform the XC-kernel

fLDA(G) = ∫
Ωcell

dr e−iG⋅r ∂
2
[ϵxc(n)n]
∂n2 ∣

n(r)
. (49)

Crucially, both can be evaluated by adding a PAW correction to the
analogous pseudo-quantity, which itself can be evaluated by means
of a fast Fourier transform (FFT). Implementational details hereto
are reported in Refs. 36 and 43.

The Hartree contribution to the kernel (44) is simply given by
the bare Coulomb interaction (here given in atomic units)

vc,GG′(q) =
4π

∣G + q∣2
δG,G′ , (50)

and can be evaluated analytically when q is finite. However, in the
optical limit, the G = 0 component diverges, and one needs to be
careful when inverting the Dyson Eq. (43). In GPAW, this is handled
by expanding the pair densities within kp-perturbation theory,

⟨ψnk∣e
−i(G+q)⋅r

∣ψmk+q⟩q→0,G=0 = −iq ⋅
⟨ψnk∣∇∣ψmk⟩

ϵmk − ϵnk
. (51)

In the expansion, the diverging Coulomb term is exactly canceled
by the q-dependence of the pair densities so that the product χ0vc
remains finite. For additional details, see Ref. 36.

2. Spectral representation
GPAW offers two different ways of dealing with the frequency

dependence of the Kohn–Sham susceptibility (42). One is to evalu-
ate the expression explicitly for the frequencies of interest. This is
advantageous if one is interested in a few specific frequencies. The
other is to evaluate the associated spectral function

S0,GG′(q,ω) =
2
Ω∑k

∑
n,m
( fnk − fmk+q)

× nnk,mk+q(G + q)nmk+q,nk(−G′ − q)

× δ(h̵ω − [ϵmk+q − ϵnk]), (52)
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from which the susceptibility can be obtained via a Hilbert
transform,

χ0,GG′(q,ω) = lim
η→0+
∫

∞

−∞

dω′
S0,GG′(q,ω′)
ω′ − ω + iη

. (53)

To converge the Hilbert transform, the spectral function is evaluated
on a nonlinear frequency grid spanning the range of eigenenergy
differences included in Eq. (52). Although the calculation becomes
more memory-intensive as a result, it is usually faster to compute
χ0 via its spectral function. Furthermore, since S0 is linearly inter-
polatable, the tetrahedron method can be employed to improve
convergence with respect to k-points.

B. Dielectric function
The longitudinal part of the dielectric tensor is related to the

susceptibility χ as

ε−1
GG′(q,ω) = δGG′ + vc,GG(q)χGG′(q,ω). (54)

From the dielectric matrix, the macroscopic dielectric function,
including local field corrections, is given by

εM(q,ω) =
1

ε−1
00 (q,ω)

, (55)

from which it is straightforward to extract the optical absorption
spectrum

ABS = Im εM(q→ 0,ω), (56)

as well as the electron energy-loss spectrum

EELS = −Im
1

εM(q,ω)
. (57)

It is also possible to define a symmetrized version of the
dielectric matrix as

ε̃GG′(q,ω) = v−1/2
G (q)εGG′(ω, q)v1/2

G′ (q). (58)

The susceptibility can be evaluated at the RPA level [by setting Vxc
in Eq. (43) to zero] or using one of the XC-kernels implemented in
GPAW such as the local ALDA, the non-local renormalized ALDA
(rALDA),37 or the bootstrap kernel.206

The evaluation χ0 is computationally demanding since it
involves an integration over the Brillouin zone (BZ) as well as
a summation over occupied and unoccupied states. The k-point
convergence can be increased substantially with the tetrahedron
method.207 Contrary to simple point integration, where the δ-
function in Eq. (52) is replaced by a smeared-out Lorentzian, the
tetrahedron method utilizes linear interpolation of the eigenvalues
and matrix elements.

In Fig. 6, we compare the dielectric function computed using
the two different integration methods for two prototypical cases:
(semiconducting) Si and (metallic) Ag. Since Si is semiconducting,
there are no low-energy excitations, and consequently, the imag-
inary part of the dielectric function is zero, while the real part
is flat for low frequencies. The point integration and tetrahedron

FIG. 6. Real and imaginary parts of the dielectric function for Ag (solid) and Si
(dashed) using the tetrahedron and point integration methods.

integration yield the same value for ω→ 0, but the tetrahedron inte-
gration avoids the unphysical oscillations of ε at higher frequencies
exhibited by the point integration due to the finite k-point sam-
pling. For metals, the k-point convergence is even slower, and the
difference between point integration and tetrahedron integration
is thus even more pronounced for Ag. By increasing the k-point
sampling, the point integration results will eventually approach the
results obtained with the tetrahedron method, but at a much higher
computational cost.

1. Screening in low-dimensional systems
In a three dimensional (3D) bulk crystal, the macroscopic

dielectric function is related to the macroscopic polarizability αM of
the material as

εM(q,ω) = 1 + 4παM(q,ω). (59)

Since εM is related to the macroscopic average of the induced poten-
tial, it will depend on the unit cell in low-dimensional systems and
tend to unity when increasing the cell in the non-periodic direction.
In contrast, it is straightforward to generalize the definition of polar-
izability so that it measures the induced dipole moment per length
or area rather than volume. The d-dimensional polarizability is thus
defined as αd

M = ΩdαM , whereΩd is the cell volume with the periodic
directions projected out. For example, for a 2D material,Ωd is simply
the length of the unit cell in the non-periodic direction. To improve
convergence with respect to the size of the unit cell, the Coulomb
kernel is truncated using the reciprocal-space method introduced in
Ref. 208. This enables efficient calculations of the dielectric proper-
ties of low-dimensional materials.209,210 This does, however, imply
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that the polarizability cannot be evaluated directly from the dielec-
tric constant (which is just one), but one may obtain it directly from
the susceptibility as

αM = − lim
q→0

Ωd

q2 χ00(q). (60)

C. Adiabatic-connection fluctuation–dissipation
theorem

The adiabatic-connection fluctuation–dissipation theorem
(ACFDT) is a highly promising approach for constructing accurate
correlation functionals with non-local characteristics. Unlike regu-
lar XC-functionals, the ACFDT correlation functionals do not rely
on error cancellation between exchange and correlation. Instead,
the ACFDT provides an exact theory for the electronic correlation
energy Ec in terms of the interacting electronic susceptibility, which
can be combined with the exact exchange,

Ec = −∫

∞

0

dω
2π ∫

1

0
dλ Tr [vcχλ(w) − vcχKS

(w)]. (61)

The response function can be expressed in terms of the Kohn–Sham
response function and the exchange–correlation kernel fxc

χλ(ω) = χKS
(ω) + χKS

(ω)[λvc + fxc(ω)]χλ(ω). (62)

The random phase approximation (RPA) can be derived from
ACFDT if the XC-kernel fxc is neglected. RPA has the strength
of capturing non-local correlation effects and provides high accu-
racy across different bonding types, including van der Waals
interactions.29,211–213

Simple exchange–correlation kernels can also be incorporated
into the response function, such as the adiabatic LDA (ALDA) ker-
nel. However, the locality of adiabatic kernels leads to divergent
characteristics of the pair-correlation function.214 This issue can be
overcome by a renormalization (r) scheme,37 which is implemented
in GPAW as rALDA. This class of renormalized kernels provides a
significantly better description of the short-range correlations and,
hence, also yields highly accurate total correlation energies.215–218

D. Magnetic response
The LR-TDDFT framework described in Sec. VI A can

be generalized to include spin degrees of freedom.43,219 Using
the four-component density as the basic variable, nμ(r) (where
μ ∈ {0, x, y, z}), one can define the four-component susceptibility
tensor,

χμν(r, r′, t − t′) = −
i
h̵
θ(t − t′)⟨[n̂μ0(r, t), n̂ν0(r

′, t′)]⟩0. (63)

In a similar fashion to Eq. (43), the many-body χμν can be calculated
from the corresponding susceptibility tensor of the Kohn–Sham sys-
tem, χμνKS. In the most general case, the Dyson equation for χμν is a
matrix equation in the μ and ν indices, explicitly coupling the charge
and spin degrees of freedom. However, for collinear magnetic sys-
tems, the transverse components of the susceptibility decouple from
the rest in the absence of spin–orbit coupling.

1. Transverse magnetic susceptibility
By taking the spins to be polarized along the z-direction,

the transverse magnetic susceptibility of collinear nonrelativis-
tic systems may be expressed in terms of the spin-raising
and spin-lowering density operators n̂+(r) = (n̂ x

(r) + in̂ y
(r))/2

= ψ̂†
↑
(r)ψ̂↓(r) and n̂−(r) = (n̂ x

(r) − in̂ y
(r))/2 = ψ̂†

↓
(r)ψ̂↑(r). In

the ALDA, the Dyson equation for χ+− then becomes a scalar one,43

χ+−(r, r′,ω) = χ+−KS (r, r′,ω) + ∫ dr1

× χ+−KS (r, r1,ω) f −+LDA(r1)χ+−(r1, r′,ω), (64)

where the transverse XC-kernel is given by f −+LDA = 2WLDA(r)/nz
(r).

The susceptibilities χ+− and χ+−KS are themselves defined via the Kubo
formula (63), where the latter can be evaluated explicitly in complete
analogy to Eq. (42),

χ+−KS (r, r′,ω) = lim
η→0+
∑
nk
∑
mk′
( fnk↑ − fmk′↓)

×
ψ∗nk↑(r)ψmk′↓(r)ψ

∗

mk′↓(r
′
)ψnk↑(r′)

h̵ω − (ϵmk′↓ − ϵnk↑) + ih̵η
. (65)

In GPAW, the transverse magnetic susceptibility is calculated
using a plane-wave basis as described in Sec. VI A 1, with the notable
exception that no special care is needed to treat the optical limit since
the Hartree kernel plays no role in the Dyson Eq. (64). In terms of the
temporal representation, it is at the time of this writing only possible
to do a literal evaluation of Eq. (65) at the frequencies of interest.
For metals, this means that η has to be left as a finite broadening
parameter, which has to be carefully chosen depending on the k-
point sampling (see Ref. 43).

2. The spectrum of transverse magnetic excitations
Based on the transverse magnetic susceptibility, one may

calculate the corresponding spectral function43

S+−(r, r′,ω) = −
1

2πi
[χ+−(r, r′,ω) − χ−+(r′, r,−ω)], (66)

which directly governs the energy dissipation in a collinear mag-
net relating to induced changes in the spin projection along the
z-axis Sz . In particular, one can decompose the spectrum into con-
tributions from majority and minority spin excitations, S+−(r, r′,ω)
= A+−(r, r′,ω) − A−+(r′, r,−ω), that is, into spectral functions for
the excited states where Sz has been lowered or raised by one unit of
spin angular momentum, respectively,

A+−(r, r′,ω) =∑
α>0
⟨0∣n̂+(r)∣α⟩⟨α∣n̂−(r′)∣0⟩δ(h̵ω − [Eα − E0]).

(67)
Here, α iterates the system eigenstates, with α = 0 denoting the
ground state.

For collinear magnetic systems, the spectrum S+− is com-
posed of two types of excitations: collective spin-wave excita-
tions (referred to as magnons) and excitations in the Stoner-pair
continuum (electron–hole pairs of opposite spin). Since GPAW
employs a plane-wave representation of the spectrum, S+−GG′(q,ω),
one can directly compare the calculational output to the inelas-
tic neutron scattering cross-section measured in experiments.220
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In particular, one can extract the magnon dispersion directly by
identifying the position of the peaks in the spectrum diagonal
(see Fig. 7). In this way, GPAW allows the user to study vari-
ous magnon phenomena in magnetic systems of arbitrary collinear
order, such as nonanalytic dispersion effects in itinerant ferromag-
nets,43 correlation-driven magnetic phase transitions,221 and the
emergence of distinct collective modes inside the Stoner continuum
of an antiferromagnet.222

Additionally, one can analyze the spectrum more intricately by
extracting the majority and minority eigenmodes from S+− as the
positive and negative eigenvalues, respectively. Contrary to the anal-
ysis of the plane-wave diagonal, this makes it possible to completely

FIG. 7. Spectrum of transverse magnetic excitations for ferromagnetic hcp-Co
evaluated at q = 5qM/6. The spectrum was calculated using eight empty-shell
bands per atom, a plane-wave cutoff of 800 eV, a (60, 60, 36) k-point mesh, and
a spectral broadening of η = 50 meV. In the upper panel, the spectrum diagonal is
depicted for the first and second Brillouin zones out of the hexagonal plane, from
which the acoustic and optical magnon frequencies can be respectively extracted.
In the lower panel, the spectrum of majority excitations is shown. The full spec-
tral weight A(ω) is calculated as the sum of all positive eigenvalues of S+−, the
acoustic and optical mode lineshapes a0(ω) and a1(ω) are obtained via the two
largest eigenvalues (which are significantly larger than the rest), and the Stoner
spectrum is extracted as the difference AS(ω) = A(ω) − a0(ω) − a1(ω).

separate the analysis of each individual magnon lineshape as well as
the many-body Stoner continuum (see Fig. 7).

3. Linear response MFT
Not only can the transverse magnetic susceptibility be used to

study magnetic excitations in a literal sense, but one can also use it
to map the spin degrees of freedom to a classical Heisenberg model,

EH = −
1
2∑i,j

∑
a,b

Jab
i j uia ⋅ ujb, (68)

where i, j and a, b denote the indices of the Bravais lattice and the
magnetic sublattice, respectively, uia being the direction of spin-
polarization of the given magnetic site. Based on the magnetic force
theorem (MFT), the LSDA Heisenberg exchange parameters Jab

i j can
be calculated from the reactive part of the static Kohn–Sham suscep-
tibility42 and the effective magnetic field Bxc(r) = δExc/δm(r), using
the well-known Liechtenstein MFT formula189

Jab
i j = −2∫

Ωia

dr∫
Ωjb

dr′ Bxc(r)χ′+−KS (r, r′)Bxc(r′). (69)

Here, Ωia denotes the site volume, which effectively defines the
Heisenberg model (68).

Using GPAW’s plane-wave representation of χ′+−KS , one can
directly compute the lattice Fourier-transformed exchange para-
meters,42

J̄ ab
(q) =∑

i
Jab

0i eiq⋅Ri , (70a)

= −
2

Ωcell
B†

xcKa†
(q)χ′+−KS (q)K

b
(q)Bxc, (70b)

where the right-hand side of the second equality is written in a plane-
wave basis and Ka denotes the sublattice site-kernel,

Ka
GG′(q) =

1
Ωcell
∫
Ω0a

dr e−i(G−G′+q)⋅r. (71)

Since an a priori definition for magnetic site volumes does not
exist, GPAW supplies functionality to calculate exchange para-
meters based on spherical, cylindrical, and/or parallelepipedic site
configurations of variable size.

Upon calculation of the exchange parameters J̄ ab
(q), it is

straightforward to compute the magnon dispersion within the classi-
cal Heisenberg model using linear spin-wave theory and to estimate
thermal quantities such as the Curie temperature (see, e.g., Ref. 42).
In Fig. 8, the MFT magnon dispersion of hcp-Co is compared to
the majority magnon spectrum calculated within LR-TDDFT. For
Co, the two are in excellent agreement except for the dispersion of
the optical magnon mode along the K −M − Γ high-symmetry path,
where MFT underestimates the magnon frequency and neglects the
fine structure of the spectrum. The fine structure of the ALDA spec-
trum appears due to the overlap between the magnon mode and the
Stoner continuum. This gives rise to so-called Kohn anomalies (non-
analytical points in the magnon dispersion), which are a trademark
of itinerant electron magnetism. Since itinerancy is largely ignored
in a localized spin model such as (68), one cannot generally expect
to capture such effects.
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FIG. 8. Magnon spectrum of ferromagnetic hcp-Co calculated using ALDA LR-TDDFT (shown as a heat map) compared to the spin-wave dispersion of Liechtenstein MFT.
The acoustic magnon mode a0(ω) is shown to the left of the A-point, while the optical magnon mode a1(ω) is shown to the right. Note that the two modes are degenerate at
both the A and K high-symmetry points. The calculations were carried out using eight empty-shell bands per atom, a plane-wave cutoff of 800 eV, and a (36, 36, 24)k-point
mesh. A finite value of η = 100 meV was used to broaden the ALDA spectrum. For the MFT calculations, the dispersion was calculated using linear spin-wave theory based
on a Heisenberg model of closed-packed spherical sites centered at each of the Co atoms.

E. GW approximation
GPAW supports standard G0W0 quasiparticle (QP) calcula-

tions based on a first-order perturbative treatment of the linearized
QP equation9

EQP
nkσ = εnkσ + Znkσ⟨ψnkσ ∣ΣGW(εnkσ) + vx − vxc∣ψnkσ⟩, (72)

where εnkσ and ψnkσ are Kohn–Sham eigenvalues and wave func-
tions, and vxc and vx are the local XC-potential and non-
local exchange potential, respectively. ΣGW is the (dynamical
part of) the GW self-energy whose frequency-dependence is
accounted for in first order by the renormalization factor Znkσ
= (1 − Re Σ′GW(εnkσ))

−1. As indicated by the σ-index, spin-polarized
G0W0 calculations are supported.

The GW self-energy is calculated on a plane-wave basis
using full frequency integration along the real axis to evaluate
the convolution between G and W.38 Compared to alternative
schemes employing contour deformation techniques or analytical
continuation,223–225 this approach is time-consuming but numeri-
cally accurate and can provide the full spectral function. A highly
efficient and accurate evaluation of the self-energy based on a multi-
pole expansion of the screened interaction, W,226 is currently being
implemented, and a GPU version of the full GW code is under
development.

An important technical issue concerns the treatment of the
head and wings of W (G = 0 and/or G′ = 0, respectively) in the q→ 0
limit. The divergence of the Coulomb interaction appears both in the
evaluation of the inverse dielectric matrix ε−1

GG′ and in the subsequent
evaluation of the screened interaction

WGG′(q,ω) =∑
G′′

ε−1
GG′′(q,ω)vc,G′′G′(q).

For 3D bulk crystals, GPAW obtains these components by evalu-
ating ε−1

GG′ on a dense k-grid centered at k = 0, while vc,GG′ can be
integrated numerically or analytically around the Γ-point.

For low-dimensional structures, in particular atomically thin
2D semiconductors, GPAW can use a truncated Coulomb interac-
tion to avoid interactions between periodical images when evaluat-
ing W.208 It has been shown that the use of a truncated Coulomb
kernel leads to slower k-point convergence.209 To mitigate this

drawback, a special 2D treatment of W(q) at q = 0 can be applied to
significantly improve the k-point convergence.227 A detailed account
of the GW implementation in GPAW can be found in Ref. 38.

Figure 9 shows two matrix elements of the dynamical GW self-
energy for the valence and conduction band states at the gamma
point of bulk silicon. As can be seen, the agreement with the cor-
responding quantities obtained with the Yambo GW code228 is
striking.

F. Bethe–Salpeter equation (BSE)
In addition to the LR-TDDFT discussed in Sec. VI A, the

interacting response function may be approximated by solving
the Bethe–Salpeter equation (BSE).11 In particular, for a certain
wave vector q, one may obtain the two-particle excitations by
diagonalizing the Hamiltonian

Hk2m1m2
k4m3m4

(q) = δm1m3δm2m4δk2k4(εm1k2+q − εm2k2)

− ( fm1k2+q − fm2k2)Kk2m1m2
k4m3m4

(q), (73)

where εkm are the Kohn–Sham eigenvalues and fkm are the associated
occupation numbers. The kernel is defined by K = vc −W with

vc = ⟨m2k2, m3k4 + q∣v̂c∣m1k2 + q, m4k4⟩, (74)

W = ⟨m2k2, m3k4 + q∣Ŵ∣m4k4, m1k2 + q⟩, (75)

where Ŵ is the static screened Coulomb interaction defined in
Sec. VI E. The matrix elements of the kernel are evaluated on a
plane-wave basis, where they are easily expressed in terms of the
pair densities (48) and the reciprocal-space representation of the
dielectric matrix (54).

In the Tamm-Dancoff approximation, one neglects the cou-
pling of the resonant and anti-resonant blocks of the BSE Hamilto-
nian (those corresponding to positive and negative transition ener-
gies, respectively). This makes the BSE Hamiltonian Hermitian.11

The interacting retarded response function may then be written as

χGG′
(q,ω) =

1
Ω∑λ

Bλ(q, G)C∗λ (q, G′)
ω − Eλ(q) + iη

, (76)
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FIG. 9. The real (Re) and imaginary (Im) parts of the self-energy matrix elements at
the Gamma point for valence (top) and conduction (bottom) bands evaluated with
Yambo and GPAW for bulk silicon. Both codes are using full frequency integration
with a broadening of 0.1 eV. Yambo is using norm-conserving pseudo-potentials,
and GPAW is its standard PAW setup. The k-point grid was 12 × 12 × 12, the
plane wave cutoff was 200 eV, and the number of bands was 200 for both codes.
The results are virtually indistinguishable.

where

Bλ(q, G) = ∑
km1m2

nm2km1k+q(G + q)Aλ
m1m2k(q), (77)

Cλ(q, G) = ∑
km1m2

nm2km1k+q(G + q)Aλ
m1m2k(q)( fm1k+q − fm2k),

(78)

and Eλ(q) denotes the eigenvalue of the Hamiltonian (73) corre-
sponding to the eigenvector Aλ

m1m2k(q).
In GPAW, the construction of the BSE Hamiltonian (73) pro-

ceeds in two steps.39 First, the static screened interaction is calculated
at all inequivalent q-points in a plane-wave basis, and the ker-
nel is then subsequently expressed in a basis of two-particle KS
states. The first step is efficiently parallelized over either states or
k-points, and the second step is parallelized over pair densities.

The Hamiltonian elements are thus distributed over all CPUs, and
the diagonalization is carried out using ScaLAPACK such that the
full Hamiltonian is never collected on a single CPU. The dimension
of the BSE Hamiltonian and memory requirements are, therefore,
only limited by the number of CPUs used for the calculation. We
note that the implementation is not limited to the Tamm–Dancoff
approximation, but calculations become more demanding with-
out it. The response function may be calculated for spin-paired
as well as spin-polarized systems, and spin–orbit coupling can be
included non-selfconsistently.45,229 In low-dimensional systems, it is
important to eliminate spurious screening from periodic images of
the structure, which is accomplished with the truncated Coulomb
interaction in Ref. 208.

The most important application of BSE is arguably the calcu-
lation of optical absorption spectra of solids, where BSE provides
an accurate account of the excitonic effects that are not cap-
tured by semi-local approximations for KHxc (44). In 2D systems,
the excitonic effects are particularly pronounced due to inefficient
screening,209,229 and in Fig. 10, we show the 2D polarizability of
WS2 calculated from BSE with q = 0. Comparing with Fig. 3, it is
observed that the absorption edge is expected to be located at the
K point, where spin–orbit coupling splits the highest valence band
by 0.45 eV. This splitting is seen as two excitonic peaks below the
bandgap, which is interpreted as distinct excitons originating from
the highest and next-highest valence bands (the splitting of the low-
est conduction band is negligible in this regard). For comparison, we
also show the RPA polarizabilty, obtained with the BSE module by
neglecting the screened interaction in the kernel, and this shows the
expected absorption edge at the bandgap. This yields identical results
to the Dyson equation approach of Sec. VI A but has the advantage
that the eigenvalues and weights of Eq. (76) are obtained directly,
such that the artificial broadening η may be varied without addi-
tional computational cost. The eigenstate decomposition also allows
one to access “dark states,” and the BSE calculation reveals two (one
for each valley) triplet-like excitons that are situated 70 meV below
the lowest bright exciton in Fig. 10.

FIG. 10. 2D polarizability of WS2 calculated from the BSE and the RPA. For this
calculation, we included spin–orbit coupling and used the 2D Coulomb truncation
to eliminate screening from periodic images. A gamma-centered uniform k-point
grid of 48 × 48 was applied, and eight valence states and eight conduction states
(shifted by 1 eV to match the GW bandgap45) were included in the Tamm–Dancoff
approximation. This yields a BSE Hamiltonian of size N × N with N = 147 456,
which is easily diagonalized with ScaLAPACK on 240 CPUs.
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In addition to optical properties, GPAW allows for solving the
BSE at finite q, which can be used to obtain plasmon dispersion
relations from the electron energy loss spectrum (EELS) (57) and
magnon dispersions from the transverse magnetic susceptibility of
Sec. VI D.230

G. Electron–phonon coupling
The electron–phonon coupling is the origin of several impor-

tant material properties, ranging from electrical and thermal con-
ductivity to superconductivity. In addition, it provides access to
the deformation potential, which can be used to obtain transport
properties for electrons and holes in solids.231

The first-order electron–phonon coupling matrix gνmn(k, q)
measures the strength of the coupling between a phonon branch
ν with wave vector q and frequency ων and the electronic states
m(k + q) and n(k),232,233

gνmn(k, q) =
√

h̵
2m0ων

Mν
mn(k, q), (79)

with

Mν
mn(k, q) = ⟨ψmk+q∣∇uv

KS
⋅ eν∣ψnk⟩. (80)

Here, m0 is the sum of the masses of all the atoms in the unit cell,∇u
denotes the gradient with respect to atomic displacements, and eν
projects the gradient in the direction of the phonon displacements.
In the case of the three translational modes at ∣q∣ = 0, the matrix
element gνmn vanishes as a consequence of the acoustic sum rule.233

In GPAW, ∇uv
KS
(r) is determined using a finite-difference

method with a supercell description of the system. This step can be
performed in any of the wave function representations available in
GPAW. The derivative is then projected onto a set of atomic orbitals
from an LCAO basis ϕNM , where N denotes the cell index and M the
orbital index,

gsc
NM

N′M′
= FT[⟨ϕNM(k)∣∇uv

KS
∣ϕN′M′(k)⟩]. (81)

The Fourier transform from the Bloch to the real space represen-
tation makes it possible to compute Mν

mn for arbitrary q. Finally,
the electron–phonon coupling matrix is obtained by projecting the
matrix corresponding to the supercell into the primitive unit cell
bands m, n and phonon modes ν,

Mν
mn(k, q) = ∑

NM
N′M′

C∗mMCnM′g
sc

NM
N′M′
⋅ uqνei[(k+q)⋅RN−k⋅R′N], (82)

where CnM are the LCAO coefficients and uqν are mass-scaled
phonon displacement vectors.

H. Raman spectrum
The Raman effect describes inelastic light scattering, where

vibrational modes are excited within the material. Resonant and
non-resonant Raman spectra of finite systems such as molecules can
be calculated in various approximations234 using the corresponding
interfaces in ASE. The Stokes Raman intensity is then written as

I(ω) = I0∑
ν

nν + 1
ων
∣∑
α,β

uαinRν
αβuβout∣

2δ(ω − ων), (83)

where ν denotes phonon mode at q = 0 with a frequency of ων and
nν is the corresponding Bose–Einstein distribution. Furthermore, uαin
and uβout are the polarization vectors of the incoming and outgoing
light, and Rν

αβ denotes the Raman tensor for phonon mode ν.
The predominant approach for calculating Rν

αβ involves the
use of the Kramers–Heisenberg–Dirac (KHD) method. Within
the KHD framework, the Raman tensor is determined by taking
the derivative (utilizing a finite-difference method) of the electric
polarizability concerning the vibrational normal modes. Alterna-
tively, one can employ time-dependent third-order perturbation
theory to compute Raman tensors. These two approaches are equiva-
lent when local field effects are negligible.56 However, each approach
comes with its own set of advantages and drawbacks. The KHD
method is computationally more efficient but is limited to com-
puting first-order Raman processes. The perturbative approach can
be extended to higher-order Raman processes involving multiple
phonons, but it is more computationally demanding, necessitating a
greater number of bands and a finer k-mesh grid to achieve conver-
gence. The perturbative approach has been implemented in GPAW
and is elaborated below, while the KHD method has been imple-
mented in the ASR package,22 utilizing GPAW as the computational
backend.

In the perturbative approach, the Raman tensor Rν
αβ is given

by56,235

Rν
αβ ≡ ∑

ijmnk

⎡
⎢
⎢
⎢
⎢
⎣

pαi j(M
ν
jmδin −Mν

niδjm)p
β
mn

(h̵ωin − εji)(h̵ωout − εmn)
+

pαi j(p
β
jmδin − pβniδjm)Mν

mn

(h̵ωin − εji)(h̵ων − εmn)

+
pβi j(M

ν
jmδin −Mν

niδjm)pαmn

(−h̵ωout − εji)(−h̵ωin − εmn)
+

pβi j(p
α
jmδin − pαniδjm)Mν

mn

(−h̵ωout − εji)(h̵ων − εmn)

+
Mν

i j(p
α
jmδin − pαniδjm)p

β
mn

(−h̵ων − εji)(h̵ωout − εmn)
+

Mν
i j(p

β
jmδin − pβniδjm)pαmn

(−h̵ων − εji)(−h̵ωin − εmn)

⎤
⎥
⎥
⎥
⎥
⎦

× fi(1 − fj) fn(1 − fm), (84)

where the first term is referred to as the resonant part and the
remaining terms represent different time orderings of the inter-
action in terms of Feynman diagrams. pαnm = ⟨ψnk∣p̂α

∣ψmk⟩ is the
momentum matrix element between electronic bands m and n, with
transition energy εnm = En − Em in polarization direction α, and Mν

nm
is the electron–phonon coupling strength in the optical limit ∣q∣ = 0
as defined in Eq. (82).

Figure 11 shows the polarization-resolved Raman spectrum
of bulk MoS2 in the 2H phase as computed with a laser frequency
of ωin = 488 nm. This example uses only the resonant term, as the
other contributions are small in this case. These calculations used a
700 eV plane wave cutoff and a 2 × 2 × 2k-point mesh in a 3 × 3 × 2
supercell. Force constants and potential changes were calculated
simultaneously. The present implementation uses the ASE phonon
module as the backend to perform the finite difference displacement
and to obtain the phonon eigenvalues and eigenvectors. The conver-
gence of the supercell size for phonons and potential changes must
be checked carefully by the users for each given system to achieve
the desired precision of line positions and intensities. As Raman
spectrum calculations only use q = 0 phonons and electron–phonon
matrices, relatively small supercells often yield satisfactory
results.
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FIG. 11. Polarization-resolved Raman spectrum of bulk MoS2 in the 2H phase at
ω = 488 nm. Phonons and potential changes were computed using a 700 eV plane
wave cutoff and a 2 × 2 × 2k-point mesh in a 3 × 3 × 2 supercell. Each peak has
been labeled according to its irreducible representation.

It is worth noting that we have conducted a comparison of
the calculated spectra using the ASR package and observed a high
level of agreement for several materials, for example, MoS2. The
results obtained from both methods closely align with each other
in terms of peak positions and dominant peaks, and minor dis-
agreements between the two methods can be attributed to differ-
ences in implementation details and the distinct approximations
employed by each. Specifically, within the ASR package, we uti-
lized the phonopy package236 to compute phonon frequencies and
eigenvectors, whereas in GPAW, we directly computed phonon
frequencies and eigenvectors using ASE’s phonon module. Fur-
thermore, in the ASR implementation, we rigorously enforced
the symmetry of the polarizability tensor, and the ASR results,
therefore, typically exhibit a more accurate adherence to the
required symmetry of the Raman tensor compared to the GPAW
implementation.

I. Quadratic optical response functions
The nonlinear optical response of materials can be obtained by

going beyond first-order perturbation theory. Presently, the GPAW
implementation is restricted to second-order response within the
dipole approximation and without the inclusion of local field effects.
We apply the independent particle approximation, which cannot
capture collective behavior such as excitonic effects.57 A spatially
homogeneous incident electric field can be written in terms of its
Fourier components as

E(t) =∑
α,ω1

Eα(ω1)eαe−iω1t , (85)

where ω1 runs over positive and negative frequencies, eα denotes the
unit vector along the α-direction, and Eα(ω1) is the electric field at
frequency ω1. The induced quadratic polarization density P(2)γ (t)
can then be expressed as

P(2)γ (t) = ϵ0∑
ω1ω2

∑
αβ

χ(2)γαβ(ω1,ω2)Eα(ω1)Eβ(ω2)e−i(ω1+ω2)t , (86)

where χ(2)γαβ is the rank-3 quadratic susceptibility tensor. Due to

intrinsic permutation symmetry, i.e., χ(2)γαβ(ω1,ω2) = χ(2)γβα(ω2,ω1),

χ(2)γαβ has at most 18 independent elements, which may be further
reduced by the Neumann principle and point group symmetries.237

We note that the corresponding quadratic conductivity tensor
is readily derived from χ(2)γαβ as σ(2)γαβ(ω1,ω2) = −iϵ0χ(2)γαβ(ω1,ω2)(ω1

+ ω2) due to the relationship between current density and polariza-
tion density.238

Among the various response functions that can be calculated
from χ(2)γαβ(ω1,ω2), we have implemented second-harmonics gen-
eration (SHG) and the shift current tensor. The implementation
currently requires time-reversal symmetry, which limits the appli-
cation to non-magnetic systems. For SHG, the susceptibility tensor
is separated into a pure interband term χ(2e)

γαβ and a mixed term χ(2i)
γαβ

that read

χ(2e)
γαβ ≡ C0∑

′

k,nml

Re{rγnm(rαmlr
β
ln + rβmlr

α
ln)}

2(εln − εml)

× (
2 fnm

2h̵ω − εmn
−

fnl

h̵ω − εln
+

fml

h̵ω − εml
), (87)

χ(2i)
γαβ ≡ iC0∑

′

k,nm
fnm

⎡
⎢
⎢
⎢
⎢
⎣

2 Im {rγnm(rαmn;β + rβmn;α)}

εmn(2h̵ω − εmn)

+
Im {rαmnrγnm;β + rβmnrγnm;α}

εmn(h̵ω − εmn)
+

Im {rγnm(rαmnΔ
β
mn + rβmnΔαmn)}

ε2
mn

× (
1

h̵ω − εmn
−

4
2h̵ω − εmn

) −
Im {rαmnrβnm;γ + rβmnrαnm;γ}

2εmn(h̵ω − εmn)

⎤
⎥
⎥
⎥
⎥
⎦

.

(88)

Here, C0 ≡ e3
/(2ϵ0V), where V is the crystal volume, Δαmn ≡ (pαmm

− pαnn)/m denotes the velocity difference between bands n and m,
and rαnm is the interband (n ≠ m) position matrix element, obtained
from imrαnm = h̵pαnm/εnm. All energies, occupations, and matrix ele-
ments in the preceding expressions depend on the k-vector. In
addition, the summation over k implies an integral over the first BZ,
i.e., (2π)3

∑k → V ∫BZd3k. The primed summation signs indicate the
omission of terms with two or more identical indices. Finally, the
generalized derivative rβnm;α (for n ≠ m) is evaluated using the sum
rule239

rβnm;α = h̵
rαnmΔ

β
mn + rβnmΔαmn

εnm
+

ih̵
εnm
∑

l≠n,m
(εlmrαnlr

β
lm − εnlr

β
nlr

α
lm). (89)

Here, infinite sums have been substituted with finite sums over a
limited, yet sizable, set of bands. It is important to emphasize that
both sides of the equation are dependent on the k-vector, and the
summation on the right-hand side pertains exclusively to bands. It
should be mentioned that another implementation for the quadratic
susceptibility tensor in the velocity gauge is also available in the code
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but is not documented here. For sufficiently many bands, the results
of the two implementations are identical.238

Regarding the shift current, where a DC current is induced in
response to an incident AC field, one needs to compute the quadratic
conductivity tensor σ(2)γαβ ,

σ(2)γαβ =
πe3

h̵2V
∑
′

k,nm fnm Im {rαmnrβnm;γ + rβmnrβnm;γ}δ(h̵ω − εmn). (90)

In practice, the delta function is replaced by a Lorentzian with a finite
broadening η. To avoid numerical instabilities, the implementation
of Eqs. (87)–(90) uses a tolerance, such that terms are neglected if
the associated energy differences or differences in Fermi levels are
smaller than a tolerance. The default value of the tolerance is 10−6 eV
and 10−4 for the energy and Fermi level differences, respectively.

VII. REAL-TIME TDDFT
The real-time TDDFT (RT-TDDFT) scheme, also known as

time-propagation TDDFT, is implemented in FD34 and LCAO52

modes. It requires non-periodic boundary conditions but is not
restricted to the linear regime and can be applied to model molecules
in strong fields. The method may be combined with hybrid
quantum–classical modeling to simulate the dynamical interaction
between molecules and plasmon resonances at metal surfaces.240 The
LCAO-RT-TDDFT is the more recent implementation, supporting
versatile analyses and enabling the modeling of large systems thanks
to its efficiency.52–54,241–247 We focus on the capabilities of the LCAO
version in this section, but some of the described functionalities are
also available in FD mode.

The time-dependent KS equation in the PAW formalism is

iŜ
d
dt
∣ψ̃n(t)⟩ = (Ĥ[n(r)] + v̂(t))∣ψ̃n(t)⟩, (91)

where the Kohn–Sham Hamiltonian Ĥ[n(r)] is implicitly depen-
dent on time through the time-dependent density and v̂(t) is an
explicitly time-dependent external potential. We have additionally
assumed that the overlap matrix Ŝ is independent of time, i.e., there
are no ion dynamics.

Starting from the ground state, Eq. (91) is propagated
numerically forward. After each step, a new density is com-
puted, and Ĥ[n(r)] is updated accordingly. The user can freely
define the external potential, and implemented standard poten-
tials include the delta-kick v̂(t) = x̂δ(t) and a Gaussian pulse
v̂(t) = x̂ exp [−σ2

(t − t0)
2
/2] cos [ω(t − t0)], where x̂ is the dipole

operator in the direction x.
During the propagation, different time-dependent variables

can be recorded, and after the propagation, they can be post-
processed into quantities of physical and chemical interest. As a
basic example, the time-dependent dipole moment recorded for
a delta-kick perturbation can be Fourier-transformed to yield the
photoabsorption spectrum.248 Observables are recorded by attach-
ing observers to the calculation, and implemented observers include
writers for the dipole moment, magnetic moment, KS density matrix
in frequency space, and wave functions.

RT-TDDFT calculations can be started from the ground state
or continued from the last state of a previous time propagation,
and the time-limiter feature allows one to limit jobs to a predefined

amount of wall time. Together with the continuation capability, this
facilitates time propagation in short chunks, efficiently using shared
high-performance resources.

In the LCAO-RT-TDDFT implementation, Eq. (91) is cast into
a matrix equation and solved with ScaLAPACK.52 The intermediate
step of updating the Hartree and XC potentials is performed on the
real-space grid.

A. Kohn–Sham decomposition
The time-dependent KS density matrix can be written as

ρnn′(t) =∑
m

fm × ∫ (ψ
(0)
n (r))

∗

ψm(r, t)dr∫ ψ∗m(r
′, t)ψ(0)n′ (r

′
)dr′,

(92)

where ψ∗m(r′, t) are the time-dependent KS orbitals with ground
state occupation factors fm. The KS density matrix is a central quan-
tity enabling the computation of observables and may be evaluated
efficiently in the LCAO mode.54

The Fourier transform of the induced density matrix δρnn′(ω)
= F[ρnn′(t) − ρnn′(0)] can be built on the fly during time propaga-
tion through the density-matrix observer. Details on the implemen-
tation are described in Ref. 54. The KS density matrix in frequency
space is related to the Casida eigenvectors and gives similar informa-
tion as the solution of the Casida equation.54 Observables such as the
polarizability can be decomposed into a sum over the electron–hole
part of the KS density matrix ρnn, where fn > fn′ . This enables illus-
trative analyses, e.g., by visualizing ρnn′(ω) on energy axes as a
transition contribution map,249 from which the nature of the local-
ized surface plasmon resonance can be understood (Fig. 12; see
Ref. 54 for detailed discussion).

B. Hot-carrier analysis
The KS density matrix is a practical starting point for ana-

lyzing hot-carrier generation in plasmonic nanostructures. In the
regime of weak perturbations, the KS density matrix resulting from
arbitrary pulses can be obtained from delta-kick calculations by a

FIG. 12. Photoabsorption spectrum for an Ag147 icosahedral nanoparticle and the
transition contribution map at 3.8 eV. The map reveals that transitions between KS
states near the Fermi level contribute constructively to the plasmon resonance,
while transitions from occupied states at the d-band edge contribute destructively
(screening).
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post-processing routine.245,246 By decomposing the matrix into dif-
ferent spatial and energetic contributions, hot-carrier generation
in nanostructures245,247 and across nanoparticle-semiconductor243

and nanoparticle-molecule242,246 interfaces can be studied. Com-
putational codes and workflows for such hot-carrier analyses are
provided in Refs. 245 and 246.

C. Circular dichroism for molecules
Electronic circular dichroism (ECD) is a powerful spectro-

scopic method for investigating chiral properties at the molecu-
lar level. The quantity that characterizes the ECD is the rotatory
strength, which is defined through the magnetic dipole moment
m(ω) as

R(ω) =
1
πκ

Re[∑
α

m(α)α (ω)], (93)

where the index α enumerates Cartesian directions, the α super-
script in parenthesis indicates the δ-kick direction, and κ is the
strength of the kick. To resolve R(ω), one needs to perform the
δ-kick in all three Cartesian directions using a perturbing elec-
tric field Eα

(t) = κα̂δ(t). The frequency components of the dipole
moment m(i)i (ω) are calculated by Fourier transforming m(α)α (t),
which is recorded during the propagation. Finally, the time-
dependent magnetic dipole moment is obtained as the expectation
value of the operator m̂ = − i

2c r̂ × ∇̂,

m(t) =∑
n

fn ∫ ψ∗n (r, t) m̂ψn(r, t) dr, (94)

where fn is the occupation number of KS orbital n and ψn(r, t) is the
time-evolved KS state. The current GPAW implementation supports
both the FD and LCAO modes, and the computational efficiency of
the LCAO mode enables the calculation of the ECD of nanoscale
metal-organic nanoclusters. More details on the implementation can
be found in Ref. 55.

D. Radiation reaction potential
Plasmonic or collective molecular excitations are strongly sus-

ceptible to any kind of optical interaction. Induced currents will
couple via Maxwell’s equation of motion to the optical environment
and result in radiative losses, i.e., decay towards the ground state.
It is possible to solve the Maxwell problem formally by obtaining
Green’s tensor G�(ω). The dipolar interaction between the electric
field and the electronic dipole can be absorbed into a local poten-
tial vrr(r, t) = er ⋅ Er,�(t) = er ⋅ [F −1

t (iμ0ωG�(ω))∗ ∂tR(t)] suit-
able for Kohn–Sham TDDFT, where R(t) is the total electronic
dipole moment. A detailed discussion can be found in Ref. 250.

For many simple structures, such as free-space, one-
dimensional waveguides, or dielectric spheres, G�(ω) is analytically
known, and radiative losses can then be included in TDDFT
without additional computational cost. The tutorials on the
GPAW webpage62 include an example of one-dimensional wave-
guides for which the user can specify the cross-sectional area
and the polarization of the propagating modes. Extending the
functionality of the radiation-reaction potential to 3D free-space
and the collective interaction of large ensembles in Fabry–Pérot
cavities from first principles251 is essential for the understanding

of polaritonic chemistry. This functionality is currently under
development.

E. Ehrenfest dynamics
Molecular dynamics (MD) simulations usually rely on the

Born–Oppenheimer approximation, where the electronic system is
assumed to react so much faster than the ionic system that it reaches
its ground state at each time step. Therefore, forces for the dynam-
ics are calculated from the DFT ground-state density. While this
approximation is sufficiently valid in most situations, there are cases
where the explicit dynamics of the electronic system can affect the
molecular dynamics or the movement of the atoms can affect aver-
aged spectral properties. These cases can be handled using so-called
Ehrenfest dynamics, i.e., time-dependent density functional theory
molecular dynamics (TDDFT/MD).

Ehrenfest dynamics is implemented in the FD mode.252 A
description of the theory and a tutorial is available on the GPAW
webpage.62 This functionality has been used to model the electronic
stopping of ions including core-electron excitations,253 study charge
transfer at hybrid interfaces in the presence of water,254 simulate
the coherent diffraction of neutral atom beams from graphene,255

model the dependence of carbon bond breaking under Ar+-ion irra-
diation on sp hybridization,256 and reveal charge-transfer dynam-
ics at electrified sulfur cathodes.257 An LCAO implementation,
inspired by recent work in the Siesta code,258,259 is currently under
development.

VIII. EXCITED-STATE DFT METHODS
A. Improved virtual orbitals

The linear response TDDFT approach generally provides rea-
sonably accurate excitation energies for low-lying valence excited
states, where the orbitals associated with the holes and excited elec-
trons overlap significantly. However, it tends to fail for excitations
involving spatial rearrangement of the electrons, such as charge
transfer,115,260 Rydberg,261 and doubly excited states.262

Some of these problems can be alleviated by using range sep-
arated functionals (see Sec. III C 4). However, these functionals
come with a significantly increased computational cost due to the
evaluation of exchange integrals. Moreover, due to the missing
cancellation of Coulomb and exchange terms for canonical unoc-
cupied orbitals within Hartree–Fock theory, one obtains spurious
unoccupied orbitals. This leads to a slow convergence of linear-
response TDDFT calculations with respect to the number of unoc-
cupied orbitals when hybrid and range-separated functionals are
used.124,125

Substantial improvement in convergence with respect to unoc-
cupied orbitals can be obtained using improved virtual orbitals, as
devised by Huzinaga and Arnau.263,264 In this approach, a modified
Fock operator is used for the unoccupied orbitals, which mim-
ics the interaction between a hole arbitrarily chosen among the
occupied ground-state orbitals and the excited electron. This leads
to faster convergence in linear-response TDDFT calculations with
hybrid and range-separated functionals and also makes it possible
to evaluate excited state properties. For example, the energetics of
long-range charge transfer can be obtained by means of ground
state calculations because the difference between the energy of an
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improved virtual orbital and a hole tends to approximate the exci-
tation energy. The improved virtual orbitals approach is available in
GPAW, and details on the implementation are described in Ref. 125.

B. Variational excited-state calculations
GPAW also offers the possibility to perform excited-state cal-

culations using an alternative time-independent density functional
approach265 (sometimes referred to as the “ΔSCF” method), which
does not suffer from the limitations of linear-response TDDFT
mentioned in Sec. VIII A. The method involves variational opti-
mization of the orbitals corresponding to a specific excited state by
optimizing the electronic energy to a stationary point other than
the ground state. The computational effort is similar to that of
ground-state calculations, and the variational optimization guaran-
tees that the Hellmann–Feynman theorem is fulfilled. Therefore,
all the ground-state machinery available in GPAW to evaluate
atomic forces can be used for geometry optimization and for sim-
ulating the dynamics of atoms in the excited state. Furthermore,
coupling this time-independent, variational approach for excited-
state calculations with external MM potentials (see Sec. IV) does
not involve additional implementation efforts compared to ground-
state calculations and provides a means for performing excited-state
QM/MM molecular dynamics simulations that include the state-
specific response of a solvent, i.e., the response due to changes in
the electron density of the solute.

Variationally optimized excited states correspond to single
Slater determinants of optimal orbitals with a non-aufbau occupa-
tion and are typically saddle points on the electronic energy surface.
Hence, variational calculations of excited states are prone to collaps-
ing to lower-energy solutions, which preserve the symmetry of the
initial guess. A simple maximum overlap method (MOM)266,267 is
available in GPAW to address this problem. At each SCF step, the
MOM occupies those orbitals that overlap the most with the orbitals
of a non-aufbau initial guess, usually obtained from a ground-state
calculation. The MOM, however, does not guarantee that varia-
tional collapse is avoided, and convergence issues are common when
using SCF eigensolvers with density-mixing schemes developed for
ground-state calculations.

1. Direct orbital optimization
To alleviate the issues leading to variational collapse and

achieve more robust convergence to excited-state solutions, GPAW
contains two alternative strategies that are more reliable than con-
ventional SCF eigensolvers with the MOM. They are based on
direct optimization of the orbitals and use saddle point search
algorithms akin to those for transition-state searches on potential
energy surfaces of atomic rearrangements. These approaches also
facilitate variational excited-state calculations of nonunitary invari-
ant functionals, such as self-interaction corrected functionals (see
Sec. III C 5).

The first of these methods is a direct orbital optimization
approach supplemented with the MOM (DO-MOM). This method
is an extension of the direct minimization approach using the expo-
nential transformation illustrated in Sec. III B 5, where the search is
for a generic stationary point of E[Ψ] instead of a minimum,

stat
Ψ

E[Ψ] = min
Ψ0

stat
A

F[A,Ψ0]. (95)

The DO-MOM is available in GPAW for both LCAO,51,268 real-
space grid, and plane wave basis sets.50 For the LCAO basis,
the excited-state optimization only necessitates making the energy
stationary with respect to the elements of the anti-Hermitian
matrix A (the orbital rotation angles), while calculations using
the real-space grid and plane-wave basis include an outer-loop
minimization with respect to the reference orbitals Ψ0. The opti-
mization in the linear space of anti-Hermitian matrices uses
efficient quasi-Newton algorithms that can handle negative Hes-
sian eigenvalues and therefore converge on saddle points. GPAW
implements a novel limited-memory SR1 (L-SR1) algorithm,
which has proven to be robust for calculations of excitations in
molecules.50,51

The DO-MOM relies on estimating the degrees of freedom
along which the energy needs to be maximized, starting from an
initial guess. For valence and Rydberg excitations, the initial guess
consisting of ground-state canonical orbitals with non-aufbau occu-
pation numbers and preconditioning with a diagonal approximation
of the electronic Hessian using the orbital energies81 can be suffi-
cient. However, if the excitation involves significant charge transfer,
large rearrangements of the energy ordering of the orbitals can
occur, and DO-MOM can struggle to converge. A second direct
optimization method with generalized mode following (DO-GMF)49

alleviates these problems and is also implemented. In DO-GMF, the
components of the energy gradient g along the modes vi correspond-
ing to the n lowest eigenvalues of the electronic Hessian are inverted,
yielding

g mod
= g − 2

n

∑
i=1

vivT
i g, (96)

and a minimization using the modified gradient gmod is performed
by following the n modes simultaneously. This procedure guaran-
tees convergence to an nth-order saddle point, eliminating the risk
of variational collapse altogether. While it is computationally more
expensive than DO-MOM due to the need for a partial Hessian diag-
onalization, DO-GMF is more robust. Hence, it is particularly useful
in the exploration of potential energy surfaces because it is able to
follow an excited state through bond-breaking configurations, where
broken-symmetry solutions appear, by targeting the solution that
preserves the saddle point order. This important advantage is exem-
plified by the challenging double-bond twisting in ethylene,49,135

where DO-GMF calculations of the lowest doubly excited state
provide an avoided crossing with the ground state, whereas other
methods fail to do so.

2. Example applications of direct optimization
The efficiency and robustness of the direct-optimization

approaches, combined with the possibility of choosing different
basis-set types, make variational calculations of excitated states
in GPAW applicable to a great variety of systems ranging from
molecules in the gas phase or solution to solids.

State-specific orbital relaxation enables the description of
challenging excitations characterized by large density rearrange-
ments. Figure 13 shows the error on the vertical excitation energy
of a charge-transfer excitation in the twisted N-phenylpyrrole
molecule49 obtained with direct optimization in GPAW using the
LDA, PBE, and BLYP functionals and an sz+aug-cc-pVDZ53 basis
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FIG. 13. Applications of time-independent, variational calculations of excited states to a molecule in vacuum (left), a molecule in solution (middle), and a solid-state system
(right). Left: Deviation of the calculated excitation energy of a charge-transfer excited state in the N-phenylpyrrole molecule from the theoretical best estimate of 5.58 eV.269

The results of linear-response TDDFT calculations with hybrid functionals are from Ref. 269. Middle: Time-evolution of the interligand angles of the [Cu(dmphen)2]+ complex
upon photoexcitation to the lowest metal-to-ligand charge-transfer (MLCT) state in acetonitrile. The experimental results from femtosecond x-ray scattering measurements270

are compared to the average over excited-state molecular dynamics trajectories obtained using the QM/MM electrostatic embedding scheme in GPAW167 (see Sec. IV)
and convoluted with the experimental instrument-response function.270 Right: Vertical excitation energy for excitations in the negatively charged nitrogen-vacancy center in
diamond obtained with the r2SCAN functional as compared to the results of previous calculations using an advanced quantum embedding approach.271 The orbitals involved
in the electronic transitions are visualized in the inset (the C atoms are gray and the N atom is orange).

set as compared to the results of linear-response TDDFT calcula-
tions with the same basis set and functionals, as well as the hybrid
functionals PBE0 and B3LYP (results from Ref. 269). For the varia-
tional calculations, the energy of the singlet excited state is computed
using the spin-purification formula Es = 2Em − Et, where Em is the
energy of a spin-mixed state obtained by promoting an electron in
one spin channel and Et is the energy of the triplet state with the
same character. The variational calculations underestimate the the-
oretical best-estimate value of the excitation energy (5.58 eV) in
Ref. 269 by 0.15–0.3 eV, an error that is significantly smaller than
that of linear-response TDDFT calculations with the same func-
tionals (−2.0 eV) or with the more computationally intensive PBE0
hybrid functional (−0.85 eV).269

The method has also been used to simulate the photoin-
duced structural changes of photocatalytic metal complexes and
concomitant solvation dynamics.167,183,184,270,272 Figure 13 shows
an application to the prototypical copper complex photosensitizer
[Cu(dmphen)2]+ (dmphen = 2,9-dimethyl-1,10-phenanthroline) in
acetonitrile, where QM/MM molecular dynamics simulations elu-
cidated an intricate interplay between deformation of the lig-
ands and rearrangement of the surrounding solvent molecules
following a photoexcitation to a metal-to-ligand charge-transfer
state.167,270

The last example of an application shown in Fig. 13 is a
calculation of the excited states of a solid state system,273 the neg-
atively charged nitrogen-vacancy center in diamond, which com-
prises a prototypical defect for quantum applications. The system
is described with a large supercell of 511 atoms, and the calculations
use a plane-wave basis set. In contrast to previous reports, a range
of different density functionals are found to give the correct energy

ordering of the excited states, with the r2SCAN functional providing
the best agreement with high-level many-body quantum embedding
calculations with an error of less than 0.06 eV.271,273 This example
shows that the direct optimization methods in GPAW are promis-
ing tools for simulating excited states in extended systems, where
alternative approaches are either computationally expensive or lack
accuracy.

IX. OTHER FEATURES
A. Electric polarization

The formal polarization of bulk materials may be calculated
from the modern theory of polarization274,275 as

PF = Pel
F + Pn

F, (97)

where

Pel
F =

e
(2π)3 Im∫

BZ
dk∑

n
fkn⟨ukn∣∇k∣ukn⟩, (98)

is the electronic contribution and

Pn
F =

1
Vcell
∑

a
Zara, (99)

is the contribution from the nuclei. Here, the sums run over atoms
in the unit cell and Za is the charge of nucleus a (including core
electrons), situated at position ra. The electronic contribution can
be viewed as a Brillouin-zone integral of k-space Berry phases and
may be evaluated from a finite-difference version of Eq. (98).276
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This involves the overlaps between Bloch orbitals at neighbor-
ing k-points, which are straightforward to evaluate in the PAW
formalism.46

Equation (97) is only defined modulo eRi/Vcell, which follows
from the arbitrary choice of unit cell for the atomic positions as well
as the choice of phases for ukn, which can shift the Berry phase by
2π. The change in polarization under any adiabatic deformation is,
however, well defined and may be calculated as

ΔP = ∫
1

0
dλ

dPF

dλ
, (100)

where λ is some dimensionless variable parameterizing the adiabatic
path. In particular, for ferroelectrics, the spontaneous polarization
PS can be evaluated by choosing a path that deforms the struc-
ture from the polar ground state at λ = 1 to a non-polar structure
at λ = 0.

In Fig. 14, we show an example of this for tetragonal KNbO3,
which is a well-known ferroelectric.277 The polar structure was
relaxed under the restraint of tetragonal symmetry using PBE
(λ = 1) and then linearly interpolated to the inverted structure
(λ = −1) passing through a centrosymmetric point at λ = 0. There
are infinitely many polarization branches differing by the polar-
ization quantum ec/Vcell (c being the lattice constant in the
z-direction), and the spontaneous polarization is obtained by choos-
ing a single branch and evaluating the difference in formal polar-
ization at λ = 1 and λ = 0. Interestingly, the centrosymmetric point
has a non-vanishing polarization given by half the polarization
quantum. This is allowed due to the multi-valued nature of for-
mal polarization, and such “topological polarization” in non-polar
materials has been shown to yield gapless surface states.278,279 Here,
however, we merely use the topological polarization to emphasize
the importance of evaluating the spontaneous polarization as the
change in PF along an adiabatic path.

FIG. 14. Formal polarization along an adiabatic path connecting two states of
polarization and the energy along the path in tetragonal KNbO3. The spontaneous
polarization is obtained as the difference in polarization between a polar ground
state (λ = 1) and a non-polar reference structure (λ = 0). The energy along the
path is also shown.

The expressions (97)–(100) can be applied to extract various
properties of non-polar materials as well, for example, the Born
effective charge tensors

Za
αβ = Vcell

∂Pβ
∂ra

α
, (101)

which yield the change in polarization resulting from small shifts
in atomic positions. In GPAW, these are obtained by a simple call
to a module that introduces a (user-defined) shift of all atoms in
the unit cell and calculates the resulting change in polarization from
Eqs. (97)–(99). The Born charges may be combined with the atomic
force matrix to calculate equilibrium positions under an applied
static electric field, and the lattice contribution to the dynamic polar-
izability can be calculated from the eigenvalues and eigenvectors of
the force matrix.280 In addition, the piezoelectric response can be
obtained by calculating the change in polarization in response to
external strain.45 The lattice contribution to the polarizability is typ-
ically orders of magnitude smaller than the electronic part, but for
ferroelectrics, the soft phonon modes associated with spontaneous
polarization can give rise to significant lattice polarizabilities.

We exemplify this in the well-known case of 2D ferroelec-
tric GeS,281–283 where we obtain a spontaneous polarization of 490
pC/m44,284 in excellent agreement with previous calculations.283 The
lattice and electronic 2D in-plane polarizabilities are α2D

lat = 4.32 Å
and α2D

el = 3.75 Å, respectively.45 For comparison, the non-polar case
of 2D MoS2 yields α2D

lat = 0.09 Å and α2D
el = 6.19 Å.45

B. Berry phases and band topology
Topological phases such as the quantum spin Hall state and

Chern insulator depend crucially on the presence of spin–orbit cou-
pling, and the band topology may be obtained from the evolution
of k-space Berry phases across the Brillouin zone. In particular, for
insulators, the eigenvalues of the Berry phase matrix of occupied
states

γi
mn(k�) = i∫

2π

0
dki⟨um(k)∣∂ki ∣un(k)⟩, (102)

must change by an integer multiple of 2π when a component of k�
(components of k orthogonal to ki) is cycled through the Brillouin
zone.285 Here, un(k) are spinor Bloch states, which are typically not
smooth functions of k. The evaluation of Eq. (102) thus requires the
construction of a smooth gauge, and in GPAW, this is handled by
the parallel-transport algorithm of Ref. 286.

The method has been applied to a high-throughput search
for new topological two-dimensional materials,46 and in Fig. 15,
we show the calculated Berry phases of 1T′-MoS2.287 Due to time-
reversal symmetry, the Berry phases at Γ and Y are twofold degen-
erate, and therefore no perturbation that conserves time-reversal
symmetry can open a gap in the Berry-phase spectrum. This prop-
erty is diagnostic for the quantum spin Hall insulating state and
closely related to the presence of gapless edge states.285

The eigenvalues of Eq. (102) may also be used to calculate the
electronic contribution to the formal polarization since the sum of
all individual Berry phases yields the same value as one may obtain
from Eq. (98). The present approach is, however, more involved
since it requires the construction of a smooth gauge, which is not
needed in Eq. (98).
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FIG. 15. Berry phases of the quantum spin Hall insulator 1T′-MoS2 obtained
from PBE with non-selfconsistent spin–orbit coupling. The colors indicate the
expectation value of Sz for each state as defined in Ref. 46.

C. Wannier functions
Wannier functions (WFs) provide a localized representation of

the electronic states of a solid. The WFs are defined by a unitary
transformation of the Bloch eigenstates that minimizes the spa-
tial extent of the resultant orbitals. Specifically, the nth Wannier
function in unit cell i is written as

win(r) =
1

Nk
∑

k
e−ik⋅Ri ψ̃nk(r), (103)

where ψ̃nk is a generalized Bloch function (a superposition of Bloch
eigenstates at k).

The minimization of the spatial extent of a set of WFs
{wn(r)}Nw

n=1 is equivalent to the maximization of the spread func-
tional288

Ω =
Nw

∑
n=1

Nq

∑
α=1

Wα∣Zα,nn∣
2, (104)

where

Zα,nn = ⟨wn∣e−iqα ⋅r∣wn⟩. (105)

The {qα} is a set of at most six reciprocal vectors connecting
a k-point to its neighbors, and Wα are corresponding weights
accounting for the shape of the unit cell.289

The generalized Bloch functions of Eq. (103) are determined
by minimizing Ω using, e.g., a conjugate gradient scheme as
implemented in the ASE Wannier module. The inputs to this
Wannierization algorithm are the matrices

Z(0),kα,i j = ⟨ψ̃ki∣e
−iqα ⋅r∣ψ̃k+qα ,j⟩ +∑

aii′
e−iqα ⋅R

a

ΔSa
ii′

× ⟨ψ̃ki∣p̃
a
i ⟩⟨p̃

a
i′ ∣ψ̃k+qα ,j⟩, (106)

where ΔSa
ii′ are the PAW corrections from Eq. (8). From these matri-

ces, the ASE Wannier module can be used to construct partially

occupied Wannier functions,290,291 which are a generalization of
maximally localized Wannier functions286 for entangled bands and
non-periodic systems. Recently, a further improvement in terms of
robustness of the Wannierisation procedure was achieved using a
modified spread functional containing a penalty term proportional
to the variance of the spread distribution of the WFs, which leads to
a more uniform spread distribution.292

D. Point defect calculations with hybrid functionals
Point defects play a crucial role in many applications of

semiconductors.293,294 First-principles calculations can be used to
determine the atomic structure, formation energy, and charge-
transition levels of point defects. It is well established that the best
description of point defects in semiconductors/insulators is obtained
using range separated hybrids, such as the HSE06 xc-functional.5,295

To illustrate the use of GPAW for point defect calculations, we deter-
mine the formation energy diagrams of the CN and CB defects in the
hexagonal boron nitride (hBN) crystal with the HSE06 functional.
These defects have been proposed to be responsible for the deep-
level luminescence signal with a zero-phonon line (ZPL) around
4.1 eV.295,296 The results are compared to similar results obtained
with the Vienna Ab initio Simulation Package (VASP) software
package.

For a point-defect D in charge state q, the formation energy Ef

is calculated from the formula,

Ef
[Dq
] = Etot[Dq

] − Ebulk
tot −∑

i
niμi + qEF + Ecorr. (107)

Here, Etot[Dq
] and Ebulk

tot are the total energies of the crystal with
the point defect in charge state q and of the neutral pristine crystal,
respectively. μi is the chemical potential of the element i, while ni is
the number of atoms added to (ni > 0) or removed from (ni < 0)
the crystal to create the defect. EF is the chemical potential of the
electrons, i.e., the Fermi level, which is written as EF = EVBM + ΔEF,
where VBM is the valence band maximum. Finally, Ecorr is a correc-
tion term that accounts for (i) the spurious electrostatic interaction
between the periodic images of the defect and their interaction with
the compensating homogeneous background charge and (ii) the
potential shift between the pristine and defect systems.

For more details on the methodology of point defect calcu-
lations, we refer the reader to the excellent review papers on the
topic.297–300

All calculations have been performed using the HSE06 func-
tional with the default mixing parameter α = 0.25, a plane wave
cutoff of 800 eV, and forces converged to 0.01 eV/Å. The lattice of
the hBN crystal was fixed at the experimental parameters (a = 2.50
Å and c = 6.64 Å).301 The bandgap of the pristine crystal was deter-
mined to be 5.58 eV (using 8 × 8 × 4k-points), in good agreement
with the experimental bandgap of 6.08 eV.302 The structure of the
point defects was relaxed in a 4 × 4 × 2 (128 atom) supercell using Γ-
point k-point sampling. For each defect, three different charge states
(q = 1, 0,−1) were considered. The corrections (Ecorr) due to image
charges and potential alignment are evaluated following Freysoldt,
Neugebauer and Van de Walle303 as implemented in GPAW.

Figure 16 shows the defect formation energies as a function of
Fermi level for CN and CB at N-rich and N-poor conditions, respec-
tively. We can see that under N-rich conditions, CB is energetically
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FIG. 16. Defect formation energies for CN and CB under N-rich and N-poor
conditions, respectively. The dashed lines are reproduced from Ref. 295.

lower, whereas CN is favorable under N-poor conditions. CB shows
a 1/0 charge transition at 3.73 eV above the VBM, whereas CN has a
0/−1 charge transition at 3.26 eV deep inside the bandgap. We find
good agreement with a similar study295 also employing plane waves
and the HSE06 functional (VASP calculations). Minor discrepancies
can be attributed to the use of a different supercell size and a slightly
higher fraction of the non-local mixing parameter (α = 0.31).

E. Point-group symmetry representations
GPAW allows for the automatized assignment of point-group

symmetry representations for the pre-computed Kohn–Sham wave-
functions. This can be used for determining the wave-function
symmetry representations for both molecules304 and extended struc-
tures305 to analyze, for example, the symmetry-involved degeneracy
of the bands and selection rules for dipole transitions.

The analysis follows directly from group theory,306 stating that
the solutions to the Schrödinger equation inherit the symmetry
group of the respective Hamiltonian, or essentially the external
potential invoked by the atomic configuration. The representation
matrices Γ are computed as

Γn(T) = ∫ ϕ†
n(r)P(T)ϕn(r)dr, (108)

where ϕ is a normalized wavefunction, n is the eigenstate label, and
P(T) is an operation that corresponds to the transformation T of the
symmetry group of the Hamiltonian. The operations P(T) include
rotations that are non-trivial for the rectangular grid that the com-
puted wavefunctions are projected onto. The wavefunction rotations
are performed on the grid by cubic interpolation. The output of the
analysis contains the irreducible representation weights cα,n for each
eigenstate n, as solved from

Γn(T) =∑
α

cα,nχα(T), (109)

where χα are the character vectors of the group (i.e., rows of the
character table).

When doing the analysis, the user needs to input the coordi-
nates of the center of symmetry (typically the coordinates of a single
atom) and the point group for which the analysis is run. It is possi-
ble to analyze only a part of the wave function by selecting a cutoff
radius from the center of symmetry beyond which the parts of the

wave function are neglected. This enables the investigation of the
purity of the local symmetry even if the symmetry of the Hamilto-
nian is broken far from the center of symmetry.304,305 To date, point
groups of C2, C2v, C3v, D2d, D3h, D5, D5h, I, Ih, Oh, Td, and Th are
implemented.

F. Band-structure unfolding
When studying defect formation, charge-ordered phases, or

structural phase transitions, it is often necessary to perform DFT
calculations on a supercell. A super-cell (SC) calculation comes with
the cost of having to account for many more electrons in the unit cell
when compared to the primitive cell (PC). This implies that, besides
the increased computational effort, the band structure of a SC con-
tains more bands in a smaller Brillouin zone as compared to the PC.
In order to compare electronic band structures between SC and PC,
unfolding the band structure of the SC into that of the primitive cell
(PC) becomes convenient.

GPAW features the possibility of performing band-structure
unfolding in the real-space grid, plane wave, and LCAO modes. The
implementation allows to unfold the SC band structure without the
explicit calculation of the overlap between SC and PC wavefunc-
tions, following the procedure described in Ref. 307. The unfolded
band structure is given in terms of the spectral function

A(k = K +G, ϵ) =∑
m

PKm(k)δ(ϵKm − ϵ), (110)

with k and K the momenta in the PC and SC Brillouin zones, respec-
tively (k is uniquely related to K by a G vector of the SC). ϵKm are the
SC eigenvalues obtained for momentum K and band index m, and
PKm(k) is calculated as

PKm(k) =∑
{G}
∣CKm(G + k −K)∣2, (111)

where CKm are the Fourier coefficients of the eigenstate ∣Km⟩ and
{G} is the subset of reciprocal space vectors of the SC that match
the reciprocal space vectors of the PC. A more detailed explanation
and technical details on how to perform a band-structure unfolding
can be found on the GPAW webpage.62

G. The QEH model
The quantum-electrostatic heterostructure (QEH)308 model is

an add-on GPAW feature for calculating the dielectric response and
excitations in vertical stacks of 2D materials, also known as van
der Waals (vdW) heterostructures. The QEH model can be used
independently from the GPAW code, but it relies on the GPAW
implementation for the calculation of the fundamental building
blocks used by the model, as elaborated below.

The dielectric screening in 2D materials is particularly sensi-
tive to changes in the environment and depends on the stacking
order and thickness of the 2D heterostructure, providing a means
to tune the electronic excitations, including quasi-particle bandgaps
and excitons. While the dielectric response of freestanding layers can
be explicitly represented ab initio in GPAW at the linear-response
TDDFT, GW, and BSE levels of theory, the lattice mismatch between
different 2D layers often results in large supercells that make these
many-body approaches infeasible. Since the interaction between
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stacked layers is generally governed by van der Waals interac-
tions, the main modification to the non-interacting layers’ dielectric
response arises from the long-range electrostatic coupling between
layers.

Therefore, in the QEH model, the dielectric function of the
vdW heterostructure is obtained through an electrostatic coupling
of the quantum dielectric building blocks of individual 2D layers.309

The dielectric building blocks consist of monopole and dipole com-
ponents of the density-response function of the freestanding layers,
χ̃i(q∥,ω), calculated from ab initio on the RPA level. Subsequently,
the full density-response function χi,j(q∥,ω) (density perturbation
on layer i due to a monopole or dipole component of the perturbing
field acting on layer j) is calculated by solving the Dyson equation

χi,j(q∥,ω) = χ̃i(q∥,ω)δi,j + χ̃i(q∥,ω)∑
k≠i

Vi,k(q∥)χk,j(q∥,ω), (112)

where the Coulomb matrix element is obtained as the real-space
overlap over the density, ρ, and potential, ϕ, basis functions on the
different layers,

Vi,k(q∥) = ∫ ρi(z, q
∥
)ϕk(z, q

∥
)dz. (113)

From the density-response function, the dielectric function is
obtained on the basis of monopole/dipole perturbations on each
layer in the heterostructure. While building blocks pre-computed
with GPAW for a large variety of 2D materials are provided with
the QEH package, GPAW offers the possibility of calculating custom
building blocks for any 2D material, as explained in Ref. 310.

As an illustrative example of the QEH model, we show how
the static dielectric function of a heterostructure can be engineered
by multi-layer stacking. Figure 17 shows the static dielectric func-
tion of a vdW heterostructure made up of N MoS2 layers and N

FIG. 17. The static macroscopic dielectric function of a vdW heterostructure inter-
face as a function of the number of layers. The heterostructure is made up of N
MoS2 layers on one half and N WSe2 layers on the other half (see inset). Increas-
ing the number of layers eventually leads to a bulk-like limit for the chosen stacking
configuration.

WSe2 layers. We see that the dielectric function increases signifi-
cantly as a function of the number of layers, eventually approaching
a bulk limit. The knowledge of the layer-dependence of the dielec-
tric response for such a heterostructure could be further exploited to
investigate inter- and intra-layer excitonic properties and band-edge
renormalization effects.

H. Solvent models
The presence of a solvent has a large effect on the energetics

and the electronic structure of molecules or extended surfaces. In
particular, the arguably most important solvent, water, is able to sta-
bilize ions, or zwitterions, that would not form in the gas phase. The
main effect relates to the large permittivity of water (εr = 78) that
effectively screens Coulomb interactions.

A convenient and computationally lean method to describe this
effect is the inclusion of a position-dependent solvent permittivity
ε(r) in the electrostatics via the Poisson solver.311 The solvent is
represented solely as a polarizable continuum that averages out all
movements and re-arrangements of the solvent molecules and their
electrons. The computational cost is, therefore, practically the same
as a calculation in a vacuum.

This implementation allows the calculation of the solvation
free energies of neutral and ionic species in solution.311,312 The
nature of the solvent is described by its permittivity, an effective
repulsive potential characterizing the smooth solvent distribution
around the solute, and an effective surface tension that summarizes
dispersive and repulsive interactions between the solute and sol-
vent.311 The description is, therefore, well suited for any solvent that
can be effectively represented by a continuum, where usually high-
permittivity solvents show the largest effects. Local solute–solvent
interactions like hydrogen bonds can be considered by the explicit
inclusion of single solvent molecules as part of the solute.313 The
solvent model works with periodic as well as finite boundary con-
ditions but is so far available for LCAO and FD modes only. The
model can be further applied to periodic surfaces interfaced with an
electrolyte to reproduce reasonable potential drops within the sim-
ulation of electrochemical reaction processes, as we will elaborate in
the following.

I. Charged electrochemical interfaces
Simulating atomistic processes at a solid–liquid interface held

at a controlled electrode potential is most appropriately performed
in the electronically grand-canonical ensemble.316,318,319 Here, elec-
trons can be exchanged dynamically with an external electron reser-
voir at a well-defined electrochemical potential. In a periodic system,
a non-zero net charge would lead to divergence of the energy; there-
fore, any fractional electrons that are added to or removed from the
system must be compensated by an equal amount of counter charge.
Several approaches able to account for this change in boundary con-
ditions have recently been brought forward.317–321 In GPAW, this is
conveniently accomplished with the introduction of a jellium slab
of equal and opposite charge to the needed electronic charge; the
jellium is embedded in an implicit solvent localized in the vacuum
region above the simulated surface (cf. Sec. IX H). As a particular
highlight of this Solvated Jellium Method (SJM),322 as it is known
in GPAW, we are able to localize the excess charge on only the top
side of the simulated atomistic surface, which occurs naturally by
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introducing the jellium region solely in the top-side vacuum and
electrostatically decoupling the two sides of the cell via a dipole cor-
rection. Both a purely implicit and a hybrid explicit-implicit solvent
can be applied.

In the SJM, the simulated electrode potential is a monotonic
function of the number of electrons in the simulation; calcula-
tions can be run in either a constant-charge or a constant-potential
ensemble. The electrode potential (ϕe) within SJM is defined as
the Fermi level (μ) referenced to an electrostatic potential deep
in the solvent (the solution inner potential Φw), where the whole
charge on the electrode has been screened and no electric field
is present,

ϕe = Φw − μ. (114)

We can relate ϕe to the commonly used reference potentials, for
example, the standard hydrogen electrode, by subtracting its abso-
lute potential such as the experimental value of 4.44 V as reported
by Trasatti.323 In practice, the reference potentials depend on the
used solvent model,324 and the reference can be calibrated using
computed and measured potentials of zero charge.325

The energy used in the analysis of electrode reactions is the
grand-potential energy Ω,

Ω ≡ Etot + ϕeNe, (115)

where Ne are the excess electrons in the simulation. This allows for
energetic comparisons between calculations with different numbers
of electrons and is the default energy returned to atomistic meth-
ods by SJM. While Etot is consistent with the forces in traditional
electronic-structure calculations, the grand-potential energy Ω is
consistent with the forces in constant-potential simulations.316,326

This means that relaxations that follow forces will correctly find
local minima in Ω, and any kind of structure optimization or
dynamical routine can be performed on the grand-canonical poten-
tial energy surface, such as the search for saddle points327–329 or
molecular-dynamics simulations.330

In constant-potential mode, the potential is controlled by a
damped iterative technique that varies Ne to find the target ϕe; in
practice, a trajectory (such as a relaxation or nudged elastic band) is
run, where in a first series of SCF cycles the potential equilibrates.
Upon achieving a target potential within the given threshold, the
code will conduct the chosen geometry-optimization routine under
constant potential control.

J. Constrained DFT
Constrained DFT (cDFT)331–333 is a computationally efficient

method for constructing diabatic or charge/spin-localized states.
GPAW includes a real-space implementation of cDFT,334 which can
be used in both the FD and LCAO modes. Compared to most cDFT
implementations, in GPAW, the periodicity can be chosen flexibly
between isolated molecules and periodic systems in one-, two-, or
three-dimensions with k-point sampling.

The key difference between cDFT and normal DFT is the intro-
duction of an auxiliary potential to force a certain region (in real
space around a molecule, molecular fragment, or atom) to carry a
predefined charge or spin. This leads to a modified energy functional

F[n(r),{Vi}] = EKS
[n(r)] +∑

i
Vi∑

σ
(∫ drwσ

i (r)n
σ
(r) −Ni),

(116)

where EKS is the Kohn–Sham energy functional, σ denotes the spin,
nσ(r) is the spin-dependent electron density, and N i is the prede-
fined charge or spin restraint. V i acts as a Lagrange multiplier, which
determines the strength of the auxiliary potential and needs to be
determined self-consistently, as discussed below. wσ

i (r) is the weight
function that defines how the charge or spin are to be partitioned,
i.e., the regions where charge/spin are to be localized. This will be
discussed in some detail below.

Introducing the constraining term in Eq. (116) leads to a new
localized, spin-dependent external potential

vσeff(r) =
δF[n(r)]
δn(r)

=
δEKS
[n(r)]

δn(r)
+∑

i
Vi∑

σ
wσ

i (r). (117)

The restraint is further enforced by demanding that the V i satisfy the
chosen restraints

C ≥ ∣∑
σ
∫ drwσ

i (r)n
σ
(r) −Ni∣. (118)

In practice, the strength of the constraining potential V i is found
through a self-consistent two-stage optimization of both {V i} and
n(r). As the derivatives of F[n(r),{V i}]with respect to V i are read-
ily available,334 gradient-based optimization algorithms in SciPy69

are used for optimizing {V i}. The weight functions are defined
by a Hirshfeld-type partitioning scheme with Gaussian atomic
densities, and wσ

i (r) and the resulting external potential are pre-
sented on the grid. With these definitions, the forces resulting
from the cDFT external potential can be analytically computed
and used in, e.g., geometry optimization or molecular-dynamics
simulations.

cDFT has been widely used for computing transfer rates within
Marcus theory, which depends on the reorganization and reac-
tion (free) energies and the diabatic coupling matrix element;
the GPAW-cDFT implementation includes all the needed tools
for obtaining these parameters for bulk, surface, and molecular
systems.334,335 Recently, the cDFT approach has been combined with
molecular-dynamics methods to compute the reorganization energy
at electrochemical interfaces336 as well as with grand-canonical DFT
methods (see Sec. IX A) to construct fixed electron-potential diabatic
states.337

K. Orbital-free DFT
Orbital-free DFT (OFDFT) approximates the DFT energy func-

tional by modeling the kinetic energy as a direct functional of the
density

EOF[n] = ∫ dr n1/2
(r)(−

1
2
∇

2
) n1/2

(r)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TW[n]

+ J[n] + V[n]

+ Exc[n] + Ts[n] − TW[n]. (119)
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Levy et al. showed that a Kohn–Sham-like equation derived varia-
tionally from the equation above holds for the square-root of the
density338

(−
1
2
∇

2
+ Veff(r)) n1/2

(r) = μ n1/2
(r). (120)

OFDFT approximately enforces the Pauli principle, partially
accounting for quantum effects in an averaged way.

The OFDFT scheme implemented in GPAW offers the advan-
tage of accessing all-electron values while maintaining computa-
tional linear-scaling time with respect to system size. To achieve
this, we employ the PAW method in conjunction with real-space
methods, obtaining a mean absolute error of 10 meV per atom when
compared to reference all-electron values.339

While OFDFT functionals perform better using local pseu-
dopotentials in bulk materials, the OFDFT PAW implementation
can be interesting for assessing density functionals. For example, in
studying large-Z limits or semiclassical limits of density functionals,
the all-electron values allow us to find highly performing OFDFT
functionals.340

L. Zero-field splitting
Zero-field splitting (ZFS) refers to the energetic splitting of

the magnetic sub-levels of a localized triplet state in the absence
of a magnetic field.341 The origin of the ZFS is the magnetic
dipole–dipole interactions between the two electrons of the triplet.
This interaction is described by a spin Hamiltonian of the form (α,β
= x, y, z)342,343

ĤZFS =∑
αβ

ŜaDαβŜβ, (121)

where Ŝ is the total spin operator and D is the ZFS tensor given by

Dαβ =
1
2
μ0

4π
g2

e μ
2
B ∫ ρ2(r1, r2)

δαβr2
− 3rαrβ
r5 dr1dr2, (122)

where rα and rβ denote the Cartesian components of r = r1 − r2,
ρ2 is the two-particle density matrix of the Kohn–Sham ground-
state Slater determinant, μB is the Bohr magneton, and ge is the
Landé splitting factor. GPAW computes the D-tensor by evaluat-
ing the double integral in reciprocal space using the pseudo density
including compensation charges.305

M. Hyperfine coupling
The hyperfine coupling describes the interaction between the

magnetic dipole of a nuclear spin, Î N , and the magnetic dipole of the
electron-spin distribution, Ŝ(r). The interaction is described by the
spin Hamiltonian (α,β = x, y, z)

ĤN
HF =∑

αβ
ŜαAN

αβ ÎN
β , (123)

where the hyperfine tensor of nucleus N at R = 0 is given by344

AN
αβ =

2μ0

3
geμBgNμN ∫ δT(r)ρs(r)dr

+
μ0

4π
geμBgNμN ∫

3rαrβ − δαβr2

r5 ρs(r)dr. (124)

The first term is the isotropic Fermi contact term, which is propor-
tional to the spin density, ρs(r), at the center of the nucleus. δT(r) is
a smeared-out δ-function. ge and gN are the gyromagnetic ratios for
the electron and nucleus, and μN is the nuclear magneton. The sec-
ond term represents the anisotropic part of the hyperfine coupling
tensor and results from dipole–dipole interactions between nuclear
and electronic magnetic moments. GPAW evaluates AN using the
pseudo-spin density with compensation charges.305

X. OUTLOOK
As described in this review, GPAW is a highly versatile code

that is both maintenance-, user-, and developer-friendly at the same
time. The continued expansion of the code requires substantial effort
and can be lifted only because of the dedicated team of developers
contributing at all levels. There are currently a number of ongo-
ing as well as planned developments for GPAW, which will further
improve the performance and applicability of the code. We are cur-
rently finishing a major refactoring of the code, which will make it
even more developer-friendly and facilitate easier implementation of
new functionality.

Another priority is to improve the parallelization of hybrid
functional calculations in plane wave mode by enabling paralleliza-
tion over bands and k-points. In the same vein, there is ongoing
work to support LCAO-based hybrid functional calculations using
a resolution-of-identity approach. A natural next step would then
be LCAO-based GW calculations. Such a method could poten-
tially be very efficient compared to plane wave calculations, but
it is currently unclear if the accuracy can be maintained with
the limited LCAO basis. In relation to quasiparticle calculations,
there are plans to implement (quasiparticle) self-consistent GW
and vertex corrected GW using nonlocal xc-kernels from TDDFT.
Constrained RPA calculations that provide a partially screened
Coulomb interaction useful for ab initio calculation of interaction
parameters in low-energy model Hamiltonians are currently being
implemented.

Underlying any GPAW calculation are the PAW potentials.
The current potentials date back to 2009. A new set of potentials,
including both soft and norm-conserving potentials (for response
function calculations), is being worked on.

As described herein, GPAW already has an efficient imple-
mentation of real-time TDDFT in the LCAO basis, while Ehrenfest
dynamics is supported only in the comparatively slower grid mode.
Work to enable Ehrenfest dynamics in LCAO mode is ongoing.

The current version of GPAW supports GPU acceleration only
for standard ground-state calculations. The CuPy library greatly
simplifies the task of porting GPAW to GPU, and we foresee that
large parts of the code, including more advanced features such as
linear response and GW calculations, will become GPU compatible.

ACKNOWLEDGMENTS
K.S.T. acknowledges funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research
and innovation program Grant No. 773122 (LIMA) and Grant
Agreement No. 951786 (NOMAD CoE). K.S.T. is a Villum Investi-
gator supported by VILLUM FONDEN (Grant No. 37789). Fund-
ing for A.O.D., G.L., and Y.L.A.S. was provided by the Icelandic

J. Chem. Phys. 160, 092503 (2024); doi: 10.1063/5.0182685 160, 092503-32

© Author(s) 2024

 15 M
arch 2024 12:42:27

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

Research Fund (Grant Nos. 196279, 217734, and 217751, respec-
tively). F.N. has received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie Grant Agreement No. 899987. M.M.M. was sup-
ported by the Academy of Finland (Grant No. 338228). T.O.
acknowledges support from the Villum Foundation Grant No.
00029378. S.K. and K.W.J. acknowledge support from the VILLUM
Center for Science of Sustainable Fuels and Chemicals, which is
funded by the VILLUM Fonden research (Grant No. 9455). T.B.
was funded by the Danish National Research Foundation (DNRF
Grant No. 146). J.S. acknowledges funding from the Independent
Research Fund Denmark (DFF-FTP) through Grant No. 9041-
00161B. C.S. acknowledges support from the Swedish Research
Council (VR) through Grant No. 2016-06059 and funding from the
Horizon Europe research and innovation program of the European
Union under the Marie Skłodowska-Curie Grant Agreement No.
101065117. Partially funded by the European Union. The views and
opinions expressed are, however, those of the author(s) only and
do not necessarily reflect those of the European Union or REA.
Neither the European Union nor the granting authority can be
held responsible for them. T.S. received funding from the Euro-
pean Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (Grant Agreement No.
756277-ATMEN). O.L.-A. has been supported by Minciencias and
the University of Antioquia (Colombia). K.T.W. was supported by
the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, Chemical Sciences, Geosciences, and Biosciences
Division, Catalysis Science Program, and the SUNCAT Center for
Interface Science and Catalysis. G.K. acknowledges funding from V-
Sustain: The VILLUM Centre for the Science of Sustainable Fuels
and Chemicals (Grant No. 9455). Additional funding: Knut and
Alice Wallenberg Foundation (Grant No. 2019.0140; J.F. and P.E.),
the Swedish Research Council (Grant No. 2020-04935; J.F. and P.E.),
the European Union’s Horizon 2020 research and innovation pro-
gram under the Marie Skłodowska-Curie Grant Agreement No.
101065117 (C.S.). Computations and code development work have
been enabled by the resources provided by the Niflheim Linux clus-
ter supercomputer installed at the Department of Physics at the
Technical University of Denmark, CSC–IT Center for Science, Fin-
land, through national supercomputers and through access to the
LUMI supercomputer owned by the EuroHPC Joint Undertaking,
and the National Academic Infrastructure for Supercomputing in
Sweden (NAISS) at NSC, PDC, and C3SE, partially funded by the
Swedish Research Council through Grant Agreement No. 2022-
06725. We gratefully acknowledge these organizations for providing
computational resources and facilities.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Jens Jørgen Mortensen: Writing – original draft (equal). Ask
Hjorth Larsen: Writing – original draft (equal). Mikael Kuisma:
Writing – original draft (equal). Aleksei V. Ivanov: Writing –
original draft (equal). Alireza Taghizadeh: Writing – original

draft (equal). Andrew Peterson: Writing – original draft (equal).
Anubhab Haldar: Writing – original draft (equal). Asmus Ougaard
Dohn: Writing – original draft (equal). Christian Schäfer: Writ-
ing – original draft (equal). Elvar Örn Jónsson: Writing – orig-
inal draft (equal). Eric D. Hermes: Writing – original draft
(equal). Fredrik Andreas Nilsson: Writing – original draft (equal).
Georg Kastlunger: Writing – original draft (equal). Gianluca Levi:
Writing – original draft (equal). Hannes Jónsson: Writing – origi-
nal draft (equal). Hannu Häkkinen: Writing – original draft (equal).
Jakub Fojt: Writing – original draft (equal). Jiban Kangsabanik:
Writing – original draft (equal). Joachim Sødequist: Writing – orig-
inal draft (equal). Jouko Lehtomäki: Writing – original draft (equal).
Julian Heske: Writing – original draft (equal). Jussi Enkovaara:
Writing – original draft (equal). Kirsten Trøstrup Winther: Writ-
ing – original draft (equal). Marcin Dulak: Writing – original draft
(equal). Marko M. Melander: Writing – original draft (equal). Mar-
tin Ovesen: Writing – original draft (equal). Martti Louhivuori:
Writing – original draft (equal). Michael Walter: Writing – origi-
nal draft (equal). Morten Gjerding: Writing – original draft (equal).
Olga Lopez-Acevedo: Writing – original draft (equal). Paul Erhart:
Writing – original draft (equal). Robert Warmbier: Writing – origi-
nal draft (equal). Rolf Würdemann: Writing – original draft (equal).
Sami Kaappa: Writing – original draft (equal). Simone Latini: Writ-
ing – original draft (equal). Tara Maria Boland: Writing – original
draft (equal). Thomas Bligaard: Writing – original draft (equal).
Thorbjørn Skovhus: Writing – original draft (equal). Toma Susi:
Writing – original draft (equal). Tristan Maxson: Writing – orig-
inal draft (equal). Tuomas Rossi: Writing – original draft (equal).
Xi Chen: Writing – original draft (equal). Yorick Leonard A.
Schmerwitz: Writing – original draft (equal). Jakob Schiøtz: Writ-
ing – original draft (equal). Thomas Olsen: Writing – original draft
(equal). Karsten Wedel Jacobsen: Writing – original draft (equal).
Kristian Sommer Thygesen: Writing – original draft (equal).

DATA AVAILABILITY
The data that support the findings of this study are openly avail-

able in the git-repository at https://gitlab.com/jensj/gpaw-paper-
2023.

REFERENCES
1P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B),
B864 (1964).
2W. Kohn and L. J. Sham, “Self-consistent equations including exchange and
correlation effects,” Phys. Rev. 140(4A), A1133 (1965).
3J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation
made simple,” Phys. Rev. Lett. 77(18), 3865 (1996).
4A. D. Becke, “Density-functional thermochemistry. III. The role of exact
exchange,” J. Chem. Phys. 98, 5648–5652 (1993).
5J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based
on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8215
(2003).
6G. M. Torrie and J. P. Valleau, “Nonphysical sampling distributions in Monte
Carlo free-energy estimation: Umbrella sampling,” J. Comput. Phys. 23(2),
187–199 (1977).
7P. Souvatzis, O. Eriksson, M. I. Katsnelson, and S. P. Rudin, “Entropy driven
stabilization of energetically unstable crystal structures explained from first
principles theory,” Phys. Rev. Lett. 100(9), 095901 (2008).

J. Chem. Phys. 160, 092503 (2024); doi: 10.1063/5.0182685 160, 092503-33

© Author(s) 2024

 15 M
arch 2024 12:42:27

https://pubs.aip.org/aip/jcp
https://gitlab.com/jensj/gpaw-paper-2023
https://gitlab.com/jensj/gpaw-paper-2023
https://doi.org/10.1103/physrev.136.b864
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.1564060
https://doi.org/10.1016/0021-9991(77)90121-8
https://doi.org/10.1103/physrevlett.100.095901


The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

8M. S. Hybertsen and S. G. Louie, “Electron correlation in semiconductors and
insulators: Band gaps and quasiparticle energies,” Phys. Rev. B 34, 5390–5413
(1986).
9D. Golze, M. Dvorak, and P. Rinke, “The GW compendium: A practical guide to
theoretical photoemission spectroscopy,” Front. Chem. 7, 377 (2019).
10M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, “Molecular excita-
tion energies to high-lying bound states from time-dependent density-functional
response theory: Characterization and correction of the time-dependent local
density approximation ionization threshold,” J. Chem. Phys. 108(11), 4439–4449
(1998).
11G. Onida, L. Reining, and A. Rubio, “Electronic excitations: Density-functional
versus many-body Green’s-function approaches,” Rev. Mod. Phys. 74(2), 601
(2002).
12J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, “Towards the
computational design of solid catalysts,” Nat. Chem. 1(1), 37–46 (2009).
13A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia,
D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The materials
project: A materials genome approach to accelerating materials innovation,” APL
Mater. 1(1), 011002 (2013).
14S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy,
“The high-throughput highway to computational materials design,” Nat. Mater.
12(3), 191–201 (2013).
15S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche,
M. N. Gjerding, D. Torelli, P. M. Larsen, A. C. Riis-Jensen et al., “The com-
putational 2D materials database: High-throughput modeling and discovery of
atomically thin crystals,” 2D Mater. 5(4), 042002 (2018).
16I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W.
Jacobsen, “Computational screening of perovskite metal oxides for optimal solar
light capture,” Energy Environ. Sci. 5(2), 5814–5819 (2012).
17A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke,
H.-J. Bungartz, and H. Lederer, “The ELPA library: Scalable parallel eigenvalue
solutions for electronic structure theory and computational science,” J. Phys.:
Condens. Matter 26(21), 213201 (2014).
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