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A B S T R A C T

Modal analysis techniques are widely used to characterize vibrations in structures, vehicles,
machinery, etc. Modal parameters obtained through modal analysis are useful for structural
health monitoring and condition monitoring. The common goal is to ensure the integrity
of a mechanical system through monitoring of different operational conditions. Operational
conditions described by spatial measurements can for instance be used to observe the vibration
characteristics of the system and its parts. Therefore, the main originality of this work is
to experimentally investigate if the presence of a turbulent gas flow in seal geometries can
facilitate operational modal analysis for a coupled rotor–foundation system. A consistent and
automatic way of obtaining the vibration characteristics is necessary to be included in the
monitoring schemes. Therefore, this work also proposes a method to automatically obtain modal
parameters for a bed plate of a rotor–foundation system when the rotor is affected by active
magnetic bearings and gas seals. The automatic modal parameter algorithm is built on the
stabilization diagram of modal parameters obtained from the stochastic subspace identification.
Intermediate results from the automatic modal parameter algorithm show that some of the
distance measures i.e., d𝜔𝑛,𝑑 , d𝜁 , dMACX, d𝜆, dMACX𝜔𝑛,𝑑

, dMACX𝜁 , and dMACX𝜆, for modal
parameters in a stabilization diagram are better suited than others when distinguishing between
possible physical modes and certainly spurious poles. The frequency band of interest for the
system is found to influence the number of possible physical modes identified by the automatic
algorithm. Measurements from 13 roving accelerometers are combined with the automatic
modal parameter algorithm to obtain the vibration characteristics of the rotor and bed plate. For
different operational conditions in the seal geometry, seven modes are consistently identified
as physical modes by the automatic modal parameter algorithm. The algorithm uses (i) a
combination of a white noise disturbance pattern intentionally introduced into the system
through the active magnetic bearings and (ii) the operational disturbance coming from the
seals, non-intentionally introduced by the turbulent gas flow. The seven physical modes are also
identified when (iii) the rotor–foundation system is only disturbed from the turbulent gas flow
in the seals. The seven physical modes identified by the algorithm under conditions (i), (ii), and
(iii) compare well to the vibration characteristics found in experiments via experimental modal
analysis and impact hammer testing as well as via a mathematical model of the rotor–foundation
system.
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1. Introduction

Modal parameters are used to mathematically describe vibration characteristics in mechanical systems. The modal parameters
elp indicate whether a system is behaving as intended. Traditional modal test methods are presented in [1]. These are often
eferred to as Experimental Modal Analysis (EMA) and require the operational conditions to be well-known and disturbances to be
easured. This often means that the system will be operated differently than normal during the modal tests. For instance in [2],
idaut et al. mounted an additional shaker unit to precisely know the disturbances imposed on the system. Therefore, EMA is
ommonly used when systems are commissioned. Methods that do not require full knowledge about the disturbance are commonly
nown as Operational Modal Analysis (OMA). An introduction to the concepts of OMA and well-known methods is provided in [3].
he OMA methods require some a priori knowledge about the statistical nature of the disturbance which is often assumed to be
escribed by Gaussian distributed white noise. In [4], a review of existing methods and common assumptions used in different
odal parameter estimation methods, including OMA methods, is provided. It also provides the user with some rules of thumb for

arrying out experiments to perform modal parameter identification.
For structures such as bridges and high-rise buildings, vibration amplifications are investigated both for the sake of structural

ntegrity and comfort. In [5], an analysis of a high storage timber building is investigated for comfort during wind loadings to
nsure that the building can be used as intended. Such systems are affected by multiple loading cases that are difficult to estimate
nd even harder to measure during vibration tests. Therefore, the OMA methods have been a necessary tool to estimate the
ibration characteristics of these structures. In the case of moving structures such as vehicles and vessels, the dynamical properties,
.e. vibration characteristics, might experience great changes between the operating and the stationary states. Hermans and Van
er Auweraer [6] tested flutter data at different air speeds to show the system changes from new operational conditions. When a
tructure is in operational conditions, methods that are applicable without an explicit estimation of present excitation patterns will
ave higher chances of providing a good estimate of the vibration characteristics without impacting the intended use. The need for
MA methods to estimate modal parameters has pushed the development of multiple methods. Many of the basic concepts related

o the methods are described in [3,4]. However, even when one has chosen an OMA method to use, that method requires a choosing
f parameters and method specific analyses before modal parameter estimations are obtained. In [7], experimental data from an
rch bridge is used to provide a tutorial on the use of different OMA methods with highlights of method specific analyses. The OMA
ethods are sensitive to the choosing of the parameters related to the methods. Therefore, it is common for users to do a short study

f the impact on the estimations from the parameters chosen for the method before choosing the parameters to use for analysing
xperimental data. In [8], Reynders first tested the effect of uncertainties in modal parameter estimates from variations in the
odel parameters through a numerical example. Hereafter, the estimated uncertainties were used to test the effect of a destructive

oading case for a concrete beam on modal parameter estimates and their uncertainties. Saint Martin et al. [9] present the use of
nbalance force disturbance in a rotating machine to identify the vibration characteristics of the supporting structure. Changes to
he supporting structure are found to impact the vibration characteristics which is captured using an OMA method. These examples
howcase the use of modal parameters such as natural frequency and mode shape vector as identifiers to system changes.

In the related research fields of Structural Health Monitoring (SHM) and Condition Monitoring (CM), the modal parameters
re used among other indicators to track structural changes over time that are not just caused by changes in the environment. An
ntroduction to the SHM is described in [10] and a handbook of CM is provided in [11], while a review investigating the heading of
he research within the field of CM is presented in [12]. The fields are similar in the way that both search to determine the remaining
ife and to prevent critical failures in mechanical systems. However, SHM focuses on civil structures and CM focuses on rotating
achinery. Structural changes happen due to different causes, e.g. corrosion, heavy loads, earthquakes, etc. The indicators provide
seful insight into the structural and functional integrity over time and help in decision making about maintenance problems. In
HM and CM setups, algorithms that are fully automated in the process of extracting modal parameters are necessary to continuously
valuate the vibration characteristics and changes hereof if these are to be used in the evaluation of the structural or functional
ntegrity. In [13], Magalhães et al. presented an automated OMA algorithm applied to the dynamic characterization of a bridge. The
lgorithm calculates a distance measure to define differences between modal parameter estimates. The modal parameters are used
o group identified modes through the hierarchical cluster algorithm based on their similarities in natural frequency and mode shape
ector. Finally, modes with outlying estimations of damping are neglected and the mean value of the modal parameter estimates
escribing a mode is used as the resulting modal parameter estimate. A similar approach is presented in [14]. Here, an additional step
f a K-means clustering using soft validation criteria for modal parameter estimates separates possible physical modes and certainly
purious poles. Next, hard criteria are used to eliminate certainly spurious poles that were wrongly encapsulated in the group
f possible physical modes. The modal parameters defined as certainly spurious poles are cleared from the stabilization diagram
efore a hierarchical clustering algorithm is used. After the hierarchical clustering, one representative modal parameter estimate is
hosen as the resulting mode estimator of each group. In [15], Neu et al. present a multi-stage clustering algorithm using a K-means
nd hierarchical clustering algorithm for dynamic characterization of a glass fibre specimen. Here, a distance measure based on a
ombination of the eigenvalue and modal assurance criterion is used to distinguish estimated modes. The presented method required
o inputs or thresholds from a user. Charbonnel [16] presents fuzzy c-means algorithms to separate possible physical modes and
purious poles better before using a hierarchical clustering algorithm. The method is tested on measurements from the shaking-
able test campaign. Mugnaini et al. [17] present a data-driven clustering approach for an Automatic OMA algorithm that distinguish
odes from the known phenomenon of pole splitting when the model order increases to high numbers in a stabilization diagram. The

lgorithm is applied to characterize the dynamics of a helicopter blade. In [18], Tronci et al. described a semi-automatic methodology
2

or extracting the modal parameters using two different parametric system identification techniques combined with three clustering
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options: two ‘‘blind’’ versions of the commonly used K-means algorithm and a newly developed Density-Based Spatial Clustering
of Applications with Noise (DBSCAN). The results demonstrated excellent accuracy and robust performance of the methodology,
even in the presence of closely spaced modes for all clustering algorithms. In this paper, the K-means algorithm combined with
a hierarchical clustering is chosen. A lot of other approaches for automating the modal parameter choosing process have been
provided. For instance in [19], Covioli and Coppotelli presented an automated modal analysis algorithm based on Gaussian mixture
models to obtain modal parameter estimates from flight vibration data. Also, Zeng and Hu [20] have tested the use of Gaussian
mixture models on vibration data from a four-storage building and a bridge. Priou et al. [21] use the variations of the modal
parameters from stochastic subspace methods as formulated in [22,23] to automatically clear out stabilization diagrams and test
the algorithm on data from the S101 and Z24 bridge data sets.

The identification of vibration characteristics for rotating machines is the focus of this work where vibration signals from rotor
ositions and acceleration signals from the supporting structure of the machine elements are analysed. By roving one accelerometer
ver the supporting structure, the vibration characteristics of the structure are estimated. The goal of the work is to automatically
btain an estimate of the vibration characteristics from ambient excitations in the machine induced by the turbulent gas flow in the
eal geometries. An OMA method in the form of Stochastic Subspace Identification (SSI) is chosen to analyse the vibration signals
rom the ambient excitations. The automated modal parameter identification algorithm is referred to as Automated Operational
odal Analysis (AOMA) in the following. The SSI method can generate a set of modal parameter estimates using an incremental
odel order for the modal parameter estimation process. Since this is a possibility for many methods, the proposed automated
rocess of modal parameter choosing in the set of modal parameter estimates can be used for different modal parameter estimation
ethods. The proposed AOMA is founded on the work from [14] since it provided a simple method with the possibility of easily

dding distance measures into the automated procedure. The AOMA includes a method for clearing the stabilization diagram for
ertainly spurious poles that are estimated for example due to noise in the measurement signals. The remaining modal parameters
re sorted in a hierarchical clustering algorithm that groups modal parameters that describe the same mode. Groups that contain a
igh number of possible physical modes are said to have a higher probability of resembling physical modes present in the system.
herefore, groups of possible physical modes that contain fewer possible physical modes than a defined threshold are disregarded
s non-physical. A resulting set of modal parameters representing the physical mode contained in each group is calculated by
eighting the modal parameters. In this work, the weighting of the modal parameters is based on a comparison of the estimated
odal parameters through a modal assurance criterion as presented in [24]. Since the AOMA is used for several roving experiments,

he information from each roving experiment needs to be combined using an experiment as a reference. Each experiment is in turn
hosen as a reference since any roving experiment could be chosen as the reference. Thereby, a set of physical modes describing the
omplete vibration characteristics is generated for each roving experiment. The physical modes are combined and analysed through
he hierarchical clustering algorithm using the same controls as for the individual roving experiments. The groups that contain the
ost physical modes are used to calculate the resulting modal parameters through the same weighting process as for the individual

oving experiments. The main contributions of this work related to the automation of modal parameter estimations are the use of
weighting between the estimated modal parameters to reduce the contribution to the resulting modal parameter estimate from

utlying estimations and the automated combination of modal parameters estimated from different roving experiments to generate
complete vibration pattern.

The main originality of this work is to experimentally investigate and prove that the excitation forces coming from the turbulent
low in gas seals can facilitate operational modal analysis for a rotor–foundation system. The proposed AOMA is evaluated for
hree different operational conditions (i) introducing deliberately a white noise disturbance pattern into the system through the
ctive magnetic bearings, (ii) combining the magnetic bearing excitation with the operational disturbance coming from the seals
on-intentionally induced by the turbulent gas flow, and (iii) using only the operational disturbances from the seals. The outcomes
rom the AOMA are compared and validated against (a) the estimation of vibration characteristics aided by EMA and (b) predicted
y a mathematical model of the test rig derived in [25]. The estimated vibration characteristics of the system are highly correlated
ven when considering only ambient excitations from a seal geometry.

The article is composed of a description of the experiments and the analyses used in the work followed by a walk-through of
he AOMA algorithm using experimental data. Lastly, a comparison between expectations and obtained modal parameter values is
resented for all experimental studies.

. Test facility and experimental testing

The experiments are carried out using a seal force test facility located in a laboratory facility at the Department of Civil and
echanical Engineering, Technical University of Denmark. Fig. 1 pictures the test setup and the test facility. The test facility

llustrated in Fig. 1(b) consists of an electric motor connected to a drive shaft through a belt drive. The drive shaft controls
he main rotor through a flexible coupling. The main rotor is levitated in its lateral directions by active magnetic bearings and
nfluenced by two smooth annular seals mounted in a back-to-back configuration. The modules carrying the motor, drive shaft, active
agnetic bearings, and seal geometries are situated on a bed plate. The test facility is presented in detail in [26]. The investigation
resented in this work focuses mainly on the identification of vibration patterns present in the bed plate of the test facility when
he seal inlet pressure changes as described in Table 1. Experimental studies using an excitation hammer are carried out to obtain a
enchmark estimate of which vibration patterns are present in the test facility. The excitation patterns (i) generated by the hammer
re measured and denoted as known and deterministic. In these experiments, force input signals from the hammer, accelerations
3

rom the stationary accelerometer, and operational conditions in the seal geometries are measured. The hammer roves over each
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Fig. 1. Presentation of test facility including (a) experimental setup indicating measurement points for EMA and OMA experiments and (b) presentation of
components in the test facility. (b) is also presented in [25]. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Table 1
Experimental test conditions tested in the lab in terms of seal inlet pressure, excitation pattern from the AMBs. The rotational
speed of the main rotor is 0 RPM for all experiments.

Test configurations (a) (b) (c) (d) (e) (f)

Pressure [bar] 0 0 1.3 1.3 2.7 2.7
AMB excitation No Yes No Yes No Yes

accelerometer position that are presented in Fig. 1(a). For each tested point, frequency response functions are calculated from 20
measurements of 5 s using a sampling frequency of 3012 Hz. The hammer tests are conducted for experimental test conditions (a),
(c), and (e). Additional experiments rely only on the excitation from measurement noise in the sensors and process noise in the
control of the active magnetic bearings or from turbulent gas flow in the seal geometries installed in the test facility. These excitation
patterns (ii) are unknown but assumed stochastic in the form of Gaussian white noise. Experiments with an imposed pseudo random
binary signal as feed forward in the controlling current of the active magnetic bearings are used to magnify the vibrations that
should be visible through the normal operating conditions as well. The signals measured in these tests are accelerations from one
roving accelerometer and one stationary accelerometer, position signals in 𝑌 - and 𝑍-directions of the rotor from hall-effect sensors
mounted at four locations, and operational conditions in the seals. The accelerometer is roved through the 13 accelerometer positions
presented in Fig. 1(a). The experimental signals for the excitation patterns (ii) are captured for approximately 128 s at a sampling
rate of 3012 Hz. These signals are used in the proposed AOMA for test conditions (b) through (f).

3. Analysis methodologies

The two types of experiments (i) and (ii) require algorithms built on a different set of assumptions to obtain estimates of
modal parameters. Experiments of type (i) require methods within the framework of EMA, while experiments of type (ii) require
OMA methods to obtain estimates of modal parameters for the coupled rotor–foundation system. The following highlights first the
algorithms within the frameworks of EMA and OMA in sections 3.1 and 3.2. Then a proposed automation of modal parameter
choosing from a stabilization diagram is described in Section 3.3.

3.1. EMA algorithm

Experiments of type (i) using the excitation hammer generate well defined frequency response functions from the power spectral
densities of the input and output signals calculated from Welch‘s method [27]. The correlation function 𝑅𝑥,𝑦 (𝜏) between signals 𝑥 (𝑡)
and 𝑦 (𝑡) is used to calculate the power spectral density 𝑃𝑥,𝑦 (𝜔) of the signals as in Eq. (1).

𝑅𝑥,𝑦 (𝜏) = lim 1 𝑇
𝑥 (𝑡) 𝑦 (𝑡 + 𝜏) d𝑡, 𝑃𝑥,𝑦 (𝜔) =

1 ∞
𝑅𝑥,𝑦 (𝜏) exp−

√

−1𝜔𝜏 d𝜏 (1)
4

𝑇→∞ 𝑇 ∫0 2𝜋 ∫−∞



Mechanical Systems and Signal Processing 212 (2024) 111293T.T. Paulsen et al.

p
a

3

c

𝐎
o

i
u
e

Fig. 2. Graphical presentation of the AOMA algorithm for calculating assembled physical modes. The estimation process for each roving experiment is highlighted
in red and the assembling of the possible physical modes between each roving experiment is highlighted in blue. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

The relations between the power spectral densities are calculated as the H2 estimator for the frequency response functions [28].
The H2 estimator is chosen since the frequency response function is analysed close to the resonance peaks where the signal to noise
ratio is higher for the acceleration signals compared to the input force [29]. The transfer function 𝐻𝑥,𝑦 (𝜔) from input 𝑦 (𝑡) to output
𝑥 (𝑡) is calculated as presented in Eq. (2).

𝐻𝑥,𝑦 (𝜔) =
𝑃𝑥,𝑥 (𝜔)
𝑃𝑥,𝑦 (𝜔)

(2)

Here, the single degree of freedom curve fitting method, also known as the peak picking method, is used to estimate the modal
arameters from the frequency response function. Curve fitting methods to obtain the modal parameter estimates have existed for
long time and are for instance described in [30].

.2. OMA algorithm

The experiments of type (ii) are analysed using the Stochastic Subspace Identification (SSI) algorithm [31]. The algorithm uses
orrelation functions 𝐑(𝜏) ordered in the form of a Hankel matrix 𝐇 using the parameters 𝑠 and 𝑛𝑝 as presented in Eq. (3).

𝐇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐑(1) 𝐑(2) … 𝐑(𝑛𝑝 − 2𝑠 + 1)
𝐑(2) 𝐑(3) … 𝐑(𝑛𝑝 − 2𝑠 + 2)
⋮ ⋮ ⋱ ⋮

𝐑(2𝑠) 𝐑(2𝑠 + 1) … 𝐑(𝑛𝑝)

⎤

⎥

⎥

⎥

⎥

⎦

(3)

The Hankel matrix can be computationally efficiently solved through a QR factorization that is used to build a projection matrix
𝑤. The projection matrix can be expressed as an observability matrix 𝛤𝛤𝛤 and a matrix of Kalman states 𝐗 describing initial conditions
f the free decays, which also holds true for the singular value decomposition of 𝐎𝑤. This is mathematically described in Eq. (4).

𝐎𝑤 = 𝐔𝐒𝐕T = 𝛤𝛤𝛤 𝐗 (4)

Here, □T denotes the transpose. By calculating the singular value decomposition of the projection matrix, the singular values
n the correlation functions can be used to solve for the system matrix of the Kalman states with an incremental model order 𝑚
sing the 2𝑚 number of most influential singular values [3]. The extraction of the most influential singular values along with the
stimation of Kalman states and responses is presented in Eq. (5).

𝐔 =
[

𝐔𝑚 𝐔𝑟
]

, 𝐒 =
[

𝐒𝑚 𝟎
𝟎 𝐒𝑟

]

, 𝛤̂𝛤𝛤𝑚 = 𝐔𝑚
√

𝐒𝑚, 𝐗̂𝑚 = 𝛤̂𝛤𝛤
+
𝑚 𝐎𝑤 (5)

Here, □+ denotes the pseudo-inverse. From the estimates of the Kalman states and responses at different model orders, a set of
modal parameters describing a stabilization diagram is obtained.

3.3. Automation of the modal parameter choosing

A method to automate the process of choosing modal parameters that describes physical modes in a rotating machine is proposed.
The method assumes that the modal parameter estimation process can generate a set of modal parameters that can be described by
a stabilization diagram as is the case for the SSI algorithm. The automation method, which is also graphically described in Fig. 2,
calculates distance measures between estimated modes when incrementally increasing the model order. The eigenvalue 𝜆 expresses
the damped natural frequency 𝜔𝑛,𝑑 = Im(𝜆) and the damping factor 𝜁 = −Re(𝜆)∕ |𝜆|. Thereby, each mode carries information about
5

three features, namely the damped natural frequency, the damping factor, and the mode shape. The distance measures of the mode
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shape vectors are based on the extensions to the modal assurance criterion presented in [32]. The distance measures range from
considering only the stabilization of one feature at a time to all features simultaneously. Eqs. (6) through (12) present the distance
measures considered between mode 𝑖 from model order 𝑚 and mode 𝑗 from model order 𝑚 + 1.

d𝜔𝑛,𝑑, 𝑖,𝑗 =

1
2
|

|

|

𝜔𝑛,𝑑, 𝑖,𝑚 − 𝜔𝑛,𝑑, 𝑗,𝑚+1
|

|

|

max
([

|

|

𝜔𝑛,𝑑, 𝑖,𝑚
|

|

, ||
|

𝜔𝑛,𝑑, 𝑗,𝑚+1
|

|

|

]) (6)

d𝜁𝑖,𝑗 =

1
2
|

|

|

𝜁𝑖,𝑚 − 𝜁𝑗,𝑚+1
|

|

|

max
([

|

|

𝜁𝑖,𝑚|| ,
|

|

|

𝜁𝑗,𝑚+1
|

|

|

]) (7)

d𝜆𝑖,𝑗 =

1
2
|

|

|

𝜆𝑖,𝑚 − 𝜆𝑗,𝑚+1
|

|

|

max
([

|

|

𝜆𝑖,𝑚|| ,
|

|

|

𝜆𝑗,𝑚+1
|

|

|

]) (8)

MACX𝑖,𝑗 =

(

|

|

|

𝐯∗𝑖,𝑚𝐯𝑗,𝑚+1
|

|

|

+ |

|

|

𝐯T𝑖,𝑚𝐯𝑗,𝑚+1
|

|

|

)2

(

|

|

|

𝐯∗𝑖,𝑚𝐯𝑖,𝑚
|

|

|

+ |

|

|

𝐯T𝑖,𝑚𝐯𝑖,𝑚
|

|

|

) (

|

|

|

𝐯∗𝑗,𝑚+1𝐯𝑗,𝑚+1
|

|

|

+ |

|

|

𝐯T𝑗,𝑚+1𝐯𝑗,𝑚+1
|

|

|

) (9)

MACX𝜔𝑛,𝑑 , 𝑖,𝑗 =

⎛

⎜

⎜

⎝

|

|

|

𝐯∗𝑖,𝑚𝐯𝑗,𝑚+1
|

|

|

|

|

𝜔𝑛,𝑑, 𝑖,𝑚
|

|

+ |

|

|

𝜔𝑛,𝑑, 𝑗,𝑚+1
|

|

|

+
|

|

|

𝐯T𝑖,𝑚𝐯𝑗,𝑚+1
|

|

|

|

|

𝜔𝑛,𝑑, 𝑖,𝑚
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Here, □̄ and □∗ denote the complex conjugate and the complex conjugate transpose, respectively. In the following, the distances
𝜔𝑛,𝑑, 𝑖,𝑗 , d𝜁𝑖,𝑗 , and d𝜆𝑖,𝑗 will be referred to as d𝑥, while the modal assurance criteria MACX𝑖,𝑗 , MACX𝜔𝑛,𝑑 , 𝑖,𝑗 , MACX𝜁, 𝑖,𝑗 , and MACX𝜆, 𝑖,𝑗

are referred to as MACX𝑥. All measures are restricted to values between 0 and 1. However, all distances described through the change
d𝑥 are 0 when there is no distance and 1 when the distance is as large as it can be, while the modal assurance criteria are 0 when
the modes are orthogonal and 1 when the modes are parallel. Therefore, the distance of the modal assurance criteria is formulated
as dMACX𝑥 = 1 −MACX𝑥. In some cases, it will not hold true that all measures will be between 0 and 1. If the denominator in the
distance measures d𝑥 is 0, the value of the distance is defined as 1. Also, the real part of the parameters |

|

𝜔𝑛,𝑑, 𝑖,𝑚
|

|

and |

|

|

𝜔𝑛,𝑑, 𝑗,𝑚+1
|

|

|

, 𝜁𝑖,𝑚
and 𝜁𝑗,𝑚+1, and −𝜆𝑖,𝑚 and −𝜆𝑗,𝑚+1 are required to be greater than 0. If this is not the case, the measures dMACX𝜔𝑛,𝑑 , 𝑖,𝑗 , dMACX𝜁, 𝑖,𝑗 ,
and dMACX𝜆, 𝑖,𝑗 are set to 1, respectively. Distance measures that only evaluate one feature at a time are d𝜔𝑛,𝑑, 𝑖,𝑗 , d𝜁𝑖,𝑗 , and dMACX𝑖,𝑗 .
Measures that include distance measures between two features at a time are d𝜆𝑖,𝑗 (damped natural frequency and damping factor),
dMACX𝜔𝑛,𝑑 , 𝑖,𝑗 (damped natural frequency and mode shape), and dMACX𝜁, 𝑖,𝑗 (damping factor and mode shape). Information about
all features is then present in the measure dMACX𝜆, 𝑖,𝑗 . To determine which set of distance measures are to be used for mode 𝑖 from
model order 𝑚, the Euclidean distance d𝐸𝑖,𝑗 for all sets of measures is calculated as:

d𝐸𝑖,𝑗 =
√

d𝜔𝑛,𝑑, 𝑖,𝑗
2 + d𝜁𝑖,𝑗

2 + dMACX𝑖,𝑗
2 + d𝜆𝑖,𝑗

2 + dMACX𝜔𝑛,𝑑 , 𝑖,𝑗
2 + dMACX𝜁, 𝑖,𝑗

2 + dMACX𝜆, 𝑖,𝑗
2 (13)

The mode 𝑗 in model 𝑚+ 1 that minimizes the measure of d𝐸𝑖,𝑗 is chosen as the mode to be compared to mode 𝑖 in model order
𝑚. The seven distance measures are then used to optimize two centroids initiated from [0 0 0 0 0 0 0] and [1 1 1 1 1 1 1]
ontaining possible physical modes and spurious poles, respectively. When the optimal location for the centroids is found, the
et containing spurious poles is cleared out. Additionally, a minimum value of 0.95 is defined for the modal assurance criterion
ACX𝜆, 𝑖,𝑗 describing the difference between all features in the mode. After the possible physical modes have been identified,

nother set of measures is used that sorts out certainly spurious poles that erroneously have been labelled possible physical. These
easures relate only to the eigenvalue, stating that the mode is only considered physical if the damping is greater than 0 and less
6
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Fig. 3. Assembling modal parameters for complete mode of bed plate.

han 1 and that for every eigenvalue, the complex conjugate of that eigenvalue must exist in the set. In a physical system, over-
amped eigenvalues, that have a damping factor equal to 1, may exist. However, the SSI method does not estimate these modes
ccurately. Therefore, the over-damped modes are excluded from this analysis. The process is carried out in this order to minimize
he risk of possible physical poles being wrongly encapsulated in the group of spurious poles. The remaining modal parameters are
onsidered a set of modes that can describe the vibration characteristics of the machine. The last sorting consists of a hierarchical
lustering algorithm that computes a distance between all modes in the set chosen as dMACX𝜆. The algorithm combines modes into
lusters starting from modes that have the shortest distances. When two clusters of modes are to be combined, it is chosen that the
verage distance between the members of the clusters is evaluated as the distance between the clusters. A threshold value specifies
he distance for which the clusters are defined as different. Some clusters will contain more modes than others. The more modes
ontained in a cluster, the higher the chance that this is a physical mode. Therefore, clusters with fewer members than a cut-off value
re disregarded as spurious poles. Within the resulting clusters, the contribution to the resulting mode from the modal parameters
ontained in each cluster is defined through a comparison between the modal parameters calculated by MACX𝜆. This process is
urther described in Section 3.3.1. In this experimental campaign, the resulting modes from the automated method consist of eight
egrees of freedom to describe the rotor movements 𝑛𝑅𝑜𝑡 and two degrees of freedom to describe the plate deflections 𝑛𝑃 𝑙𝑎𝑡𝑒. One
egree of freedom for the plate deflections 𝑛𝑆𝑡𝑎𝑡 is measured at the same place over multiple experiments, which is used to scale
he mode shape. Therefore, this process is repeated for the number of roving experiments used in the campaign defined as 𝑛𝑟, which
or this experimental campaign has been chosen as equal to 13.

Another way to tackle the problem of multiple roving experiments could be to derive a power spectral density matrix based on the
ower spectral densities from a reference degree of freedom. Thereby the algorithm would not need to be applied for each individual
oving experiment. The analysis of each roving experiment is however chosen since only simple data processing is required for this
ethod before the SSI algorithm can be applied.

When the AOMA algorithm has generated modes for all 𝑛𝑟 experiments, each resulting mode contains a piece of information
of the complete mode shape. However, that information needs to be matched between the experiments as illustrated for the first
three roving experiments in Fig. 3. Here, the modal coordinate vector is normalized using the Acc𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 position. Then, a roving
experiment is chosen as the reference and the eigenvalue and modal vector describing the rotor degrees of freedom are used to pair
the information of the roving accelerometer positions based on a comparison through MACX𝜆. The information from the mode that
compares best to the reference mode is used to construct the complete mode shape. Since all matched modes include information
of the eigenvalue and rotor mode shape vector, this information is merged into one estimate for the complete mode. This is done
by averaging the eigenvalue and rotor modal components based on the weighting method described in 3.3.1 after the mode shape
components have been paired. Any roving experiment could be chosen as the reference. Therefore, all experiments are in turn used
as the reference. It means that the step of pairing the estimated modes from each roving experiment, marked in blue in Fig. 2, is
repeated nr times. This procedure results in a set of modes that in some cases are similar to others and in other cases are unique. The
more modes that one mode compares well to, the higher the chance that this mode is indeed describing a physical mode. For this
reason, another hierarchical clustering is chosen to generate clusters that contain comparable modes. The procedure is chosen similar
to that used in the initial modal parameter choosing algorithm. In the final clusters, the weighting obtained from the comparison
between the modes through MACX𝜆 is used to scale the contributions from the modal parameters to the resulting mode.

3.3.1. Weighting from modal assurance criteria
A method weighting contributions from multiple modes is chosen to calculate a resulting mode. The weightings are based on

a comparison through a modal assurance criterion. In [24], it was shown that the method increases the accuracy of the resulting
mode. In this work, the weighting is obtained by comparing the modes in a cluster using the modal assurance criterion MACX𝜆. The

ode that compares well to most of the modes is given the highest weight and the worse a mode compares to the other modes in
he set, the lower the weighting given. Fig. 4 presents graphically the method that generates a symmetric matrix with ones along the
iagonal. The matrix is summed through its rows and scaled by the maximum values. The procedure results in a vector containing
alues between 0 and 1 which define the contribution to the resulting mode from each mode contained in the cluster.

. Results of the automated vibration characterization method

The results of the estimated vibration characteristics are presented in four parts. First, the focus is turned to the AOMA algorithm
nd the challenges that lie in the automation of the process. The challenges are described through a presentation of intermediate
esults from the automation method in 4.1. The estimated vibration characteristics from the AOMA algorithm are then compared to
he characteristics estimated by the EMA method and the mathematical model of the test facility in 4.2. An analysis of the impact
n the identified physical modes caused by changes to the parameters used in the modal parameter estimation method SSI and
7

perational conditions in the seal geometry is presented in 4.3.
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Fig. 4. Graphical presentation of modal parameter weighting method with inspiration from [24].

Fig. 5. Presentation of experimental signals and correlation functions for accelerometer signals from the stationary accelerometer Acc𝑆 and the roving
accelerometer in position 1 Acc1 under test conditions (b). The correlation function is analysed in the frequency domain using Welch’s estimate. The Hanning

indow is imposed on the signal for the analysis using one block.

.1. Intermediate results from the AOMA algorithm

The AOMA algorithm is applied for each roving experiment. The intermediate results from the experiment with the roving
ccelerometer at Acc1 under test conditions (b) are presented in the following. The experimental acceleration signals and resulting
orrelation functions are presented along with an analysis of the frequency contents in the correlation signals in Fig. 5. The
cceleration signals correspond to a white Gaussian noise signal which is optimal to be analysed in the OMA framework. The
orrelation function is presented with 0 to 1023 time lags. The correlation is highest when no time lags are introduced and reduce
n the form of a free decay as the time lags increase. This is the expected behaviour of the correlation functions. The frequency
ontents in the correlation functions are also shown. The correlation functions are analysed through Welch’s estimate using the
anning window over one block. Some peaks around the frequencies 26 Hz, 35 Hz, 56 Hz, 73 Hz, 97 Hz, 114 Hz, 126 Hz, and
70 Hz are visible, indicating possible natural frequencies. However, without the use of averaging for Welch‘s estimate for the
orrelation function, the frequency content has a high noise floor that limits the prominence of the peaks. In the following, the
ethod of clearing the stabilization diagram is discussed in 4.1.1. Next, the grouping of possible physical modal parameters is
alked through in 4.1.2. Finally, the results of assembling the possible physical modes from all roving experiments are presented

n 4.1.3.
8
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Fig. 6. Presentation of the stabilization diagram for the feature 𝜔𝑛,𝑑 in two frequency ranges for all estimated modes obtained from the SSI method. Blue boxes
indicate the regions where modal parameters without a conjugate counterpart lie. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

4.1.1. Clearing the stabilization diagram
The modal parameter estimates obtained from the SSI method using the parameters 𝑠 = 256 and 𝑛𝑝 = 1024 when incrementing 𝑚

from 1 to 128 are shown in Fig. 6 as a stabilization diagram for the 𝜔𝑛,𝑑 feature. The full range of the stabilization is presented on
the left hand side, while a reduced frequency range is presented on the right. The stabilization diagram presents modal parameters
that contain values that do not change much for the 𝜔𝑛,𝑑 feature as vertical lines when the model order is incrementally increased.

owever, some modal parameters include a clear difference in the estimate of 𝜔𝑛,𝑑 both in the form of singled out dots but also chains
hat show irregular growth. Some modal parameters estimate a value of 0 Hz or a value of the Nyquist frequency (1506 Hz) for 𝜔𝑛,𝑑
ithout estimating its complex conjugate counterpart. This is indicated by the blue blocks in Fig. 6. In the figure, the illustration
f the negative frequency band serves as a means to check if a modal parameter has a complex conjugate counterpart. In the first
ase (𝜔𝑛,𝑑 = 0 Hz), the modal parameter characterizes an over-damped mode which the SSI is not built to estimate accurately. In
he second case(𝜔𝑛,𝑑 = 1506 Hz), the modal parameter estimate is meaningless since it does not describe a mode. The stabilization
iagram presents the pool of modal parameters from which an operator, which aims to describe the vibration characteristics of
he system manually, can choose from. The graphical presentation of the modal parameters shows the development of the damped
atural frequency as a function of an incremental model order. This representation is commonly used since 𝜔𝑛,𝑑 is a feature that
uickly stabilizes and easily distinguishes modes. Normally, distance measures that check for the stabilization of one feature at a
ime are evaluated against a threshold that can be chosen differently for each measure. When the measure is below the threshold,
t is said to be stable in that feature. If it is stable in all features, it is said to be a stable mode and, therefore, a candidate to choose
s a physical mode. However, for each unique mode, multiple modes will be stable. Therefore, it is different from one operator to
nother whether a good mode candidate is chosen to represent the vibration characteristics of that mode shape. Another downside
f choosing only one stable mode is that information about the vibration kept in other stable modes is neglected.

The distance measures described in 3.3 are calculated for the set of estimated modes presented in the stabilization diagram.
he distance measures are used to reduce the number of estimated modes to choose from. The reduction is obtained by a K-means
lgorithm containing two centroids that either explain possible physical modes or certainly spurious poles. Fig. 7 presents the values
f the distance measures and whether an estimated mode with that value of a certain measure is concluded to be part of the first
r second centroid. Also, the values of the optimized centroids are illustrated for all different distance measures. The development
rom the initial to the optimized values of the centroid containing certainly spurious poles is highlighted. The resulting optimized
entroid values are [0.004 0.079 0.027 0.079 0.029 0.050 0.102] and [0.049 0.145 0.084 0.150 0.101 0.809 0.958] for the possible

physical modes and spurious poles, respectively. On the left in Fig. 7, the distance measures d𝜔𝑛,𝑑 and d𝜁 are presented. The measures
illustrate that the defined possible physical modes and spurious poles are difficult to distinguish in these distance measures both by
the fact that estimated modes from each group overlap and that the placement of the centroids for the measures lie close. The distance
between the centroids in d𝜔𝑛,𝑑 is 0.045 while it is 0.066 in d𝜁 . The next illustration shows a similar pattern for the distance measures
d𝜆 and dMACX as for the measures d𝜔𝑛,𝑑 and d𝜁 . The distance measures d𝜆 and dMACX, therefore, also seem to be unreliable features
for distinguishing between possible physical modes and spurious poles as defined by the combination of all distance measures.
The third diagram from the left presents the distance measures dMACX and dMACX . For both measures, estimated modes
9
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Fig. 7. Presentation of values for distance measures related to the modal parameters of the estimated modes. The value includes an indication of which group of
oles the estimated mode belongs to in the K-means optimization algorithm. The two groups are denoted (PP) for possible physical modes and (S) for spurious
oles. The development of the coordinates from the initial centroids (IC) to the optimized centroids (OC) is illustrated for the centroids of the group containing
purious poles for each distance measure.

ontained in each group overlap. The centroids for the measure dMACX𝜔𝑛,𝑑
lie close as was the case for the previously described

distance measures. However, for the distance measure dMACX𝜁 , the centroids that distinguish between possible physical modes
and spurious poles are observed to be separated by a distance of 0.759 between each group. This indicates that this parameter is
better suited for dividing the pool of estimated modes into possible physical parameters and spurious poles. An explanation for this
must be that the amount of poles that overlap for the distance measure dMACX𝜁 is lower than for the other measures. The last
diagram in Fig. 7 presents the measures d𝜔𝑛,𝑑 and dMACX𝜆. The distance measure dMACX𝜆 presents a limited region for which the
estimated modes classified in both groups overlap and the estimated modes are in general well separated between the two classes
by this measure. The centroids are separated by a distance of 0.856 in dMACX𝜆, making the distance between the centroids that
distinguish between possible physical modes and spurious poles the largest for this measure. Additionally, the MACX𝜆 comparison
has been chosen as a parameter that is used to clear the set of estimated modes based on a threshold value of 0.95. The reasons
for this choice are that this formulation of the modal assurance criterion contains information about all features of the estimated
modal parameters and that this feature can distinguish very well between possible physical modes and certainly spurious poles. The
value of the threshold for MACX𝜆 is decided based on the fact that the parameter is very sensitive to changes in the real part of
the eigenvalue which relates to the damping factor. Commonly, and as an example in [33], a 5% change in the damping factor for
an estimated mode is chosen as the stabilization threshold for this feature. Therefore, that same threshold is chosen in this work.
After the grouping of estimated modes into possible physical modes and spurious poles, the criteria for the damping factor and the
eigenvalue are imposed on the set of possible physical modes. If the certainly spurious poles are removed before grouping the modal
parameters, a higher risk of wrongly encapsulating possible physical modes in the group of spurious poles will be present.

In Fig. 8, the stability diagram cleared from certainly spurious poles is presented. The diagram in Fig. 8 contains a visibly reduced
number of estimated modes when compared to the diagram presented in Fig. 6. Fig. 8 illustrates that no modes without a complex
conjugated pole pair exist in the set of modal parameters. Also, it is observed that some of the vertical lines are separated and that
more singled out estimated modes are present. Therefore, the next step is to divide the possible physical modes into groups that
represent unique physical modes.

4.1.2. Grouping possible physical modes
First, since the possible physical modes are confirmed to include complex conjugated pairs of modal parameters, one mode

has its modal parameters conjugated such that no eigenvalues with negative imaginary parts exist. The method used to group
the possible physical modes is known as a hierarchical clustering algorithm. The algorithm defines clusters that consist of several
possible physical modes. The clusters are defined based on the distance between the possible physical modes. Therefore, a threshold
value needs to be defined for the distances between clusters to classify two clusters as different. Multiple methods of evaluating the
distances between clusters and potential members of clusters can be defined for the algorithm. The distance measure used to form
groups of possible physical modes is chosen as dMACX𝜆 based on the same reasons for being chosen as an additional threshold
measure for grouping between possible physical modes and spurious poles. The threshold is defined as the mean linkage distance
used to form the groups when disregarding the linkages between the modal parameters describing the same mode since this is 0. For
this experiment, the threshold results in dMACX𝜆 = 0.11. Fig. 9 presents the dendrogram describing the linkage distances between
clusters when they are grouped as new branches. A horizontal dashed line indicates the threshold distance between the clusters that
is formed at dMACX𝜆 = 0.11. Branches below the threshold are indexed by a colour-marking to illustrate that these belong to the
same group of possible physical modes describing a unique physical mode. By the colour-marking it is presented that some unique
physical modes are estimated by more possible physical modes in the set of possible physical modes than other unique physical
modes. It is claimed that the more possible physical modes that estimate a unique physical mode, the more likely that mode is to
be a physical mode. This is a harsh assumption and requires that the modal vector consists of many degrees of freedom to be easily
distinguishable. This is one reason to include the measurements of the rotor degrees of freedom in the modal vector.

Based on this claim, the groups are sorted from the group containing the most possible physical modes to the group containing
10

the least amount of possible physical modes. This is illustrated in Fig. 10. A cut-off value is defined for the groups such that if a group
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Fig. 8. Presentation of the stabilization diagram for the feature 𝜔𝑛,𝑑 in two frequency ranges for the set of possible physical modes. Blue boxes indicate the
regions where modal parameters without a conjugate counterpart lie. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 9. Dendrogram presenting the distances between the clusters in the hierarchical clustering algorithm including the calculated threshold value used to
separate the clusters marked in colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

contains less than the mean number of possible physical modes, then that group is regarded as non-physical. The mean number of
possible physical modes is the total number of possible physical modes that are clustered divided by the number of clusters. Fig. 10
contains groups marked by blue and red colours. The red coloured groups represent modes with a damped natural frequency of less
than 200 Hz, while the blue coloured groups represent modes with a damped natural frequency greater than or equal to 200 Hz.
Two cut-off values are presented to illustrate the dependency on the frequency range of interest. If the complete frequency band is
considered, the groups containing a minimum of 11 possible physical modes are regarded as unique physical modes. In Fig. 10, 21
groups of possible physical modes with a damped natural frequency less than 200 Hz are above this threshold. Therefore, 21 modes
with a damped natural frequency would be regarded as unique physical modes in the frequency band from 0 Hz to 200 Hz. In case
only groups containing possible physical modes with a damped natural frequency less than 200 Hz are considered, a cut-off value of
26 possible physical modes is obtained. In this case, Fig. 10 shows that 12 groups of possible physical modes with a damped natural
frequency of less than 200 Hz would be regarded as unique physical modes. The reason is suspected to stem from fewer estimated
modes in the stabilization diagram with high damped natural frequencies resulting in groups that estimate a high damped natural
frequency containing fewer possible physical modes. This will drive down the number of possible physical modes to be contained in
a group for that group to be regarded as a representation of a physical mode. No restrictions on the frequency band are imposed for
further analysis in this work. Fig. 10 shows that 44 groups of possible physical modes meet the criterion of containing a minimum
of 11 possible physical modes in this roving experiment. It does not appear as an unrealistically high number, however, there might
be some duplicates of physical modes present based on previous experiences with the specific system being analysed.
11
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Fig. 10. Histogram of the number of possible physical modes (PP modes) included in each group that describes a mode starting from the group containing
the most possible physical modes. If groups contain an equal amount of possible physical modes, the modes are sorted based on the damped natural frequency
starting from the lowest. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.1.3. Assembling system modes from all roving experiments
As presented in Fig. 3, the unique physical modes from all roving experiments are combined with each roving experiment being

the reference in turn resulting in 13 sets of assembled system modes. The sharing of information between the roving experiments,
therefore, also contributes to identifying information that is present in multiple experiments, thereby, increasing confidence in which
assembled system modes indeed represent a unique system mode. Since this thinking is in line with the reasoning used to group
possible physical modes from the cleared stability diagram, the hierarchical clustering and reduction of possible physical modes
are used with the same definitions for the thresholds for the assembled system modes describing the complete mode shape of the
bed plate structure. The modal parameters of the unique assembled system modes from the combination of all roving experiments
are presented in Fig. 11. The unique assembled modes are numbered by the damped natural frequency starting from the unique
assembled mode with the lowest damped natural frequency. The modal vector of the bed plate is visualized and the eigenvalue is
presented with the mode number. A total of 17 unique assembled modes with a damped natural frequency of less than 200 Hz are
identified from the AOMA algorithm. It is observed, that the unique assembled modes do in some cases seem to describe the same
physical movement. This could be a symptom of groups with too few assembled modes being regarded as unique assembled modes,
thereby, choosing multiple groups that describe a similar system mode.

Therefore, comparisons between the unique assembled modes using the modal assurance criteria MACX and MACX𝜆 are shown
in Fig. 12. In the remainder of this paragraph, the unique assembled modes are simply referred to as modes. The comparison through
MACX illustrates that the modes 1 and 2, 4 and 5, 5 through 7, 8 through 12, and 13 through 16 could describe the same modes.
Another reason for a high comparison through MACX could be found in spatial aliasing. This is illustrated by correlations between
modes 1 and 2 and modes 13 through 16 from the MACX in Fig. 12. The comparison through MACX𝜆 presents a lower coupling
between the modes. Still, from this comparison couplings between modes 1 and 2, 4 and 5, 6 and 7, 8 and 9, 11 and 12, and 13
through 16 are visible. Since the eigenvalue of mode 5 compared to the eigenvalues of modes 6 and 7 is very different as is the
case for modes 8 through 12, these modes compare less using MACX𝜆. It is decided that if modes compare MACX𝜆 > 0.1, then these
describe the same mode. The modes are grouped until no lower or higher mode compares better than this threshold to any mode
in the group. As an example, mode 13 compares MACX𝜆 = [0.39 0.20 0.16] to modes 14 through 16, respectively. The comparisons
between mode 12 and modes 13 through 16 are MACX𝜆 = [6.7 5.4 2.3 4.3] 1 × 10−4 and between mode 17 and modes 13 through
16 are MACX𝜆 = [0.27 1.27 0.45 1.85] 1 × 10−3. Judging from the threshold, it is concluded that modes 13 through 16 are a group
of modes that describe the same mode. The visualization of mode 13 also seems sufficiently similar in shape and eigenvalue that it
can be concluded to describe the same mode that modes 14 through 16 represent. The comparison of the 17 modes from the AOMA
algorithm finds that 9 unique system modes are obtained.

4.2. Comparison to EMA and mathematical model

All modal parameters defined by the AOMA algorithm to describe unique system modes are compared to modal parameters
estimated from the EMA experiments and the mathematical model of the test facility. The unique system modes are referred to as
chosen physical modes from AOMA in the proceeding. The estimated modes from the EMA experiments and the mathematical model
are presented by their damped natural frequency and damping ratio in Table 2. The comparisons focus on chosen physical modes
in the frequency range from 0 Hz to 200 Hz and have two objectives. The first objective is to select a unique assembled mode to
represent the chosen physical mode for each group of unique assembled modes in the AOMA algorithm which best describes the
modal parameters estimated by the EMA experiments and the mathematical model. Secondly, the method evaluates how well the
chosen physical modes from the AOMA algorithm compare to the modes estimated from the experiments and the model. Fig. 13
presents the comparisons of the unique assembled modes from the AOMA algorithm to the estimated modes by the EMA experiments
and the mathematical model, respectively. The EMA experiments focus on the first ten system modes with vertical movements of
the structure. modes 3 and 8 estimated by the EMA algorithm are very uncertain due to a low peak prominence in the frequency
signals, violating the assumption for the single degree of freedom peak picking algorithm. The EMA mode comparison shows a good
correlation between the remaining eight estimated modes and the unique assembled modes in the AOMA algorithm. The estimated
12
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Fig. 11. Unique assembled modes estimated by the AOMA algorithm when the system is influenced by the test conditions (b).

modes from the mathematical model tend to have lower comparability to the unique assembled modes. This comparison shows
that the mathematical model estimates an abundance of modes, including the horizontal modes of the bed plate which are out of
interest. Therefore, the selection of chosen physical modes from AOMA to compare to the estimated modes from the EMA and the
mathematical model also demands choosing the relevant estimated modes. This is done by choosing the unique assembled mode
from AOMA that compares best to an estimated mode found in either the EMA experiments or the mathematical model. Using the
unique assembled modes 1 and 2 from AOMA as an example, the unique assembled modes compare MACX𝜆 = [0.90 0.78]T to EMA
mode 1 and MACX𝜆 = [0.69 0.79]T to mathematical mode 7 as illustrated in Fig. 13. Since unique assembled mode 1 from AOMA
compares best to the estimated mode 1 from EMA, unique assembled mode 1 from AOMA is chosen as the representation of mode 1
of the system. Mode 1 of the system compares best to the estimated mode 7 from the mathematical model. Therefore, mode 7 from
the mathematical model is compared to the unique assembled mode 1 from AOMA. Using the unique assembled modes 11 and 12
from AOMA as another example, the unique assembled modes 11 and 12 from AOMA are poorly correlated to the modes from the
EMA and the mathematical model in Fig. 13. However, the unique assembled mode is still presented.

The best correlated modal parameters of the system obtained via AOMA to the EMA and the mathematical model are presented in
Fig. 14. The modal parameters of the chosen physical modes from the AOMA are presented at the top. The modal parameters of the
estimated modes from the EMA experiments are presented in the middle and the modal parameters estimated by the mathematical
13
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Fig. 12. Unique assembled modes estimated by the AMOA algorithm compared to each other through MACX and MACX𝜆.

Table 2
Modal parameter estimates from the EMA experiments and the mathematical model of the rotor–foundation system under test conditions (a) and (b).

EMA
Mode 1 2 3 4 5 6 7 8 9 10
𝜔𝑛,𝑑 [Hz] 25.5 34.9 43.8 56.3 74.1 95.9 114 120 169 190
𝜁 [%] 8.67 3.59 14.8 2.31 2.05 0.98 2.00 3.04 0.719 0.902

Math

Mode 1 2 3 4 5 6 7 8 9 10
𝜔𝑛,𝑑 [Hz] 0.00 0.059 0.412 16.5 18.8 26.3 27.7 38.5 41.7 56.4
𝜁 [%] 100 100 100 4.18 9.08 8.42 10.3 9.18 10.4 12.6

Mode 11 12 13 14 15 16 17 18 19
𝜔𝑛,𝑑 [Hz] 70.2 72.9 78.0 96.5 97.8 100 110 172 182
𝜁 [%] 50.1 49.3 6.4 29.2 29.6 1.72 4.61 3.04 2.97

Table 3
Modal parameter estimates of the chosen physical modes from the AOMA algorithm compared to the modal parameter estimates of the modes estimated from
the EMA experiments and the mathematical model. The test conditions are described in Table 1, case (b).

AOMA
Mode 1 2 3 4 5 6 7 8 9
𝜔𝑛,𝑑 [Hz] 25.8 35.6 55.3 74.6 98.1 114 127 169 186
𝜁 [%] 5.49 3.74 3.00 1.55 0.972 1.62 1.59 1.19 1.18

EMA

Mode 1 2 4 5 6 7 8 9 10
𝜔𝑛,𝑑 [Hz] 25.5 34.9 56.3 74.1 95.9 114 120 169 190
𝛥𝜔𝑛,𝑑

[%] 1.14 1.98 −1.89 0.73 2.24 0.181 5.17 −0.075 −2.14
𝜁 [%] 8.67 3.59 2.31 2.05 0.983 1.96 3.04 0.719 0.902
𝛥𝜁 [%] −57.9 4.17 23.0 −32.5 −1.08 −20.7 −91.6 39.8 23.4
MACX 0.966 0.893 0.926 0.989 0.662 0.939 0.485 0.966 0.658
MACX𝜆 0.905 0.609 0.754 0.868 0.284 0.920 0.190 0.904 0.309

Math

Mode 7 8 10 13 16 17 17 18 19
𝜔𝑛,𝑑 [Hz] 27.7 38.5 56.4 78.0 100 110 110 172 182
𝛥𝜔𝑛,𝑑

[%] −7.41 −8.15 −2.10 −4.54 −2.32 3.66 12.9 −1.59 2.51
𝜁 [%] 10.3 9.18 12.6 6.43 1.72 4.61 4.61 3.04 2.97
𝛥𝜁 [%] −88.0 −145 −320 −315 −77.0 −184 −190 −155 −152
MACX 0.930 0.755 0.888 0.963 0.369 0.954 0.711 0.923 0.400
MACX𝜆 0.688 0.331 0.480 0.435 0.156 0.547 0.097 0.651 0.227

model are presented at the bottom. If the estimated mode that compares best to the chosen physical mode has a value of MACX𝜆 ≤ 0.1
then the mode is not presented. The estimated modal parameters from the EMA experiments and the mathematical model are
observed to compare very well to all chosen physical modes. Only the chosen physical mode 7 is not observed in the mathematical
model.
14
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Fig. 13. Unique assembled modes identified from the AOMA algorithm compared to the modes estimated by the EMA and the mathematical model through
MACX𝜆.

To quantify how accurately the system modes can be described by the modal parameters estimated from the EMA and the
mathematical model, the comparison through MACX𝜆 to the eight modes best estimated from the EMA and all chosen modes 𝑛𝑃ℎ𝑦𝑠
from the mathematical model are summed in Eqs. (14) and (15), respectively. The evaluation of the EMA experiments results in a
maximum comparison of 8 if the system modes contain modal parameters that match the modal parameters estimated from the EMA.
For the comparison to the mathematical model, a maximum does not exist. In theory, that could result in a wrong interpretation of
the comparison between summations of MACX𝜆 if a lot of chosen physical modes are present in the estimation. However, for the
tested cases, it is observed that a limited number of system modes are obtained from the analysis. The summations for the EMA
experiments and the mathematical model are respectively presented in Eqs. (14) and (15) for test conditions (b).

8
∑

𝑖=1
max

(

MACX𝜆,EMA, 𝑖
)

≈
∑

[0.90 0.61 0.75 0.87 0.28 0.92 0.90 0.31] ≈ 5.55 (14)

𝑛𝑃ℎ𝑦𝑠
∑

𝑖=1
max

(

MACX𝜆,Math, 𝑖
)

≈
∑

[0.69 0.33 0.48 0.44 0.16 0.55 0.10 0.65 0.23] ≈ 3.61 (15)

In this example, the eight modes that compare best to the EMA estimates are [1 2 3 4 5 6 8 9]. The summation of the comparisons
between the modal parameters of the chosen physical modes and the EMA estimates results in 5.55 which is high compared to the
total of 8. The worst comparing modes are found to be the chosen physical modes 5 and 9. The higher discrepancy is found in the
eigenvalue that is least similar for these modes compared to the other modes. The comparison to the mathematical model is 3.61
from a total of 9. It is observed that the modal parameters estimated by the mathematical model in general compare less to the
physical modes than the modal parameters from the EMA experiments. This is also found in the eigenvalues that in general estimate
a higher damping factor than what is estimated in both the AOMA algorithm and the EMA experiments.

4.3. Dependency of parameters for SSI and operational conditions in seal geometry

The influence of some parameters of the SSI routine on the estimation results is investigated. The parameter intervals are defined
to test if settings for the Hankel Matrix can be chosen to reduce the measuring and computational time for a continuous estimation
process. It is assumed that a maximum model order of 128 is sufficient to describe relevant system dynamics. The parameters being
altered in the analysis are the controls of the Hankel matrix, namely the column height 𝑠 and the length of the correlation functions
𝑛𝑝. The value of 𝑠 defines the total amount of singular values that exist for the Hankel matrix. Therefore, the choosing of 𝑠 also
imposes a limitation on the maximum model order 𝑚 to test for. Table 4 presents the comparison between the modal parameters
of the chosen physical modes from the AOMA method and the modal parameters estimated by EMA and the mathematical model.
The comparison finds that some values for the parameters used to build the Hankel matrix result in significantly more comparable
modal parameters than other values. The use of a column height of 𝑠 = 64 yields very few comparable modal parameters. The
reason seems to be that the AOMA algorithm extracts too few physical modes and, thereby, fewer modal parameters to compare
15
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Fig. 14. Chosen physical modes from the AOMA algorithm based on comparisons through MACX𝜆 to the modes estimated from EMA and the mathematical
model under test conditions (b). The visualized mode shapes are sorted such that the mode shape from the AOMA algorithm is on top, then the mode shape
from EMA is presented below, and furthest down is the mode shape from the mathematical model. If the modes compare MACX𝜆 ≤ 0.1 then the mode shape is
not visualized, as is the case of system mode 7 compared to the mathematical model.

to. This could be a symptom of fewer estimated modes to calculate the physical modes from since the maximum model number
is limited to 𝑚 = 𝑠 = 64. When the column length of the Hankel matrix is increased to the values 𝑠 = [128 256 512] the modal
parameters of the chosen physical modes compare better to the estimated modal parameters. However, this could also stem from the
effect of increasing the maximum model parameter. As the column length is further increased to 𝑠 = [1024 2048], the comparability
between the modal parameters drops again. The longer the duration of a signal, the more frequency lines will be distinguishable in
the frequency domain of the correlation function. When many frequency lines are present in the frequency domain, low frequency
content will be better described. However, this comes at a cost of less data from the total signal to average from, resulting in a
greater sensitivity to measurement noise in the signals. Relating this to the Hankel matrix, the column length resembles the block
length. Therefore, the longer the columns in the Hankel matrix, the fewer the number of columns to average the estimates from.
This means that the noise presented in each column will have a greater impact on the resulting singular values. Another reason
to limit the column height is the computational time for the SSI algorithm which grows significantly when increasing 𝑠. It has not
been tested if the worse comparability with increasing column length can be reduced by increasing the maximum number of 𝑚 due
to high computational times (15 min to 45 min) for each roving experiment for the tests with 𝑠 = 1024 2048 . A dependency in 𝑛
16
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Table 4
Summation of the comparisons between modal parameters obtained from the AOMA algorithm and modal parameters estimated by EMA and the mathematical
model through MACX𝜆. The test conditions (b) are used.

𝑠 𝑚∖𝑛𝑝 256 512 1024 2048 4096 8192 16 384

EMA

64 1 → 64 2.27 2.44 2.13 2.38 2.28 2.21 2.02
128 1 → 128 – 4.99 5.26 5.14 4.91 4.68 4.30
256 1 → 128 – – 5.55 5.28 5.37 5.30 5.35
512 1 → 128 – – – 5.03 4.52 4.23 4.31
1024 1 → 128 – – – – 2.88 2.12 1.96
2048 1 → 128 – – – – – 1.33 –

Math

64 1 → 64 1.57 1.83 1.43 1.70 1.72 1.35 1.26
128 1 → 128 – 3.50 3.57 3.66 3.35 3.19 2.85
256 1 → 128 – – 3.61 3.47 3.06 2.92 3.02
512 1 → 128 – – – 2.49 2.14 2.05 2.17
1024 1 → 128 – – – – 1.24 1.26 0.78
2048 1 → 128 – – – – – 0.78 –

Fig. 15. Mean values and standard deviations for the operational conditions of the seal inlet pressure throughout the experimental campaign.

is also present. Since the correlation function is a free decay signal, the longer the delay is extended, the smaller the signal values
will be, thereby, adding less information to the singular values. However, more averaging will be possible the longer the correlation
function is extended. Therefore, it is expected that an optimum will exist for this parameter as well.

The modal identification tests are repeated for different operational conditions in the seal geometries as described in Table 1.
he operational conditions are altered by changing the inlet pressure for the gas entering the seal geometries. For inlet pressures
ifferent from 0 bar, the experiments include measurements of the system response when affected by ambient excitations only. The
mbient excitations are induced by measurement noise in the sensors for the control algorithms and force disturbances from the
urbulent flow in the seal geometries. For all operating points of the seal geometries, one experimental series is carried out with
pseudo random binary signal imposed on the control signals for the current running in the active magnetic bearings of the test

acility. Fig. 15 presents the measured inlet pressures for the experiments with imposed noise and ambient excitations only. At high
nlet pressures

(

⪆ 2 bar
)

, the valve used to control the inlet pressure is very sensitive resulting in a greater deviation between each
oving experiment. The changes of inlet pressures occur due to a limited amount of gas in a test tank meaning that the tank needs
o be refilled multiple times and the inlet pressure reset manually to the desired operational point. For experiment number 7, the
ressure in the gas supply tank dropped late in the experiment, resulting in a lower mean inlet pressure and significantly higher
tandard deviation for the inlet pressure. It is observed that the standard deviation within one experiment in the remainder of the
xperiments is very small, indicating a precise measurement and pressure regulating system. This also means that deviations in the
odes defined as possible physical between the roving experiments are likely to be a result of new operational conditions in that

xperiment compared to other experiments when a full mode shape is constructed.
The chosen physical modes throughout the experimental campaign are compared to the estimated modes in the EMA experiments

nd the mathematical model in the same way as in Table 4. The comparisons are summed through all the experiments and presented
n Table 5. The summed comparisons to a great extent present the same trends as Table 4. However, from Table 5, it can be reasoned
hat the best overall comparison between the chosen physical modes and the estimated modes is obtained by the use of 𝑠 = 256

and 𝑛𝑝 = 1024. Therefore, the obtained physical modes for all operational conditions both disturbed by ambient disturbances only
or also including the imposed noise signal on the control signals are presented in Tables 3 and 6 through Table 9.

The chosen physical modes with an inlet pressure of 1.3 bar identified by the ambient excitations only are presented in Table 6
and Fig. A.1. The calculated possible physical modes are very similar to the ones presented in Fig. 14. Only the modes 7 in both
analyses are different. The mode vector of mode shape 7 in Table 6 and Fig. A.1 compares well to the mode vector of mode shape
9. Therefore, it is likely that this mode might be wrongly estimated in the operational conditions of an inlet pressure of 1.3 bar.
Additionally, the comparison MACX𝜆 ≤ 0.1 between the possible physical mode 5 and the estimated mode 6 is observed from the
EMA experiments. Since the possible physical mode still compares to the estimated mathematical mode, this could also be due to
17
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Table 5
Summation of the summed comparisons between modal parameters obtained from the AOMA algorithm and modal parameters estimated by EMA and the
mathematical model through MACX𝜆 for all test conditions in Table 1, cases (b) through (f).

𝑠 𝑚∖𝑛𝑝 256 512 1024 2048 4096 8192 16 384

∑(EMA+Math)

64 1 → 64 17.0 19.3 17.8 17.8 18.5 17.5 16.6
128 1 → 128 – 40.6 41.3 38.2 36.7 35.7 32.2
256 1 → 128 – – 41.7 40.7 39.4 39.3 37.2
512 1 → 128 – – – 34.2 30.3 28.9 29.5
1024 1 → 128 – – – – 21.2 18.1 17.6
2048 1 → 128 – – – – – 10.5 –

Table 6
Modal parameter estimates of the chosen physical modes from the AOMA algorithm compared to the modal parameter estimates of the modes estimated from
the EMA experiments and the mathematical model. The test conditions are described in Table 1, case (c).

AOMA
Mode 1 2 3 4 5 6 7 8 9
𝜔𝑛,𝑑 [Hz] 25.8 35.4 57.1 74.4 98.6 114 157 169 177
𝜁 [%] 2.26 3.19 1.04 1.32 0.855 1.63 0.604 1.19 1.18

EMA

Mode 1 2 4 5 7 7 9 9 10
𝜔𝑛,𝑑 [Hz] 24.6 34.7 55.9 74.0 114 114 169 169 190
𝛥𝜔𝑛,𝑑

[%] 4.67 2.15 2.13 0.569 −15.8 0.126 −7.87 −0.027 −7.69
𝜁 [%] 8.69 4.00 2.08 1.91 1.56 1.56 0.821 0.821 1.02
𝛥𝜁 [%] −284 −25.5 −99.9 −44.9 −83.0 4.03 −35.9 30.9 13.6
MACX 0.949 0.431 0.925 0.976 0.903 0.958 0.205 0.982 0.718
MACX𝜆 0.534 0.334 0.541 0.915 0.025 0.952 0.006 0.942 0.056

Math

Mode 10 11 13 15 19 20 22 21 22
𝜔𝑛,𝑑 [Hz] 27.7 38.5 56.4 78.0 100 110 182 172 182
𝛥𝜔𝑛,𝑑

[%] −7.05 −8.49 1.24 −4.84 −1.80 3.52 −15.8 −1.56 −2.88
𝜁 [%] 10.2 9.25 12.6 6.38 1.72 4.61 2.97 3.08 2.97
𝛥𝜁 [%] −351 −190 −1120 −374 −101 −183 −392 −159 −152
MACX 0.930 0.633 0.929 0.96 0.367 0.979 0.385 0.900 0.777
MACX𝜆 0.415 0.287 0.254 0.385 0.181 0.575 0.010 0.628 0.386

Table 7
Modal parameter estimates of the chosen physical modes from the AOMA algorithm compared to the modal parameter estimates of the modes estimated from
the EMA experiments and the mathematical model. The test conditions are described in Table 1, case (d).

AOMA
Mode 1 2 3 4 5 6 7 8 9 10
𝜔𝑛,𝑑 [Hz] 26.0 32.4 36.1 56.3 74.5 98.2 115 127 169 183
𝜁 [%] 4.70 4.95 3.92 5.67 1.39 0.906 1.52 1.85 1.13 0.817

EMA

Mode 1 2 2 4 5 7 7 8 9 10
𝜔𝑛,𝑑 [Hz] 24.6 34.7 34.7 55.9 74.0 114 114 121 169 190
𝛥𝜔𝑛,𝑑

[%] 5.15 −6.90 4.01 0.659 0.658 −16.3 0.321 4.60 −0.163 −4.05
𝜁 [%] 8.69 4.00 4.00 2.08 1.91 1.56 1.56 2.83 0.821 1.02
𝛥𝜁 [%] −85.1 19.3 −2.01 63.4 −37.9 −72.6 −2.67 −52.8 27.2 −24.6
MACX 0.938 0.272 0.810 0.941 0.982 0.881 0.932 0.605 0.984 0.764
MACX𝜆 0.746 0.126 0.546 0.702 0.921 0.024 0.903 0.289 0.951 0.130

Math

Mode 10 10 11 13 15 19 20 20 21 22
𝜔𝑛,𝑑 [Hz] 27.7 27.7 38.5 56.4 78.0 100 110 110 172 182
𝛥𝜔𝑛,𝑑

[%] −6.50 14.7 −6.42 −0.244 −4.75 −2.30 3.71 13.2 −1.70 0.600
𝜁 [%] 10.2 10.2 9.25 12.6 6.38 1.72 4.61 4.61 3.08 2.97
𝛥𝜁 [%] −117 −106 −136 −123 −361 −90.0 −202 −149 −173 −264
MACX 0.939 0.355 0.887 0.891 0.968 0.363 0.956 0.657 0.920 0.715
MACX𝜆 0.669 0.115 0.513 0.719 0.409 0.154 0.515 0.099 0.616 0.462

The chosen physical modes with an inlet pressure of 1.3 bar identified by the ambient excitations including the noise signal in
he control signals are presented in Table 7 and Fig. A.2. It is observed that 10 different modes are estimated to be present in this
nalysis. However, possible physical mode 2 compares best to the estimated mode 2 from the EMA experiments and mode 1 in the
athematical model. Therefore, this mode could be estimated due to a matching of modal parameters that describe mode 1 in some

oving experiments and mode 2 in other roving experiments. The choosing of this exact mode is what ideally should be avoided
rom the hierarchical clustering algorithm. The remainder of the calculated possible physical modes are very similar to the ones
resented in Fig. 14. It is also observed that the comparison MACX𝜆 ≤ 0.1 between the possible physical mode 6 and the estimated

mode 6 from the EMA experiments exists for this analysis as well, further indicating that the low comparison to this chosen mode
is due to the estimation of the mode through EMA.

The chosen physical modes with an inlet pressure of 2.7 bar identified by the ambient excitations only are presented in Table 8
and Fig. A.3. The AOMA algorithm finds 7 possible physical modes for this operational condition when the identification is carried
18

out with the ambient excitations from the turbulent flow in the seal geometries. Mode 1 seems to have some points in the mode



Mechanical Systems and Signal Processing 212 (2024) 111293T.T. Paulsen et al.
Table 8
Modal parameter estimates of the chosen physical modes from the AOMA algorithm compared to the modal parameter estimates of the modes estimated from
the EMA experiments and the mathematical model. The test conditions are described in Table 1, case (e).

AOMA
Mode 1 2 3 4 5 6 7
𝜔𝑛,𝑑 [Hz] 26.6 35.3 56.7 75.0 98.2 115 169
𝜁 [%] 4.38 5.53 1.93 1.91 0.825 1.89 1.24

EMA

Mode 1 2 4 5 7 7 9
𝜔𝑛,𝑑 [Hz] 25.1 34.9 55.8 74.1 114 114 169
𝛥𝜔𝑛,𝑑

[%] 5.57 1.18 1.64 1.21 −16.5 0.355 0.105
𝜁 [%] 9.53 2.88 1.92 1.77 2.42 2.42 0.874
𝛥𝜁 [%] −118 47.9 0.094 7.31 −193 −28.1 29.7
MACX 0.454 0.658 0.949 0.962 0.799 0.925 0.939
MACX𝜆 0.330 0.424 0.795 0.862 0.029 0.902 0.902

Math

Mode 9 10 14 15 19 20 21
𝜔𝑛,𝑑 [Hz] 27.7 38.1 56.5 78.0 100 110 172
𝛥𝜔𝑛,𝑑

[%] −4.24 −7.76 0.375 −4.07 −2.27 3.94 −1.56
𝜁 [%] 9.08 8.82 12.7 6.24 1.72 4.61 3.11
𝛥𝜁 [%] −107 −59.5 −558 −226 −109 −144 −150
MACX 0.474 0.851 0.948 0.971 0.342 0.984 0.922
MACX𝜆 0.363 0.463 0.428 0.554 0.130 0.593 0.658

Table 9
Modal parameter estimates of the chosen physical modes from the AOMA algorithm compared to the modal parameter estimates of the modes estimated from
the EMA experiments and the mathematical model. The test conditions are described in Table 1, case (f).

AOMA
Mode 1 2 3 4 5 6 7 8 9
𝜔𝑛,𝑑 [Hz] 26.1 36.2 40.2 56.5 73.9 97.7 115 139 169
𝜁 [%] 5.91 2.88 6.93 3.72 1.69 0.971 1.50 2.34 1.15

EMA

Mode 1 2 2 4 5 7 7 9 9
𝜔𝑛,𝑑 [Hz] 25.1 34.9 34.9 55.8 74.1 114 114 169 169
𝛥𝜔𝑛,𝑑

[%] 3.74 3.48 13.1 1.25 −0.247 −17.1 0.241 −21.8 0.126
𝜁 [%] 9.53 2.88 2.88 1.92 1.77 2.42 2.42 0.873 0.873
𝛥𝜁 [%] −61.3 −0.201 58.4 48.3 −5.12 −149 −61.3 62.7 23.8
MACX 0.878 0.890 0.083 0.917 0.979 0.821 0.870 0.233 0.953
MACX𝜆 0.774 0.569 0.022 0.778 0.968 0.033 0.764 0.005 0.929

Math

Mode 9 10 12 14 15 19 20 18 21
𝜔𝑛,𝑑 [Hz] 27.7 38.1 42.5 56.5 78.0 100 110 97.7 172
𝛥𝜔𝑛,𝑑

[%] −6.26 −5.25 −5.80 −0.022 −5.61 −2.80 3.83 29.6 −1.54
𝜁 [%] 9.08 8.82 24.1 12.7 6.24 1.72 4.61 30.3 3.11
𝛥𝜁 [%] −53.6 −207 −248 −240 −269 −77.3 −208 −1120 −171
MACX 0.845 0.915 0.430 0.917 0.957 0.364 0.915 0.337 0.920
MACX𝜆 0.673 0.521 0.256 0.627 0.430 0.134 0.454 0.036 0.635

Table 10
Total comparison of the modal parameters obtained from the AOMA algorithms to the modal parameters estimated by the
EMA experiments and mathematical model through MACX𝜆 with 𝑠 = 256 when changing the initial delay 𝜏1 for the correlation
functions. The test conditions in Table 1, case (b), are used.

𝜏1 𝑚∖𝑛𝑝 1024 2048 4096 8192 16 384

EMA

0 1 → 128 5.55 5.28 5.37 5.30 5.35
1 1 → 128 5.37 5.28 5.38 5.22 5.31
2 1 → 128 5.34 5.34 5.29 5.58 5.35
3 1 → 128 4.98 5.25 5.25 5.35 5.17
10 1 → 128 5.34 5.32 4.84 5.34 5.16
20 1 → 128 5.23 5.17 5.14 5.31 5.39
30 1 → 128 4.81 5.29 5.00 5.38 5.25

Math

0 1 → 128 3.61 3.47 3.06 2.92 3.02
1 1 → 128 3.66 3.43 3.07 2.80 2.99
2 1 → 128 3.62 3.41 3.12 3.21 3.07
3 1 → 128 3.53 3.22 3.02 2.97 3.03
10 1 → 128 3.55 3.45 2.71 3.05 3.03
20 1 → 128 3.60 3.56 2.90 3.23 3.20
30 1 → 128 3.42 3.20 2.96 3.12 3.03

vector which are phase shifted compared to the other points. Comparing these modes to the modes in Fig. 14, it is noticed that
the chosen physical modes 7 and 9 are not identified in Fig. A.3. This could be a result of the frequency content of the ambient
excitations either not being as broad band as necessary for this operational condition or changes to the system from the operational
19
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Fig. A.1. Chosen physical modes from the AOMA algorithm based on comparisons through MACX𝜆 to the modes estimated from EMA and the mathematical
model under test conditions (c). The visualized mode shapes are sorted such that the mode shape from the AOMA algorithm is on top, then the mode shape
from EMA is presented below, and furthest down is the mode shape from the mathematical model. If the modes compare MACX𝜆 ≤ 0.1 then the mode shape is
not visualized.

conditions making the modes less pronounced in the response. Again, for this identification, the comparison MACX𝜆 ≤ 0.1 between
the possible physical mode 5 and the estimated mode 6 is observed from the EMA experiments.

The chosen physical modes with an inlet pressure of 2.7 bar identified by the ambient excitations including the noise signal
in the control signals are presented in Table 9 and Fig. A.4. Nine different physical modes have been selected, however, modes
3 and 8 have not been identified previously. Mode 3 is well described by the mathematical model. This means that this mode
could have increased its prominence in the response due to changes in the operational conditions or by the combination of higher
ambient disturbances in combination with the noisy signal in the control signals of the active magnetic bearings. Mode 8 looks like a
combination between the chosen modes 7 and 9. Since this mode is not estimated in any of the other identifications, it is concluded
to be a falsely identified mode. This means that neither the chosen physical modes 7 nor 9 identified in Fig. 14 are identified for
the operational conditions in the seal geometry dictated by an inlet pressure of 2.7 bar by the AOMA algorithm. This backs up the
suspicion that the operational conditions have reduced the prominence of these modes in the output responses.

When working with white noise signals in a correlation function, a time delay of 0 will result in a correlation of unity and 0
when the time delay is increased to 1 sample. The assumption of a white noise disturbance could therefore influence the resulting
20
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Fig. A.2. Chosen physical modes from the AOMA algorithm based on comparisons through MACX𝜆 to the modes estimated from EMA and the mathematical
model under test conditions (d). The visualized mode shapes are sorted such that the mode shape from the AOMA algorithm is on top, then the mode shape
from EMA is presented below, and furthest down is the mode shape from the mathematical model. If the modes compare MACX𝜆 ≤ 0.1 then the mode shape is
not visualized.

correlation function depending on the chosen initial time delay [34]. Therefore, a short study on the use of the initial delay for
the correlation function is presented in Table 10. The analysis finds that the initial delay does affect the resulting comparability of
the modal parameters describing the chosen physical modes. However, the values of the comparisons do not seem to converge to
a specific number as presented in [34]. This could be due to changes in many stages of the AOMA algorithm from a change in the
initial delay of the correlation function. One explanation could be that the analysis of the roving experiments is differently impacted
by a change to the initial delay of the correlation function resulting in fluctuations in the measurements for a higher number of
samplings for the initial delay than presented in [34].

5. Conclusions

The article presents an analysis of vibration characteristics for a supporting structure of a rotating machine. The analysis is
carried out using an automated modal parameter identification algorithm that relies on modal parameters sorted in a stabilization
diagram. Since the analysis is carried out in the framework of OMA using a limited amount of sensors, it is expanded to combine
information from multiple roving experiments.
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Fig. A.3. Chosen physical modes from the AOMA algorithm based on comparisons through MACX𝜆 to the modes estimated from EMA and the mathematical
model under test conditions (e). The visualized mode shapes are sorted such that the mode shape from the AOMA algorithm is on top, then the mode shape
from EMA is presented below, and furthest down is the mode shape from the mathematical model. If the modes compare MACX𝜆 ≤ 0.1 then the mode shape is
not visualized.

Intermediate results from the automated modal parameter identification algorithm present that when a K-means algorithm is used
for clearing a stabilization diagram, some distance measures perform better than others in distinguishing between possible physical
and certainly spurious poles. For the tested distance measures, only two measures show a very distant mean value between the two
groups, namely dMACX𝜁 and dMACX𝜆. Since, the dMACX𝜆 distance measure shows the least overlapping between the groups, a
threshold for this measure is chosen to distinguish the estimated parameters between possible physical modes and certainly spurious
poles.

In the hierarchical clustering algorithm, a threshold is used for the number of estimated modes contained in a group for that
group to be considered as a representation of a possible physical mode. It is presented that the threshold depends on the frequency
band assumed for the system. If a wide frequency band is considered, it is presented that groups containing few estimated modes
might be chosen as possible physical modes even though a similar mode is present in another group. However, a more correct way
is to impose a frequency band directly on the estimation method to limit the frequency content to be considered.
22



Mechanical Systems and Signal Processing 212 (2024) 111293T.T. Paulsen et al.
Fig. A.4. Chosen physical modes from the AOMA algorithm based on comparisons through MACX𝜆 to the modes estimated from EMA and the mathematical
model under test conditions (f). The visualized mode shapes are sorted such that the mode shape from the AOMA algorithm is on top, then the mode shape
from EMA is presented below, and furthest down is the mode shape from the mathematical model. If the modes compare MACX𝜆 ≤ 0.1 then the mode shape is
not visualized.

The modes extracted from the automated modal parameter identification algorithm do for some modes present similar vibration
characteristics. In this work, comparisons through MACX𝜆 between the modes are used to evaluate the similarity. If modes are
deemed similar, a comparison to other estimation methods is used to determine which physical modes of the similar ones to
choose.

The identification algorithm is tested for multiple operational conditions in two seals mounted in a back-to-back configuration
for two types of disturbances. The chosen physical modes are for each tested configuration able to describe at least seven modes of
the bed plate identified from either EMA tests or a mathematical model of the test facility. This means that the ambient disturbance
present in the seals due to turbulent gas flow is sufficient as excitation to the rotor–foundation system to be used as a way to identify
the vibration characteristics in the system. It also means that the automated modal parameter identification algorithm is reliable
with regard to the estimated physical modes that the algorithm produces.
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