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In brief

Large language models (LLMs) are

powerful but their limits are unknown.

This paper probes the capabilities of

LLMs using medical exam questions

(e.g., USMLE). Based on detailed answers

generated by LLMs, we show that LLMs

can often answer challenging medical

questions by mobilizing expert

knowledge and advanced reasoning

capabilities. Both closed- and open-

source LLMs can pass the USMLE (>60%

accuracy). Our results support that future

LLMs might be applicable to critical real-

world applications such as supporting

healthcare professionals.
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THE BIGGER PICTURE Foundation models have changed the way machine learning is practiced. Founda-
tion models applied to text, so-called large language models (LLMs), have proven to be a disruptive tech-
nology. They might radically change the way we interact with computers.
In early 2022, it was clear that generalist LLMs can outperform domain-specific approaches in many do-
mains. Benchmarks that reflect real-world scenarios were still needed, and today, it remains unclear how
to best use and evaluate thesemodels. This paper probes the capabilities of LLMs usingmedical exam ques-
tions (e.g., USMLE). Based on detailed step-by-step answers generated by LLMs, we show that LLMs can
often answer challenging medical questions by mobilizing expert knowledge and advanced reasoning capa-
bilities. Our results support that future LLMs might be applicable to critical real-world applications such as
supporting healthcare professionals.
SUMMARY
Although large language models often produce impressive outputs, it remains unclear how they perform
in real-world scenarios requiring strong reasoning skills and expert domain knowledge. We set out to
investigate whether closed- and open-source models (GPT-3.5, Llama 2, etc.) can be applied to answer
and reason about difficult real-world-based questions. We focus on three popular medical benchmarks
(MedQA-US Medical Licensing Examination [USMLE], MedMCQA, and PubMedQA) and multiple prompt-
ing scenarios: chain of thought (CoT; think step by step), few shot, and retrieval augmentation. Based on
an expert annotation of the generated CoTs, we found that InstructGPT can often read, reason, and recall
expert knowledge. Last, by leveraging advances in prompt engineering (few-shot and ensemble
methods), we demonstrated that GPT-3.5 not only yields calibrated predictive distributions but also rea-
ches the passing score on three datasets: MedQA-USMLE (60.2%), MedMCQA (62.7%), and PubMedQA
(78.2%). Open-source models are closing the gap: Llama 2 70B also passed the MedQA-USMLE with
62.5% accuracy.
INTRODUCTION

Self-supervised pre-training promises to turn vast quantity of

raw data (e.g., text, images, audio) into general-purposemodels.

Language representations have transformed the field of natural

language processing from simple word vectors to deep contex-

tualized representations,1–6 and language models are now ubiq-

uitous in natural language processing. Notably, this ubiquity is

thanks to the Transformer architecture and its compatibility

with massively parallel computation hardware.4
This is an open access article und
Large language models (LLMs)
In recent years, tremendous resources have been allocated to

scale Transformer-based language models to using hundreds

of billions of parameters and to training on gigabytes of

text.7–16 This has so far translated to sustained gains17 and

enabled new ways to interact with language models. This prog-

ressmademany of the past benchmarks obsolete and sparked a

general interest for designing difficult enough benchmarks (e.g.,

BIG-bench).18 Pre-train, prompt, and predict19 is an emerging

paradigm for applying LLMs to new problemswithout fine-tuning
Patterns 5, 100943, March 8, 2024 ª 2024 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Answering a USMLE (US Medical

Licensing Examination) question using zero-

shot CoT prompting ‘‘Let’s think step by

step’’ and InstructGPT

Selected example.
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the weights on the task. Prompt-based learning consists of aug-

menting the problem with instructions such that the model’s

completion of the prompt will correspond to a solution. This al-

lows for LLMs to learn from a few examples (coined shots), which

are simply incorporated into the prompts.7

Chain-of-thought (CoT) prompting
Initially, scaling language models up appeared to benefit more

knowledge-intensive tasks than the reasoning-heavy ones.8

Nevertheless, it was demonstrated that LLMs could be applied

to system 2 problems by prompting the model to generate

step-by-step solutions, coined CoT.20 CoT prompting led to

substantial improvements on many reasoning-intensive

tasks,20–23 allowing us to bridge the gap with human-level per-

formances for most of the hard BIG-bench tasks.24 As an alter-

native to writing reference step-by-step solutions, zero-shot

CoT allows for generating CoTs using a single and domain-

agnostic cue: ‘‘Let’s think step by step’’25 (see example gener-

ated by InstructGPT26 in Figure 1). The CoTs that result from

that prompt not only appear to expose valid reasoning but

also translate into superior zero-shot performances (see

example in Figure 1).

LLMs and medical applications
Applying LLMs to real-life scenarios will require implementing

additional safeguards. Language models may amplify the social

biases present in the training data, may hallucinate incorrect

facts, and may lack robustness,27 for instance to adversarial at-

tacks.28 Therefore, deploying LLMs into sensitive areas such as

healthcare must be operated with great care.29,30 Nonetheless,
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LLMs are powerful tools and therefore have the potential to

transform the field of machine intelligence. At the dawn of

this research work, although LLMs had been tested on large

benchmarks (MMLU,31 BIG-bench18), studies applied to the

medical domain were still needed. Specialized datasets such

as the MedQA-US Medical Licensing Examination (USMLE)

enable assessing the capabilities of LLMs in realistic clinical

scenarios requiring specialized medical knowledge, advanced

reasoning capabilities, and human-level reading comprehen-

sion skills.32
Related work
This article—written in three stages (v.1: July 2022, v.2: December

2022, and v.3: September 2023)—evolved along with the remain-

ing of the field. December 2022 was a turning point in machine

learning history; new records were achieved on medical bench-

marks by the domain-specific Med-PaLM,33,34 ChatGPT, and

GPT-4.35 ChatGPT sparked the interest of the public and the

research community, which hastened to benchmark it against

USMLE questions,36,37 turning to self-curated data instead of the

peer-reviewed MedQA benchmark. Involving human experts to

evaluate the generated explanations on USMLE questions has

also been explored in concurrentwork.33,37 Throughout the devel-

opment of this research, significant progress happened in the

open-source world (Llama 238), and recently, there has been an

investigation on both generalist and fine-tuned open-source

LLMs applied to medical benchmarks.39 CoT prompting and

ensemble methods are now commonplace in the literature,

whereas retrieval augmentation (grounding) remains less com-

mon.33–35,39–41
Figure 2. Prompt templates

In the table, we use typewriter style and brackets to

represent [provided data] such as the question,

additional context, or the answer and <comple-

tions> generated by GPT-3. The symbol B repre-

sents an empty string.



Table 1. Answering accuracy of leading models against human

performance on USMLE (test), MedMCQA (validation), and

PubMedQA (test) datasets

Model Date USMLE MedMCQA PubMedQA

Codex 5-shot CoTa 2022 60.2 59.7 78.2

Llama 2 5-shot CoTa 2023 62.5 53.6 –

Fine-tuned SOTA 2022 50.3 52.9 78.2

GPT-4 2023 86.1 73.7 81.2

MedPalm v.2 2023 86.5 72.3 77.4

Human (passing score) – 60.0 50.0 –

Human (expert score) – 87.0 90.0 78.0

Find an overview of our results in supplemental information section A.
aOur best methods.
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Contributions
This paper investigates the performances, interpretability, and

limitations of CoT prompting for medical question answering.

We utilized the GPT-3.5 series (InstructGPT and Codex).

This research was conducted in three rounds; first, using

InstructGPT, we investigated variations of zero-shot CoT

prompting for medical reasoning (domain-specific CoT cues,

retrieval augmentation), looking both at the answering perfor-

mances and the limitations based on an expert evaluation. In

the second round, thanks to the Codex beta program, we inves-

tigated how scaling inference-time compute could be applied to

challenge both the human baseline and to quantify uncertainty.

Last, we benchmarked a range of open-sourcemodels. Our con-

tributions are as follows.

d We assess how GPT-3.5 performs on multiple-choice

medical board exam question datasets (MedQA-USMLE

and MedMCQA) and a medical reading comprehension

dataset (PubMedQA) using prompt engineering. We

explore zero-/few-shot, direct/CoT, domain-specific CoT

cues and retrieval augmentation.

d We propose an evaluation protocol for evaluating gener-

ated CoTs (three main categories: reasoning, knowledge,

and reading comprehension). A medical expert annotated

a subset of CoTs generated by zero-shot InstructGPT and

supports that InstructGPT, in many cases, can reason and

exploit memorized expert knowledge.
Table 2. Summary of the medical question answering datasets

MedQA-USMLE32

Answer options A/B/C/D

Questions (train/valid./test) 10,200/1,300/1,300

Words/question 116.6

Source (questions) national medical board examination (US)

Words/explanation 41.6

Source (explanations) 5 human-written CoTs (sourced from MMLU46)

valid., validation.
d We demonstrate that scaling inference-time compute en-

ables Codex 5-shot CoT to be well calibrated and to reach

passing scores on the three medical datasets.

d We benchmark open-source LLMs on the MedQA-USMLE

and MedMCQA.
Development
This article has evolved over three distinct versions, each

exploring different facets of LLMs:

d v.1, July 2022: investigated InstructGPT (expert evaluation

and benchmarking prompting strategies).

d v.2, December 2022: scaled experiments and passed the

MedQA-USMLE using Codex.

d v.3, September 2023: evaluated open-source models

Llama 2, Vicuna, Guanaco, Falcon, etc.
METHOD

This paper explores variations of prompt engineering for medical

question answering. The prompt templates are summarized in

Figure 2.

Zero shot
We studied two classes of prompts: the direct prompt and zero-

shot CoT. The direct prompt triggers the model to generate the

answer using a single completion step (i.e., ‘‘The answer is’’),

whereas when applying the zero-shot CoT framework, we use

a two-step prompting scheme: first, an initial reasoning prompt

with a CoT cue (e.g., ‘‘Let’s think step by step’’), the completion

of which is the CoT, and second, an extractive prompt, the

completion of which is the answer (e.g., ‘‘Therefore the answer

is’’). In the zero-shot CoT setting, this corresponds to the setup

described in Kojima et al.,25 and the direct setting corresponds

to Brown et al.7

Few-shot
We experimented with inserting examplars (or shots) of ques-

tion-answer pairs and question-explanation-answers triplets in

the prompts. We built each shot using the zero-shot template,

replacing the output with the reference explanations and an-

swers. In the few-shot CoT setting, our setup matches the one

from Wei et al.20
MedMCQA44 PubMedQA45

A/B/C/D yes/no/maybe

182,800/4,200/6,100 450/50/500

12.7 253.3

AIIMS and NEET PG

entrance exams

expert-annotated PubMed abstracts

66.2 43.2

detailed explanations

(original dataset)

long answer (original dataset)

Patterns 5, 100943, March 8, 2024 3



Figure 3. Generative process and answer likelihood (ensemble

model, i.e., self-consistency)
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Answer likelihood
We denote x the answer string, y a prompt, and z a completion

generated from an LLM denoted pq. In the zero-shot setting, sam-

pling bz � pqðzjyÞ is a two-step process (first generate the CoT,

then extract the answer) pictured in Table 2. Using a sampling

temperature t, k completions bz1;.; bzk can be sampled from

the generative LLMs.We aggregate the completions and estimate

the marginal answer likelihood as (Figure 3)42:

pqðxjyÞz1

k

Xk

i = 1

1½x˛ bz i�; bz1;.; bzk � pqðzjyÞ (Equation 1)

where 1½x ˛ bz i� takes value one when the answer x can be

matched in the completion bz and otherwise takes zero. Sampling

multiple completions may allow exploring multiple hypotheses.

Combining multiple sampled CoTs (also known as self-consis-

tency) has also been explored in past work, and showed im-

provements over single-sample CoT methods.42,43

Retrieval augmentation
LLMs memorize part of the knowledge embedded into the

training data; nonetheless, models might fail to reuse this knowl-

edge effectively during prediction. Conditioning the predictions

on a knowledge base is an alternative research direction for

improving language models.47–49

We investigated whether grounding the model with additional

context could improve the answering accuracy. We experi-

mented with a simple BM25 retriever and used Wikipedia as a

knowledge base. Read more details in supplemental information

section G.

EXPERIMENTS

This section is separated into three parts: (1) introducing the datasets and

the GPT-3.5 models, (2) investigating zero-shot medical reasoning with

InstructGPT, and (3) scaling inference-time compute with Codex (using longer

few-shot prompts and sampling many completions per question).

Resources availability

Lead contact

Further information and requests for code and data should be directed to and

will be fulfilled by the lead contact, Valentin Liévin (valentin.lievin@gmail.com).
Table 3. Selected domain-specific CoT cues

#1 – Let’s think step by step

#2 – Let’s think step by step like a medical expert

#3 – Let’s use step by step inductive reasoning, given the medical

nature of the question

#4 – Let’s differentiate using step by step reasoning like a medical

expert

#5 – Let’s derive the differential diagnosis

4 Patterns 5, 100943, March 8, 2024
Materials availability

This study did not generate new unique materials or reagents.

Data and code availability

Our source code is available on Github (https://github.com/vlievin/medical-

reasoning).50 A collection of generated CoTs, reusable for downstream tasks,

are accessible through ToughtSource.51 All our benchmark results are sum-

marized in supplemental information section A and Table S2.

Datasets and models

Datasets

This study is centered around three medical multiple-choice question

answering datasets: USMLE, which includes difficult real-world medical ques-

tions targeting medical professionals32; the MedMCQA, which gathers ques-

tions from medical school entrance exams44; and the PubMedQA, which

includes reading comprehension questions about PubMed abstracts.45 The

three datasets are summarized in Table 2. For each dataset, we gathered

questions with explanations (long answer), which we used as reference

CoTs in few-shot learning scenarios. We present the three datasets in further

details in supplemental information section C. Furthermore, we compare the

MedQA-USMLE with the MMLU-USMLE dataset in supplemental information

section D; we found the MedQA questions to be more challenging than the

MMLU ones.31

Models

We study a collection of closed- and open-source models. The 175-billion

parameter GPT-3.5 series: the human-aligned GPT-3 (InstructGPT, text-da-

vinci-00226) and the code-fine-tuned GPT-3 (Codex, code-davinci-002).52 A

collection of open-source models ranging from 7 to 70 billion parameters:

Llama 2,38 Vicuna,53 Guanaco,54 Falcon,55 MPT,56 and GPT-NeoX.57 We

used greedy decoding (temperature t = 0) with k = 1 sample unless specified

otherwise (e.g., ensemble methods).

In supplemental information section E, we report the test USMLE accuracy

for four GPT-3 versions: a small GPT-3, the largest GPT-3 trained without hu-

man alignment, InstructGPT, and Codex. The smaller model text-curie-002

delivered close to random performances, with a maximum accuracy of

27.9%. The non-aligned largest GPT-3 text-davinci-001 scored 40.2%,

whereas the largest code pre-trained Codex scored 52.9%, and the code-

pre-trained and human-aligned InstructGPT scored 47.1%.

Investigating zero-shot reasoning with InstructGPT

In this section, we investigate whether the good generative capabilities of

LLMs can be applied to answer medical questions in a zero-shot setting. We

investigate variations of the zero-shot CoT framework: using domain-specific

CoT cues and augmenting the prompt with Wikipedia passages.

In addition to the original zero-shot CoT cue ‘‘Let’s think step by step,’’ we

tested 29 other domain-specific variations such as ‘‘Let’s think step by step

like a medical expert.’’ The study is available in supplemental information sec-

tion B. We selected five CoT cues displayed in Table 3. In supplemental infor-

mation section I, we display CoT samples for more exotic cues such as ‘‘Let’s

follow a Bayesian step by step approach,’’ ‘‘Let’s work by elimination,’’ and

‘‘Let’s reflect on each answer option.’’

Zero-shot benchmark

In Table 4, we report the performances of InstructGPT for the direct prompt

and the aggregated performances for the five domain-specific CoT cues

(Table 3). We explored augmenting the prompts with retrieved Wikipedia

passages (grounding) and report the performances of an ensemble model

with majority voting.42

Zero-shot direct

InstructGPT outperformed the domain-specific and fine-tuned BERT baselines

on the three datasets. Without BM25 grounding, InstructGPT scored +1.4% on

the USMLE questions, +1.0% on the MedMCQA exam questions, and +1.1%

on PubMedQA over the best BERT methods.

Zero-shot CoT

Without BM25 grounding, the direct prompt remained, on average, a better

alternative to the CoT prompts. Performances were lower for each of the

considered CoT cues, except in the case of the USMLE dataset, for which

half of the CoT prompts resulted in small improvements over the direct prompt

(+1.1% using CoT prompt #1 vs. using the direct prompt). Nonetheless, the

mailto:valentin.lievin@gmail.com
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Table 4. Zero-shot answering accuracy of InstructGPT (text-davinci-002) on the MedQA-USMLE (test), MedMCQA (valid), and

PubMedQA (test) datasets

Model Grounding Prompt USMLE MedMCQA PubMedQA

InstructGPT B direct 46.0 44.0 73.2

InstructGPT B CoT #1–#5 46.1 ± 0.7 40.4 ± 2.2 59.9 ± 3.5

InstructGPT BM25 direct 47.3 46.7 –

InstructGPT BM25 CoT #1–#5 46.4 ± 0.7 42.5 ± 1.7 –

InstructGPT B ensemble (n = 6) 50.0 42.4 70.4

InstructGPT BM25 ensemble (n = 6) 49.3 48.8 –

InstructGPT B + BM25 ensemble (n = 12) 53.1 47.6 –

Fine-tuned BERT BM25, DPR, B – 44.6 43.0 72.2

Human (passing score) – – 60.0 50.0 –

Human (expert score) – – 87.0 90.0 78.0

We report the best fine-tuned BERT-based methods. We tested 5 domain-specific CoT cues (#1–#5) and report the mean performances with standard

deviations. Fine-tuned BERT, BioLinkBERT58; DPR, dense passage retrieval.59 When multiple results are aggregated, we report the mean and stan-

dard deviation (±).

ll
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domain-specific CoT prompts #2–#5 did not significantly outperform the orig-

inal CoT prompt #1.

Knowledge grounding

In an attempt to exploit the good reading comprehension skills of InstructGPT,

we explored conditioning the completions on Wikipedia passages. When using

the direct prompt, we recorded gains on the USMLE (+1.3%) and on the

MedMCQA (+2.7%) datasets, suggesting that retrieval augmentation might be

beneficial.

Ensemble

Combining the predictions of multiple prompts outperformed the single-

prompt predictions, except in the case of the PubMedQA dataset, for which

the direct prompt performed exceptionally well. The best performances on

the USMLE and MedMCQA datasets were obtained by combining

retrieval-augmented prompts and setting a maximum of 53.1% accuracy

on the USMLE dataset and 48.8% validation accuracy on the MedMCQA

dataset.

Expert evaluation of the generated CoTs

Protocol

InstructGPT delivered strong performances using zero-shot CoT prompt-

ing. In this section, we investigate whether the CoTs are sound and seek

to understand better how the model fails and succeeds. We considered

three general skills that we expect are required to be mastered to answer

medical questions: (1) the ability to perform non-trivial reasoning steps, (2)

the ability to recall knowledge that is not provided in the context, and (3)

the ability to comprehend the question and the context. Based on the three

skills, we defined three success patterns (A, B, C) and three failure patterns

(D, E, F).

A subset of 50 CoTs generated based on USMLE questions were annotated

by a medical expert (C.E.H.) using the six categories. For each category and

each CoT, we reported a match if the pattern could be observed at least
Table 5. Frequency of observed patterns (A, B, C, D, E, F) identified

Pattern Correct

A correct reasoning step 94 (15)

B correct recall of knowledge 87 (14)

C correct reading comprehension 100 (16

D incorrect reasoning step 12 (2)

E incorrect or insufficient knowledge 25 (4)

F Incorrect reading comprehension 6 (1)

The CoTs are generated based on USMLE questions and using the CoT prom

and incorrect predictions along with the total.
once. This means that a CoT can be labeled with both a correct and an incor-

rect pattern for the same skill. We showcase thirty annotated CoTs (three in

Figure 9 and 27 in supplemental information section I).

Analysis

We report the frequencies of occurrence for the six patterns in Table 5. We

found that most of the questions answered incorrectly triggered generating

CoTs that contained reasoning errors (pattern D, 86%) and that exhibited a

lack of knowledge (pattern E, 74%). Misunderstanding of the questions or

the context was less frequently observed (pattern F, 50%). We observed

that CoTs leading to questions answered correctly could still show failure pat-

terns but we also observed that the CoTs leading to incorrect answers were

not entirely incorrect, as 59% contained at least one correct reasoning step

and 65% showed proper recall of knowledge. Furthermore, inspecting the

CoTs leading to incorrect answers more closely, we found that 47% of those

were inconclusive: the model could not narrow down the prediction to a single

answer.

Answering bias

In Figure 4, we report the frequencies of the USMLE answers and the

frequencies of predicted labels (zero-shot InstructGPT) for the direct and

CoT prompts. Both prompting schemes led to biased predictive fre-

quencies. Direct prompting led to overestimating labels C and D while

underestimating label A. CoT prompting led to underestimating B and C

while overestimating label D. We repeated the experiment using randomly

permuted labels and observed similar patterns (see supplemental informa-

tion section F).

Scaling inference-time compute with codex

In the second round of experiments, we investigated whether usingmore infer-

ence-time compute, thanks to the Codex beta program, could be utilized to

obtain better performances and more interpretable outputs. Codex enables

using longer prompts, so we used 5-shot prompts and experimented with

sampling k = 100 completions with temperature t = 0:5 for each question.
among 50 CoTs generated by InstructGPT with temperature t = 0

, % (16) Incorrect, % (34) Total, % (50)

59 (20) 70 (35)

65 (22) 72 (36)

) 85 (29) 90 (45)

86 (29) 62 (31)

74 (25) 58 (29)

50 (17) 36 (18)

pts #1–#5 (Table 3). We report the frequencies of CoTs leading to correct

Patterns 5, 100943, March 8, 2024 5



Figure 4. Frequencies of USMLE answers and InstructGPT (text-da-

vinci-002) predictions for direct and CoT prompts (no grounding,

zero-shot)

ll
OPEN ACCESS Article
We report question-answering performances and results on uncertainty

quantification.

Codex 5-shot CoT: Sampling and combining multiple CoTs

In Figure 5, we report the performances of Codex 5-shot CoT given subsets of

k0 < k CoTs. We report the best fine-tuned models and the human baseline.

Increasing the budget of samples yields better results.42 Using an ensemble

of the k samples, Codex 5-shot CoT reaches the passing score on the three

tasks (see Table 1): the USMLE dataset (60.2%R 60%), the MedMCQA data-

set (62.7% R 50%), and the PubMedQA dataset (78.2% R 78%). Additional

results, including performances in zero-shot settings, are available in

Table S2 (supplemental information section A). Although Codex performed

exceptionally well with 5 shots, Codex yield feeble performances with zero-

shot CoT; inspecting the generated CoTs revealed lesser-quality samples

(supplemental information section I).

Uncertainty quantification

We investigate the answering likelihood Equation 1 given by Codex 5-shot CoT

with k = 100 samples. In Figure 6, we report the maximum probability assigned

by themodel for correctly vs. incorrectly answered questions alongwith the cali-

bration plots for the three datasets. Codex 5-shot CoT appears to be overall cali-

brated, although the calibration is worse for the PubMedQA dataset.

Benchmarking open-source models

In the rapidly evolving landscape of LLMs, a prevalent question is the perfor-

mancegapbetweenopen-sourceandclosed-sourcemodels.Our study focused

on thecapabilitiesof InstructGPTandCodex.Givenabudget of2.000GPUhours

(NVIDIA A100), we benchmarked a range of open-source LLMs, with parameter

sizes ranging from7 to70billion, against the 175-billion-parameterCodex. InFig-

ure 7, we report the predictive performances, calibration plots, and biases for

Llama 2, Vicuna 1.5, and Codex using up to k = 100 CoT samples.We provided

additional results in Figure 8 in supplemental information section H (zero- and

5-shot, MedQA-USMLE, and MedMCQA).

DISCUSSION

Zero-shot LLMs outperform fine-tuned BERT
Zero-shot InstructGPT andCodex outperformed fine-tuned BERT

models on three challenging question-answering datasets (see

zero-shot benchmark and supplemental information section A).

In the case of the USMLE and the MedMCQA datasets, the
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retrieval-augmented BERT baselines were outperformed by

several LLMs, regardless of augmenting the prompts withWikipe-

dia passages. This suggests that LLMs, without fine-tuning, can

mobilize medical knowledge and problem-solving skills.

Zero-shot CoT prompting often yields sound and
interpretable step-by-step solutions
For both InstructGPT and Codex, single-sample CoT prompting

was not found to be competitive with direct prompting (see

zero-shot benchmark and supplemental information section A).

Nevertheless, CoTs are human readable and therefore interpret-

able. Our expert evaluation (see expert evaluation of the gener-

ated CoTs) revealed that CoTs are often sound: even though

InstructGPT still does make mistakes, it was often able to

reason, recall medical knowledge, and comprehend the given

problem. In the section investigating zero-shot reasoningwith In-

structGPT and supplemental information section B, we explored

domain-specific CoTs cues such as ‘‘Let’s think step by step like

amedical expert.’’ Although such prompts, taken separately, did

not outperform the original zero-shot CoT prompt (see Table S2

in supplemental information section A), more specific prompts

appeared to trigger alternative strategies such as working by

elimination or manipulating equations (see supplemental infor-

mation sections B and I). Investigating whether a task-specific

prompt could help solve specific tasks will be left for future

research. A collection of generated CoT samples are presented

in supplemental information section I, and many more samples

are available on our GitHub page.

LLMs memorize some expert knowledge
The expert evaluation of the generated CoTs (see expert evalua-

tion of the generated CoTs) and the good results obtained on the

medical exam questions (see Table S2; supplemental informa-

tion section A) suggest that GPT-3.5 memorizes domain knowl-

edge. Nevertheless, despite the simplicity of the BM25 retriever

and the small number of retrieved documents prepended in

each prompt, grounding InstructGPT resulted in slight improve-

ments (see Table 4). This suggests that InstructGPT is not omni-

scient, and so (1) using stronger retrievers such as commercial

search engines or dense retrievers,49 (2) using a more complete

knowledge base,48 or (3) leveraging inference-time compute by

retrieving, reranking, and processing more passages49 might

improve performances.

Bias
In the section answering bias, we exposed the biases induced by

the use of direct and CoT prompts. In the case of the direct
Figure 5. Sampling and combining multiple

CoTs

Answering accuracy of Codex 5-shot CoT (code-

davinci-002) on the USMLE (test), the MedMCQA

(validatuin), and the PubMedQA (test) datasets for

100 CoTs sampled with temperature t˛ f0; 0:5g.
We report the average accuracy for ensemble

models evaluated using random subsets of

k0 = 1.100 CoTs. We report the mean and stan-

dard deviation. We display the performances of the

best fine-tuned methods along with the lower hu-

man baselines.



Figure 6. Uncertainty quantification

First row: distribution of the probability assigned to

the correct label for correct predictions and incor-

rect predictions (see Equation 1). Second row:

calibration plot. The probabilities are obtained using

Codex 5-shot CoT and an ensemble of k = 100

predictions sampled with temperature t = 0:5.
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prompt, answerDwasmostoften selected,whichmight bedue to

its proximity to the generated answer. In the case of the CoT

prompts, labels A and D were selected more often, which might

be a result of often beginning CoTs with content related to option

A. Based on an inspection of the CoTs, we speculate that GPT-3

defaults to thisbehaviorwhen it cannot answerbut still attempts to

complete the prompt with a default answer (D or A). Shuffling the

answer options might be one way to overcome this limitation;

however, other forms of biases might still be present.

Generating and combining many CoTs bridges the gap
with human-level performances
CoTscanbe combinedand/or filtered using humanor automated

feedback.42,60 In the section scaling inference-timecomputewith

Codex, we showed that sampling and combining up to k = 100

completions using Codex or Llama 2 with 5-shot CoT prompts

was sufficient to pass both the MedMCQA and the challenging

USMLE, although a large gap remains between our models and

the human experts.

5-Shot CoT-prompted LLMs are close to well calibrated
In the sections uncertainty quantification and benchmarking

open-source models, we looked at the probability assigned to

correct and incorrect predictions using the ensemble model

from Equation 1. We found Codex and Llama 2 to be close to

well calibrated, corroborating the results that ‘‘language models

(mostly) know what they know.’’61

Scale, code pre-training, human-alignment, and few-
shot learning
In supplemental information section E, we compared multiple

GPT-3 models in the zero-shot setting. Best performances

are obtained using Codex, outperforming the human-aligned
InstructGPT, which is a fine-tuned version of Codex. Human

alignment might impair performances; Codex (without align-

ment) was not as robust as InstructGPT (with alignment) in

zero-shot CoT setting (see performances in Table S2 in supple-

mental information section A and see CoT samples in supple-

mental information section I). Nevertheless, 5-shot prompting al-

lowed us to bypass the zero-shot limitations of Codex. We

observed a similar pattern when comparing the versions of

LLama-2 70b: the base version outperformed the chat version

(supplemental information section H). Instruction-fine-tuned

models might lose in-context learning abilities.

Open-source models narrow the gap with proprietary
counterparts
Open-source models, despite having fewer parameters, are ap-

proaching the performance of proprietary ones (Figures 7 and 8).

For instance, Llama 2 outperforms Codex with just half the

parameters.

Instruction-fine-tuned LLMs like Guanaco and Vicuna per-

formed exceptionally well (Figure 8). Surprisingly, Vicuna

1.5 13B’s superior performance to both Llama 2 versions under-

scores the significance of high-quality datasets for instruction-

based fine-tuning.62

Conclusion
Weappliedzero-shot, few-shotdirect, andCoTprompting tomed-

ical question answering with and without retrieval augmentation.

Zero-shot InstructGPT significantly outperformed the fine-tuned

BERTbaselines.CoTpromptingproved tobeapowerful tool lead-

ing tobetterperformancesandmore interpretablepredictions.Our

expert evaluation suggests that LLMs can mostly comprehend

complex medical questions, can often recall expert-domain

knowledge, and can often perform non-trivial reasoning steps.
Figure 7. Comparing open-source LLMs

against the closed-source Codex on the

MedQA-USMLE benchmark (t = 0:9, up to

k = 100 samples)

We report answering accuracy, model calibration,

and answering bias.
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Figure 8. MedQA-USMLE accuracy vs. model size

All experiments were performed using a 5-shot CoT prompting strategy and

greedy decoding (t = 0). Llama 2 70B outperforms Codex 175B (proprietary).
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Although InstructGPT and Codex still make mistakes, we

found that scaling inference-time compute by sampling many

CoTs per question could overcome part of these limitations.

With 100 samples, Codex 5-shot CoT delivered unprecedented

performances on the three datasets, bridging the gap with hu-

man-level performances and virtually passing the USMLE by

0.2% points. Our exploration into open-source LLMs indicated

their competitive stance in medical benchmarks. Llama 2 out-

performed Codex by 2 points on the USMLE in spite of a much

smaller parameter footprint.

However, deploying LLMs in real-life clinical scenarios

will require the development of more robust techniques. We

exposed one form of bias (ordering of the answer options

affects the predictions), but many more might affect predic-

tions, including those hidden in the training data (e.g., gender,

race, .). Nevertheless, a lack of knowledge might be more

easily compensated; our experiment with BM25, albeit limited,

suggests that augmenting the prompt with factual data im-

proves performances.

Since the completion of v.2 of this work, both GPT-4 and

MedPalm 2 have achieved performance on USMLE around

85%.35,63 This is not unexpected given the evolution the LLM

field has witnessed recently. Although benchmark contamina-

tion in training sets for both proprietary and open-source LLMs

is a valid concern, these results indicate that both open- and

closed-source LLMs hold great potential for assisting human de-

cision-making in medicine and beyond.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2024.100943.
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