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Under the spin–position decoupling approximation, a vector with a phase in

3D orientation space endowed with geometric algebra substitutes the vector–
matrix spin model built on the Pauli spin operator. The standard quantum

operator-state spin formalism is replaced with vectors transforming by proper

and improper rotations in the same 3D space—isomorphic to the space of

Pauli matrices. In the single-spin case, the novel spin 1/2 representation (1) is

Hermitian, (2) shows handedness, (3) yields all the standard results and its

modulus equals the total spin angular momentum Stot ¼
ffiffiffi
3

p
ℏ=2, (4) formalizes

irreversibility in measurement, and (5) permits adaptive imbedding of the 2D

spin space in 3D. Maximally entangled spin pairs (1) are in phase and have

opposite handedness, (2) relate by one of the four basic improper rotations in

3D: plane reflections (triplets) and inversion (singlet), (3) yield the standard

total angular momentum, and (4) all standard expectation values for bipartite

and partial observations follow. Depending on whether proper and improper

rotors act one—or two—sided, the formalism appears in two complementary

forms, the “spinor” or the “vector” form, respectively. The proposed scheme

provides a clear geometric picture of spin correlations and transformations

entirely in the 3D physical orientation space.
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1 | INTRODUCTION

Key developments in quantum mechanics (QM), such as the first phenomenological description of spin 1/2 by Pauli1

and the first quantum relativistic description of the electron by Dirac,2 “re-invented” Clifford algebras (in matrix repre-
sentation), seemingly unaware of Grassmann's3 and Clifford's4 works more than half a century earlier. The promotion
of vector-generated Clifford algebras in physics and in particular the development of the spacetime algebra (STA) was
undertaken by Hestenes,5,6 with more scientists joining in during the last two to three decades.7–10 Spin formalism is
arguably the main application of STA in QM.7 In the STA literature,6,7 it has become customary to represent spin by a
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bivector or the spin vector normal to it, both of modulus ℏ=2. Notably, such representations of spin with quantum num-
ber s¼ 1=2 do not comprise a quantity corresponding to the ubiquitous standard Pauli vector spin operatorbσ¼ ℏ=2ð Þbσjxj, with bσj the Pauli matrices and xj the unit 3D frame vectors. The total quantum spin angular momentum
is directly related to the modulus of bσ, S2tot ¼ jbσj2 ¼ 3ℏ2=4¼ℏ2s sþ1ð Þ, and it is three times the square of the observed
spin angular momentum along, let say x3, S23 ¼ ℏjbσ3j=2ð Þ2 ¼ℏ2=4. According to the standard QM interpretation,11 when
the S3 component is well defined by measurement, the other two components of spin are not zero, but fluctuate
between þℏ=2 and �ℏ=2, therefore S2tot ¼ 3S23. This interpretation builds on the uncertainty principle as expressed by
the mutual noncommutativity of the Pauli matrices bσj.

Recently, I generalized STA—a 16D Clifford algebra Cl 1, 3ð Þ with signature (þ���) on a 4D real vector space, to
spacetime–reflection (STR)—a 32D Cl 2, 3ð Þ on a 5D real vector space.12 The equivalent real dimension of the space of
Dirac matrices is also 32. The action of the geometric product onto the quintet of orthonormal STR frame vectors
eμ, e5

� �
generates the algebra. The reflector e5 is Hermitian and the suffix 5 (instead of 4) emphasizes the analogy with

the standard Dirac γ5 matrix. With the geometric pseudoscalar of STR _I� e0e5e1e2e3 � e05123 (see Equation (3) below),
the frame-free Dirac equation (DE) in STR, bpψ¼ _Iℏrψ¼mψ c¼ 1ð Þ, follows from the direct quantization of the relativ-
istic four-momentum vector with modulus equal to the rest energy. In the nonrelativistic regime, STR DE gives rise to
the STR Pauli equation, STR PE, which has the same form as the standard PE. The interested reader can find all this
and more in Andoni.12 For a brief description, see the Appendix A.

The main motivation for the present work has been to model spin with the help of geometric algebra but from a dif-
ferent perspective compared to the STR PE. Physically, in the spin–position decoupling regime, spin 1/2 “lives” in the 3D
orientation space, therefore it is relevant to model it in this space. The model presented in the following is inspired by
the vector model of angular momentum, in particular that of spin based on the Pauli matrix–vector operator bσ11 men-
tioned above. In Section 3, I recast the standard Pauli operator into the 3D orientation subspace of STR, obtaining a vec-
tor model with a phase to represent spin. We can reproduce all standard results for one- and two-spin 1/2 systems; also,
like in the case of bσ, the full spin modulus equals Stot. At the same time, the model helps visualize how the 2D spin
space, where orthogonality relations apply, can be imbedded adaptively in 3D space. All this follows without needing
the eigen-algebra and the tensor product, which seem so indispensable in standard QM. The simple reason is that we
essentially work here with vectors in 3D and the standard operator—eigenstate/eigenvalue formalism is absent in the
present scheme, thus naturally allowing different spins to belong to the same 3D space, as they physically do. As a
result, for example, zero total spin in the singlet state can be expressed by the sum of two opposite vectors in 3D, with-
out producing a dull zero state as in the standard formalism (if it were not for the tensor product). Superposition hin-
ders the entangled pair to appear as two separate single spins. The pair can have any direction in space, thus
embodying the spherical symmetry of the singlet state.

We present a kinematic model of spin. In the nonrelativistic regime, all dynamics is still governed by the STR PE.12 The
“extrinsic,” phase-insensitive part of the present model is equal to the spin vector, thus making contact to the STR PE, the
STA or the observables in the standard formalism. On the other hand, the phase sensitive part, which in measurements
produces zero expectation values, contributes to the “intrinsic” full spin modulus Stot, and hints to a hidden structure of
spin, like in standard QM and unlike in STA. As mentioned above, a well-defined spin along one axis leaves uncertain
and with zero expectation value the two components orthogonal to it. This interpretation builds on the noncommutativity
of the Pauli matrices. Accordingly, spin in the present model appears as a sum of three (anticommuting) 3D frame vec-
tors, instead of, for example, a commuting vector–bivector pair. These statements will become clearer in the following.

The rest of the report comprises three sections. In Section 2, I introduce basic concepts of geometric algebra and the
bases of STR and two of its subspaces. The new definition of spin opens Section 3. Transformations for the one- and
two-particle cases appear in it in vector form, that is, as two-sided rotor/reflection operations. In Section 4 on the spinor
form, transformations for the same two cases appear as one-sided operations. Orthogonality relations, for example,
between spin up and spin down hold in the last representation. The connection between the vector and the spinor
forms is also discussed in Section 4 followed by the conclusions. The added Appendix A is a succinct presentation of
STR DE, STR PE, and the corresponding forms of the STR spinors.

2 | A SHORT INTRODUCTION TO GEOMETRIC ALGEBRA

The geometric or Clifford product of three vectors u,v,w, for example, in a 3D Euclidean space, combines Hamilton's
scalar (symmetric) and Grassmann's wedge (antisymmetric) products; if not zero, it is invertible:
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uv¼u �vþu^v¼ v �u�v^u; uvð Þw¼u vwð Þ¼uvw; uvð Þ�1 ¼ vu=u2v2: ð1Þ

In terms of anticommutator and commutator brackets:

u, vf g�uvþvu¼ 2u �v; u, v½ � �uv�vu¼ 2u^v: ð2Þ

The geometric product generalizes to any dimension and space signature, whereas the cross product is valid only in
3D. For u,v�Σ (see Equation (5) below), the two relate by _I u�vð Þ¼u^v¼ 1

2 u, v½ � (a bivector).
As mentioned in Section 1, STR generalizes STA. The pseudoscalar in STR is the pentavector e05123 � _I, which com-

mutes with all elements of STR and a basis for the STR Cl 2, 3ð Þ is

1, eτ, eτ ^eυ, _I eτ ^eυð Þ, _Ieτ, _I;τ, υ¼ 0, 1, 2, 3, 5;τ≠ υ; signature ζτυ � eτ �eυ ¼ þ���þð Þδτυ
� �

: ð3Þ

The basis (3) is the union of the basis of STA (generated by eμ
� �

) and its product with e5. Two 3D subspaces of rela-
tive vectors (bold upright symbols) in STR will be of interest here:

X : 1, xj � e0j, xjxk � xjk , x123; j, k¼ 1, 2, 3; j≠ k
� �

; generated by the boost polarð Þ vectors xj
� �

, ð4Þ

and

Σ : 1, σj � e0j5, σjk ¼ xjk ¼ ϵjkl _Iσl, σ123 ¼ _I; j≠ k
� �

; generated by the spin axialð Þ vectors σj
� �

: ð5Þ

The orientation space with frame vectors σj
� �

and algebra Cl 3, 0ð Þ given byΣ is an example of 3D space where the
cross product mentioned above is valid. The appropriate form of pseudoscalar in this case is the trivector in (5) depicted
by the same symbol _I as the pentavector in (3); the last is obtained from the first by substituting σjwith e0j5. X corre-
sponds in STR to the even subspace of STA. It is appropriate in STR to use the notation σj for spin vectors, which are
axial vectors, that is, they are parity-even, e0σje0 ¼σj, while the e0xje0 ¼�xj of STA are parity-odd. The intersection of
X with Σ: X\Σ¼ xjxk � xjk ¼σjk ¼ δjkþ εjkl _Iσl

� �
consists of the real scalar and the bivectors. Here, I address spin in

the nonrelativistic regime under the spin–position decoupling approximation.6,7,11–13 The 3D physical space in this case
reduces to orientation space at a point (the origin), and the relevant symmetry operations are proper rotations and
reflections. In STR, it corresponds to the subspace Σ in (5)12 with a Clifford algebra Cl 3, 0ð Þ isomorphic to that of Pauli
matrices, therefore the notation.9,12 Although Σ differs from X, as discussed above, Σ in STR and the even subspace in
STA have the same dimension and isomorphic algebra Cl3,0:7,12 Geometrically, the bivectors _Iσl, for example, _Iσ2 ¼ σ31,
represent oriented surface elements, while the pseudoscalar _I¼σ123 is an oriented volume element, all unitless. A rotor
Rϑ with axis along the unit vector u is a unitary transformation in Σ (length, angle, and handedness preserving):

Σ3A!RϑAR
†
ϑ � e�I

_
uϑ=2AeI

_
uϑ=2 �Σ;Rϑ ¼ cos

ϑ

2
� I

_
usin

ϑ

2
: ð6Þ

Rotors can alter vectors and bivectors in Σ. Inversion and plane reflections are another type of (nonunitary) trans-
formations, which also conserve lengths and angles, but invert handedness, for example, of the triplet
σ1, σ2, σ3ð Þ� σj

� �
. The three frame reflections and the inversion can be depicted by (σ0 ¼ 1;μ¼ 0,1,2,3):

Σ3A! _IσμA_Iσμ ¼�σμAσμ �Σ; σj
� �! _Iσμ σj

� �
_Iσμ ¼ �1ð Þδμ0 �1ð Þδμjσj

n o
�Σ: ð7Þ

It is now appropriate to present the novel definition of spin 1/2.
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3 | DEFINITION AND VECTOR (TWO-SIDED) TRANSFORMATIONS OF
SPIN 1/2 FOR ONE- AND TWO-PARTICLE SYSTEMS

As mentioned in Section 1, the present model is inspired by the heuristic vector model of spin in the standard formal-
ism.11 The orientation space we work in here is the subspace Σ of STR presented in (5), which is isomorphic to the space
of Pauli matrices. One way to remake in Σ the standard Pauli vector spin operator 2=ℏð Þbσ¼bσjxj ¼bσ1x1þbσ2x2ð Þ off-diagonalð Þþbσ3x3 diagonalð Þ (with bσj the Pauli matrices and xj the unit frame vectors in 3D) is to take
the sum of the three frame vectors in Σ and add a phase φ rotating �σ1þσ2 around �σ3. By this, we remake a symbolic
“vector” operator having matrix components into a vector with a phase; �σ1þσ2 (with phase) correspond to the off-
diagonal terms in bσ and �σ3 to the diagonal terms. �σ3 define, as by usual convention, the spin vectors up and down
in the novel model (see definition (8)). By remaking the “master” Pauli operator bσ (with components in the Hilbert
space and with unit vectors in 3D space) into a couple of spins Sσ in Σ, we also loose the standard operator-state formal-
ism; instead, we have now vectors in Σ transforming by the operations of proper and improper rotations.

3.1 | One-particle systems

More precisely, the spin up "σ (down #σ) along the σ3 axis is defined by the sum of three orthonormal vectors scaled
byℏ=2 together with a two-sided rotor Rφ ¼ e�_Iσ3φ=2 in the plane σ12:

S"σ ¼ℏ
2
Rφ σ3þσ1þσ2ð ÞR†

φ ¼
ℏ
2

σ3þRφ σ1þσ2ð ÞR†
φ

� �
�ℏ
2

σ3þ σ1þσ2ð Þφ
� �

;

S#σ ¼σ2S"σσ2 ¼ℏ
2

�σ3þ �σ1þσ2ð Þ�φ

� �
; S"S" ¼ S#S# ¼ S2σ ¼

3ℏ2

4
; S†σ ¼ Sσ; S�σ ≠ �Sσ;

⟨Sσ⟩�ℏ
2

�σ3þ ⟨R2
�φ⟩ �σ1þσ2ð Þ

� �
�ℏ
2

�σ3þ ⟨cosφ⟩∓ ⟨sinφ⟩_Iσ3
� � �σ1þσ2ð Þ� �¼�ℏ

2
σ3:

ð8Þ

Angled brackets alone ⟨⟩ denote the expectation value, while ⟨⟩0 as in STA extracts the scalar part of an expression.
The phase φ degree of freedom is unobservable, which I express here by the zero expectation values
⟨sinφ⟩¼ ⟨cosφ⟩¼ 0 (see last equation in (8)). In other words, measurement extracts the phase-insensitive part of spin or
combination of spins. The squared modulus S2σ ¼ 3ℏ2=4 equals the squared QM total angular momentum of spin; it
comprises equal contributions from the three components, exceeding by a factor of 3 the observed squared spin
modulus ⟨Sσ⟩

2 ¼ℏ2=4. Therefore, from the perspective of the present model, when we measure a definite value of
spin, let say on the σ3 axis, the other spin components on the plane _Iσ3 are not zero but have a zero expectation value.
This corresponds to the standard uncertainty on the spin components orthogonal to the measurement axis11 as expressed
by the pairwise noncommutativity of the spin components. Such a “hidden” structure of spin is absent in STA.

Handedness is assigned from the vector triplet (with signs as) in the expression for spin, so that Sσ (i.e., S"σ or S#σ)
in (8) are both right-handed (r), while inverted and plane reflected _IσμSσ _Iσμ (see (7)) are all left-handed (ℓ). The two
subspaces ℓf g and rf g are disjoint under proper rotations (unitary transformations), while reflections and inversion
(improper rotations) convert a spin from one subspace to the other. Any left-handed (ℓ) spin up (down) is the inverse of
a right-handed (r) spin down (up), which clearly demonstrates the linear dependence between the two in 3D:

Sσ ℓð Þ ¼ _IS�σ rð Þ _I¼�S�σ rð Þ: ð9Þ

We therefore choose + in linear relations between spins in order to keep track of the handedness (see, e.g., (34)).
The reflection σ2Sσσ2 onto σ2 is equivalent inΣ to a π-rotation of Sσ around σ2. Focusing on rf g, any spin Su can be
expressed by Sσ and a combined rotation Ru �RθuRφu

, with Rθu ¼ e�_Iu2θu=2; � _Iu2 ¼u�uþ ¼u ⊥ σ3 ¼u13 (see (6) and
Figure 1A,B):

Suð Þφ ¼Ru Sσð ÞφR†
u ¼

ℏ
2
Ru σ3þ σ1þσ2ð Þφ

� �
R†
u ¼

ℏ
2
Rθu σ3þ u ⊥ þu2ð Þφ

� �
R†
θu
¼ℏ
2

uþ u1þu2ð Þφ
h i

:
ð10Þ

1460 ANDONI
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Observable quantities here, as in the standard spin formalism, do not depend on handedness or on phase for both
the one- and the two-spin cases. A measurement of Sσð Þφ by a Stern–Gerlach (SG) magnet aligned along u¼u3, trans-
forms spin with complete loss of phase correlation, as shown schematically by

Sσð Þφ !
SG

Suð Þφ0 ; ⟨sinφ0 sinφ⟩SG ¼ ⟨sinφ0⟩⟨sinφ⟩¼ 0: ð11Þ

Then, it is sufficient to restrict the transformation to only the phase-insensitive spin vector:

ℏ
2
σ3 !ℏ

2
Rθuσ3R

†
θu
¼ℏ
2

uþ cos
θu
2
þu� sin

θu
2

	 

¼ℏ
2
u, where :Rθuσ3 ¼uþ;R†

π�θu
�σ3ð Þ¼u�: ð12Þ

Within a normalization factor, the two first expressions of spin in (12) are identical to the definition of spin vector
in STA.7 The corresponding expression for the full spin model (8) is the first equation in (10). It is also clear from
Figure 1A,B that any unit spin vector u can be expressed by means of the two unit basis spins �σ3 through the “tailor-
made” linear combination of the orthonormal “spinor” pair uþ,u�. This uniquely defined geometric construction illus-
trates the working of the quantum spin basis in 3D. Obviously, with only the spin vector involved, as in (12), there are
no restrictions on handedness. The halfway vectors uþ,u� in Figure 1B depict one form of reduced spinor representa-
tion, and as shown by the last two equalities in (12), they arise from the action of one-sided rotors onto the spin vectors
up and down. Of course, one can obtain uþ and u� by one-sided action of rotors on spin up alone; even then, two terms
are needed with distinct probability amplitudes for coincidence and anticoincidence (�σ3 are linearly dependent; u�

are not). For the sake of definiteness, we insist that a spin basis consist of two opposite spins. Equations (10)–(12)
express the “kinematics” of spin measurement, the last rendering explicit the probability amplitudes for coincidence
and anticoincidence.

An important last remark about the spinor duplet uþ,u� is that it illustrates the geometry of half-angles characteriz-
ing quantum spin, here flexibly connecting the fixed opposite spins �σ3 with any new spin vector u. Had we wished to
rigidly anchor the spinor representation to the frame σ3, σ1, σ2f g in the way it is done in the standard formulation or in
STA, then we could have chosen, for example, θu ¼φu ¼ 0; see Figure 1A. Then, uþ !σ3 and u� !σ1, which repro-
duces the STA representation of spin up and spin down relative to σ3,�σ3, that is, σ3 1, �_Iσ2

� �
(see also Andoni12).

The same conclusion follows even more directly by using Rθu andR
†
π�θu

as representatives of spin up and spin down,
respectively. It is clear from the last two relations in (12) that for fixed σ3, there is a one-to-one correspondence:

uþ, u�f g$ Rθu , �R†
π�θu

n o
; in the limit θu ¼φu ¼ 0 we obtain Rθu , �R†

π�θu

n o
! 1, �_Iσ2

� �
, ð13Þ

FIGURE 1 Relation between the reference spin with spin vector σ3 and an arbitrary spin, represented by the spin vector u = u3.

Rendering of (A) the vector (two-sided rotor) transformation in 3D, see Equation (10) for the full spin and Equation (12) for the spin vector

alone; (B) reduced spinor (u+, u�) (one-sided rotor) transformation in the plane defined by σ3 and u, see Equations (12) and (33). The panel

(B) shows the plane defined by σ3 and ⊥ or by u and u1 in panel (A). [Colour figure can be viewed at wileyonlinelibrary.com]
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which is precisely the STA representation for spin up and spin down. With the rigid choice, one would have to use also
the half-angle φu=2 in the expression of the new spin with the help of the spin basis, just as it is the case in the standard
formalism; see the rotor Ru in Equation (10). The flexibility and the geometric clarity of the present spinor construction
in (12) and in Figure 1B are certainly attractive.

After the Definition of spin in (8) and the demonstration in Equations (12) and (13) and in Figure 1 of how the pair
of spins ⟨Sσ⟩ constitutes a spin basis in 3D (for the full spin, see Equations (34)–(36)), it is time to show the correspon-
dence with basic relations from the standard formalism. First, we generalize definition (8) to spins Sσj with spin vectors
σj (j¼ 1,2,3). Depicting for short Sσj by Sj and with σjþ1þσjþ2

� �
φ jð Þ �Rφ jð Þ σjþ1þσjþ2

� �
R†
φ jð Þ ¼ e�_Iσjφ jð Þ=2 σjþ1þσjþ2

� �
e_Iσjφ

jð Þ=2 (the indices jþ1,jþ2 are mod3), we adapt (8) in relation to each frame vector:

Sj �ℏ
2

σjþ σjþ1þσjþ2
� �

φ jð Þ
� �

, for example, S2 �ℏ
2

σ2þ σ3þσ1ð Þφ 2ð Þ
� �

; ⟨Sj⟩�ℏ
2
σj: ð14Þ

It is clear from (14) that the ⟨Sj⟩ satisfies the same algebra as the Pauli matrices, as they should in order to represent
the observed angular momentum of spin. In commutator form, this appears as follows:

1
2
⟨Sj⟩, ⟨Sk⟩
� �¼ εjkl

ℏ
2
_I⟨Sl⟩: ð15Þ

Curiously, one can write a similar relation for the full spins with equal phase angles φ jð Þ¼φ kð Þ, that is:

1
2
⟨ Sj, Sk
� �

⟩φ lð Þ �
1
2
Rφ lð Þ⟨ Sj, Sk

� �
⟩R†

φ lð Þ ¼ εjkl
ℏ
2
_ISl: ð16Þ

Similarly, it is straightforward to check that the corresponding anticommutators are zero, as expected:

⟨Sj⟩, ⟨Sk⟩
� �¼ 0; ⟨ Sj, Sk

� �
⟩φ lð Þ ¼ 0: ð17Þ

What are the relations corresponding to the eigenvalues for the spin basis in (8)? It is easy to check that

⟨σjS3⟩¼ 0 for j¼1, 2,
�ℏ=2 for j¼3:

n
ð18Þ

From Equation (8), Sσ � S3 stands for either spin on the σ3 axis, which yields the (normalized) expectation values
�1 in the σ3 direction. The zero expectation value for j¼ 1,2 expresses the experimental finding of equal probabilities
for spin up and spin down when S3 is tested in directions perpendicular to σ3. Equation (18) is a special case of the gen-
eral expectation value for S3 after a SG transformation onto the direction u. Returning to the default notation S3 � Sσ
this is expressed either by the correlation between the start and end spins as in (19) below or by the projection of the
start spin onto the SG detector alignment u as in (20) further down:

4

ℏ2 ⟨SσSu⟩ SGð Þ ¼
4

ℏ2 ⟨⟨Sσ⟩⟨Su⟩⟩¼ ⟨σ3u⟩0 ¼ σ3 �u¼ �σ3ð Þ � �uð Þ¼ cosθu ¼ cos2
θu
2
� sin2 θu

2
, ð19Þ

2
ℏ
⟨Sσu⟩ SGð Þ ¼ ⟨σ3u⟩0 ¼ ⟨uσ3⟩0 ¼ cosθu ¼ cos2

θu
2
� sin2 θu

2
: ð20Þ

The probabilities for coincidence and anticoincidence outcomes are cos2θu=2 and sin2θu=2, which is expected
remembering the probability amplitudes in (12). Equation (20) tells us that the detector alignment conditions the final
spin axis. For later reference, note that (19) and (20) yield the expectation value of one spin measurement by projecting
out the wedge part of σ3u¼ σ3 �uþσ3^u. For measurements on entangled pairs, the scalar parts still determine the
partial expectation value for one-particle observations (though taking account of superposition), but pair correlations
comprise contribution from both the scalar and the bivector parts.
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Now, if the relative probabilities and probability amplitudes show up in relations involving only spin vectors, like
(12), why do we need the full spin (8)? Well, the full spin connects to the total angular momentum of spin 1/2 and hints
to additional spin structure compared to the measured spin, ultimately grounding onto the uncertainty principle. In this
sense, it is analogue to the standard Pauli spin vector operator. In addition, the explicit gauge phase formalizes the
entrance of irreversibility with measurement due to the complete loss of phase correlation, thus resulting, as shown in
(11), into the restricted transformations (12). In the single-spin case, one can pick ℓf g or rf g handedness, while in the
two-spin case, we need both. Phase and handedness are key concepts for understanding the intrinsic total spin angular
momentum of entangled pairs. Again, as in the one-spin case, the parts with phase contribute by zero expectation
values in measurement correlations. In order to render the formulation as clear as possible, I use an arrow !SG , or!
only for spin measurements.

3.2 | Two-particle systems

The above discussion for the one-particle case generalizes in the following way to two-particle systems, again preserving
a clear geometric picture of spin. The total angular momentum of two spins is the vector sum of the single total angular
momenta, that is (see (2) for the definition of scalar product):

Stot ¼ S 1ð Þ þS 2ð Þ; S2tot ¼ S21ð Þ þS22ð Þ þS 1ð ÞS 2ð Þ þS 2ð ÞS 1ð Þ ¼ 3ℏ2

2
þ2S 1ð Þ �S 2ð Þ: ð21Þ

Stot is Hermitian and symmetric relative to the swap of the two spins. The four maximally entangled (Bell) states11,13

consist of the superposition, shown by the swap sign ⇆ , of two 2-spin states with the spins in each state being specular
or inverse images of each other. In terms of the basis spins Sσ, they read:

Υ μð Þ : S 1ð Þ, S 2ð Þ
� �

μð Þ � Sσð Þφ, _IσμSσσμ _I
� �

φ

� �
⇆ _IσμSσσμ _I

� �
φ
, Sσð Þφ

� �n o
; μ¼ 0,1,2,3: ð22Þ

The meaning of Equation (22) is that the state Υ μð Þ weighs equally the two 2-spin states at each side of the swap sign
⇆ , thus capturing the essence of superposition of two-spin states. As an illustration, in Equation (23) below, we
will calculate the intrinsic total spin Stot μð Þ for the states Υ μð Þ. Due to the superposition in (22),

Stot μð Þ ¼ 1
2 Sσþ _IσμSσσμ _I
� �

1ð Þ þ _IσμSσσμ _IþSσ
� �

2ð Þ
h i

¼ Sσþ _IσμSσσμ _I (phase not shown for simplicity); the last

expression appears in Equation (23). One could have tried a form for Υ μð Þ reminiscent to that of the standard definition;

see the alternative form Υ altð Þ
SG μð Þ in Equation (27) and the SG expectation value in Equation (28). We calculate now the

intrinsic Stot, S2tot, S 1ð Þ �S 2ð Þ from Equation (21) (below σjSσσj ¼�Sσþ2 Sσ �σj
� �

σj, no sum on j):

Stot μð Þ ¼ S 1ð Þ þS 2ð Þ ¼ Sσ�σμSσσμ
� �

φ
¼ 0; Stot 0ð Þð Þ2¼ 0; Υ 0ð Þ

2 Sσ� Sσ�σjð Þσj½ �; Stot jð Þð Þ2¼ 2ℏ2; Υ jð Þ


, ð23Þ

2 S 1ð Þ �S 2ð Þ
� �

μð Þ ¼�2 Sσð Þφ � σμSσσμ

� �
φ
¼ �2S2¼�3ℏ2

=2; Υ 0ð Þ
2 3ℏ2=4�ℏ2=2½ �¼ℏ2=2; Υ jð Þ j¼1, 2, 3ð Þ


: ð24Þ

From (22), the maximally entangled spins have identical phase; they relate by inversion in the singlet state Υ 0ð Þ and
by plane reflections in the three triplet states Υ jð Þ. As already mentioned, the vector model “places” both spins before
observation in the same 3D orientation space, avoiding the tensor product and interpreting, for example, the zero total
spin for Υ 0ð Þ in (23) as due to two opposite spins. The expression for the total angular momentum S2 ¼ℏ2S Sþ1ð Þ and
Equation (23) tell us that S¼ 1 (or 0)—that is, an observed combined spin of modulus

ffiffiffiffiffiffiffiffiffi
⟨S⟩

2
q

¼ℏ (or 0) in the triplet
(resp. singlet) states. Looking instead at ⟨Stot⟩

2 ¼ ⟨S 1ð Þ⟩þ ⟨S 2ð Þ⟩
� �2

, we find ℏ2 (or 0) for Υ 1, 2ð Þ (resp. Υ 0, 3ð Þ),
corresponding to the standard eigenvalues �ℏ resp:0ð Þ along σ3.

From the above discussion and following the convention,11,13 we further define Υ 1ð Þ,Υ 2ð Þ to comprise two spins up,
respectively, two spins down. One choice of mutually orthogonal states, as demonstrated in the spinor form in
Section 4.2, is the following (the phase φ, which as in (22) is the same for all spins below, is not shown for simplicity):
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ℏ
2

σ3þσ1þσ2ð Þ 1ð Þ, �σ3�σ1�σ2ð Þ 2ð Þð Þ ⇆ �σ3�σ1�σ2ð Þ 1ð Þ, σ3þσ1þσ2ð Þ 2ð Þð Þ; Υ 0ð Þ

σ3þσ1þσ2ð Þ 1ð Þ, σ3�σ1þσ2ð Þ 2ð Þð Þ ⇆ σ3�σ1þσ2ð Þ 1ð Þ, σ3þσ1þσ2ð Þ 2ð Þð Þ; Υ 1ð Þ

�σ3�σ1�σ2ð Þ 1ð Þ, �σ3�σ1þσ2ð Þ 2ð Þð Þ⇆ �σ3�σ1þσ2ð Þ 1ð Þ, �σ3�σ1�σ2ð Þ 2ð Þð Þ; Υ 2ð Þ

�σ3�σ1�σ2ð Þ 1ð Þ, σ3�σ1�σ2ð Þ 2ð Þð Þ ⇆ σ3�σ1�σ2ð Þ 1ð Þ, �σ3�σ1�σ2ð Þ 2ð Þð Þ; Υ 3ð Þ

:

:

8>>><>>>: ð25Þ

In (25), the spin sums for Υ 1ð Þ,Υ 2ð Þ lie on the respective cones defined by σ3þ σ2ð Þφ and�σ3� σ1ð Þφ, meeting at the
origin and with a phase difference of π=2, while the spin sum for Υ 3ð Þ lies in the plane � σ1þσ2ð Þφ. Within phase fac-
tors, these agree with the Stot μð Þ in (23).

SG transformations. Recalling now the generic form of the observed spin in Equation (12), ℏ2Rwσ3R†
w (slightly chan-

ged notation), we can depict the four Bell states for bipartite observations with two SG magnets aligned along w¼u,v
and with superposition (⇆ ) as

ΥSG μð Þ �ℏ
2

Ruσ3R
†
u, _IσμRvσ3R†

v
_Iσμ

� �
⇆ _IσμRuσ3R

†
u
_Iσμ, Rvσ3R†

v

� �� �¼
ℏ
2

u, _Iσμv_Iσμ

� �
⇆ _Iσμu_Iσμ, v

� �� �
:

ð26Þ

An alternative form of entangled states that fits the calculation of the expectation value in (28) is

Υ altð Þ
SG μð Þ �

ℏ2

4
Ruσ3R†

u

� �
1ð Þ _IσμRvσ3R†

v
_Iσμ

� �
2ð Þ þ _IσμRuσ3R†

u
_Iσμ

� �
1ð Þ Rvσ3R†

v

� �
2ð Þ

h i
: ð27Þ

I will keep the form (26) in the following as it depicts the two-spin states by spin pairs (with superposition). Super-
position is also a necessary condition for calculating bipartite correlations under a common angled bracket. The respec-
tive normalized expectation values with superposition yield the standard results:

⟨Υ altð Þ
SG μð Þ⟩¼ ⟨ΥSG μð Þ⟩� 1

2
⟨u_Iσμv _Iσμþ _Iσμu_Iσμv⟩¼�1

2
⟨uσμvσμþσμuσμv⟩¼�⟨uσμvσμ⟩¼�⟨σμuσμv⟩

¼ � u�vð Þ¼�cosϑuv¼sin2
ϑuv
2

� cos2
ϑuv
2

; μ¼ 0
u�v�2 u�σjð Þ v�σjð Þ¼u�v�2ujvj¼cosϑuv�2cosϑuj cosϑvj; μ¼j¼1, 2, 3

(
:

ð28Þ

uk,vk are the scalar components of u andv along σk, that is, the expectation values for the triplet states depend on
the reference frame. Both expectations for full spin in (24) and observed spin in (28) satisfy the “closure” relation:P

μ S 1ð Þ �S 2ð Þ
� �

μð Þ ¼ 0, which is frame independent. Each superposition term in (28) contributes equally to the expectation
value; therefore, we could use one of them as shown by the third and fourth equalities in (28). Looking, for example, at the
second term, the associativity of the geometric product in (1) allows to group the terms more symmetrically by splitting the
improper rotation between the two detector alignments _Iσμu_Iσμ

� �
v¼ _Iσμu

� �
_Iσμv
� �

. The last form hints to a spinor repre-
sentation of the four possible states, as applied and discussed in Section 4.2, Equations (40) and (41). While one of the
superposition terms is sufficient to calculate the correct values for the bipartite expectations in (28), we will see shortly
that both are needed to calculate the partial one-spin values for each of the entangled particles. Before doing that calcu-
lation, notice that the same bipartite expectation values as in (28) follow from the forms below, as alternatives to (26):

Υ0
SG μð Þ �

ℏ
2

Ru �σ3ð ÞR†
u, _IσμRv �σ3ð ÞR†

v
_Iσμ

� �
⇆ _IσμRu �σ3ð ÞR†

u
_Iσμ, Rv �σ3ð ÞR†

v

� �� �
;

Υ00
SG μ¼1, 2ð Þ �

ℏ
2

Ru �σ3ð ÞR†
u, _IσμRv �σ3ð ÞR†

v
_Iσμ

� �
⇆ _IσμRu ∓σ3ð ÞR†

u
_Iσμ, Rv ∓σ3ð ÞR†

v

� �� �
:

ð29Þ

The forms Υ0
SG μð Þ for μ¼ 0,1 (upper signs) and μ¼ 2,3 (lower signs) connect to the ⟨Υ μð Þ⟩ in (25), while the forms

Υ00
SG μ¼1, 2ð Þ (applying only to μ¼ 1,2, as Υ0

SG μ¼0, 3ð Þ corresponds already to the standard Ψ�) connect to the standard form
most in use today: Φ� ¼ 1ffiffi

2
p j""⟩�j##⟩� �

(two spins up superposed to two spins down with opposite phases for the two
triplet states). Of course, there is no tensor product in the present formalism!
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We calculate now the partial one-spin expectation values for the four maximally entangled pairs in (26) and (29).
We will use (29) only for μ¼ 1,2, as Υ0

SG μ¼0, 3ð Þ in (28) yields the same result as ΥSG μ¼0, 3ð Þ in (26) without sign complica-
tions. The one-spin relation (19) applied to each particle becomes (now with superposition):

Spin 1ð Þ : 1
2
ϵ1,2⟨σ3 uþ _Iσμu_Iσμ

� �
⟩¼ 1

2
ϵ1,2σ3 � u�σμuσμ

� �
, or equivalently

1
2
ϵ1,2⟨u σ3þ _Iσμσ3 _Iσμ

� �
⟩¼ 1

2
ϵ1,2u � σ3�σμσ3σμ

� �
;

Spin 2ð Þ:
1
2
ϵ1,2⟨σ3 _Iσμv_Iσμþv

� �
⟩¼ 1

2
ϵ1,2σ3 � v�σμvσμ

� �
, or equivalently

1
2
ϵ1,2⟨v σ3þ _Iσμσ3 _Iσμ

� �
⟩¼ 1

2
ϵ1,2v � σ3�σμσ3σμ

� �
:

ð30Þ

It is clear from (30) that the states are not pure, as expected for partial states from entanglement. The partial expec-
tation values belonging to μ¼ 0,3, that is, Υ 0ð Þ,Υ 3ð Þ are zero. The factors ϵ1,2 apply only to the two cases of Υ μ¼1, 2ð Þ and
are ϵ1 ¼ 1, ϵ2 ¼�1, reflecting the choice of spin vectors in Υ0

SG μ¼1, 2ð Þ of (29). With that choice the partial expectation
values for Υ μ¼1, 2ð Þ in (30) are ϵ1,2u3 and ϵ1,2v3, respectively. With the form Υ00

SG μð Þ instead of Υ0
SG μð Þ, the two partial

expectation values vanish; for example, the value for Spin(1) would become 1
2u � ϵ1,2σ3�ϵ2,1σμσ3σμ

� �¼ 0 μ¼ 1, 2ð Þ (the
first [second] subscripts in ϵ1,2,ϵ2,1 apply to Υ00

SG μ¼1ð Þ [resp.Υ
00
SG μ¼2ð Þ]). With this choice, all the partial expectation values

for the four Bell states vanish.
The bivector form of the partial expectation values in (30) can also serve as an alternative starting point to obtain

the bipartite expectation values in (28) (bivectors like σ3u are not Hermitian), that is:

Spins 1ð Þ and 2ð Þ : ⟨ΥSG μð Þ⟩¼ ⟨ σ3uð Þ†σ3 _Iσμv _Iσμ⟩¼�⟨uσ3σ3σμvσμ⟩¼�⟨uσμvσμ⟩, or equivalently

⟨ΥSG μð Þ⟩¼ ⟨ σ3 _Iσμu_Iσμ
� �†σ3v⟩¼�⟨σμuσμv⟩:

ð31Þ

This form proves the statement following Equation (20) that both the scalar and the bivector parts of the geometric
products σ3u¼σ3 �uþσ3^u and σ3 _Iσμv _Iσμ ¼�σ3 � σμvσμ

� ��σ3^ σμvσμ
� �

contribute to the entanglement correla-
tions. As we will see in Equation (32) below, this distinguishes entangled pairs from separable, nonentangled pairs
where the bivector parts do not contribute to the bipartite correlations.

How do separable states look like in the present formalism? Superposition in this case loses the redundancy we saw
in the case of entanglement, that is, the equal contribution from the two terms in (28) and (31). Each separable state
can be expressed by cross-superposition, as shown below (first raw combines pieces from Υ 0ð Þ,Υ 3ð Þ [changed ordering
yields either "# {shown} or #"]; second raw combines pieces from Υ 1ð Þ, Υ 2ð Þ [changing signs as in (29), it yields either ""
{shown} or ##]), where we also show the expectation values:

ℏ
2

u, _Iσ0v _Iσ0
� �

⇆ �_Iσ3u_Iσ3, �v
� �� � ) 1

2
⟨�uv�σ3uσ3v⟩¼ 1

2
⟨�uvþuv�2u3v3⟩¼�u3v3;

ℏ
2

u, _Iσ1v_Iσ1
� �

⇆ _Iσ2u_Iσ2, v
� �� �) 1

2
⟨�uσ1vσ1�σ2uσ2v⟩¼ 1

2
⟨uvþuv�2u1v1�2u2v2⟩¼u3v3:

ð32Þ

The bipartite expectation value �u3v3 is the same for antiparallel spins, "# and #", while u3v3 is valid for parallel
spins, "" and ##. It is easy to check that the partial expectation values for the four separable states ordered in pairs are
u3, �v3ð Þ; �u3, v3ð Þ; u3, v3ð Þ; �u3, �v3ð Þ. The products for each pair reproduce the two bipartite expectation values in
(32)—a feature of the separable states.

Even more clearly, the separable states show exactly the same correlations, bipartite and partial, as pairs of (non-
entangled) pure one-spin states, thus justifying the designation “separable.” For example, the bipartite expectation
value for antiparallel spins, each expressed as in Equation (20) reproduces the top-line result in (32):

⟨S 1ð ÞS 2ð Þ⟩0 ¼
4

ℏ2 ⟨⟨Sσ⟩u⟩⟨⟨S�σ⟩v⟩¼� σ3 �uð Þ σ3 �vð Þ¼�u3v3 ¼�cosθu cosθv: ð33Þ

What about the orthogonality of the maximally entangled states? Like the one-particle case (remember uþ,u� in
Figure 1B), orthogonality is experienced in the spinor (one-sided rotor) representation, as described by the Equa-
tions (42)–(44) and the related discussions in Section 4.2.
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4 | SPINOR (ONE-SIDED ROTOR) REPRESENTATION OF SPIN 1/2 ONE-
AND TWO-PARTICLE SYSTEMS

In spinor form, the transformation of a given spin appears as a sum (see (9)) of one-sided rotor operations of spin up
and spin down with the standard probability amplitudes for coincidence and anticoincidence.

4.1 | One-particle systems

Instead of the two-sided rotor vector expression (10), we now express a given spin Su φð Þ as a sum (+ sign, see (9) and
ensuing discussion) of the (one-sided rotor) spinor forms for the spin basis, as illustrated in Figure 1B (remember that
the orientation of the angle θu is as seen from u2):

Su φ�φuð Þ ¼RθuSσ φð Þ cos
θu
2
þR†

π�θu
S�σ �φð Þ sin

θu
2
¼RθuSσ φð Þ cos

θu
2
þR†

π�θð ÞuRπuSσ φð ÞR†
πu
sin

θu
2
¼

RθuSσ φð Þ cos
θu
2
þ _Iu2 sin

θu
2

	 

¼RθuSσ φð ÞR

†
θu
, or

ð34Þ

Su φ�φuð Þ ¼ℏ
2

uþþRθu σ1þσ2ð Þφ
� �

cos
θu
2
þ u��R†

π�θu
σ1�σ2ð Þ�φ

� �
sin

θu
2

� �
¼

ℏ
2

uþ cos
θu
2
þu� sin

θu
2
þRθu u ⊥ þu2ð Þφ�φu

cos
θu
2
� _Iu2 u ⊥ �u2ð Þ�φþφu

sin
θu
2

	 
	 

¼

ℏ
2

uþRθu u ⊥ þu2ð Þφ�φu
cos

θu
2
þ _Iu2 sin

θu
2

	 
	 

¼ℏ
2

uþRθu u ⊥ þu2ð Þφ�φu
R†
θu

� �
¼

ℏ
2

uþ u1þu2ð Þφ�φu

� �
:

ð35Þ

By insisting that a basis consist of opposite spins then in order for ((34) and (35)) to result in a proper rotation as
they do, the two spins must have the same handedness. The plane for the phase angles φ�φu in the subscripts is the
plane defined by the two vectors u1,u2 in brackets. The concise form (34) is typical for STR/STA, where full geometric
objects transform as a whole, in contrast to the form (35) where components do appear. Keeping the gauge phase
implicit, the full spinor representations for spin up and spin down are

RθuSσ ¼uþþRθu u ⊥ þu2ð Þ and _Iu2RθuS�σ ¼u�þRθu u ⊥ þu2ð Þ_Iu2: ð36Þ

Spinor representations are not spin according to definition (8). As already mentioned, the midway vectors uþandu�

are reduced spinor representations of the two spins; they are manifestly orthonormal. Spinor representations are not
unique. As anticipated in Equation (13), another reduced spinor representation comprises the factors in front of the
rotor Rθu in (36), Scalar 1 and a bivector _Iu2, respectively, which are also part of Rθu . These are even-grade elements of
the 3D algebra and a standard choice in the STA literature7; see the discussion of Equation (13). In order for the
reduced representation to be an orthonormal spinor basis, one must have a zero scalar (Grade 0) for
⟨1 _Iu2
� �

⟩0 ¼ ⟨uþu�⟩0 ¼ 0, which is indeed the case. The orthogonality relation for the full spinor representation is
(remember that Sσ is Hermitian):

⟨ RθuSσ _Iu2
� �†

RθuSσð Þ⟩0 ¼�⟨
3ℏ2

4
_Iu2⟩0 ¼ 0, ð37Þ

which is clearly satisfied. The orthogonality condition for the reduced representation is the normalized (37).
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4.1.1 | Measurement

The action of a SG magnet aligned along σ3 on a spin with original spin vector ℏ
2u¼ ℏ

2u3 corresponds to an irreversible
transformation relative to the gauge phase, and instead of (34), we get

Su φð Þ !SG R†
θu
Su φ0ð Þ ¼ Sσ φ0ð Þ cos

θu
2
þ _Iu2S�σ �φ0ð Þ sin

θu
2
; ⟨φφ0⟩¼ ⟨φ⟩⟨φ0⟩: ð38Þ

In the SG case, it is straightforward to apply the spinor transformation to the spin vector alone; see (35):

ℏ
2
u !SG ℏ

2
R†
θu
u¼ℏ

2
σ3 cos

θu
2
þ _Iu2 sin

θu
2

	 

¼ℏ
2
R†
θu

uþ cos
θu
2
þu� sin

θu
2

	 

: ð39Þ

4.2 | Two-particle systems

The scope of this subsection is to prove the mutual orthogonality among the four Bell states. The proof will equally
apply to the separable states in (32), as they consist of the same pairs as the Bell states, just combined differently. Let us
start by writing the nonnormalized expression in (28) for u¼ v¼σ3 as (notice that Sσ _Iσμ is not Hermitian):

⟨Sσ _IσμSσ _Iσμ⟩0 ¼ ⟨ �_IσμSσ
� �†

Sσ _Iσμ

� �
⟩0: ð40Þ

Then, one realizes that a nonnormalized spinor form for the entangled states consists of the superposed pairs:

Υ sμð Þ : �_IσμSσ, _IσμS0σ
� �

⇄ _IσμS0σ, �_IσμSσ
� �� �

with _IσμS0σ � _IσμσμSσσμ ¼ Sσ _Iσμ: ð41Þ

The suffix s in Υ sμð Þ stands for “spinor representation.” As in Equations (22), (28), and (31), superposition produces
two equally contributing terms in the expressions for the bipartite expectation values. It is sufficient to prove orthogo-
nality by looking at one of the pairs. Equation (41) for the four states comprise terms that are either even (bivectors) for
the singlet (μ¼ 0) or odd (vectors and pseudoscalar) for the triplet (μ¼ j) states, therefore,

⟨Υ†
0ð ÞΥ jð Þ⟩0 ¼ ⟨Υ†

jð ÞΥ 0ð Þ⟩0 ¼ 0, ð42Þ

for both full (intrinsic) and measured (extrinsic) spins. In words, the singlet state is orthogonal to the triplet states. By
taking the full spins at the left (resp. right) in each pair in (25) as Sσ (S0σ from (41)), one can prove mutual orthogonality
for all pairs of states (μ≠ ν):

⟨Υ†
μð ÞΥ νð Þ⟩0 ¼ ⟨Sσ _Iσμ _IσνS0σ

� �
⟩0 ¼�⟨SσσμνS0σ⟩0 ¼ ⟨∁SσσlS0σ⟩0 ¼

�ℏ2=4⟨∁ σ3þσ1þσ2ð Þσl σ3þσ1þσ2ð Þ⟩0 ¼ 0;

∁ ¼ 1 for μν¼ 0; ∁ ¼ _Iεjkl for μν¼ jk; j,k,l¼ 1,2,3:

ð43Þ

Finally, the orthogonality relations among the SG measured states are straightforward:

⟨Υ†
μð ÞΥ νð Þ⟩0 SGð Þ ¼ ⟨σ3 _Iσμ _Iσνσνσ3σν

� �
⟩0 ¼�⟨σμσν⟩0 ¼ 0 for μ≠ ν; μ,ν¼ 0,1,2,3: ð44Þ

From (43) and (44), both the full and the SG spinor representations for the maximally entangled states are mutually
orthogonal. The last equation in (44) essentially reduces the orthogonality relation for the four basis two-spin states
(maximally entangled or separable) into the orthogonality of the Pauli basis σμ

� �¼ 1, σj
� �

! The same result is obtained
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by using the one-sided factors _Iσμ in front of Sσ,S0σ in (41). Each of these is “half” of one of the operations of inversion
and the three plane reflections characterizing the four entanglement states Υ μð Þ, μ¼ 0,1,2,3. We do not need to calculate
the bipartite expectation values for entangled pairs in spinor representation, as by construction they are equal to the
results in Equation (28).

A swift comparison of the two-particle spinor representation (41) with the vector representation (22) reveals that
inversion and reflection apply to one of the spins in (22) as two-sided operations _IσμSσ _Iσμ (though with superposition!).
In the spinor representation (41) the same improper rotations split between the two spins, “half rotation” for each, thus
appearing as one-sided operations, for example, _IσμS0σ. Of course, superposition is also present in (41). This makes the
states in (41) apparently more symmetric but also more abstract then the states in (22). However, I stress again that the
improper rotations contribute to both spins in Equations (22) and (26) due to superposition. In addition, the correla-
tions in the form (28) are the same for both representations and as correlation expectation values they take account of
both entangled spins under the same angled brackets. This would represent a nonlocal operation, as the two measure-
ments actually take place at different locations. To be sure, the common angled brackets refer to the statistical depen-
dence between the two measurements. Anyway, cutting a potentially long discussion short, it is relevant to remind the
reader here that we are working in the spin–position decoupling approximation and in this framework, the operation
of common angled brackets is local. Notice that the bipartite states respect Pauli's exclusion principle, as they had to at
the pairs' creation.

5 | CONCLUSIONS

The spin model in (8), sum of three orthogonal vectors with a phase in the 3D orientation space, replaces the symbolic
Pauli spin matrix–vector of standard QM. By the same move, proper and improper rotor operations on vectors substi-
tute the standard operator-state formalism. The model displays many attractive features in the spin–position decoupling
approximation. For one- and two-particle systems, it shows the correct representation of spin 1/2 relative to both intrin-
sic full spin and observed spin expectations. The explicit gauge phase in (8) allows formalizing the irreversibility related
to measurement as due to loss of phase correlation. The adaptive embedding of the spin space illustrated in Figure 1B is
remarkable, proving the geometry of the one-spin basis in 3D. The 3D setting also offers a clear geometric meaning for
the four Bell states: the entangled spins relate by the four basic improper rotations, by superposition and are in phase.
All orthogonality relations apply in the “spinor” representation and in the bipartite case ultimately reduce to the
orthogonality of the Pauli basis. The results above were obtained by direct use and transformation (rotation, reflection)
of spin(s) in the 3D orientation space, without invoking the eigen-algebra or the tensor product, which seem so funda-
mental in the standard formulation of the quantum spin.

ACKNOWLEDGEMENTS
Thanks to the reviewers for their comments and critics of previous versions of the manuscript. This work does not have
any conflicts of interest. There are no funders to report for this submission.

AUTHOR CONTRIBUTIONS
Sokol Andoni: Conceptualization; formal analysis; investigation; methodology; project administration; writing-original
draft; writing-review and editing.

ORCID
Sokol Andoni https://orcid.org/0000-0002-1719-6789

REFERENCES
1. Pauli W. Zur Quantenmechanik des magnetischen Elektrons. Z Phys. 1927;43(9–10):601-623. doi:10.1007/BF01397326
2. Dirac PAM. The quantum theory of the electron. Proc Roy Soc Lon A. 1928;117(778):610-624. doi:10.1098/rspa.1928.0023
3. Grassmann H. Die Ausdehnungslehre. Enslin; 1862.
4. Clifford WK. Applications of Grassmann's extensive algebra. Am J Math. 1878;1(4):350-358. doi:10.2307/2369379
5. Hestenes D. Space–Time Algebra. Gordon and Breach; 1966.
6. Hestenes D. Oersted Medal Lecture 2002: Reforming the mathematical language of physics. Am J Physiol. 2003;71(2):104-121. doi:10.1119/

1.1522700

1468 ANDONI

 10991476, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8925 by D

anish T
echnical K

now
ledge, W

iley O
nline L

ibrary on [19/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-1719-6789
https://orcid.org/0000-0002-1719-6789
info:doi/10.1007/BF01397326
info:doi/10.1098/rspa.1928.0023
info:doi/10.2307/2369379
info:doi/10.1119/1.1522700
info:doi/10.1119/1.1522700


7. Doran C, Lasenby A. Geometric Algebra for Physicists. Cambridge University Press; 2007.
8. Doran CJL, Lasenby AN, Gull SF. States and operators in the spacetime algebra. Found Phys. 1993;23(9):1239-1264. doi:10.1007/

BF01883678
9. Doran C, Lasenby A, Gull S, Somaroo S, Challinor A. Spacetime algebra and electron physics. Adv Imag Elect Phys. 1996;95:271-365. doi:

10.1016/S1076-5670(08)70158-7
10. Lasenby A. Geometric algebra as a unifying language for physics and engineering and its use in the study of gravity. Adv Appl Clifford

Algebras. 2017;27(1):733-759. doi:10.1007/s00006-016-0700-z
11. Bohm D. Quantum Theory (17.9). Prentice-Hall, Inc.; 1951. Ch. 17.
12. Andoni S. Dirac equation Redux by direct quantization of the 4-momentum vector. 2022. Preprint posted on https://www.

researchsquare.com/article/rs-313921/v8. 10.21203/rs.3.rs-313921/v8
13. Merzbacher, E.: Quantum Mechanics, John Wiley & Sons5 (1998).

How to cite this article: S. Andoni, Spin 1/2 one- and two-particle systems in physical space without
eigen-algebra or tensor product, Math. Meth. Appl. Sci. 47 (2024), 1457–1470. DOI 10.1002/mma.8925.

APPENDIX A

The STR approach is the shortest path from the relativistic four-momentum to the Dirac Equation (STR DE). Alike
STA, STR does not comprise matrices, and all the complex structure arises from vectors and multivectors, not from sca-
lars. However, unlike in STA DE, spin has not been put by hand in STR DE.

Keeping with tradition, I use in the following the reciprocal frame vectors eυ, which relate to the frame vectors in
(3) by the STR signature eτ ¼ ζτυe

υ. The STR pseudoscalar in the reciprocal basis is _I¼ e01235. In coordinate representa-
tion, the spacetime frame vectors eμ replace the standard Dirac matrices γμ. All predictions of the standard DE (not
manifestly covariant), follow from the manifestly covariant STR DE, thus rendering superfluous any preconceptions on
“internal degrees of freedom” of the electron allegedly represented by the standard γμ matrices.2 STR DE affirms that
the free Dirac electron/positron is the result of the relativistic four-momentum and the postulate of quantization,
nothing else.

Shortly, the quantization of the 4-momentum p of modulus m yields the STR DE:

bp�mð Þψ¼ 0 with bp¼ _Iℏr¼ _Iℏeμ∂μ � _Iℏeμ: ðA1Þ

The pseudoscalar _I¼ e01235 commutes with all elements of STR. The introduction of the Hermitian frame vector e5

is not an additional postulate in STR; it is just a means to incorporate the quantization postulate, which in the standard
approach arrives with the unit imaginary i, into a real vector space. Equation (A1) is manifestly covariant. Both bp andm
are relativistic invariants and under a Lorentz transformation S to the primed frame:

bp�mð Þψ¼ 0f g! S bp�mð Þψ¼S bp�mð ÞS�1Sψ� bp0 �m
� �

ψ0 ¼ 0
� �

; bp0 ¼bp; ψ0 ¼ Sψ: ðA2Þ

In the case of frame vectors S ¼ S� e �_Iσjϑjþxjαjð Þ=2 so that e0μ ¼ Seμ~S. S is obtained by exponentiation of boost vectors
and rotor bivectors from Equations (4) and (5); ϑj andαj are Euclidean angles (see Equation (6)) and rapidities (hyper-
bolic angles), respectively. Lorentz transformations and parity constrict the form of the spinor ψ in (A3). For example, S
“bringing” elements from both X andΣ signals that ψ belongs at least to the product space XΣ.

The STR spinor ψ can be expressed with the help of two Pauli spinors φ,e5χ (so that φþχð Þ�XΣ) and of two
orthogonal projectors 1�e0ð Þ relative to the time axis e0 (relating to parity12), that is:

ψ¼ 1
2

1þe0
� �

ψþ 1�e0
� �

ψ
� �¼φþχ; φ� 1

2
1þe0
� �

ψ; χ� 1
2

1�e0
� �

ψ; φ,e5χ�Σ: ðA3Þ

Σ is the subspace of axial vectors in STR (Equation (5) in the main text)—isomorphic to the space of Pauli matrices.

ANDONI 1469

 10991476, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8925 by D

anish T
echnical K

now
ledge, W

iley O
nline L

ibrary on [19/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.1007/BF01883678
info:doi/10.1007/BF01883678
info:doi/10.1016/S1076-5670(08)70158-7
info:doi/10.1007/s00006-016-0700-z
https://www.researchsquare.com/article/rs-313921/v8
https://www.researchsquare.com/article/rs-313921/v8
info:doi/10.21203/rs.3.rs-313921/v8
info:doi/10.1002/mma.8925


Now, in the nonrelativistic regime, the dominant spinor φ “freed” from the fast oscillations yields the Pauli spinor
proper φP and the STR DE yields the Pauli equation, STR PE. The STR Pauli Hamiltonian in the presence of an EM
field takes the same form as the standard one (removing the hat from the operators):

_Iℏ∂ tφP ¼HPφP ¼
P2

2m
� eA0þ ℏe

2m
σ, Bð Þ

� �
φP with σ, Bð Þ�Bjσj: ðA4Þ

The STR form of the Pauli spinor φP in12 is

φP ¼
1
2

1þσ3ð ÞφPþ 1�σ3ð ÞφP½ � �φuþσ1φd;

φu �
1
2
1þσ3ð ÞφP; σ1φd �

1
2
1�σ3ð ÞφP; φu,φd � aþ _Ib;a, b�ℝ

� �
:

ðA5Þ

φu,φd are proportional to the probability amplitudes for spin up and spin down, respectively. Finally, in the spin–
position decoupling approximation, s-p, that is, for spin probability amplitudes not depending on position, one can fac-
torize the common spatial dependence ρ of φu,φd and render the probability amplitudes explicit (the projector 1�σ3ð Þ
in (A5) allows to trade σ1φd with �_Iσ2φd, thus forming the rotor Rϑ below):

φP ¼s�p
ρRϑ � ρe�_Iσ2ϑ=2 ¼ ρ cos

ϑ

2
� _Iσ2 sin

ϑ

2

	 

: ðA6Þ

The form of the Pauli spinor above is the same as in STA.
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