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Abstract
In many industrial applications, obtaining labeled observations is not straight-
forward as it often requires the intervention of human experts or the use of
expensive testing equipment. In these circumstances, active learning can be
highly beneficial in suggesting the most informative data points to be used when
fitting a model. Reducing the number of observations needed for model devel-
opment alleviates both the computational burden required for training and the
operational expenses related to labeling. Online active learning, in particular, is
useful in high-volume production processes where the decision about the acqui-
sition of the label for a data point needs to be taken within an extremely short
time frame. However, despite the recent efforts to develop online active learning
strategies, the behavior of these methods in the presence of outliers has not been
thoroughly examined. In this work, we investigate the performance of online
active linear regression in contaminated data streams. Our study shows that the
currently available query strategies are prone to sample outliers, whose inclusion
in the training set eventually degrades the predictive performance of the models.
To address this issue, we propose a solution that bounds the search area of a con-
ditional D-optimal algorithm and uses a robust estimator. Our approach strikes
a balance between exploring unseen regions of the input space and protecting
against outliers. Through numerical simulations, we show that the proposed
method is effective in improving the performance of online active learning in the
presence of outliers, thus expanding the potential applications of this powerful
tool.

KEYWORDS
active learning, data stream, optimal experimental design, outliers, robust regression,
unlabeled data

1 INTRODUCTION

Predictivemodels often need to be trained on a large amount of labeled data before being deployed. However, in industrial
applications data is often abundant only in an unlabeled form. Active learning strategies provide a solution to this problem
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F IGURE 1 General online active learning flowchart.

by prioritizing the labeling of the most useful instances for building the model, thus accelerating the convergence of
its learning curve.1 Active learning problems can be classified into three macro-scenarios.2 The first and most studied
scenario is the pool-based scenario, where the learner can select the most useful instances to be labeled by maximizing an
evaluation criterion over a closed set of observations. The second scenario is referred to as membership query synthesis,
and it allows the learner to query the labels of synthetically generated instances rather than those sampled from the process
distribution. Finally, the third scenario is online, or stream-based, active learning.3 In this case, the unlabeled observations
are drawn sequentially by the learner, which must immediately decide whether to keep the instance and query its label
or discard it. While many researchers have been working on active learning in the recent years, the pool-based scenario
has received the most attention.4,5
Although online active learning has become more popular in the last few years,6–10 the majority of the methods have

been developed for classification tasks.11 An interesting approach to online active learning for fuzzy regressionmodels has
been proposed by Lughofer.12 Other researchers tried to adapt the optimality criteria of the experimental design theory to
the online active linear regression framework.13–16 Linear regression models are still very useful in industrial applications
as they can be efficiently trained on a small number of observations. They are able to offer a straightforward interpretation,
along with the possibility of constructing confidence intervals on the parameter estimates.17,18 They can also be easily
coupled with variable selection and robust estimation methods. Furthermore, whereas many pool-based active learning
approaches employ ensemble methods or complex models, linear models can support online active learning due to the
decreased computational cost associated with model training and updating.
Figure 1 depicts a general online active learning flowchart. The main difference among the query strategies lies in how

they assess the usefulness of an unlabeled instance when the learner samples it from the data stream. Another important
aspect is the assumptions on the input distribution. Indeed, despite the increased interest in the online active linear regres-
sion framework, the performance of the sampling strategies in the presence of outliers has not been thoroughly explored.
The few works we are aware of that analyze this issue, are related to the pool-based scenario. Deldossi et al.19 highlighted
how sampling methods based on D-optimality are affected by outliers and high leverage points. Zhao et al.20 focused on
robust active representations based on the𝓁2,𝑝-normconstraints for selecting highly representative data. Finally,He et al.21
emphasized the problem of being prone to sample outliers while proposing a semi-supervised active learning strategy for
multivariate time series classification, using uncertainty and local density.
In this paper, we study the problem of learning from contaminated data streams with limited sampling resources. We

first investigate the effects of outliers on the sampling decisionsmade by state-of-the-art online active learning approaches
for linear regression, and successively propose a solution for this issue. It should be noted that the presence of outliers con-
sidered in this work cannot be tackled using traditional anomaly detection methods. Indeed, most unsupervised anomaly
detection strategies rely on the assumption that a large training set free from outliers, usually referred to as phase I data
in the statistical process control literature, is available beforehand.22–25 However, this assumption is violated in many
practical applications,26 especially in label-scarce scenarios where few to no labels are available before the beginning of
the active learning routine. The proposed strategy for online active learning utilizes a double-threshold approach to limit
the search area of a conditional D-optimality (CDO) algorithm. By using two thresholds, the strategy aims to identify
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CACCIARELLI et al. 279

informative data points while excluding outliers. In cases of highly contaminated environments, robust estimators based
on the Huber and Tukey bisquare loss are employed.
The remainder of this paper is organized as follows. In Section 2, we introduce the terminology and describe the sam-

pling strategies that are used as the baseline in our analysis. Section 3 offers a review on the use of robust estimators and
introduces ways of modifying the CDO algorithm. In Section 4, we test our approach using numerical simulations in four
scenarios, using different contamination ratios. Section 5 offers a discussion on the results obtained. Finally, Section 6
provides some conclusions.

2 BACKGROUND AND RELATEDWORK

The labeled observations that are collected from the contaminated data stream are used to fit a linear model of the form

𝐲 = 𝐗𝛃 + 𝛆 (1)

where 𝐲 is an 𝑛 × 1 vector of response variables, 𝐗 is an 𝑛 × 𝑝 model matrix, 𝛃 is a 𝑝 × 1 vector of regression coefficients,
and 𝛆 is an 𝑛 × 1 vector representing the zero-mean Gaussian noise. Here, 𝑛 represents the total number of observations
and 𝑝 the number of variables. Before starting the active learning routine and the collection of additional labels, it is
commonly assumed to have at our disposal an initial set of labeled observations.5,27,28 This set is used to obtain an initial
estimate �̂� for the coefficients 𝛃. Using an ordinary least squares (OLS) estimator, we have that �̂� = (𝐗T𝐗)−1 𝐗T𝐲. Then,
the fitted linear regression model is �̂� = 𝐗�̂�, and the residuals are obtained as 𝐞 = 𝐲 − �̂�. When the variables are highly
correlated, a pre-whitening might be performed to avoid an ill-conditioned problem when computing (𝐗T𝐗)−1. It should
be noted that the matrix 𝐗T𝐗 is important to obtain information about the design geometry. In particular, for a design
composed of 𝑛 runs, the moment matrix, 𝐌 = 𝐗T𝐗∕𝑛, plays a central role in the definition of optimal experimental
designs. The two most commonly employed optimality criteria, which have been adapted for the online active learning
scenario, are A-optimality and D-optimality. An A-optimal design is achieved by minimizing the trace of the inverse of
the moment matrix 𝐌. It can be shown how this corresponds to minimizing the individual variances of the estimated
coefficients. This approach has been adapted for the online active linear regression framework by Riquelme et al.14 They
proposed a norm-thresholding algorithm that only selects observations 𝐱with large, scaled normby estimating a threshold
Γ as

PD (‖𝐱‖ ≥ Γ) = 𝛼 (2)

where 𝛼 is the ratio of observations we are willing to label out of the incoming data stream. The probability distribution
of the norms can be approximated using kernel density estimation (KDE) on a set of unlabeled observations 𝐂, which
can be regarded as a warm-up or calibration set and can either be retrieved from historical data or by observing the data
stream for a while. Using this thresholding approach, we would be sampling, with high probability, observations that help
achieve A-optimality. Given 𝑛 statistics, (𝑠1, … , 𝑠𝑛), KDE can be used to estimate the shape of an unknown distribution 𝑓
using

𝑓 (𝑠) =
1

𝑛

𝑛∑
𝑖=1

1

ℎ
𝐾
( 𝑠 − 𝑠𝑖

ℎ

)
(3)

where the bandwidth ℎ is a positive number that is used to control the amount of smoothing, and the kernel𝐾 is a smooth
function such that 𝐾(𝑠) ≥ 0, ∫ 𝐾(𝑠)𝑑𝑠 = 1, ∫ 𝑠𝐾(𝑠)𝑑𝑠 = 0 and 𝜎2

𝐾
≡ ∫ 𝑠2𝐾(𝑠)𝑑𝑠 > 0. In this paper, the Gaussian (Normal)

kernel, 𝐾 (𝑠) = (2 𝜋)−1∕2 𝑒−𝑠
2∕2 is used.

D-optimality is another fundamental criterion,29 which takes both the variances and covariances of the model coeffi-
cients into account by maximizing the determinant of the moment matrix𝐌. As in the case of A-optimality, D-optimality
has been adapted to the online active learning scenario with the proposal of a CDO algorithm.16 CDO suggests setting a
threshold Γ by using

PD

(
𝐱T
𝑙+1

(
𝐗T
𝑙
𝐗𝑙

)−1
𝐱𝑙+1 ≥ Γ

)
= 𝛼 (4)
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280 CACCIARELLI et al.

where 𝐗𝑙 is the model matrix with the 𝑙 labeled observations currently available and 𝐱𝑙+1 is the unlabeled data point that
is under evaluation. It can be shown that by selecting observations that maximize 𝐱T

𝑙+1
(𝐗T

𝑙
𝐗𝑙)

−1𝐱𝑙+1, we are at the same
time seekingD-optimality and labeling observationswith a large unscaled prediction variance (UPV),30 which is generally
defined as

UPV (𝐱) = 𝐱(𝑚)T
(
𝐗T𝐗

)−1
𝐱(𝑚) (5)

where 𝐱(𝑚) represents the data point where the UPV is being estimated, expanded to the model form (e.g., if polynomial
features are added to themodel). To estimate the threshold Γ, we use KDE after computing the UPV of all the observations
in 𝐂. The CDO intuition is coherent with the idea that a point for which we have a large UPV value represents a less
explored region of the input space and will help, with high probability, attaining D-optimality, conditional on the already
collected observations. The equivalence between sampling data points with high UPV and D-optimality is demonstrated
in our previous work.16
Given these preliminaries, we now propose methods that are robust to the presence of outliers in the data stream.

3 METHODS

When training a linear regression model on a dataset corrupted by the presence of outliers, a simple yet effective solution
is to resort to the use of robust estimators. An extensive overview of robust regression has been provided by Fox and
Weisberg.31 In general, robust estimation methods attempt to estimate the coefficients �̂� by minimizing a particular loss
function given by

 =

𝑛∑
𝑖=1

𝜌 (𝑒𝑖) =

𝑛∑
𝑖=1

𝜌
(
𝑦𝑖 − 𝐱𝑖�̂�

)
(6)

where 𝜌 is a function that regulates the contribution of each residual to the loss, and 𝑒𝑖 is the residual for the 𝑖th observation
(𝐱𝑖, 𝑦𝑖). The function 𝜌 is nonnegative, equal to zero when the argument is zero, symmetrical and monotone in |𝑒|. In the
case of an OLS estimator, the loss is given by

𝜌𝐿𝑆 = 𝑒2 (7)

It can be seen how the objective function minimized by an OLS estimator is equally affected by all the observations
for which we measure the residuals. Instead, robust estimators try to reduce the impact of observation with very large
residuals on the estimation of �̂�. One of the most popular robust loss functions is the Huber loss,32 which is defined as

𝜌𝐻 =

{
𝑒2 𝑓𝑜𝑟 |𝑒| ≤ 𝑘

2𝑘 |𝑒| − 𝑘2 𝑓𝑜𝑟 |𝑒| > 𝑘
(8)

where 𝑘 is a tuning parameter, which is usually set to 1.345𝜎 to achieve 95% efficiency when the errors are normally
distributed, while keeping a good protection against outliers.31 It can be seen how the contribution of each observation is
reduced based on the magnitude of the corresponding residual. However, despite being much more robust than the OLS
estimator, the Huber loss is still proportional to the magnitude of the residuals even when the absolute errors are larger
than 𝑘. Conversely, the Tukey bisquare loss function33 sets a threshold for the residuals, above which the value of the
residuals does not influence the loss.
The Tukey loss function is given by

𝜌𝑇 =

⎧⎪⎨⎪⎩
𝑘2

6

{
1 −

[
1 −

(
𝑒

𝑘

)2]3}
for |𝑒| ≤ 𝑘

𝑘2

6
for |𝑒| > 𝑘

(9)
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CACCIARELLI et al. 281

ALGORITHM 1 Bounded CDO

Input: data stream 𝐒; initial random design 𝐗; warm-up length𝑚; budget 𝐵
Output: an augmented design 𝐙
1: Set 𝐂 = ∅ // calibration set to estimate 𝚺, Γ1, Γ2
2: 𝑖 ← 1, 𝑏 ← 0 // 𝑏 represents the currently used budget
3: while 𝑖 ≤ 𝑚 do
4: Observe the 𝑖th data point 𝐱𝑖 ∈ 𝐒

5: Select 𝐱𝑖 ∶ 𝐂 = 𝐂 ∪ 𝐱𝑖

6: 𝑖 ← 𝑖 + 1

7: end while
8: Estimate the covariance matrix 𝚺 from 𝐂 and perform eigendecomposition 𝚺 = 𝐔𝚲𝐔T

9: Whiten the initial design by computing 𝐙 = 𝚲−1∕2 𝐔T𝐗

10: Whiten the calibration set by computing 𝐕 = 𝚲−1∕2 𝐔T𝐂

11: Estimate Γ1, Γ2 by estimating the UPV of the model trained on 𝐙 on the points in 𝐕
12: while 𝑏 ≤ 𝐵 and 𝑖 ≤ |𝐒| do
13: Observe the 𝑖th data point 𝐱𝑖 ∈ 𝐒

14: Whiten 𝐱𝑖 by computing 𝐳𝑖 = 𝚲−1∕2 𝐔T𝐱𝑖

15: if Γ1 ≤ 𝐳T
𝑖
(𝐙T𝐙)−1𝐳𝑖 ≤ Γ2 then

16: Ask for the label 𝑦𝑖 and augment the labeled dataset 𝐙 = 𝐙 ∪ 𝐳𝑖

17: 𝑏 ← 𝑏 + 1

18: Update thresholds Γ1, Γ2 using the augmented design
19: else
20: Discard 𝐱𝑖
21: 𝑖 ← 𝑖 + 1

22: end if
23: end while
24: return 𝐙

where the value of the tuning constant 𝑘 is usually set up to 4.685𝜎.31 Besides using aHuber or Tukey loss to obtain a robust
estimator, we consider the possibility of filtering out outliers while selecting the most informative observations from the
data stream. To this extent, we propose an adaptation of the CDO algorithm, where instead of estimating a threshold, we
define a bounded area of interest for the unscaled prediction variance of an observation as

PD

(
Γ1 ≤ 𝐱T

𝑙+1

(
𝐗T
𝑙
𝐗𝑙

)−1
𝐱𝑙+1 ≤ Γ2

)
= 𝛼 (10)

This approach is hereinafter referred to as bounded CDO. The idea is coherent with the method proposed by Hoaglin
and Welsch.34,35 of considering as potential outliers observations for which 𝐱T

𝑖
(𝐗T𝐗)−1𝐱𝑖 ≥ 2𝑝∕𝑛 is verified. The filtering

approach suggested by Hoaglin andWelsch is also used by Deldossi et al.,19 in the offline scenario. Here, instead of opting
for a fixed value for Γ2, we use KDE with a Gaussian kernel to estimate Γ1 and Γ2. The upper limit Γ2 is selected by deter-
mining a cut-off value 𝑐, which is related to the amount of protection against outliers that we would like to achieve. This
value is a tuning constant similar to the 𝑘 used by robust estimators and, when possible, should be selected by exploiting
previous knowledge of the process. Given the cut-off value 𝑐 and the sampling rate 𝛼, Γ2 is given by the 100(1 − 𝑐)% per-
centile, and Γ1 by the 100(1 − 𝑐 − 𝛼)% percentile. As anticipated in Section 2, the threshold estimation is based on a set of
unlabeled data, which is also used to estimate the covariance matrix 𝚺 and whitening the observations to remove depen-
dencies and facilitate the estimation of �̂�. At this stage, semi-supervised methods might also be considered to perform
tasks like feature extraction and exploit all the information available in the unlabeled data.21,36–39
Algorithm 1 provides a detailed explanation of how to implement the bounded CDO strategy for online active learn-

ing in a fixed-budget setting. The strategy involves collecting new labels and incorporating them into the design until a
specified budget constraint 𝐵 is reached. In some cases, it might be beneficial to anticipate the stop of the active learning
routine if the marginal improvement of the model is no longer significant.40 Previous studies have proposed various stop-
ping criteria to enhance the efficiency of data collection schemes based on active learning.41–45 Appendix A explores how
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282 CACCIARELLI et al.

some of these approaches could be adapted to the regression framework. From a computational standpoint, the update
of �̂� is done by means of a complete retraining each time a new labeled example is added to the design. However, if the
data matrix becomes considerably large and the time required for model updates increases, one may opt to update the
model and estimate new thresholds when a batch of new observations is collected, aligning with the principles of batch-
mode active learning.46 Additionally, incremental and recursive updating techniques can also be considered for improving
computational efficiency.
The estimation of the UPV can be modified by taking into account the weight matrix obtained from the robust

estimators. The weighted UPV (UPV𝑤) is estimated as follows

UPV𝑤 (𝐱) = 𝐱(𝑚)T
(
𝐗T𝐖𝐗

)−1
𝐱(𝑚) (11)

where 𝐖 represents the weight matrix used to downweigh the influence of outliers in the estimation of the regression
parameters.31 Each element of the weight matrix𝐖 is a positive number that determines the weight given to each obser-
vation in the regression analysis. Larger weights correspond to observations with less outlier-like behavior, while smaller
weights correspond to observations with more outlier-like behavior. The weight matrix 𝐖 is a diagonal matrix, where
each diagonal element corresponds to the weight assigned to a particular observation. In the case of an OLS estimator, we
have𝐖 = 𝐈𝑘, as the weight given to each observation is not sensitive to the residual. In other words, 𝑤𝐿𝑆(𝑒) = 1, regard-
less of the specific residual observed. With a Huber estimator, 𝑤𝐻(𝑒) = 1 if |𝑒| ≤ 𝑘 and 𝑤𝐻(𝑒) = 𝑘∕|𝑒| if |𝑒| > 𝑘. Finally,
with a Tukey model, 𝑤𝑇 (𝑒) = 0 if |𝑒| > 𝑘 and to 𝑤𝑇 (𝑒) = [1 − (𝑒∕𝑘)

2
]2 if |𝑒| ≤ 𝑘. Then, to select the most informative

observations while seeking protection against outliers, instead of estimating a single threshold, we define a bounded area
of interest for the unscaled prediction variance of an observation as follows

PD

(
Γ1 ≤ 𝐱T

𝑙+1

(
𝐗T
𝑙
𝐖𝐗𝑙

)−1
𝐱𝑙+1 ≤ Γ2

)
= 𝛼 (12)

4 EXPERIMENTS

In the experiments, we evaluate the performance of the active learning strategies in four scenarios, according to the
percentage of outliers affecting the data stream. We compare the bounded CDO strategy, coupled with OLS and robust
estimators, to the norm-thresholding approach, standard CDO, and random sampling. When using random sampling,
each time a new sample arrives, a number 𝑟 ∼ 𝑈(0, 1) is generated and the data point is only selected if 𝑟 ≥ 1 − 𝛼, where
𝛼 represents the labeling or sampling rate. The sampling strategies based on the use of robust estimators select the most
informative data points using the standard UPV, as in Equation (10). The results obtained with the weighted prediction
variance, UPV𝑤, were very similar and are included in the Appendix B for completeness. All the approaches receive as
input the same random design and then they iteratively collect labeled observations until the budget constraint 𝐵 is met.
The number of observations contained in the initial design is equal to 𝑝 + 2, where 𝑝 is the number of process variables.
We analyzed both the case of the initial design being outliers-free and contaminated. The results assuming the presence
of outliers also in the initial design are included in the Appendix C. For each simulated scenario, the 𝑖th observation for
the process variables, here considered a row vector, is generated according to a joint multivariate normal distribution

𝐱𝑖 ∼ 𝑝 (𝟎, 𝚺0) (13)

where 𝚺0 is given by 𝜎2𝐱𝐈. The corresponding response is obtained using

𝑦𝑖 = 𝐱𝑖 𝛃 + 𝜀𝑖, where 𝜀𝑖 ∼ 
(
0, 𝜎2𝜀

)
(14)

For normal data points, we used 𝜎𝐱 = 𝜎𝜀 = 1 for both input and output variables, and, for simulating outliers, we set
𝜎𝐱 = 𝜎𝜀 = 3.Moreover, for each of the true coefficients of the underlyingmodel,we assumed𝛽 ∼ 𝑈(−5, 5) for normal data
points and 𝛽 ∼ 𝑈(10, 15) for outliers. As in Deldossi et al.,19 the outliers are introduced in the data stream in the form of
isolated covariate and concept shifts. That is, an anomalous data point is a point for which we have both a larger variation
in the input space, and a different relationship with the corresponding response variable. In the simulated scenarios,
outliers are randomly distributed in the data stream according to a pre-defined percentage describing the contamination
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F IGURE 2 Comparing query strategies in the absence of outliers: results from 1000 simulations. Plots (B) and (D) offer a closer view of
the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the simulations.

level of the environment. The performance of the models is expressed, in predictive terms, by the root mean squared error
(RMSE) of the predictions on a separate test set, only composed of normal observations. This is coherent with the objective
of trying to understand the true underlying relationship between predictors and response, and not the erroneous one that
could be derived from the outliers.
The effectiveness of the proposed approach is evaluated by comparing the learning curves reporting the average RMSE

values for each learning step, which are obtained using 1000 simulations for each scenario. A learning step indicates
the acquisition of a new labeled observation and its inclusion in the training set. Hence, at each step, we are comparing
models that are trained using the same number of labeled examples. We set the number of process variables equal to
20, the budget constraint 𝐵 equal to 50, and the warm-up length 𝑚 to 500. The warm-up length indicates the number of
unlabeled observations that are used to estimate the covariance matrix 𝚺 that is used for pre-whitening the observations.
With regards to the sampling rate, we used 𝛼 = 5% for all the sampling strategies, and 𝑐 = 5% for the protection cut-off
value used by the bounded CDO algorithm. We selected 5% as it is a commonly employed value, especially when no
previous specific knowledge is available.
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F IGURE 3 Comparing query strategies with 0.275% outliers (1000 simulations). Plots (B) and (D) offer a closer view of the two best
strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the simulations.

4.1 No outliers

We first evaluated the query strategies to assess their performance in the absence of outliers. Consistently with the findings
reported in our previous work,16 our results in Figure 2 indicate that the standard CDO algorithm performs best when
there are no outliers in the data stream. The use of robust estimators does not provide any added value in this scenario.
Both the Huber and Tukey estimators are unable to outperform the bounded CDO strategy with the OLS model, which
in turn is only marginally worse than the standard CDO. In Figure 2, plots (A) and (B) represent the strategies that rely
on the OLS models, while plots (C) and (D) show the strategies that use robust models, with the bounded CDO based on
OLS included for comparison.

4.2 0.275% outliers

The second scenario depicts a circumstance where only amodest fraction of the data stream is represented by outliers. We
can see from the plot (A) of Figure 3 how the performance of the norm-thresholding and theCDOalgorithm is dramatically
worsened, as they are both prone to sample outliers. The random strategy seems to be a better option and the bounded
CDO strategy offers the best results. In the plots (C) and (D) of the same figure, we can see the comparison with the
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F IGURE 4 Comparing query strategies with 1% outliers (1000 simulations): results from 1000 simulations. Plots (B) and (D) offer a
closer view of the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the
simulations.

results obtained from the robust estimators. In this scenario, using a robust estimator does not seem to offer a significant
improvement over the bounded CDO strategy based on OLS. Indeed, the learning curves obtained with the bounded
strategy employing the OLS estimator and the Huber estimator are very similar.

4.3 1% outliers

The third scenario reports a worse situation, where the process is affected by a large number of outliers, that is, 1% of
the total number of observations. The results in Figure 4 are similar to the ones from the previous scenario, with the
exception that now the gap between bounded CDO and random sampling is much wider. This should be due to the fact
that uniformly sampling observations with 𝛼 = 5% would most certainly lead to the inclusion of a greater number of
outliers in the training set.
As per the robust estimators shown in the plots (C) and (D) of Figure 4, it is possible to see how the use of robust

estimators now offers an evident value-added, also when compared to the OLS-based bounded CDO. While the learning
curves are more or less overlapping in the first five learning steps, the models fitted using the Huber and Tukey losses are
yielding a lower prediction error in the remaining steps.
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F IGURE 5 Comparing query strategies with 5% outliers (1000 simulations): results from 1000 simulations. Plots (B) and (D) offer a
closer view on the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the
simulations.

4.4 5% outliers

The final scenario simulates a pathological case, where 5% of the observations from the data stream are outliers. The
results from the third scenario are exacerbated here. In the case of the OLS estimators, the bounded CDO is still the best
strategy, being the only one with a descending learning curve (plots (A) and (B) of Figure 5). Instead, from the plots (C)
and (D) of Figure 5 we can see how the robust estimators are able to improve the results obtained with the bounded CDO
strategy. In this circumstance, there is not a clear distinction between the Huber and the Tukey models.

5 DISCUSSION

The experiments presented in this study aimed to evaluate the performance of different active learning strategies in the
presence of outliers in a data stream. The results showed that the standard CDO algorithm performed best in the absence
of outliers, while the bounded CDO strategy coupledwith OLS and robust estimators provided better results when outliers
were present. In scenarios where an initial training set free from outliers is available and only amodest fraction of the data
stream is represented by outliers, the bounded CDO strategy employing an OLS estimator seems to be the better option.
Conversely, in the case of a larger contamination level, sampling strategies based on robust estimators yield the best results.
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When using robust estimators, for our datasets we did not find solid evidence that using a weighted prediction variance
is an advantage. Another interesting observation is that, in the presence of outliers, the standard OLS methods (random,
norm-thresholding, and CDO) never converge to the results obtained with the robust query strategies. This is because
they tend to accumulate outliers in the training set, which degrade the predictive performance as themodel is not allowed
to forget old or redundant data. The findings from this study have important consequences for practical applications of
active learning strategies, especially in contexts where the data stream is contaminated by outliers. The results suggest
that the choice of the active learning strategy should depend on the level of contamination of the data stream. When
the data stream is free from outliers, the standard CDO is a good strategy. However, even when a modest fraction of the
observations is corrupted, bounding the search area of the active learning algorithm or using robust estimators might be
necessary. Overall, this study provides valuable insights into the performance of active learning strategies in the presence
of outliers and can inform the development of more effective approaches for real-world applications. However, it is worth
noting that the simulations were based on specific assumptions about the data generation process and may not fully
capture the complexity of real-world data streams. Further research is needed to validate these findings on real-world
datasets and to investigate the generalizability of the proposed approach.

6 CONCLUSIONS

In many real-world problems, data is only available in an unlabeled form, and acquiring the labels is often an expensive
and time-consuming task. In these circumstances, active learning is able to reduce the computational burden required
to achieve compelling predictive performance by selecting the most informative data points to query. In this paper, we
analyze the online active learning framework when the data stream is corrupted by the presence of outliers. In general,
we show how the presence of outliers dramatically worsens the performance of the currently proposed methods for active
linear regression. To tackle this issue, we propose a modification of the CDO algorithm that filters the outliers, while
still focusing on the most promising observations based on the concepts of D-optimality and prediction variance. The
analysis shows how this solution is sufficient to make the CDO strategy robust to a modest presence of outliers. When the
percentage of outliers in the data stream is higher, the best results are obtained by coupling the bounded CDO strategy
with a robust estimator. In general, the proposed approaches can effectively solve the problem of outliers contaminating
the data stream, without adding computational complexity compared to the original CDO strategy.
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APPENDIX A: STOPPING CRITERION
In real-world applications of active learning, if we do not have an explicit operational budget on the number of experiments
that can be run, it can be challenging to determine when to stop collecting new labels due to the unavailability of the true
learning curves. To address this problem, it is beneficial to approximate the learning curve using proxy measures. In this
study, we investigate the use of two proxy measures. Firstly, we propose monitoring the slope of the stabilization score,
drawing inspiration from the stabilizing predictions47 and validation set agreement48 methods employed in classification.
In the regression framework,we calculate the stabilization of predictions by averaging the sumof squares of the differences
between the predictions of the 𝑤 most recent pairs of models. Similarly to Bloodgood and Vijay-Shanker,47 we utilize a
window size of 3 (𝑤 = 3). The values being compared are the predicted values of the calibration set 𝐂, obtained through
successive models. As the examples in 𝐂 are not used in the annotation process, this curve is solely influenced by the
impact of selected and labeled examples on training new models. Essentially, this curve monitors when the predictions
from models trained with newly included observations start producing highly similar results. The stopping rule can then
be determined through visual inspection of the curve, by setting a tolerance for the sum of squares not improving or

F IGURE 6 Approximating the learning curve: random sampling with no outliers (1000 simulations). The left axis reports the RMSE
value for the curves related to the test error and the LOO-CV. The right axis shows the average sum of squares related to the stabilization score.
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approaching zero, or by applying a hypothesis testing procedure. Another performance-based metric we consider is the
leave-one-out cross-validation (LOO-CV) score obtained by the model on the currently available labeled observations.
While this technique relies on ground-truth labels and may appear advantageous, it may not be the optimal choice if
the collected training set is biased or does not accurately represent the real data distribution.49 On the other hand, the
stabilization score, despite not relying on real labels, could be more reliable if the calibration set 𝐂 follows the population
distribution. Figure 6 demonstrates the effectiveness of the two proposed methods in approximating the true test error
curve, offering valuable insights for determining when to halt the active learning routine.

F IGURE 7 Comparing UPV and UPV𝑤 in the scenario with 0.275% outliers (1000 simulations).
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APPENDIX B: WEIGHTED PREDICTION VARIANCE
In this section,we examine the impact of switching from the standardUPV to itsweighted version on the learning curves of
the robust bounded CDO strategies.While it may seem reasonable to use aweighted prediction variance from a theoretical
standpoint, we found little compelling evidence that it improves performance even with the use of robust estimators
(Figures 7–9). In fact, we observed that using the UPV𝑤 actually worsens results when the initial design is free from
outliers. This could be because the robust models mistakenly identify some observations as outliers, resulting in𝐖 ≠ 𝐈𝑘.

F IGURE 8 Comparing UPV and UPV𝑤 in the scenario with 1% outliers (1000 simulations).
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F IGURE 9 Comparing UPV and UPV𝑤 in the scenario with 5% outliers (1000 simulations).
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APPENDIX C: PRESENCE OF OUTLIERS IN THE INITIAL DESIGN
In Figures 10–12, we investigate the impact of removing the assumption that the initial design is free from outliers on
the sampling strategies. Despite the small size of the initial design when 𝑝 = 20, we observed several notable behaviors.
One of the most noticeable differences is that the learning curves start with higher errors, as there are outliers forcibly
included in the data. However, over time, the learning curves of the robust strategies are able to converge to satisfactory
predictive performance as they canminimize the impact of these observations on themodel training. In contrast, the OLS-
based bounded CDO performs significantly worse in this scenario. This is because estimating the cutoff value Γ2 using a
contaminated set does not provide adequate protection against the inclusion of outliers in the design.

F IGURE 10 Comparing query strategies with 0.275% outliers (1000 simulations): results from 1000 simulations. Plots (B) and (D) offer a
closer view of the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the
simulations.
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F IGURE 11 Comparing query strategies with 1% outliers (1000 simulations): results from 1000 simulations. Plots (B) and (D) offer a
closer view of the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the
simulations.
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F IGURE 1 2 Comparing query strategies with 5% outliers (1000 simulations): results from 1000 simulations. Plots (B) and (D) offer a
closer view of the two best strategies from plots (A) and (C), respectively, with shaded regions indicating the standard deviation across the
simulations.

 10991638, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3392 by D

anish T
echnical K

now
ledge, W

iley O
nline L

ibrary on [20/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



296 CACCIARELLI et al.

AUTH OR BIOGRAPH IES

Davide Cacciarelli is a PhD student at the Technical University of Denmark and the Norwegian University of Science
and Technology. His research is related to active learning and statistical process monitoring.

Murat Kulahci is a Professor at the Technical University of Denmark and Luleå University of Technology. His
research focuses on the design of physical and computer experiments, statistical process monitoring, time series
analysis and forecasting, and financial engineering.

John Sølve Tyssedal is a Professor at the Norwegian University of Science and Technology. His research interests
include design of experiments, statistical process control and time series analysis.

 10991638, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3392 by D

anish T
echnical K

now
ledge, W

iley O
nline L

ibrary on [20/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Robust online active learning
	Abstract
	1 | INTRODUCTION
	2 | BACKGROUND AND RELATED WORK
	3 | METHODS
	4 | EXPERIMENTS
	4.1 | No outliers
	4.2 | 0.275&#37; outliers
	4.3 | 1&#37; outliers
	4.4 | 5&#37; outliers

	5 | DISCUSSION
	6 | CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	APPENDIX A: STOPPING CRITERION
	APPENDIX B: WEIGHTED PREDICTION VARIANCE
	APPENDIX C: PRESENCE OF OUTLIERS IN THE INITIAL DESIGN
	AUTHOR BIOGRAPHIES


