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Abstract
This doctoral dissertation explores the concept of ion-ion association within electrolyte so-
lutions, with the aim of enhancing existing methods for predicting the properties of such
solutions. This study follows two distinct paths that eventually come together to form a uni-
fied framework. Initially, an emphasis is placed on investigating the electrical conductivity,
a key transport property significantly affected by ion pair formation in electrolyte solutions.
Within this research, theoretical works dedicated to predicting electrical conductivity are
identified from the existing literature. Through a comparative study, their strengths and
weaknesses are elucidated. Subsequently, two novel models, one for single-salt and another
for multi-salt electrolytes, are developed to predict the electrical conductivity of electrolyte
solutions under the assumption of complete dissociation. These models are constructed
based on the Ebeling hierarchy of Smoluchowski dynamics and Debye-Hückel-Onsager the-
ory. Rigorous evaluations are conducted by comparing the predictions of the models with
experimental data. The findings affirm that the developed models exhibit high accuracy and
reliability under conditions where the assumption of complete dissociation holds.

In the second line of research, the issue of ion pairing in electrolyte solutions is approached
from a thermodynamic perspective. This research, similar to the first, begins with a thorough
examination of the equations of state for charged hard sphere fluids. This investigation
involves comparing the predictions of four distinct equations of state, which consider ion
pairing and serve as the foundation for other models, with numerical solutions to the Poisson-
Boltzmann equations, Monte Carlo simulations, and experimental data.

Subsequently, a novel equation of state named Binding Debye-Hückel for charged hard
sphere fluids is developed. This model draws on the Debye-Hückel theory, Kirkwood theory,
Wertheim theory, and the reference cavity approximation. To validate the BiDH model, its
predictions are compared with Monte Carlo simulations documented in the existing literature.
The validation specifically focuses on evaluating the mean ionic activity coefficient, the
individual activity coefficient, and the osmotic coefficient. Through meticulous evaluations,
the study demonstrates the accuracy and reliability of the BiDH model.

In the final research phase, the models previously established and verified for electrical
conductivity, which did not consider the impact of ion pairing, are combined with the Bind-
ing Debye-Hückel model designed to account for ion pairing effects. Initially, an effort is
made to predict the properties, particularly electrical conductivity, of diverse electrolyte
solutions where ion pairing may play a significant role. This includes aqueous electrolyte
solutions, mixed-solvent electrolyte solutions, and ionic liquid-co-solvent systems, all under
the assumption of an implicit solvent model.

Subsequently, a novel electrolyte equation of state termed Binding eSAFT-VR-Mie is
formulated. Following this, a new unified framework for the development and validation of
models for electrolyte solutions is introduced. This unified approach is applied to predict
the properties of aqueous electrolyte solutions across a spectrum of affinity for forming ion
pairs, ranging from slightly or non-associative to highly associative electrolyte solutions. The
study provides evidence of the effectiveness and reliability of this unified framework.
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Resume
Denne phDafhandling udforsker konceptet ion-ion-associering inden for elektrolytopløsninger
med det formål at forbedre eksisterende metoder til at forudsige egenskaberne af sådanne
opløsninger. Denne afhandling følger to forskellige spor, der til sidst samles for at danne
en forenet ramme. Indledningsvist lægges der vægt på undersøgelsen af elektrisk ledning-
sevne, en nøgletransportegenskab, der påvirkes betydeligt af dannelse af ionpar i elektroly-
topløsninger. Inden for denne forskning identificeres teoretiske værker, der er dedikeret til
at forudsige elektrisk ledningsevne, fra den eksisterende litteratur. Gennem en sammen-
lignende undersøgelse afklares deres styrker og svagheder. Derefter udvikles to nye mod-
eller, en for enkeltsalt og en anden for multisalt-elektrolytter, til at forudsige den elektriske
ledningsevne af elektrolytopløsninger under antagelsen om fuldstændig dissociation. Disse
modeller er konstrueret baseret på Ebeling-hierarkiet af Smoluchowski-dynamik og Debye-
Hückel-Onsager-teori. Der udføres strenge evalueringer ved at sammenligne modellernes
forudsigelser med eksperimentelle data. Resultaterne bekræfter, at de udviklede modeller
udviser høj nøjagtighed og pålidelighed under forhold, hvor antagelsen om fuldstændig dis-
sociation gælder.

I den anden forskningslinje behandles problemet med ionparbinding i elektrolytopløs-
ninger fra en termodynamisk synsvinkel. Denne forskning, ligesom den første, begynder med
en grundig undersøgelse af ligningerne for tilstandsændringer for opladede hårde kuglefluider.
Denne undersøgelse omfatter sammenligning af forudsigelser fra fire forskellige ligninger for
tilstandsændringer, der medregner ionpardannelse og tjener som grundlag for sammenlign-
ing med andre modeller, med numeriske løsninger til Poisson-Boltzmann-ligninger, Monte
Carlo-simulationer og eksperimentelle data.

Derefter udvikles en ny model kaldet Binding Debye-Hückel for opladede hårde kugleflu-
ider. Denne model bygger på Debye-Hückel teorien, Kirkwood teorien, Wertheim teorien
og RCA. For at validere BiDH-modellen sammenlignes dens forudsigelser med Monte Carlo-
simulationer dokumenteret i den eksisterende litteratur. Valideringen fokuserer specifikt
på vurdering af den gennemsnitlige ioniske aktivitetskoefficient, den individuelle aktivitet-
skoefficient og den osmotiske koefficient. Gennem omhyggelige evalueringer demonstrerer
undersøgelsen nøjagtigheden og pålideligheden af BiDH-modellen.

I den sidste forskningsfase kombineres modellerne, der tidligere er etableret og verifi-
ceret for elektrisk ledningsevne, uden at tage hensyn til virkningen af ionparbinding, med
Binding Debye-Hückel-modellen designet til at tage hensyn til virkningen af ionparbind-
ing. Indledningsvis forsøges det at forudsige egenskaberne, især elektrisk ledningsevne, af
forskellige elektrolytopløsninger, hvor ionparbinding kan spille en betydelig rolle. Dette
inkluderer vandige elektrolytopløsninger, opløsningsmiddelblandede elektrolytopløsninger og
ioniske væske-coopløsningsstoffer, alle under antagelse af en implicit opløsningsmiddelmodel.

Derefter formuleres en ny tilstandsligning for elektrolyter kaldet Binding eSAFT-VR-
Mie. Efter dette introduceres en ny forenet ramme for udvikling og validering af modeller
for elektrolytopløsninger. Denne forenede tilgang anvendes til at forudsige egenskaberne af
vandige elektrolytopløsninger på tværs af et spektrum af tilbøjelighed til at danne ionpar,
der spænder fra lidt eller ikke-associerende til meget associerende elektrolytopløsninger. Un-
dersøgelsen præsenterer bevis for effektiviteten og pålideligheden af denne forenede ramme.



x



Contents
Preface v

Abstract vii

Resume ix

Contents xi

List of Figures xvii

List of Tables xxv

Abbreviations xxvii

List of Symbols xxix

I Bringing to the Context 1

1 Introduction 3
1.1 Thermodynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Transport Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Objectives and Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II Electrical Conductivity 13

2 Modeling of the Electrical Conductivity 15
2.1 Physical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Ideal Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Hydrodynamic Contribution . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Electrostatic Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Modeling Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Continuity Equation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Ideal Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Hydrodynamic Contribution . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.4 Relaxation Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.5 Conductivity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



xii Contents

3 Practical Investigation of Electrical Conductivity Models 33
3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Debye-Hückel-Onsager Limiting Law (DHOLL) Model . . . . . . . . . 35
3.1.2 Debye-Hückel-Onsager Extended Equation (DHOEE) Model . . . . . 35
3.1.3 Debye-Hückel-Onsager Smaller-ion Shell (DHOSiS) Model . . . . . . . 36
3.1.4 DHO 1, 2, and 3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.5 Mean Spherical Approximation (MSA) Model . . . . . . . . . . . . . . 38
3.1.6 Mean Spherical Approximation Simple (MSA-Simple) Model . . . . . 39
3.1.7 Quint and Viallard (QV) Model . . . . . . . . . . . . . . . . . . . . . 39

3.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Ions Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Water Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Concentration Dependency . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Temperature Dependency . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.3 Quantitative Assessment of the Accuracy of the Models . . . . . . . . 48
3.5.4 Evaluation of the Relaxation and Electrophoretic Terms . . . . . . . . 52

3.6 Extension of the Models; The Effect of RSP and Viscosity . . . . . . . . . . . 54
3.6.1 RSP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.1.1 Breil-Michelsen-Mollerup (BMM) Model . . . . . . . . . . . . 54
3.6.1.2 Polynomial Correlation . . . . . . . . . . . . . . . . . . . . . 54
3.6.1.3 Simonin et al. Model . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 Viscosity Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.3.1 Effect of RSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.3.2 MSA vs. DHO-based Models . . . . . . . . . . . . . . . . . . 59
3.6.3.3 Effect of Viscosity . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 New Model for the Electrical Conductivity of Electrolyte Solutions;
Single-Salt Systems 69
4.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Choice of the Pair Correlation Function . . . . . . . . . . . . . . . . . 70
4.1.2 Relaxation Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.3 Electrophoretic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.4 Ionic Conductivity Model . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.1 Evaluation of Models 1-3 at 298.15 K . . . . . . . . . . . . . . . . . . 76
4.2.2 Effect of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.1 Comparison With Other Models from the Literature . . . . . . . . . . 80
4.3.2 Evaluation of the Performance of the Developed Models . . . . . . . . 81
4.3.3 Effect of Ionic Properties . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 New Model for the Electrical Conductivity of Electrolyte Solutions;
Mixed-Salt Systems 91
5.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 Relaxation Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.2 Electrophoretic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Contents xiii

III Ion-Ion Association in Electrolyte Solutions 105

6 Thermodynamic Modeling of Ion-Ion Association 107
6.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.1 Chemical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1.2 Statistical Mechanics Approaches . . . . . . . . . . . . . . . . . . . . . 109

6.2 Practical Investigation of Associative Thermodynamic Models . . . . . . . . . 110
6.2.1 Chemical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1.1 Ebeling and Grigo (EG) Approach . . . . . . . . . . . . . . . 112
6.2.1.2 Fisher-Levin-Guillot-Guissani (FLGG) Approach . . . . . . . 113

6.2.2 Statistical Mechanics Approaches . . . . . . . . . . . . . . . . . . . . . 114
6.2.2.1 Zhou, Yeh, and Stell (ZYS) Approach . . . . . . . . . . . . . 114
6.2.2.2 Binding Mean Spherical Approximation (BiMSA) Approach 115

6.2.3 Ion Pairing at Infinite Dilution . . . . . . . . . . . . . . . . . . . . . . 116
6.2.3.1 Bjerrum Approach . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.3.2 Low Concentration Chemical Model (lcCM) . . . . . . . . . 116
6.2.3.3 Ebeling Approach . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.3.4 Barthel and Krienke Approach . . . . . . . . . . . . . . . . . 117

6.2.4 Comparison with simulations and Experiments . . . . . . . . . . . . . 117
6.2.4.1 Comparison with Simulations . . . . . . . . . . . . . . . . . . 117
6.2.4.2 Comparison with the Experimental Data . . . . . . . . . . . 121

6.2.5 Structural Properties; The Importance of Electrical Conductivity . . . 123
6.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Binding Debye-Hückel Theory 135
7.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1.1 Reference Cavity Approximation . . . . . . . . . . . . . . . . . . . . . 137
7.1.2 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.1.2.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.1.2.2 Single-salt System . . . . . . . . . . . . . . . . . . . . . . . . 142
7.1.2.3 Association Constant at Infinite Dilution . . . . . . . . . . . 142
7.1.2.4 Contributions to the Helmholtz Free Energy . . . . . . . . . 143

7.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2.1 Mean Ionic Activity Coefficient . . . . . . . . . . . . . . . . . . . . . . 147
7.2.2 Individual Ionic Activity Coefficient . . . . . . . . . . . . . . . . . . . 147

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3.1 Importance of Ion-Ion Association . . . . . . . . . . . . . . . . . . . . 152
7.3.2 Cavity Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.3.2.1 Cavity Function from the BiMSA Theory . . . . . . . . . . . 155
7.3.2.2 Cavity Function from SAFT . . . . . . . . . . . . . . . . . . 156
7.3.2.3 Cavity Function Assuming Ion Pairs Are Not Dipolar . . . . 157

7.3.3 Effect of RSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.3.4 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.3.5 BiDH vs. BiMSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3.5.1 Sensitivity to Size Asymmetry . . . . . . . . . . . . . . . . . 160
7.3.5.2 Sensitivity to Ion Charges Asymmetry . . . . . . . . . . . . . 161
7.3.5.3 Sensitivity to RSP . . . . . . . . . . . . . . . . . . . . . . . . 162

7.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

IV The Unified Framework 165

8 Implicit Solvent Investigation 167



xiv Contents

8.1 Ion Pairing and Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.1.1 Aqueous Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.1.2 Mixed-solvent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.1.3 Ionic Liquid Co-solvent Systems . . . . . . . . . . . . . . . . . . . . . 171

8.2 Conductivity of Systems Forming Ion Complexes . . . . . . . . . . . . . . . . 173
8.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9 Binding eSAFT-VR-Mie 181
9.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.1.1 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.1.2 SAFT-VR-Mie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.1.3 BiDH Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.1.4 Solvation Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.1.5 Electrical Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.1.6 Thermodynamic and Transport Properties . . . . . . . . . . . . . . . . 192
9.1.7 Unified Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.2.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.2.2 NaCl-H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.2.3 Na2SO4-H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
9.2.4 MgSO4-H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.3.1 How ion-ion association affects the predictions of γm

± , ϕ, ρ, and Λ? . . 209
9.3.2 Importance of standard state association constant; Onsager’s Book-

keeping rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.3.3 What If Ion-Ion Association Is Ignored? . . . . . . . . . . . . . . . . . 212
9.3.4 Higher Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

9.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10 Conclusions and Future Works 215
10.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
10.2 Impact of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Bibliography 218

Appendices 245

Appendix A PhD Activities 247
A.1 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
A.2 Attended Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

A.2.1 International Conferences . . . . . . . . . . . . . . . . . . . . . . . . . 247
A.2.2 Internal Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

A.3 Attended Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
A.4 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Appendix B Electrical Conductivity Models 251
B.1 MSA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
B.2 QV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Appendix C Implicit Solvent Models 257
C.1 Ebeling and Grigo (EG) Approach . . . . . . . . . . . . . . . . . . . . . . . . 257



Contents xv

C.2 Fisher-Levin-Guillot-Guissani (FLGG) Approach . . . . . . . . . . . . . . . . 258
C.3 Zhou-Yeh-Stell (ZYS) Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 259
C.4 Binding Mean Spherical Approximation (BiMSA) Approach . . . . . . . . . . 259

Appendix D Supporting Figures 261
D.1 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
D.2 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
D.3 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
D.4 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289



xvi



List of Figures
1.1 The structure of the Ph.D. thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Independent migration or drift of ions. . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The ionic atmosphere in a stationary state. . . . . . . . . . . . . . . . . . . . . . 19
2.3 A schematic of the hydrodynamic contribution to the electrical conductivity. . . 19
2.4 The egg-shaped ionic atmosphere in the conductance process. . . . . . . . . . . . 20
2.5 A schematic for the relaxation or electrostatic contribution to the electrical con-

ductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Historical background of electrical conductance process. . . . . . . . . . . . . . . 21
2.7 Time scales permitting a rough orientation on the typical dynamic properties of

electrolyte solutions and the corresponding theoretical approaches. . . . . . . . . 24

3.1 A summary of the number of data points and concentration range in the created
database for 126 different electrolytes. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 A summary of the number of references for each electrolyte in the database. . . . 41
3.3 Molar conductivity (Λ) predictions at 298.15 K for various salts: (a) KCl (1:1),

(b) Li2SO4 (1:2), (c) Cu(NO3)2 (2:1), (d) ZnSO4 (2:2), (e) LaCl3 (3:1), and (f)
K3Fe(CN)6 (1:3) by the DHOLL, DHOEE, DHOSiS, MSA, MSA-Simple, and
QV models, plotted against the square root of ionic strength (

√
I). . . . . . . . . 45

3.4 Predicted molar conductivity (Λ) at 298.15 K for various salts: (a) Ca3(Fe(CN)6)2
(2:3), (b) La2(SO4)3 (3:2), (c) Ca2Fe(CN)6 (2:4), and (d) K4Fe(CN)6 (1:4) using
the DHOLL, DHOEE, DHOSiS, MSA, MSA-Simple, and QV models, plotted
against the square root of ionic strength (

√
I). . . . . . . . . . . . . . . . . . . . 46

3.5 Predicted molar conductivity (Λ) of K4Fe(CN)6 using (a) MSA Simple and (b)
DHOEE across various concentrations, plotted against temperatures up to 373.15
K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Predicted molar conductivity (Λ) of NaNO3 using (a) MSA Simple and (b)
DHOEE across various concentrations, plotted against temperatures up to 373.15
K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Predicted molar conductivity (Λ) of various salts using MSA Simple, plotted
against the square root of ionic strength across different temperatures: (a) KCl,
(b) Na2SO4, (c) Ca(NO3)2, and (d) ZnSO4. . . . . . . . . . . . . . . . . . . . . . 49

3.8 The average absolute deviation in percent (AAD%) of the DHOLL, DHOEE,
DHOSiS, MSA, MSA-Simple, and QV models at low, medium, and high con-
centrations for (a) MCl, (b) MCl2, (c) MCl3, (d) MSO4, (e) M(ClO4)2, and (f)
MNO3 aqueous solutions at 298.15 K is presented. . . . . . . . . . . . . . . . . . 50

3.9 The relaxation and electrophoretic terms for KCl as predicted by the DHOLL,
DHOEE, DHOSiS, MSA, MSA Simple, and QV models are plotted against the
square root of the ionic strength at 298.15 K. . . . . . . . . . . . . . . . . . . . . 52

3.10 The influence of concentration-dependent RSP on the predictions made by the
MSA model for various electrolytes at 298.15 K is explored. Electrolytes studied
include (a) LiCl, (b) LiNO3, (c) NaCl, (d) NaNO3, (e) KCl, and (f) KNO3. . . . 58



xviii List of Figures

3.11 The influence of concentration-dependent RSP on the contributions to the relax-
ation and electrophoretic terms, as predicted by the MSA model, is investigated
for aqueous solutions of (I) LiCl, (II) NaCl, and (III) KCl at 298.15 K. . . . . . . 60

3.12 The influence of concentration-dependent RSP on the predictions of the DHO1,
DHO2, and DHO3 models for LiCl and LiNO3 aqueous solutions at 298.15 K is
evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.13 The predictions of DHO1, DHO3, and MSA are compared for (a) LiCl, (b) LiNO3,
(c) NaCl, (d) NaNO3, (e) KCl, and (f) KNO3 aqueous solutions at 298.15 K using
RSP models 1 and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.14 The influence of concentration-dependent viscosity and RSP on the predictions of
the MSA-Simple and DHO3 models for LiCl, NaCl, and KCl in aqueous solutions
at 298.15 K is examined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 The RDFs derived from various approaches, including the DH theory (gDH
+− and

gDH
−+ ), the symmetrical DH theory (gSDH

+− ), the MSA theory (gMSA
+− ), and MC

simulations (gMC
+− ), are presented for 1:1 aqueous solutions. . . . . . . . . . . . . 72

4.2 The molar conductivity (Λ) for various aqueous solutions at 298.15 K is plotted
against the square root of ionic strength (

√
I). . . . . . . . . . . . . . . . . . . . 77

4.3 The molar conductivity for aqueous solutions of (a) NaCl, (b) KCl, (c) BaCl2,
and (d) Na2SO4 is presented over a temperature range of 273.15 to 373.15 K. . . 79

4.4 The molar conductivity predictions at 298.15 K for (a) Na4Fe(CN)6, (b) K4Fe(CN)6,
(c) Ca3(Fe(CN)6)2, and (d) LaFe(CN)6 aqueous solutions by Models 1-3 are com-
pared with those from the MSA model, the MSA-Simple model, and the DHO3
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 The predictions for the electrophoretic effects shown in graphs (i) and (ii), as
well as the relaxation effect depicted in graph (iii), for (a) Na4Fe(CN)6, (b)
K4Fe(CN)6, (c) Ca3(Fe(CN)6)2, and (d) LaFe(CN)6 aqueous solutions at 298.15
K by Models 1-3 are compared with those from the MSA model, the MSA-Simple
model, and the DHO3 model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 The influence of higher order terms on the relaxation and electrophoretic effects
from the MSA model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 The contributions to the ionic conductivity have been predicted by Model 1-3,
MSA, MSA-Simple, and DHO3 models for aqueous solutions of NaCl, BaCl2,
LaCl3, Li2SO4, MgSO4, La2SO4, K3Fe(CN)6, Ca3(Fe(CN)6)2, and LaFe(CN)6
at a temperature of 298.15 K and an ionic strength of 1 mol · L−1. . . . . . . . . 88

4.8 The transference numbers of the cation (t+) for aqueous solutions of hydrochloric
acid (HCl), lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride
(KCl), barium chloride (BaCl2), calcium chloride (CaCl2), magnesium chloride
(MgCl2), and lanthanum chloride (LaCl3) at 298.15 K are depicted. . . . . . . . . 89

5.1 This figure presents the molar conductivity (Λ) of KCl-NaCl-H2O (green lines
and points), KBr-NaBr-H2O (red lines and points), and KI-NaI-H2O (blue lines
and points) solutions at 298.15 K predicted by the new model compared with the
experimental measurements reported in the literature. . . . . . . . . . . . . . . . 96

5.2 The molar conductivity (Λ) of HCl-LiCl-H2O (green lines and points), HCl-NaCl-
H2O (red lines and points), and HCl-KCl-H2O (blue lines and points) solutions
at 298.15 K predicted by the new model compared with the experimental data
reported in the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 This figure presents the molar conductivity (Λ) of KCl-NaCl-H2O at 298.15 K
where xKCl varies from 0 to 1 at various solution’s ionic strengths. . . . . . . . . 97



List of Figures xix

5.4 This figure presents the molar conductivity (Λ) of MgSO4-NaCl-H2O (dashed
lines and square points), and CaSO4-NaCl-H2O (solid lines and circle points)
solutions at various temperature varies from 0 to 298.15 K. . . . . . . . . . . . . 98

5.5 This figure presents the molar conductivity (Λ) of (a) MgCl2-NaCl-H2O and
(b)BaCl2-NaCl-H2O solutions at 298.15 K depicted versus the ionic strength (I)
where xNaCl varies from 0 to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 This figure presents the predicted vs. observed plot of the molar conductivity of
mixed salt-water ternary solutions at 298.15 K. . . . . . . . . . . . . . . . . . . . 100

6.1 Thermodynamic modeling of associative electrolyte solutions. . . . . . . . . . . . 108
6.2 Comparison of the models’ electrostatic contributions with the IPBE for (a) 1:1

electrolytes with σ = 4 × 10−10 m, (b) 2:2 electrolytes with σ = 4 × 10−10 m, and
(c) 3:3 electrolytes with σ = 8 × 10−10 m, all calculated in aqueous solutions at
298.15 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 The electrostatic contribution of the FLGG model is notably influenced by the
choice of infinite dilution association constant models. The figure highlights these
effects across different σ values, specifically (a) σ = 4 × 10−10 m, (b) σ = 4 ×
10−10 m, and (c) σ = 8 × 10−10 m. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Comparison of the MIAC predicted by EG, FLGG, BiMSA, and ZYS models
with the MC simulations for a 2:2 aqueous electrolyte solution at 298.15 when
(a) σ = 4.25 × 10−10 m and (b) σ = 4.2 × 10−10 m. . . . . . . . . . . . . . . . . . 120

6.5 Similar to Figure 6.4, this figure contrasts the MIAC predictions by various mod-
els against MC simulations, but with the modification of θ in the Bjerrum asso-
ciation constant model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 The graphs contrast the predicted fraction of free ions (α) from the EG, FLGG,
BiMSA, and ZYS models for a 2:2 aqueous electrolyte solution at 298.15 K. . . . 122

6.7 This figure compares the predicted MIAC of (a) CdSO4, (b) CoSO4, (c) NgSO4,
and (d) ZnSO4 aqueous solutions at 298.15 K by the EG, BiMSA, ZYS, FLGG,
HS+DH, and HS+MSA models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.8 The approach used in this work to study concurrently the MIAC and the electrical
conductivity of associative electrolyte solutions. . . . . . . . . . . . . . . . . . . . 125

6.9 (a) MIAC, (b) fraction of free ions, (c) molar conductivity as predicted by the
MSA-Simple model, and (d) molar conductivity as predicted by the DHO3 model
for the MgSO4-H2O binary system at 298.15 K. . . . . . . . . . . . . . . . . . . . 128

6.10 Similar to Figure 6.9, but for the CdSO4-H2O binary system at 298.15 K. . . . . 129
6.11 Similar to Figure 6.9, but for the CoSO4-H2O binary system at 298.15 K. . . . . 130
6.12 Similar to Figure 6.9, but for the ZnSO4-H2O binary system at 298.15 K. . . . . 131
6.13 Predicted contributions to the activity coefficient of the MgSO4 aqueous solution

at 298.15 K by the FLGG, EG, ZYS, and BiMSA models. . . . . . . . . . . . . . 131
6.14 Predicted contributions to the activity coefficient of the CdSO4 aqueous solution

at 298.15 K by the FLGG, EG, ZYS, and BiMSA models. . . . . . . . . . . . . . 132
6.15 Predicted contributions to the activity coefficient of the CoSO4 aqueous solution

at 298.15 K by the FLGG, EG, ZYS, and BiMSA models. . . . . . . . . . . . . . 132
6.16 Predicted contributions to the activity coefficient of the ZnSO4 aqueous solution

at 298.15 K by the FLGG, EG, ZYS, and BiMSA models. . . . . . . . . . . . . . 133
6.17 (a) The molar conductivity and (b) the MIAC for MgSO4-H2O solutions across dif-

ferent temperatures, as predicted by the MSA-Simple and FLGG models. These
predictions are compared against the experimental data (depicted as colored
squares). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.1 This figure presents a thermodynamic cycle for ion-ion association. . . . . . . . . 137
7.2 A schematic representation of the components of the Helmholtz free energy used

in the BiDH theory is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



xx List of Figures

7.3 This Figure shows the BiDH model predictions of the MIAC (ln γc
±) for systems

L1-L4, which are summarized in Table 7.1, and these predictions are compared
to the MC simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4 The BiDH model (solid lines) was used to predict the MIAC (ln γc
±) for systems

S4, S42, S46, S103, and S104, which are summarized in Table 7.1. . . . . . . . . 148
7.5 This figure presents the MIAC (ln γc

±) predictions of the BiDH model for 1:1
electrolytes with different cation’s diameters (shown next to the lines) which is
compared with the MC simulations (symbols). . . . . . . . . . . . . . . . . . . . 149

7.6 This figure presents the MIAC (ln γc
±) predictions of the BiDH model for 2:2

electrolytes with different cation’s diameters. . . . . . . . . . . . . . . . . . . . . 149
7.7 The predicted MIAC (ln γBiDH

± ) by the BiDH model is compared to the MIAC
from MC simulations (ln γMC

± ), with the solid black line representing the perfect
fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.8 This figure presents the predicted IIAC by the BiDH model (lines) (ln γc
i ) for

system S37 (a 2:1 electrolyte with σ− = 4.98 × 10−10m and σ+ = 4.98 × 10−10m,
which was then compared to the MC simulations (symbols). . . . . . . . . . . . . 151

7.9 This figure presents the predicted IIAC by the BiDH model (lines) (ln γc
i ) for

simulation V21 (a 3:1 electrolyte with σ− = 3 × 10−10m and σ+ = 4.5 × 10−10m,
which was then compared to the MC simulations (symbols). . . . . . . . . . . . . 151

7.10 The predicted IIAC by the BiDH model (ln γBiDH
i with i = + or−) is compared

to the IIAC from MC simulations (ln γMC
i ) with the solid black line representing

the perfect fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.11 The BiDH model (solid lines) and the HS + DH model (dashed lines) were used

to predict the MIAC (ln γc
±) for systems V14-18 (2:1 electrolytes where σ− =

3 × 10−10 m and σ+ are 3, 4.5, 6, 7.5, and 9 ×10−10 m, respectively). . . . . . . . 153
7.12 The BiDH model (solid lines) and the HS + DH model (dashed lines) were used

to predict the osmotic coefficient (ϕ) for the systems S26, S56, S100, G3, and G2,
which are presented in Table 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.13 This figure shows the comparison of the predicted IIAC (ln γc
i ) by the BiDH

model (solid lines) with the predicted IIAC by the HS + DH model (dashed
lines) and MC simulations (symbols) that is conducted for system S57, where
Z+ = 3, Z− = −1, σ+ = 5.1 × 10−10 m, and σ+ = 5.1 × 10−10 m. . . . . . . . . . 154

7.14 The cavity function (ln yij) of the BiDH model (represented by solid lines),
the BiDH model without the ion-dipole term (dashed lines), the BiMSA model
(dashed-dotted lines), and SAFT-type models (dotted lines) for 1:1 (black lines),
2:1 (blue lines), and 3:1 (green lines) are shown. . . . . . . . . . . . . . . . . . . . 157

7.15 The BiDH theory was used to predict the effect of RSP on 1:1 electrolytes with an
anion diameter of 3 × 10−10 m, an ionic strength of 1 mol ·L, and a temperature
of 298.15 K (solid lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.16 This figure presents the predictions of the BiDH theory for the proportion of free
ions (α) for systems V8, V9, and V14 (shown in Table 7.1) with (solid lines) and
without (dashed lines) taking into account ion-dipole interactions. . . . . . . . . 159

7.17 This figure compares the predictions of the BiDH and BiMSA model for elec-
trolyte solutions where Z− = −2, Z+ = +2, σ− = 3 × 10−10 m, εr = 80 and the
salt concentration is 0.25, 0.5, 1.0, 2.0 mol · L−1 corresponding to the colors. . . 161

7.18 This figure compares the predictions of the BiDH and BiMSA model for elec-
trolyte solutions where σ− = 3.5 , σ+ = 3 , cE = 1mol · L−1 and the RSP of the
solvent is 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.19 This figure compares the predictions of the BiDH and BiMSA model for elec-
trolyte solutions where Z− = −1, Z+ = +1, σ− = 6×10−10m, σ+ = 3×10−10m
and the RSP of the solvent is 100, 80, 60, 40 and 20 corresponding to the colors. 163



List of Figures xxi

8.1 This figure present the molar conductivity of MgSO4 aqueous solutions predicted
by the Model 3 where ion pairing is (solid lines) and is not (dashed lines) consid-
ered (symbols are experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.2 The MIAC (γc
±) of MgSO4 aqueous solution at 298.15 is predicted by the BiDH

model (solid line) and by the HS+DH model (dashed lines). symbols represent
experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.3 This figure present the molar conductivity of NaCl-water-1,4-dioxane ternary
mixtures predicted by Model 3, considering ion pairing (solid lines) and not con-
sidering ion pairing (dashed lines). The salt-free mole fractions of 1,4-dioxane
are (a) 0.1104, (b) 0.2, (c) 0.2979, and (d) 0.4002. . . . . . . . . . . . . . . . . . 171

8.4 This figure presents the molar conductivity (Λ) of [C6MIM]Cl aqueous solutions
predicted by Model 3, where ion pairing is considered (solid lines), and is not
considered (dashed lines). Symbols in the plot represent experimental data. . . . 172

8.5 This figure presents the molar conductivity (Λ) of [C2MIM][BF4]-AN (blue lines
and symbols), [C4MIM][BF4]-AN (green lines and symbols), and [C6MIM][BF4]-
AN (red lines and symbols) systems at 298.15 K predicted by Model 3, considering
ion pairing (solid lines) and not considering ion pairing (dashed lines). . . . . . . 173

8.6 This figure illustrates the molar conductivity (Λ) predicted by the developed
model in Chapter 5 according to the schemes summarized in Table 8.5 and the
concentration distribution (ci) estimated using the CHEAQS Next software of
(a) and (b) CdBr2, (c) and (d) CdCl2, and (e) and (f) CdI2 aqueous solutions at
298.15 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.1 This figure shows a schematic representation of the Binding eSAFT-VR-Mie. (1)
is the ideal gas contribution, (2) is the hard sphere contribution, (3) is the sol-
vation free energy based on the Born model, (4) is the ion-ion interactions from
the DH theory, (5) is the contribution due to short-range dispersion interactions,
(6) is the due to the formation of chain, (7) is the contribution due to hydrogen
bonding, and (8) is ion-ion association from the BiDH theory. . . . . . . . . . . . 183

9.2 This figure presents the schematic of the electrical conductance process for a
binary salt-solvent system where (a) the salt is symmetrical in which ion pairs
does not contribute to the electrical conductivity and (b) the salt is asymmetrical
in which ion pairs carry charge and contribute to the electrical conductivity. . . . 190

9.3 The unified framework for investigation of ion-ion association in electrolyte solu-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.4 This figure compares the predictions with the experimental data of NaCl-H2O at
298.15 K for (a) liquid density (ρ), (b) MIAC (ln γm

± ), (c) molar conductivity (Λ),
and (d) osmotic coefficient (ϕ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.5 This figure presents the fraction of free ions (α+ = α−) for NaCl-H2O at 298.15 K.200
9.6 This figure presents the contributions to the activity coefficients of cation (ln γ+)

and anion (ln γ−) for NaCl-H2O at 298.15 K. . . . . . . . . . . . . . . . . . . . . 200
9.7 This figure compares the predictions with the experimental data of Na2SO4-H2O

at 298.15 K for (a) the liquid density (ρ), (b) the MIAC (ln γm
± ), (c) the molar

conductivity (Λ), and (d) the osmotic coefficient (ϕ). . . . . . . . . . . . . . . . . 204
9.8 This figure presents the fraction of free ions (α+ and α−) for Na2SO4-H2O at

298.15 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
9.9 This figure presents the contributions to the activity coefficients of cation (ln γ+)

and anion (ln γ−) for Na2SO4-H2O at 298.15 K. . . . . . . . . . . . . . . . . . . . 205
9.10 This figure compares the predictions with the experimental data of MgSO4-H2O

at 298.15 K for (a) the liquid density (ρ), (b) the MIAC (ln γm
± ), (c) the molar

conductivity (Λ), and (d) the osmotic coefficient (ϕ). . . . . . . . . . . . . . . . . 207
9.11 This figure presents the fraction of free ions (α+ and α−) for MgSO4-H2O at

298.15 K is depicted against the salt molality (m). . . . . . . . . . . . . . . . . . 208



xxii List of Figures

9.12 This figure presents the contributions to the activity coefficients of cation (ln γ+)
and anion (ln γ−) for MgSO4-H2O at 298.15 K. . . . . . . . . . . . . . . . . . . . 208

9.13 The association constant at infinite dilution (K◦
+− predicted by the Bjerrum

model where the upper limit of integral (l+−) varies from σ+− to 5σ+−. . . . . . 211

D.1 The comparison of three formulations of MSA models (Simple, Full, and Mod-
ified) for (a) KCl, (b) LaCl3, (c) MgSO4, (d) K4Fe(CN)6, (e) K3Fe(CN)6, (f)
Ca2Fe(CN)6 at 298.15 K in water. . . . . . . . . . . . . . . . . . . . . . . . . . . 261

D.2 The relaxation term and electrophoretic term of (a) K3Fe(CN)6 (1:3), (b) Ca3(Fe(CN)6)2
(2:3), (c) La2(SO4)3 (3:2), (d) Ca2Fe(CN)6 (2:4), (e) K4Fe(CN)6 (1:4) predicted
by DHOLL, DHOEE, DHOSiS, MSA, MSA Simple and QV models versus the
square root of ionic strength at 298.15 K. . . . . . . . . . . . . . . . . . . . . . . 262

D.3 The RSP of a) LiCl, b) LiNO3, c) NaCl, d) NaNO3, e) KCl, and f) KNO3 at
298.15 k estimated by RSP models. . . . . . . . . . . . . . . . . . . . . . . . . . . 263

D.4 The viscosity of NaCl-water system at 298.15 K estimated by Eq. 3.42. . . . . . 264
D.5 The effect of a concentration dependent RSP on the prediction of MSA model

for a) CsCl, b) KBr, and c) LiBr at 298.15. . . . . . . . . . . . . . . . . . . . . . 265
D.6 The effect of a concentration-dependent RSP on contributions to the relaxation

and electrophoretic terms predicted by the MSA model for (I) LiNO3, (II) NaNO3,
and (III) KNO3-water systems at 298.15 K. . . . . . . . . . . . . . . . . . . . . . 266

D.7 The effect of a concentration-dependent viscosity and RSP on the MSA-Simple
and DHO3 predictions for LiNO3, NaNO3, and KNO3-water systems at 298.15 K. 267

D.8 The effect of a concentration-dependent viscosity and RSP on the MSA-Simple
and DHO3 predictions for LiBr, KBr, CsCl, CsBr-water solutions at 298.15 K. . 268

D.9 The relative average absolute deviation in percent (RAAD%) of MSA model
predictions when the solvents and solutions RSP and viscosity are used for LiCl,
LiNO3, NaCl, NaNO3, KCl, KNO3, LiBr, KBr, and CsCl aqueous solutions at
298.15 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

D.10 The Comparison of DHO1, DHO3, and MSA predictions when the RSP model 1
and 3 are used for KBr, CsCl, and CsBr aqueous solutions at 298.15 K. . . . . . 270

D.11 The molar conductivity predicted by Models 1-3, MSA, MSA-simple, and DHO3
models and compared with experimental measurements for (a) LiCl, (b) LiBr, (c)
KCl, (d) NaBr, (e) NaCl, and (f) KBr aqueous solutions at 298.15 K. . . . . . . 271

D.12 The same as D.11, but for (a) BaCl2, (b) CoCl2, (c) CaCl2, (d) CdCl2, (e) MgCl2,
and (f) MnCl2 aqueous solutions at 298.15 K. . . . . . . . . . . . . . . . . . . . . 272

D.13 The same as D.11, but for (a) BaBr2, (b) CoBr2, (c) CaBr2, (d) CdBr2, (e)
MgBr2, and (f) MnBr2 aqueous solutions at 298.15 K. . . . . . . . . . . . . . . . 273

D.14 The same as D.11, but for (a) LiNO3, (b) Mg(NO3)2, (c) NaNO3, (d) Ca(NO3)2,
(e) KNO3, and (f) Sr(NO3)2 aqueous solutions at 298.15 K. . . . . . . . . . . . . 274

D.15 The same as D.11, but for (a) AlBr3, (b) AlCl3, (c) Al(NO3)3, (d) LaBr3, (e)
LaCl3, and (f) La(NO3)3 aqueous solutions at 298.15 K. . . . . . . . . . . . . . . 275

D.16 The same as D.11, but for (a) MgSO4, (b) CdSO4, (c) CoSO4, (d) CuSO4, (e)
MnSO4, and (f) ZnSO4 aqueous solutions at 298.15 K. . . . . . . . . . . . . . . . 276

D.17 The same as D.11, but for (a) H2SO4, (b) Li2SO4, (c) Na2SO4, (d) K2SO4, (e)
Cs2SO4, and (f) Ag2SO4 aqueous solutions at 298.15 K. . . . . . . . . . . . . . . 277

D.18 Comparison of the BiDH predictions with the MC simulations for systems S1-S12 278
D.19 Comparison of the BiDH predictions with the MC simulations for systems S13-S24.279
D.20 Comparison of the BiDH predictions with the MC simulations for systems S25-S36.280
D.21 Comparison of the BiDH predictions with the MC simulations for systems S37-S48.281
D.22 Comparison of the BiDH predictions with the MC simulations for systems S49-S60.282
D.23 Comparison of the BiDH predictions with the MC simulations for systems S61-S72.283
D.24 Comparison of the BiDH predictions with the MC simulations for systems S73-S84.284
D.25 Comparison of the BiDH predictions with the MC simulations for systems S85-S96.285



List of Figures xxiii

D.26 Comparison of the BiDH predictions with the MC simulations for systems S97-L4.286
D.27 Comparison of the BiDH predictions with the MC simulations for systems L5-V11.287
D.28 Comparison of the BiDH predictions with the MC simulations for systems V12-V23.288
D.29 The molar conductivity of CoSO4 aqueous solutions predicted by the Model 3

where ion pairing is (solid lines) and is not (dashed lines) considered. . . . . . . . 289
D.30 The molar conductivity of CoSO4 aqueous solutions predicted by the Model 3

where ion pairing is (solid lines) and is not (dashed lines) considered. . . . . . . . 289
D.31 The molar conductivity of ZnSO4 aqueous solutions predicted by the Model 3

where ion pairing is (solid lines) and is not (dashed lines) considered. . . . . . . . 290
D.32 The molar conductivity of ZnSO4 aqueous solutions predicted by the Model 3

where ion pairing is (solid lines) and is not (dashed lines) considered. . . . . . . . 290



xxiv



List of Tables
3.1 The ionic conductivity at infinite dilution (λ0

i ) at 298.15 K in S ·m2 ·mol−1 and
ionic diameter (σi) in m for ions studied in this work. . . . . . . . . . . . . . . . 42

3.2 The RSP and viscosity of water at various temperatures. . . . . . . . . . . . . . . 43
3.3 The coefficients the water viscosity correlation. . . . . . . . . . . . . . . . . . . . 43
3.4 This table presents the mean of AAD% of the equivalent conductivity models for

various electrolyte types at LC, MC, and HC. . . . . . . . . . . . . . . . . . . . . 51
3.5 The coefficients for the BMM model. . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 The coefficients for Eq. 3.40 used in this work as reported by Barthel et al. . . . 55
3.7 The coefficients for the Simonin et al. model. . . . . . . . . . . . . . . . . . . . . 55
3.8 The coefficients associated with the viscosity correlation, as given by Eq. 3.42,

correspond to a system temperature of 298.15 K, where the value of η0 (T ) is
0.00089 Pa · s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 The equilibrium RDF derived from the DH theory compared with the SDH model
is assessed alongside the numerical solution of the symmetrical PB equation, MC
simulations, and the MSA theory with a focus on the parameter ς = σ−/σ+. . . 72

4.2 The relaxation and electrophoretic models developed in this study and their cor-
responding names used in this work. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 The coefficients of the Smolyakov’s equation. . . . . . . . . . . . . . . . . . . . . 78
4.4 The percentage of relative absolute average deviation (AARD%) for the predicted

electrical conductivity by the models presented in this study (specifically, Models
1-3 as listed in Table 4.2), as well as the MSA, MSA-Simple, and DHO3 models,
is evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 (Continued.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 The average of the percentage of relative absolute average deviation (AARD%) for

the electrical conductivity predictions from the models presented in this study,
namely Models 1-3, as well as the MSA, MSA-Simple, and DHO3 models, is
evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 This table provides a summary of the database used to evaluate the new model,
displaying the maximum ionic strength (I) and the number of data points (Nd)
for each mixed salt aqueous solution. . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 The electrostatic contribution of the models (for the EG and the FLGG models
ln γMAL = lnα). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 This table presents the modifications in the distance between ion pairs and the
corresponding association constant at infinite dilution, upon adjusting θ in the
Bjerrum association constant model. . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 The parameters fine-tuned to the MIAC experimental data for each model are
presented, along with the corresponding coefficient of determination and the ab-
solute average deviation percentage for both MIAC and electrical conductivity
predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 The notation used in Figures 6.9-6.12 shows the employed models for the MIAC
and the electrical conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



xxvi List of Tables

7.1 This table summarize the systems and their associated table name, ionic diameter,
and ion valence type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.1 (Continued.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.1 (Continued.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.1 The RSP and viscosity of the water-1,4-dioxane mixed solvent, along with the
ionic conductivity at infinite dilution of the cation and anion, are provided. These
values are reported for varying no-salt mole fraction of 1,4-dioxane (xD), ranging
from 0.1104 to 0.4002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.2 The ionic conductivity at infinite dilution (λ0
i ) in S ·m2 ·mol−1 and ionic diameter

(σi) in m for the studied ionic liquids in this work. . . . . . . . . . . . . . . . . . 172
8.3 The cumulative complex formation constant (βn as defined in Eq. 8.4) of cad-

mium halide electrolytes is sourced from the NIST database and the CHEAQS
Next software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.4 This table includes the ionic conductivity at infinite dilution (λ0
i ) at 298.15 K,

ionic diameters using the Marcus diameter and Eq. (σM
i ), and ionic diameters

from ref. (σi) for the ion complexes studied in this work. . . . . . . . . . . . . . 175
8.5 This table outlines the schemes employed in this study for calculating the electri-

cal conductivity of electrolyte solutions that form ion complexes. . . . . . . . . . 176
8.6 This table displays the molar conductivity predicted by the model, taking into

account the formation of ion complexes with the diameter (Λ1) and the Marcus
diameter (Λ3), compared to the experimental data (Λexp). . . . . . . . . . . . . . 178

9.1 SAFT-VR-Mie parameters for water. . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.2 Parameters for Ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.3 The ionic conductivity at infinite dilution of ions studied in this work at 298.15 K.196
9.4 Summary of the AARD% of the equations of state reported in the literature for

NaCl-H2O solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.5 The Contributions to the activity coefficient. . . . . . . . . . . . . . . . . . . . . 201
9.6 Summary of the AARD% of the equations of state reported in the literature for

Na2SO4-H2O solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.7 Summary of the AARD% of the equations of state reported in the literature for

MgSO4-H2O solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.8 The association constant at infinite dilution of the systems studied in this work

reported in the literature from electrical conductivity (EC), DRS, Raman Spec-
troscopy (RS), Ultrasonic Absorption (UA), MIAC, and MD Simulations (MD). 210



Abbreviations
AAD Average absolute deviation

AARD Average absolute relative deviation

AGCMC Adaptive grand canonical Monte Carlo

AN Acetonitrile

AMSA Associative mean spherical approximation

BBGKY Bogoliubov Born Green Kirkwood Yvon

BD Brownian dynamics

BiDH Binding Debye-Hückel

BiMSA Binding mean spherical approximation

BMM Breil-Michelsen-Mollerup

CHS Charged hard sphere

CIP Contact ion pairs

CPA Cubic plus association

CS Carnahan-Starling

DH Debye-Hückel

DHO Debye-Hückel-Onsager

DHOLL Debye-Hückel-Onsager limiting law

DHOEE Debye-Hückel-Onsager extended equation

DHOSiS Debye-Hückel-Onsager smaller-ion shell

DI Dipole ion

DRS Dielectric relaxation spectroscopy

EoS Equation of state

GCMC Grand canonical Monte Carlo

HC High concentration

HS Hard sphere

FO Fuoss-Onsager

IGCMC Iterative grand canonical Monte Carlo

IIAC Individual ionic activity coefficient



xxviii Abbreviations

IL Ionic liquid

LC Low concentration

MAL Mass action law

MC Monte Carlo

MC Medium concentration

MD Molecular dynamic

MIAC Mean ionic activity coefficient

MSA Mean spherical approximation

NIST National institute of standards and technology

NRTL Nonrandom two-liquid

PB Poisson Boltzmann

QV Quint and Viallard

RCA Reference cavity approximation

RDH Restricted Debye-Hückel

RDF Radial distribution function

RPM Restricted primitive model

RSP Relative static permittivity

SAFT Statistical associating fluid theory

SAFT-VR Statistical associating fluid theory for variable range interactions

SDH Symmetrical Debye-Hückel

PC-SAFT Perturbed-chain statistical associating fluid theory

PPC-SAFT Polar perturbed-chain statistical associating fluid theory

SIP Solvent separated ion pairs

SSIP Solvent-shared ion pairs

UNIQUAC Universal quasichemical

UPM Unrestricted primitive model

WOZ Wertheim-Ornstein-Zernike



List of Symbols
Physics Constants

ε0 Vacuum Permittivity 8.854187 × 10−12 F m−1

e Elementary charge 1.60217646 × 10−19 C

F Faraday constant 96485.3365 C mol−1

kB Boltzmann constant 1.3806503 × 10−23 J K−1

NA Avogadro’s constant 6.0221415 × 1023 mol−1

R Ideal gas constant 8.314472 J K−1 mol

Greek Symbols

α Fraction of unbound ions

α0 Electronic polarizability m3

ρ̄ Number density of components m−3

σ̄ Average diameter m

β Association volume

β kBT J

βn Cumulative formation constant of the complex

χ Specific conductivity S m−1

δk/k Relaxation effect

δv/v0 Electrophoretic effect

∆V Electric potential V

∆ Association strength m3

δ Dipole moment C m

ϵ Potential energy of interaction J

ϵ 4πε0εr

η Viscosity Pa s

γ Activity coefficient

γ∗ Asymmetrical rational activity coefficient

Γ−1 MSA screening length m

γ± Mean ionic activity coefficient



xxx Abbreviations

φ̂ Fugacity coefficient

φ̂∞ Fugacity coefficient at the infinitely diluted solution

κ Association volume

κ Inverse Debye length m−1

κ′ Inverse Debye length after ion-ion association m−1

Λ Molar conductivity S m2 s−1

λ Ionic conductivity S m2 mol−1

λ0 Ionic conductivity at infinite dilution S m2 mol−1

λa Attractive exponent in the Mie potential

λr Repulsive exponent in the Mie potential

µ Chemical Potential J mol−1

µ Relative ionic strength

ν Stoichiometry coefficients of ion i

ω Absolute mobility s kg−1

ω Stoichiometric coefficient

ϕ Osmotic coefficient

ψ Electric potential V

ρ Density kg m−3

ρ Total number density m−3

ρ∗ ρσ3

σ Ionic diameter m

σ Segment size parameter m

σB Born diameter m

ρ̃ Number density of free ions m−3

εr Relative static permittivity

ϱ Number density of species after association m−3

Other Symbols

N̄ Total number of components
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CHAPTER 1
Introduction

Electrolyte solutions, whether in liquid or gel form, consist of ions that are typically gener-
ated when salts, acids, or bases dissolve in solvents such as water. These solutions are of
significant importance for a wide array of chemical, biological, and industrial applications.

In the realm of electrochemistry, electrolyte solutions are indispensable components in
various processes, encompassing corrosion, batteries, supercapacitors, and fuel cells. Their
influence extends even further into sectors such as the oil and gas industry. Here, hydro-
carbon compounds coalesce with brine solutions, often concentrated electrolyte solutions
sourced from oil reservoirs, and undergo processing within separation and refinery facilities.
Changes in system conditions, such as pressure or temperature fluctuations, can lead to
the formation of scales in critical areas such as pipelines, wells, or heat exchangers. The
emergence of these scales detrimentally impacts the overall performance of these facilities,
necessitating preventive measures.

Moreover, electrolyte solutions play a pivotal role in addressing environmental concerns,
particularly in the removal of CO2 from streams through absorption techniques. By leverag-
ing the properties of electrolyte solutions, these techniques contribute to the mitigation of
carbon dioxide emissions, showcasing the versatile and indispensable nature of electrolytes
in addressing both industrial and environmental challenges.

Beyond their prominent roles in electrochemical processes and industrial applications,
electrolyte solutions find diverse and critical applications in other fields such as biology,
geology, and biotechnology.

In all the mentioned applications of electrolyte solutions, it is required that the ther-
modynamic, transport, or physical properties of the system are calculated using a robust,
accurate, and fast property prediction tool.

In these applications, electrolyte solutions are usually very complex, containing multiple
ions and solvents with the possibility of reaction between species, formation of complexes,
and phase separation. Therefore, the development of prediction tools for the properties of
electrolyte solutions is essential from both engineering and scientific perspectives.

Tools and methods for predicting the properties of electrolyte solutions lag behind those
for non-electrolyte systems, both in terms of thermodynamic and transport properties. In a
recent review on the future of applied thermodynamics, de Hemptinne et al. [1] pointed out:

"While all the above indicate areas where future developments toward better pre-
dictive models are needed, there are three fields which require particular atten-
tion: electrolytes, polymers, and systems containing complex multifunctional com-
pounds."

A similar sentiment is echoed in the work of Gupta et al. [2] in their review of the property
prediction needs of the chemical industry. They highlighted the following:

"Development of electrolyte models has attracted the attention of numerous re-
searchers since the seminal work of Debye and Hückel almost a century ago. Still,
it is fair to state that the overall maturity and robustness of electrolyte models
still lag behind those of non-electrolyte models."

From these statements, as well as other similar observations [3], it is evident that property
predictions of electrolyte solutions demand special attention. While the detailed reasons for
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the lag in development of thermodynamic and transport property models for electrolyte
solutions, compared with those for nonelectrolyte systems, are beyond the scope of this
study, one potential explanation might be the coexistence of long-range and short-range
interactions in these solutions.

In this chapter, the literature on the property prediction methods for electrolyte solutions
with a focus on thermodynamic and transport properties is briefly analyzed to find the
knowledge gap. Based on this evaluation, the action to fill the gap is proposed, and actions
taken in the subsequent chapters according to this proposal are explained.

1.1 Thermodynamic Properties

The unique behavior of electrolyte solutions has led researchers to categorize modeling ap-
proaches into electrostatic and non-electrostatic components. For example, in excess Gibbs
free energy models (often termed activity coefficient models), Gex is presented as a com-
bination of short-range (or non-electrostatic or physical) and long-range (or electrostatic)
contributions. This approach is mirrored in Helmholtz free energy models or equations of
state. In these models, just like in the activity coefficient models, the Helmholtz free energy
is partitioned into non-electrostatic and electrostatic contributions.

For the electrostatic contributions to either the Helmholtz free energy or the excess Gibbs
free energy, models typically stem from two primary theories: Debye-Hückel (DH) [4] and
mean spherical approximation (MSA) [5, 6].

Models that address ion-ion interactions and are based on the DH theory include, but
are not limited to, the Pitzer-Debye-Hückel [7], Extended Debye-Hückel, and Full Debye-
Hückel [4,8,9]. On the other hand, models derived from the MSA theory encompass implicit
MSA [5, 6], explicit MSA [10], non-primitive MSA [11–18], Binding MSA (BiMSA) [19, 20],
and Associative MSA (AMSA) [21–29].

In activity coefficient models, the non-electrostatic contributions to the excess Gibbs free
energy include the NRTL [30–32], extended UNIQUAC [33–36], and COSMO-RS [37, 38]
models.

For the non-electrostatic contributions of Helmholtz free energy models, typical choices
are cubic equations of state (as reviewed by Kontogeorgis et al. [39]), CPA [40] (which led
to eCPA [39, 41–53]), PC-SAFT [54, 55] (and its electrolyte extension ePC-SAFT [56–63]),
SAFT-VR [64, 65] (and its variant SAFT-VRE [66, 67]), SAFT-VR-Mie [68] (along with
eSAFT-VR-Mie [69–75]), and PPC-SAFT (subsequently, ePPC-SAFT [76,77]).

The literature on electrolyte thermodynamics is abundant, yet there are still many un-
resolved issues. Resolving these issues would be beneficial in improving the accuracy of
property prediction methods. Maribo-Mogensen [41] and Olsen [78] in their Ph.D. thesis
and Kontogeorgis et al. [39] in a recent review paper raised a few questions/challenges re-
garding the thermodynamic modeling of electrolyte solutions. Some of these questions are
summarized here and further questions are also added.

The questions related to the theory of electrolyte thermodynamics are as follows.

• What theory should be employed to calculate the ion-ion interactions? Should it be
primitive or non-primitive? Should it be based on the DH or the MSA theories?

• What is the significance of the interactions between ions and solvents? Should these
be taken into account explicitly or implicitly?

• What is the significance of ion-ion association? Can it be modeled using either a
chemical or a statistical mechanics approach?

• What type of relative static permittivity (RSP) should be taken into consideration
when constructing electrostatic models? Should the solvent or the solution be used?
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What model should be employed to calculate the RSP? Is kinetic depolarization a
factor that needs to be taken into account? Is it necessary to explicitly factor in ion
solvation?

• What type of model should be used for the non-electrostatic component? Should it be
an Excess Gibbs free energy model or a residual Helmholtz free energy model? Will
the selection of the non-electrostatic model have an effect on the results of property
predictions?

The questions related to the development of electrolyte thermodynamic models are as
follows.

• What parameters should be used in the parameter estimation procedure?

• What experimental data should be used in parameter estimation?

• What is the sensitivity of the properties to the model parameters?

• What is the performance of models in the region where experimental data are not used
for parameter estimation? How predictive are the models?

• Are the parameters transferable?

The answers to these questions are challenging, yet vital, in model development for the
thermodynamic properties of electrolyte solutions. Some of these questions are attempted
to be answered by Marib-Mogensen [79], Olsen [78], and Kontogeorgis et al. [9, 39].

From these studies, the following conclusions can be drawn:

• The selection of the non-electrostatic component in equations of state for electrolytes
may not be particularly significant, especially when compared to other elements of
constructing a model for electrolyte systems.

• When the circumstances are comparable, it is hard to pick one of the DH and MSA
equations over the other, as they both appear to be equally effective for electrolyte
solutions.

• The discussion surrounding the importance of the RSP in the equations of state for
electrolytes has been intense. The question of whether to employ a constant value
for the solvent or opt for a concentration-dependent value, aligning with experimental
data, remains unresolved. Both approaches have their merits and find usage in various
literature on electrolyte models.

• The question of whether it is permissible to introduce a composition-dependent RSP
after deriving the electrostatic contribution to Helmholtz energy, when the derivation
was initially based on the assumption of a constant RSP, is still unresolved. Even
though disregarding the assumption in the derivation may not be thermodynamically
inconsistent, it is unclear if it is physically correct.

• In the parameter estimation, the main properties are mean ionic activity coefficient
(MIAC), osmotic coefficient, and density.

• The choice of the sets of parameters in the parameter estimation procedure depends
mainly on the choice of the non-electrostatic contribution to the electrolyte EoS. An
ion-specific parameter estimation is more preferable compared with a salt-specific pa-
rameter estimation. Parameters are usually a size parameter (diameter of ions) and
one or more energy parameters. It seems that the current models are far from a fully
predictive approach since the prediction of properties such as density without adjusting
the size parameter is almost impossible.
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• High temperature systems, highly concentrated solutions, mixed solvent electrolyte
solutions, and liquid-liquid equilibrium have shown to be challenging in modeling. A
combination of ion-ion association and ion-solvent interactions are vital for capturing
the physics in these conditions or systems.

Upon reviewing the literature on electrolyte thermodynamics, it is evident that the con-
sensus within the community leans toward either the DH theory or the MSA theory for
modeling long-range electrostatic interactions in their comprehensive forms. In recent years,
much of the research has focused on exploring various combinations of parameters, objective
functions, and RSP models to refine predictions, primarily with models originating from the
eCPA [42], ePPC-SAFT [76], and eSAFT-VR-Mie [70] equations of state.

While these efforts have certainly deepened our understanding of the thermodynamics of
electrolyte solutions, the outcomes remain somewhat ambiguous. For example, the decision
on whether to use a composition-dependent or independent model for the RSP remains an
unresolved issue. Moreover, many equations of state have demonstrated that a composition-
dependent RSP, which diminishes marginally with increased salt concentration, can effec-
tively model the thermodynamic properties of both aqueous and non-aqueous electrolyte
solutions. The use of a concentration-dependent RSP is in accordance with thermodynamic
principles. However, any arbitrary determination of its variation with salt concentration ne-
cessitates justification. Such arbitrary choices concerning RSP functions relative to concen-
tration also prompts the question: Are we indeed modulating the electrostatic interactions
by altering the medium’s RSP?

Another avenue for refining models of electrolyte solutions involves incorporating previ-
ously ignored effects in both the electrostatic and non-electrostatic parts. One such over-
looked effect is ion pairing. Marcus [80] noted:

"Ion pairing describes the (partial) association of oppositely charged ions in elec-
trolyte solutions to form distinct chemical species called ion pairs."

From references such as [80, 81], it is evident that ion pairs exist in the solutions. In the
realm of electrolyte thermodynamics, only a few studies have taken ion pair formation into
account. These studies either address ion pairing through a chemical approach, positing an
equilibrium reaction between ions and ion pairs [57,62,82], or introduce association sites to
ions, treating ion pairing in a manner akin to hydrogen-bond-forming molecules [76,77].

The drawback of the first method lies in the need to determine the ion pair parameters
either through assumptions or parameter fitting. Additionally, the dipolar nature of ion
pairs is often overlooked. In contrast, the second approach models ion pair formation, which
stems from long-range electrostatic interactions, using a short-range square-well potential,
making it a departure from the actual system’s reality. Furthermore, defining multiple sites
for each ion can lead to the formation of ion networks, which, at least for simple electrolytes,
have not been observed.

From a different perspective, advanced theories have been developed in the literature to
implicitly factor in ion pairing within long-range electrostatic interactions. MSA theory has
a rich literature that includes BiMSA [20] and AMSA [21–29]. Within the DH framework, no
model has developed that implicitly accounts for the ion-ion association. However, it seems
that a model that incorporates the ion-ion association in a manner similar to the BiMSA
theory is required to be developed on the basis of the DH theory.

In summary, considerable effort has been put into advancing the accuracy and reliability of
electrolyte thermodynamic models, primarily through enhancements in parameter estimation
procedures. In these works, the physics used for the electrostatic contribution to the free
energy of the system remains unchanged, relying on either the DH or MSA theories. While
these contributions have enriched our understanding, particularly in the realm of parameter
estimation, the ultimate objective of developing an accurate and reliable model for the
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thermodynamic properties of electrolyte solutions remains elusive. It may now be the time
to consider revising the models, such as substituting the ion-ion segments of the equations of
state with their binding or associative counterparts, to potentially achieve a more accurate
and robust representation.

1.2 Transport Properties

The transport properties of electrolyte solutions include, but are not limited to, electrical
conductivity, self-diffusion, mutual diffusion, viscosity, and transference number. From a
theoretical point of view, these properties are non-equilibrium dynamics of ions when an
external or internal force is exerted on the ions. In the case of electrical conductivity,
an external electric field is applied to the system that causes the movement of ions. For
diffusion, the drifting force is the chemical potential gradient while for viscosity, it is the
velocity gradient.

The prediction of the transport properties of electrolyte solutions is challenging because of
the combination of the long-range electrostatic forces and non-equilibrium dynamics. Since
the methodology introduced by Onsager and Fuoss [83] for non-equilibrium processes in
electrolyte solutions, many models have been developed for the prediction of these properties
[84].

One of the challenges of transport properties is that, unlike thermodynamic properties,
it is not possible to develop generic models. For example, when an EoS is developed for
electrolyte solutions, all thermodynamic properties can be calculated with the mean of the
first- and second-order derivatives of the residual Helmholtz free energy. However, when
a model for electrical conductivity is developed, it cannot be used with some conversion
methods for the viscosity. As a result, it is not possible to study all transport properties
together. In this work, we focus on electrical conductivity because of its importance in
industrial applications and its sensitivity to ion pairing.

Regarding electrical conductivity, the following questions and challenges should be ad-
dressed:

• What type of model should be used to represent the electrical conductivity of elec-
trolyte solutions: primitive or non-primitive?

• What theory should be employed in the construction of the model: MSA or DH?

• Which model accurately predicts the electrical conductivity of the electrolyte solutions?
What are the limitations? Where and why do the models fail?

• What is the impact of ion-solvent interactions?

• What is the effect of ion-ion association?

• What is the current state of research regarding multi-component electrolyte solutions
in general?

Unfortunately, the answers to many of these questions are not yet available from studies
in the literature. However, it can be pointed out that:

• The DH theory has not been used to model the electrical conductivity of electrolyte
solutions for over three decades.

• It is thought that DH-based models are only suitable for solutions with very low concen-
trations, while MSA-based models can be used for systems with higher concentrations.
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• The accuracy of the models developed in the literature has not been systematically
assessed.

• It is not clear what is the effect of ion-solvent interactions on the prediction of electrical
conductivity.

• Most of the models developed in the literature are for a special case where the solution
contains a single type of cation and anion. There are very few models for multi-
component systems.

• Among all the models in the literature, only a few of them consider the size asymmetry
of the ions.

Exploring electrolyte solutions calls attention to a critical gap in our understanding of
their electrical conductivity. To bridge this knowledge void, a meticulous examination of
major models from the literature is imperative. It is essential to recognize and address the
restrictions that are present in these current models, turning these difficulties into chances
for creativity. Addressing the gap requires the development of novel models that account
for ion size asymmetry in both single- and multi-salt systems, rooted in the DH theory. By
addressing this gap in knowledge, we can make significant advancements and gain a better
understanding of how electrolytes behave.

1.3 Objectives and Research Design

As mentioned above, the models for the prediction of the properties of electrolyte solutions
are not capable of satisfying industrial needs. As a result, further efforts are required to
enhance the models in a more predictive and accurate direction. It has been mentioned
that there are many questions regarding the prediction of both the thermodynamic and
transport properties of electrolyte solutions. Therefore, further efforts are required to arrive
at a fundamental understanding of electrolyte thermodynamics by answering these questions.

The main objective of this study is to increase the understanding of the concept of ion-
ion association from two angles; thermodynamics and electrical conductivity, and then, if
possible, to provide a new generation of useful and physically sound models for electrolyte
solutions.

The minor objective of the Ph.D. thesis related to the main aim of the work can be
divided into three parts. The first part focuses on the goals of the project related to the
electrical conductivity of electrolyte solutions. The second part focuses on the targets of the
projects related to the thermodynamic modeling of the associative electrolyte solution in
which ion-ion association is active in them. The last part of the thesis focuses on the target
of the project related to the unified and simultaneous investigation of the ion-ion association
from both thermodynamic modeling and electrical conductivity.

The targets of the first part (encapsulated in Part II of the Ph.D. thesis) are:

• Recognition of the main model developed in the literature for the electrical conductivity
of electrolyte solutions.

• Evaluation of the performance of the models developed in the literature to find their
strengths and weaknesses.

• Exploring the effect of possible enhancement of electrical conductivity models by using
a composition-dependent RSP and viscosity.

• Outlining a robust and rigorous method for the derivation of an electrical conductivity
model based on the dynamic of ions in the solution.
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• Development of an electrical conductivity model that is accurate, robust, and general.

The targets of the second part (encapsulated in Part III of the Ph.D. thesis) are the
following:

• Finding major works in the literature on the incorporation of the ion-ion association
in electrostatic interactions in the electrolyte solution.

• Performing an evaluation to find the weaknesses and strengths of the models.

• Fill the knowledge gap by developing an EoS for charged hard-sphere fluids that ac-
counts for the ion-ion association based on the DH theory.

The targets of the last part (encapsulated in Part IV of the Ph.D. thesis) are:

• Combining the models for electrical conductivity and EoS for the associative electrolyte
solution to enhance the prediction of the electrical conductivity in an implicit solvent
model.

• Developing an electrolyte EoS that considers the formation of ion pairs in the solution.

• Introducing a unified framework for the investigation of ion-ion association in elec-
trolyte solutions.

• Evaluating the unified framework in a predictive manner to find the limitations and
strengths of the models.

To achieve the primary objectives and associated targets of the Ph.D. project, a methodi-
cal approach has been employed for parts II and III. These parts cover a step-by-step process.
First, we conduct a thorough review of the literature focusing on either electrical conduc-
tivity or the thermodynamic modeling of ion-ion associations. Subsequently, we identify
and implement existing models based on their distinctiveness. A systematic and equitable
comparison will then be made between the model predictions and either the experimental
data or the numerical simulation results. This comparative analysis aims to determine the
strengths and weaknesses of the models and to identify any knowledge gaps. If necessary,
efforts will be made to devise new models to address these gaps. Finally, the newly devel-
oped models will undergo extensive and systematic evaluation and validation to ensure their
suitability for future application.

In part IV, an integration of models developed in the preceding sections, along with
models from the existing literature, will be executed. This integrated approach aims to in-
vestigate the thermodynamic properties and electrical conductivity of associative electrolyte
solutions. This investigation encompasses a spectrum of systems, including associative aque-
ous solutions, mixed-solvent systems, ionic liquid co-solvent systems, and aqueous solutions
that form ion complexes. The objective is to simultaneously explore and analyze these
diverse situations to obtain a comprehensive understanding of the subject matter.

1.4 Structure of the Thesis

This Ph.D. thesis is organized into four parts (Figure 1.1), encompassing a total of nine
chapters. The second part is specifically focused on the electrical conductivity of electrolyte
solutions under the assumption of full dissociation. This part comprises four detailed chap-
ters, which dive into various aspects of the electrical conductivity phenomenon.

Moving on to the third part, the thesis shifts its focus to the concept of ion-ion association.
Within this section, two chapters are dedicated to exploring and understanding the ion-ion
association, providing a comprehensive examination of this aspect of the research.
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Figure 1.1. The structure of the Ph.D. thesis.

The final part of the thesis is dedicated to a unified investigation of the thermodynamic
properties and electrical conductivity. This part integrates the models developed in both
Parts II and III, facilitating a cohesive exploration of the subject matter. Each chapter
within this part contributes to the unified understanding of thermodynamic properties and
electrical conductivity, drawing on the insights gained from the preceding sections.

This doctoral dissertation is composed of the following chapters, each of which examines
a distinct topic:

• Chapter 2: Modeling of Electrical Conductivity

– Physical background of the electrical conductance process.
– Literature review of the electrical conductance process in electrolyte solutions.
– Introduction of the Ebeling hierarchy of the Smoluchowski dynamic for the move-

ment of ions.
– Introduction to the Fuoss-Onsager (FO) continuity equation.
– Presentation of the equations for the derivation of new electrical conductivity

models by inputting an equilibrium pair correlation function for both single-salt
and multi-salt systems.

• Chapter 3: Practical Investigation of Electrical Conductivity Models

– Presentation of the models developed in the literature for the electrical conduc-
tivity of single-salt systems.

– Presentation of the compiled database of experimental data for the electrical
conductivity of aqueous electrolyte solutions.

– Comparison of the predictions of six electrical conductivity models developed in
the literature with each other and with the experimental data.

– Extension of the model by using a composition-dependent RSP and viscosity.

• Chapter 4: New Model for Electrical Conductivity of Electrolyte Solutions;
Single-Salt Systems

– Derivation of a new model based on the methodology explained in Chapter 2 for
single-salt electrolyte solutions.
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– Extensive evaluation of the developed model by comparing its predictions with
experimental data at various conditions and systems.

– Comparison of the predictions of the developed model with the predictions of the
models presented in Chapter 3.

• Chapter 5: New Model for the Electrical Conductivity of Electrolyte Solu-
tions; Mixed-Salt Systems

– Derivation of a new model based on the methodology explained in Chapter 2 for
multi-salt electrolyte solutions.

– Validating the accuracy of the model by comparing its predictions with various
ternary salt-salt-water systems.

– Discussion of the limitations of the developed model and possible remedies.

• Chapter 6: Thermodynamic Modeling of Ion-Ion Association

– Presentation of a literature review on the thermodynamic modeling of ion-ion
association in electrolyte solutions.

– Performing a systematic investigation of four equations of state for charged hard-
sphere fluids by comparing their predictions with numerical simulations and ex-
perimental data.

– Validating the structural properties predicted by the models with the help of
electrical conductivity models and data.

• Chapter 7: Binding Debye-Hückel Theory

– Developing a new EoS for charged hard-sphere fluids that accounts for ion-ion
association based on the reference cavity approximation, DH theory, Kirkwood
theory, and Wertheim theory.

– Validating the developed EoS by comparing the predicted mean ionic activity
coefficient, individual activity coefficient, and osmotic coefficient with those of
Monte Carlo simulations in a predictive manner.

– Investigation of the importance of the ion-ion associations.
– Investigation of the importance of cavity function.
– Comparison of the BiDH and BiMSA models.

• Chapter 8: Implicit Solvent Investigation

– Concurrent investigation of mean ionic activity coefficient and electrical conduc-
tivity of aqueous 2:2 sulfates.

– Electrical conductivity of mixed solvent systems and ionic liquid-co-solvent sys-
tems using the BiDH theory and the single-salt electrical conductivity model.

– Electrical conductivity of electrolytes forming ion complexes using the multi-salt
electrical conductivity model.

• Chapter 9: Binding eSAFT-VR-Mie

– Development of the Binding eSAFT-VR-Mie EoS.
– Introduction of a unified framework for the simultaneous investigation of thermo-

dynamic properties and electrical conductivity.
– Presenting the evidence of ion-ion association for aqueous electrolyte solutions.
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– Prediction of the liquid density, mean ionic activity coefficient, osmotic coefficient,
and molar conductivity of three aqueous electrolyte solutions.

– Discussion of the effect of considering the ion-ion association in the prediction of
electrolyte solutions.

– Discussion of the importance of the standard state association constant and On-
sager’s bookkeeping rule.



Part II
Electrical Conductivity





CHAPTER 2
Modeling of the Electrical

Conductivity
The conductance of electrolyte solutions has been a long-standing yet complex topic in
physical chemistry. Because of its importance in fields like electrochemistry, biophysics,
chemical engineering, and biochemistry, it has received consistent research attention over the
past hundred years. Chapter 1 explored the critical nature of this property. It emphasized
its significance in both the formulation of electrolyte equations of state and its essential role
in batteries and energy storage devices.

In this chapter, the electrical conductance process in electrolyte solutions will be explored
from different distinct angles. First, the physical background of the electrical conductance
process will be elucidated and the specific, molar, and equivalent conductivity will be defined.
From a modeling perspective, the variation of electrical conductivity with salt concentration
will be examined, and the concepts of relaxation and hydrodynamic effects will be elabo-
rated upon. Various theoretical modeling strategies for the investigation of the electrical
conductance process will be discussed. Notably, due to their significance in subsequent chap-
ters, the continuity equation approaches will be extensively covered. Lastly, the equations
necessary to develop a new electrical conductivity model based on the continuity approach
will be presented.

2.1 Physical Background

When subjected to an external electric field, previously stationary ions in an electrolyte
solution begin to migrate toward electrodes with opposite charges. Figure 2.1 depicts the
macroscopic perspective of this ionic drift under the influence of an electric field. The
phenomenon in which ions are driven by an external force leading to their movement or drift
towards either the cathode or anode is termed the conductance process.

The steady-state (time-independent) flux of ions in the conductance process can be related
to the external electric field as:
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Figure 2.1. Independent migration or drift of ions.
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J = A+BE + CE2 + · · · (2.1)

In Eq. 2.1, J represents the ionic flux, defined as the quantity of moles of ions passing
through a unit area every second, while E denotes the external electric field, which is a
scalar quantity. For scenarios where the external electric field is minimal, which encompasses
nearly all experimental electrical conductivity measurements, terms beyond the linear can
be disregarded. Moreover, in the absence of an electric field, the ionic flux is zero. Hence,
A in Eq. 2.1 must equate to zero. As a result, the ionic flux can be expressed as:

J = BE (2.2)

The amount of charge that passes through a unit area per second is represented by the
total current density of the ion (or charge flux), denoted by i. It can be linked to the ionic
flux and on the basis of Eq. 2.2, to the external electric field, as illustrated in Eq. 2.3:

i = JZF = ZFBE (2.3)

In the given equation, Z represents the valence of the ions and (F ) represents the Faraday
constant. The conductivity (or specific conductivity) can subsequently be defined as:

χ ≡ ZBF (2.4)

Consequently, the total current density i can be associated with the electric field as
presented in Eq. 2.5:

E = i

χ
(2.5)

Given that the electric field is defined by the electric potential per unit of length (E =
∆V

l
), and the total current is represented by iA, where A is the area of crossing, Eq. 2.5

corresponds to Ohm’s law:

R = 1
G

= l

χA
(2.6)

In Eq. 2.6, R and G denote the resistance and conductance of the electrolyte solution,
respectively. The conductivity of electrolyte solutions, when normalized by the salt concen-
tration, was characterized by the German physicist Friedrich W. G. Kohlrausch [85]. He
introduced the concept of molar conductivity as follows.

Λ ≡ χ

cE
(2.7)

As highlighted by Laidler and Meiser [85], the molar conductivity of electrolyte solutions
can be conceptualized as the conductance offered by one mole of an electrolyte in a cell that
has a surface area of 1m2 and a length of 1m.

Within the literature surrounding the conductance process, there is another term fre-
quently mentioned known as equivalent conductivity. This refers to the conductivity of a
solution containing 1g−eq of solute. However, Laidler and Meiser [85] noted that IUPAC rec-
ommends against using equivalent conductivity due to its inherent ambiguity. They instead
propose to use the molar conductivity of 1

νi|Zi| moles of solute. Consequently, equivalent
conductivity can be defined as:

Λ( 1
νi | Zi |Mν+Aν− ) = χ

νi | Zi | cE
= Λ
νi | Zi | , i = + or − (2.8)
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The aforementioned properties were established with the aim of deriving a universal at-
tribute for each salt in the conductance process within electrolyte solutions. Conductivity
was introduced to account for the effects of geometry. Molar conductivity serves to stan-
dardize the effects of concentration, and equivalent conductivity was conceived to normalize
the effects of charge concentration. Following this standardization, it was anticipated that
the equivalent conductivity of electrolytes would depend solely on the type of electrolyte,
regardless of salt concentration or ion valence type. Contrary to this expectation, experi-
ments showed that the equivalent conductivity of electrolyte solutions decreases as the salt
concentration increases. The origin of this behavior in electrolyte solutions stirred debate in
the closing decades of the 19th century and the initial decades of the 20th century, which is
elaborated upon in the section detailing the Historical Background of electrical conductivity.

However, following the foundational contributions of Debye, Hückel, and Onsager between
1923 and 1927 [4, 86–88], it is widely accepted that the conductivity of electrolyte solutions
stems from three distinct components: ideal, hydrodynamic (also known as the electrophortic
effect) and electrostatic (also known as the relaxation effect).

2.1.1 Ideal Contribution

The ideal contribution to ionic conductivity, also called independent migration of ions or
drift of ions, arises from the mobility of ions when they are not pulled or pushed by other
ions in the conductance process. In other words, the ideal contribution to ionic conductivity
is the ionic conductivity at infinite dilution, denoted as λ0

i .
Figure 2.1 shows a diagram that represents the ideal contribution to ionic conductivity.

This figure illustrates that ions are driven by an external electric field (E), which causes
them to migrate or drift toward electrodes with opposite charges. In the context of the ideal
contribution to ionic conductivity, it is believed that the ions move freely, unaffected by the
other ions in the solution. This scenario is typical when the solution is infinitely diluted,
ensuring that there are no specific ion-ion interactions in the ideal contribution.

In a stationary state where there is neither an external electric field nor a concentration
gradient in the solution, the ions move randomly, but their average displacement remains
zero. However, when an external electric field is applied to the solution, one direction
(aligned with the electric field) becomes more preferable to the ion movement than other
directions. Under such circumstances, the average ion displacement is no longer zero.

If an ion were entirely isolated, for instance, in a vacuum, it would continue to accelerate
until it hit the electrode. But in an electrolytic solution, the ion quickly encounters another
ion or solvent molecule in its path, causing a disruption in its speed and trajectory. The
ion’s movement is not seamless; it is as though the medium resists the ion’s movement. Con-
sequently, the ion stops, resumes, and follows. However, the external electric field provides
the ion with a specific direction (towards the oppositely charged electrode), so even with
its erratic movement, the ion gradually makes its way towards this electrode. Thus, the
movement of an ion is biased in a specific direction.

The mean of the velocity component of an ion derived from the external force is essentially
the multiplication of the acceleration caused by this force and the average interval between
collisions. Therefore, the terminal drift velocity vd

i is defined as Eq. 2.9:

vd
i = Fext

i

mi
τi (2.9)

In Eq. 2.9, the terms Fext
i , mi, and τi represent the force exerted on the ion by the

external electric field, the mass of the ion, and the average time interval between successive
collisions of the ion, respectively. Following this, the absolute mobility of the ions is defined
as:
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ωi ≡ τi

mi
≡ vd

i

Fext
i

(2.10)

According to Bockris et al. [89] in Section 4.4.4 of their book, the overall current den-
sity can be correlated to the conventional ion mobility defined as ωconv

i = ωieZi. This
relationship is expressed in Eq. 2.11:

i =
C∑

j=1

ij =
C∑

j=1

eZjρjω
conv
j E (2.11)

In Eq. 2.11, ρj signifies the density of the number of ions. Zi and e represent the ionic
valence and the elementary charge, respectively. Combining equations 2.5 and 2.11, the
specific conductivity of the electrolyte solution can be obtained as Eq. 2.12:

χ = i

E
=

C∑
j=1

eZjρjω
conv
j (2.12)

Eq. 2.12 illustrates the ideal contribution to the solution’s specific conductivity. The cen-
tral component of this equation is either the conventional mobility or the absolute mobility
of ions.

The absolute mobility of the ions quantifies the drift velocity resulting from the external
force Fext. In Eq. 2.9, it is proposed that the terminal drift velocity of the ions is determined
solely by the interactions between the ion and the solvent. To put it another way, the
influence of electrostatic interactions is set aside. This supposition is accurate predominantly
when the solution is infinitely diluted. In such circumstances, the absolute mobility of ions,
referred to as ωi, can be associated with the diffusion coefficient and ionic conductivity using
the Einstein equation and the definition of specific conductivity, as referenced in [89,90]:

ωi = D0
i

kBT
= NAλ

0
i

F 2|Zi|
(2.13)

In the prediction of the conductivity of electrolyte solutions, it is often more practical to
utilize the ionic conductivity or diffusion coefficient at infinite dilution, rather than the abso-
lute or conventional mobility. In summary, the ideal contribution to the specific conductivity
can be expressed as Eq. 2.14:

χideal = e2

kBT

C∑
j=1

ρjD
0
jZ

2
j = 1

NA

C∑
j=1

ρj | Zj | λ0
j (2.14)

2.1.2 Hydrodynamic Contribution

The hydrodynamic, often referred to as the electrophoretic, correction to the ideal con-
ductivity is a consequence of ions moving simultaneously towards their oppositely charged
electrodes. To gain a clearer understanding of this correction or effect, it is beneficial to
consider the ionic cloud or atmosphere model proposed by Debye and Hückel [4,86]. In this
conceptualization, Debye and Hückel pictured a central ion (irrespective of its charge) posi-
tioned at the origin of a spherical coordinate, encircled by a cloud of oppositely charged ions
(with fewer ions of the same charge present). This representation of electrolyte solutions, in
the absence of an external electric field, is illustrated in Figure 2.2.
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Figure 2.2. The ionic atmosphere in a stationary state.

A distinctive feature of this ionic cloud is its perfect sphericity. Thus, as described by
Debye and Hückel, both the electric potential and local number density of ions depend
solely on the distance from the center of the central ion. This conceptualization has been
extensively discussed by Bockris et al. [89]. It is vital to recognize that, given that this
ionic cloud primarily comprises oppositely charged ions, it represents a charged sphere with
a charge opposite to that of the central ion. The radius of this sphere is equivalent to the
inverse of the Debye length (κ).

Imagine that an external electric field is applied to the solution. Under this influence,
the central ion is driven towards the electrode with the opposite charge. Concurrently, the
ions within the ionic cloud are propelled either toward the cathode or the anode on the
basis of their individual charges. For simplicity, let us consider there is a central ion with
an encompassing ionic cloud bearing the opposite charge (overlooking the fact that the ionic
cloud comprises individual ions). When an external electric field is introduced, the central
ion moves, let us say, in the positive direction of the x-axis, as depicted in Figure 2.3. Being
oppositely charged, the ionic cloud is also affected by the external electric field, propelling
it in the negative direction of the x-axis. Because the central ion is intrinsically part of the
ionic cloud, this motion exerts a counteracting push on the central ion, opposing its initial
movement, which in turn decreases its velocity.

This hindrance to the movement of the ions during the conductance process diminishes
their velocity, and consequently, the ionic conductivity compared to the ideal velocity or
conductivity. Given that the size of the ionic cloud is similar to that of a colloid particle, this
phenomenon is termed electrophoretic, drawing parallels with the electrophoresis observed
in colloidal systems.
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Figure 2.3. A schematic of the hydrodynamic contribution to the electrical conductivity.
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2.1.3 Electrostatic Contribution

When subjected to an electric field, the ion distribution function becomes skewed and loses
its symmetry. Consequently, the likelihood of locating an ion around the central one is not
solely dependent on distance, but also varies with direction. In such scenarios, an asymmetric
distribution function is required. This added complexity makes the theoretical exploration
of electrical conductivity more challenging [89].

A more direct approach to managing an ellipsoid-shaped ionic cloud (as shown in Figure
2.5) is to start by assuming a symmetric ionic atmosphere and then introduce a slight
perturbation. Picture, for a moment, a perfectly spherical ionic cloud encircling a stationary
central ion. Now, envision an external force that displaces this central ion along the x-axis.
In response, the ionic cloud repositions itself in alignment with the central ion’s new location.
The electric field created by this ongoing adjustment, or relaxation, of the cloud trailing
the ion and gathering ahead of it is referred to as the relaxation field [89,90].

One immediate outcome of the relaxation phenomenon is that the charge center of the
ionic cloud (which bears a charge opposite to that of the central ion) lags behind the central
ion during this process. As a result, it applies a force counter to the direction of the external
electric field. This leads to a decrease in the ionic velocity and, subsequently, the ionic
conductivity [89,90].

This force reduces the velocity or conductivity of ions compared to the ideal case. The
electrical force that arises due to the asymmetry of the ionic cloud, which is made simpler
by the relaxation depiction, is referred to as the relaxation contribution to the electrical
conductivity of electrolyte solutions.

2.2 Historical Background

In 1923, Peter J. Debye and Erich Hückel authored two pivotal papers that laid the founda-
tion for the contemporary theory of electrolyte solutions [4, 86]. In their initial paper titled
"On the Theory of Electrolytes I. Freezing Point Depression and Related Phenomena", they
addressed the inconsistencies present in the Arrhenius and van’t Hoff theories concerning
the osmotic and activity coefficients of strong electrolytes.

In their subsequent paper [86] titled "On the Theory of Electrolytes. II Limiting Law
for Electric Conductivity", Debye and Hückel discussed the process of electrical conductance
in electrolyte solutions. Contrary to their first paper, here they confined their analysis to
infinitely diluted solutions regarding electrical conductivity, emphasizing that:
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Figure 2.4. The egg-shaped ionic atmosphere in the conductance process.
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Figure 2.5. A schematic for the relaxation or electrostatic contribution to the electrical conductiv-
ity.

"Since even the limiting case of low concentrations needs a lengthy discussion, we
have limited ourselves, in the following, consistently to this case, and have not
attempted to generalize the formulas in order to make them applicable to higher
concentrations."

They introduced a limiting law concerning molar conductivity. Their model suggested
that the molar conductivity could have a linear relationship with the square root of the salt
concentration. Nonetheless, their model could not accurately predict the slope of this linear
decrease when compared to the experimental findings of Kohlrausch.

Born in Oslo on 27 November 1903, Lars Onsager was a mere 22 years old when he
approached Peter Debye in his Zürich office to highlight the inaccuracies in their theory re-
garding electrical conductivity [91]. In subsequent years, specifically 1926 and 1927, Onsager
published two papers [87, 88] titled On the theory of electrolytes. I and On the theory of
electrolytes. II. Through these publications, he modified the theory developed by Debye and
Hückel on the limiting law of electrical conductivity.

Lars Onsager’s monumental work on electrolytes encompasses approximately one-third of
his entire body of work and stands out for its depth, clarity, and innovation. As a brilliant
chemical engineer, he postulated what is now known as the fourth law of thermodynamics
or the Onsager reciprocal relations even before earning his Ph.D. The respected physicists
in the domain of electrolyte theory, Werner Ebeling and Jean-Claude Justice [91], have
encapsulated Onsager’s significant contributions in this realm.
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Limiting Law

1. Debye 
2. Hückel
3. Onsager

MSA-Transport
1. Bernard 
2. Kunz
3. Turq
4. Blum
5. Durand-Vidal
6. Dufreche
7. Roger

Finite Ion Size
1. Pitts
2. Fuoss
3. Onsager
4. Falkenhagen 
5. Kelbg 

1950s
Mixed-Salt

Systems

1. Quint 
2. Viallard
3. Lee
4. Wheaton

1970s

Generalization 
of the DHO 

Theory

1. Ebeling
2. Feistel
3. Kelbg
4. Sändig

1978

1990-2010

DHO-Transport

?

Now

Figure 2.6. Historical background of electrical conductance process. Graphic is from Slidesgo and
Freepik.

https://slidesgo.com/
https://www.freepik.com/
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In 1932, Onsager, in collaboration with his student Raymond Fuoss, published a paper
titled Irreversible processes in electrolytes. diffusion, conductance, and viscous flow in arbi-
trary mixtures of strong electrolytes [83]. Ebeling and Justice remarked on this work, as cited
in [91], calling it "the most comprehensive work published so far on irreversible processes in
electrolytes". This paper was a foundational work for the theory of electrical conduction in
electrolyte solutions and is considered the basis for any theoretical investigation of electrical
conductivity.

In the seminal works of Debye and Hückel [86], Onsager [87, 88], and the collaborative
effort of Onsager and Fuoss [83], ions were conceptualized as point charges. As a result,
only the limiting law could be determined from these theories. Advancing this field in 1953,
Pitts [92] modified the theory on conductance and viscous flow in electrolyte solutions. He
assumed that all ions in the solution possess a definitive size, equivalent to distance of the
closest approach. Through this framework, Pitts was able to enhance the applicability of
the electrical conductivity model by accounting for ions with finite size. However, when
addressing viscosity, he did not bring any alterations to the findings previously presented by
Falkenhagen et al. [93].

Following Pitts’ contribution [92], there were substantial advances in the field by re-
searchers such as Fuoss and Onsager [94–100], Falkenhagen et al. [101, 102], Quint and
Viallard [103–105], and Lee and Wheaton [106–108]. These scholars refined the limiting law
for electrical conductivity by assuming a finite, yet consistent, size for all ions. Notably,
among these extensive studies, the models presented by Quint and Viallard and Lee and
Wheaton were particularly relevant to mixed electrolyte solutions.

It is important to emphasize that Onsager and Kim had earlier established the limiting
law tailored for mixed electrolyte solutions [109]. Their groundbreaking research serves as the
foundational framework for theoretical examinations concerning the electrical conductance
process in multi-component systems.

A significant advancement in the theory of the conductance process came from the work of
Ebeling, a student of Hans Falkenhagen, and his colleagues [110]. They expanded upon the
Debye-Hückel-Onsager theory by using a hierarchy analogous to the BBGKY hierarchy. This
pivotal paper laid the groundwork for subsequent models, encompassing not just electrical
conductivity but also mutual and self-diffusion coefficients.

Bernard and his team [111] introduced a novel model for the electrical conductivity of
electrolyte solutions, leveraging the MSA theory for the equilibrium segment of the pair
correlation function. In the realm of electrical conductivity, this research is believed to be
the pioneering effort that takes into account the size asymmetry of ions. Subsequently, the
transport theory was thoroughly examined, leading to the emergence of the MSA-transport
theory [112–117].

Subsequent to the advent of the MSA-transport theory, there have been limited studies,
such as [118,119], aimed at improving the prediction of electrical conductivity in electrolyte
solutions. However, evaluations suggest that these models either lack accuracy compared to
the MSA theory [120] or, at best, achieve similar precision [121].

This compilation of works is not comprehensive, but focuses on analytical theories of
the electrical conductance process, aligning closely with the objectives of this thesis. In
the subsequent section, we will delve into the modeling techniques used in the theoretical
exploration of non-equilibrium thermodynamics and address related literature pertaining to
molecular simulations.

2.3 Modeling Approaches

Dynamic processes in electrolyte solutions can be performed from various modeling ap-
proaches. Barthel et al., in their monograph [84], pointed out that the average time scale
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of the processes can give us a good hint to choose between different modeling approaches.
Then, they presented a guideline for modeling approaches based on the time scale of the
processes. Figure 2.7 presents this guideline.

For extremely short processes, specifically when t < τ1, it is proposed that the spatial
(r) and momentum (p) coordinates of both solutes and solvents be considered. The phase
space in this context is directed by the Liouville equation, and the most suitable theoretical
method to employ would be molecular dynamics (MD) simulation. This method aligns with
the Born-Oppenheimer approach.

For time scales exceeding τ1, it is pointed out that the solvent can be conceptualized
as a dynamic continuum. This is because solvent fluctuations dissipate faster than those
of ions. In such scenarios, the dynamics are solely represented by the spatial and momen-
tum coordinates of the ions. Under these conditions, the Liouville equation simplifies to
the Fokker-Planck equation. This Fokker-Planck stage, parallel to the Langevin dynamics,
serves as the foundation for the Brownian dynamics (BD) simulation technique. Within
this framework, the impact of the solvent is manifested through both a frictional force and
a random force component. These forces intertwine with two additional force components,
representing electrostatic interactions and the acceleration of ions resulting from collisions
with solvent particles.

For duration where t > τ2, the ion velocities have settled and all particles reach their
terminal velocities. As a result, there is no acceleration (or relaxation) observed. In this
state, the frictional forces are precisely counteracted by the random forces and the forces
resulting from ion-ion interactions. The system’s progression in the phase space can then be
approximated using the Smoluchowski equation.

An alternative approach transitions from the Fokker-Planck equation to classical hydrody-
namic equations through a hierarchy reminiscent of Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY). The emergent description level parallels that provided by the Smoluchowski equa-
tion. At this juncture, the variables under consideration include time-dependent density
correlation functions for two particles, along with the relative velocities of ions of types i
and j. Beyond the Smoluchowski equation, the hydrodynamic continuity equations represent
another optimal launching pad for theories on this plane.

2.4 Continuity Equation Approaches

2.4.1 Equation of Motion

Ebeling et al. [110] demonstrated that a hierarchy analogous to the BBGKY hierarchy (refer
to Section 4.2.2 in ref. [84] for details) can be established for the Smoluchowski equation
[84,122]. For one-body densities, where fi = fi(r), this is expressed as Eq. 2.15:

∂fi(r1, t)
∂t

+ ∇1 · Ji(r1, t) = 0 (2.15)

In the given equation, Ji represents the flux of ion i, which is defined as follows:

Ji(r1, t) = fi(r1, t)vi(r1, t) (2.16)

And, vi is the velocity vector:

vi(r1, t) = vs
i (r1, t) + ωiFi(r1, t) +

C∑
j=1

∫
T̄ij(r1, r2)Fi

j(r1, r2)fij(r1, r2)
fi(r1) dr2 (2.17)
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Figure 2.7. Time scales permitting a rough orientation on the typical dynamic properties of
electrolyte solutions and the corresponding theoretical approaches (adapted from Barthel et al. [84]).

In the given equation, T̄ij represents the hydrodynamic interaction tensor between ions
i and j, which can be identified as either the Rotne-Prager or the Oseen mobility tensors.
Furthermore, Fi (as defined by Eq. 2.18) and Fi

j denote the average force on ion i and the
average force on ion j situated at r2 when ion i is positioned at r1, respectively. fij describes
the likelihood of locating ion i at r1 when ion j is at r2.

Fi(r1) = Fext
i (r1) − kBT∇1 ln fi(r1) + Fint

i (r1) (2.18)
In Eq. 2.18, Fext

i denotes the external force exerted on ion i. For the conductance process,
this originates from the external electric field. Meanwhile, Fint

i signifies the internal force
on ion i, which, in the context of conductance, corresponds to the relaxation force.

fi(r1)Fint
i (r1) = −

C∑
j=1

∫
∇1ϕij(r1, r2)fij(r1, r2)dr2 (2.19)

In Eq. 2.19, ϕij is the potential between ion i and j. The mean force acting on ion j
located at r2 when ion i is at r2 is given by Eq. 2.20:

Fi
j(r1, r1) = −Fext

i (r1) − kBT∇2 ln fji(r1, r1) + Fint
ji (r1, r2) (2.20)

The internal contribution to this force is written as follows:



2.4 Continuity Equation Approaches 25

Fint
ji (r1, r2) = −∇2ϕji(r1, r2) −

C∑
k=1

∫
∇1ϕji(r2, r3)fijk(r1, r2), r3)

fij(r1, r2) (2.21)

The subsequent tier in the hierarchy of equations is represented by Eq. 2.22. This
equation serves as the continuity equation for the two-particle densities, denoted as fij :

∂fij(r1, r2, t)
∂t

+ ∇1 · Jj
i (r1, r2, t) + ∇2 · Ji

j(r1, r2, t) = 0 (2.22)

For a homogeneous system, under the condition that the external force remains constant,
a condition applicable to the conductance process, the two and three body densities can be
expressed as per Eq. 2.23 and Eq. 2.24, respectively:

fij(r1, r2) ≃ fi(r1)fj(r2)gij(r1, r2) ≃ f̄i(r1)f̄j(r2)gij(r1, r2) (2.23)

fijk(r1, r2, r3) ≃ fi(r1)fj(r2)fk(r3)gijk(r1, r2, r3)
≃ f̄i(r1)f̄j(r2)f̄k(r3)gijk(r1, r2, r3) (2.24)

In equations 2.23 and 2.24, f̄i, gij , and gijk are the mean value of the two-body and
three-body distribution functions fi, respectively. The internal force is then given by Eq.
2.25:

Fint
i (r1) = Frel

i (r1) = −
C∑

j=1

f̄j

∫
∇1ϕij(r1, r2)gij(r1, r2)dr2 (2.25)

From Eq. 2.17, the velocity equation can be obtained from the following equation:

vi(r1, t) = vs
i (r1, t) + ωi(Fext

i (r1, t) + Frel
i (r1, t)) +

C∑
j=1

f̄j

∫
T̄ij(r1, r2)Fi

j(r1, r2)gij(r1, r2)dr2 (2.26)

If the relaxation effects on hydrodynamics are disregarded, the hydrodynamic or electro-
static effects can be decoupled as follows:

C∑
j=1

f̄j

∫
T̄ij(r1, r2)Fi

j(r1, r2)gij(r1, r2)dr2 ≈

C∑
j=1

f̄j

∫
T̄ij(r1, r2)Fj(r1, r2)g0

ij(r1, r2)dr2 (2.27)

Utilizing the Oseen tensor as outlined in Eq. 2.28, and substituting the average one-body
density with the bulk density of ions (f̄i = ρi), we can refine Eq. 2.27 to an approximation
represented by Eq. 2.29:

T̄ij = 1
8πηrij

(ĪI + rij ⊗ rij

r2
ij

) (2.28)
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C∑
j=1

f̄j

∫
T̄ij(r1, r2)Fj(r1, r2)g0

ij(r1, r2)dr2

= 2
3η

∫ ∞

0

C∑
j=1

ρjrg
0
ij(r)dr(Fext

j + Frel
j ) (2.29)

The integral on the right-hand side of Eq. 2.29 fails to converge when
∑

j
ρjFj ̸= 0. If

we overlook the solvent’s hydrodynamic velocity, the right-hand side of Eq. 2.29 can be
substituted with the expression in Eq. 2.30:

2
3η

∫ ∞

0

C∑
j=1

ρjrh
0
ij(r)dr(Fext

j + Frel
j ) (2.30)

In the above expression, h0
ij = g0

ij − 1 represents the pair correlation function for ion j
when it is near ion i. By substituting Eq. 2.30 into Eq. 2.26 and setting aside the solvent’s
hydrodynamic velocity (vs

i ), we can formulate the equation for the velocity of the ion as
shown in Eq. 2.31:

vi = ωi(Fext
i + Frel

i ) + 2
3η

∫ ∞

0

C∑
j

ρjrh
0
ijdr(Fext

j + Frel
j ) (2.31)

Eq. 2.31 serves as the foundational equation for many existing theories of electrical
conductance. Nevertheless, the manner in which these equations are presented might vary
across different sources.

2.4.2 Ideal Contribution
The ideal part of the electrical conductivity, discussed in Section 2.1.1, represents the motion
of ions under the influence of an external electric field when unaffected by other ions. Under
such circumstances, typically occurring at the infinite dilution limit, the velocity of the ion
directly corresponds to the external electric force acting on the solution through the concept
of absolute mobility.

v0
i = ωiFext

i (2.32)

In Eq. 2.32, the term ωi represents the absolute mobility of ions. This absolute mobility
can be related to the diffusion coefficient at infinite dilution or the ionic conductivity at
infinite dilution using the Nernst-Einstein equation (Eq. 2.13).

In the conductance process, the external electric force exerted on the ion can be expressed
in terms of the external electric field, as depicted in Eq. 2.33:

Fext
i = eZiE (2.33)

Since we are interested only in the component of velocity in the x-direction perpendicular
to the electrodes, we can drop the vector notation and use the scalar values. Hence:

v0
i = ωiF

ext
i = ωieZiE = D0

i

kBT i

eZiE = NAλ
0
i

F 2|Zi|
eZiE (2.34)
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2.4.3 Hydrodynamic Contribution

As noted above, our focus is solely on the scalar value of ion velocities that align with the
direction of the applied electric force, represented by the x direction in figures 2.1, 2.3, and 2.5.
Consequently, we have eliminated the vector form from Eq. 2.31. Through straightforward
calculations, we can express Eq. 2.31 as Eq. 2.35:

vi = (v0
i + δvi)(1 + F rel

i

F ext
i

) (2.35)

The term δvi in Eq. 2.31 represents the adjustment of the velocity of the ions as they
drift in response to the external electric field, factoring in hydrodynamic (or electrophoretic)
effect. This correction can be derived from Eq. 2.36:

δvi = 2
3η

C∑
j

ρjeZjE

∫ ∞

0
rh0

ij(r)dr (2.36)

In Eq. 2.36, the term h0
ij denotes the equilibrium pair correlation function. To derive an

equation accounting for the electrophoretic velocity adjustment of ions, one needs to specify
the equilibrium pair correlation function between ions i and j. This particular equation plays
a crucial role in Chapters 4 and 5, where new models for electrical conductivity are intro-
duced. Additionally, it is worth noting that this equation has been formulated considering a
mix of different types of ions. As such, it also accurately captures the electrophoretic effects
in mixed-electrolyte solutions.

2.4.4 Relaxation Correction

The relaxation force that affects the central ion is detailed in Eq. 2.25. To compute this force,
one necessitates a robust equation for the radial distribution function (RDF). This function
varies on the basis of both distance and direction, given the asymmetry inherent in the ionic
cloud. As highlighted in Section 2.1.3, following this methodology is not mathematically
advantageous. An alternative avenue to ascertain the relaxation force acting on the central
ion is through the FO continuity equation combined with the linear response theory.

The subsequent tier in the hierarchy introduced by Ebeling et al. [110] for the Smolu-
chowski equation, represented by Eq. 2.22, manifests as the FO continuity equation. This
can be expressed as follows:

−∂fij(r, t)
∂t

= ∇1.(fij(r, t)vij) + ∇2.(fji(r, t)vji) (2.37)

Within Eq. 2.37, the term vij symbolizes the velocity of the ion j located in the vicinity
of ion i. In a steady state and by leveraging the assumptions from Eq. 2.23 pertaining
to two-body densities, the FO continuity equation can be reformulated as presented in Eq.
2.38:

∇.(gji(r)vji(r)) + ∇.(gij(r)vij(r)) = 0 (2.38)

The velocity of ion j near ion i, denoted as vji, can be correlated with the forces exerted
on ion j when it is considered the central ion.

vji(r) = vs
i (r) + ωi[Fji(r) − kBT∇ ln fji(r)] (2.39)

The force acting on the ion i in the atmosphere of the ion j is given by Eq. 2.39:
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Fji = Fext
i + Fint

i − eZi∇ψj(r) (2.40)

In equations 2.39 and 2.40:

• −kBT∇ ln fji(r) represents the diffusion term influenced by Brownian motions.

• Fext
i denotes the external force applied to ion i.

• Fint
i refers to the internal force on the ion i, which arises due to the uneven distribution

of the ionic cloud.

• −eZi∇ψj(r) signifies the force imposed by the ion j along with its surrounding atmo-
sphere.

For ion j, the surrounding electric potential is presumed to be governed by the Poisson
equation (Eq. 2.41).

∇2ψj(r) = 4π
ϵ

C∑
k=1

ρkeZkgjk(r) (2.41)

Integrating equations 2.39 through 2.41 into Eq. 2.40 and preserving only the linear
terms, the resulting expression becomes:

kBT (ωi + ωj)∇2gji(r) + eZiωi∇2ψj(r)
−eZjωj∇2ψi(r) = (ωiFext

i − ωjFext
j ) · ∇gji(r) (2.42)

The challenge can be addressed by assuming a first-order perturbation in the ionic cloud
when subjected to an external electric field. Consequently, expressions for the electric po-
tential, pair correlation function, and RDF can be articulated as depicted in equations 2.43,
2.44, and 2.45, in the order:

ψi(r) = ψ0
i (r) + ψ1

i (r) (2.43)

hij(r) = h0
ij(r) + h1

ij(r) (2.44)

gij(r) = g0
ij(r) + g1

ij(r) (2.45)

In the aforementioned equations, the superscript 0 signifies the contributions from equilib-
rium or steady-state conditions to the electric potential, the pair correlation function and the
RDF. Conversely, the superscript 1 indicates the contributions arising from the first-order
perturbation under non-equilibrium conditions to these functions. The perturbed potential,
pair correlation function, and RDF adhere to the symmetry conditions defined as follows:

g1
ij(−r) = −g1

ij(r) (2.46)

h1
ij(−r) = −h1

ij(r) (2.47)

ψ1
i (−r) = −ψ1

i (r) (2.48)

By substituting equations 2.43 and 2.45 into Eq. 2.42, we obtain:
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kBT (ωi + ωj)∇2g1
ji(r) + eZiωi∇2ψ1

j (r)
−eZjωj∇2ψ1

i (r) = (ωiFext
i − ωjFext

j ) · ∇g0
ji(r) (2.49)

We can rearrange Eq. 2.49 to obtain a more streamlined expression as:

∇2∇2ψ1
j (r) − 4π

ϵkBT

C∑
i=1

ρie
2Z2

i ωi

ωj + ωi
∇2ψ1

j (r) − 4π
ϵkBT

C∑
i=1

ρie
2ZiZjωi

ωj + ωi
∇2ψ1

i (r)

= − 4π
ϵkBT

C∑
i=1

ρieZi

ωiFext
i − ωjFext

j

ωj + ωi
· ∇g0

ji(r) (2.50)

In this equation, κ is the inverse Debye length defined as:

κ2 ≡ 4πe2

ϵkBT

C∑
j=1

ρjZ
2
j (2.51)

In addition, µi is the relative ionic strength defined as:

µi ≡ ρie
2Z2

i∑C

j=1 ρje2Z2
j

(2.52)

The mean mobility is also defined as Eq. 2.53:

ω̄ ≡
C∑

j=1

µjωj (2.53)

The limiting transference number of the ion i is also defined as:

ti ≡ µiωi

ω̄
(2.54)

The equation represented by Eq. 2.49 can be reformulated in a more streamlined manner,
as depicted in Eq. 2.55.

C∑
i=1

(∇2δji − κ2aji)∇2(ψ
1
i (r)
eZi

) = − κ2

eZj

C∑
i=1

µi

eZi

ωiFext
i − ωjFext

j

ωi + ωj
· ∇g0

ji(r) (2.55)

Within this equation, aji represents the elements of a matrix A, as defined in Eq. 2.56.
Furthermore, δji signifies the Kronecker delta.

aji ≡ δji

C∑
k=1

ω̄

ωj + ωk
+ ω̄ti
ωj + ωi

(2.56)

Eq. 2.55 represents a system of ordinary differential equations that need to be solved to
determine the perturbed portion of the electric potential (or the pair correlation function).
Once this system is solved, the perturbed component of the pair correlation function can
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be incorporated into Eq. 2.25, enabling the calculation of relaxation-induced forces on the
migrating ion.

In a single-salt system comprising one type of cation and anion, Bernard et al. [111] solved
the system of ordinary differential equations by using Green’s functions [123]. The resultant
relaxation effect for such systems is depicted in Eq. 2.57:

δki

ki
= −Ω

∫ ∞

σij

rh0
ij(r) exp(−κqr)dr (2.57)

Ω =
κ2

q

3

[
sinh (κqσij)

κqσij
−
ϵkBTκqσ

2
ij

e2ZiZj

(
cosh (κqσij)

κqσij
− sinh (κqσij)

κ2
qσ2

ij

)]
(2.58)

In Eq. 2.58, σij is distance of the closest approach defined by Eq. 2.59:

σij = σi + σj

2 (2.59)

In Eq. 2.58, κq is defined as Eq. 2.60:

κ2
q = 4π

ϵkBT

ρieZiωi + ρjeZjωj

ωi + ωj
(2.60)

In the context of a multi-salt electrolyte solution encompassing diverse types of cations
and anions, Van Damme provided a solution to Eq. 2.49 [116], which was later expanded
upon by Roger and colleagues [117] for size-asymmetry. The resulting equation detailing the
relaxation effect for these complex systems is presented in Eq. 2.61.

δkm

km
= −κ2eZm

3
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)
κ

√
qpσij
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(
−κ√

qpr
)
h0

ij(r)dr
]

(2.61)

The parameters qp and ζp
i are associated with the eigenvalues and the elements of the

eigenvector, respectively, that emerge from resolving the set of differential equations (as
detailed in equations 22-26 in the study by Van Damme [116]). These eigenvalues and
eigenvectors are respectively outlined in equations 2.62 and 2.63.

qp =
C∑

j=1

= ω̄tj
ωj + δp

(2.62)

ζp
j = Npωj

ω2
j − δ2

p
(2.63)

In the given equations, the term Np is defined according to Eq. 2.64, while δp corresponds
to a root of Eq. 2.65.

1
N2

p
=

C∑
j

tjω
2
j

(ω2
j − δ2

p)2 (2.64)
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−2ω̄δ
C∑

j=1

ti
ω2

i − δ2 = 0 (2.65)

Just like the hydrodynamic effect, one must input the equilibrium pair correlation function
into Eq. 2.61 to determine the relaxation force that affects the central ion. The selection
of the equilibrium function is explored in Chapters 4 and 5, where two novel electrical
conductivity models are introduced.

2.4.5 Conductivity Equation

Upon examination of both the relaxation and hydrodynamic effects, we can link the ionic
conductivity of the ions to their velocity through the proportional relationship presented in
Eq. 2.66:

λi

λ0
i

= vi

v0
i

(2.66)

Consequently, the solution’s specific conductivity can be derived from Eq. 2.67:

χ = e2

kBT

C∑
i=1

ρiD
0
iZ

2
i

(
1 + δvi

v0
i

)(
1 + δki

ki

)
(2.67)

Thus, both the molar and equivalent conductivity can be determined using equations 2.7
and 2.8, respectively.

2.5 Summary and Conclusions

In this chapter, the process of electrical conductance in electrolyte solutions was presented
and the associated properties were defined. The physical factors contributing to the elec-
trical conductivity of such solutions were briefly discussed, and models for its theoretical
examination were reviewed.

Among the modeling approaches, the continuity methods were comprehensively detailed.
The Ebeling hierarchy pertaining to the equation of motion for ions influenced by an external
electric field was introduced. Moreover, an equation that accounts for the hydrodynamic (or
electrophoretic) correction in comparison to the ideal behavior for the electrical conductivity
was laid out. Additionally, the FO continuity equation was described, along with the equa-
tion addressing the electrostatic (or relaxation) correction compared to the ideal behavior
for the electrical conductivity of both single-salt and multi-salt electrolyte solutions.

It was determined that, given the pair correlation function at a stationary state (the equi-
librium pair correlation function) from an electrolyte theory, a novel electrical conductivity
model can be formulated. The equilibrium pair correlation function derived from DH theory
will be utilized in Chapters 4 and 5. On the basis of the equations presented in this chapter,
new models for the electrical conductivity of electrolyte solutions will be devised.
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Chapter Message

If the equilibrium pair correlation function is provided from an established theory,
assumption, or numerical solution, the hydrodynamic and electrostatic contributions
to the electrical conductivity can be conveniently evaluated. The choice of the equi-
librium pair correlation function varies the final outcome.



CHAPTER 3
Practical Investigation of

Electrical Conductivity Models

In Chapter 2, the electrical conductance process, its physical foundation, its historical
evolution, and modeling techniques were briefly outlined. It was highlighted that, following
the formulation of the limiting law by Debye and Hückel [86] and Onsager [87, 88], several
models have been introduced in efforts to refine the limiting law.

Despite the development of numerous models for electrical conductivity, it remains un-
clear which models are optimal, especially across a broad spectrum of systems and condi-
tions. Moreover, the applicability, accuracy, and reliability of these models are predomi-
nantly restricted to findings presented by their developers. Consequently, a comprehensive
examination of these models for various electrolytes, spanning various concentrations and
temperatures, is beneficial.

In this chapter, the predictive capabilities of six established electrical conductivity models
are assessed over an extensive range of concentrations and temperatures. Aqueous solutions
of various electrolytes (1:1, 1:2, 1:3, 1:4, 2:1, 2:2, 2:3, 2:4, 3:1, and 3:2) under low pressure
conditions are specifically studied. The accuracy and reliability of these models are evaluated
using experimental data for 126 electrolytes. Comparisons are made between model predic-
tions and experimental data, even at high concentrations and temperatures. The precision
of these models is further analyzed through error analysis. Lastly, the electrophoretic and
relaxation components of the models are closely examined to provide a deeper understanding
of their differences and to highlight their unique behaviors.

Furthermore, in this chapter, three new electrical conductivity models for single-salt
solutions are introduced, drawing on the combination of hydrodynamic and electrostatic
corrections previously established in the literature. Subsequently, the influence of ion-solvent
interactions on the prediction of the electrical conductivity of aqueous solutions is explored
by utilizing concentration-dependent RSP and viscosity.

The practical investigations presented in this chapter have previously been published in
two papers in Industrial & Engineering Chemistry Research and Fluid Phase Equilibria.
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• Comparison of Models for the Prediction of the Electrical Conductivity of Electrolyte
Solutions [120] (Link).

• On The Estimation of Equivalent Conductivity of Electrolyte Solutions: The Effect of
relative static permittivity and Viscosity [124] (Link).

3.1 Models

In this section, six notable electrical conductivity models from the current literature have
been reviewed: DHOLL [83,86–88,125], DHOEE [90], DHOSiS [118], MSA [111,112], MSA-
Simple [113] and QV [103–105]. Additionally, three new models have been introduced that in-
tegrate relaxation effects, drawn from previous research [94,101,102], and the electrophoretic
component from the DHOEE model. Although all these models are rooted in the continuity
approach discussed in Chapter 2, the derivation techniques for each are varied. These dif-
ferences are caused by variations in pair correlation functions, boundary conditions, or the
methods used to address the FO continuity equation.

Beyond their initial derivations, these models have been reported in various ways by the
authors. In this regard, a decision has been made to present all of these models in a uniform
format to simplify their comparison. As a result, the electrical conductivity models are
presented based on corrections to the ideal behavior as outlined in Eq. 3.1:

λi = λ0
i

(
1 + δvi

v0
i

)(
1 + δk

k

)
(3.1)

Eq. 3.1 has been formulated based on the insights of Debye and Hückel. The decrease in
ion mobility with concentration in the presence of an external electric field was attributed by
the authors to both relaxation and electrophoretic effects. In this equation,

(
δk
k

)
represents

the reduction in mobility due to relaxation, and
(

δvi

v0
i

)
indicates the decrease arising from

electrophoretic effects. It is important to note that the expression
(

δvi

v0
i

× δk
k

)
λ0

i is excluded
in the DHOLL, DHOEE, DHOSiS, and QV models. As a result, the ionic conductivity
equation for these models has been shown in Eq. 3.2:

λi = λ0
i

(
1 + δvi

v0
i

+ δk

k

)
(3.2)

As described in the previous chapter, the molar conductivity of electrolyte solutions
denoted Λ which is the primary property investigated in this chapter is calculated from Eq.
3.3:

Λ =
∑

i=+,−

νi |Zi|λi (3.3)

In Eq. 3.3, νi and Zi are defined as the stoichiometry and charge valence type of the
ions, respectively. The connection between molar conductivity and equivalent conductivity
for single-salt electrolyte solutions has been expressed as follows.

Λ = νi |Zi| Λeq , i = {+ or−} (3.4)

Given that for a single-salt solution ν+ |Z+| = ν− |Z−|, the selection of either cation or
anion for this conversion does not influence the outcome.

https://pubs.acs.org/doi/10.1021/acs.iecr.1c04365
https://www.sciencedirect.com/science/article/pii/S037838122200317X
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3.1.1 Debye-Hückel-Onsager Limiting Law (DHOLL) Model

The DHOLL model was originally formulated by Debye and Hückel [86] and subsequently
refined by Onsager [87,88]. This model represents the first theoretical exploration of electrical
conductivity that successfully demonstrated the linear decrease in the molar conductivity
of electrolyte solutions with the square root of the salt concentration at infinite dilution.
The version of the DHOLL model presented in this section is derived from Onsager’s papers
[87,88]. In his research, Onsager assumed the presence of a single type of cation and anion in
a continuous solvent medium, each bearing point charges. The electrophoretic and relaxation
effects of the DHOLL model are represented in equations 3.5 and 3.6, respectively.

δvi

v0
i

= − F 2

6πηNAλ0
i

|Zi|κ , i = {+ or −} (3.5)

δk

k
= − |Z+Z−| e2

12πε0εrkBT

q

1 + √
q
κ (3.6)

q = |Z+Z−|
|Z+| + |Z−|

λ0
+ + λ0

−

|Z+|λ0
− + |Z−|λ0

+
(3.7)

In the given equations, κ represents the inverse Debye length as defined in Eq. 2.51. The
terms η and εr correspond to the viscosity and RSP of the solvent, respectively. Substituting
equations 3.5 and 3.6 into Eq. 3.2, the ionic conductivity according to the DHOLL model
can be expressed as shown in Eq. 3.8:

λi = λ0
i −
[

F 2

6πηNA
|Zi| + |Z+Z−| e2

12πε0εrkBT

q

1 + √
q
λ0

i

]
κ , i = {+ or −} (3.8)

The equivalent conductivity for the DHOLL model can subsequently be derived by sub-
stituting Eq. 3.8 into Eq. 3.3:

Λeq = λ+ + λ− = Λ0 −
[

F 2

6πηNA
(|Z+| + |Z−|) + |Z+Z−| e2

12πε0εrkBT

q

1 + √
q

Λ0
]
κ (3.9)

In Eq. 3.9, Λ0 denotes the equivalent conductivity at infinite dilution.

3.1.2 Debye-Hückel-Onsager Extended Equation (DHOEE) Model

The DHOEE [90] stands as the counterpart in electrical conductivity models to the extended
DH equation found in activity coefficient models. The relaxation component of this model
was derived by Falkenhagen and his team [101], using the Eigen-Wicke distribution function
[90]. This model takes into account a finite size for the ions, with the assumption that all ions
possess the same diameter, termed distance of the closest approach (σ+− = 0.5(σ+ + σ−)).

Furthermore, when considering the relaxation field, its exponential term was approxi-
mated using the first-order Taylor series expansion. In the process, the higher-order terms
associated with κσ+− are ignored. The electrophoretic and relaxation effects in the DHOEE
model are expressed in equations 3.10 and 3.11, respectively.
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The ionic conductivity of the DHOEE model can then be obtained from Eq. 3.12:

λi = λ0
i −
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6πηNA
|Zi| + |Z+Z−| e2

12πε0εrkBT
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q
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The equivalent conductivity of this model is also obtained from Eq. 3.13:

Λeq = Λ0 −
[
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6πηNA
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12πε0εrkBT

q
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3.1.3 Debye-Hückel-Onsager Smaller-ion Shell (DHOSiS) Model

The DHOSiS model was introduced more recently by Fraenkel, as mentioned in [118], with
the objective of improving the DHOLL through the application of the so-called smaller ion
shell theory, or SiS. Three pivotal modifications were made to the DHOLL by Fraenkel:

1. The ω value of the DHOLL model, which is denoted by |Z+Z−| q
1+√

q
in Eq. 3.6, was

multiplied to adapt it suitably for multi-valent electrolytes.

2. Taking into consideration the asymmetry in the size of the ions, he modified the rep-
resentative size of the ionic atmosphere.

3. To counteract potential over-compensation from the second modification, he integrated
an oversize offset factor.

The electrophoretic and relaxation components of the DHOSiS model are shown in equa-
tions 3.14 and 3.15, respectively.
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6πηNAλ0
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|Zi|ω†Ψ∗
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12πε0εrkBT

P ∗q
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q
ω†Ψ∗

i , i = {+ or −} (3.15)

In the given equations, 3.14 and 3.15, the term P ∗ acts as the correction factor for the ω
value found in the DHOLL model.

P ∗ =


|Z−|
ν−

t0+ + |Z+|
ν+

t0− if |Z+| ≤ |Z−|
|Z−|
ν+

t0+ + |Z+|
ν−

t0− if |Z+| ≥ |Z−|
(3.16)

In Eq. 3.16, the terms t0+ and t0− represent the transference numbers of the cation and
the anion at infinite dilution, respectively. They are defined as the fraction of the ionic
conductivity relative to the equivalent conductivity both at infinite dilution, given by the
relation t0i = λ0

i /Λ0.
In equations 3.14 and 3.15, adjustments made due to the size asymmetry of the ions

in relation to the ionic cloud size, symbolized as Ψ∗
i , are outlined. These adjustments are

further detailed in the equations 3.17 for cations and 3.18 for anions.

Ψ∗
+ = −κ

1 + κσ+−

[
1 − 2 (exp(κ(σ+− − σ+)) − 1) − κ(σ+− − σ+)

1 + κσ+

]
(3.17)
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Ψ∗
− = −κ

1 + κσ+−

[
1 + 2 (exp(κ(σ− − σ+−) ) − 1) − 2κ(σ− − σ+−)

1 + κσ−

]
(3.18)

The oversize offset factor symbolized as ω† is defined as Eq. 3.19:

ω† = 1 +
(
λ0

+ − λ0
−
)2

3λ0
+λ

0
−

P ∗qκσ+− (3.19)

Finally, equations 3.20 and 3.21 represent the ionic and equivalent conductivity of the
DHOSiS model, respectively.
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While the exact steps used to develop the DHOSiS model are unclear, it is evident
that Fraenkel took a different route compared to other researchers. Most of the models
investigated in this study, except for the DHOSiS model, were derived by solving the FO
continuity equation [83, 87, 88] (or the generalized form reported by Ebeling et al. [110])
for the relaxation term. The output of this derivation procedure results in a salt-specific
relaxation effect on the conductivity of ions. Onsager also discussed a salt-specific relaxation
effect. Even in his Nobel Prize lecture, he pointed out that the relaxation field reducing the
velocity of ions toward the oppositely charged electrode should be the same for the cation
and the anion, or, in his words:

"The relaxation effect ought to reduce the mobilities of anion and cation in equal
proportion. Much to my surprise, the results of Debye and Hückel did not satisfy
that relation, nor the requirement that whenever an ion of type A is 10 A West
of a B, there is a B 10 A East of that A."

In conclusion, the DHOSiS model has an unspecified component, and without a clear
derivation, it is impossible to further investigate what is missing.

3.1.4 DHO 1, 2, and 3 Models
As mentioned in the previous chapter, some efforts have been made for the extension of
the relaxation field in the limiting law considering a finite size for ions. In almost all of
these studies, it has been assumed that cation and anion share a similar size equivalent to
distance of the closest approach. The derivation procedures of these models are more or less
the same. But they differ in either the use of the equilibrium pair correlation function or in
the choice of boundary conditions in the solution procedure of the FO continuity equation.
Equations 3.22, 3.24 and 3.25 represent relaxation contributions to the reduction of ionic
conductivity reported by Fuoss and Onsager [94], Falkenhagen et al. [101], and Falkenhagen
and Kelbg [102], respectively.
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In Eq. 3.22, b is the ratio of the Bjerrum length (lB) to distance of the closest approach
defined as Eq. 3.23:

b = lB
σ+−

= |Z+Z−| e2

4πε0εrkBTσ+−
(3.23)
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The ionic conductivity of the DHO 1-3 models can be calculated from equations 3.1 and
3.3 by replacing δk/k from equations 3.22-3.25 , respectively. DHO1-3 models share the
electrophoretic effect with the DHOEE model presented in Eq. 3.10.

3.1.5 Mean Spherical Approximation (MSA) Model
The model takes its foundation from the generalized derivation approach proposed by Ebeling
et al. [110] (presented in Chapter 2) and integrates the MSA pair correlation function [5,6,84]
for the equilibrium part. Furthermore, Bernard et al. [111] incorporated Poisson’s equation
to account for the non-equilibrium contribution of the overall potential. In addressing the
inhomogeneous continuity equation, they utilized Green’s function methodologies. An out-
standing feature of this model is that it operates as an unrestricted primitive model (UPM),
introducing a specific ion size parameter (the crystallographic ion size). In our study, we
evaluate two iterations of MSA-based electrical conductivity models: the original [111] and
its simplified counterpart [113].

Additionally, the MSA model underwent minor modifications primarily to simplify its
implementation. Certain authors sought to provide an explicit formulation for the screening
length parameter [126]. In contrast, others omitted specific expressions in the formulation
(specifically Γ2σ̄2 in equations B.17 and B.20) citing their negligible numerical significance
[127]. The computational challenge of solving the implicit screening length equation is not
particularly difficult, given that an appropriate method is employed. Without the second
adjustment, the MSA model fails to accurately predict the equivalent conductivity at higher
concentrations for certain electrolytes, like LaCl3 in aqueous solutions.

In this research, the original formulation [111] was chosen for several crucial reasons. First,
our aim was to maintain a balanced comparison. Thus, contrasting a revised version of one
model with the original iteration of another does not provide a fair comparison. Second,
the minimal influence of an expression on results at low to medium concentrations does
not justify its exclusion. Consequently, the MSA results showcased in this study follow the
original formulation.

The electrophoretic and relaxation effects of the MSA model are defined in equations
3.26 and 3.27, respectively. The electrophoretic effect comprises two distinct contributions,
whereas the relaxation effect encompasses three. Comprehensive equations detailing each
individual contribution can be found in Appendix B.
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The ionic and molar conductivity conductivity predicted by the MSA model can be
obtained by substituting equations 3.26 and 3.27 into equations 3.1 and 3.3, respectively.

3.1.6 Mean Spherical Approximation Simple (MSA-Simple) Model

The MSA-Simple model [113] is the restricted primitive model (RPM) version of the MSA
model that only considers the first approximation of the original model for relaxation and
electrophoretic terms. Equations 3.28 and 3.29 present the electrophoretic and relaxation
effects of the MSA-Simple model, respectively.
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In equations 3.28 and 3.29, the simplified MSA screening parameter (Γ) is obtained from
Eq. 3.30:

2Γ = κ

(1 + Γσ̄) (3.30)

In addition, κq and σ̄ are obtained from equations 3.31 and 3.32, respectively.

κ2
q = e2

ε0εrkBT

ρ+Z
2
+D

0
+ + ρ−Z

2
−D

0
−

D0
+ +D0

−
(3.31)

In Eq. 3.31, the total number density of ions is denoted as ρi.

σ̄ =
∑

i=+,− ρiZ
2
i σi∑

i=+,− ρiZ2
i

(3.32)

This model presents a unique advantage compared to other RPMs by introducing a spe-
cific equation for the salt-specific size parameter, represented as Eq. 3.32. For symmetrical
electrolytes, this equation is reduced to σ̄ = σ+−. But for asymmetrical electrolytes, more
weight is placed on the ion with a higher valence. It should be noted that this equation was
first derived by Blum [126]. He reported this by solving the implicit equation for the MSA
screening parameter at the zero limit (limΓ→0 Γ(ρi, σi, Zi, T, εr)).

3.1.7 Quint and Viallard (QV) Model

This model stands as an improvement over the models reported by Fuoss and Onsager [83,94–
100,128]. One of its advancements is the inclusion of higher-order terms for both relaxation
and electrophoretic effects. Moreover, diverging from the model developed by Fuoss and
Onsager, the QV model [103–105] can be applied to multi-salt systems and asymmetrical
electrolytes. The final formulation of the model, as presented by the authors, is depicted in
Eq. 3.33:

λi = λ0
i − Sm

i I
0.5 + E′m

i Iln (I) + Jm
1i I − Jm

2i I
1.5 +O

(
I2) (3.33)

In this equation, the terms Sm
i , E′m

i , Jm
1i , and Jm

2i are complicated functions influenced by
factors such as ionic conductivity at infinite dilution, ionic strength, distance of the closest
approach, universal constants, and the valence type of ions.
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In the derivation of Eq. 3.33, a dimensioned expression is encountered within the loga-
rithm. This makes model programming complicated without explicit knowledge of the units.
In this study, the QV model was reevaluated. The formulations of the relaxation and elec-
trophoretic terms were handled separately before being integrated into Eq. 3.2. Eq. 3.34
represents the contribution from relaxation to the reduction of equivalent conductivity due
to relaxation effects (a detailed formulation of these relaxation effects is given in equations
B.29 and B.30 in Appendix B). Additionally, the contribution to the reduction of equivalent
conductivity from electrophoretic effects is detailed in Eq. B.31 in Appendix B.

δk

k
= δk1,2

k
+ δkP

2

k
(3.34)

3.2 Database

To provide a robust foundation for model validation, we meticulously assembled a compre-
hensive database. This extensive collection covers the molar conductivity of as many as 126
distinct aqueous electrolyte solutions. What makes our database particularly noteworthy is
its broadness; it not only encompasses a wide range of electrolytes but also captures data at
both high concentrations and elevated temperatures.

Data for our database have been obtained from a total of 23 distinct references, as specif-
ically indicated in Figure 3.2. Among these, reference [129] stands out due to its unique
nature. Instead of being just another original data source, it acts as a database of relatively
old experimental measurements of the electrical conductivity. This reference consolidates ex-
perimental data related to the electrical conductivity of electrolyte solutions, drawing from
a staggering 145 different resources.

To offer a visual overview and facilitate easier understanding, we have depicted summaries
of this exhaustive database in two figures: Figures 3.1 and 3.2.

Figure 3.1 presents the number of data points in addition to the maximum salt concen-
tration, where the temperature is 298.15 K for each electrolyte in the database. Figure
3.2 shows the number of references for each salt-water binary mixture, including individual
sources extracted by us and sources used in reference [129].
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Figure 3.1. A summary of the number of data points and concentration range in the created
database for 126 different electrolytes (the number on the figure shows the number of data points,
and the color map shows the maximum concentration at 298.15 K in mol · L) [129–150]. Reprinted
with permission from ref. [120]. Copyright 2022 American Chemical Society.
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Figure 3.2. A summary of the number of references for each electrolyte in the database [129–150].
Reprinted with permission from ref. [120]. Copyright 2022 American Chemical Society.

3.3 Ions Properties

In models of electrical conductivity, ions are characterized by their size, charge, and absolute
mobility at infinite dilution. Within these models, ions are conceived as ideal spherical
particles possessing an ionic diameter. Absolute mobility of these ions, when the solution
is infinitely diluted, is commonly expressed either as ionic conductivity at infinite dilution
(represented as λ0

i ) or as the diffusion coefficient at infinite dilution (symbolized as D0
i ). The

charge associated with the ions is indicated as an integer number multiple of the elementary
charge (e), termed the ionic valence type, which is denoted as Zi.

Except for the DHOLL model, all other models incorporate a salt- or ion-specific size
parameter, denoted as σ+− or σi. In the case of DHOEE, QV and other RPMs, this
parameter is specific to the salt and is referred to as distance of the closest approach (σ+−).
On the other hand, for both versions of the MSA (full and simple) and the DHOSiS models,
this parameter is ion-specific and is symbolized as σi.

The fundamental concept of this parameter is well-understood; however, disagreements
arise when determining its exact value for use in electrical conductivity models. Fraenkel, in
his works [151, 152], introduced an electric scale for the ionic diameter derived from equiva-
lent conductivity data. Yet, in the DHOSiS model referenced in [118], he opted to use the
ionic diameter calculated as a fit parameter based on the activity coefficient data (known
as the activity scale) rather than the aforementioned electric scale. Onsager and Fuoss,
in their studies [83, 94–100, 153], assumed that distance of the closest approach ought to
be an adjustable parameter. Bernard and co-authors, in their paper [111], incorporated
the crystallographic ionic diameter into their MSA-based model. Meanwhile, other scholars
advocate for an effective concentration-dependent ionic radius, suggesting that its determi-
nation should be based on certain correlations, according to references [127,154].

By adjusting the size parameter (σ+− or σi), it is likely that the outcomes of the equiv-
alent conductivity models can be enhanced. However, since this research does not focus on
examining the capability of equivalent conductivity models to align with the experimental
data using such adjustable parameters, we adopted the crystallographic ionic diameter for
aqueous solutions, as reported by Marcus [155]. The diameters of the ions investigated in
this study are listed in Table 3.1.

Another fundamental property when discussing equivalent conductivity is the equivalent
conductivity at infinite dilution, represented as Λ0(T ) or λ0

i (T ). This property is an integral
part of the ideal contribution to the specific conductivity outlined in Chapter 2 (see Eq.
2.34). Since electrical conductivity models are developed based on the correction to this
ideal behavior, employing a precise value for this property is crucial for evaluating the
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Table 3.1. The ionic conductivity at infinite dilution (λ0
i ) at 298.15 K in S · m2 · mol−1 and ionic

diameter (σi) in m for ions studied in this work [155,156].

Ion λ0
i × 104 σi × 1010 Ion λ0

i × 104 σi × 1010

(NH4)+ 73.50 2.96 Mn2+ 53.50 1.66
Ag+ 61.90 2.30 Na+ 50.08 2.04
Al3+ 61.00 1.06 Ni2+ 49.60 1.38
Ba2+ 63.60 2.70 Pb2+ 71.00 2.38
Be2+ 45.00 0.90 Rb+ 77.80 2.98
Ca2+ 59.47 2.00 Sc3+ 64.70 1.50
Cd2+ 54.00 1.90 Sr2+ 59.40 2.50
Ce3+ 69.80 2.28 T l+ 74.70 3.00
Co2+ 55.00 1.50 Y 3+ 62.00 2.02
Cr3+ 67.00 2.28 Zn2+ 52.80 1.50
Cs+ 77.20 3.40 (ClO4)− 67.30 4.80
Cu2+ 53.60 1.46 (Fe(CN)6)3− 98.50 5.16
Fe2+ 54.00 1.56 (Fe(CN)6)4− 108.5 5.64
H+ 349.7 0.74 (NO3)− 71.42 3.58
K+ 73.48 2.76 (SO4)2− 80.00 4.60
La3+ 69.70 2.36 Br− 78.10 3.92
Li+ 38.66 1.48 Cl− 76.31 3.62
Mg2+ 53.00 1.44 I− 76.80 4.40

models’ accuracy.
Although the pivotal role of the equivalent conductivity at infinite dilution is widely

recognized, only a handful of models can accurately estimate it. Most of these models
are based on correlations or are semi-phenomenological in nature and depend, to a certain
degree, on experimental data. In this study, drawing inspiration from Fraenkel’s approach
in references [151, 152], we aligned the ionic conductivity at infinite dilution experimental
data with a combined expression, denoted as (εrT )2

η
. Additionally, we directly incorporated

the experimental data at temperatures for which the ionic conductivity at infinite dilution
measurements are available. Table 3.1 presents the ionic conductivity at infinite dilution for
the ions investigated in this work at 298.15 K. The diffusion coefficient at infinite dilution
used in the MSA and MSA-Simple models can also be calculated from the ionic conductivity
at infinite dilution using the Nerst-Einstein equation (Eq. 2.13).

3.4 Water Properties

To predict equivalent conductivity, two properties of the solvent are essential: viscosity and
RSP. In this study, we utilized either experimentally reported values or a correlation for
both the viscosity and the RSP of water. The experimental values for viscosity and RSP
can be found in Table 3.2.

Eq. 3.35 is the correlation used in this study for the temperature dependence of the water
viscosity [157].

ln
(
η

η0

)
= a1 (∆T ) + a2 (∆T )2 + a3 (∆T )3 + a4 (∆T )4 + a5 (∆T )5 (3.35)
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Table 3.2. The RSP and viscosity of water at various temperatures [129,157].

Solvent T (K) εr η (Pa · s) × 103

H2O 273.15 87.82 1.791
278.15 85.70 1.520
283.15 84.05 1.307
288.15 82.44 1.140
293.15 80.23 1.002
298.15 78.43 0.890
303.15 76.65 0.797
308.15 74.91 0.719
313.15 73.21 0.653
318.15 71.54 0.596
323.15 69.91 0.547
328.15 68.32 0.504
343.15 63.74 0.405
363.15 58.06 0.316
373.15 55.38 0.283

In Eq. 3.35, the term ∆T is defined as T − T0, where T0 is 293.15 K. The viscosity of
water at this reference temperature, represented as η0, is 1.002 mPa · s. The coefficients a1
through a5 in Eq. 3.35 are detailed in Table 3.3. This equation is applicable for temperatures
ranging from 273.15 to 373.15 K.

The RSP of water is determined using Eq. 3.36, a semi-empirical equation presented by
Mollerup and Michelsen [8].

εr (T ) = εr (273.15K) + β1

2
NAδ

2

ε0kBMW

(
ρ(T )
T

− 999.84
273.15

)
(3.36)

In the given equation, the coefficient β1 is set to 3.31306 and εr(273.15K) is 87.82. More-
over, the electric dipole moment of water, represented by δ, is 8.33e-30 C ·m. Additionally,
MW stands for the molecular weight of water. The density of water, ρ(T ), can be sourced
from Eq. 3.37:

ρ (T ) = 999.84 + 0.151782(T − 273.15) − 0.0450573(T − 273.15)1.55 (3.37)

3.5 Comparative Study

In this section, we conduct a detailed comparison of the DHOLL, DHOEE, DHOSiS, MSA,
MSA-Simple, and QV model predictions against each other and against experimental data.
To ensure a fair comparison, we consistently apply the same parameters across all models.
Initially, the effectiveness of the models will be evaluated starting from infinitely dilute solu-
tions and extending to very high concentrations at a fixed temperature of 298.15 K (Section
3.5.1). Subsequently, the model predictions will be compared at different temperatures in
section 3.5.2. A quantitative evaluation of these models will be presented in Section 3.5.3.

Table 3.3. The coefficients the water viscosity correlation.

a1 a2 a3 a4 a5
-2.45e-2 1.86e-4 -1.71e-6 1.42e-8 -5.98e-11
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Furthermore, an analysis concerning the reductions in equivalent conductivity stemming
from hydrodynamic and relaxation effects will be discussed in Section 3.5.4.

3.5.1 Concentration Dependency

In this section, we examine the molar conductivity of ten distinct electrolytes (1:1, 1:2, 1:3,
1:4, 2:1, 2:2, 2:3, 2:4, 3:1, 3:2) at 298.15 K in water. The outcomes are graphed against
the square root of the ionic strength. Given the wealth of experimental data available, this
specific temperature was selected, allowing us to evaluate electrical conductivity models
across a wider array of salts and concentration spectrum. The experimental data utilized
in this section is sourced from a consolidated database, and all data is treated uniformly,
irrespective of its origin.

The primary objective of this section is to assess the accuracy and reliability of the
electrical conductivity models across an extensive concentration spectrum, using graphical
analysis. Furthermore, the choice of ten electrolytes serves to demonstrate the capability of
the models to predict the electrical conductivity of various types of electrolyte-water systems.

Figures 3.3 and 3.4 depict the molar conductivity of the ten selected electrolytes plotted
against

√
I. For the KCl aqueous solution, the predictions of the models are more reliable

than those for other electrolytes. Both the MSA and MSA-Simple models produce excellent
predictions up to 1.5 mol · L−1, which is consistent with the observations in the literature
[111,113]. Similarly, the QV and DHOEE models align closely with the experimental data.

Moreover, it has been shown that there is a minimum in the predictions of the DHOSiS
model at low to moderate concentrations. Subsequent to this minimum, the molar con-
ductivity starts to rise with

√
I. This behavior, though varying in intensity, is identifiable

across different electrolytes. It is worth noting that Fraenkel has previously presented the
concentration range for the validity of this model, and the observed trends exceed those
bounds [118].

Additionally, we have examined the experimental data for over 126 electrolytes at various
temperatures. Interestingly, none of these electrolytes in the experimental data exhibited
the pattern of increasing molar conductivity at elevated concentrations. As such, it can be
asserted that the behavior exhibited by the DHOSiS model at medium to high concentrations
is either nonphysical or certainly unusual. Apart from this anomaly, in most instances, the
DHOSiS model offers fairly reliable predictions at low concentrations, specifically in the
range c = [0, 0.3] mol · L which is denoted as LC.

For 1:2 electrolytes, as shown in Figure 3.3b, the predictions of the models are not partic-
ularly convincing. However, the DHOEE, MSA, and MSA-Simple models appear to be more
accurate than the rest. When considering 1:3 electrolytes, the predictions of the DHOSiS
model are significantly more reliable at LC. For both LC and medium concentrations (MC:
c = [0.3, 1] mol · L−1), the DHOEE model provides acceptable results.

For the 2:2 sulfates, as depicted in Figure 3.3d, neither the MSA nor the MSA-Simple mod-
els provide satisfactory predictions, even at LC. From the experimental data for these elec-
trolytes, we observed that the molar conductivity declines rapidly with

√
I at LC. However,

this decline becomes more gradual in MC and at high concentrations (HC: c > 1 mol ·L−1).
Unfortunately, none of the models captured this trend accurately. Yet, at lower concen-
trations, both the QV and DHOSiS models could approximate the slope of the data more
effectively than their counterparts.

Furthermore, 2:2 sulfates are recognized in the literature as associative electrolytes [84,
112,113,158]. For these electrolytes, Apelblat [159] was successful in predicting the conduc-
tivity in dilute solutions (up to 0.05 mol · L−1) utilizing the QV model, with Λ0, K◦

A, and
σ+− serving as fitting parameters. Similarly, Chhih et al. [113] managed to estimate the
electrical conductivity of ZnSO4 up to 1.0 mol · L−1 by employing the MSA-Simple model,
using K◦

A and σi as fitting parameters. In another study, Turq et al. [112] were able to
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Figure 3.3. Molar conductivity (Λ) predictions at 298.15 K for various salts: (a) KCl (1:1), (b)
Li2SO4 (1:2), (c) Cu(NO3)2 (2:1), (d) ZnSO4 (2:2), (e) LaCl3 (3:1), and (f) K3Fe(CN)6 (1:3) by the
DHOLL, DHOEE, DHOSiS, MSA, MSA-Simple, and QV models, plotted against the square root of
ionic strength (

√
I). Data points are sourced from the following references: 2016-HR-SBH [129], 1970-

PM-CCCC-b [132], 1984-TI-JCED [141], and 2008-BMR-JCED [150]. Reprinted with permission
from ref. [120]. Copyright 2022 American Chemical Society.
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Figure 3.4. Predicted molar conductivity (Λ) at 298.15 K for various salts: (a) Ca3(Fe(CN)6)2
(2:3), (b) La2(SO4)3 (3:2), (c) Ca2Fe(CN)6 (2:4), and (d) K4Fe(CN)6 (1:4) using the DHOLL,
DHOEE, DHOSiS, MSA, MSA-Simple, and QV models, plotted against the square root of ionic
strength (

√
I). Data points are sourced from the reference [129]. Reprinted with permission from

ref. [120]. Copyright 2022 American Chemical Society.

predict the equivalent conductivity of MgSO4 up to 1.0 mol · L−1 with the MSA model,
taking the (K◦

A) and distance of the closest approach as fitting parameters.
In contrast, Anderko et al. [127] argued that by incorporating a concentration-dependent

effective ionic radius, the predictive accuracy of the MSA model can be significantly im-
proved, even for concentrations as high as 30 mol · kg−1. This applies to salts such as NaCl,
KCl, NaBr, KBr, NaI, KI, MgCl2, AgNO3, NH4NO3, HNO3, and HCl dissolved in water,
and, importantly, this improvement was observed without considering ion pairing. How-
ever, it is worth mentioning that their approach introduces a six-parameter equation for the
concentration-dependent ionic radius, which then necessitates fitting to the experimental
electrical conductivity data.

Unlike the electrolytes depicted in Figure 3.3, the salts presented in Figure 3.4 have
been examined less frequently in the context of electrical conductivity. However, by using
data from our extensive database, we are equipped to assess the accuracy of the electrical
conductivity models for these more uncommon electrolytes, namely 2:3, 3:2, 2:4, and 1:4.
On a glance at Figure 3.4a, it is evident that the QV model offers an acceptable prediction
of conductivity at LC. However, within the range of available data in the MC domain, all
models’ predictions are less accurate than expected. When examining 1:4 electrolytes, the
DHOEE and DHOSiS models tend to produce more agreeable results at LC compared to
their counterparts.
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On the contrary, the predictive patterns of the MSA-Simple model outshine those of the
other models. For 3:2 and 2:4 electrolytes, as illustrated in Figure 3.4b and c, the predictions
of all the models deviate considerably from the experimental data, even in the LC range.
Another significant observation is that for every salt depicted in this figure, experimental
data demonstrates a swift decline with

√
I at LC, but this decrease becomes more gradual

as the concentrations approach the MC range.
In conclusion, for 2:4 and 1:4 electrolytes, both the MSA and DHOSiS curves exhibit a

nonphysical trend where molar conductivity rises with
√
I. For certain electrolytes, such as

LaCl3, the predictions of the MSA model become indeterminate at HC. We delved into the
MSA formulation to pinpoint the cause of this deviant behavior. Our analysis revealed that
excluding the term Γ2σ̄2 from equations B.17 and B.20 corrects the problem. Figure D.1
compares the results of three variations of the MSA model: the full MSA [111], the modified
MSA [127], and the simple MSA [113] models. The sole distinction between the full MSA
and the modified MSA is the absence of the term Γ2σ̄2 in the latter.

As depicted in Figure D.1, the use of the modified MSA model addresses entirely the
issue encountered with the full MSA model at HC. Conversely, at LC, the outcomes of the
modified and full MSA are notably similar. It appears that at LC, it is permissible to leave
out this expression since its numerical effect is insignificant. However, such a justification
does not hold up at MC or HC.

3.5.2 Temperature Dependency

In this section, we examine the influence of temperature from two distinct angles. First, we
graphically depict Λ against T at varying concentrations, accompanied by their respective
experimental data for the DHOEE and MSA-Simple models (as shown in Figures 3.5 and
3.6). Subsequently, we illustrate the Λ vs.

√
I on semi-log plots across different temperatures

specifically for the DHOEE and MSA-Simple models, as presented in Figure 3.7.
Figures 3.5 and 3.6 show the temperature dependence of the predicted molar conductivity

of aqueous solutions of K4Fe(CN)6 and NaNO3, respectively. In these figures, graph (a)
shows a comparison between the predictions of the MSA-Simple model and the experimental
data, while graph (b) contrasts the predictions of the DHOEE model with the experimental
findings.

ɑ. b.

Figure 3.5. Predicted molar conductivity (Λ) of K4Fe(CN)6 using (a) MSA Simple and (b) DHOEE
across various concentrations, plotted against temperatures up to 373.15 K. Data points are sourced
from reference [129]. Reprinted with permission from ref. [120]. Copyright 2022 American Chemical
Society.
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ɑ. b.

Figure 3.6. Predicted molar conductivity (Λ) of NaNO3 using (a) MSA Simple and (b) DHOEE
across various concentrations, plotted against temperatures up to 373.15 K. Data points are sourced
from reference [129]. Reprinted with permission from ref. [120]. Copyright 2022 American Chemical
Society.

When contrasting graphs (a) and (b) of Figures 3.5 and 3.6, it becomes evident that the
predictions of the MSA-Simple model are more accurate than those of the DHOEE at lower
temperatures. However, at elevated salt concentrations, neither model aligns well with the
experimental data.

Upon examining Figure 3.7, a similar observation can be made about the MSA-Simple.
When the predictions of the MSA-Simple model are accurate at a given temperature, such
as the electrical conductivity of the Ca(NO3)2-Water system at 298.15 K (as seen in Figure
3.7c), they tend to be accurate at other temperatures as well. Furthermore, the MSA-Simple
generally exhibits greater accuracy at lower temperatures, as evidenced in Figure 3.7d.

3.5.3 Quantitative Assessment of the Accuracy of the Models

In this section, the accuracy of the models is quantified using the absolute average deviation
in percent (AAD %) as the error metric, as defined in Eq. 3.38. Given that the electrical
conductivity models predict the decrease in equivalent conductivity from its infinite dilution
value, we have opted for Λ

Λ0 as the principal expression for this analysis.

AAD % =

[
1
N

N∑
1

∣∣∣∣Λexp

Λ0 − Λpre

Λ0

∣∣∣∣
]

× 100 (3.38)

Electrolyte categorization in our analysis is based on its anion type and the charge of
the cation (ZCation). This approach was taken because we observed that the experimental
data exhibit a similar behavior when electrolytes are classified in this manner. Subsequently,
the error associated with each electrical conductivity model was calculated for different
concentration ranges, namely, LC, MC, and HC.

The graphical representation of our findings is included in Figure 3.8. These results
illustrate the performance of different electrical conductivity models in six specific electrolyte
categories, namely: MCl, MCl2, MCl3, MSO4, M(ClO4)2, and MNO3.

For electrolytes such as MCl, MCl2, and MNO3, the results are particularly revealing.
Referring to Figure 3.8a, b, and f, it is apparent that, with the exception of the DHOLL
model, other models exhibit decent predictions at LC and MC. However, it is worth noting
that the errors associated with the predictions of MCl2 and MNO3 are generally higher
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Figure 3.7. Predicted molar conductivity (Λ) of various salts using MSA Simple, plotted against
the square root of ionic strength across different temperatures: (a) KCl, (b) Na2SO4, (c) Ca(NO3)2,
and (d) ZnSO4. Data points are sourced from references [129,131,133,134,141,150,160]. Reprinted
with permission from ref. [120]. Copyright 2022 American Chemical Society.

compared to those of MCl. Furthermore, the predictions of the DHOSiS model show a
significant increase in deviations when transitioning from LC and MC to HC.

For electrolytes MCl and MCl2, the the DHOEE, MSA, MSA-Simple, DHOSiS, and QV
models generally provide reasonable results up to MC. However, when considering MCl3 as
shown in Figure 3.8c, only the MSA and MSA-Simple models seem to produce relatively
accurate predictions.

Turning our attention to 2:2 sulfates and 2:1 perchlorates, as shown in Figure 3.8d and e,
the DHOSiS model stands out with excellent performance at LC. However, it is notable that
the model deviations become substantially larger at higher concentrations. On the other
hand, models like DHOEE, MSA, and MSA-Simple continue to display better predictive
accuracy across the spectrum, even extending to HC when compared to the rest of the
models.

It is essential to recognize the inherent limitations and uncertainties associated with the
experimental data. Often, slight variations between predictions made by different electrical
conductivity models may fall within the error bounds of the experimental data itself. As
such, these minor discrepancies between models might not necessarily indicate a genuine
difference in predictive capability, but could rather reflect the experimental uncertainty.

Given this context, for 1:1 electrolytes at LC, it is reasonable to consider predictions from
the DHOEE, MSA, MSA-Simple, and DHOSiS models as essentially equivalent. Drawing
definitive conclusions about the superiority of one model over another based on such slim
margins could be misleading. It is always advisable to weigh the broader context and the
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Figure 3.8. The average absolute deviation in percent (AAD%) of the DHOLL, DHOEE, DHOSiS,
MSA, MSA-Simple, and QV models at low, medium, and high concentrations for (a) MCl, (b) MCl2,
(c) MCl3, (d) MSO4, (e) M(ClO4)2, and (f) MNO3 aqueous solutions at 298.15 K is presented. Here,
"M" represents the cation with varying valence types. Reprinted with permission from ref. [120].
Copyright 2022 American Chemical Society.

specifics of each application before selecting a model for practical use.
In summary, the DHOSiS model offers acceptable precision at LC. However, its precision

decreases as concentrations increase, especially at MC and HC. Despite their straightforward
design, both the DHOEE and MSA-Simple models deliver acceptable results in most situa-
tions, but they like other models face challenges with 2:2 sulfates. Moreover, a comparison
between the MSA and MSA-Simple models reveals that MSA does not provide any signifi-
cant advantages over its more streamlined counterpart. Thus, one can confidently opt for the
simpler MSA version without sacrificing accuracy. Furthermore, even though the QV model
incorporates higher-order terms from the FO continuity equation, Figure 3.8 highlights that
its output is not considerably better than that of DHOEE.

To provide a complete view of the performance of the models, the arithmetic average of
AAD% for various electrical conductivity models has been tabulated (refer to Table 3.4).
To ensure fairness and prevent any bias due to electrolytes with a higher number of experi-
mental data points, the arithmetic mean was employed. This ensures that every electrolyte,
regardless of the number of data points but sharing the same valence type, has an equal
influence on the values presented in Table 3.4.

Table 3.4 indicates that for 1:1 electrolytes, the performance of nearly all models is
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Table 3.4. This table presents the mean of AAD% of the equivalent conductivity models for various
electrolyte types at LC, MC, and HC. The experimental data points for the equivalent conductivity
are sourced from references [129–150]. Reprinted with permission from ref. [120]. Copyright 2022
American Chemical Society.

Type NE cmax DHOLL DHOEE DHOSiS MSA-Simple MSA QV
LC 2.93 1.93 1.81 1.78 1.78 1.94

1:1 28 13.55 MC 6.89 2.37 2.40 1.92 1.95 2.20
HC 19.9 3.57 12.9 3.93 3.73 3.50
LC 15.0 7.45 7.59 9.68 11.0 8.95

1:2 6 2.5 MC 28.1 7.93 11.9 10.9 12.2 10.3
HC 39.1 8.06 20.7 11.6 12.9 11.6

1:3 1 0.125 LC 29.2 11.5 8.33 12.6 16.9 24.1
LC 72.2 40.6 43.3 48.5 58.1 69.2

1:4 3 5.0 MC 95.2 42.3 70.0 48.7 57.8 81.6
HC 177 45.7 1149 49.2 57.5 132
LC 25.1 13.0 10.3 10.2 10.5 13.6

2:1 34 11.36 MC 53.0 15.7 23.1 11.0 11.7 16.4
HC 110 14.4 120 12.5 11.8 17.2
LC 41.4 19.6 9.93 32.9 30.8 28.4

2:2 9 3.54 MC 123 28.7 49.7 33.5 28.0 51.7
HC 220 36.6 202 32.5 25.2 73.6

2:3 1 0.17 LC 510 141 89.2 83.4 76.3 419
2:4 2 0.1 LC 483 248 254 316 321 608

LC 50.7 20.9 8.27 9.66 11.82 26.7
3:1 10 2.68 MC 88.3 28.3 29.6 11.5 16.8 36.2

HC 114 30.6 59.5 11.9 18.4 39.8
3:2 1 0.03 LC 169 150 197 258 244 173

reliable. For 2:1 electrolytes, the DHOEE, MSA, and MSA-Simple models emerge as the
most consistent, while for 3:1 electrolytes, MSA and MSA-Simple appear to be the most
accurate. However, for electrolyte types 1:4, 2:3, 2:4, and 3:2, none of the models offers
satisfactory predictions even at LC. Furthermore, in both MC and HC, the predictions for
2:2 electrolytes generally diverge from the experimental results.

In closing, it is vital to recognize that electrical conductivity models are developed based
on certain simplifying assumptions. The consequences of these assumptions define the con-
centration range within which the models can be reliably applied. For 1:1 electrolytes, the
concentration limits of the DHOLL, DHOEE, DHOSiS, MSA, MSA-simple and QV models
are 10−2, 10−1, 10−1, 1, 1, and 10−1 mol · L−1, respectively. Furthermore, by adjusting
the ion size parameter to the experimental electrical conductivity data and accounting for
ion-ion associations using the mass action law, the concentration boundaries of these elec-
trical conductivity models might be extended (see references [112,113,127,130,148–150] for
a deeper dive). However, one should be cautious as there is a risk of over-fitting to the
experimental data, leading to non-realistic values for parameters such as ionic diameter (for
instance, negative ionic radii as highlighted in Table 3.10 of reference [89]) or the association
constant. Therefore, when evaluating the performance of electrical conductivity models, it
is crucial to factor in these concentration limits.
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3.5.4 Evaluation of the Relaxation and Electrophoretic Terms

Previously, we highlighted that the electrical conductivity of electrolytes originates from two
primary factors: the relaxation term and the electrophoretic term. Delving deeper into this
topic, we now embark on a detailed examination of individual electrical conductivity models
by evaluating how they account for the influences of both the relaxation and electrophoretic
components. The insights into these evaluations are represented graphically in Figures 3.9
and D.2.

A closer look at the DHOLL formulation reveals a clear linear dependence of both the
relaxation and electrophoretic terms on

√
I, evident through the factor of κ as depicted in

Figure 3.9. Notably, the electrophoretic component of DHOLL is consistently lower than
that of other models across all electrolytes. In the majority of electrolytes, the relaxation
term is not as strong as those of its counterparts.

In contrast to DHOLL, the DHOEE model does not exhibit a straightforward linear
relationship with

√
I for either term. More specifically, when most salts are evaluated, the

relaxation and electrophoretic terms of DHOEE present an upward curvature, as opposed
to a linear trend.

The relaxation term of the QV model has a shape similar to that of an inverted S. At
LC, it closely follows the DHOLL. As it moves to higher concentrations (MC), the decrease
in δk

k
slows down before increasing again. The electrophoretic term of the QV model has a

consistent pattern for both cations and anions, with most electrolytes having a minimum,
though the exact spot of the minimum varies. This suggests that when exposed to an external
electric force, the ions initially move quickly and then slow down as the concentration rises
(not considering the opposing pull from the relaxation term). This complex behavior of the
QV model is not obvious in the Λ vs.

√
I graph, as it is masked by the contributions of the

relaxation term.
The patterns observed in the MSA and MSA-Simple models are quite similar. In many

cases, their relaxation and electrophoretic terms are closely aligned. Furthermore, the contri-
bution of the relaxation term is less than that of the electrophoretic term. For all electrolytes
studied, the relaxation term remains above -0.4, while the electrophoretic term can go below
-1 in some cases. In some scenarios, the relaxation term of the MSA-Simple model reaches a
minimum and then stabilizes. On the other hand, in certain situations, especially at higher
concentrations, the relaxation term of the MSA model increases and eventually reaches a
positive value, as shown in Figure D.2. It is important to note that a positive value for the
relaxation term implies that the ionic cloud asymmetry is pushing the central ion in the
direction of the external electric field, which is not physically accurate.

In Section 3.5.1, we highlighted the shortcomings of the predictions of the DHOSiS model
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Figure 3.9. The relaxation and electrophoretic terms for KCl as predicted by the DHOLL, DHOEE,
DHOSiS, MSA, MSA Simple, and QV models are plotted against the square root of the ionic strength
at 298.15 K. Reprinted with permission from ref. [120]. Copyright 2022 American Chemical Society.
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at medium to high concentrations, noting a nonphysical trend at such concentrations. Upon
closer examination of the relaxation and electrophoretic terms, this peculiar behavior of the
model becomes clearer. Both the relaxation and electrophoretic terms for the cations exhibit
a minimum and then turn positive as we approach MC and HC. This behavior can be linked
to a potentially inaccurate estimation of the ionic cloud size for cations (which are typically
the smaller ions). This size appears to grow with increasing concentration beyond a certain
threshold, which varies depending on the specific electrolyte.

Moreover, the relaxation term of the DHOSiS model is distinct in being ion-specific, in
contrast to other models, including the MSA model, which is also a UPM. A closer exam-
ination of the mathematical framework used for the MSA model confirms that even when
different sizes are assumed for anions and cations, the outcome is a salt-specific relaxation
term. However, when the size of the ionic cloud (κ−1) is replaced with an effective size
(Ψ∗

i ), the result is an ion-specific relaxation term, which calls for a proper justification. On
the basis of this observation, one can infer that the ion-specific relaxation term may not be
scientifically robust. Unless otherwise noted, the term for the positive ion certainly requires
further refinement.

An additional observation regarding the DHOSiS model pertains to the derivation method-
ology of its mathematical formulations for the electrical conductivity. The derivation process
is not explicitly elucidated in the original paper [118]. In particular, all other models have
adopted a consistent methodology to derive the formulations for electrical conductivity (see
Section 2.3).

However, in the case of the DHOSiS model, it is noted that three modifications were
introduced to enhance the DHOLL, grounded on the "smaller ion shell" theory. As a result,
in contrast to other models, it suggests that Fraenkel might not have directly derived the
formulation by solving the FO continuity equation or by taking into account the motion of
ions and their surrounding ionic cloud within a viscous environment.

It seems that the DHOSiS model was based on the DHOEE formulation, which represents
an advancement over the DHOLL, essentially dividing the formula for equivalent conductiv-
ity by 1 + κσ+−. However, the derivation process for DHOEE takes into account the ion
movements in response to an external electric field within a viscous medium, while also
addressing the hindering effect of the relaxation term through the solution of the FO con-
tinuity equation (details can be found in the references [90, 101, 120]). After dismissing the
higher-order terms of κ in the relaxation and electrophoretic terms, DHOEE emerges. If a
similar approach were applied without presuming identical ion sizes, an improved formula
could emerge that elevates DHOEE from RPM to UPM (see Chapter 5). Nonetheless, the
derivation route for DHOSiS, which clearly includes an ion-specific size parameter, remains
ambiguous.

In addition to the derivation process, several key observations can be made about the
DHOSiS model. Firstly, the model appears to exhibit nonphysical behaviors at MC and
HC. This anomaly appears to be rooted in an nonphysical prediction of the radius of the
ionic atmosphere surrounding the s ion, as depicted in Figure 3 of reference [118]. Fraenkel
acknowledged this by highlighting the nonphysical nature of the "DH-SiS, s-ion" curve’s
minimum, but also emphasized that this lay beyond the concentration limit of both the
DHO and DHO-SiS models. Notably, while the theory defines concentration boundaries
for the DHOEE and MSA-Simple models, neither shows any nonphysical behaviors when
they exceed these limits. In contrast, both Figure 3.3 and Table 3.4 suggest that their
predictions remain relatively consistent for certain electrolytes even beyond their established
concentration thresholds.

Third, Fraenkel employed ionic radii values that were fitted to activity coefficient data
using the DHSiS model (activity scale) [118]. In the present study, we have chosen not to
use these proposed ionic radii for two main reasons. First, the specific radii are not provided
for all cations and anions, having been reported for only eleven cations and seven anions
in [118]. Consequently, relying on the activity scale would make it impossible to predict the
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electrical conductivity of numerous electrolytes. Secondly, the usage of activity coefficient
experimental data in one model could skew the analysis and prevent an unbiased comparison.

3.6 Extension of the Models; The Effect of RSP and Viscosity

The influence of concentration-dependent RSP and viscosity on the predictions of equivalent
conductivity models is examined. Both the full and simplified versions of the MSA models, as
well as four equivalent conductivity models based on DHO (DHO1-3 and DHOEE), are used
to predict the equivalent conductivity of nine 1:1 aqueous electrolyte solutions at 298.15 K.
To explore the influence of RSP on the estimations of equivalent conductivity, three empirical
RSP models are used in combination with the RSP of the solvent. Additionally, the effect of
a concentration-dependent viscosity on the equivalent conductivity predictions is explored.

3.6.1 RSP Models

3.6.1.1 Breil-Michelsen-Mollerup (BMM) Model

Breil, Michelsen, and Mollerup [8] proposed an empirical model for the RSP of aqueous
solutions, incorporating a correction factor for the pure water RSP (as described in Eq.
3.39). In this equation, εsat

r (T ) represents the RSP of water derived from Eq. 3.36. Here, c
represents the salt concentration in mol · L−1, νi indicates the stoichiometric coefficient, Zi

denotes the charge valence type, and ai is an ion-specific coefficient. The ai coefficients for
seven cations and four anions are detailed in Table 3.5.

εr (T, c) = εsat
r (T )

[
1 −

ions∑
i

(
0.01Ziνic− Ziνicai

1 + 0.16Ziνic

)]
(3.39)

3.6.1.2 Polynomial Correlation

In this model, a polynomial equation, such as Eq. 3.40, is used to fit the RSP experimental
data. Barthel et al. [84] provided the coefficients for Eq. 3.40 for various aqueous and
non-aqueous solutions, as listed in Tables 7.6 and 7.7 of their book. The coefficients a1-a6
and the maximum salt concentrations for the aqueous solutions examined in this study are
summarized in Table 3.6.

εr (T, c) = εw (T ) + a1c
1
2 + a2c+ a3c

3
2 + a4c

2 + a5c
5
2 + a6c

3 (3.40)

Table 3.5. The coefficients for the BMM model [8].

Cation a+ Anion a−
Li+ 0.1200 Cl– 0.1173
Na+ 0.1062 Br– 0.1348
K+ 0.0816 (NO3)− 0.1104
Cs+ 0.0650 (SO4)2− 0.0022
Mg +

2 0.1155
Ca +

2 0.1097
Ni +

2 0.0553
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Table 3.6. The coefficients for Eq. 3.40 used in this work as reported by Barthel et al. [84].

Salt a1 a2 a3 a4 a5 cmax

LiCl 0 -14.5 0 1.28 0 -0.0386 13.4
LiBr 0 -16.2 0 1.34 0 0 3.0
LiNO3 0 -17.1 0 2.40 0 -0.15 6.0
NaCl 0 -13.8 0 0.98 0 0 4.0
NaNO3 0 -13.3 0 1.25 0 0 4.0
KCl 0 -12.4 0 0.95 0 0 4.0
KBr 0 -12.8 0 0.83 0 0 3.0
KNO3 0 -11.7 0 1.80 0 0 2.0
CsCl 0 -10.7 0 0.83 0 0 4.5
CsBr 0 -12.6 0 1.31 0 0 2.0

3.6.1.3 Simonin et al. Model

A linear correlation for the inversed RSP of aqueous solutions was developed by Simonin
et al. [161–163] for various associative and non-associative electrolyte solutions. This model
contrasts with other correlations since it has not been fitted to the RSP experimental data.

ε−1
r (T, c) = ε−1

w (T ) [1 + αεc] (3.41)

Simonin et al. [161–163] employed the MSA [5, 6, 126] or BiMSA [20] implicit solvent
models in a series of studies to estimate the osmotic coefficient of single-salt and multi-salt
aqueous solutions. αε in Eq. 3.41, along with two parameters for a concentration-dependent
cations radius and anions radius, as well as the association constant at infinite dilution
(K◦

A), was adjusted to match the osmotic coefficient data. Parameters for non-associative
electrolyte solutions were tabulated in Tables 1 and 2 of ref. [161]. Adjusted parameters
for associative electrolyte solutions are detailed in Tables 1, 2, and 3 of ref. [163]. The
coefficients αε for the salt-water systems explored in this study are summarized in Table
3.7.

Table 3.7. The coefficients for the Simonin et al. [161–163] model (asterisk symbols mean that for
these electrolytes ion pairing is considered).

Salt aϵ mmax

LiCl 15.450 19.2
LiBr 14.560 20.0
LiNO3 14.390 10.0
NaCl 6.930 6.1
NaNO3* 7.380 10.8
KCl 6.964 5.0
KBr 7.272 5.5
KNO3* 10.800 3.5
CsCl 0.115 11.0
CsCl* 2.940 8.0
CsBr 2.327 5.0
CsBr* 4.110 5.0
CsNO3* 10.200 1.5
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3.6.2 Viscosity Correlation

A polynomial correlation introduced by Barthel et al. [164, 165] is utilized to estimate the
viscosity of electrolyte solutions. The correlation for the viscosity of salt-water systems at
298.15 K is given by Eq. 3.42 [164, 165]. In this equation, η0 (T ) denotes the viscosity of
the pure solvent, η (T, c) represents the viscosity of the solution, Ai are the correlation
coefficients and c is the molarity of the solution expressed in mol · L−1. The coefficients for
this viscosity correlation, valid for binary salt-water systems at 298.15 K, are listed in Table
3.8 [164, 165]. A comparison between the reduced viscosity ( η

η0
) as estimated by Eq. 3.42

and experimental values for salt-water systems at 298.15 K are illustrated in Figure D.4.

ln
(
η (T, c)
η0 (T )

)
= A1c+A2c

2 +A3c
3 (3.42)

3.6.3 Results

In this section, the influence of incorporating a concentration-dependent RSP and/or vis-
cosity on the predictions of the electrical conductivity models, as described in Section
3.1, is examined. In the illustrations presented in this section, the integration of the
electrical conductivity models, the RSP models, and the viscosity models is denoted by
ΛA − ε

(B)
r (T, c) − η(T, c). The electrical conductivity model is represented by ’A’, which

can be MSA, MSA-Simple, DHOEE, or DHO1-3. The variable ’B’ ranges from 1 to 4. The
designations ε(1)(T ), ε(2)(T, c), ε(3)(T, c), and ε(4)(T, c) are associated, respectively, with the
solvent RSP, Eq. 3.40, Eq. 3.39, and Eq. 3.41. Furthermore, the viscosity of the solvent is
indicated by η(T ), while the viscosity of the solution is indicated by η(T, c).

In the initial part of this section, the influence of a concentration-dependent RSP on the
predictions of the MSA model will be investigated for nine 1:1 aqueous solutions at 298.15
K. In the subsequent part, the impact of a composition-dependent RSP on the predictions
of both the MSA-based and the DH-based models will be explored. In the final part, the
combined effects of composition-dependent viscosity and RSP will be analyzed in relation
to the predictions of the MSA-Simple and DHO3 models.

Table 3.8. The coefficients associated with the viscosity correlation, as given by Eq. 3.42, cor-
respond to a system temperature of 298.15 K, where the value of η0 (T ) is 0.00089 P a · s. These
coefficients have been sourced from the work of Barthel et al. [164,165].

Salt A1 × 102 A2 × 103 A3 × 104

LiCl 13.3 0.943 3.18
LiBr 11.4 -3.57 8.13
LiNO3 9.64 4.90 2.01
NaCl 8.26 8.28 0.00
NaNO3 4.55 18.1 -7.46
KCl -7.21 4.84 4.06
KBr -3.81 7.07 7.61
KNO3 -4.63 24.4 -1.46
CsCl -4.10 6.52 6.45
CsBr -6.64 4.45 0.00
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3.6.3.1 Effect of RSP

In this section, the effectiveness of the MSA model in predicting the electrical conductivity
of non-associative or mildly associative electrolyte solutions using a concentration-dependent
RSP is explored. The selection of the MSA model is based on two primary reasons. First,
as evidenced in Section 3.5, this model stands out as the most precise or one of the top-tier
models for predicting the electrical conductivity of aqueous electrolyte solutions. Second,
from a derivation perspective, this model is among the most comprehensive, with possibility
for extensions to multi-component systems.

For this purpose, as highlighted in Section 3.6.1, three empirical models are used. These
include the BMM model [8], the polynomial correlation [84], and the model developed by Si-
monin et al. [161–163]. These are used to estimate εr (c, T ) for 1:1 electrolytes. Subsequently,
the predictions of the MSA model, when integrated with these three εr (c, T ) formulations
as well as the RSP of the solvent, are evaluated against experimental data.

To investigate the impact of εr (c, T ) on the predictions of electrical conductivity, nine
1:1 aqueous electrolyte solutions have been selected. The ion properties examined in this
section are detailed in Table 3.1. These salt-water systems were primarily chosen on the
premise that ion pairing has a minimal influence on the electrical conductivity in these
mixtures. However, it is essential to highlight that, even in these electrolyte solutions, ion
pairing can become significant at elevated concentrations. Moreover, for these mixtures,
a range of sources provide the electrical conductivity experimental data. This availability
allows for verification of the precision of the experimental data, enabling easy identification
and exclusion of outliers from the assessment.

In Figure 3.10, the predictions made using the MSA model are shown. When the RSP
is derived from pure water, the results are displayed with dashed-dot green curves. Curves
arising from using Eq. 3.40, Eq. 3.39, and Eq. 3.41 are denoted by solid black, dashed
red, and dotted blue curves, respectively. This figure presents the molar conductivity of
compounds such as LiCl, LiNO3, NaCl, NaNO3, KCl, and KNO3 at 298.15 k, plotted against
the square root of their respective ionic strengths.

From figures 3.10 and D.5, it is evident that incorporating a composition-dependent RSP
enhances the alignment of the predictions of the MSA model with experimental observations.
Investigating further, three distinct patterns can be identified in these figures.

For clarity, we have introduced a term, cSD, denoting the concentration threshold where
deviations between the MSA model’s predictions and experimental results begin to emerge.
Essentially, the MSA model retains its predictive accuracy up to a concentration of c(RSP model)

SD ,
with the superscript indicating the specific RSP model.

Examining compounds such as LiCl, LiNO3, NaCl and LiBr (as seen in Figure 3.10a, b,
c and also Figure D.5c), the observed sequence for cSD is: c(1)

SD<c(4)
SD<c(2,3)

SD .
For KNO3 and NaNO3 (depicted in Figure 3.10d and f), the sequence of cSD reveals an

equivalence: c(1)
SD=c(4)

SD=c(2,3)
SD .

Lastly, in the case of KCl (illustrated in Figure 3.10e), the order of cSD stands as:
c

(1)
SD<c(2,3)

SD <c(4)
SD.

Furthermore, an in-depth term-by-term analysis for chlorides and nitrates, when using
the MSA model, is illustrated in Figures 3.11 and D.6. Observing Figure 3.11, it becomes
apparent that the impact of a concentration-dependent RSP on the relaxation terms for
LiCl, NaCl, and KCl is strikingly similar. In contrast, when considering the electrophoretic
terms of the cation, the effect is more pronounced as the ionic radius decreases. For example,
in the LiCl-water system, a concentration-dependent RSP results in an electrophoretic term
that falls below -1 for concentrations higher than 6 mol · L−1. This phenomenon, although
not realistic, appears at a very high concentration (6 mol ·L−1). At such concentrations, the
basic assumptions made during the development of the MSA model, such as disregarding
the structured nature of water, may no longer be valid.
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Figure 3.10. The influence of concentration-dependent RSP on the predictions made by the MSA
model for various electrolytes at 298.15 K is explored. Electrolytes studied include (a) LiCl, (b)
LiNO3, (c) NaCl, (d) NaNO3, (e) KCl, and (f) KNO3. In these evaluations, cSD represents the
maximum concentration at which the MSA model reliably predicts electrical conductivity. For these
predictions, various RSP models were utilized: a constant model, the Simonin et al. model [161–163],
the polynomial correlation [84], and the BMM model [8]. Acronyms such as 2016-HR-SBH [129],
2011-MR-JCED [134], 1984-TI-JCED [141], 1999-MBR-JSC [149], 1970-PM-CCCC-a [131], 2000-
MBR-JSC [148], and 1969-JG-JPC [166] denote the sources from which the data points were collected.
Reprinted from ref. [124], Copyright 2023, with permission from Elsevier.



3.6 Extension of the Models; The Effect of RSP and Viscosity 59

In conclusion, when examining the electrophoretic terms of Cl− as depicted in Figure
3.11 and those of NO−

3 in Figure D.6, there is only a marginal variation upon incorporat-
ing a concentration-dependent RSP. Despite this minor alteration, it should be noted that
the influence of a concentration-dependent RSP on the electrophoretic term of the anion
increases as the radius of the cation decreases. The sequence of this effect is LiCl > NaCl
> KCl. Despite the slight change, the impact of a concentration-dependent RSP on the
electrophoretic term of the anion increases when the radius of the cation reduces (the effect
is as follows LiCl>NaCl>KCl).

3.6.3.2 MSA vs. DHO-based Models

Barthel et al. [84] pointed out that:

"The modern theory of electrolyte solutions ... overcomes the drawbacks of the
lcCM [low concentration chemical model] concerning its limited concentration
range by integral equation ..."

They also mentioned that

"... Accordingly, this approach [MSA] can be regarded as the natural extension of
the low concentration chemical models up to concentrations of 1 mol · L−1 with
the help of integral equation theories."

The perspective on models derived from DHO theory is also evident in the empirical
analysis of electrical conductivity data. In related studies [130, 148, 149, 167–169], a model
akin to Eq. 3.33 is employed for dilute solutions, while the MSA-Simple model is favored
for more concentrated solutions.

Upon a closer examination of the models developed since the theory was introduced by
Debye and Hückel , it is evident that from 1950 to 1980, due to either a lack of motivation or
constraints in computational capabilities, the electrical conductivity models were truncated
to align with the concentration-dependent form proposed by Onsager and Fuoss [83]. These
truncated equations are subsequently referred to as DHO-based models. Consequently, in
terms of accuracy, these models cannot rival the more recently developed ones.

In this chapter, we integrate three relaxation models, those formulated by Fuoss and
Onsager [94], Falkenhagen et al. [101], and Falkenhagen and Kelbg [102], with the elec-
trophoretic term introduced by Robinson and Stokes [90]. This integration resulted in three
new models, which are labeled DHO1-3. This section evaluates the comparative accuracy
of these models against MSA-based models and the experimental data. Furthermore, the
influence of incorporating a composition-dependent RSP on the predictions of these models
is explored.

Figure 3.12 displays the predicted electrical conductivity of LiCl-water and LiNO3-water
systems at 298.15 K using the DHO1, DHO2 and DHO3 models. The predictions when the
RSP is derived from pure water are represented by dashed-dot green curves. Predictions
based on Eq. 3.40, Eq. 3.39, and Eq. 3.41 are illustrated by solid black, dashed red, and
dotted blue curves, respectively.

From the data presented in Figure 3.12, several important observations can be made.
Despite the widely held belief in the literature that theories based on DHO theory are
primarily suitable for very dilute solutions, both the DHO1 and DHO3 models demonstrate
impressive accuracy. Their performance appears to be comparable to that of the MSA
and MSA-Simple models for the 1:1 electrolyte solutions under examination. Furthermore,
the introduction of a composition-dependent RSP improves the predictive power of the
DHO1 and DHO3 models. However, this enhancement is not consistent across all DHO-
based models. Specifically, the accuracy of the DHO2 model appears to decrease when a
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I.

III.

II.

Figure 3.11. The influence of concentration-dependent RSP on the contributions to the relaxation
and electrophoretic terms, as predicted by the MSA model, is investigated for aqueous solutions
of (I) LiCl, (II) NaCl, and (III) KCl at 298.15 K. Reprinted from ref. [124], Copyright 2023, with
permission from Elsevier.

composition-dependent RSP is used, which differs from the trends observed in the other
models.

The predictions of the DHO1 and DHO3 models were compared with those of the MSA
model. This comparison is crucial as it might challenge established views in the literature
regarding the prediction of electrical conductivity. In Figure 3.13, the predictions of the
DHO1, DHO3 and MSA models for aqueous solutions of 1:1 chlorides and nitrates at 298.15
K are presented.

From Figure 3.13, the following four key observations can be made. First, when consider-
ing the solvent RSP or solution RSP, the predictions of the DHO1, DHO3 and MSA models
up to a concentration of 1 mol ·L−1 are remarkably similar. Secondly, the predictions made
by the DHO1 and DHO3 models are generally observed to be higher than those provided
by the MSA model. Third, when a concentration-dependent RSP is utilized, a reduced
discrepancy from the experimental data is seen across all models. Lastly, accurate predic-
tions for the electrical conductivity of electrolyte solutions are given by the MSA model, the
predictions by the DHO1 and DHO3 models are also noted to be accurate.

In summary, the DHO-based theory demonstrates accuracy and reliability comparable
to those of the MSA-based theory in predicting electrical conductivity. Utilizing a compre-
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a. b.

d.c.

e. f.

Figure 3.12. The influence of concentration-dependent RSP on the predictions of the DHO1,
DHO2, and DHO3 models for LiCl and LiNO3 aqueous solutions at 298.15 K is evaluated. These
predictions are compared across using different RSP models: (1) constant RSP, (2) Barthel et al. [84],
(3) BMM [8], and (4) Simonin et al. [161–163]. Acronyms follow those used in Figure 3.10. Reprinted
from ref. [124], Copyright 2023, with permission from Elsevier.
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a. b.

d.c.

e. f.

Figure 3.13. The predictions of DHO1, DHO3, and MSA are compared for (a) LiCl, (b) LiNO3,
(c) NaCl, (d) NaNO3, (e) KCl, and (f) KNO3 aqueous solutions at 298.15 K using RSP models 1
and 3. Acronyms follow those established in Figure 3.10. Reprinted from ref. [124], Copyright 2023,
with permission from Elsevier.
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hensive DHO approach, such as the DHO3 model highlighted in this chapter, allows precise
predictions of electrical conductivity even at higher concentrations (up to 1 mol · L−1) for
specific 1:1 electrolyte solutions.

3.6.3.3 Effect of Viscosity

Grüneisen [170] empirically noted that the reduced viscosity (η∗) of the electrolyte solutions
exhibits a linear increase with the square root of concentration (Eq. 3.43). The elevation of
η∗ as the salt concentration increases has been attributed to ion-ion interactions by Falken-
hagen et al. [171] and Onsager and Fuoss [83]. Independently, both parties derived the
coefficient A using the DH theory in a methodology parallel to that used for equivalent
conductivity.

η∗ = η (T, c)
η0 (T ) = 1 +Ac0.5 (3.43)

Up to a concentration of 0.01 mol·L−1, Eq. 3.43 holds true. In 1929, Jones and Dole [172]
suggested an empirical enhancement to the limiting law by introducing a Bc term (Eq. 3.44).
Within this equation, the factor B is related to ion-solvent interactions. It assumes a positive
value for structure-making ions and a negative one for structure-breaking ions [173].

η (T, c)
η0 (T ) = 1 +Ac0.5 +Bc (3.44)

In contrast to the conductance process, efforts to expand the limiting law of viscosity
through the consideration of electrostatic ion-ion interactions did not yield successful results
[92]. Therefore, it is inferred that the coefficient B is more related to ion-solvent interactions
than ion-ion ones [173]. Furthering this, Ibuki and Nakahara [173] formulated a model to
estimate the B coefficient using the Hubbard-Onsager dielectric friction theory [174–176].
Their predictions for the B values have been shown to align reasonably well with values
derived from the experimental data.

Moreover, it is crucial to highlight that the foundational theories for both viscosity and
electrical conductivity center around alterations in properties in relation to a reference sys-
tem. For viscosity, this reference is the solvent, whereas for the electrical conductivity, it
is the solution at infinite dilution. The ionic conductivity when at infinite dilution (λ0

i )
originates from ion mobilities in the development of electrical conductivity models, marking
its position as the electrical conductivity reference system. In this context, the interactions
between ions and solvents, without any other ion interference, are assessed. Therefore, in
the electrical conductivity models, unlike the viscosity models, ion-solvent interactions have
been, to some degree, implicitly taken into account.

From the existing literature, it is evident that there is a linkage between the theories
governing electrical conductance and the viscous flow of electrolyte solutions. Yet, delving
into this connection theoretically proves challenging given the intricacies of the theories in-
volved. Instead of a direct theoretical exploration, one can assess the impact of concentration-
dependent viscosity on the predictions of electrical conductivity models by contrasting them
with experimental data.

Wishaw and Stokes [177] introduced an empirical adjustment to the Falkenhagen-Leist-
Kelbg [101] equation by incorporating the relative viscosity ( η0

η
) into the equivalent conduc-

tivity. They applied this model to the aqueous NH4Cl solution at 298.15 K and found that
it aligned well with the experimental findings. They opted for a solvated distance of the
closest approach (4.35 Å) over the crystallographic distance of the closest approach (3.29
Å) in their computations. In a similar vein, Campbell and Kartzmark [178] utilized the
Wishaw and Stokes [177] equation for a range of 1:1 aqueous nitrate solutions. Their results
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a. b.

d.c.

e. f.

Figure 3.14. The influence of concentration-dependent viscosity and RSP on the predictions of
the MSA-Simple and DHO3 models for LiCl, NaCl, and KCl in aqueous solutions at 298.15 K is
examined. Acronyms adhere to those used in Figure 3.10. Reprinted from ref. [124], Copyright 2023,
with permission from Elsevier.



3.7 Summary and Conclusions 65

exhibited an acceptable match with the experimental data. However, much like Wishaw and
Stokes’ approach [177], they also relied on the solvated distance of the closest approach for
their calculations.

Monica et al. [179–181] further refined the equation of Wishaw and Stokes [177] by ac-
counting for the solution’s viscosity in the electrophoretic term. They investigated the elec-
trical conductivity of several 1:1 aqueous solutions and noted a relatively accurate alignment
between their theoretical predictions and their experimental results. However, during their
research, they fine-tuned distance of the closest approach based on the experimental data for
electrical conductivity. Similarly, Islam and co-authors [182] amended the Falkenhagen-Leist-
Kelbg equation [90] to factor in a concentration-dependent RSP and viscosity. They incor-
porated the influence of this concentration-dependent viscosity on both the electrophoretic
term and the ionic conductivity at infinite dilution. Their predictions for the electrical con-
ductivity of aqueous solutions of LiCl, NaCl, NaBr, NaI, and KF demonstrated satisfactory
agreement with the experimental results, although by making adjustments to distance of the
closest approach.

In the this section, the influence of incorporating both concentration-dependent viscosity
and RSP on the electrical conductivity predictions is examined. It should be highlighted
that a concentration-dependent viscosity was integrated into both the relaxation and elec-
trophoretic terms of the electrical conductivity models. Additionally, the impact of η(T, c)
on the ionic conductivity at infinite dilution (λ0

i ) was addressed by employing Waldens rule,
wherein λ0

i η is maintained as a constant.
Figures 3.14, D.7, and D.8 depict the molar conductivity of salt-water systems at 298.15

K using various methods. As observed in these figures, an increase in the viscosity of the
solution with salt concentration (such as the NaCl-water system in Figure D.4) results in a
reduced predicted electrical conductivity when the solution viscosity is employed, as opposed
to using the viscosity of the solvent. On the contrary, for salts such as KNO3, where the
viscosity versus salt concentration curve exhibits a minimum, the utilization of the solution’s
viscosity leads to an elevated predicted electrical conductivity compared to when the solvent’s
viscosity is used.

3.7 Summary and Conclusions

This chapter provided a thorough and organized examination of the most recent advance-
ments in modeling the electrical conductivity of electrolyte solutions.

Six electrical conductivity models from the existing literature, along with three novel
models introduced in this chapter, were rigorously evaluated by comparing their predictions
with the experimental data.

The summary of this analysis is as follows.

1. DHOLL Model:

• Represents the limiting law of the electrical conductivity.
• Effective mainly for predicting the slope of Λ against

√
c in infinitely dilute solu-

tions.
• Lacks a size parameter.
• Not recommended for electrical conductivity calculations at even low-concentration

systems.

2. DHOEE Model:

• An enhanced version of the DHOLL model that accounts for ion sizes.
• Yields reliable results without generating nonphysical predictions.
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• Given more precise DHO-based models, its use is not typically recommended.

3. DHOSiS Model:

• Aims to expand DHO-based models to address size asymmetry.
• Accurate for low-concentration solutions but exhibits unreliability in moderate

concentrations.

4. QV Model:

• Designed for multi-salt solutions while considering higher order effects.
• Its accuracy does not stand out when compared to simpler models like DHOEE.

5. DHO1 Model:

• Integrates the FO relaxation effect with the DHOEE electrostatic effect.
• Competes in precision with the MSA-Simple and MSA models for 1:1 electrolyte

solutions, but falls slightly short of the DHO3 model.

6. DHO2 Model:

• Essentially the DHOEE model without truncating the exponential term.
• Does not offer any significant accuracy advantage over the DHOEE model.

7. DHO3 Model:

• Combines the Falkenhagen group’s relaxation term with the DHOEE electrostatic
term.

• Exhibits impressive accuracy, on par with the MSA and MSA-Simple models.
• This is the best version of the DHO theory in this chapter.
• Stands out as the finest iteration of the DHO theory discussed in this chapter

and has been chosen for subsequent discussions.

8. MSA Model:

• The most complicated model designed for the electrical conductivity of electrolyte
solutions.

• Extremely accurate, particularly when ion-ion associations can be confidently
excluded.

• Its mathematical structure is more convoluted compared to other models.
• Its multi-component extension has been further explored in the literature.
• Chosen for further exploration in this research.

9. MSA-Simple Model:

• A streamlined version of the MSA model that employs an average ionic diameter
and omits higher order terms on relaxation and electrophoretic effects.

• Offers accuracy close to the original MSA model in many scenarios.
• Its widespread use in the literature for analyzing electrical conductivity data

solidifies its relevance.
• Also selected for continued exploration in this work.

Extension of models using concentration-dependent RSP and viscosity:
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• Incorporating a concentration-dependent RSP slightly refines the predictions of elec-
trical conductivity models.

• Incorporating both a concentration-dependent viscosity and RSP can sometimes en-
hance, but at other times deteriorate, the predictions of the electrical conductivity
models.

Chapter Message

There is a clear need to evolve new models grounded in the DHO theory that accu-
rately account for the size asymmetry of ions and are versatile enough to be expanded
to multi-salt systems. Based on the evaluations presented in this chapter, the MSA,
MSA-Simple and DHO3 models stand out and have been chosen for more in-depth
exploration in subsequent chapters.
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The Relaxation Effect

The Electrophoretic Effect

In Chapter 3, a comprehensive and systematic evaluation of different models from the
literature, designed for predicting the electrical conductivity of electrolyte solutions, was car-
ried out. From this assessment, three standout models were identified for deeper exploration:
namely, the MSA model as introduced by Bernard et al. [111], the MSA-Simple model as
introduced by Chhih et al. [113], and the DHO3 model as proposed by Naseri Boroujeni et
al. [124].

In this chapter, a new electrical conductivity model based on the DHO theory is intro-
duced. The goal is to address the existing gap in electrical conductivity models derived from
the DHO theory that consider the size asymmetry of ions. Through this effort, not only the
predictive capability of these models is enhanced, but a more comprehensive understanding
of the behavior of electrolyte solutions is also provided.

In Section 2.4, the derivation of a new model for the electrical conductivity of electrolyte
solutions was discussed, using the FO continuity equation and the hierarchy suggested by
Ebeling et al. [110]. In this chapter, the focus shifts to employing Eq. 2.36 and Eq. 2.57.
These equations are integrated with the pair correlation function introduced by Debye and
Hückel, and the symmetrical pair correlation function proposed by Outhwaite [183], to de-
velop a novel model.

Part of this chapter has already been published in the Journal of Physical Chemistry B.

• New Electrical Conductivity Model for Electrolyte Solutions Based on the Debye-Hückel-
Onsager Theory [184] (Link).

https://pubs.acs.org/doi/full/10.1021/acs.jpcb.3c03381
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4.1 Model Development

In this section, the equilibrium pair correlation functions, which will be utilized in this
and the subsequent chapter for the development of a new electrical conductivity model, are
introduced. Subsequently, based on the equations highlighted in section 2.3, the relaxation
and electrophoretic corrections to the ideal contribution to the electrical conductivity are
derived. Lastly, the equations pertaining to the ionic conductivity are provided.

4.1.1 Choice of the Pair Correlation Function

As highlighted in Chapter 2, the pair correlation function (hij) comprises two parts: the
equilibrium (h0

ij) and the non-equilibrium (h1
ij) parts. The perturbed, or non-equilibrium

part of the pair correlation function, is determined by solving the FO continuity equation
(Eq. 2.55). On the other hand, the definition for the stationary, or equilibrium segment of
the pair correlation function must be explicitly provided. In this section, the choice of the
equilibrium pair correlation function is examined.

The equilibrium pair correlation function between two ions is described in past literature
via methods such as the DH theory, integral equations, and simulation techniques, which in-
clude the numerical solution to the Poisson-Boltzmann (PB) equation or Monte Carlo (MC)
simulations. Among these methodologies for deriving the equilibrium pair correlation func-
tion, only the DH and MSA theories offer an analytical solution, rendering them preferable
for this research. Consequently, in this investigation, the pair correlation function deduced
from the DH theory is adopted. In the subsequent discussion, the RDF derived from the DH
theory, the MSA theory, the numerical solution of the PB equation, and MC simulations is
compared.

Inherently, the equilibrium pair correlation function, denoted by h0
ij(r), is intertwined

with the equilibrium RDF and the equilibrium electrical potential, symbolized as ψ0
i (r).

This connection is shown in Eq. 4.1.

h0
ij(r) = g0

ij(r) − 1 = exp
[

(−eZjψ
0
i (r)

kBT
)
]

− 1 ≃ −eZjψ
0
i (r)

kBT
(4.1)

Debye and Hückel [4] effectively derived a solution from the linearized version of the PB
equation. This led to the articulation of the electric potential, presented in Eq. 4.2:

ψ0
i (r) = eZi

ϵ

exp(κσi)
1 + κσi

exp(−κr)
r

(4.2)

In the mentioned equation, the expression κ =
√

4πe2
ϵkBT

∑
j
ρjZ2

j is referred to as the
inverse Debye length. By utilizing equations 4.1 and 4.2, the pair correlation function
stemming from the DH theory can be determined, proving pivotal for the derivation of
relaxation and electrophoretic effects. This correlation is demonstrated in Eq. 4.3:

rh0
ij(r) ≃ −e2ZiZj

ϵkBT

exp(κσi)
1 + κσi

exp(−κr) (4.3)

Upon examining Eq. 4.3, it is evident that the equilibrium pair correlation function
deduced from the DH theory is not symmetrical (as indicated in Eq. 4.4), revealing a
discrepancy. Nonetheless, as highlighted by Outhwaite [183], the noted asymmetry arises
from the inherent nature of the PB equation and is not a byproduct of the linearization
technique utilized by Debye and Hückel.
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rh0
ij(r) ̸= rh0

ji(r) (4.4)
To address this discrepancy, two potential solutions are suggested. The initial solution

advocates for averaging the ion sizes, which results in a RPM. On the other hand, Outhwaite
[183] suggests averaging the RDFs to ensure symmetry in the equilibrium pair correlation
function. Given the aim of this research to formulate a model that takes into account the
size asymmetry of ions, the first approach is seemed less suitable. Thus, the latter method
is employed, which not only considers ion size asymmetry in the model but also effectively
amends the inconsistency observed in the DH pair correlation function.

The pair correlation function, symmetrized by taking the average of the RDF (gij(r) =
hij(r) + 1) between ion i and ion j as recommended by Outhwaite [183], is illustrated in Eq.
4.5:

g0
ij(r) = g0

ji(r) = H(r − σij) exp

[
−
eZiψ

0
j (r) + eZjψ

0
i (r)

2kBT

]
(4.5)

In this expression, H(r− σij) denotes the Heaviside step function. Using this expression,
the pair correlation function can be formulated as shown in Eq. 4.6:

rh0
ij(r) = rh0

ji(r) = −e2ZiZj

2ϵkBT

[
exp(κ(σi − r))

1 + κσi
+ exp(κ(σj − r))

1 + κσj

]
(4.6)

The RPM version of the DH pair correlation function, which is used to derive the elec-
trophoretic and relaxation effects in the RPM formulation of this electrical conductivity
model, is expressed as:

rh0
ij(r) = rh0

ji(r) = −e2ZiZj

ϵkBT

exp(κσij)
1 + κσij

exp(−κr) (4.7)

In the given equation, σij = 0.5(σi +σj) denotes distance of the closest approach between
ions.

Before moving forward with equations for the electrophoretic and relaxation effects, it
is crucial to evaluate the accuracy of the equilibrium pair correlation functions. Initially,
the equilibrium RDF (g0

+− = 1 + h0
ij) is compared with both the MSA theory and the

MC simulations, as documented by Ambramo et al. [185]. Afterwards, the equilibrium
RDFs at contact referenced in this research (specifically, DH (Eq. 4.1) and SDH (Eq. 4.5))
are compared with the numerical solution of the symmetrical PB equation according to
Outhwaite [183], as well as the MSA theory and MC simulations outlined by Ambramo et
al. [185].

Figure 4.1 displays the equilibrium RDF as determined by the DH theory (as referenced
in Eq. 4.1) and the SDH approach (as mentioned in Eq. 4.5). These results are compared
with the MSA theory and the MC simulations sourced from prior studies [185]. By analyzing
Figure 4.1b, it is evident that at low salt concentrations (c = 0.1mol ·L−1), there is a slight
deviation in RDFs from DH, SDH, and MSA. Yet, these differ significantly from the MC
simulations.

As depicted in Figure 4.1a, with higher salt concentrations (c = 1.0 mol · L−1), a clear
difference emerges between gSDH

+− , gDH
+− , and gDH

−+ . This distinction is further validated by
Table 4.1 showcasing the equilibrium RDFs at contact. The table emphasizes that with in-
creasing salt concentration, or when the ratio of ionic diameters diminishes, the gap between
the DH and SDH RDFs widens.

Table 4.1 presents the contact equilibrium RDF obtained from the MSA theory, MC sim-
ulations, and numerical solutions of the symmetrical PB equation. From the data presented,
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Figure 4.1. The RDFs derived from various approaches, including the DH theory (gDH
+− and gDH

−+ ),
the symmetrical DH theory (gSDH

+− ), the MSA theory (gMSA
+− ), and MC simulations (gMC

+− ), are
presented for 1:1 aqueous solutions. The conditions examined are: (a) c = 1.0 mol · L−1 and size
ratio ς = σ−/σ+ = 0.6, and (b) c = 0.1mol ·L−1 and size ratio ς = σ−/σ+ = 0.4. Data for the MSA
and MC simulations are taken from [185]. Reprinted with permission from ref. [184]. Copyright 2023
American Chemical Society.

Table 4.1. The equilibrium RDF derived from the DH theory (Eq. 4.1), compared with the SDH
model (Eq. 4.5), is assessed alongside the numerical solution of the symmetrical PB equation [183],
MC simulations [185], and the MSA theory [185] with a focus on the parameter ς = σ−/σ+.

c (mol · L−1) ς gSP B
+− gMC

+− gMSA
+− gSDH

+− gDH
+− gDH

−+
0.100 0.8 3.82 3.80 2.37 2.357 2.340 2.373
0.100 0.6 4.73 4.85 2.58 2.579 2.543 2.614
0.100 0.4 6.23 6.20 2.86 2.870 2.814 2.927
0.425 0.8 2.79 2.95 2.12 2.046 2.004 2.088
0.425 0.6 3.35 3.55 2.30 2.246 2.152 2.339
0.425 0.4 4.26 4.50 2.54 2.519 2.363 2.674
1.000 0.8 2.29 2.50 2.00 1.846 1.782 1.911
1.000 0.6 2.67 2.90 2.13 2.029 1.882 2.177
1.000 0.4 3.29 3.45 2.33 2.289 2.034 2.544
1.968 0.8 1.96 2.40 1.96 1.696 1.610 1.781
1.968 0.6 2.23 2.65 2.05 1.867 1.667 2.066
1.968 0.4 2.66 3.00 2.19 2.122 1.765 2.478
1.968 0.1 4.06 4.65 2.59 2.800 2.083 3.516
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it is evident that the analytical equilibrium RDFs - encompassing DH, SDH, and MSA -
deviate from the outcomes of both the MC simulations and the numerical solution to the
symmetrical PB equation.

On the other hand, the contact equilibrium RDFs of SDH and MSA exhibit significant
similarities. In certain instances, gSDH

+− matches more closely with the equilibrium RDF
from the MC simulations and the numerical solutions of the symmetrical PB equation. In
other instances, the equilibrium RDF from MSA is a better fit. From this comparison, it
remains uncertain which equilibrium RDF holds a distinct edge over the others.

From this comparison, we determined three key insights. Firstly, at low salt concentra-
tions or when the ratio of anion to cation diameter nears unity, the distinction between DH
and SDH RDFs is insignificant. Secondly, the proximity of the MSA theory equilibrium RDF
to simulations relative to the DH and SDH RDFs remains ambiguous. Thirdly, all analytical
RDFs, encompassing DH, SDH, and MSA, showed significant deviations when compared to
the MC simulations and the numerical solution to the symmetrical PB equation.

4.1.2 Relaxation Effect

As outlined in section 2.4, the relaxation correction to the ideal contribution of the electrical
conductivity can be obtained from Eq. 2.57:

δki

ki
= −Ω

∫ ∞

σij

rh0
ij(r) exp{(−κqr)}dr (2.57)

Ω =
κ2

q

3

[
sinh (κqσij)

κqσij
−
ϵkBTκqσ

2
ij

e2ZiZj

(
cosh (κqσij)

κqσij
− sinh (κqσij)

κ2
qσ2

ij

)]
(2.58)

κ2
q = 4π

ϵkBT

ρieZiωi + ρjeZjωj

ωi + ωj
(2.60)

As illustrated in Eq. 2.57, the relaxation effect, represented as δki/ki, is determined by
evaluating the integral on the equation’s right-hand side. This integration necessitates the
equilibrium pair correlation function (h0

ij). In our analysis, we employ three distinct pair
correlation functions, previously discussed. These include the DH pair correlation function
(as per Eq. 4.3), the Symmetrical Debye-Hückel (SDH) pair correlation function (from Eq.
4.5), and the Restricted Debye-Hückel (RDH) pair correlation function (outlined in Eq. 4.7).

By substituting rh0
ij(r) from equations 4.3, 4.5, and 4.7 into Eq. 2.57 and evaluating the

integral, we can express the relaxation correction to the force exerted on the i-ion near the
j-ion as equations 4.8, 4.9, and 4.10, respectively.

δki

ki
= −Ωe

2 | ZiZj |
ϵkBT

exp{(κ(σi − σij))} exp{(−κqσij)}
(κ+ κq)(1 + κσi)

(4.8)

δki

ki
= δkj

kj
= δk

k
= −Ωe

2 | ZiZj |
2ϵkBT

exp(−κqσij)
(κ+ κq)[

exp(κ(σi − σij))
(1 + κσi)

+ exp(κ(σj − σij))
(1 + κσj)

]
(4.9)

δki

ki
= δkj

kj
= δk

k
= −Ωe

2 | ZiZj |
ϵkBT

exp(−κqσij)
(κ+ κq)(1 + κσij) (4.10)
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4.1.3 Electrophoretic Effect

Similar to the relaxation effect, three different equations are employed to characterize the
electrophoretic effect, using the DH, SDH, and RDH equilibrium pair correlation functions.
For the derivation of equations accounting for the corrections due to hydrodynamic or elec-
trophoretic effects on the ideal contribution to electrical conductivity, Eq. 2.36 is referenced.
As detailed in section 2.4, this equation offers insights into the adjustments made to ion
velocities because of hydrodynamic interactions.

δvi = 2
3η

C∑
j=1

ρjeZjE

∫ ∞

0
rh0

ij(r)dr (2.36)

By substituting rh0
ij(r) from Eq. 4.3 into Eq. 2.36 and evaluating the integral, Eq. 4.11

is obtained.

δvi = − 2
3η

eZiE

ϵkBT

∑C

j=1 ρje
2Z2

j

κ(1 + κσi)
= −eZiE

6πη
κ

(1 + κσi)
(4.11)

Eq. 4.11 represents the modification in ion velocity attributable to electrophoretic effects
when employing the DH equilibrium pair correlation function. By substituting from Eq.
4.5 into Eq. 2.36 and performing the integration, the velocity correction using the SDH
equilibrium pair correlation function is achieved, as shown in Eq. 4.12.

δvi = eZiE

3ηϵkBTκ

C∑
j=1

ρje
2Z2

j

[
exp(κ(σi − σij))

1 + κσi
+ exp(κ(σj − σij))

1 + κσj

]
(4.12)

Lastly, by incorporating the RDH equilibrium pair correlation function into the assess-
ment of electrophoretic effects, a correction to the ion velocity can be determined. This is
achieved by substituting Eq. 4.7 into Eq. 2.36. When integrated, this yields Eq. 4.13, as
shown by Robinson and Stokes [90].

δvi = −eZiE

6πη
κ

(1 + κσij) (4.13)

4.1.4 Ionic Conductivity Model

Given that the velocity of the i-ion in the solution is expressed as:

vi = (v0
i + δvi)(1 + δki

ki
) (4.14)

The velocity v0
i represents the velocity of the i-ion unaffected by the presence of other

ions when the system is subjected to an external electric field. In contrast, vi denotes the
velocity of the i-ion within the solution. The velocity of the i-ion without any interference
from other ions (under the infinite dilution limit) can be correlated with the ionic absolute
mobility (ωi), the diffusion coefficient at infinite dilution (D0

i ), and the ionic conductivity
at infinite dilution (λ0

i ), as follows:

v0
i = ZieωiE = eZiD

0
i

kBT
E = eZiNAλ

0
i

F 2|Zi|
E (4.15)
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The proportion between the velocity of ions and their velocity at infinite dilution can
be equated to the ratio of the ionic conductivity to its value at infinite dilution. Thus, by
integrating equations 4.14 and 4.15, we obtain:

vi

v0
i

= λi

λ0
i

= (1 + δvi

v0
i

)(1 + δki

ki
) (4.16)

Integrating the equations for the relaxation and electrophoretic effects with Eq. 4.16
allows us to calculate the electrical conductivity of ions (λi). A summary of the equations
for the relaxation and electrophoretic effects is provided in Table 4.2. The designated names
of the models, which will be referenced later in the chapter, are also indicated.

The equations detailed in Table 4.2 alongside Eq. 4.16 represent the concluding for-
mulations used for predicting the electrical conductivity of electrolyte solutions. In these
formulations, values for Ω and κq are determined from equations 2.58 and 2.60, respectively.
For deriving κq, the terms ωi and ωj are determined using Eq. 2.13. To estimate the elec-
trical conductivity of a given solution, one needs the RSP (ϵ = 4πε0εr) and viscosity (η)
from the solvent(s), the ion’s diameter (σi), its valence type (Zi), its ionic conductivity at
infinite dilution (λ0

i ), the temperature of the system (T ) and salt concentration (cE), as well
as universal constants (NA, F , e, and kB).

After determining the ions’ conductivity via Eq. 4.16 and the equations presented in
Table 4.2, the solution’s specific conductivity (χ) can be obtained via Eq. 4.17.

χ = e2

kBT

[
C∑

i=1

ρiD
0
iZ

2
i

(
1 + δvi

v0
i

)(
1 + δki

ki

)]
(4.17)

The molar conductivity of the solution (Λ) can be calculated from Eq. 2.7.

4.2 Results

In this section, we evaluate the developed models (Model 1-3 in Table 4.2) against the ex-
perimental data reported in the literature. For this evaluation, we compare the predicted

Table 4.2. The relaxation and electrophoretic models developed in this study and their correspond-
ing names used in this work.

Model 1
δvi

v0
i

= −ζ κ
(1+κσi)

δki
ki

= −Ωθ exp(κ(σi−σij )) exp(−κqσij)
(κ+κq)(1+κσi)

Model 2
δvi

v0
i

= −ζ κ
(1+κσij )

δk
k

= −Ωθ exp(−κqσij)
(κ+κq)(1+κσij )

Model 3
δvi

v0
i

= − ζ

2
∑N

j
ρj Z2

j

∑C

j=1 ρjZ
2
j

[
exp(κ(σi−σij ))

1+κσi
+ exp(κ(σj −σij ))

1+κσj

]
δk
k

= −Ωθ exp(−κqσij)
2(κ+κq)

[
exp(κ(σi−σij ))

(1+κσi) + exp(κ(σj −σij ))
(1+κσj )

]
ζ = F 2|Zi|

6πηNAλ0
i

θ = e2|ZiZj |
ϵkBT
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electrical conductivity by Models 1-3 with the experimental data for binary salt-water so-
lutions at temperatures from 273.15-373.15 K. In this evaluation, we do not adjust any
parameters to the experimental data. For the ionic diameter, we use the reported crystal-
lographic diameters in the literature by Marcus [155]. The ionic conductivity at infinite
dilution has also been used from the reported values in the literature [129, 156]. Table 3.1
presents the ionic diameter and ionic conductivity at infinite dilution at 298.15 K for the
ions used in this study.

The RSP and viscosity of the solvent (water in this section) has also been used from the
values reported in the literature [157] as shown in Table 3.2.

4.2.1 Evaluation of Models 1-3 at 298.15 K

In this section, the accuracy of our proposed models for predicting the electrical conductivity
of electrolyte solutions is assessed by contrasting the model predictions with the experimental
data at 298.15 K. The performance of the models (Models 1-3) is examined against the
experimental values from over 68 binary aqueous solutions comprising electrolytes of types
1:1, 2:1, 1:2, 2:2, 1:3, 3:1, 2:3, 3:2, 3:3, 1:4, and 2:4. The predictions for electrical conductivity
are based on the ionic diameter and the ionic conductivity at infinite dilution, as detailed in
Table 3.1. Importantly, no parameters are adjusted to fit the experimental data, meaning
all calculations presented are strictly predictive.

From Figure 4.2, it is evident that the proposed models offer a reasonably satisfactory
prediction for the molar conductivity of 1:1, 2:1, and 3:1 chloride and bromide aqueous
solutions. However, there is noticeable divergence from the experimental data when the
ionic strength approaches around 1mol · L−1.

This figure illustrates a good correspondence between the predictions of the models and
the experimental data for 1:1, 2:1, and 3:1 chloride and bromide aqueous solutions. Moreover,
as the valence type of the cation decreases, the ionic strength threshold where the models’
predictions begin to diverge from the experimental data appears to increase.

Unlike graphs (a) and (b) in Figure 4.2, graph (c) highlights the influence of the anion’s
valence type on the models’ predictions. In this figure, all the electrolytes have potassium as
the cation, while the anions are nitrate, sulfate, ferricyanide, and ferrocyanide. It is evident
from the graph that the predictions of the models align well with the experimental results.

Additionally, as depicted in Figure 4.2 (d), the developed models efficiently predict the
molar conductivity of 1:2 sulfate solutions. Nonetheless, mirroring the trends observed with
bromide and chloride aqueous solutions in Figure 4.2 (a) and (b), the models’ predictions
diverge from the experimental results at elevated ionic strengths, particularly when exceeding
1 mol · L−1.

To understand the divergence of model predictions from experimental results at elevated
ionic strengths, it is essential to revisit the underlying assumptions of the model. Initially,
the models were developed on the notion that ions undergo complete dissociation in solutions.
This inherently omits the potential presence and effects of ion pairs. Moreover, the solvent
was perceived as a homogenous continuum, characterized by constant RSP and viscosity,
thereby neglecting its structure. Furthermore, the strong electrostatic field surrounding the
ions, which can lead to ions moving alongside their solvation shells, were overlooked due to
our reliance on bare ionic diameters for electrical conductivity predictions.

In addition to the implications of ion pairing, overlooking ion-solvent interactions can
also become more pronounced at elevated ionic concentrations. For instance, RSP of the
NaCl-H2O solution at 298.15 K decreases from 78.04 to 39.22 as the ionic strength of the
solution rises from 0 to 4 mol ·L−1. This alteration impacts various parameters, such as the
pair correlation function, the electric potential around the central ion, and consequently, the
relaxation and electrophoretic terms. Recent studies by us [124] (as discussed in Chapter 3)
demonstrated that incorporating a concentration-dependent RSP can enhance the accuracy
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Figure 4.2. The molar conductivity (Λ) for various aqueous solutions at 298.15 K is plotted
against the square root of ionic strength (

√
I). Specifically, we consider: (a) Solutions of LiCl, KCl,

BaCl2, and LaCl3, (b) Solutions of LiBr, NaBr, KBr, BaBr2, MgBr2, and LaBr3, (c) Solutions
of KNO3, K2SO4, K3Fe(CN)6, and K4Fe(CN)6, (d) Solutions of Li2SO4, Na2SO4, Cs2SO4, and
Ag2SO4. In the plots, dotted lines represent results from Model 1, dashed lines showcase outcomes
from Model 2, solid lines illustrate predictions by Model 3, while symbols indicate experimental data
[129,131,132,134,141,148,149,160,166,186]). Reprinted with permission from ref. [184]. Copyright
2023 American Chemical Society.

of electrical conductivity models at higher ionic strengths. Furthermore, they revealed that
the influence of utilizing a concentration-dependent RSP becomes less pronounced for 1:1
electrolyte solutions when the ionic strength is below roughly 1 mol · L−1.

Additionally, beyond the previously noted insights, Figure 4.2 clearly shows that at lower
ionic strengths, the difference in molar conductivity predictions by Models 1-3 is minimal.
Yet, as the ionic strength increases, particularly in electrolytes where there is a notable size
difference between cations and anions, like in Li2SO4, the predictions of Models 1-3 begin
to diverge. A more detailed analysis of this phenomenon will be provided in Section 4.3.

4.2.2 Effect of Temperature

In this section, the focus is on assessing the accuracy of Model 3 across a range of temper-
atures. Model 3 was chosen for this evaluation because, unlike Model 1, it has a consistent
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equilibrium pair correlation function and, in contrast to Model 2, it accounts for size dis-
similarity between cations and anions. As highlighted in the previous section, there is not a
significant discrepancy in the predictions of models 1-3. Hence, by concentrating solely on
one model in this section, we can present the results in a more streamlined fashion.

Prior to exploring the predictions made by the model, it is vital to highlight the parame-
ters within the model that are influenced by temperature. In Model 3, as outlined in Table
4.2, the ionic conductivity at infinite dilution, solvent viscosity, and solvent RSP are iden-
tified as parameters that vary with temperature. Furthermore, the system’s temperature
is explicitly incorporated into the equations, establishing it as a crucial component of the
entire model.

As the temperature rises, the RSP and viscosity of the solvent typically decrease, while
the ionic conductivity (or ionic mobility) tends to increase. For this investigation, we have
referred to experimental measurements of water viscosity and RSP available in the literature,
as detailed in Table 3.2.

The Walden’s rule provides a general association between the ionic conductivity at in-
finite dilution and the viscosity of the solvent(s), formulated as λ0

i η = constant. Yet, as
highlighted by Robinson and Stokes [90], the product of ionic conductivity and solvent vis-
cosity does not consistently remain constant. A more precise empirical relationship is given
by Smolyakov’s equation [127], which links the natural logarithm of the Walden’s product
to a linear function of the inverse temperature: ln

(
λ0

i η
)

= A+B/T . In our work, we either
employ the ionic conductivity at infinite dilution values as reported in the literature [129] or
we utilize Smolyakov’s equation to calculate the temperature dependence of λ0

i , as dictated
by Table 4.3.

Figure 4.3a exhibit the performance of Model 3 in predicting the molar conductivity of
aqueous sodium chloride solutions across a temperature range of 273.15-323.15 K. Within
the figure, the solid lines represent the model’s predictions, while the data points correspond
to experimental measurements from the literature. Different colors are utilized to denote
varying system temperatures. It is evident that Model 3 offers precise predictions for the
molar conductivity of NaCl-H2O solutions across the investigated temperature spectrum.
This underscores the model’s capability to account for temperature variations in electrical
conductivity without necessitating any parameter adjustments to fit experimental data.

Figure 4.3b depicts the molar conductivity of aqueous potassium chloride solutions span-
ning temperatures from 273.15-373.15 K. Within this figure, the lines signify predictions
derived from Model 3 (as referenced in Table 4.2), while the points indicate experimental
data. Evidently, Model 3 efficiently predicts the molar conductivity of potassium chloride
solutions, even at elevated temperatures, without the necessity to adjust any parameters
to fit experimental data. It is worth highlighting that while the model’s predictions closely
align with experimental data for the majority of the temperature range, some divergence
is evident at higher ionic strengths and elevated temperatures. Specifically, the model’s
predictions for 1 molar KCl-H2O solutions closely match experimental data up to about 60
◦C. Beyond this temperature, a minor discrepancy between the model’s predictions and the

Table 4.3. The coefficients of the Smolyakov’s equation (experimental data are from ref. [129,130,
156]). Reprinted with permission from ref. [184]. Copyright 2023 American Chemical Society.

Ions A B
Na+ -3.33 65.88
K+ -3.49 231.57
Ba+ -3.01 47.72
Cl– -3.41 216.57
(SO4)2− -3.39 210.89
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Figure 4.3. The molar conductivity (Λ) for aqueous solutions of (a) NaCl, (b) KCl, (c) BaCl2,
and (d) Na2SO4 is presented over a temperature range of 273.15 to 373.15 K. In these graphs,
the lines represent Model 3 predictions, while the data points correspond to the experimental data
[129,131,132,134,141,148,149,166,186]). Reprinted with permission from ref. [184]. Copyright 2023
American Chemical Society.

experimental data.
Figures 4.3c and d present the predictions of Model 3 for BaCl2 and Na2SO4 aqueous

solutions at temperatures range 273.15-373.15 K (it should be noted that there is only one
experimental data point available for the Na2SO4 aqueous solution at 323.15 K). Similar to
Figure 4.3a and b, the model predictions are in acceptable agreement with the experimental
data at various temperatures. But, this agreement is less satisfactory compared to KCl and
NaCl aqueous solutions.

4.3 Discussion

In section 4.2, the performance of the developed models (Models 1-3) was evaluated by
contrasting their predictions against the experimental data. This examination was primarily
focused on aqueous electrolyte solutions. Through our analysis, it was revealed that the
molar conductivity of these mixtures, especially when the ionic strength is below 1 mol ·L−1

and the ionic charges are relatively low, can be accurately predicted by the formulated
models.
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In this section, a thorough analysis of the predictions of the developed models is conducted.
We compare the predictions from our models with those reported in existing literature, both
qualitatively and quantitatively. To gain a more comprehensive understanding of the models’
capabilities, we also compare ionic properties, such as the transference number, in addition
to the solution properties.

4.3.1 Comparison With Other Models from the Literature

Figure 4.4 displays the predictions of Models 1-3 (detailed in Table 4.2) for four less com-
monly examined systems in the literature: Na4Fe(CN)6, K4Fe(CN)6, Ca3(Fe(CN)6)2, and
LaFe(CN)6 aqueous solutions at 298.15 K. Within this figure, the predictions from the newly
developed models (Models 1-3) are compared against the MSA [111], MSA-Simple [113], and
DHO3 [124] models from existing literature (those that have been selected for further inves-
tigation in Chapter 3), as well as against the experimental data. Additionally, parameters
listed in Table 3.1 serve as the foundation for predicting the molar conductivity across all
models.

In the Appendix, Figures D.11 through D.17 further compare the models formulated in
this research with those from existing literature. It is pertinent to mention that the models
selected for this comparison are among the most reliable ones from the literature, recognized
for their accuracy across a wide spectrum of salt concentrations and temperatures. Models
that demonstrated less precision, as identified in Chapter 3, have been excluded from this
comparative analysis due to previously raised concerns regarding their unreliability and
precision.

As shown in Figure 4.4a and b, the predictions of Models 1-3 developed in this research,
alongside the MSA-Simple model, are more accurate than those of the MSA and DHO3
models. On the other hand, for the Ca3(Fe(CN)6)2 and LaFe(CN)6 aqueous solutions, all
models tend to overestimate the molar conductivity, as demonstrated in Figure 4.4c and d.
From Figure D.11, it becomes clear that for 1:1 aqueous solutions, especially when the sizes
of the cation and anion are closely matched, the molar conductivity predictions of all models
converge closely.

From Figures D.12 and D.13, it is evident that Models 1-3, in conjunction with the MSA,
MSA-Simple, and DHO3 models, provide a reasonably accurate prediction for the molar
conductivity of earth metal chlorides and bromides (such as Ba, Mg, and Ca). In contrast, a
significant divergence from the experimental data is observed for transition metal solutions
like Cd and Co chlorides, bromides, and iodides. This deviation can probably be attributed
to the tendency of these metals to form ion complexes.

As observed in Figure D.16, all models consistently over-predict the molar conductivity
for 2:2 sulfates. Given that the ions in these salts are recognized for their ion pair formation
tendencies, it offers a credible reason for the deviation of all models from the experimental
results. A more detailed examination of this phenomenon will be provided in Chapters 8
and 9.

Figure 4.5 illustrates the electrophoretic and relaxation effects for salt-water solutions as
predicted by Models 1-3, compared with those of the MSA model [111], the MSA-Simple
model [113], and the DHO3 model [124]. These effects correspond to the molar conductivities
showcased in Figure 4.4.

From the qualitative analysis conducted, it becomes apparent that the models based on
the DHO theory, as formulated in this chapter, yield comparable, if not superior, results
to those grounded in the MSA theory. When observing Figures 4.4 and D.11-D.17, it is
clear that our formulated models (Models 1-3) align with or even exceed the predictive
capabilities of the MSA and MSA-Simple models. Such observations challenge earlier claims
suggesting that a DHO-based model is predominantly applicable for salt concentrations
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Figure 4.4. The molar conductivity predictions at 298.15 K for (a) Na4Fe(CN)6, (b) K4Fe(CN)6,
(c) Ca3(Fe(CN)6)2, and (d) LaFe(CN)6 aqueous solutions by Models 1-3 are compared with those
from the MSA model [111], the MSA-Simple model [113], and the DHO3 model [124]. Additionally,
experimental data from the literature [129] are presented alongside for reference. Reprinted with
permission from ref. [184]. Copyright 2023 American Chemical Society.

below 0.1 mol · L−1 [84]. Given the debate this raises, a deeper dive through quantitative
analysis is essential and will be addressed in the following section.

4.3.2 Evaluation of the Performance of the Developed Models
In section 4.3.1, the potential reasons for the discrepancies between model predictions and
experimental data at elevated ionic strengths were examined. Drawing from the underlying
assumptions of the model, it was concluded that the model’s evaluation is most pertinent for
scenarios where the ionic strength is approximately less than 1 mol ·L−1. Consequently, this
section is dedicated to the assessment of the developed models under conditions where the
ionic strength is below this threshold, aligning more closely with the model’s foundational
assumptions.
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Figure 4.5. The predictions for the electrophoretic effects shown in graphs (i) and (ii), as well as the
relaxation effect depicted in graph (iii), for (a) Na4Fe(CN)6, (b) K4Fe(CN)6, (c) Ca3(Fe(CN)6)2,
and (d) LaFe(CN)6 aqueous solutions at 298.15 K by Models 1-3 are compared with those from
the MSA model [111], the MSA-Simple model [113], and the DHO3 model [124]. Reprinted with
permission from ref. [184]. Copyright 2023 American Chemical Society.
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Table 4.4. The percentage of relative absolute average deviation (AARD%) for the predicted
electrical conductivity by the models presented in this study (specifically, Models 1-3 as listed in
Table 4.2), as well as the MSA [111], MSA-Simple [113], and DHO3 [124] models, is evaluated. This
evaluation covers a range of aqueous electrolyte solutions with the following stoichiometries: 1:1,
2:1, 3:1, 1:2, 2:2, 3:2, 1:3, 1:4, and 2:4 at a temperature of 298.15 K. The experimental data for
this analysis have been sourced from the subsequent references [129–132, 134, 141, 149, 160, 186]).
Reprinted with permission from ref. [184]. Copyright 2023 American Chemical Society.

Salt AARD% Nd

Model 1 Model 2 Model 3 MSA MSA-Simple DHO3
AgNO3 2.28 2.32 2.29 2.39 2.19 2.37 12

CsCl 0.61 0.61 0.61 0.57 0.66 0.58 11
HCl 0.39 0.39 0.37 0.39 0.39 0.39 78
KBr 0.38 0.36 0.37 0.41 0.60 0.30 39
KCl 0.26 0.27 0.26 0.40 0.26 0.32 141
KI 1.13 1.03 1.11 1.23 1.54 0.81 13
KNO3 3.44 3.45 3.44 3.61 3.26 3.54 24
LiBr 2.59 2.05 2.38 2.01 2.21 2.05 10
LiCl 0.53 0.56 0.51 0.47 0.42 0.59 39
LiClO4 1.26 0.74 1.12 0.81 0.92 0.68 14
LiNO3 0.78 0.90 0.72 0.88 0.61 0.94 15
NaBr 1.12 1.05 1.05 0.84 1.10 1.08 20
NaCl 0.40 0.47 0.42 0.59 0.31 0.51 120
NaClO4 1.26 1.59 1.33 1.52 1.31 1.69 22
NaI 0.78 0.61 0.72 0.58 0.74 0.56 50
NaNO3 4.75 5.12 4.89 5.55 4.57 5.31 20
NH4Cl 1.43 1.43 1.43 1.50 1.27 1.51 19
RbCl 0.99 0.99 0.99 0.99 0.91 1.03 8
BaBr2 1.26 1.12 1.24 1.07 1.13 1.26 7
BaCl2 1.10 1.02 1.08 1.39 1.28 1.50 47
Ca(NO3)2 0.85 0.38 0.76 1.38 0.64 1.28 9
CaBr2 3.07 2.76 3.01 2.75 2.81 3.04 7
CaCl2 1.39 1.17 1.35 0.87 1.15 1.22 64
CdCl2 46.81 48.69 47.18 50.44 48.92 50.33 9
CdI2 112.88 118.91 114.09 119.10 116.51 121.62 9
Co(NO3)2 4.14 3.58 4.05 2.92 3.45 3.46 6
CoCl2 5.06 4.91 5.02 5.03 5.04 5.36 15
Cu(NO3)2 3.38 2.73 3.28 2.15 2.57 2.37 6
CuBr2 3.54 2.91 3.44 2.55 2.86 2.39 7
CuCl2 1.60 0.82 1.47 0.55 0.55 0.53 6
Mg(ClO4)2 7.98 5.46 7.57 6.08 6.40 4.47 15
Mg(NO3)2 5.24 4.46 5.11 3.88 4.24 3.96 25
MgBr2 2.48 3.77 2.73 4.16 3.71 4.61 7
MgCl2 2.14 1.53 2.02 1.15 1.46 1.22 33
Mn(NO3)2 9.29 10.03 9.40 10.91 10.41 11.05 6
MnCl2 2.84 2.87 2.84 3.09 3.02 3.41 24
Ni(NO3)2 5.07 4.37 4.95 3.78 4.20 3.89 6
NiCl2 2.92 2.72 2.88 2.57 2.72 2.74 15
Sr(NO3)2 1.81 2.08 1.84 3.03 2.48 2.79 7
SrBr2 1.75 1.53 1.71 1.53 1.59 1.78 6
Zn(NO3)2 5.48 4.46 5.29 3.85 4.41 4.05 11
Al(NO3)3 7.99 5.75 7.62 4.08 4.68 5.18 7
AlBr3 11.25 8.06 10.70 6.32 7.27 6.68 10
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Table 4.4. (Continued.)

Salt AARD% Nd

Model 1 Model 2 Model 3 MSA MSA-Simple DHO3
La(NO3)3 9.01 7.50 8.80 6.79 6.19 6.51 6
LaBr3 1.80 1.55 1.78 0.93 1.31 1.44 12
LaCl3 3.31 2.70 3.22 1.34 2.13 2.40 41
Ag2SO4 2.40 2.29 2.41 3.50 2.53 2.06 12
H2SO4 9.97 9.84 9.84 10.16 10.20 8.83 11
K2SO4 2.72 2.55 2.72 4.10 2.73 1.53 32
Li2SO4 2.39 2.22 2.66 5.90 3.19 2.08 10
Na2SO4 1.59 1.40 1.66 3.64 1.83 0.98 40
CdSO4 39.02 41.67 40.18 55.72 51.00 41.89 17
CoSO4 20.85 23.61 22.09 34.89 31.47 23.74 27
CuSO4 29.21 31.74 30.27 43.86 40.29 31.87 32
FeSO4 28.75 31.92 30.07 43.32 39.89 32.10 15
MgSO4 15.48 17.04 16.14 24.70 22.45 17.11 51
MnSO4 30.75 33.74 32.04 47.56 43.24 33.93 26
NiSO4 21.63 24.66 22.96 36.27 32.91 24.79 27
ZnSO4 21.84 23.95 22.74 33.47 30.63 24.06 29
La2(SO4)3 175.14 179.67 176.53 238.75 232.14 188.17 15
K3FeCN6 2.33 1.98 2.35 4.66 2.39 1.09 15
Ca3(Fe(CN)6)2 19.19 20.33 20.18 39.60 32.51 15.42 9
LaFeCN6 30.46 33.63 32.30 98.29 91.75 33.87 20
H4FeCN6 41.33 39.84 40.82 43.37 42.14 30.53 6
K4FeCN6 9.21 7.71 9.26 15.72 8.84 2.87 20
Na4FeCN6 3.41 1.98 3.64 10.68 3.78 5.72 12
Ca2FeCN6 172.10 175.92 175.65 230.94 203.70 155.90 10
Mg2FeCN6 67.70 68.57 69.33 104.81 89.38 50.69 6
Average 15.25 15.56 15.50 20.77 19.05 14.91
*The value provided below the name of the models represent their corresponding AARD%
*In electrolytes that have been underlined, the ionic strength is less than 1 mol · L−1

Table 4.4 presents the relative average deviation (expressed in percentage) as given by
Eq. 4.18. This deviation corresponds to the predictions made by models formulated in this
study, as well as the MSA [111], MSA-Simple [113], and DHO3 [124] models which have
been previously established in the literature. The evaluations consider aqueous electrolyte
solutions with stoichiometries of 1:1, 2:1, 3:1, 1:2, 2:2, 3:2, 1:4, and 2:4, all observed at 298.15
K.

In the table, the predictions of molar conductivity from the models are compared to
experimental data from 70 different binary salt-water solutions. The number of data points
and the highest ionic strength for each solution are also included for clarity. Most of the
solutions have a maximum ionic strength of 1 mol · L−1. However, some electrolytes have
a lower maximum ionic strength, which is either due to solubility restrictions or the lack of
experimental observations.

AARD% = 1
Nd

Nd∑
s=1

(
| Λexp

s − Λpre
s |

Λexp
s

)
× 100 (4.18)

To begin with, Table 4.4 clearly illustrates the discrepancies between each model’s pre-
dictions and actual experimental values for different electrolyte solutions. It is evident from
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Table 4.5. The average of the percentage of relative absolute average deviation (AARD%) for
the electrical conductivity predictions from the models presented in this study, namely Models
1-3, as well as the MSA [111], MSA-Simple [113], and DHO3 [124] models, is evaluated. This
assessment encompasses a variety of aqueous electrolyte solutions with stoichiometries of 1:1, 2:1,
3:1, 1:2, 2:2, 3:2, 1:3, 1:4, and 2:4, all at 298.15 K and with an ionic strength less than or equal
to 1 mol · L−1. The experimental data utilized for this analysis are sourced from the subsequent
references [129–132, 134, 141, 149, 160, 186]). Reprinted with permission from ref. [184]. Copyright
2023 American Chemical Society.

Type AARD%

Model 1 Model 2 Model 3 MSA MSA-Simple DHO3
+1:-1 1.5 1.4 1.4 1.4 1.3 1.4
+2:-1 14.7 14.7 14.7 14.7 14.5 14.9
+3:-1 5.8 4.6 5.7 3.7 4.1 4.1
+1:-2 5.5 5.3 5.5 7.2 5.6 4.3
+2:-2 25.9 28.5 27.1 40.0 36.5 28.7
+1:-3 2.3 2.0 2.4 4.7 2.4 1.1
+2:-3 19.2 20.3 20.2 39.6 32.5 15.4
+3:-3 30.5 33.6 32.3 98.3 91.8 33.9
+1:-4 18.0 16.5 17.9 23.3 18.3 13.0
+2:-4 119.9 122.2 122.5 167.9 146.5 103.3

this data that no single model consistently outperforms others across all electrolyte cate-
gories. Notably, 1:1 chlorides, bromides, perchlorates, and iodides generally display a lower
AARD% across all models compared to other electrolytes. To illustrate, while the AARD%
for NaCl remains below 1% for all models, the same metric exceeds 4.5% for NaNO3. This
suggests that a model’s accuracy is intimately linked to the specific ions present in the so-
lution. Additionally, the models’ performance varies significantly based on the electrolyte’s
valence; 1:1 electrolytes tend to have AARD% values that are lower than those of 2:1 and
other high valence electrolytes.

The accuracy of each model is apparent when examined in the context of specific elec-
trolyte solutions. As demonstrated in Table 4.4, the AARD% for 1:1 chlorides, bromides
(with the exception of LiBr), perchlorates, and iodides, as well as lithium nitrate aqueous
solutions at 298.15 K, registers below 2 percent across all models, inclusive of those from the
literature. This indicates an acceptable alignment with experimental data for these specific
electrolytes. Notably, the difference in AARD% between Models 1 and 2 for these solutions
is marginal. Given the inherent uncertainties in experimental data, minor variations, partic-
ularly those manifesting in the first or second decimals of the AARD%, do not necessarily
signify a model’s superior accuracy or lack thereof.

For aqueous solutions of sodium and potassium nitrate, the agreement between model
predictions and experimental data is not as close as seen for most 1:1 electrolyte solutions.
The higher AARD% for NaNO3 and KNO3 solutions might be due to ion pairing in these
systems, as suggested in existing literature [187].

From Table 4.4, it is evident that the AARD% for 2:1 aqueous solutions is greater than
that for 1:1 electrolyte solutions. Particularly, the model predictions for cadmium chloride
and iodide solutions exhibit significant errors, amounting to 46% and 113%, respectively. For
these solutions, the effects go beyond just strong ion pairing; there is also documentation
of ion triplets and higher aggregate formations [127, 188]. Except for CdCl2 and CdI2, the
model-predicted molar conductivities generally align satisfactorily with experimental data.
Furthermore, for a majority of the 2:1 electrolytes, Models 1 and 2 tend to outperform the
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other models in terms of AARD%.
In evaluating the AARD% of the models introduced in this study against the MSA model

for 3:1 electrolytes, the MSA model tends to align more closely with the experimental data.
Conversely, for 1:2 sulfates, 1:3 ferricyanides, and 1:4 ferrocyanides, this study’s models,
along with the DHO3 model, demonstrate better accuracy than both the MSA and MSA-
Simple models. Notably, for 2:2 sulfates, where ion pairing is important [189–194], there is a
considerable divergence between model predictions and experimental data. When examining
2:3 and 2:4 electrolyte solutions, none of the models offer precise predictions.

Table 4.4 is indeed information-dense, making direct interpretation challenging. To
streamline understanding, it is more practical to consider the models’ performance via the
average AARD% specific to each electrolyte category rather than individual electrolytes. In
Table 4.5, we have compiled the mean AARD% for distinct electrolyte types. Here, both
our study’s models and those from the literature are grouped according to the valence char-
acteristics of their cations and anions.

From Table 4.5, it is evident that the predictions from the models we developed are least
accurate for 2:2, 3:3, and 2:4 aqueous solutions. Conversely, these models demonstrate their
highest accuracy for 1:1, 3:1, 1:2, and 1:3 electrolyte aqueous solutions.

Additionally, when comparing the performance of our newly developed models with those
from existing literature, we see that our models align with the accuracy of the MSA, MSA-
Simple, and DHO3 models. This insight is significant, considering the distinct theoretical
differences between these models. The MSA and MSA-Simple models utilize the MSA pair
correlation function for stationary contributions to the correlation function, and the MSA
model does not overlook the higher order contributions (T1 and T2) to the FO continuity
equation. On the other hand, the DHO3 model’s relaxation effect adopts the Eigen-Wicke
[101, 102] equation, diverging from the Boltzmann distribution function. This comparison
not only highlights the adaptability of various modeling approaches but also challenges the
commonly held belief that the MSA theory offers a more precise depiction of the physics
inherent in electrolyte solutions.

It is worth noting that models such as Model 1-3, DHO3, and MSA-Simple, which truncate
the higher-order terms in the continuity equation (T1 and T2 as per Eq. 22 in ref. [111]),
exhibit a level of accuracy similar to the MSA model, which includes these terms. This
suggests that excluding these terms does not significantly impact predictions related to molar
conductivity. This aligns with a previous observation by Bernard et al. [111], who pointed out
that the second and hydrodynamic contributions arising from T1 and T2 are relatively minor
compared to the first-order term. Figure 4.6 further supports this statement, demonstrating
that higher-order contributions to the relaxation (δk2/k and δkHyd/k) and electrophoretic
(δv2

i /v
◦
i ) effects are much smaller in magnitude compared to their first-order counterparts.

Consequently, the decision to truncate these terms when assessing the relaxation effect in
this study appears to be well-founded.

4.3.3 Effect of Ionic Properties

The developed electrical conductivity models, as outlined in the equations presented in
Table 4.2, are primarily based on three key components: the ionic conductivity at infinite
dilution, the relaxation effect, and the electrophoretic effect. The ionic conductivity at
infinite dilution reflects the mobility of ions in the absence of other ions and is influenced
by ion-solvent interactions, a complex aspect beyond the scope of this study. Typically, this
property is determined by extrapolating electrical conductivity data to zero concentration.
However, there exist a few models capable of estimating the ionic conductivity (or mobility)
at infinite dilution [127,152,195].

In this section, an investigation is conducted into the impact of ionic properties, including
valence type and diameter, on the relaxation and electrophoretic effects in the conduction
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Figure 4.6. The influence of higher order terms on the relaxation and electrophoretic effects from
the MSA model. Reprinted with permission from ref. [184]. Copyright 2023 American Chemical
Society.
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process. To achieve this, nine different electrolyte solutions are selected: NaCl, BaCl2, LaCl3,
Li2SO4, MgSO4, La2(SO4)3, K3Fe(CN)6, Ca3(Fe(CN)6)2, and LaFe(CN)6, all studied at a
temperature of 298.15 K.

The ionic conductivity equation allows for the interpretation of two corrections to the
ionic conductivity at infinite dilution. This section focuses on the analysis of how ionic
properties impact these corrections. Figure 4.7 illustrates these corrections in the context
of nine electrolyte solutions, all at a solution ionic strength of one mol · L−1 and a system
temperature of 298.15 K. The arrangement of electrolytes in this figure is based on their
valence type.

The figure illustrates that the electrophoretic effect (1 + δvi

v0
i

) plays a dominant role in
contributing to the ionic conductivity for cations in all the electrolyte solutions. In con-
trast, for anions, the difference between the electrophoretic and relaxation contributions is
less pronounced, and in some cases, the relaxation effect surpasses the electrophoretic one.
Moreover, the relaxation correction tends to be more substantial for cations compared to
anions, whereas the electrophoretic correction is generally smaller for cations than for anions.

The electrical conductance process’s sensitivity to ionic properties can also be explored
through the transference number (ti), which reveals the individual ions’ contributions to
electrical conductivity in the solution. The transference number of ions in the solution can
be defined as shown in Eq. 4.19. This property is typically experimentally determined using
methods such as the moving boundary method, cell measurements, and others [90].

ti = λi∑
j
(λj)

(4.19)

Figure 4.8 illustrates the transference numbers for aqueous solutions of hydrochloric acid,
sodium chloride, potassium chloride, barium chloride, calcium chloride, and lanthanum chlo-
ride at 298.15 K as a function of the square root of ionic strength. The solid lines represent
Model 3 predictions, while the dotted lines represent MSA model predictions. Experimental
data points from the literature are also included for reference.

The change in the transference number of cations with the ionic strength depends on
their transference number at infinite dilution (t0+). When t0+ is around 0.5, as seen in KCl
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Figure 4.7. The contributions to the ionic conductivity have been predicted by Model 1-3, MSA,
MSA-Simple, and DHO3 models for aqueous solutions of NaCl, BaCl2, LaCl3, Li2SO4, MgSO4,
La2SO4, K3Fe(CN)6, Ca3(Fe(CN)6)2, and LaFe(CN)6 at a temperature of 298.15 K and an ionic
strength of 1 mol · L−1. Reprinted with permission from ref. [184]. Copyright 2023 American
Chemical Society.
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Figure 4.8. The transference numbers of the cation (t+) for aqueous solutions of hydrochloric acid
(HCl), lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KCl), barium chloride
(BaCl2), calcium chloride (CaCl2), magnesium chloride (MgCl2), and lanthanum chloride (LaCl3)
at 298.15 K are depicted. The solid lines represent predictions from Model 3, while the dotted
lines represent predictions from the MSA model. Experimental data points from the literature
[129,196–199] are also included for comparison. Reprinted with permission from ref. [120]. Copyright
2023 American Chemical Society.

aqueous solutions, the transference number remains relatively constant with variations in
ionic strength, as illustrated in Figure 4.8. However, when t0+ exceeds 0.5, as observed in
HCl aqueous solutions, the transference number of the cation increases as the ionic strength
rises, as shown in Figure 4.8. Conversely, when the transference number of the cation at
infinite dilution is less than 0.5, it decreases with increasing ionic strength, as demonstrated
in Figure 4.8 for NaCl.

In addition to the variation in transference numbers with ionic strength, it is important to
note that the primary contribution to the electrical conductivity in sodium and potassium
chloride solutions comes from the anion. However, in the case of hydrochloric acid, the
predominant contribution is from the hydrogen ion, which has a relatively high transference
number of around 0.8. Robinson and Stokes [90] have suggested that hydrogen ions (H+ or
H3O

+) in the solution may be involved in a unique mechanism due to their exceptionally
high ionic mobility. They proposed that this unusual behavior could be explained by a
phenomenon known as ’proton jump’, in which protons move from one water molecule to
another during the conduction process.

Furthermore, Figure 4.8 illustrates that the predictions made by Model 3 are in reasonable
agreement with the experimental measurements. Notably, for aqueous solutions of HCl,
NaCl, and KCl, the agreement is particularly better when compared to other solutions.

4.4 Summary and Conclusions

In this chapter, three novel models have been introduced for the calculation of electrical
conductivity in unassociated single-salt electrolyte solutions. These models have been based
on the DHO theory, which addresses relaxation effects. They have been differentiated by
assumptions regarding ion sizes, with two models considering varying ion sizes and the
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third assuming identical ion sizes. Electrophoretic effects have been calculated in these
models using Stokes’ law and the forces acting on the ionic cloud, assuming that the ionic
cloud remains undisturbed by external electric fields. The derivation of these models has
incorporated three equilibrium RDFs associated with the DH theory.

An evaluation was conducted to assess the accuracy of the equilibrium RDFs by comparing
them to MC simulations, numerical solutions to the symmetrical PB equation, and the MSA
theory. The findings showed a close agreement with the MSA theory but a deviation from
the results of the MC simulations and numerical solutions to the symmetrical PB equation.
Among the developed models, Model 3 was chosen as the final model due to its consistent
equilibrium RDF and its capability to account for different ion sizes.

A comparative analysis was conducted to assess the accuracy of the developed models in
comparison to models from the literature and experimental data. The results demonstrated
that the developed models performed well in terms of accuracy, both quantitatively and
qualitatively. They showed good agreement with experimental data under specific conditions,
although this agreement was not consistent across all systems. In several cases, the models
tended to overestimate molar conductivity at higher ionic strengths, and the onset of this
deviation varied depending on the specific salt.

Chapter Message

In this chapter, a new model was developed to predict the electrical conductivity of
single-salt electrolyte solutions. Its accuracy has been assessed through comparisons
with the experimental data and other existing models. This model offers a DHO
equivalent to the MSA model for electrical conductivity, providing researchers with
a valuable tool for their work.
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In Chapter 4, a new electrical conductivity model was developed based on Ebeling hier-
archy of the Smoluchowski equation, FO continuity equation, and DH theory for a system
containing single types of cation and anion. The developed model was extensively assessed
by comparing its predictions with the experimental data and with other models developed
in the literature. In this chapter, we extend the electrical conductivity model for multi-
component systems containing arbitrary types of cations and anions. The content of this
chapter has been previously submitted for publication.

• A Novel Model for Predicting the Electrical Conductivity of Multi-salt Electrolyte So-
lutions [200].

5.1 Model Development

In a homogeneous solvent with a constant permittivity (ϵ = 4πε0εr) and viscosity (η),
a solution of electrolytes comprising C types of ions, each characterized by unique ionic
diameters (σi), is examined. It is assumed that all ions are perfectly spherical in shape, and
the formation of ion pairs is disregarded. Furthermore, it is assumed that the motion of all
ions is considered based on their bare ionic diameter.

In Chapter 2, it is emphasized that the electrical conductivity of electrolyte solutions,
as proposed by Debye and Hückel [86], deviates from ideal behavior due to the influences
of relaxation and electrophoretic forces. Therefore, as suggested by Onsager and Kim [109]
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and subsequently employed by Durand-Vidal et al. [201], van Damme et al. [116], and Roger
et al. [117], the calculation of the specific conductivity (χ) of the solution can be carried out
using Eq. 2.67.

χ = e2

kBT

C∑
i=1

ρiD
0
iZ

2
i

(
1 + δvi

v0
i

)(
1 + δki

ki

)
(2.67)

In Eq. 2.67, C is the representation of the number of types of ions in the solution.
ρi, D0

i , and Zi represent the number density, the diffusion coefficient at infinite dilution,
and the valence type of the ion i, respectively. The terms δvi/v

0
i and δki/ki indicate the

electrophoretic and relaxation corrections for ion i, respectively. Additionally, kB and T
denote the Boltzmann constant and the temperature of the system.

5.1.1 Relaxation Effect

In Chapter 2, the ultimate equation (Eq. 5.1), previously provided by Roger et al. [117] to
obtain the relaxation correction of the ionic conductivity, was presented. It has been noted
that, akin to single-salt systems, the computation of the relaxation field necessitates only
the input of the equilibrium pair correlation function.

δkm

km
= −κ2eZm

3

C∑
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ζp
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C∑
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C∑
i=1

tjζ
p
j µje(Ziωi − Zjωj)
e2ZiZj(ωi + ωj)

sinh
(
κ

√
qpσij

)
κ

√
qpσij

[∫ ∞

σij

r exp
(
−κ√

qpr
)
h0

ij(r)dr
]

(5.1)

In Eq. 5.1, κ is the inverse Debye length, as defined by Eq. 2.51, where ϵ = 4πϵ0ϵr

represents the dielectric constant of the medium. Furthermore, tj and µj stand for the
transport number at an infinite dilution (Eq. 2.54) and the relative ionic strength (Eq.
2.52), respectively.

κ =

√√√√ 4πe2

ϵkBT

C∑
j=1

ρjZ2
j (2.51)

ti = µiωi

ω̄
(2.54)

In Eq. 2.54, ωi and ω̄ represent the individual and average absolute mobility of the ion i,
respectively. Individual mobility of an ion can be determined through the ionic conductivity
(λ0

i ) and the diffusion coefficient at infinite dilution (D0
i ), as outlined in Eq. 2.13. Likewise,

the mean mobility of the ions can be computed utilizing Eq. 2.53.

µi = ρie
2Zi∑C

j=1 ρje2Zj

(2.52)

ωi = D0
i

kBT
= NAλ

0
i

F 2|Zi|
(2.13)

ω̄ =
C∑

j=1

µjωj (2.53)
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The values qp and ζp
i represent the eigenvalues and components of the eigenvector ob-

tained in solving the set of differential equations (equations 22-26 in ref. [116]). Expressions
for eigenvalues and eigenvectors are provided in equations 2.62 and 2.63, respectively.

qp =
C∑

j=1

= ω̄tj
ωj + αp

(2.62)

ζp
j = Npωj

ω2
j − δ2

p
(2.63)

The quantity Np is determined by Eq. 2.64, and δp is one of the roots of Eq. 2.65.

1
N2

p
=

C∑
j=1

tjω
2
j

(ω2
j − δ2

p)2 (2.64)

−2ω̄α
C∑

j=1

ti
ω2

i − δ2 = 0 (2.65)

Van Damme et al. [116] suggested, in agreement with Onsager and Kim [109], that the
roots of Eq. 5.2 should be arranged in the following order:

0 = δ2
1 < ω2

1 < δ2
2 < ω2

2 < · · · < δ2
C < ω2

C (5.2)

This particular order facilitates the solution of Eq. 5.2 for δp using root bracketing,
interval bisection, and inverse quadratic interpolation methods. In this work, the Brent
algorithm [202], implemented in the SciPy library, was employed to solve this nonlinear
equation.

In Eq. 5.1, σij is distance of the closest approach defined by Eq. 2.59. And, the stationary
pair correlation function is denoted by h0

ij .

σij = σi + σj

2 (2.59)

To determine the relaxation effect on the ion m, it is necessary to supply the pair cor-
relation function in the stationary state to Eq. 5.1. Following this, the integration process
is carried out. In the investigations conducted by van Damme et al. [116] and Roger et
al. [117], the pair correlation function from the MSA theory is utilized, as outlined in Eq.
14 of ref. [117].

In this chapter, similar to our earlier exploration of single-salt solutions (Chapter 4), we
employ DH theory to calculate the pair correlation function in the stationary state. Eq. 4.5
presents the formula for the pair correlation function and the RDF at the stationary state,
derived from the SDH model [184].

h0
ij(r) = g0

ij(r) − 1 = H(r − σij) exp

[
−
eZiψ

0
j (r) + eZjψ

0
i (r)

2kBT

]
− 1 (5.3)

In Eq. 5.3, H(r − σij) denotes the Heaviside step function. Furthermore, the electric
potential (ψ0

i ) is determined by solving the linearized PB equation, as proposed by Debye
and Hückel [4, 86], represented by Eq. 4.2.

ψ0
i (r) = eZi

ϵ

exp(κσi)
1 + κσi

exp(−κr)
r

(4.2)
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Combining equations 5.3 and 4.2, it gives:

rh0
ij(r) = rh0

ji(r) = −e2ZiZj

2ϵkBT

[
exp(κ(σi − r))

1 + κσi
+ exp(κ(σj − r))

1 + κσj

]
(4.5)

The integral in Eq. 5.1 can be calculated by replacing rh0
ij(r) with the expression in Eq.

4.5.
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By inserting Eq. 5.4 into Eq. 5.1, we can calculate the relaxation correction term as
shown in Eq. 5.5:
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(5.5)

5.1.2 Electrophoretic Effect

In Chapter 4, in contrast to the relaxation effect where we assumed the existence of only
a single type of cation and anion in the solution for the derivation of the single-salt case,
the electrophoretic term is derived for a multi-component mixture of ions. Therefore, the
electrophoretic correction to the specific conductivity does not require an extension for mixed
electrolytes.

In this section, we present the results of the previously derived electrophoretic term. Eq.
4.12 presents the correction term to the hydrodynamic velocity resulting from electrophoretic
forces acting on ion i. Here, E represents the external electric field applied to the solution,
and η denotes the viscosity of the solvent(s).

δvi = eZiE

3ηϵkBT

C∑
j=1

ρje
2Z2

j

[
exp(κ(σi − σij))
κ(1 + κσi)

+ exp(κ(σj − σij))
κ(1 + κσj)

]
(4.12)

The specific conductivity can be determined by using Eq. 2.67, which requires an elec-
trophoretic correction. This correction is given by Eq. 5.6.

δvi

v0
i

= − F 2|Zi|
3ηϵkBTNAλ0

i

C∑
j=1

ρje
2Z2

j

[
exp(κ(σi − σij))
κ(1 + κσi)

+ exp(κ(σj − σij))
κ(1 + κσj)

]
(5.6)

The equation includes the Faraday constant, symbolized by F , and Avogadro’s number,
denoted by NA.
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5.2 Results

In this section, we evaluate the accuracy of the developed model by comparing its predictions
against the experimental data available in the literature. Our assessment focuses on the
predicted electrical conductivity, determined through equations 2.67, 5.5, and 5.6, and its
alignment with corresponding experimental data for ternary mixed salt-water solutions. The
temperature range considered for this comparison ranges from 273.15 to 298.15 K. It is crucial
to emphasize that no adjustments are made to the model parameters during this evaluation.
The ionic diameter values are extracted from the study by Marcus [155], which provides
crystallographic diameters reported in the literature. Furthermore, the ionic conductivity
at infinite dilution is sourced from previously reported values [129, 156]. Table 3.1 details
the ionic diameter and ionic conductivity at 298.15 K for the ions used in this research.
The RSP and viscosity of the solvent are obtained from values previously reported in the
literature [84,157].

The model predictions are compared with the experimental data by contrasting either
the specific conductivity (χ) or the molar conductivity (Λ), which is expressed in Eq. 5.7. It
should be noted that the definition of the molar conductivity for multi-component systems
is different than that of single-salt systems.

Λ = χ

I
(5.7)

The ionic strength of the solution, denoted by I, is given by Eq. 5.8. This equation
assumes that all electrolytes are completely dissociated.

I = 1
2

C∑
i=1

ciZ
2
i (5.8)

The molar concentration of the ions in the solution is represented by ci in Eq. 5.8.
Furthermore, the mole fraction of salts in the ternary systems, excluding solvent, is denoted
by x1 and is expressed as:

x1 = c1,+Z1,+

c1,+Z1,+ + c2,+Z2,+
(5.9)

Eq. 5.9 shows the relative molar concentration of cations of salt 1 and salt 2. c1,+ and
c2,+ are the molar concentrations of the cations from salt 1 and salt 2, respectively, and Z1,+
and Z2,+ are the ion valance types of the cations from salt 1 and 2, respectively.

Figure 5.1 depicts the molar conductivity of three ternary mixed salt-water systems at
298.15 K. In all these systems, the cations are K+ and Na+, while the anions for the first,
second and third systems are Cl– , Br– and I– , respectively. The lines in Figure 5.1 represent
the model predictions for the molar conductivity, utilizing equations 2.67, 5.5, 5.6, and 5.7,
while the points correspond to the experimental data. Notably, the concentrations of salt 1
and salt 2 are the same in these systems.

Figure 5.1 offers an opportunity to evaluate the influence of the anion on the performance
of the developed model. As shown in the figure, the model effectively predicts the molar
conductivity of the solutions in all three systems when the ionic strength is below 1 mol ·L−1.
However, at higher ionic strengths, it becomes apparent that the model tends to overestimate
the molar conductivity of the solutions.

Figure 5.2 presents a comparison between the model predictions and experimental data
for three solutions of HCl-salt-water systems. In the cases of HCl-NaCl-H2O and HCl-KCl-
H2O solutions, the hydrochloric acid concentration is kept constant at 0.0978 mol · L−1

across varying ionic strengths. Similarly, for HCl-LiCl-H2O solutions, the concentration of
HCl is also consistent at 0.0974 mol · L−1.
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Figure 5.1. This figure presents the molar conductivity (Λ) of KCl-NaCl-H2O (green lines and
points), KBr-NaBr-H2O (red lines and points), and KI-NaI-H2O (blue lines and points) solutions at
298.15 K predicted by the new model compared with the experimental measurements reported in the
literature [203]. In this figure, lines represent the model predictions while symbols are experimental
data. Reprinted with permission from ref. [200]. Copyright 2023 American Chemical Society.
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Figure 5.2. The molar conductivity (Λ) of HCl-LiCl-H2O (green lines and points), HCl-NaCl-H2O
(red lines and points), and HCl-KCl-H2O (blue lines and points) solutions at 298.15 K predicted by
the new model compared with the experimental data reported in the literature [204]. In this figure,
lines represent model predictions while symbols are experimental data. Reprinted with permission
from ref. [200]. Copyright 2023 American Chemical Society.
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Upon comparing the lines representing the predictions of the model with the experimental
data points, it becomes evident that the model performs well and accurately predicts the mo-
lar conductivity when the ionic strength is below 1 mol ·L−1. However, as the ionic strength
increases, the model predictions start to deviate from the experimental data. Notably, the
model tends to overpredict the molar conductivity. This discrepancy suggests that there
might be an additional factor or effect missing from the model that accelerates the decrease
in molar conductivity with increasing ionic strength. Further investigation is required, as
will be presented in the Discussion section, to identify and incorporate this missing factor
into the model to enhance its accuracy at higher ionic strengths.

Figure 5.3 illustrates the comparison between theoretical predictions and experimental
data for a ternary system of KCl-NaCl-H2O at 298.15 K. The molar conductivity is plotted
against the solvent-free mole fraction of KCl, as defined in Eq. 5.9. The various colors in
the figure represent solutions with varying ionic strengths, ranging from 0.1 to 4 mol · L−1.

From Figure 5.3, it is apparent that the developed model accurately predicts the molar
conductivity of solutions for all values of xKCl when the ionic strength is less than or equal
to 1 mol·L−1. However, at higher ionic strengths, a significant deviation is observed between
the predictions of the model and the experimental data, regardless of the value of xKCl.

Figure 5.4 depicts a different scenario compared to Figures 5.1 to 5.3 in two aspects.
Firstly, one of the salts present in the solution is a 2:2 electrolyte, indicating a different ionic
charge density. Second, the performance of the model is evaluated at various temperatures,
allowing an assessment of its temperature dependence.

Figure 5.4 illustrates the molar conductivity of two aqueous solutions containing NaCl.
In the first case, denoted by solid lines and square points, CaSO4 serves as the second
salt. In the second case, MgSO4 acts as the second electrolyte, marked by dashed lines and
circular points. In particular, in the MgSO4-NaCl-H2O system, xMgSO4 is 0.0574, while in
the CaSO4-NaCl-H2O system, xCaSO4 is 0.0233.

Observing Figure 5.4, it is evident that the model predictions closely align with the
experimental measurements, indicating a good agreement. However, it is crucial to note that
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Figure 5.3. This figure presents the molar conductivity (Λ) of KCl-NaCl-H2O at 298.15 K where
xKCl varies from 0 to 1 at various solution’s ionic strengths (lines are model predictions and points
are experimental data from ref. [203]). Reprinted with permission from ref. [200]. Copyright 2023
American Chemical Society.
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Figure 5.4. This figure presents the molar conductivity (Λ) of MgSO4-NaCl-H2O (dashed lines and
square points), and CaSO4-NaCl-H2O (solid lines and circle points) solutions at various temperature
varies from 0 to 298.15 K (experimental data from reference [205,206]). In this figure, lines represent
model predictions while symbols are experimental data. Reprinted with permission from ref. [200].
Copyright 2023 American Chemical Society.

this agreement is observed for ionic strengths below 1 mol · L−1 and at low concentrations
of the 2:2 sulfate salt. Consequently, the model performance for higher ionic strengths or
elevated concentrations of the 2:2 sulfate salt may necessitate further investigation.

In Figure 5.5, the molar conductivity of MgCl2 and BaCl2-NaCl-H2O solutions at 298.15
K is compared between theory and experiment. The colors represent the solvent-free mole
fraction of NaCl, ranging from 0 to 1. The solid lines represent the model predictions, while
the points depict the experimental data. It is clear from the figure that the model predictions
align closely with the experimental data for both ternary systems up to an ionic strength of
1mol · L−1.

The model exhibits outstanding predictive accuracy for the electrical conductivity of
ternary systems involving 3 or 4 ions and a solvent. Although the alignment between the-
ory and experiments has been established for specific systems, it is crucial to evaluate the
performance of the model across a broader spectrum of systems. To achieve this, we have
assembled an extensive database encompassing measured electrical conductivity data for 24
ternary systems. Table 5.1 offers an overview of this database, including the corresponding
references. This compilation helps us in evaluating and validating the accuracy of the model
across diverse ternary systems.

Figure 5.6 shows the comparison between the predicted molar conductivity obtained
from the developed model and the experimental measurements reported in the literature
for all ternary mixed salt-water solutions compiled in Table 5.1. The solid line in Figure
5.6 represents the line of the perfect fit, signifying perfect agreement between the model
predictions and the experimental data. The dashed and dotted lines indicate the accuracy
of the model with 10% and 25% deviation, respectively, providing a visual evaluation of the
performance of the model. It should be noted that the molar conductivity values for solutions
with an ionic strength of 1 mol · L−1 or less are shown in red, while more concentrated
solutions are represented by blue points.

Observing Figure 5.6, it is clear that the majority of the points are closely aligned with



5.2 Results 99

10−4 10−3 10−2 10−1 100 101

I (mol.L−1)

0

20

40

60

80

100

120

Λ
(S
.c
m

2
.m
ol
−1

)

a. MgCl2 −NaCl −H2O

xNa+ = 0.0

xNa+ = 0.25

xNa+ = 0.5

xNa+ = 0.75

xNa+ = 1.0

10−4 10−3 10−2 10−1 100 101

I (mol.L−1)

b. BaCl2 −NaCl −H2O

xNa+ = 0.0

xNa+ = 0.25

xNa+ = 0.5

xNa+ = 0.75

xNa+ = 1.0

Figure 5.5. This figure presents the molar conductivity (Λ) of (a)MgCl2-NaCl-H2O and (b)BaCl2-
NaCl-H2O solutions at 298.15 K depicted versus the ionic strength (I) where xNaCl varies from 0 to
1 (experimental data are from reference [148,149,207,208]). In this figure, lines are model predictions
while symbols represent experimental data. Reprinted with permission from ref. [200]. Copyright
2023 American Chemical Society.

Table 5.1. This table provides a summary of the database used to evaluate the new model, dis-
playing the maximum ionic strength (I) and the number of data points (Nd) for each mixed salt
aqueous solution. (a. Stearn et al. [203], b. Suhrmann et al. [204], c. Rysselberghe et al. [209], d.
Bianchi et al. [208,210], e. Bianchi et al. [207], f. Bremner et al. [206], g. Hammet al. [205]).

System Max(I) Nd Ref. System Max(I) Nd Ref.
mol · L−1 mol · L−1

KCl +NaCl 4 18 a KI +NaCl 1 3 c
HCl +KCl 4.1 6 b KNO3 +NaCl 1 5 c
HCl +LiCl 4.1 6 b KBr +NaBr 4 21 a
HCl +NaCl 4.1 6 b NaCl +NaNO3 1 5 c
KI +LiCl 1 3 c MgCl2 +NaCl 4.95 75 d
KBr +HCl 4.1 6 b MgSO4 +NaCl 0.58 4 f
HCl +KI 4.10 4 b CaSO4 +NaCl 0.51 4 g
HCl +MgCl2 6.1 5 b LiCl +MgCl2 12.75 10 c
KCl +KI 1 3 c LiNO3 +NaNO3 5 3 c
KCl +KNO3 1 5 c Mg(NO3)2 +LiNO3 4.13 3 c
KCl +NaI 1 3 c KI +NaI 4 21 q
KCl +NaNO3 1 5 c BaCl2 +NaCl 0.01 61 e



100 5 New Model for the Electrical Conductivity of Electrolyte Solutions; Mixed-Salt Systems

0 20 40 60 80 100 120 140
ΛPred (S.cm2.mol−1)

0

20

40

60

80

100

120

140

Λ
E
x
p

(S
.c
m

2
.m
ol
−1

)
+

25
%

−2
5%

+
10

%

−1
0%

Red Points− I < 1 mol/L
Blue Points− I > 1 mol/L

AARD (I = [0 : 12.75] mol/L) = 9.86%

AARD (I = [0 : 1] mol/L) = 2.07%
R2 (I = [0 : 12.75] mol/L) = 0.92

R2 (I = [0 : 1] mol/L) = 0.92

Figure 5.6. This figure presents the predicted vs. observed plot of the molar conductivity of mixed
salt-water ternary solutions at 298.15 K (experimental data are from reference [203–209, 211, 212]).
Line in this figure is the line of the perfect fit. Reprinted with permission from ref. [200]. Copyright
2023 American Chemical Society.

the line of the perfect fit, signifying acceptable accuracy of the developed model. However,
for solutions with an ionic strength greater than 1 mol ·L−1, the agreement between theory
and experiment is not as satisfactory. To quantitatively analyze the performance of the
model, two metrics have been considered.

Initially, the absolute average relative deviation (AARD%), as defined in Eq. 4.18, has
been computed. For solutions with an ionic strength less than or equal to 1 mol · L−1,
the AARD% is determined to be 2.1%. This means that on average the model predictions
deviate from the experimental data by approximately 2.1%.

AARD% = 100
Nd

Nd∑
i=1

| Λpre
i − Λexp

i |
Λexp

i

(4.18)

Second, the coefficient of determination (R2) has been calculated to evaluate the goodness
of fit between the prediction of the model and the experimental data (equations 5.10-5.12).
The R2 values for solutions with an ionic strength less than or equal to 1 mol ·L−1 are 0.92,
indicating a strong correlation between the model predictions and the experimental data.

R2 = 1 − RSS

TSS
(5.10)

RSS =
Nd∑

i

(Λexp
i − Λpre

i )2 (5.11)
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TSS =
Nd∑

i

(
Λexp

i − Λ̄exp
)2 (5.12)

However, when considering all solutions within the range of ionic strength from 0 to 12.75
mol ·L−1, the AARD% increases to 9.9%, indicating a higher level of deviation between the
model predictions and the experimental data. However, the R2 value remains consistent at
0.92, which indicates a sustained correlation between the predictions of the model and the
experimental data.

In summary, the developed model presents satisfactory accuracy for solutions with an
ionic strength of 1 mol · L−1 or less. However, its performance decreases for more concen-
trated solutions, as evidenced by the higher AARD% and the reduced agreement with the
experimental data.

5.3 Discussion

In the results section, the performance of the newly developed model was assessed by compar-
ing its predictions of molar conductivity or specific conductivity with experimental data for
simple electrolyte solutions. From the analysis of Figures 5.1 to 5.6, it is apparent that the
newly developed model can accurately predict the electrical conductivity of ternary mixed
salt-water solutions when the ionic strength is less than 1 mol ·L−1. Importantly, this accu-
racy was achieved without the need to adjust the ionic diameter to match the experimental
data, unlike the existing models reported in the literature [116,117,201].

Indeed, the observed discrepancy between model predictions and experimental data, par-
ticularly in the regime of ionic strengths exceeding 1 mol·L−1, is not unique to the developed
model. It has also been observed in other models reported in the literature for both single-
salt and mixed electrolyte systems [111,113,115,120,201,213].

This observation indicates that accurately predicting the molar conductivity at high ionic
strengths poses a challenging task, and there may be additional factors or phenomena that
are not fully considered in existing models. These unaccounted factors could contribute to
accelerating the reduction of molar conductivity as the ionic strength increases. To address
this discrepancy and enhance the accuracy of modeling electrolyte solutions, further research
and refinement of the models are essential. This involves considering additional factors or
phenomena that influence conductivity behavior at high ionic strengths. However, potential
sources of error and the corresponding strategies to mitigate deviations from experimental
measurements are discussed here.

The difference between the predictions of the model and the experimental data may be
due to assumptions made during the development of the model. It is therefore essential to
review these assumptions and assess their effect on the accuracy of the predicted electrical
conductivity.

First, in developing the model, the assumption was made that the solvent is a continuum
medium where ions move. However, in reality, the solvent has a structure. Two main effects
have been overlooked by neglecting the solvent’s structure. First, because of the high electro-
static field around the ions, solvent molecules align with this field, causing ions to typically
move in the solution with their solvating molecules around them. Second, electrorestriction
of solvent molecules around ions leads to dielectric saturation and a decrease in relative
permittivity. At lower ionic strengths, the impact of dielectric saturation is less pronounced,
allowing the model to accurately predict the conductivity of solutions when I ≤ 1mol ·L−1.
However, at higher ionic strengths, the impact of the reduction of the RSP on electrical
conductivity may become more significant.
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To address the issue of neglecting ion movement with their solvation shells, the model
has incorporated effective ionic radii instead of crystallographic ionic radii. In essence, these
effective ionic radii are composition-dependent. Typically, the use of effective ionic radii in-
volves adjusting the model predictions to align with the experimental data. This adjustment
may introduce a more correlative rather than predictive nature to the model.

On the other hand, the impact of dielectric saturation can be readily considered by in-
corporating a composition-dependent relative permittivity. Research by Naseri Boroujeni et
al. [124] (Chapter 3) has shown that the use of a concentration-dependent relative permit-
tivity leads to an improved agreement between theory and experiment for both MSA-based
and DHO-based models.

Another assumption made in model development is the complete dissociation of the elec-
trolytes in solutions, neglecting the presence of ion pairs or higher aggregates. However,
it has been established that this assumption becomes invalid under conditions of high salt
concentrations, elevated temperatures, and low solvent permittivity. Studies indicate that
accounting for the formation of ion pairs in electrolyte solutions requires adjustments to
electrical conductivity models [113, 148, 214, 215]. Despite this, critics may argue that the
attribution of the ion-ion association as an explanation is merely an attempt to rationalize
the limitations of the developed model. Therefore, a more comprehensive investigation into
this assumption is valuable for gaining a deeper understanding.

Additionally, apart from the solvent effect discussed above, it should be noted that the
developed model tends to overestimate molar conductivity in most systems, as evident in
Figure 5.6 where most data points fall below the line of the perfect fit. This overestima-
tion of molar conductivity has also been observed in previous studies using models such as
MSA [111], MSA-Simple [113], and DHO3 [124]. These models exhibit a similar pattern
of overestimating molar conductivity for electrolyte solutions at ionic strengths exceeding 1
mol · L−1. The reason behind this overestimation could be attributed to the inclusion of
ions that, in real solutions, do not significantly contribute to electrical conductivity due to
ion pairing.

In conclusion, validating or refuting the presence of ion pairs in electrolyte solutions
poses a formidable challenge. However, several observations indirectly support the idea of
ion pair formation [80, 81]. Furthermore, the formation of ion pairs provides a plausible
explanation for the inconsistencies observed between the models and the experimental data.
Therefore, it is important to improve the existing model by integrating the concept of ion pair
formation, as it holds substantial significance in comprehending and resolving the observed
discrepancies.

Eq. 5.13 presents the specific conductivity of a system comprising charged hard spheres,
where the formation of ion pairs is allowed. In this equation, αi represents the fraction
of unbound ions, while M and N denote the number of cations and anions types in the
solution. Furthermore, ρij and D0

ij represent the number density and diffusion coefficient at
an infinite dilution limit of ion pairs, respectively. The charge of the ion pairs is expressed
as Zij = Zi +Zj . The electrophoretic and relaxation effects of the ion pairs, computed from
equations 5.6 and 5.5, are denoted as δvij/v

◦
ij and δkij/kij , respectively.

χ = e2

kBT

[
C∑
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(
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i

)(
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ki

)
+

M∑
i=1
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j=1

ρ̃ijD
0
ijZ

2
ij

(
1 + δvij

v0
ij

)(
1 + δkij

kij

)]
(5.13)

For a precise determination of the specific conductivity in solutions containing associative
electrolytes, it is essential to consider the proportion of unbound ions and the number density
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of ion pairs. Thus, in this investigation, the developed model needs to be integrated with
a thermodynamic model that incorporates the formation of ion pairs. Notably, promising
models explored and developed by Naseri Boroujeni et al. [214] address this specific aspect.

Furthermore, the calculation of the electrophoretic and relaxation effects of charged ion
pairs presents certain challenges, such as the conversion of a dumbbell-shaped ion pair into a
spherical charged particle, and the ionic conductivity of ion pairs at infinite dilution. These
complexities need to be thoroughly examined.

Finally, it could be contended that the deviation from experimental measurements stems
from the utilization of the pair correlation function from the DH theory, either due to the
nonphysical behavior of the Boltzmann distribution or the linearization of the PB equation.

It is crucial to highlight that in the case of electrolyte solutions where all species (ions)
exhibit comparable sizes, as elucidated by Robinson and Stokes [90], the local concentration
of neighboring ions around the central ion never attains a nonphysical value. Consequently,
attributing the deviation from experimental measurements to the use of the pair correlation
function derived from the DH theory may not be valid in such cases.

Furthermore, even if we accept the notion that the pair correlation function utilized in the
DH theory might lack accuracy and contribute to the deviation from the experimental data,
it is pertinent to acknowledge that employing more sophisticated pair correlation functions,
such as those derived from the MSA theory, still leads to deviations from experimental
measurements at comparable ionic strengths. This implies that the challenge may not stem
solely from the accuracy of the pair correlation function but could be influenced by other
factors or phenomena not encompassed by the existing theories.

5.4 Summary and Conclusions

In this chapter, a novel model was formulated to predict the electrical conductivity of mixed
electrolyte solutions. This model seeks to correct the ideal behavior of ionic conductivity,
taking into account relaxation and electrophoretic effects. The DH theory has been employed
to account for the relaxation effect in solving the FO continuity equation. Furthermore, the
electrophoretic correction, initially devised for single-salt solutions, was used for the mixed
electrolyte solutions, given its original formulation for a mixture of an arbitrary number of
charged species.

The effectiveness of the model has been extensively assessed through a meticulous compar-
ison between its predictions and experimental data for 24 ternary mixed salt-water solutions.
This evaluation includes the utilization of crystallographic ionic radii and reported ionic con-
ductivity values at infinite dilution. The findings indicate an acceptable agreement between
the predictions of the model and the experimental data for solutions with an ionic strength
below 1 mol · L−1. However, at higher ionic strengths, the model exhibits a tendency to
overestimate the molar conductivity of aqueous solutions.

Potential causes of the observed deviation between model predictions and experimental
measurements have been explored. The hypothesis suggests that overlooking the solvent
structure and ion pair formation may contribute to the observed discrepancies, particularly
at high ionic strengths. To address this, it is proposed that the formation of ion pairs should
be considered, especially in solutions with high ionic strengths. Additionally, incorporating
a composition-dependent relative permittivity could be beneficial in capturing the solvent’s
structural effects.
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Chapter Message

In this chapter, a novel model was formulated to predict the electrical conductivity of
mixed electrolyte solutions. This introduces a physics-based, user-friendly model for
accurately predicting electrical conductivity, particularly applicable to investigating
systems where ion pairs are charged species and systems forming charged complexes.
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CHAPTER 6
Thermodynamic Modeling of

Ion-Ion Association

The previous part of this thesis was dedicated to the electrical conductivity of electrolyte
solutions. A systematic investigation was conducted on the accuracy and robustness of
the models developed in the literature. Furthermore, two new models for the electrical
conductivity of single- and multi-salt electrolyte solutions were developed and extensively
validated against the experimental data.

It has been shown that the models developed in this work and those from the literature
start to deviate from the experimental data chiefly at elevated salt concentrations. Then,
it has been speculated that one of the reasons for this discrepancy is the full dissociation
assumption in the model development.

In this chapter and in the following chapter of this thesis, the concept of ion-ion asso-
ciation is studied from a thermodynamic point of view. Particularly, in this chapter, the
thermodynamic models developed in the literature are reviewed, and a comprehensive inves-
tigation is performed to evaluate their accuracy and robustness.

Part of this chapter has already been published in the Journal of Molecular Liquids:

• Mean ionic activity coefficient of associative electrolyte solutions: A comparison study
[214] (Link).

6.1 Literature Review

Bjerrum, in 1926, introduced the concept of ion-ion association in electrolyte solutions [216].
This work was, in its time, insightful and, yet, controversial. It was only three years after
the seminal work of Debye and Hückel [4] that a theory that assumes full dissociation fits
better to the experimental observations compared to the electrolyte theory of Arrhenius.

At this time, Bjerrum brought the attention of the scientific community to the fact that
neither the full dissociation assumption in the Debye and Hückel theory nor the speculation
of Arrhenius completely captures the reality of solutions. Reality is something in between.

https://www.sciencedirect.com/science/article/pii/S0167732223013132
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Since the work of Bjerrum, many efforts have been made to shed light on the concept of
ion-ion association. The concept of ion-ion association has been well reviewed by Kraus [217],
Szwarc [218], Marcus and Hefter [80], and van der Vegt et al. [81]. Because of its importance,
it has also been extensively investigated in monographs and books on electrolyte solutions.
The works of Robinson and Stokes [90], Barthel et al. [84], and Harned and Owen [219] are
examples among them.

Looking at the literature on ion-ion association, it seems very extensive and at the same
time very confusing. For a better understanding, the work dedicated to the concept of ion
pairing can be categorized into the statistical mechanics or thermodynamic treatment of the
ion-ion association, the experimental treatment of the ion-ion association, and recently the
ion-ion association from molecular simulations.

The second and third categories have been extensively reviewed by Marcus and Hefter [80]
and van der Vegt et al. [81]. To gain a better comprehension of these techniques, the reader
can refer to the sources mentioned and the references within them.

The reviewed paper and the references therein are valuable sources for the investigation of
ion-ion association, mainly from a structural point of view. However, we examine the concept
of the ion-ion association from the property prediction angle. Therefore, the thermodynamic
and statistical mechanics approaches dedicated to the concept of ion-ion association are more
valuable to us. Hence, it is valuable to review the approaches and models that have been
introduced for the incorporation of ion pairing in electrolyte thermodynamics.

The approaches that have been used to account for ion pairing can be categorized into
chemical approaches and statistical mechanics approaches (see Figure 6.1). In chemical
approaches, the ideal gas reference of the system will be changed by changing the species
present in the solution. In this approach, it has been assumed that there are free ions and ion
pairs as species in the solution. On the other hand, in the statistical mechanic approaches,
the ideal gas reference of the system is intact. The species in the solution are ions (and
neutral compounds in non-primitive models). The ion pairs are not independent species. In
these approaches, the effect of ion pairing is taken into account by adding an association
term (sometimes called a mass action law (MAL)) to the free energy of the system.

Zhou-Yeh-Stell
Binding MSA
Associative MSA

Ebeling & Grigo
Yeh et al.
Tikanen & Fawcett

Fisher and Levin
Guillot & Guissani
Weingärtner et al.

Thermodynamic 
Models For Ion-Ion 

Association

Chemical Approaches Statistical Mechanic 
Approaches

Wertheim-
Ornstein-
Zernike

Reference 
Cavity 

Approximation
DH-based MSA-based

Figure 6.1. Thermodynamic modeling of associative electrolyte solutions.
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6.1.1 Chemical Approaches

In the chemical approaches, the ideal gas reference state of the system is altered by defining a
pseudo-system in which species are free ions and ion pairs. The distribution of species, then,
is obtained by solving the MAL equations. Most of the studies dedicated to the concept of
ion pairing stem from these approaches.

For the theoretical investigation of ion-ion association especially from the thermodynamic
point of view, it can be seen that a brief review is required. These approaches, as outlined
in Figure 6.1, are either DH-based or MSA-based.

Ebeling and Grigo [220–223] introduced a new method following the work of Bjerrum
to account for ion pairing in a RPM fluid. Their model consists of the Carnahan-Starling
[224] EoS for the hard-sphere (HS) contribution and the MSA model for the electrostatic
contributions. They studied the phase transition and the osmotic coefficient [220], electrical
conductivity [221], and the RDF [222, 223] of the associative electrolyte solution using this
model. They named this model MSA-MAL (mean spherical approximation-mass action law).

In this model, they assumed that the ion-ion association does not affect the hard sphere
contribution. Furthermore, they assumed that the activity coefficient of the ion pairs is equal
to one. In addition, only electrostatic contributions to the activity coefficient were considered
in the MAL. Yeh et al. [225] modified the Ebeling and Grigo model by accounting for the
ion dipole interactions between free ions and ion pairs. As a result, the activity coefficient
of ion pairs is no longer one.

Tikanen and Fawcett [226–229] employed a model similar to the Ebeling and Grigo model
to estimate the MIAC of the real electrolyte solutions. Their model is different from the
Ebeling and Grigo model in a way that it accounts for the size asymmetry of the ions, the
RSP is composition-dependent, and the hard sphere is from Mansoori et al. [230,231].

Fisher and Levin [232–234] studied the phase transition in RPM fluids in electrolyte
solutions by modifying the Bjerrum approach for ion pairing. They introduced dipole-ion
(DI) interactions into their EoS with a methodology similar to the Kirkwood model [235].

Guillot and Guissani [236] perform an extensive investigation of the phase transition in
RPM fluids. They extended the approach of Fisher and Levin by modifying the HS contri-
bution to the Helmholtz free energy. Furthermore, they extended the model by accounting
for the variation of the RSP of the system resulting from the presence of ion pairs which
are dipolar species. They also tried to extend MSA-based equations by accounting for DI
interactions and also variation of the RSP due to the formation of dipolar ion pairs.

Thermodynamic modeling of the ion-ion association in a chemical approach has also been
studied by Weiss and Schröer using DH theory [237]. They extended the model developed
by Fisher and Levin by accounting for the variation of the RSP of the system owing to the
formation of dipolar ion pairs. In this work, they focused on the phase transition in RPM
fluids similar to Fisher and Levin and Guillot and Guissani.

The developed equations of state have been used mainly for the phase transition and
criticality for RPM fluids. For a comprehensive review on this subject, the reader can
refer to the review papers by Weingärtner and Schröer [238] and Schröer [239]. From a
thermodynamic point of view, it does not matter whether a model is developed for property
prediction or phase transition in model fluids. However, the mentioned equations of state
have not been used and studied in a practical manner.

6.1.2 Statistical Mechanics Approaches

Another class of approaches that has been used in the literature for the thermodynamic
modeling of associative electrolyte solutions are statistical mechanic approaches. In these
approaches, the ideal gas reference state is the same as that for non-associative electrolyte
solutions. The species present in the solution are also the same as those for thermodynamic
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models for non-associative electrolytes. There is an additional term in the free energy of the
system that represents the association.

The energy contribution to the total free energy of the system as a result of the ion-ion
association is the result of Wertheim theory. This contribution is only a function of the
fraction of free ions in the solution. The models based on this approach differ from each
other in the way in which they calculate the fraction of free ions. There are two approaches
to calculate the fraction of free ions: the reference cavity approximation (RCA) or solving
the Wertheim-Ornstein-Zernike (WOZ) equation.

Stell and his co-workers [240–245] introduced the concept of RCA. Then, they introduced
three equations of state (PMSA1-3) based on the RCA and MSA theory for RPM fluids.
They then used these three models to predict the critical point of these fluids and compared
them with the MC simulations and other models.

The concept of RCA is quite simple and is based on the fact that the cavity function
defined as y+− = g+−(r) exp(βu+−(r)) can be approximated as the cavity function in the
non-association limit. This approach will be extensively discussed in Chapter 7. Then, the
fraction of free ions can be calculated from a MAL equation, and correspondingly the free
energy of the system and other thermodynamic properties will be calculated on the basis of
that.

Another approach for the calculation of the fraction of unbound ions is based on incorpo-
ration saturation effects in the Ornstein-Zernike equation. BiMSA [19,20] and AMSA [21–29]
originate from this approach.

6.2 Practical Investigation of Associative Thermodynamic Models

The models formulated for associative electrolyte solutions can be examined either through
a theoretical approaches or a practical one. Previous research often used the theoretical
method, comparing ionic fluid criticalities as predicted by these models to those from molec-
ular simulations. Yet, apart from the BiMSA [20] and Ebling and Grigo [220–223, 231]
models, we believe that to the best of our knowledge no other equations of state have been
practically analyzed against the experimental data. Moreover, it remains unclear which
among the developed models is superior to the others.

As a result, this chapter focuses on evaluating the thermodynamic models for associa-
tive electrolyte solutions from the literature using a practical perspective. We have chosen
four implicit solvent models for this purpose: the Ebeling-Grigo [220–223, 231], Zhou-Yeh-
Stell [240,242–245], Fisher-Levin-Guillot-Guissani [233,234,236], and Bernard-Blum [19,20]
models. We then assess and compare these equations of state methodically and impartially.

Firstly, the models’ predictions were evaluated by comparing them to the numerical
solutions of the PB equation and MC simulations. Next, the direct predictions of the models
were compared to the experimental data for four 2:2 salt-water mixtures at 298.15 K. The
HS diameter and the average distance between ion pairs were then fine-tuned based on the
MIAC from the experimental data. In the final step, the computed fraction of free ions
was verified by contrasting the predicted electrical conductivity, using either the DHO- or
MSA-based theories, with the experimental data.

In this section, the RPMs used for examining ion-pairing are discussed. An analysis is
conducted on a classical system consisting of N cations and N anions, both represented as
charged hard spheres (CHS) in a continuous solvent medium with a constant RSP (εr). For
this system, the overall number density is denoted by ρ0 = N/V . The electrolyte solution
is considered symmetrical, defined by Z+ = −Z− = Z. Furthermore, it is posited that both
the cations and anions in the solution possess an identical ionic diameter (σ).
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6.2.1 Chemical Approaches

Initially, it is assumed that the salt(s) completely dissociate in the solution, as represented
by Eq. 6.1. In this equation, Zi denotes the valence of the ion, while νi signifies the
stoichiometric coefficient where i can be either positive (+) or negative (−).

C
Z+
ν+ A

Z−
ν− → ν+C

Z+ + ν−A
Z− (6.1)

For this electrolyte, the chemical potential can be written as Eq. 6.2 (Eq. 1.37 in ref. [84]):

µE(P, T ) = µ
∞(c)
E (P, T ) + νRT ln((c±/c

∗)γc
±) (6.2)

In the given equation, the sum of stoichiometric coefficients is represented by ν = ν+ +ν−.
Here, R stands for the ideal gas constant, and T indicates the temperature measured in
Kelvin. The term µ

∞(c)
E signifies the chemical potential of the electrolyte at the reference

state of infinite dilution, expressed in molarity scale. The expression for c± is given by
(νν+

+ ν
ν−
− )(1/ν)cE , and c∗ is defined as 1 mol · L−1. The coefficient γc

± refers to the MIAC,
presented in the molarity scale.

Subsequently, it is postulated that free ions maintain an equilibrium with ion pairs or
more complex aggregates, as indicated by the chemical equilibrium reaction in Eq. 6.3.

ω+C
Z+ + ω−A

Z− ⇌
[
Cω+Aω−

]Z++Z− (6.3)

In Eq. 6.3, the stoichiometric coefficients for the equilibrium reaction are represented
by ω+ and ω−. The ion aggregates, denoted as [Cω+Aω− ]Z++Z− , are referred to by the
superscript +− when deriving the activity coefficient of the electrolyte and the MAL.

Based on the equilibrium reaction equation, Eq. 6.4 can be formulated. In this equation,
µ′

+−, µ′
+, and µ′

− respectively represent the chemical potential of ion pair, free cation, and
free anion.

µ′
+− (P, T ) − ω+µ

′
+ (P, T ) − ω−µ

′
− (P, T ) = 0 (6.4)

In Eq. 6.5, the concentration of both free ions and ion pairs is presented, introducing α
as an auxiliary parameter. Here, cE denotes the concentration of the electrolyte, expressed
in mol · L−1. When considering ion pairs, α signifies the proportion of free ions. However,
in the context of ion aggregates, α represents the association degree.

c+ = αν+cE , c− =
[

1 − (1 − α) ν+

ν−

ω−

ω+

]
ν−cE , c+− = (1 − α) ν+

ω+
cE (6.5)

The chemical potential of the electrolyte is derived from the chemical potentials of the
free ions and ion pairs as follows:

µE = αν+µ
′
+ +

[
1 − (1 − α)ν+

ν−

ω−

ω+

]
ν−µ

′
− + (1 − α)ν + ω+µ

′
+− (6.6)

Combining Eq. 6.4 with Eq. 6.6, it gives:

µE = ν+µ
′
+ + ν−µ

′
− (6.7)

Subsequently, the definition of the chemical potential of a component within a mixture
is applied as detailed in Eq. 6.8:

µ′
i = µ

∞(c)
i +RT ln

(
a

(c)
i

)
= µ

∞(c)
i +RT ln

(
ci

c∗ γ
c
i

)
(6.8)
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By substituting Eq. 6.8 into Eq. 6.7 (while dropping the dependencies on P and T for
the sake of brevity), the result is:

µE = [ν+µ
∞(c)
+ + ν−µ

∞(c)
− ] +RT ln[(c+

c∗ γ
c
+)ν+ (c−

c∗ γ
c
−)ν− ] (6.9)

By setting µE from Eq. 6.9 equal to µE from Eq. 6.2, we obtain:

[ν+µ
∞(c)
+ + ν−µ

∞(c)
− ] +RT ln[(c+

c∗ γ
c
+)ν+ (c−

c∗ γ
c
−)ν− ] = µ

∞(c)
E + νRT ln((c±/c

∗)γc
±) (6.10)

Given the assumption that µ∞(c)
E = ν+µ

∞(c)
+ + ν−µ

∞(c)
− , the expression for the MIAC of

the electrolyte becomes:

γc
± = c∗

c±

[(
c+

c∗ γ
c
+

)ν+ (c−

c∗ γ
c
−

)ν−]1/ν

(6.11)

By omitting c∗ from Eq. 6.11 and applying the definition of c± = (νν+
+ ν

ν−
− )(1/ν)cE , the

resulting equation is:

γc
± = 1

cE

[
(c+γ

c
+)ν+ (c−γ

c
−)ν−

(ν+ν+ν−ν− )

]1/ν

(6.12)

Replacing c+ and c− from Eq. 6.5 in Eq. 6.12, it gives:

(γc
±)ν = αν+

[
1 − (1 − α) ν+

ν−

ω−

ω+

]ν− (
γ′c

±
)ν (6.13)

If we assume a symmetrical electrolyte solution (ν+ = ν− = 1) and only consider ion
pairs (ω+ = ω− = 1), then:

γc
± = αγ′,c

± (6.14)

6.2.1.1 Ebeling and Grigo (EG) Approach

Ebeling and Grigo [220–222] explored a classical system composed of charged hard spheres,
building upon the Bjerrum method of ion pairing [216]. They postulated a chemical equilib-
rium between free ions and ion pairs, as shown in Eq. 6.3. Using the equilibrium reaction
equation (Eq. 6.4), the concentration of free ions and ion pairs in the solution was de-
termined. For the CHS system, an EoS was formulated. Eq. 6.15 encapsulates the EoS
introduced by EG for charged hard spheres. To address the hard sphere component, the CS
equation was employed [224]. For the interaction between ions, the MSA model was utilized.

β

N
Ar = β

N

(
ACS +AMSA

)
(6.15)

During the formulation of this EoS, it was posited that ion pairing does not influence the
hard sphere components. As a result, ACS , PCS , and ln γCS

i were incorporated under the
assumption of complete dissociation in the solution, as shown in equations 6.16, C.2, and
C.3, respectively. It is pertinent to highlight that the packing factor (η) is determined using
the total number density prior to the association, represented by (ρ0).

βACS

N
= η (4 − 3η)

(1 − η)2 (6.16)
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η = πρ0σ
3

6 (6.17)

Conversely, the number densities of free ions were incorporated in the original MSA
formulation to address ion pairing. The representations for AMSA, PMSA, and ln γMSA

i are
provided in equations 6.18, C.10, and C.11, where the variable x′ is used in lieu of x in the
formulation.

βAMSA

N
= − 1

12πρ0σ3

[
2 + 6x′ − 3x′2 − 2

(
1 + 2x′)3/2

]
(6.18)

x′ = κ′σ =

√
αρ0 (Ze)2

kBTε0εr
σ (6.19)

The assumption was made that ion pairs in the solution behave ideally, leading to γc
+− = 1.

Moreover, only the electrostatic component from the MSA model was utilized in both the
MAL and the computation of the free ions’ fraction. Consequently, the MAL can be distilled
down to the form presented in Eq. 6.20.

2 (1 − α)
ρ0α2 = K◦

+−
[
γ′MSA

±
]2 (6.20)

After solving this non-linear problem for the fraction of free ions (α), the thermodynamic
properties such as γc

±, ϕ, and Ar can be calculated.

6.2.1.2 Fisher-Levin-Guillot-Guissani (FLGG) Approach

In a series of publications, Fisher and Levin (FL) developed an implicit EoS for ionic fluids,
drawing on the Bjerrum treatment and the EG model [232–234]. Guillot and Guissani later
modified this model by integrating the hard sphere component [236]. In our analysis, we
refer to the implicit EoS introduced by FL and modified by GG as the Fisher-Levin-Guillot-
Guissani methodology (FLGG). This methodology employs a revised version of the CS model
to describe HS interactions. The DH model is deployed for ion-ion interactions. Additionally,
the influence of dipolar ion pairs is acknowledged through dipole-ion (DI) interactions, a
concept pioneered by Fisher and Levin [232–234]. Furthermore, a chemical approach is
adopted to determine the fraction of free ions.

β

N
Ar = β

N

(
AHS +ADH +ADI

)
(6.21)

2 (1 − α)
ρ0α2 = K◦

+−
γ+γ−

γ+−
(6.22)

Within the given formulations, AHS and PHS are derived using the modified CS model,
as specified in equations 6.23 and C.20, respectively. For a detailed explanation of σm, one
can consult with ref. [236] or Appendix C.

βAHS

N
= (1 + α) ρ0

ηm (4 − 3ηm)
2 (1 − ηm)2 (6.23)

ηm = 1
12π (1 + α) ρ0σ

3
m (6.24)

The DH components contributing to the residual Helmholtz free energy, activity coef-
ficient, and pressure are denoted by equations 6.25, C.24, and C.25, respectively. Within
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these equations, the value of x′ is determined by accounting for the number density of the
free ions, as elucidated in Eq. 6.19.

βADH

N
= − 1

4πρ0σ3

[
ln
(
1 + x′)− x′ + x′2

2

]
(6.25)

The contributions of the DI to the residual Helmholtz free energy are represented by
equations 6.26 and 6.27. Within these equations, the term xeff is defined as κ′σeff , where
σeff = (σ+σip)/2. Fisher and Levin [232–234] have proposed that the diameter of the dipo-
lar hard spheres, denoted by σip, is equivalent to 1.314σ. Consequently, σeff is calculated
to be 1.162σ.

βADI

N
= − e2Z2

8πε0εrkBTσ
(1 − α)

(
σ

σeff

)3

x2
effω (xeff ) (6.26)

ω (xeff ) = 3
x4

eff

[
ln
(

1 + xeff + 1
3x

2
eff

)
− xeff + 1

6x
2
eff

]
(6.27)

The equations for the pressure and activity coefficient are presented in Appendix C.

6.2.2 Statistical Mechanics Approaches

6.2.2.1 Zhou, Yeh, and Stell (ZYS) Approach

In a succession of publications, Zhou et al. [240–245] introduced an implicit solvent model
grounded on the RCA. Within this framework, both the Helmholtz free energy and the pres-
sure are calculated from equations 6.30 and C.31. These equations were originally formulated
for equimolar dimerization by Wertheim [246–251].

β

N
Ar = β

N

(
ACS +AMSA +AMAL

)
(6.28)

In these equations, ACS is the same as Eq. 6.16.
Within the mentioned equations, the term yref

+− = γ+γ−/γ+− signifies the cavity function
between cations and anions in a completely dissociated reference state. By merging this
cavity function with the MAL, one can calculate the fraction of free ions as follows:

2(1 − α)
ρ0α2 = yref

+−K
◦
+− (6.29)

ZYS incorporated the MSA model for interactions between ions and utilized the CS
model to account for the hard sphere interactions in the solution. Additionally, through a
thermodynamic cycle, they derived the activity coefficient for dipolar ion pairs in a state
where there is no association (α = 1). As a result, they developed an EoS for implicit solvent
models, as depicted in equations 6.28-6.34.

βAMSA

N
= − 1

12πρ0σ3

[
2 + 6x+ 3x2 − 2 (1 + 2x)3/2] (6.30)

βAMAL

N
= 1 − α

2 + ln (α) (6.31)

The fraction of unassociated ions is determined using Eq. 6.32, which represents the
analytical solution to the MAL equation.
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1 − α =
1 + ρ0K

◦
+−y

ref
+− −

√
1 + 2ρ0K◦

+−y
ref
+−

ρ0K◦
+−y

ref
+−

(6.32)

In Eq. 6.32, the reference cavity function (yref
+−) is calculated as Eq. 6.33:

yref
+− = 2 − η

2 (1 − η)3 exp
(

−2z2λ

σ

[
0.5x2 − x− 1 +

√
1 + 2x

x2

])
(6.33)

λ = e2

4πε0εrkBT
(6.34)

It should be noted that x in Eq. 6.30 is different from x′ in Eq. 11. The former is
calculated by using the total number density of ions (x = κσ =

√
ρ0(Ze)2

kBT ε0εr
σ). In contrast,

the latter is calculated using the number density of free ions. In addition, the fraction of free
ions (α) can be calculated analytically in this EoS. The equations for pressure and activity
coefficient are presented in Appendix C.

6.2.2.2 Binding Mean Spherical Approximation (BiMSA) Approach

Bernard and Blum [19, 20] formulated a thermodynamic model for a mixture of CHS using
the Wertheim framework. They addressed a neutral system comprising a varying number
of components and resolved the WOZ equation specifically for pairing scenarios. For an
equimolar CHS system, the Helmholtz free energy in the BiMSA model can be represented
as per Eq. 6.35.

β

N
Ar = β

N

(
ACS +ABiMSA +AMAL

)
(6.35)

In this formulation, the contribution from hard spheres using the CS model, denoted as
ACS , is presented in Eq. 6.16. The electrostatic component of the Helmholtz free energy is
detailed in Eq. 6.36.

βABiMSA

N
= − βe2

4πε0εrρ0

ΓB

1 + ΓBσ

∑
k

ρkZ
2
k +

[
ΓB
]3

3πρ0
(6.36)

The dimerization or MAL contribution to the Helmholtz free energy is as follows:

βAMAL

N
= ln (α) + 1 − α

2 (6.37)

In Eq. 6.36, ΓB is the BiMSA screening parameter. It can be calculated by the simulta-
neous solution of transcendental and the MAL equations (equations 6.38 and 6.39):

4 (1 + ΓBσ)2 =
(
κ

ΓB

)
α+ ΓBσ

1 + ΓBσ
(6.38)

2 (1 − α)
ρ0α2 = K◦

+−

[(
1 − 0.5η
(1 − η)3

)
exp
(

1
(1 + ΓBσ)2

)]
(6.39)

The equations for the pressure and activity coefficient are presented in Appendix C.
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6.2.3 Ion Pairing at Infinite Dilution

Krienke et al. [252, 253] suggested that the association constant at infinite dilution can be
calculated using either a structural or a thermodynamic approach. The structural approach,
such as the Bjerrum model, begins with the pair correlation function (g+−(r)) which is based
on the interactions between opposite ions (W∞

+−(r)). The thermodynamic approach, such as
the Ebeling model, derives the association constant from the comparison of the chemical and
physical pictures. The structural approach can obtain K◦

+−(T ) from the MAL by removing
the concentration-dependent part (Eq. 6.40) (see ref. [252] for more information).

K◦
ij(T ) = 4πNA

∫ R

0
r2 exp

(
−βW∞

ij (r)
)
dr (6.40)

The potential of the mean force at an infinite dilution, denoted by W∞
+−(r) in Eq. 6.40, is

composed of a short-range component, W ◦
+−(r), and a long-range part, WC

+−(r). The short-
range contribution is further divided into short-range interactions, WCor

+− (r), and solvation
effects, WSolv

+− (r). The long-range contribution is due to Coulombic interactions, as expressed
in Eq. 6.43.

W∞
ij (r) = W ◦

ij(r) +WC
ij (r) (6.41)

W ◦
ij(r) = W cor

ij (r) +W solv
ij (r) (6.42)

6.2.3.1 Bjerrum Approach

The Bjerrum model (Eq. 6.44) can be derived from Eq. 6.40 by assuming that W solv
+− = 0

and setting the upper limit of the integral as q. Bjerrum [216] proposed that all oppositely
charged ions with a separation distance between σ+− and q should be considered as ion
pairs. However, it has been noted in the literature that the selection of the upper limit is
arbitrary. Furthermore, the lower limit does not necessarily have to be the contact distance
between ion pairs.

W∞
ij =

{
0 if r < σij

ZiZj e2

4πε0εrr
if r ≥ σij

(6.43)

K◦
ij(T ) =

{
0 if lij < σij

4πNA

∫ lij

σij
r2 exp

( 2q
r

)
dr if lij > σij

(6.44)

q =
lBij

2 = e2 | ZiZj |
8πε0εrkBT

(6.45)

6.2.3.2 Low Concentration Chemical Model (lcCM)

Equation 6.46 is an adaptation of the Bjerrum model that takes into account solvation
interactions, assuming an average contribution of WSolv

+− = W ∗
ij for distances between σ+−

and R. The upper limit of the integral in this model is R = σ+− + nσs, where n is the
number of solvent molecules between ion pairs [254].

K◦
ij(T ) = 4πNA exp

(
−βW ∗

ij

) ∫ lij

σij

r2exp(2q
r

)dr (6.46)
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6.2.3.3 Ebeling Approach

Eq. 6.47 is the association constant formulated by Ebeling, which was obtained by comparing
the osmotic coefficients derived from a physical picture and the chemical model [255].

K◦
ij(T ) = 8πNAσ

3
ij

∞∑
m≥2

(
lB
ij

σij
)2m

(2m)!(2m− 3) (6.47)

6.2.3.4 Barthel and Krienke Approach

Eq. 6.48 is the extension of the Ebeling model considering association at arbitrary distance
[252,253].

K◦
ij(T ) = 8π

∑
i

∑
j

[
xixj(lBij)3B

( lBij

σij

)]
(6.48)

B(x) is the Kirkwood function defined in Eq. 6.49:

B(x) =
∞∑

k≥4

xk−3

k!(k − 3) (6.49)

6.2.4 Comparison with simulations and Experiments
Our study aims to provide a comprehensive analysis of implicit solvent models designed
to predict the thermodynamic properties of associative electrolyte solutions. We have se-
lected four distinct models for our evaluation: EG, FLGG, BiMSA, and ZYS. As previously
outlined, the EG and FLGG models are rooted in the chemical approach pioneered by
Bjerrum. Conversely, BiMSA derives its principles from the solution of the WOZ equa-
tion [19,20,246–250]. ZYS, meanwhile, is grounded in the RCA methodology, an innovation
by Stell and his team [27,240–245].

To reiterate, our study revolves around two pivotal inquiries. Firstly, we are probing
whether factoring in ion pairing offers a more accurate picture of the electrostatic interac-
tions in electrolyte solutions. Secondly, we aim to determine if there exists a single ion-ion
association model that stands out in terms of overall performance.

Our investigation is structured into two distinct segments. In the initial part, we compare
the MIAC as predicted by the models against the numerical solutions of the PB equation and
MC simulations. In the subsequent part, the models’ predictions of MIAC are contrasted
with the experimental data, specifically focusing on 2:2 aqueous sulfate solutions. When
comparing the model predictions with the numerical solutions of the PB equation, our focus
is on dilute solutions characterized by ionic strengths not exceeding 0.4 mol·L−1. Conversely,
when comparing the model predictions with both the MC simulations and the experimental
data, we turn our attention to more concentrated solutions, those with ionic strengths up
to 10 mol · L−1.

6.2.4.1 Comparison with Simulations

To reiterate, the foundation of the Debye and Hückel model is rooted in the simplification of
the PB equation, achieved through its linearization. This step was crucial as it permitted the
derivation of an analytical solution to the otherwise complex equation. This simplification
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is valid under the assumption that the potential energy of a central ion is much lower than
the thermal energy, expressed mathematically as eZjψi(r) ≪ kBT .

This linear approximation is effective in situations where ions are sparsely distributed,
particularly in dilute solutions. In such conditions, the significant distances between the
central ion and its neighbors ensure that electrostatic interactions are not overly intense,
thus validating the use of the approximated model.

However, certain conditions leads to violation of this assumption. High concentration
solutions, which naturally have a higher ionic density, invalidate the assumption due to
the proximity of ions to one another. Similarly, electrolytes with ions bearing high valence
increase the electrostatic interactions, making the linearization of the PB equation less accu-
rate. Lastly, in systems with low dielectric constants, the interactions between charges are
amplified, again posing challenges to the assumption of linearity.

Therefore, as a corrective measure to account for these scenarios where the foundational
assumption of the Debye and Hückel model is violated, the Bjerrum approach of considering
ion-ion associations becomes vital. In electrolyte solutions, especially those deviating from
ideal dilute conditions, these associations play a pivotal role in dictating the overall behavior
and thermodynamics of the system. They help correcting the shortcomings of the linearized
PB equation, ensuring a more accurate representation of the ionic environment.

Modeling electrolyte solutions with ion pairing can help to overcome the restrictions of
the linearized PB equation. By evaluating the electrostatic contributions of various models
against the numerical solution of the non-linearized PB equation (represented by IPBE), we
can assess:

1. Model Validation: If a model that factors in ion pairing aligns well with IPBE, it
indicates the model has appropriately accounted for the PB equation’s linear approxi-
mation constraints.

2. Relevance of Ion Pairing: Comparing models that neglect ion pairing (e.g., DH
and MSA) with IPBE and ion-pairing models will help determine the importance of
including ion pairing in such models.

Figure 6.2 depicts a comparison of the electrostatic contributions of the EG, BiMSA, ZYS,
and FLGG models with the IPBE for electrolyte solutions of 1:1, 2:2, and 3:3 types. The
figure also presents the electrostatic contributions derived from the DH and MSA theories (as
per equations C.25 and C.35, respectively) under the assumption of complete dissociation in
the solution. Additionally, the association constant at infinite dilution (K◦

+−) is determined
using the Bjerrum model (as described in Eq. 6.44). It is worth noting that no parameters
were adjusted to fit the IPBE in these plots.

From the given data, it is evident that for 2:2 and 3:3 electrolytes, the DH and MSA
theories tend to over-predict, while other models lean towards under-prediction concerning
the electrostatic contribution to the MIAC. In contrast, for 1:1 electrolytes, the estimations
from all models converge. Previous research by Malatesta [256] has highlighted the DH the-
ory’s tendency for overprediction. Similarly, Silva et al. [257] indicated that linearizing the

Table 6.1. The electrostatic contribution of the models (for the EG and the FLGG models
ln γMAL = ln α). Reprinted from ref. [214], Copyright 2023, with permission from Elsevier.

Model Electrostatic contribution
EG ln γMSA + ln γMAL

FLGG ln γDH + ln γDI + ln γMAL

BiMSA ln γBiMSA + ln γMAL

ZYS ln γMSA + ln γMAL
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Figure 6.2. Comparison of the models’ electrostatic contributions with the IPBE [256] for (a) 1:1
electrolytes with σ = 4 × 10−10 m, (b) 2:2 electrolytes with σ = 4 × 10−10 m, and (c) 3:3 electrolytes
with σ = 8 × 10−10 m, all calculated in aqueous solutions at 298.15 K. Reprinted from ref. [214],
Copyright 2023, with permission from Elsevier.

PB equation leads to an overestimation of the MIAC. Nonetheless, the consistent underesti-
mation observed in models that consider ion-ion association remains somewhat ambiguous.
Given the uniformity of this underestimation across these associative models, the root cause
might lie in a shared aspect: the association constant at infinite dilution, denoted as K◦

+−.
Figure 6.3 demonstrates how the association constant influences the MIAC predictions

within the FLGG model. The models KE
+−, KB

+−, and KBM
+− are represented by Eq. 6.47,

Eq. 6.44, and Eq. 6.44 (with ion pair distance set at l+− = 1.3σ), respectively. The figure
underscores that the choice of the reference state association constant model profoundly
impacts the predicted MIAC by the FLGG model. Notably, for both 2:2 and 3:3 electrolyte
solutions, employing the KBM

+− model results in predictions that align closely with the IPBE
values.

To address the discrepancy in using σ versus 1.3σ in Eq. 6.44, two crucial considerations
are highlighted. Firstly, the initial presumption in Eq. 6.44 that solely contact ion pairs exist
is contradicted by dielectric relaxation spectroscopy data [192], which shows the presence of
various ion pair forms, namely contact ion pairs (CIP), solvent-shared ion pairs (SIP), and
solvent-separated ion pairs (2SIP).

The second point is rooted in the fluid dynamics of the solution: the distance between
ion pairs is not fixed but fluctuates, with its magnitude also being temperature-dependent.
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Figure 6.3. The electrostatic contribution of the FLGG model is notably influenced by the choice
of infinite dilution association constant models. The figure highlights these effects across different σ
values, specifically (a) σ = 4×10−10 m, (b) σ = 4×10−10 m, and (c) σ = 8×10−10 m. Three models
are compared: the Ebeling model (KE

+−), the Bjerrum model (KB
+−), and a modified Bjerrum model

(KBM
+− ) for determining the association constant at infinite dilution. The IPBE data points, which

serve as a reference, are sourced from Malatesta et al. [256]. Reprinted from ref. [214], Copyright
2023, with permission from Elsevier.
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Thus, rather than assuming a static distance, it is more logical to adopt an average distance
value, represented by ⟨r⟩. Levin and Fisher’s study [233] posits that this average separation
for ion pairs should not exceed 1.3σ (represented as l+−⟨r⟩ ≤ 1.3σ). Determining the precise
average distance between ions at the macroscopic level is complex, which is why this study
opts for the upper limit, 1.3σ, as an alternative for the ion pair separation distance. A more
detailed adjustment of this parameter tailored to each model against MIAC experimental
data at 298.15 K is presented in section 6.2.4.2.

In addition to IPBE, the predictions of the models can be compared with the MC simu-
lations. Unlike comparison with the experimental data, the predictions of thermodynamic
models can be compared with exactly the same systems without any concern about the
impact of the solvent(s).

Figure 6.4 compares the predictions from various models with the MC simulations for
two different 2:2 aqueous electrolyte solutions at 298.15 K. In Figure 6.4a, the designations
L and VC represent MC simulations derived from references [258] and [259], respectively.
Meanwhile, in Figure 6.4b, the labels MC-MI, MC-ES, and GCMC stand for canonical
ensemble MC simulations employing the minimum image convention, canonical ensemble
MC simulations using Ewald summation, and grand canonical MC simulations, respectively.
Additionally, results from the DH and MSA theories have been incorporated with the hard
sphere (HS) contribution derived from the CS equation (Eq. 6.16). This is done because MC
simulations offer total MIAC, not just the electrostatic contribution. It is also noteworthy
that in this figure, the modified Bjerrum model (KBM

+− ) has been employed as the association
constant at infinite dilution across all models.

From Figure 6.4, it is evident that both HS+DH and HS+MSA models tend to over-
estimate the MIAC of charged spheres when compared with MC simulations. Conversely,
the ZYS, BiMSA, FLGG, and EG models tend to predict values that are on the lower side.
Notably, at diluted concentrations, the models which account for ion pairing ZYS, BiMSA,
FLGG, and EG provide more accurate MIAC predictions than the HS+MSA and HS+DH
models. However, as the concentration increases, the predictions from the HS+MSA, EG,
and FLGG models align more closely with the results from MC simulations.

From the previous discussion, the contact distance between ion pairs is not necessarily the
most accurate representation. To provide a more accurate description, we have introduced
a modified distance between ion pairs. We define this distance as l+− = θ × σ, where θ is a
factor that can be adjusted to fit the predictions of MC simulations. The optimal values for θ
are then used to determine the corresponding values of l+− and K◦

+− for each model. These
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Figure 6.4. Comparison of the MIAC predicted by EG, FLGG, BiMSA, and ZYS models with
the MC simulations for a 2:2 aqueous electrolyte solution at 298.15 when (a) σ = 4.25 × 10−10 m
and (b) σ = 4.2 × 10−10 m (MC simulation data are used from ref. [260] for the graph (a) and from
ref. [258, 259] for the graph (b)). Reprinted from ref. [214], Copyright 2023, with permission from
Elsevier.
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adjusted values, which better reflect the actual behavior of ions in solution, are presented in
Table 6.2.

In Figure 6.5, the MIAC predictions made by various models are compared with MC
simulations reported by Lamperski [258] in Figure 6.5a and by Gutiérrez-Valladares et al.
[260] in Figure 6.5b, following the adjustments made to θ. This comparison elucidates that
the models factoring in ion pairing yield an acceptable alignment with the experimental
data. Nevertheless, it is worth noting that the predictions by EG and FLGG models are
particularly more accurate, especially at lower concentrations. This suggests that these
models, after adjustments, seem to have a superior accuracy in capturing the physics of the
system.

Figure 6.6 displays the predicted fraction of free ions in the solution based on the models,
plotted against the square root of ionic strength, both prior to and following the adjustment
of θ. Within this figure, the black curves represent predictions using the KBM

+− model.
Meanwhile, the red curves employ the Bjerrum model, incorporating the l+− values listed
in Table 6.2 after their respective adjustments.

From the figure, it is evident that even though the MIAC predictions by the models (pre
and post-adjustment of θ) are closely aligned, there is a notable difference in the predicted
fractions of free ions. Moreover, the trends in the degree of dissociation (α) as predicted by
the FLGG, ZYS, and BiMSA models align closely with one another but deviate from the
trend indicated by the EG model.

The ZYS and BiMSA models predict notably lower fractions of ion pairs after adjusting θ
when compared to the estimations of the FLGG and EG models. Regrettably, the literature
does not offer any reported values for the fractions of free ions from MC simulations. As a re-
sult, it is challenging to comment further on the predicted fraction of free ions. Nevertheless,
the predicted fraction of free ions greatly influences the prediction of the electrical conduc-
tivity of the electrolyte solutions [84, 120, 167]. Consequently, when ion pairing is a crucial
factor, it is advisable to concurrently evaluate both the MIAC and electrical conductivity.
Further elaboration on this matter will be provided in the subsequent section.

6.2.4.2 Comparison with the Experimental Data

In the preceding section, the predictions of the models were compared with outcomes from
IPBE and MC simulations. It was demonstrated that a acceptable match between the

Table 6.2. This table presents the modifications in the distance between ion pairs and the cor-
responding association constant at infinite dilution, upon adjusting θ in the Bjerrum association
constant model. Reprinted from ref. [214], Copyright 2023, with permission from Elsevier.

Model l+− K◦
+− θ l+− K◦

+− θ
MC simulations from Gutiérrez-Valladares et al. [260]

Before adjustment After adjustment
EG 5.25 143.88 1.3 8.95 65.86 2.11
BiMSA 5.25 143.88 1.3 13.24 12.04 3.05
FLGG 5.25 143.88 1.3 7.99 81.12 1.85
ZYS 5.25 143.88 1.3 13.57 8.27 3.14

MC simulations from Lamperski [258]
Before adjustment After adjustment

EG 5.46 145.37 1.3 6.18 120.11 1.47
BiMSA 5.46 145.37 1.3 12.81 16.72 3.05
FLGG 5.46 145.37 1.3 7.76 84.52 1.85
ZYS 5.46 145.37 1.3 13.19 12.36 3.14



122 6 Thermodynamic Modeling of Ion-Ion Association

0 1 2 3 4√
I(mol/L)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0
ln

(γ
±)

a

γEG

γBiMSA

γZY S

γFLGG

γHS+DH

γHS+MSA

γMC−L

γMC−V C

0.0 0.5 1.0 1.5 2.0 2.5√
I(mol/L)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

ln
(γ
±)

b

γEG

γBiMSA

γZY S

γFLGG

γHS+DH

γHS+MSA

γMC−ES

γMC−MI

γGCMC

Figure 6.5. Similar to Figure 6.4, this figure contrasts the MIAC predictions by various models
against MC simulations, but with the modification of θ in the Bjerrum association constant model.
Reprinted from ref. [214], Copyright 2023, with permission from Elsevier.
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Figure 6.6. The graphs contrast the predicted fraction of free ions (α) from the EG, FLGG, BiMSA,
and ZYS models for a 2:2 aqueous electrolyte solution at 298.15 K. This is depicted for cases (a)
σ = 4.2 × 10−10 m and (b) σ = 4.25 × 10−10 m, both prior to and after the modification of θ.
Reprinted from ref. [214], Copyright 2023, with permission from Elsevier.

models’ predictions and the IPBE and MC simulations could be achieved by adjusting the
time-averaged distance between ion pairs. However, the evolution of the fraction of free ions
post-adjustment of l+− was observed to be markedly distinct.

In this section, the predictions of the models in question will be assessed against the
MIAC experimental data for four 2:2 aqueous sulfate solutions at 298.15 K. Subsequently,
the ionic diameter and the time-averaged distance between ion pairs (l+−) will be adjusted
using the MIAC experimental data. The final step will involve the model parametrization
being validated. This will be done by contrasting the electrical conductivity estimated by
two model (either DHO-based or MSA-based) in conjunction with the models for associative
electrolyte solutions introduced in sections 6.2.1 and 6.2.2 against experimental data.

It is noteworthy that the chosen systems exhibit pronounced ion-ion interactions in com-
parison to other forms of interactions, both electrostatic and non-electrostatic. As a result,
the ion-solvent interactions, which were overlooked in the models explained in sections 6.2.1
and 6.2.2, exert a minimal influence on the solution’s properties. This allows for the implicit
solvent EoS, introduced in section 2, to be effectively employed in predicting the MIAC of
these electrolytes.

In Table 3.1, the ionic diameters, ion valence types, and ionic conductivity at infinite
dilution for ions at 298.15 K, which are utilized in the MIAC and electrical conductivity
predictions of this section, are provided. The salt-specific diameters for CdSO4, CoSO4,
MgSO4, and ZnSO4 are derived from the arithmetic average of the crystallographic ionic
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radii as reported by Marcus [155] and tabulated in Table 3.1. Ionic conductivities at infinite
dilution at 298.15 K are taken from values documented in the literature [120,129].

Figure 6.7 presents a comparison between the model predictions and the MIAC experi-
mental data for 2:2 aqueous electrolyte solutions at 298.15 K. In this representation, ionic
diameters listed in Table 3 are applied across all models. The legends HS+DH and HS+MSA
in the figure denote that MIAC is determined as the sum of hard sphere contributions and
electrostatic inputs from the DH (Eq. 6.25) and MSA (Eq. 6.30) theories, respectively. In
these two approaches, it is posited that the solution contains no ion pairs. Moreover, the
KBM

+− model is employed as the association constant at infinite dilution for all the models
presented.

From the depicted figures, it is evident that the HS+DH and HS+MSA models tend to
over-predict the MIAC for all systems at low to moderate ionic strengths. Yet, this discrep-
ancy narrows with increasing ionic strength. A comparison between models that consider
association (namely EG, FLGG, BiMSA, and ZYS) and those that do not (HS+DH and
HS+MSA) at lower ionic strengths reveals that accounting for ion-pairing yields predictions
that align more closely with the experimental data. Nevertheless, at higher ionic strengths,
specifically at 1 mol ·L−1, models both incorporating and disregarding ion pairing generally
provide less accurate predictions for the MIAC of these electrolytes, with the exception of
FLGG and EG for CdSO4 and DH+HS for MgSO4.

Among the models accounting for ion pairing, the EG and FLGG models yield predictions
that align more closely with experimental data. Nonetheless, it is important to highlight
that a consistent and precise match between theory and the experimental data is not ob-
served across all systems. Interestingly, despite their differing theoretical foundations, the
predictions from the EG and FLGG models are strikingly similar. While the EG model is
rooted in the MSA theory, the FLGG model is derived from the DH theory. Furthermore,
the EG model neglects the non-ideality of ion pairs in the solution and assumes that ion
pairing does not influence hard sphere interactions.

6.2.5 Structural Properties; The Importance of Electrical Conductivity

As previously noted, once the distance between ion pairs is adjusted, the MIAC predic-
tions from all models are in close agreement with each other and with the MC simulations.
However, the models differ significantly in their predictions of the fraction of free ions (α).
Therefore, it is essential to validate the predicted fraction of free ions with experimental
data. Regrettably, direct measurements of the fraction of free ions (or ion speciation) are
not feasible. Yet, the fraction of free ions can be indirectly validated using methods such as
electrical conductivity [80,81].

As detailed in Chapters 2-5, electrical conductivity is a transport property of electrolyte
solutions, shedding light on ion movement under the influence of an external electric field.
Given that ion pairs in symmetrical electrolytes are charge-neutral and do not contribute to
the system’s EC, this property serves as a valuable tool to examine ion pairing in electrolyte
solutions.

Marcus and Hefter [80] outlined the pros and cons of examining ion pairing using elec-
trical conductivity. A significant advantage is the high precision of electrical conductivity
measurements, which can achieve a relative error of less than 0.02%. Moreover, electri-
cal conductivity measurements are widely available for nearly all symmetrical electrolytes
across various solvents. However, a notable drawback is that this approach is less relevant
for asymmetrical electrolytes. In such cases, ion pairs are charged and thus contribute to
the electrical conductivity.

As discussed in Chapter 3, the electrical conductivity of electrolyte solutions can be
predicted using either the MSA or the DHO theory. Both theories have demonstrated the
capability to predict the electrical conductivity of electrolyte solutions accurately when the
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Figure 6.7. This figure compares the predicted MIAC of (a) CdSO4, (b) CoSO4, (c) NgSO4, and
(d) ZnSO4 aqueous solutions at 298.15 K by the EG, BiMSA, ZYS, FLGG, HS+DH, and HS+MSA
models. For these predictions, l+− = 1.3σ is applied in the Bjerrum association constant model.
Experimental data are sourced from references [261–263]. Reprinted from ref. [214], Copyright 2023,
with permission from Elsevier.

ion pairing is minimal. However, for systems like the 2:2 sulfate aqueous solutions, where
ion pairing is significant [81, 189, 191–194, 264–267], the electrical conductivity models can
be coupled with a thermodynamic model like EG, FLGG, BiMSA, or ZYS to address the
partial dissociation.

In this section, as illustrated in Figure 6.8, we first adjust the values of σ and l+− to match
the MIAC experimental data at 298.15 K utilizing the EG, FLGG, ZYS, and BiMSA models.
The Ebeling model serves as the foundation for the association constant at infinite dilution in
this calibration process. Subsequently, leveraging the same parameters (σ and l+−) and the
fraction of free ions calculated from the MIAC models, we predict the electrical conductivity
of the solutions using either DHO or MSA-based theories. Ultimately, the predicted electrical
conductivity is compared with the experimental data as a validation step for the prediction
of the fraction of free ions.

For estimating the electrical conductivity of solutions, two approaches are employed: an
MSA-based method and a DHO-based one. In the MSA-based approach, we adopt the MSA-
Simple model proposed by Chhih et al. [113]. Conversely, for the DHO-based approach, the
DHO3 model formulated by Naseri Boroujeni et al. [124] is utilized. The specific and molar
conductivities for both models can be derived from Eq. 2.67 and Eq. 6.50, respectively.

χ = e2

kBT

C∑
i=1

ρiD
0
iZ

2
i

(
1 + δvi

v0
i

)(
1 + δki

ki

)
(2.67)
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Figure 6.8. The approach used in this work to study concurrently the MIAC and the electrical
conductivity of associative electrolyte solutions. Reprinted from ref. [214], Copyright 2023, with
permission from Elsevier.

Λ = χ

cE
(6.50)

For the MSA-Simple model, equations 3.28 and 3.29 are used for the relaxation (δk/k)
and the electrophoretic (δvi/v

0
i ) terms.

δvi

v0
i

= − kBT

3πηD0
i

Γ
1 + Γσ̄ , i = {+ or −} (3.28)

δk

k
= 1

24πε0εrkBT

κ2
qe

2Z+Z−

σ̄ (1 + Γσ̄)2
(1 − exp(−2κqσ̄))

[κ2
q + 2Γκq + 2Γ2 (1 − exp(−κqσ̄))] (3.29)

For the DHO3 model, equations 3.25 and 3.10 are used for the relaxation and the elec-
trophoretic terms.

δk

k
= Z+Z−e

2

12πε0εrkBT

[
q

1 + √
q

κ

(1 + κσ+−)
(
1 + κσ+−

√
q + κ2σ2

+−/6
)] (3.25)

δvi

v0
i

= − F 2

6πηNAλ0
i

|Zi|
κ

1 + κσ+−
, i = {+ or −} (3.10)

Additionally, the ionic conductivity at infinite dilution (λ0
i ) is taken from Table 3.1. In

Eq. 3.28, the value for D0
i can be determined from the ionic conductivity at infinite dilution

via the Nernst-Einstein equation, given as D0
i = (kBTNA)/(F 2 | Zi |)λ0

i .
In order to quantitatively evaluate the predictions from both MIAC and electrical conduc-

tivity models, we introduce the coefficient of determination (R2) and the absolute average
deviation in percentage (AAD%). These metrics are based on the comparison of predicted
values to the experimental data. For R2, it is derived using equations 6.51-6.53, where Nd

denotes the number of experimental data points, yexp
i represents the experimental data, ypre

i
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is the predicted value, and ȳexp is the average of all experimental data. The formula for
AAD% is given by Eq. 6.54.

R2 = 1 − RSS

TSS
(6.51)

RSS =
Nd∑
i=1

(yexp
i − ypre

i )2 (6.52)

TSS =
Nd∑
i=1

(yexp
i − ȳpre

i )2 (6.53)

AAD% = 1
Nd

Nd∑
i=1

| yexp
i − ȳpre

i | (6.54)

In the context of MIAC, errors are directly calculated using γexp
± and γpre

± . However, for
EC, to ensure a consistent comparison, both experimental data and predictions from the
models are normalized by the molar conductivity at infinite dilution, denoted by Λ0. As a
result, for error calculations related to EC, Λexp

i /Λ0 and Λpre
i /Λ0 are employed.

Table 6.3 displays the parameters (σ and l+−) that have been fine-tuned based on the
MIAC experimental data using the EG, FLGG, ZYS, and BiMSA models. This table also
presents the association constant at infinite dilution (K◦

+−), the coefficients of determination
(R2), and the AAD% of these models when compared against both MIAC and electrical
conductivity experimental data. Additionally, the table highlights the smallest AAD% and
the largest R2 values by underlining them.

In Figures 6.9 through 6.12, model predictions for MIAC, the fraction of free ions, molar
conductivity as estimated by the MSA-Simple model, and molar conductivity based on
the DHO3 model are presented. These predictions were generated using the EG, FLGG,
ZYS, and BiMSA models for aqueous solutions of MgSO4, ZnSO4, CoSO4, and CdSO4 at a
temperature of 298.15 K. Legends representing the specific model combinations for MIAC
and electrical conductivity in these figures are detailed in Table 6.4. Experimental data
points for both MIAC and electrical conductivity at ambient conditions are represented by
cyan-colored squares.

From Figures 6.9-6.12 and Table 6.3, it is evident that all the MIAC models detailed in
sections 6.2.1 and 6.2.2 offer accurate predictions for the MIAC of 2:2 sulfate solutions at
ambient temperature. In terms of this property, the coefficients of determination for every
solution and model exceed 0.95, and the AAD% values remain below 2%. This result is
expected given that the ionic diameter (σ) and the distance between ion pairs (l+−) were
adjusted to fit the MIAC experimental data. It can be concluded that the models have the
ability to be fitted to the experimental data.

Additionally, notable differences emerge in the predicted fractions of free ions among the
models. The EG model, in particular, showcases a distinct trend where α initially declines
with increasing ionic strength and then rises. In contrast, the other models demonstrate a
consistent reduction in α with the rise in ionic strength. As depicted in graph b of Figures
6.9-6.12, for nearly all systems, the trend appears as: αZY S > αBiMSA > αF LGG. Although
it is highlighted earlier that no concrete conclusions can be drawn merely by comparing the
MIAC or α estimated by the models elaborated in sections 6.2.1 and 6.2.2, it is undeniable
that the varied predictions for the fractions of free ions by the MIAC models can substantially
influence the molar conductivity predictions.

Observing graphs c and d in Figures 6.9-6.12, it is evident that when estimating the
fractions of free ions by the FLGG model, the predicted electrical conductivity aligns most
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Table 6.3. The parameters fine-tuned to the MIAC experimental data for each model are presented,
along with the corresponding coefficient of determination and the absolute average deviation per-
centage for both MIAC and electrical conductivity predictions. Reprinted from ref. [214], Copyright
2023, with permission from Elsevier.

Model σ l+− K◦
+− R2 AAD% R2 AAD% R2 AAD%

M−1 γ± γ± MSAS MSAS DHO3 DHO3
Salt CdSO4
EG 3.25 3.81 248.4 0.996 1.03 0.960 4.26 0.814 8.48
BiMSA 3.86 3.97 221.2 0.996 1.35 0.989 2.89 0.963 4.90
FLGG 3.25 3.76 257.1 0.996 1.02 0.994 1.52 0.966 3.63
ZYS 3.96 4.51 160.4 0.995 1.71 0.934 6.41 0.861 9.02
Salt CoSO4
EG 3.49 4.65 150.0 0.997 0.89 0.982 3.09 0.923 5.60
BiMSA 4.04 4.88 135.2 0.997 1.16 0.992 2.25 0.974 3.78
FLGG 3.24 4.85 137.0 0.997 1.05 0.995 1.54 0.981 3.25
ZYS 4.12 5.92 95.1 0.995 1.53 0.958 5.26 0.917 7.20
Salt MgSO4
EG 3.76 5.87 96.4 0.999 0.68 0.952 5.30 0.854 8.20
BiMSA 4.06 7.07 72.4 0.998 0.84 0.992 5.15 0.972 7.18
FLGG 3.70 5.06 125.9 0.999 0.68 0.995 1.59 0.978 3.12
ZYS 4.02 10.63 43.1 0.997 1.00 0.916 7.72 0.834 10.29
Salt ZnSO4
EG 3.59 4.29 180.7 0.999 0.39 0.973 3.95 0.893 6.92
BiMSA 4.00 5.13 122.7 0.999 0.66 0.995 4.36 0.983 6.21
FLGG 3.57 4.13 198.7 1.000 0.40 0.996 1.33 0.986 2.57
ZYS 3.96 7.00 73.6 0.996 0.85 0.929 7.63 0.865 10.16

Table 6.4. The notation used in Figures 6.9-6.12 shows the employed models for the MIAC and the
electrical conductivity. Reprinted from ref. [214], Copyright 2023, with permission from Elsevier.

electrical conductivity Model
MSA-simple DHO3

EG ΛMSAS − γEG ΛDHO3 − γEG

FLGG ΛMSAS − γF LGG ΛDHO3 − γF LGG

ZYS ΛMSAS − γZY S ΛDHO3 − γZY S

BiMSA ΛMSAS − γBiMSA ΛDHO3 − γBiMSA

closely with the experimental data for both MSA-Simple and DHO3 models. For solutions
with low to medium ionic strength, the EG model provides the next best fit, whereas for
solutions with high ionic strength, the BiMSA model emerges as the second-best fit. Notably,
predictions of molar conductivity are least accurate when no ion-ion association is assumed
in the solutions, irrespective of the chosen molar conductivity model. This interpretation is
further supported quantitatively by Table 6.3. The data reveals that the highest R2 values
or the lowest AAD% values for molar conductivity predictions occur when the FLGG model
estimates the fractions of free ions. This suggests that the FLGG model may offer a more
accurate representation of the underlying physics compared to the other models.

To understand why the FLGG model provides a more accurate representation of the
underlying physics compared to other models, it is essential to revisit the similarities and
distinctions among these models. The primary variation between the FLGG and other
models lies in the theory they employ for ion-ion interactions. Specifically, the FLGG model
adopts the DH theory, while other models use the MSA theory. The FLGG model adopts a
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Figure 6.9. (a) MIAC, (b) fraction of free ions, (c) molar conductivity as predicted by the MSA-
Simple model, and (d) molar conductivity as predicted by the DHO3 model for the MgSO4-H2O
binary system at 298.15 K. The MIAC experimental data are sourced from ref. [261,262], while the
electrical conductivity experimental data are derived from ref. [129, 130]. Reprinted from ref. [214],
Copyright 2023, with permission from Elsevier.

chemical approach, mirroring the EG model. Yet, the FLGG model acknowledges the non-
ideality of ion pairs, distinguishing it from the EG model but aligning it with the ZYS model.
Within the ZYS model, the assumption is that the cavity function can be approximated using
the function at the non-association limit.

The discrepancies in molar conductivity predictions when using the fraction of free ions
as predicted by the EG model can likely be linked to its assumption regarding ideal ion
pairs in the solution (γ+− = 1). While it is reasonable to consider ion pairs as ideal at lower
ionic strengths, as suggested by certain studies [268], this assumption becomes invalid at
higher ionic strengths. Given that ion pairs act as strong dipoles, they cannot be assumed
to be ideal under such conditions. As a result, when the activity coefficient of ion pairs at
elevated ionic strengths surpasses one, assuming ideal ion pairs can inadvertently lead to an
overestimation of the fraction of free ions as ionic strength increases.

The less accurate predictions of the ZYS model might stem from the approximation
used for the cavity function. Though this is a plausible explanation, it warrants a more
comprehensive examination, which goes beyond the scope of this study. Lastly, while the
predictions based on fractions of free ions calculated by the BiMSA model align fairly well
with the electrical conductivity experimental data, they still do not match the accuracy
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Figure 6.10. Similar to Figure 6.9, but for the CdSO4-H2O binary system at 298.15 K. The MIAC
experimental data are sourced from ref. [261], while the electrical conductivity experimental data
come from ref. [129]. Reprinted from ref. [214], Copyright 2023, with permission from Elsevier.

achieved by the FLGG model.
Furthermore, delving into the various contributions to the MIAC - specifically from elec-

trostatic interactions, the MAL, HS, and, in the context of the FLGG model, DI contribu-
tions - might shed light on the exceptional precision of the FLGG model. Figures 6.13-6.16
depict the contributions from HS (illustrated by blue lines), electrostatic (denoted by black
lines), MAL (represented by green lines), and DI interactions (highlighted by red lines) to
the MIAC of MgSO4, CdSO4, CoSO4, and ZnSO4-H2O solutions at 298.15 K, as predicted
by the FLGG, EG, ZYS, and BiMSA models.

From the depicted figure, it is evident that the primary contribution to the MIAC across
all models stems from electrostatic interactions. Following that, contributions from the MAL
and HS contributions rank as the second and third most significant, respectively. For the
FLGG model, the DI interactions offer a relatively minor negative contribution to the MIAC.

The FLGG model exhibits the least negative contribution from electrostatic interactions,
while the ZYS model (at low ionic strengths) and the EG model (at high ionic strengths) show
the most pronounced negative contributions. When considering the MAL, the BiMSA model
contributes the least, while the EG model stands out with the most significant contribution.
In terms of HS contributions to the MIAC, the order is ZYS > BiMSA > EG > FLGG.

In the FLGG model, the negative contributions to the MIAC arise from ion-ion, DI,
and MAL contributions. In contrast, for the other models, these negative contributions
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Figure 6.11. Similar to Figure 6.9, but for the CoSO4-H2O binary system at 298.15 K. The MIAC
experimental data are sourced from ref. [261], while the electrical conductivity experimental data
come from ref. [129,213]. Reprinted from ref. [214], Copyright 2023, with permission from Elsevier.

stem solely from ion-ion and MAL contributions. During the model’s fitting to the MIAC
experimental data, parameters are fine-tuned (via the optimization algorithm) such that
the sum of these negative effects, combined with the positive influence of HS interactions,
aligns closely (within a certain tolerance) to the experimental data. As a result, a stronger
negative contribution from ion-ion interactions necessitates a lesser negative input from the
MAL, yielding a larger fraction of free ions. Given that the fraction of free ions plays a
pivotal role in predicting molar conductivity, a reduced fraction results in more significant
deviations from experimental conductivity data. Therefore, achieving a harmonious balance
between the contributions of ion-ion interactions and the MAL is crucial for an accurate
representation of the free ion fraction. The illustrations in Figures 6.9-6.12 indicate that the
FLGG model adeptly maintains this balance.

Figure 6.17a displays the molar conductivity predictions of the MSA-Simple model with
fractions of free ions derived from the FLGG model across different temperatures. Mean-
while, Figure 6.17b illustrates the MIAC as predicted by the FLGG model over a range
of temperatures. Within this illustration, experimental data points are denoted by colored
squares, with the shade of the markers and lines representing the temperature of the system,
corresponding to the color bar situated to the figure’s right. Across all temperatures, the
parameters outlined in Table 6.3 are employed for both MIAC and molar conductivity pre-
dictions. Ionic conductivities at infinite dilution are also adopted from literature values [130].
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Figure 6.12. Similar to Figure 6.9, but for the ZnSO4-H2O binary system at 298.15 K. The MIAC
experimental data are sourced from ref. [262], while the electrical conductivity experimental data
come from ref. [129,213]. Reprinted from ref. [214], Copyright 2023, with permission from Elsevier.
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Figure 6.13. Predicted contributions to the activity coefficient of the MgSO4 aqueous solution at
298.15 K by the FLGG, EG, ZYS, and BiMSA models. Reprinted from ref. [214], Copyright 2023,
with permission from Elsevier.
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Figure 6.14. Predicted contributions to the activity coefficient of the CdSO4 aqueous solution at
298.15 K by the FLGG, EG, ZYS, and BiMSA models. Reprinted from ref. [214], Copyright 2023,
with permission from Elsevier.
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Figure 6.15. Predicted contributions to the activity coefficient of the CoSO4 aqueous solution at
298.15 K by the FLGG, EG, ZYS, and BiMSA models. Reprinted from ref. [214], Copyright 2023,
with permission from Elsevier.
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Figure 6.16. Predicted contributions to the activity coefficient of the ZnSO4 aqueous solution at
298.15 K by the FLGG, EG, ZYS, and BiMSA models. Reprinted from ref. [214], Copyright 2023,
with permission from Elsevier.

Observing the figure, it is evident that an impressive alignment between theory and experi-
ment is observed across diverse temperatures for both MIAC and molar conductivity, when
utilizing the MSA-Simple and FLGG models.

6.3 Summary and Conclusions

In this chapter, we conducted a comprehensive assessment of four implicit solvent models
for associative and two for non-associative electrolyte solutions. Our focus was on the
MIAC and molar conductivity of these solutions. The models for associative electrolyte
solutions we examined were the EG, FLGG, ZYS, and BiMSA models. The EG and FLGG
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Figure 6.17. (a) The molar conductivity and (b) the MIAC for MgSO4-H2O solutions across
different temperatures, as predicted by the MSA-Simple and FLGG models. These predictions
are compared against the experimental data (depicted as colored squares). The predictions utilize
parameters from Table 3.1. The experimental data for MIAC are sourced from references [261, 262,
269], and the electrical conductivity experimental data comes from references [129, 130]. Reprinted
from ref. [214], Copyright 2023, with permission from Elsevier.
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models use a chemical approach, ZYS is based on the RCA, and BiMSA is derived from
the WOZ equation. The non-ion-pairing models combine the hard sphere component with
the electrostatic contributions from DH (labeled HS+DH) and MSA (labeled HS+MSA)
theories.

This research aimed to answer two main questions: Is the addition of ion pairing in mod-
eling electrolyte solutions essential for a more accurate prediction of the MIAC? And which
of the associative equations of state is the most effective? To answer these, we compared the
predicted MIAC from the models with the IPBE, the MC simulations, and the experimental
data.

We observed that the predictions of the models that did not take into account ion pairing
were more accurate than those that did when compared to the IPBE. Interestingly, when
the contact separation distance of ion pairs in the Bjerrum model was replaced with an
extended average value, the electrostatic contribution predicted by the FLGG model was in
agreement with the IPBE. When compared to the MC simulations, the MIAC predictions
from FLGG, EG, and HS+MSA were similar to the MC simulations of a 2:2 electrolyte
solution. By adjusting the average ion pair distance to fit the MC simulations, we found
that while all models could be adjusted to match the MIAC from the MC simulations, the
fraction of free ions they predicted varied.

We investigated the effect of high-valence electrolytes on ion pairing in aqueous solutions,
examining four 2:2 electrolyte solutions. The results showed that the FLGG, EG, and
HS+MSA models were more accurate in predicting the experimental data than other models
for 2:2 electrolytes.

We adjusted the hard sphere diameter and ion pair separation distance to fit the MIAC
experimental data for 2:2 aqueous solutions at 298.15 K. We then calculated the molar
conductivity of these solutions, based on the fraction of free ions from MIAC models and
two electrical conductivity models. Qualitative and quantitative evaluations showed that
the electrical conductivity predictions were in better agreement with the experimental data
when the free ion fractions were estimated using the FLGG model. This implies that the
FLGG model more accurately captures the physics of associative electrolyte solutions than
the other models.

Chapter Message

This chapter has concluded that the FLGG model, which includes ion pairing, is
the most accurate in predicting MIAC for electrolyte solutions. This conclusion was
only achievable through the validation of the fraction of unbound ions using electrical
conductivity.



CHAPTER 7
Binding Debye-Hückel Theory

𝐴𝐼𝑑𝑒𝑎𝑙 𝐴𝐻𝑆 𝐴𝐵𝑜𝑟𝑛 𝐴𝐷𝐻 𝐴𝐴𝑠𝑠𝑜𝑐

In the literature, two theories are mainly used to describe long-range ion-ion interactions
in electrolyte equations of state. These theories, DH [4] and MSA [5, 6], assume that the
solvent is a continuous medium and the ions are charged spheres. It is also assumed that
electrolytes completely dissociate in the solution. However, research has demonstrated that
this assumption is not always valid, depending on the electrolyte, solvent, and conditions
[80,81,148,189,192,194,264].

To address the limitations of assuming complete dissociation in electrolyte solutions, a
more realistic approach has been adopted. Rather than assuming instantaneous full dissoci-
ation, it is now accepted that electrolytes completely dissociate when they are dissolved in
the liquid. Following this initial dissociation, ions with opposite charges exhibit a propensity
to form ion pairs or even higher aggregates in the solution.

As described in Chapter 6, the consideration of ion-ion association can be approached
through two main methods: the chemical approach, and the statistical mechanics approach.

The chemical approach [220–222,225–229,232–234,237,270] considers ion pairs as distinct
species in the solution. This approach modifies the thermodynamic reference, so that only
the free ions contribute to electrostatic interactions. Subsequently, the MAL equation is
solved numerically to calculate the chemical potential and the associated properties of the
electrolyte solutions.

The second approach is based on Wertheim’s formulation [246–251] for the saturation
effects in the Ornstein-Zernike equations. BiMSA [19, 20] and AMSA [21–29] are derived
from this approach.

BiMSA-EXP, an adaptation of BiMSA, has been widely used to estimate the thermody-
namic properties of real electrolyte solutions. Simonin and his colleagues have employed the
BiMSA in a number of studies to analyze aqueous solutions with a concentration-dependent
RSP and cation diameter [163,188,271–279].
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Wertheim’s formulation, which incorporates saturation effects within the Ornstein-Zernike
equation, has been extended to include ion-ion associations beyond dimerization. However,
this is not the focus of the current investigation. Those interested in further exploring this
topic are encouraged to consult the references [23,280–284] and related literature.

Stell and his colleagues [240,241,243,245] proposed a method to incorporate the MAL into
the statistical mechanics treatment of ionic mixtures. This method involves approximating
the cavity function with the reference cavity function in the non-association limit, and then
computing the residual Helmholtz free energy due to ion-ion association based on Wertheim’s
results [242,250,285].

Subsequent research [242,244] has demonstrated the potential of this approach to create
an EoS for RPMs based on the MSA theory.

The literature in the field of ion-ion association has mainly focused on the MSA theory.
Various models have been used to analyze different aspects of ion-ion association in elec-
trolyte solutions. Nevertheless, recent studies have shown that the DH theory is just as
effective as the MSA theory [9, 50, 73, 79], but is simpler to apply and derive. To take full
advantage of the DH theory, more advanced models that include ion-ion association must
be developed.

In this chapter, we explore the development of an EoS for a dimerizing charged hard
sphere fluids. We employ the RCA proposed by Stell and colleagues [240, 241, 245] which
incorporates the DH theory [4] to describe ion-ion interactions and the Kirkwood theory [235]
to account for ion-dipole interactions. Additionally, we utilize Wertheim’s result [242, 250,
285] to consider the contribution of association to the free energy.

We evaluate the performance of the developed EoS by comparing its predictions to MC
simulations reported in the literature. We focus on the mean ionic activity, individual ionic
activity, and osmotic coefficients, which are all essential for understanding the thermody-
namic behavior and properties of the system.

Part of this chapter has already been published in the Journal of Chemical Physics:

• Binding Debye-Hückel Theory for Associative e Electrolyte Solutions [286] (Link).

7.1 Model Development

It is assumed that the mixture consists of M different cations and N different anions, all
in a solvent that maintains a constant RSP (εr). The ions discussed in this research are
distinguished by their individual diameters (σi) and their specific charge (Zi). Moreover,
the solvent(s) is characterized by the RSP.

The number density of ions and ion pairs after association are represented by ρ̃m, ρ̃n,
and ρ̃mn in this chapter. The total number density of ions, which include both free ions and
those in pairs, are denoted as ρm and ρn.

This section begins by introducing the RCA, which establishes a connection between the
MAL and the ratio of activity coefficients when no association occurs. A method is then
presented for calculating the fraction of unassociated ions (αi) for a system with M types
of cation and N types of anion, through the application of a specific equation for the RCA.
It is then demonstrated that, in a particular case where only one type of cation and anion is
present, the fraction of free ions can be determined analytically. Subsequently, the Bjerrum
model [216] for the association constant at infinite dilution is discussed. Finally, the EoS is
introduced, which includes the components contributing to the Helmholtz free energy.

https://pubs.aip.org/aip/jcp/article/159/15/154503/2917300/Binding-Debye-Huckel-theory-for-associative
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7.1.1 Reference Cavity Approximation

The RCA developed by Stell and colleagues [27,240,242–245] is a theoretical foundation for
understanding ion-ion association in electrolyte solutions. This approach is illustrated in
Figure 7.1 with a thermodynamic cycle for the association of two ions, m and n, in both
vacuum and fluid media. ∆G2 and ∆G4 represent the reversible work required to bring the
two ions from an infinite distance to a separation of r in a vacuum and a fluid, respectively.
∆G1 is the solvation free energy of the ion pair, and ∆G3 is the sum of the solvation free
energies of the individual ions.

The solvation free energy for a single ion pair (∆G1) is obtained from a thermodynamic
cycle, as shown in Eq. 7.1.

∆G1 = ∆G4 + ∆G3 − ∆G2 = µr
mn (7.1)

The residual chemical potential of the ion pair mn is represented by µr
mn. Stell and

Zhou [241] showed that values for ∆G2 and ∆G4 can be obtained from equations 7.2 and
7.3, which are given below:

∆G2 = umn(r) = ZmZne
2

4πε0r
(7.2)

∆G4 = − 1
β

ln(gmn(r)) (7.3)

The total free energy change associated with the transfer of ions m and n from a vacuum
to a fluid is calculated by summing the individual free energy changes.

∆G3 = µr
m + µr

n (7.4)

In these equations, umn(r) denotes the pair potential, and gmn(r) represents the RDF
between cation m and anion n. Additionally, the term β is defined as 1/kBT . The residual
chemical potentials for ion m and ion n are indicated as µr

m and µr
n respectively.

The equation defining the cavity function that describes the interaction between ions m
and n is provided as Eq. 7.5:

ymn(r) ≡ gmn(r) exp(βumn(r)) (7.5)

Substituting equations 7.2-7.4 into Eq. 7.1 and integrating Eq. 7.5, the resulting expres-
sion is as follows:

ln(ymn(r)) = β[µr
m + µr

n − µr
mn(r)] (7.6)

It is crucial to note that equations 7.1-7.6 directly mirror equations 2.2-6 as presented in
ref. [241].

𝑚 𝑛
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Vacuum:

Fluid:

𝑚 𝑛

𝑚 𝑛Δ𝐺4

Δ𝐺3

Δ𝐺2

Δ𝐺1

Figure 7.1. This figure presents a thermodynamic cycle for ion-ion association [240, 241, 243, 245].
Reproduced from ref. [286], with the permission of AIP Publishing.
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Assuming a chemical equilibrium between ions m and n and the ion pair mn, this is
represented as shown in Eq. 7.7:

m+ n⇌ mn (7.7)

Applying the definition of the chemical potential as provided in Eq. 7.8, where µid
i (ρ, T ) =

µ◦
i (T ) + 1

β
ln(ρi) denotes the ideal gas chemical potential, and µr

i represents the residual
chemical potential:

µi(ρ, T ) ≡ µid
i (ρ, T ) + µr

i (ρ, T ) (7.8)
And the chemical equilibrium equation (Eq. 7.9):∑

i

ωiµi = 0 (7.9)

The association constant between ions m and n can be derived from Eq. 7.10.

Kmn(ρ, T ) = ρ̃mn

ρ̃mρ̃n
= K◦

mn(T )ymn(ρ, T ) (7.10)

In Eq. 7.10, K◦
mn(T ) denotes the association constant at infinite dilution, and ωi repre-

sents the stoichiometric coefficients.
Stell and colleagues [240] expanded upon Eq. 7.10 by including terms associated with

the number density of ion pairs, as depicted in Eq. 7.11:

Kmn

K◦
mn

= ymn =
(
ymn

)
ρ̃mn=0

+
(
∂ymn

∂ρ̃mn

)
ρ̃mn=0

ρ̃mn + · · · (7.11)

They showed that the zeroth-order approximation of Eq. 7.11 is almost accurate when
the association occurs at the surface of the repulsive core of the interactive potentials.

Kmn = ρ̃mn

ρ̃mρ̃n
= K◦

mny
ref
mn (7.12)

Eq. 7.12 suggests that the cavity function for two free ions in the presence of both free
ions and ion pairs can be accurately approximated by the cavity function for free ions when
disregarding associations.

Zhou and Stell explored the accuracy of the assumption in their paper [243]. They discov-
ered that the association within the repulsive core of ions can lead to an overestimation of
the association extent, resulting in a higher calculated number density of ion pairs. However,
they also confirmed that if the association occurs at the surface of the ions’ repulsive core,
the assumption is accurate within a reasonable margin of error. For further information,
please refer to Figures 5 and 7 in their study [243].

Therefore, this assumption is generally reliable for ion-ion associations where the ions do
not share electrons. In cases where ion complexes form that are not easily distinguishable
from simple associations, one should be careful. It is possible that the assumption may
overestimate the degree of association.

7.1.2 Equation of State
In this section, we employ Wertheim’s two-density theory of association to construct a
novel model that accommodates electrostatic interactions arising from ion-ion association.
The formulation begins by considering mixtures with multiple cation and anion types. We
then simplify the approach for single-salt electrolyte solutions, featuring only one type of
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cation and anion, to illustrate the theoretical robustness and practical feasibility of our
model. Subsequently, we delve into the Bjerrum approach, outlining the calculation of the
association constant in a reference state. The section culminates in an exploration of the
contributions to the Helmholtz free energy.

7.1.2.1 General Case

In our model, we examine a mixture containing various types of cations (M) and anions (N)
within a continuous solvent medium. We assume that each ion possesses a single association
site, excluding the formation of aggregates other than ion pairs. As a result, each cation-
anion pair can potentially form an ion pair within the solution. To address this dimerization
aspect, we adopt the Wertheim two-density framework (ρm and ρ̃m). Here, ρm denotes
the total number density of ions, while ρ̃m represents the number density of unbound ions.
Additionally, ions are characterized by their diameter (σm) and valence (Zm), and the solvent
is defined by its RSP (εr). The number density of ion pairs composed of cation m and anion
n is denoted by ρ̃mn. The relationship among the total, unbound, and ion pair number
densities is expressed in Eq. 7.13:

ρm = ρ̃m +
N∑

l=1

ρ̃ml (7.13)

αm is the fraction of unbound ions (free ions) defined as Eq. 7.14:

αm = ρ̃m

ρm
= 1 −

N∑
l=1

ρ̃ml

ρm
(7.14)

By rearranging Eq. 7.12 and substituting in the unbound number densities from Eq. 7.14,
the following result is obtained:

ρ̃mn = K◦
mny

ref
mn

[
ρm −

N∑
l=1

ρ̃ml

][
ρn −

M∑
l=1

ρ̃ln

]
(7.15)

Therefore, once the reference cavity function is established, the number density of ion
pairs can be calculated by solving Eq. 7.15. The RCA can be determined by using equations
7.5 and 7.6, which are explained in section 7.1.1. For the cavity function affected by HS
interactions, where the pair potential for a hard sphere fluid is zero (umn = 0), it is clear
from Eq. 7.5 that it is equivalent to the RDF. The RDF at contact for a hard sphere fluid
can be obtained from (Eq. 7.16).

gHS
mn(σmn) = 1

1 − ζ3
+ 2σmσn

σmn

3ζ2

(1 − ζ3)2 + (2σmσn

σmn
)2 2ζ2

2

(1 − ζ3)3 (7.16)

In this equation, σmn is the distance of the closest approach defined as Eq. 7.17.

σmn = σm + σn

2 (7.17)

ζl = π

6
∑

j

ρjσ
l
j , l = {0, 1, 2, 3} (7.18)

In the case that l = 3, ζl gives the packing factor.
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In order to incorporate the electrostatic contributions within the reference cavity function,
Eq. 7.6 is used. This equation requires the inclusion of the residual chemical potential due
to both ion-ion and ion-dipole interactions in the non-association limit. In our analysis, we
apply the DH theory to characterize ion-ion interactions and the Kirkwood theory to address
ion-dipole interactions (for detailed derivations, please refer to the works cited [4,8,9,79,235]).

In the given context, it is posited that the DH theory for ion-ion interactions is encap-
sulated within a continuum medium of a solvent. Here, the equations designated by 7.19
through 7.21 elucidate this theory. Within these equations, the symbol ADH is assigned to
the residual Helmholtz energy that arises due to interactions among ions, and the variables
N and ρtot signify the total ion count and the total ion number density, respectively.

βADH

N
= −

∑
j
ρjZ

2
j χj

4πρtot

∑
j
ρjZ2

j

(7.19)

χj = 1
σ3

j

(
ln(1 + κσj) − κσj + 0.5(κσj)2) (7.20)

In this equation, κ is the inverse Debye length defined as Eq. 7.21.

κ2 = e2

ε0εrkBT

C∑
k=1

ρkZ
2
k (7.21)

It is worth noting that the DH expression for the residual Helmholtz free energy is a
perturbation to the Helmholtz free energy of a HS fluid. Therefore, equations 7.19 and
7.21 make use of the ion density prior to association. The effect of ion-ion association is
then taken into account by adding the residual Helmholtz free energy due to the ion-ion
association to the Helmholtz free energy of the system.

The derivative of the residual Helmholtz free energy with respect to the mole number
yields the residual chemical potential, as demonstrated in Eq. 7.22.

µDH
k

RT
=

∑
j
ρjZ

2
j χj

4π(ρtot

∑
j
ρjZ2

j )2Z
2
k − Z2

k

4πρtot

∑
j
ρjZ2

j

(
χk + κ

2

∑
j
ρjZ

2
j ξj∑

j
ρjZ2

j

)
(7.22)

The derivative of the auxiliary function χi with respect to the inverse Debye length (κ)
is denoted by ξj .

ξj = 1
σ2

j

(
1

1 + κσj
+ κσj + 1

)
(7.23)

Eq. 7.24 expresses the residual Helmholtz free energy that results from the interactions
between dipolar ion pairs and ions in a solvent continuum medium, which was first proposed
by Kirkwood [8, 235].

βADI

N
= −

3
∑

j
ρjδ

2
jβjθj

4πe2ρtot

∑
j
ρjZ2

j

(7.24)

The dipole moments of the components in the solution are represented by δj , while βj

and θj are parameters that are specified in equations 7.25 and 7.26, respectively.

βj =
(

ε0εr

2ε0εr + εin,j

)2

(7.25)
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In this equation, the permittivity of the ion j inside the core is represented by εin,j . We
assume that the value of εin,j is between 0 and ε0εr, which implies that βj is between 1

9 and
1
4 .

θj = 1
σ5

j

(−4κσj + (κσj)2 + 2 ln
(
1 + κσj + 0.5(κσj)2)− 4 tan−1(κσj + 1) − π)) (7.26)

The residual contribution to the chemical potential arising from ion-dipole interactions,
as explained by the Kirkwood theory, can be determined by calculating the mole number
derivatives of Eq. 7.24, as depicted in Eq. 7.27.

µDI
k

RT
=

3
∑

j
ρjδ

2
jβjθj

4πe2 Z2
k − 3

4πe2
∑

j
ρjZ2

j

(
δ2

kβkθk + κZ2
k

2

∑
j
ρjδ

2
jβjτj∑

j
ρjZ2

j

)
(7.27)

The derivative of θj with respect to the inverse Debye length is denoted by τj , as expressed
in Eq. 7.28.

τj = 1
σ4

j

(
(κσj)3

1 + κσj + 0.5(κσj)2

)
(7.28)

We need to calculate the residual chemical potential of ions in the non-association limit
for the electrostatic contribution to the RCA. To do this, we use the equations 7.22 and
7.27 to calculate µr

m and µr
n. The residual chemical potential of the ion pairs in the non-

association limit (µr
mn) is then calculated from these equations. The contribution of DH to

the residual chemical potential of ion pairs (µDH
mn ) is calculated using Zmn = Zm + Zn and

χmn (where σmn is used instead of σk) instead of Zk and χk in equation 7.22.
We can calculate the residual chemical potential in the absence of association considering

an imaginary system with M types of cations, N types of anions, and M ×N pairs of ions.
In this system, the dipole moments of both cations and anions are set to zero (δm = 0
and δn = 0), and the number density of ion pairs (ρmn) is also set to zero. By taking the
limit of Eq. 7.27 as ρ̃mn approaches zero, we can determine the contribution of ion-dipole
interactions to the residual chemical potential. This can be done by using Eq. 7.29.[

µDI
mn

RT

]
ρ̃mn→0

= − 3δ2
mnβmnθmn

4πe2
∑

j
ρjZ2

j

(7.29)

The reference cavity function can be determined using Eq. 7.30, which is shown below:

ln
(
yref

mn

)
= β

[
µELE

m + µELE
n − µELE

mn

]
ρmn→0

+ ln
(
gHS

mn(σmn)
)

(7.30)

In Eq. 7.30, µELE
m and µELE

n are the chemical potentials due to electrostatic interactions,
which are contributions from the DH theory (Eq. 7.22). Additionally, µELE

mn is the chemical
potential due to electrostatic interactions (both ion-ion and ion-dipole interactions) for the
ion pairs mn when the number density of the ion pairs approaches zero. For a symmetric
electrolyte, µELE

mn = µDI
mn and can be obtained from Eq. 7.29. For asymmetric electrolytes,

µELE
mn = µDI

mn + µDH
mn with Zmn = Zm + Zn and σmn = 0.5(σm + σn).

Using Eq. 7.30 in Eq. 7.15, the number density of bonded ions (ρ̃mn) and the proportion
of free ions (αi) can be calculated.
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7.1.2.2 Single-salt System

In the special case where there is only one type of cation and anion in the solution, Eq. 7.15
can be solved analytically. This section provides an analytical solution to Eq. 7.15. The
superscripts + and − are used to denote the cation and anion, respectively. Consequently,
Eq. 7.15 can be simplified to Eq. 7.31, as follows:

ρ̃+− = K◦
+−y

ref
+− [ρ+ − ρ̃+−][ρ− − ρ̃+−] (7.31)

∆+− = K◦
+−y

ref
+− (7.32)

We can determine the number density of ion pairs (ρ̃+−) by solving the quadratic equation
and using Eq. 7.32 to define ∆+−. The result is given in Eq. 7.33.

ρ̃+− = 2∆+−ρ+ρ−

1 + ∆+−ρtot +
√

1 + 2∆+−ρtot + (∆+−(ρ+ − ρ−))2
(7.33)

The fraction of free cations and anions can be determined using Eq. 7.34.

α+ = 1 − ρ̃+−

ρ+
, α− = 1 − ρ̃+−

ρ−
(7.34)

7.1.2.3 Association Constant at Infinite Dilution

Krienke and Barthel [252, 253] demonstrated that the association constant in the reference
state can be linked to the potential of the mean force at infinite dilution (W ◦

mn), as expressed
in Eq. 7.35:

K◦
mn(T ) = 4πNA

∫ R

0
r2 exp(−βW ◦

mn)dr (7.35)

W ◦
mn =

{
∞ if r < σmn

ZmZne2

4πε0εrr
if r ≥ σmn

(7.36)

If we take into account only the Coloumbic interactions for the potential of mean force
(Eq. 7.36) as proposed by Bjerrum [216], Eq. 7.35 can be simplified to Eq. 7.37.

K◦
mn(T ) =

{
0 if lmn < σmn

4πNA

∫ lmn

σmn
r2 exp

( 2q
r

)
dr if lmn > σmn

(7.37)

q = lB
2 = e2 | ZmZn |

8πε0εrkBT
(7.38)

In his 1926 paper, Bjerrum evaluated the probability that an ion m is at a certain distance
r from ion n. If Zm and Zn have the same sign, the probability increases with r. On the
other hand, if they have opposite signs, there is a minimum at half of the Bjerrum length,
lB . He suggested that ions with opposite charges that are less than lB/2 apart should be
considered associated pairs. Nevertheless, he noted that this distinction between free and
associated ions is somewhat arbitrary.
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7.1.2.4 Contributions to the Helmholtz Free Energy

In the previous section, we discussed the reference cavity function used in our study (Eq.7.30),
as well as methods for calculating the number density of free ions in a general situation (Eq.
7.15) and a particular single salt case (equations 7.33 and 7.34). This section will focus on
the EoS, emphasizing the contributions to the Helmholtz free energy.

A schematic of the components that make up the Helmholtz free energy is shown in Figure
7.2. This diagram begins with the ideal gas, whose Helmholtz free energy contribution is
given by Eq. 7.39 as outlined in ref. [68].

βAIdeal

N
=
(∑

j

xi ln ρiΛ3
i

)
− 1 (7.39)

The proportion of ion i relative to the total number of ions is represented by xi = Ni/N ,
and the thermal de Broglie volume for ion i is indicated by Λ3

i .
The following part of the Helmholtz free energy is due to the hard sphere contribution.

We followed the HS contribution as described by Boublik [287] and Mansoori et al. [230], as
outlined below:

βAHS

N
= 1
ζ0

[
3ζ1ζ2

1 − ζ3
+ ζ3

2

ζ3(1 − ζ3)2 +
(
ζ3

2

ζ2
3

− ζ0

)
ln(1 − ζ3)

]
(7.40)

The Helmholtz free energy has a third component, which is the solvation free energy of
ions when they are moved from a vacuum to a solvent. To calculate this, we used the Born
equation [288], as demonstrated in Eq. 7.41.

βABorn

N
= βe2

8πε0ρtot

∑
i

ρiZ
2
i

σi

(
1
εr

− 1
)

(7.41)

It is worth noting that the diameter of the ions used in Eq. 7.41 can be different from the
hard sphere diameter of the ions [42]. Generally, the Born equation of the equations of state
for electrolyte solutions employs a different diameter, referred to as the Born diameter.

The fourth factor that contributes to the Helmholtz free energy is derived from the
electrostatic interactions between ions. As mentioned above, the DH theory is used to take
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Figure 7.2. A schematic representation of the components of the Helmholtz free energy used in
the BiDH theory is shown. These components are the ideal gas contribution (Eq. 7.39), the hard
sphere contribution (Eq. 7.40), the solvation free energy based on the Born model (Eq. 7.41), the
ion-ion interactions from the DH theory (Eq. 7.19), and the ion-ion association from the Wertheim
theory (Eq. 7.42). Reproduced from ref. [286], with the permission of AIP Publishing.
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these ion-ion interactions into account. The Helmholtz free energy contribution of the DH
theory due to these interactions is shown in Eq. 7.19.

The last part of the Helmholtz free energy is derived from the ion-ion association, as shown
in (5) of Figure 7.2. After calculating the proportion of free ions using the solutions from
equations 7.15 and 7.30 or equations 7.33 and 7.34, the contribution of ion-ion association
can be obtained based on the results of Wertheim’s theory [250]. This has been further
explored by Zhou et al. [244] and Chapman et al. [285], as demonstrated below.

βAAssoc

N
= −

∑
i

ρi

ρtot

[
ln(αi) + 1 − αi

2

]
(7.42)

The Helmholtz free energy of the charged HS system can be determined by utilizing Eq.
7.43:

β(A−AIdeal)
N

= βAr

N
= β

N
(AHS +ADH +AAssoc +ABorn) (7.43)

It is important to note that the total number density of ions (ρi) is included in all the
equations mentioned above. The use of this metric in equations 7.22 and 7.29 is due to the
approximation of the cavity function by its non-association limit counterpart. Therefore,
when calculating the cavity function as shown in Eq. 7.30, it is essential to use the total
number density of ions.

The utilization of the total number density of ions for ion-ion interactions, as shown by
ADH in Eq. 7.43, is made clear when observing Figure 7.2. This figure demonstrates that the
ion-ion association is seen as a free energy perturbation in comparison to the non-association
baseline (transitioning from (4) to (5)). This method, which is different from the chemical
approach found in the literature [220–222, 225, 228, 229, 232–234, 236], keeps the ideal gas
reference of the system unchanged. Thus, until the last step, the system only consists of
ions. The formation of ion pairs is only taken into account during the final stage, indicating
its effect on the free energy of the system.

The residual Helmholtz free energy can be used to calculate other thermodynamic prop-
erties of the system. This is done by taking the derivatives of the residual Helmholtz free
energy, as shown in Eq. 7.43, in accordance with the instructions given by Mollerup and
Michelsen [8].

7.2 Model Validation

This research concentrates on the formation of a novel EoS for a charged hard-sphere fluid
that takes into account the ion-ion association. The EoS was created by combining the
DH theory with the RCA and Wertheim’s theory. In the preceding section, the residual
Helmholtz free energy for a system of charged hard spheres was discussed.

This section aims to evaluate the predictive power of the constructed model. It is impor-
tant to note that the model disregards the structure of the solvent. Therefore, when the
model’s predictions are compared with the experimental data, extra attention must be paid
to ion-solvent interactions, making the validation of the model more complex. Nevertheless,
it is still beneficial to compare the model predictions with molecular simulations, as this
enables an exact comparison of the same system without any concerns about parameters or
neglected physics of the system.

This section examines the accuracy of the BiDH model by comparing its predictions of
mean ionic activity, individual ionic activity, and osmotic coefficients with those from the
MC simulations of charged hard-sphere fluids.
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We have taken steps to reduce the risk of bias and improve the strength of theory vali-
dation through MC simulations. To do this, we have used data from a variety of sources,
including the simulations mentioned in Table 7.1. By utilizing MC simulations from multiple
sources, we can evaluate the accuracy of the theoretical model in different contexts, which
can demonstrate the generalizability and usefulness of the models beyond certain situations.

We evaluated the performance of our model by collecting a database of MC simulations
from the literature. These simulations were for aqueous solutions with single salt and as-
sumed the solvent was a continuous medium with constant RSP. The database included
simulations for 1:1, 2:1, 3:1 and 2:2 electrolytes and had a total of 1,172 MIAC, 1,667 IIAC
and 1,396 osmotic coefficient data points.

Table 7.1 summarizes the ionic diameter, the ionic valence type, and the system names
associated with them. The systems are divided into four categories based on the starting
letter of their names, and their respective references are provided. Systems beginning with
"S" are from ref. [289] and have a RSP of 78.308. These include MIAC, IIAC, and the
osmotic coefficient. Systems starting with "G" are sourced from ref. [260] and have a RSP of
78.5. They comprise the MIAC and the osmotic coefficient. Systems beginning with "L" are
obtained from ref. [258] and have a RSP of 78.55. They consist of MIAC and IIAC. Systems
starting with "V" are referenced in [290] and have a RSP ranging from 20 to 120. These also
include MIAC and IIAC. All the mentioned systems are at a temperature of 298.15 K.

It should be mentioned that Lamperski [258], Abbas et al. [289], Gutiérrez-Valladares et al.
[260], and Gillespie et al. [290] have adopted various methodologies, such as the inverse grand
canonical Monte Carlo (IGCMC), the approach proposed by Svensson and Woodward [291],
canonical and grand canonical MC simulations based on the standard Metropolis sampling
algorithm [292], and adaptive grand canonical Monte Carlo (A-GCMC) [293], respectively.

Table 7.1. This table summarize the systems and their associated table name, ionic diameter, and
ion valence type. The AAD% of MIAC was predicted by the BiDH and HS+DH models. The tables
beginning with the letters S, G, L and V are MC simulations from the references [289], [260], [258],
and [290], respectively.

σ− σ+ AAD% AAD% σ− σ+ AAD% AAD%
ln γBiDH

± ln γDH
± ln γBiDH

± ln γDH
±

Z+ = +1, Z− = −1
S1 4.14 4.14 1.62 8.43 S68 3.94 2.68 1.57 6.41
S2 3.62 4.40 3.42 9.61 S69 3.70 3.70 1.06 3.46
S3 4.32 4.32 4.14 9.35 S70 4.30 2.98 1.17 4.26
S4 3.92 4.50 4.32 9.90 S71 3.91 3.91 0.77 1.96
S5 4.64 4.64 2.63 8.52 S72 4.20 3.40 1.05 4.48
S6 4.40 4.64 7.53 10.41 S73 2.24 2.24 2.82 5.08
S7 4.34 4.34 1.14 8.64 S74 2.66 1.80 2.75 5.21
S8 4.80 3.70 4.80 9.90 S75 3.08 1.38 1.84 4.15
S9 3.98 3.98 1.09 5.41 S76 0.30 4.00 6.19 4.95
S10 3.58 4.20 0.87 6.09 S77 3.47 3.47 1.45 6.23
S11 3.98 3.98 1.48 7.53 S78 2.66 4.10 1.40 6.46
S12 3.62 4.20 2.57 9.67 S79 4.50 2.04 1.11 5.62
S13 4.12 4.12 1.70 8.99 S80 3.46 3.36 1.51 6.74
S14 3.92 4.10 3.36 9.66 S81 3.76 3.76 1.21 8.47
S15 4.66 4.66 2.71 8.60 S82 2.66 4.60 1.06 6.70
S16 4.40 4.50 6.70 10.23 S83 4.50 2.76 1.10 6.78
S17 4.52 4.52 2.62 7.58 S84 4.58 2.68 1.08 6.71
S18 4.80 4.00 7.07 10.51 S85 4.40 4.40 0.72 2.92
S19 3.96 3.96 1.14 5.41 S86 5.00 3.40 0.64 4.79
S20 3.58 4.20 0.87 6.09 S87 3.82 4.20 1.38 8.19
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Table 7.1. (Continued.)

σ− σ+ AAD% AAD% σ− σ+ AAD% AAD%
ln γBiDH

± ln γDH
± ln γBiDH

± ln γDH
±

S21 3.50 3.50 1.72 7.30 S88 4.12 4.30 4.13 10.12
S22 3.62 3.36 1.38 6.43 S89 4.24 4.80 5.10 10.22
S23 3.68 3.68 0.75 5.67 S90 5.00 3.50 1.53 7.15
S24 3.92 3.36 1.13 6.44 S91 3.82 4.00 1.35 7.44
S25 3.96 3.96 1.14 5.41 S92 4.12 3.90 1.94 8.89
S26 4.40 3.36 1.30 6.88 S93 4.60 4.30 1.40 6.41
S27 3.60 3.60 1.19 6.97 S94 5.00 3.80 4.55 9.41
S28 4.80 2.04 1.25 7.11 S95 2.88 1.58 2.21 4.36
S29 2.84 2.84 2.15 4.34 S96 3.82 3.16 1.34 4.41
S30 3.58 2.04 2.20 4.72 S97 4.12 3.16 1.15 4.47
S31 3.26 3.26 2.01 6.74 S98 4.20 2.44 1.38 4.81
S32 3.62 2.70 1.69 5.48 S99 3.70 3.56 2.53 11.50
S33 3.30 3.30 1.71 6.57 G1 4.25 4.25 0.29 2.24
S34 3.92 2.68 1.57 5.99 G2 3.62 5.43 0.27 2.28
S35 3.70 3.70 1.39 7.67 L1 4.25 4.25 5.04 10.01
S36 4.40 2.68 1.15 6.21 L5 3.00 4.25 1.26 8.81
S61 2.87 2.87 1.16 2.23 V1 3.00 1.50 1.23 2.57
S62 2.66 3.08 1.17 2.24 V2 3.00 3.00 1.34 3.59
S63 3.70 2.04 0.96 2.02 V3 3.00 4.50 2.72 6.43
S64 2.38 3.36 1.10 2.17 V4 3.00 6.00 2.57 5.19
S65 3.38 3.38 1.29 3.31 V5 3.00 7.50 2.95 4.35
S66 2.66 3.96 1.59 6.42 V6 3.00 9.00 3.04 3.41
S67 3.86 2.76 1.60 6.45
Z+ = +2, Z− = −1
S37 4.98 4.98 8.23 27.98 S52 4.40 5.94 6.14 19.99
S38 3.62 5.90 10.42 25.92 S53 5.16 5.16 4.82 21.23
S39 5.16 5.16 4.82 21.23 S54 4.80 5.30 7.22 22.39
S40 3.92 6.20 8.84 22.28 S55 4.00 4.00 3.83 16.54
S41 5.40 5.40 9.25 21.77 S56 3.58 4.30 3.13 20.03
S42 4.40 6.18 11.18 23.44 S100 3.82 5.70 3.96 18.50
S43 5.50 5.50 8.14 20.21 S101 4.12 6.00 6.43 20.83
S44 4.80 6.00 12.22 23.37 S102 4.60 5.98 7.77 21.41
S45 4.60 4.60 3.27 18.39 L3 4.20 4.20 3.38 21.34
S46 3.58 5.90 10.05 25.97 V13 3.00 1.50 2.39 3.24
S47 4.76 4.76 3.54 19.63 V14 3.00 3.00 3.22 12.96
S48 3.62 5.48 4.68 21.71 V15 3.00 4.50 2.03 15.20
S49 5.12 5.12 5.08 19.96 V16 3.00 6.00 6.01 15.34
S50 3.92 5.80 6.73 22.48 V17 3.00 7.50 4.60 9.96
S51 5.30 5.30 5.49 21.67 V18 3.00 9.00 2.65 7.38
Z+ = +3, Z− = −1
S57 5.10 5.10 3.62 32.85 V19 3.00 1.50 13.58 12.65
S58 3.62 7.20 18.84 39.77 V20 3.00 3.00 8.04 24.71
S59 4.80 4.80 3.14 30.38 V21 3.00 4.50 6.12 18.43
S60 3.62 6.40 11.10 29.94 V22 3.00 6.00 7.39 19.02
S103 3.82 7.00 15.25 42.54 V23 3.00 7.50 6.10 14.94
S104 3.82 6.20 13.22 39.24 V24 3.00 9.00 10.04 17.75
L4 4.20 4.20 6.62 32.10
Z+ = +2, Z− = −2
G3 4.25 4.25 8.98 26.43 V9 3.00 4.50 6.79 22.29
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Table 7.1. (Continued.)

σ− σ+ AAD% AAD% σ− σ+ AAD% AAD%
ln γBiDH

± ln γDH
± ln γBiDH

± ln γDH
±

L2 4.20 4.20 8.97 58.46 V10 3.00 6.00 5.03 40.42
V7 3.00 1.50 33.8 58.57 V11 3.00 7.50 4.08 28.48
V8 3.00 3.00 13.37 23.96 V12 3.00 9.00 2.39 17.15

7.2.1 Mean Ionic Activity Coefficient
Figures 7.3-7.6 provide a comprehensive comparison between the MIAC of various elec-
trolytes, as predicted by the BiDH model, and the corresponding results obtained through
MC simulations. This comparison allows us to evaluate the accuracy and reliability of the
BiDH model, as well as to identify any discrepancies or shortcomings of the model. The
figures show that the predictions of the BiDH model are represented by the lines, while the
data points are the results of the MC simulations.

The BiDH model is shown in Figure 7.3 to predict MIAC compared to the MC simu-
lations reported by Lamperski et al. [258]. The specifications of the charged hard spheres
investigated in this figure are outlined in Table 7.1. The RSP of the solvent for systems L2-
L4 is 78.55 and for systems L1 and L5 is 78.65. It is noteworthy that the IGCMC technique
is employed to calculate the MIAC and IIAC.

Compared to the MC simulations of Abbas et al. [289], Figure 7.4 shows the BiDH
predictions. The Metropolis algorithm is employed by Abbas et al. [289] in the canonical
ensemble for their MC simulations, while the Widom insertion method is used for the activity
coefficients. For all systems beginning with letter S (including those in Figure 7.4), the RSP
of the solvent is the RSP of water at 298.15 K.

The figures demonstrate that the BiDH predictions are consistent with the MC simula-
tions. It should be noted that L1 and S4, L2, S42, S46, and L3, and S103, S104, and L4 are
1:1, 2:2, 2:1, and 3:1 electrolyte solutions, respectively.

Figures 7.5 and 7.6 illustrate the effect of ionic diameter on the accuracy of the MIAC
prediction by the BiDH model. In the 1:1 electrolyte system, the diameter of the cation
ranges from 3 to 9 (Å) while the diameter of the anion remains at 3 (Å). For the 2:2 electrolyte
system, the RSP is 78.45 and the temperature is 298.15 K. The comparison between the
BiDH model and the MC simulations reported by Gillespie et al. [290] is presented in both
figures.

It is evident that BiDH theory is capable of predicting the MIAC of electrolyte solutions
over a broad range of ionic size asymmetry, with the ratio of σ+

σ−
ranging from 1 to 3.

The MIAC predictions of the BiDH model are compared to the MC simulations sum-
marized in Table 7.1 in Figure 7.7. Points in orange, green, red, and purple represent 1:1,
2:1, 2:2 and 3:1 electrolytes, respectively. The circle, triangle, square, and diamond points
signify systems beginning with the letters S, L, G, and V, respectively. The R2 and absolute
average deviation in percent (AAD%) are also displayed in this figure.

The predicted MIAC results of the BiDH model are in close agreement with the MC
simulations in a wide range of ln γ± values, from -4 to +4. It is remarkable that the model’s
accuracy is consistent regardless of the asymmetry of the ionic charges and ionic diameter.

7.2.2 Individual Ionic Activity Coefficient
In this section, we evaluate the ability of the BiDH model to predict the IIAC of charged
hard sphere fluids by comparing it to MC simulations from the literature. Figures 7.8 and
7.9 show the activity coefficients of cations (green line and points), anions (blue line and
points) and salts (black line and points) for systems S37 [289] and V21 [290], respectively.
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Figure 7.3. This Figure shows the BiDH model predictions of the MIAC (ln γc
±) for systems L1-

L4, which are summarized in Table 7.1, and these predictions are compared to the MC simulations
from ref. [258] (represented by symbols). Reproduced from ref. [286], with the permission of AIP
Publishing.
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Figure 7.4. The BiDH model (solid lines) was used to predict the MIAC (ln γc
±) for systems S4,

S42, S46, S103, and S104, which are summarized in Table 7.1. These predictions were then compared
to the MC simulations (symbols) from ref. [289]. Reproduced from ref. [286], with the permission of
AIP Publishing.
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Figure 7.5. This figure presents the MIAC (ln γc
±) predictions of the BiDH model for 1:1 electrolytes

with different cation’s diameters (shown next to the lines) which is compared with the MC simulations
(symbols) from ref. [290]. Reproduced from ref. [286], with the permission of AIP Publishing.
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Figure 7.6. This figure presents the MIAC (ln γc
±) predictions of the BiDH model for 2:2 electrolytes

with different cation’s diameters (shown next to the lines) which is compared with the MC simulations
(symbols) from ref. [290]. Reproduced from ref. [286], with the permission of AIP Publishing.
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Figure 7.7. The predicted MIAC (ln γBiDH
± ) by the BiDH model is compared to the MIAC from

MC simulations [258, 260, 289, 290] (ln γMC
± ), with the solid black line representing the perfect fit.

Reproduced from ref. [286], with the permission of AIP Publishing.

Figures D.18-D.28 presents the IIAC for other systems summarized in Table 7.1. The BiDH
model’s predictions are also included, and they are compared to the MC simulations. It is
clear from these figures that the predictions of the BiDH model are in good agreement with
the MC simulations.

Figure 7.10 offers a detailed comparison between the IIAC predicted by the BiDH model
and the MC simulations for all the systems in Table 7.1. The BiDH model is seen to be
fairly accurate in predicting the IIAC, for highly asymmetric ions in size. Nevertheless,
its performance is slightly less impressive for the IIAC, with R2

+ = 0.97 and R2
− = 0.93,

compared to the MIAC with R2 = 0.99.
The adjustment to the DH theory for ion-ion association that was made in this research

has been successful, even in difficult cases where the ions have very high charges or are of
very different sizes. Classical ion-ion interaction theories, such as the MSA theory [5, 6],
have had difficulty with these types of situation, as demonstrated by Gillespie et al. [290].
However, the new versions of the MSA theory have been found to be accurate for both IIAC,
as reported by Høye and Gillespie [294], and MIAC in these scenarios [290].

7.3 Discussion

In the previous section, we provided an overview of the results of the comparison of the
predictions of the BiDH model with the MC simulations. The findings showed that the
BiDH model is accurate in predicting the MIAC and IIAC of various charged hard sphere
fluids. In this section, we will look more closely at the evaluation of the BiDH model.
We will start by addressing the question of whether it is necessary to consider the ion-ion
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Figure 7.8. This figure presents the predicted IIAC by the BiDH model (lines) (ln γc
i ) for system

S37 (a 2:1 electrolyte with σ− = 4.98 × 10−10 m and σ+ = 4.98 × 10−10 m from ref. [289], which was
then compared to the MC simulations (symbols). Reproduced from ref. [286], with the permission
of AIP Publishing.
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Figure 7.9. This figure presents the predicted IIAC by the BiDH model (lines) (ln γc
i ) for simulation

V21 (a 3:1 electrolyte with σ− = 3 × 10−10 m and σ+ = 4.5 × 10−10 m) from ref. [290], which was
then compared to the MC simulations (symbols). Reproduced from ref. [286], with the permission
of AIP Publishing.



152 7 Binding Debye-Hückel Theory

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

ln γMC
i

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
ln
γ
B
iD
H

i

R2
+ = 0.97

AAD+% = 13.08

R2
− = 0.93

AAD−% = 11.33

Orange− 1 : 1
Green− 2 : 1
Red− 2 : 2

Purple− 3 : 1
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the perfect fit. Reproduced from ref. [286], with the permission of AIP Publishing.

association for predicting the thermodynamic properties of electrolyte solutions. Then, we
will emphasize the importance of using a physically meaningful cavity function to take into
account the ion-ion association. Lastly, we discuss the significance of ion-dipole interactions
in cavity function and their effect on the structural properties of associative electrolytes,
such as the proportion of unbound ions.

7.3.1 Importance of Ion-Ion Association

Previous research [42,59,69,70] has shown that the thermodynamic properties of electrolyte
solutions, even those containing electrolytes with a high probability of ion-ion association,
can be roughly estimated by assuming complete dissociation of electrolytes. This raises the
question of the importance of ion-ion association in determining the common properties of
electrolyte solutions, such as MIAC. Therefore, in this section, we compare the predictions of
the BiDH model, which takes into account ion-ion association, with those of the DH theory,
which disregards ion-ion association.

The comparison of the predicted MIAC, osmotic coefficient, and IIAC using BiDH (solid
lines), HS + DH (dashed lines) and MC simulations (points) is shown in Figures 7.11-7.12.
The parameters used for these predictions are listed in Table 7.1. The only difference between
the BiDH theory (Eq. 7.43) and the HS+DH model is the way the ion-ion association is
treated in the Helmholtz free energy. The BiDH theory takes into account ion-ion association,
leading to a contribution AAssoc in the free energy and thus affecting other properties. On
the other hand, the HS+DH model assumes that all ions in the solution exist as free ions,
resulting in no contribution to the free energy or other thermodynamic properties due to
ion-ion association.
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Figure 7.11. The BiDH model (solid lines) and the HS + DH model (dashed lines) were used to
predict the MIAC (ln γc

±) for systems V14-18 (2:1 electrolytes where σ− = 3 × 10−10 m and σ+ are
3, 4.5, 6, 7.5, and 9 ×10−10 m, respectively). These predictions were compared to the results of
MC simulations (symbols) from ref. [290]. Reproduced from ref. [286], with the permission of AIP
Publishing.

The comparison between the BiDH model and the MC simulations in Figures 7.11, 7.12,
and 7.13 reveals a better agreement for the former. Table 7.1 provides quantitative evidence
to support this observation, with the AAD% of MIAC produced by the BiDH model being
consistently lower than the MIAC predicted by the HS+DH model. It is clear that the
BiDH model improves the predictions of the DH theory by incorporating ion-ion association.
However, it is worth noting that the HS+DH model can also achieve a satisfactory agreement
with the MC simulations by adjusting the ionic diameters employed in the predictions. The
main issue here is how to justify the modification of the ionic diameter, given that in MC
simulations there are no solvent molecules, and thus no solvated ionic diameter exists.

This research is not focused on determining which thermodynamic model is the most
effective in predicting properties such as MIAC, IIAC, and osmotic coefficient. Instead, we
are exploring whether the ion-ion association should be taken into account when modeling
electrolyte solutions. To this end, we developed an EoS tailored for charged hard sphere
systems, which includes modifications to the DH theory. Our findings demonstrate that this
new EoS is more accurate in predicting the MIAC, IIAC and osmotic coefficient for these
systems (see Figures 7.11-7.13). To determine which thermodynamic model is the most
accurate in predicting the MIAC, IIAC, and osmotic coefficient in electrolyte solutions, a
comprehensive comparison of various models cited in the literature (such as those in [20,214,
220–222, 232–234, 236, 242, 290, 294–296] and associated references) is necessary. However,
this comparison, which should include both simulation data and the experimental data, is
beyond the scope of our current study.

7.3.2 Cavity Function
The BiDH theory is based on the cavity function, which is essential to calculate the propor-
tion of unbound ions by using the ratio of activity coefficients for reactants and products.
This section looks at the comparison between the cavity function used in the BiDH model
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Table 7.1 from ref. [260,289]. The predictions were then compared to the MC simulations (symbols).
Reproduced from ref. [286], with the permission of AIP Publishing.
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σ+ = 5.1 × 10−10 m. Reproduced from ref. [286], with the permission of AIP Publishing.
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and the BiMSA model. Additionally, we explore the importance of ion-dipole interactions
in cavity function, emphasizing their role in accurately depicting the structural poperties
of electrolyte solutions. When the cavity function is compared with and without ion-dipole
interactions, we can gain an understanding of their influence on the predicted results. Lastly,
we address why the definition of a single association site in the SAFT framework for ions
and treating the ion-ion association as hydrogen bonding may not reflect the true physical
behavior of electrolyte systems, stressing the need for a more precise method to capture the
ion-ion association and its effects on thermodynamic properties.

7.3.2.1 Cavity Function from the BiMSA Theory

Bernard and Blum [19, 20] combined Wertheim’s version of the Ornstein-Zernike equation
with the MAL to create the BiMSA model. Although the exact derivation and results of
BiMSA, particularly BiMSA-EXP, are beyond the scope of this study, a closer look reveals
that an exponential approximation was used to represent the contact probabilities as the
closure equation. This approximation led to the formulation of a cavity function expressed
in Eq. 7.44:

yBiMSA
mn = gHS

mn exp
[

−λ (Z′
mZ

′
n − ZmZn)
σmn

]
(7.44)

This equation yields Z′
m and λ, which are determined by equations 7.45 and 7.46 (as

shown in the following).

Z′
m = Zm − ηBσ2

m

1 + ΓBσm
(7.45)

λ = βe2

4πε0εr
(7.46)[

ΓB
]2

πλ
=
∑

i

ρiz
′
i
2 +
∑
m,n

Z′
mZ

′
n
ρ̃mn

σmn
(7.47)

ηB = π

2∆Ω

[∑
i

ρiσiZi

ui
+
∑
m,n

σ2
mZn

umun

ρ̃mn

σmn

]
(7.48)

∆ = 1 − ζ3 (7.49)

Ω = 1 + π

2∆

[∑
i

ρiσ
3
i

ui
+
∑
m,n

σ2
mσ

2
n

umun

ρ̃mn

σmn

]
(7.50)

ui = 1 + ΓBσi (7.51)

The BiMSA parameters, denoted as ΓB and ηB , are determined through calculations
based on equations 7.47-7.49. The number density of bonded ions, represented as ρ̃mn, is
affected by the cavity function and the number density of other bonded ions, as described
in Eq. 7.15. This leads to a system of nonlinear equations, including equations 7.15, 7.47,
and 7.48, which must be solved numerically. In this study, the number density of ion pairs
(ρ̃mn) and the BiMSA screening parameter are the primary unknown variables, with ηB as
the secondary unknown variable. An initial guess of ΓB

0 = κ/2 and ρ̃mn = 0 is used to
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numerically solve the system of M × N MAL equations (Eq. 7.15) along with Eq. 7.47.
After the determination of the BiMSA parameters, the cavity function of the BiMSA can be
calculated using Eq. 7.44.

7.3.2.2 Cavity Function from SAFT

The remarkable success of thermodynamic perturbation theory in modeling hydrogen bond-
ing has led to the exploration of whether the same approach can be used to study ion-ion
association in electrolyte solutions using SAFT-type models. In SAFT-type equations of
state, the molecular association resulting from hydrogen bonding is usually represented by
the inclusion of electron-donor or acceptor sites on the molecules. The interactions between
these sites are then described by a square-well potential, which is characterized by two pa-
rameters: the association energy (ϵAiBj or well depth) and the association volume (κAiBj or
βAiBj , also known as well width). The fraction of molecules not bonded at site A (XAi ) is
then calculated using Eq. 7.52, where ∆AiBj stands for the association strength (equations
7.53 and 7.54).

XAi = 1
1 +NA

∑
j

∑
Bi
ρjXBj ∆AiBj

(7.52)

From SAFT [285], we have the following:

∆AiBj = σ3
ijκ

AiBjgHS
ij

[
exp
(
βϵAiBj

)
− 1
]

(7.53)

In this equation, gHS
ij is the RDF of the hard sphere at contact and σij = 0.5(σi + σj).

From CPA [40], we have:

∆AiBj = bijβ
AiBjgHS

ij

[
exp
(
βϵAiBj

)
− 1
]

(7.54)

The co-volume parameter bij is related to the diameter of ions [42]. Assuming that each
ion has a single association site, the fraction of components not bound at site A (XAi ) can
be simplified to the fraction of unbound components (αi), as shown in Eq. 7.55:

XAi = ρ̃i

ρi
= αi (7.55)

The symbols ∆ij , βij , and κij can be used to denote the strength, volume, and energy
of the association between components, respectively. The fraction of unbound ions can then
be determined using Eq. 7.56:

αi = 1
1 +NA

∑
j
ρjαj∆ij

(7.56)

When looking at a fluid made up of only charged hard spheres, with or without a disper-
sion term, and assuming that the sphere diameters remain constant regardless of tempera-
ture, certain simplifications can be made. In this case, the number of segments (mi) is equal
to 1, and the diameter of each component is represented by σi. This means that the only
density-dependent factor that affects the association strength in SAFT-type models is gHS

ij ,
which is the RDF of hard spheres. Therefore, the composition-dependent cavity function in
SAFT-type equations of state is equivalent to the RDF of hard spheres.

ySAF T
ij = gHS

ij (7.57)
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Figure 7.14. The cavity function (ln yij) of the BiDH model (represented by solid lines), the
BiDH model without the ion-dipole term (dashed lines), the BiMSA model (dashed-dotted lines),
and SAFT-type models (dotted lines) for 1:1 (black lines), 2:1 (blue lines), and 3:1 (green lines) are
shown. Reproduced from ref. [286], with the permission of AIP Publishing.

7.3.2.3 Cavity Function Assuming Ion Pairs Are Not Dipolar

In the method section, we applied Kirkwood theory [235], which was originally developed for
zwitterions, to consider ion-dipole interactions in the zero-density limit of ion pairs. If we
assume that the ion pairs are not dipolar, the cavity function and the fraction of unbound
ions will be different. We also demonstrated the cavity function we developed without the
ion-dipole term (µDI

mn = 0 in Eq. 7.30 ). Figure 7.14 shows the cavity function predicted
by BiDH (Eq. 7.30), BiDH without ion-dipole term (Eq. 7.30 when µDI

mn = 0), BiMSA (Eq.
7.44), and SAFT-type EoS (Eq. 7.57) in relation to the ionic strength for the systems L1-L3
listed in Table 7.1.

Our aim in this comparison is to evaluate the cavity function we used in this study, based
on the RCA approach by Stell et al. [240], against the cavity function derived from the
WOZ equation reported by Bernard et al. [20] (Eq. 7.44). This will help us determine
if the approximations made by Stell and his team are accurate. Additionally, we present
the cavity function from our model that does not take into account ion-dipole interactions,
since the BiMSA model also disregards them. Therefore, a more suitable comparison would
be between the cavity functions of the BiDH without the ion-dipole term and the BiMSA
models.

As demonstrated in Figure 7.14, the cavity functions of BiDH, BiDH without the ion-
dipole term, and BiMSA are similar and have a similar slope at very low ionic strengths,
indicating their consistent behavior at infinite dilution. However, as the ionic strength
increases, these three cavity functions start to differ from each other. Notably, the cavity
function of BiDH without the ion-dipole term follows a trend similar to that of BiMSA,
displaying close qualitative agreement between the two. In contrast, the cavity function of
BiDH has a distinct trend at higher ionic strengths, diverging from the other two models.

Figure 7.14 reveals why introducing association sites to ions within the SAFT equations
of state, to account for ion-ion association, may be flawed. The figure shows that the cavity
function of the SAFT-type EoS has a distinct pattern compared to the other models. In
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particular, the logarithm of the cavity function is consistently positive and remains close to
zero.

This comparison yields two main insights. First, the cavity function used in SAFT-
type EoS may not be adequate to accurately represent the ion-ion association, as it does
not take into account the electrostatic nature of the association. This implies that further
considerations are necessary to consider the electrostatic contributions to the cavity function.
Second, the approach proposed by Stell et al. to approximating the cavity function appears
to be accurate, as demonstrated by the agreement between the BiDH and BiMSA models.
This confirms the validity of their methodology and its capability in predicting the cavity
function in electrolyte solutions.

7.3.3 Effect of RSP

This section seeks to evaluate the ability of the BiDH model to predict the MIAC of elec-
trolytes in systems with a lower RSP. Previously, the systems studied had a RSP close to
that of pure water, around 78.5. Here, we expand our research to encompass systems with
lower RSP. This will enable us to investigate the model’s performance under conditions
where electrostatic interactions between ions are expected to be more powerful.

At a temperature of 298.15 K and with the anion diameter fixed at 3 Å, Figure 7.15 shows
the logarithm of the MIAC plotted against the cation diameter for 1:1 electrolyte systems
with different RSP values of the solvent.

The BiDH model is capable of accurately predicting MIAC for electrolytes with solvent
RSP values of 48, 78.5, and 120, as demonstrated in Figure 7.15. However, when the RSP of
the solvent is 20, a slight divergence from the MC simulations is observed. This discrepancy
can be attributed to the fact that the upper limit of the Bjerrum association constant
equation at the reference state depends only on the ionic diameter and not on the solvent
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Figure 7.15. The BiDH theory was used to predict the effect of RSP on 1:1 electrolytes with
an anion diameter of 3 × 10−10 m, an ionic strength of 1 mol · L, and a temperature of 298.15
K (solid lines). The results were compared to those from the HS+DH model (dotted lines) and
MC simulations reported by Gillespie et al. [290] (points). Reproduced from ref. [286], with the
permission of AIP Publishing.
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properties. Consequently, the equation underestimates the association constant at infinite
dilution, leading to a over-prediction of MIAC.

It is essential to emphasize that the upper limit of the Bjerrum model (lmn in equation
7.37) marks a cutoff point beyond which oppositely charged ions are not taken into account
as ion pairs. Logically, this cut-off distance should depend on the temperature, solvent(s)
properties, and ions. Nevertheless, to the best of our knowledge, no methods have been
proposed to predict this cut-off distance apart from half of the Bjerrum length, which is also
an arbitrary selection. It could be adjusted to the experimental data in cases where real
systems are being studied or simulated, as in the context of this study. However, such an
adjustment could lead to the formation of a semi-empirical model rather than a predictive
one. Therefore, in this study, we continue to use a global parameter (θ) that links the
distance of the closest approach to this cutoff distance.

BiDH has been shown to be effective in situations where the RSP is much lower than that
of water. This implies that it is suitable for practical applications where the permittivity of
the solvent decreases as the salt concentration increases. This theory could be particularly
useful in the II component of the II+IW theory, as discussed in the comprehensive review
by Valiskó and Boda [295], thus eliminating the need for computationally expensive GCMC
simulations or less accurate analytical methods such as the DH theory or the traditional
MSA theory.

7.3.4 Structural Properties

The preceding sections have thoroughly examined the macroscopic thermodynamic proper-
ties that are usually evaluated. Furthermore, the BiDH theory provides insight into the
structural properties of the solution, such as the proportion of unbound ions (αi). Examin-
ing this feature in more detail is essential since it is the basis of the constructed model and
of great importance.
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Figure 7.16. This figure presents the predictions of the BiDH theory for the proportion of free ions
(α) for systems V8, V9, and V14 (shown in Table 7.1) with (solid lines) and without (dashed lines)
taking into account ion-dipole interactions. Reproduced from ref. [286], with the permission of AIP
Publishing.
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The graph in Figure 7.16 shows the correlation between the proportion of unbound ions
and the ionic strength for systems V8, V9 and V14. Solid lines indicate the estimated fraction
of unbound ions when ion-dipole interactions are taken into account in the cavity function,
while dashed lines indicate predictions without taking into account ion-dipole interactions.

The figure illustrates the substantial effect of including ion-dipole interactions in the
cavity function on the fraction of unbounded ions. Without these interactions, the fraction
of unbound ions initially decreases with increasing ionic strength but then increases slightly
or remains constant at higher ionic strengths. This behavior was previously reported by
Naseri Boroujeni et al. [214] for the Ebeling-Grigo model (see Chapter 6), which assumes
ideal ion pairs with an activity coefficient of one.

The accuracy of the predicted fraction of unbound ions cannot be accurately determined
without taking into account the structural properties of ionic fluids. As Naseri Boroujeni et
al. [214] have pointed out, the validation of the developed model necessitates the inclusion
of molar conductivity, which is essential for assessing structural properties. To validate
the predicted fraction of free ions, it is necessary to incorporate the BiDH theory into a
comprehensive EoS such as CPA [40], PC-SAFT [54], or SAFT-VR-Mie [68] that takes
into account non-electrostatic interactions. Subsequently, thermodynamic properties such
as MIAC, osmotic coefficient, and density should be evaluated for real electrolyte solutions.
Finally, structural properties, including the fraction of unbound ions, should be linked to
an electrical conductivity model (such as models mentioned in these references [120, 124]),
allowing a comparison between the predicted molar conductivity and the experimental data.
This investigation will be presented in the last part of this thesis.

7.3.5 BiDH vs. BiMSA
In this section, a formal comparison analysis of two equations of state for charged hard-
sphere systems, BiDH and BiMSA, is performed. For this analysis, three properties of
charged hard-sphere fluids are studied, MICA, osmotic coefficient, and fraction of unbound
ions. In the first part, the effect of the size of the ions on the predictions of these properties is
evaluated. In the second part, the effect of the charge of ions present in the solutions on the
predictions of the models is analyzed. Lastly, in the third part, the effect of the RSP of the
system on the predictions of the models is studied. The objective of this study is to assess
the sensitivity of the models on major parameters in order to deepen our understanding for
the integration of the mentioned models in an electrolyte EoS.

It should be noted that in this comparison analysis, all parameters and properties are
exactly the same for both models. The Bjerrum model is used for the association constant
at infinite dilution and the upper limit of the Bjerrum integral is set to 1.07σ+−.

7.3.5.1 Sensitivity to Size Asymmetry

In this section, MIAC, osmotic coefficient, and the fraction of free ions of a 2:2 electrolyte
solution in which the RSP of the solvent is fixed at 80 is predicted by BiDH and BiMSA.
For the calculation of the properties mentioned, the diameter of the anion is fixed at 3 Å
while the diameter of the cation varies from 0.5 to 10 Å. The salt concentration also varies
from 0.25 to 2 mol · L−1.

Figure 7.17 presents the effect of the variation of the cation diameter on the prediction
of MIAC, osmotic coefficient, and free ion fraction by the BiDH and BiMSA models. As can
be seen from this figure, the predictions of the BiDH and BiMSA models for the MIAC and
the osmotic coefficient are very close to each other, disregarding the ratio of cation to anion
diameter or salt concentration. However, as is evident from graphs c and d in Figure 7.17,
the fraction of free ions predicted by the BiDH and BiMSA models are both quantitatively
different.
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Figure 7.17. This figure compares the predictions of the BiDH and BiMSA model for electrolyte
solutions where Z− = −2, Z+ = +2, σ− = 3 × 10−10 m, εr = 80 and the salt concentration is 0.25,
0.5, 1.0, 2.0 mol · L−1 corresponding to the colors. Solid lines are predictions from the BiDH model,
while dotted lines are predictions from the BiMSA model.

From this sensitivity analysis, it can be implied that varying the diameter of ions, as it
is usually an adjusting parameter, affects almost similarly the predictions of MIAC and the
osmotic coefficient, which are usually the properties used in parameter estimation. However,
the impact of varying the ionic diameter on the fraction of free ions is very different. The
question is whether it is possible to verify which fraction of free ions better describe the
physics of the system, and whether this question can be answered unless other properties
are considered.

7.3.5.2 Sensitivity to Ion Charges Asymmetry

In this section, the effect of charge of the ions on the MIAC, osmotic coefficient, and fraction
of free ions predicted by the BiDH and BiMSA models is discussed. Figure 7.18 presents the
predictions of the properties mentioned for nine electrolyte solutions in which the charge of
the cations varies from 1 to 3 and the charge of the anions varies from -1 to -3.

As is evident from Figure 7.18, the predictions of MIAC and osmotic coefficient by the
BiDH and BiMSA models are very close to each other while the fractions of free ions are
very different. Charges of the ions are not adjusting parameters in the electrolyte equations
of state or other models. However, it should be noted that the fraction of free ions predicted
by the BiDH model is lower than the fraction of free ions predicted by the BiMSA model.
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Figure 7.18. This figure compares the predictions of the BiDH and BiMSA model for electrolyte
solutions where σ− = 3.5 , σ+ = 3 , cE = 1 mol · L−1 and the RSP of the solvent is 80. Solid lines
are predictions from the BiDH model, while dotted lines are predictions from the BiMSA model.

7.3.5.3 Sensitivity to RSP

In this section, the sensitivity of the predictions of the models to the variation of the RSP
is studied. Figure 7.19 shows the predictions and the corresponding specification of the
electrolyte. As can be seen from this figure, the predicted MIAC and osmotic coefficient by
the BiDH and BiMSA models are very close to each other, while the fraction of free ions is
very different.

From this sensitivity analysis, a very important conclusion can be drawn. Both BiDH
and BiMSA models provide similar results when macroscopic properties such as MIAC and
the osmotic coefficient are compared. However, the fractions of free ions predicted by the
models are both quantitatively and qualitatively different.

7.4 Summary and Conclusions

This study focused on the development of a new EoS for a charged hard sphere fluid that
incorporates ion-ion association. The EoS was developed using the DH theory along with
the RCA and Wertheim’s theory. The predictive accuracy of the developed model was
assessed by comparing its predictions with various MC simulations reported in the literature
for charged hard-sphere fluids. The assessment focused on the MIAC, IIAC, and osmotic
coefficient obtained by the model, compared with values reported in MC simulations.
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Figure 7.19. This figure compares the predictions of the BiDH and BiMSA model for electrolyte
solutions where Z− = −1, Z+ = +1, σ− = 6 × 10−10 m, σ+ = 3 × 10−10 m and the RSP of the
solvent is 100, 80, 60, 40 and 20 corresponding to the colors. Solid lines are predictions from the
BiDH model, while dotted lines are predictions from the BiMSA model.

The comparisons between the model predictions and the MC simulations revealed a good
agreement for the MIAC, IIAC, and osmotic coefficients. The predictions showed consistency
across different electrolyte systems, including 1:1, 2:1, 3:1, and 2:2 electrolytes, with varying
ionic diameters.

The importance of considering ion-ion association was highlighted by comparing the pre-
dictions of the developed model with the DH theory, which neglects ion-ion association. The
results demonstrated that incorporating ion-ion association in the model improved its accu-
racy in predicting thermodynamic properties of electrolyte solutions, such as the MIAC and
IIAC.

The significance of the cavity function in the model was discussed, comparing it with
the cavity function from the BiMSA theory. The incorporation of ion-dipole interactions
within the cavity function was found to be crucial in accurately representing the structural
properties of electrolyte solutions. Furthermore, the limitations of solely defining an associa-
tion site in the SAFT framework were emphasized, highlighting the need for a more precise
approach in capturing ion-ion association and its effects on thermodynamic properties.

Overall, the developed EoS showed promising predictive capabilities for charged hard
sphere fluids with ion-ion association. The comparisons with MC simulations provided
validation and demonstrated the accuracy and generalizability of the model across different
electrolyte systems.
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Chapter Message

The main conclusion of this research is the successful formulation of a new EoS for
charged hard sphere fluids that includes ion-ion association, which has been shown
to be more accurate than the DH theory. This was confirmed through extensive
comparisons with MC simulations for a variety of electrolyte systems.



Part IV
The Unified Framework





CHAPTER 8
Implicit Solvent Investigation

In Chapter 6, it has been shown that to investigate the effect of ion-ion association in
electrolyte solutions, a concurrent investigation of thermodynamic properties and electrical
conductivity is required.

In chapter 7, a new EoS has been developed for charged hard-sphere fluids where ion
pairing is taken into account. In chapters 4 and 5, two models (single- and multi-salt) for
the electrical conductivity of unassociated electrolyte solutions were developed.

In this chapter, the developed EoS and electrical conductivity models will be combined to
produce a unified investigation of the property predictions of associative electrolyte solutions.
In this chapter, unlike in the following chapter, the structure of the solvent is ignored.
Therefore, a unified investigation will be performed considering an implicit solvent model.
In the first part of the investigation, the BiDH theory (presented in chapter 7) and the
single-salt electrical conductivity model (presented in chapter 4) will be combined to predict
the molar conductivity and MIAC of three integral systems. These systems are 2:2 aqueous
sulfates, sodium chloride-water-1,4-dioxane system, and ionic liquid-co-solvent solutions.

In the second part, the effectiveness of the electrical conductivity model developed for
mixed electrolyte solutions in chapter 5 will be used to predict the electrical conductivity of
electrolyte solution that forms ion complexes.

Part of this chapter has already been published or submitted for publication in the fol-
lowing papers.

• New electrical conductivity model for electrolyte solutions based on Debye-Hückel-Onsager
theory [184].

• A Novel Model for Predicting the Electrical Conductivity of Multi-salt Electrolyte So-
lutions [200].

8.1 Ion Pairing and Conductivity

In Chapter 4, a meticulous assessment of the newly developed electrical conductivity model
was carried out, comparing its with other models documented in the literature. Tables 4.4
and 4.5 illustrate that as the charge of ions increases, the accuracy of both the developed
model and the existing models decreases. This analysis also reveals a consistent tendency
of the developed models to overestimate conductivity when compared to experimental data.
Consequently, the root cause of this discrepancy must be sought in an assumption made
during the model derivation, leading to the overestimation of conductivity. The hypothesis
that ion pairs are responsible for the inconsistency was first suggested by Fuoss and Kraus
[297] and has been supported by subsequent research [80,84].

In Chapter 7, a new EoS for associative electrolyte solutions named BiDH was developed.
The capability of the EoS was assessed by comparing its predictions with the MC simulations.

In this chapter, the BiDH model is combined with the developed electrical conductivity
model for the prediction of associative electrolyte solutions assuming implicitly the influence
of the solvent(s).

Eq. 8.1 present the specific conductivity of associative electrolyte solutions for a symmet-
rical (Z+ = −Z−) single-salt electrolyte solution.
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In Eq. 8.1, αi is the fraction of unbound ions. To compute this fraction, the BiDH EoS is
used. Since in this section a special case of ion pairing for symmetrical single-salt electrolyte
solutions is considered, equations 7.33-7.38 are used for the calculation of the fraction of
unbound ions. Within these equations, the association constant at infinite dilution must
be computed using the Bjerrum model (Eq. 7.35). In this equation, the upper limit of the
integral, signifying a cutoff distance beyond which oppositely charged ions are regarded as
ion pairs, remains unknown. To the best of our knowledge, there is no definitive predictive
method to estimate this upper limit.

Moreover, this upper limit is inherently dependent on factors such as system temperature,
salt concentration, ions, and solvent(s). We have illustrated that the upper limit of the
Bjerrum integral can be linked to the distance of the closest approach through a simple scalar
factor, represented as lmn = θσmn [286]. It has been demonstrated that θ can be considered
a global parameter dependent on the solvent(s) but not influenced by salt concentration,
ions, or system temperature.

To avoid rendering the model estimations empirical, a decision has been made to employ
a temperature- and ion-independent factor. This choice is motivated by a commitment
to uphold the predictive nature of the model, avoiding the introduction of unnecessary
complexity or potential biases.

To compute relaxation and electrophoretic effects, the variable κ should be replaced by
κ′ =

√
4πe2
ϵkBT

∑
j
αjρjZ2

j in the equations 4.10 and 4.13.
The molar conductivity of the solution (Λ) can be calculated with Eq. 8.2 in which c is

the salt concentration of the solution assuming full dissociation.

Λ = χ

c
(8.2)

In this section, an exploration of three systems is undertaken where the prediction of
molar conductivity may be significantly influenced by ion pairing. Following the approach
described in Chapters 7 and 4, a predictive examination is performed without making any
adjustments to fit the experimental data. Therefore, the van der Waals diameter (or, in the
case of simple electrolytes, the crystallographic ionic diameter) provided in Table 3.1 is used
for the calculations. The ionic conductivities at infinite dilution, along with the permittivity
and viscosity of the solvent, are derived from values reported in the existing literature and
are detailed in Tables 3.1 and 3.2.

To demonstrate the effectiveness of this approach, three specific systems have been se-
lected for investigation, where ion-ion association has been shown to be highly significant.
These systems comprise the aqueous solution of 2:2 sulfates, ionic liquid-co-solvent solutions,
and mixed solvent electrolyte solutions. The choice of these systems is intended to assess
the model’s capabilities and validate our method in diverse scenarios where the impact of
ion pairing is substantial.

8.1.1 Aqueous Solutions
Figure 8.1 shows the molar conductivity of aqueous magnesium sulfate solutions at different
temperatures. The dashed lines in this figure represent the molar conductivity predicted by
Model 3 (as detailed in Chapter 4), disregarding the influence of the ion pairing. In contrast,
the solid lines show the predicted molar conductivity, taking into account the impact of ion
pairing, utilizing the BiDH model in conjunction with Model 3.
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Figure 8.1. This figure present the molar conductivity of MgSO4 aqueous solutions predicted
by the Model 3 where ion pairing is (solid lines) and is not (dashed lines) considered (symbols
are experimental data from ref. [130]). Reprinted with permission from ref. [120]. Copyright 2023
American Chemical Society.
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Figure 8.2. The MIAC (γc
±) of MgSO4 aqueous solution at 298.15 is predicted by the BiDH model

(solid line) and by the HS+DH model (dashed lines). symbols represent experimental data from
ref. [130]. Red solid line represents the fraction of unbound ions predicted by the BiDH model.
Reprinted with permission from ref. [120]. Copyright 2023 American Chemical Society.

To predict the fraction of unbound ions (αi) as mandated by Eq. 8.1, equations 7.33-7.38
are used. In the computation of the reference cavity function and molar conductivity, it is
assumed that the RSP is not concentration-dependent and is equivalent to the permittivity
of the solvent. Furthermore, the upper limit of the Bjerrum integral (Eq. 7.35) is specified
as l+− = 1.15σ+−.

Figure 8.1 clearly illustrates that the correction of Model 3 to incorporate the influence
of the ion-ion association has significantly improved the accuracy of the predicted molar
conductivity of the solution. This improvement is also evident in other 2:2 sulfates, as
elaborated in Appendix D (Figures D.29-D.32).
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8.1.2 Mixed-solvent systems

The second system explored in this section to assess the impact of ion-ion association is
the solution of NaCl-water-1,4-dioxane. This system is particularly intriguing due to the
significant variation in the dielectric constant of the solvent (in an implicit solvent model),
ranging from 51 to 13 as the salt-free mole fraction of 1,4-dioxane increases from 0.1104 to
0.4002. Consequently, the influence of reducing the permittivity of the solvent(s) can be
investigated in this system.

Figure 8.3 illustrates the molar conductivity of the NaCl-Water-1,4-dioxane system at
different temperatures and salt-free mole fractions of 1,4-dioxane. As in Figure 8.1, the
solid lines represent the predicted molar conductivity with Model 3, considering the effect
of ion-ion association, while the dashed lines depict the predicted molar conductivity with
Model 3 assuming full dissociation.

Calculating the molar conductivity involves utilizing the RSP and viscosity, as tabulated
in Table 8.1. The ionic diameters of sodium and chloride are extracted from the values
provided in Table 3.1. Additionally, the ionic conductivity at infinite dilution for both cation
and anion is obtained from the existing literature and is detailed in Table 8.1. Furthermore,
the scalar factor for the upper limit of the Bjerrum model (θ) is set to 1.13, 1.13, 1.08, and
1.008, corresponding to salt-free mole fractions of 1,4-dioxane of 0.1104, 0.2, 0.2979, and
0.4002, respectively.

Similar to the observations in Figure 8.1, Figure 8.3 underscores that considering the ion-
ion association in the calculation of molar conductivity markedly improves the predictions
made by Model 3. Additionally, this figure highlights that the accounting of the ion pairing
becomes increasingly crucial as the salt-free mole fraction of 1,4-dioxane increases. This
aligns with our expectation because we hypothesized that in systems with a lower RSP of
the solvent(s), ion pairing would exhibit more noticeable activity.

Table 8.1. The RSP and viscosity of the water-1,4-dioxane mixed solvent, along with the ionic
conductivity at infinite dilution of the cation and anion, are provided. These values are reported for
varying no-salt mole fraction of 1,4-dioxane (xD), ranging from 0.1104 to 0.4002 [148,149].

T (K)
xD 278.15 283.15 288.15 293.15 298.15 303.15 308.15

εr

0.1104 51.846 50.519 49.031 47.688 46.387 45.154 43.937
0.2000 35.395 34.370 33.322 32.421 31.425 30.596 29.730
0.2979 23.801 23.098 22.420 21.768 21.135 20.527 19.940
0.4002 16.038 15.579 15.133 14.727 14.304 13.915 13.531

η × 103 (P a · s)
0.1104 3.0727 2.6029 2.2280 1.9303 1.6848 1.4869 1.3243
0.2000 3.5632 3.0271 2.5966 2.2438 1.9652 1.7310 1.5332
0.2979 3.4398 2.9458 2.5465 2.2197 1.9507 1.7267 1.5377
0.4002 3.0605 2.6475 2.3106 2.0304 1.7993 1.6034 1.4373

λ0
+ × 104 (S · m2 · mol−1)

0.1104 15.37 18.04 20.95 24.08 27.44 31.00 34.77
0.2000 12.35 14.49 16.83 19.35 22.07 24.97 28.05
0.2979 10.99 12.83 14.77 16.90 19.18 21.61 24.19
0.4002 9.950 11.49 13.17 14.97 16.90 18.94 21.10

λ0
− × 104 (S · m2 · mol−1)

0.1104 22.37 26.07 30.04 34.29 38.77 43.48 48.41
0.2000 17.59 20.49 23.62 26.97 30.54 34.28 38.23
0.2979 15.30 17.74 20.27 23.00 25.93 29.00 32.22
0.4002 13.51 15.5 17.64 19.90 22.30 24.80 27.42
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Figure 8.3. This figure present the molar conductivity of NaCl-water-1,4-dioxane ternary mixtures
predicted by Model 3, considering ion pairing (solid lines) and not considering ion pairing (dashed
lines). The salt-free mole fractions of 1,4-dioxane are (a) 0.1104, (b) 0.2, (c) 0.2979, and (d) 0.4002.
Symbols in the plot represent experimental data from ref. [148,149]. Reprinted with permission from
ref. [120]. Copyright 2023 American Chemical Society.

8.1.3 Ionic Liquid Co-solvent Systems

In this section, we assess the predictive capability of Model 3 by comparing its predictions
with the experimental data of imidazolium ionic liquid (IL) co-solvent systems. In the initial
example shown in Figure 8.4, water serves as the co-solvent, while in Figure 8.5, acetonitrile
(AN) is the chosen co-solvent.

In these figures, akin to Figures 8.1 and 8.3, solid lines represent the predicted molar
conductivity, incorporating the influence of ion-ion association, while dashed lines signify
the molar conductivity assumed under full dissociation. To account for the effect of ion
pairing, Eq. 8.1 is employed for calculating the specific conductivity, and the fraction of
unbound ions is derived from equations 7.33-7.38.

For these calculations, we have assumed that ionic liquids are spherical entities, with
their van der Waals diameter as reported by Beichel et al. [298], and as tabulated in Table
8.2. The ionic conductivity at infinite dilution for these ILs is also taken from the existing
literature and is detailed in Table 8.2. Furthermore, the scalar factor for the upper limit of
the Bjerrum model (θ) is set to 1.45 for aqueous solutions and 1.457 for IL-AN solutions.

It is important to note that in the molar conductivity calculation procedure, the assump-
tion is made that the RSP remains constant and is equal to the RSP of the co-solvent.
Additionally, given that the valence type of the IL is equal to one, ion pairs do not con-
tribute to the specific conductivity. As a result, there is no need to calculate the relaxation
and electrophoretic effects of ion pairs.

Figure 8.4 illustrates the molar conductivity of aqueous solutions of 1-Hexyl-3-methylimidazolium
chloride at temperatures ranging from 293.15 to 313.15 K. As evident in this figure, akin to
systems with simple salt aqueous solutions, assuming full dissociation leads to an overestima-
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Table 8.2. The ionic conductivity at infinite dilution (λ0
i ) in S · m2 · mol−1 and ionic diameter (σi)

in m for the studied ionic liquids in this work are sourced from references [298,299].

T (K) Ion λ0
i × 104 σi × 1010

Co-solvent: Water
293.15 [C6MIM ]+ 24.90 6.91
298.15 [C6MIM ]+ 30.91 6.91
303.15 [C6MIM ]+ 34.35 6.91
308.15 [C6MIM ]+ 38.30 6.91
313.15 [C6MIM ]+ 40.65 6.91

Co-solvent: AN
298.15 [C2MIM ]+ 83.00 5.94
298.15 [C4MIM ]+ 75.00 6.47
298.15 [C6MIM ]+ 67.25 6.91
298.15 [BF4]− 115.4 4.57

tion of the prediction of the molar conductivity. In contrast, considering the effect of ion-ion
association brings about a substantial enhancement in the accuracy of molar conductivity
predictions.

Figure 8.5 shows the correlation between the predicted molar conductivity of Model 3
and the experimental data for three IL-AN solutions. These solutions include the follow-
ing ionic liquids: 1-Ethyl-3-methylimidazolium tetrafluoroborate ([C2MIM][BF4]), 1-Butyl-
3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]), and 1-Hexyl-3-methylimidazolium
tetrafluoroborate ([C6MIM][BF4]). The figure illustrates the molar conductivity of binary
IL-co-solvent systems across a range from very dilute solutions to the pure IL system.

As shown in Figure 8.5, unlike simple electrolyte solutions, the molar conductivity de-
creases from near 200 S · cm2 ·mol−1 at infinite dilution to near zero when the mole fraction
of the IL is equal to 1. Therefore, these systems, along with other ionic liquid-co-solvent
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Figure 8.4. This figure presents the molar conductivity (Λ) of [C6MIM]Cl aqueous solutions
predicted by Model 3, where ion pairing is considered (solid lines), and is not considered (dashed
lines). Symbols in the plot represent experimental data from ref. [299]. Reprinted with permission
from ref. [120]. Copyright 2023 American Chemical Society.
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systems, represent a special case due to mutual solubility.
Figure 8.5 illustrates that the predicted molar conductivity, assuming full dissociation,

significantly deviates from the experimental data. This outcome was anticipated, given the
high activity of ion-ion association in IL-co-solvent solutions.

As is evident from Figure 8.5, taking into account the ion-ion association leads to a
substantial improvement in the prediction of molar conductivity by Model 3. This figure
demonstrates that even when the mole fraction of the IL is equal to 1, a more accurate
prediction is achieved.

It is important to note that expecting the model to accurately predict the molar conduc-
tivity of this system across the entire range from pure AN to pure IL is unrealistic because of
two factors. Firstly, in IL-co-solvent systems, ion-ion association may lead to the formation
of higher aggregates, a consideration that is omitted here. Second, and more significantly,
the implicit solvent picture of the systems breaks down at a very high content of ionic liquids,
resulting in observed deviations. Therefore, the variation of the RSP should be taken into
account in the evaluation of molar conductivity. Examining these two assumptions goes
beyond the scope of this chapter.

8.2 Conductivity of Systems Forming Ion Complexes

In Chapter 4, it has been shown that all models developed by us or from the existing
literature fail to predict the molar conductivity of certain aqueous electrolyte solutions.
It has been speculated that in these solutions, ions form not only ion pairs but also ion
complexes. However, as mentioned in Chapter 5, for these systems where the number of
types of conducting species is greater than two, the models mentioned in Chapter 4 cannot
be used. In Chapter 5, a new model for the electrical conductivity of multi-component
systems was developed. In this section, the model developed in Chapter 5 is used to predict
the molar conductivity of electrolyte solutions that form ion complexes.
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Figure 8.5. This figure presents the molar conductivity (Λ) of [C2MIM][BF4]-AN (blue lines
and symbols), [C4MIM][BF4]-AN (green lines and symbols), and [C6MIM][BF4]-AN (red lines and
symbols) systems at 298.15 K predicted by Model 3, considering ion pairing (solid lines) and not
considering ion pairing (dashed lines). Symbols in the plot represent experimental data from ref.
[300,301]. Reprinted with permission from ref. [120]. Copyright 2023 American Chemical Society.
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In this section, two distinct systems known to form ion complexes are explored. The first
involves aqueous solutions of cadmium halide, characterized by halide ions such as Br– , Cl– ,
and I– . The second set comprises ternary solutions that combine cadmium halide, potassium
halide, and water.

In the context of the mentioned systems, the first step involves assessing the concentra-
tions of both ions and ion complexes. This is accomplished by applying the methodology
described by Simonin [302].

For electrolytes that demonstrate complexation, we posit that cadmium cations form n
ion complexes with the X− anion, as defined by Eq. 8.3:

Cd2+ + nX− ⇌ CdX2−n
n (8.3)

For reactions in equilibrium, the corresponding equilibrium equation can be formulated
as presented in Eq. 8.4:

βn = γc
n

γc
+(γc

−)n

cn

c+(c−)n
(8.4)

In Eq. 8.4, βn, γc
n, cn represent the cumulative formation constant of the complex, the

activity coefficient and the concentration, all on the molarity scale, for the complex of ions
consisting of n anions. γc

+, γc
−, c+, and c− denote the activity coefficient of cadmium, anion,

and the concentration of cadmium and anion on the molarity scale, respectively.
In addressing this speciation problem, n reaction equilibrium equations (Eq. 8.4), along

with two equations for the conservation of Cd2+ and X−, need to be solved numerically.
These calculations require determining the activity coefficients of the components which, in
turn, depend on the concentrations of the respective components. To estimate these activity
coefficients, we applied the MSA model [5, 6].

The calculations mentioned above were performed using the freely available CHEAQS
Next software [303, 304]. Comprehensive computational procedures are described in refer-
ences [302,305].

As indicated in the literature [302] with respect to cadmium halides, the maximum num-
ber of anions in the complex, denoted n, is set to 4. The cumulative complex formation
constant was obtained from the NIST database [306]. The logarithmic values of these con-
stants, used in this study, are outlined in Table 8.3 corresponding to the equilibrium reactions
1-4.

To calculate the activity coefficients and specific conductivity, the diameter of the species
is also crucial. We used the equation proposed by Simonin [302] to determine the diameter
of the ion complexes. This equation is outlined in Eq. 8.5:

σ3
n = p

p+ n
(σ3

+ − b3
+) + b3

+ + nσ3
− (8.5)

In Eq. 8.5, b+ denotes the bare cation diameter, and n + p represents the coordination
number of the cation. Within this context, n anions and p water molecules are associated
with the cation. Diameters of ion complexes, computed using Eq. 8.5 and denoted as σi,

Table 8.3. The cumulative complex formation constant (βn as defined in Eq. 8.4) of cadmium halide
electrolytes is sourced from the NIST database [306] and the CHEAQS Next software [303,304].

Salt log10(β1) log10(β2) log10(β3) log10(β4)
CdBr2 2.150 3.000 3.000 2.900
CdCl2 1.980 2.600 2.002 1.470
CdI2 2.280 3.920 5.000 6.000



8.2 Conductivity of Systems Forming Ion Complexes 175

Table 8.4. This table includes the ionic conductivity at infinite dilution (λ0
i ) at 298.15 K, ionic

diameters using the Marcus diameter and Eq. (σM
i ), and ionic diameters from ref. [302] (σi) for the

ion complexes studied in this work.

Ion Complex λ0
i × 104 (S ·m2 ·mol−1) σM

i × 1010 (m) σi × 1010 (m)
Cd2+ 53.00 1.900 5.590
[CdBr]+ 26.16 4.063 5.800
[CdBr3]− 25.54 5.724 5.810
[CdBr4]2− 50.50 6.281 5.880
Br− 78.10 3.920 3.390
[CdCl]+ 26.14 3.787 5.751
[CdCl3]− 25.48 4.668 5.237
[CdCl4]2− 50.33 5.304 5.422
Cl− 76.31 3.620 3.620
[CdI]+ 26.15 4.515 6.010
[CdI3]− 25.49 6.402 6.390
[CdI4]2− 50.38 7.031 6.620
I− 76.8 4.400 4.320

are presented in Table 8.4. This table also includes the diameters for cadmium and halides
as sourced from ref. [302].

Anderko et al. [127] have introduced an alternative methodology for determining the
diameter of ion complexes, represented in Eq. 8.6. Within this approach, the computed
diameters of ion complexes are designated as σM

i . It is essential to note that the tabulated
ion diameters refer to the bare ionic diameter, using values reported by Marcus [155]. For
the scope of this study, we exclusively utilize σM

i in the calculations related to electrical
conductivity.

σ3
n = σ3

+ + nσ3
− (8.6)

To predict electrical conductivity, it is essential to determine the ionic conductivity at
infinite dilution (λ0

i ) for ion complexes. In this chapter, we utilize the method proposed and
validated by Anderko et al. [127] to calculate the λ0

i of these ion complexes, as presented in
Eq. 8.7:

(λ0
n)3 = | Zn |[(

|Z+|
λ0

+

)3
+ n

(
|Z−|
λ0

−

)3
]1/3 (8.7)

Table 8.4 provides details on the ionic conductivities of the ion complexes, as well as the
ions used to predict electrical conductivity.

In this study, three distinct approaches are employed to predict the electrical conductivity
of electrolyte solutions that form ion complexes, as outlined in Table 8.5. In Scheme 1,
we determine the concentration of ion complexes as previously described and utilize the
corresponding ionic diameter (σi from Table 8.4) for conductivity predictions, the same
diameter used as in the calculation of the activity coefficient. In Scheme 2, we operate under
the assumption that no ion complexes form. As a result, we compute electrical conductivity
analogous to the methods for simple electrolytes discussed earlier. Scheme 3 mirrors Scheme
1 in approach but distinguishes itself by using the ionic diameters of bare ions (σM

i from
Table 8.4) for conductivity predictions, while still using σi from Table 8.4 for calculation of
activity coefficients.
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Table 8.5. This table outlines the schemes employed in this study for calculating the electrical
conductivity of electrolyte solutions that form ion complexes.

Scheme Ion complex formation Ionic diameter Figure 8.6 Table 8.5
1 Yes σi in Table 8.4 Solid lines Λ1
2 No σi in Table 3.1 Dashed lines Λ2
3 Yes σM

i in Table 8.4 Dotted lines Λ3

Figure 8.6 illustrates the molar conductivity (Λ) and species concentration (ci) of CdX2
aqueous solutions at 298.15 K, following the schemes outlined in Table 8.5. More specifically,
graphs a, c, and e of the figure show the molar conductivity, while graphs b, d, and f show
the species concentrations.

The observations depicted in Figure 8.6 can be analyzed from two perspectives. First,
one can compare the molar conductivity predicted by Schemes 1-3 with the experimental
data for each electrolyte solution. Subsequently, the concentration distribution of various
species within each CdX2-water system can be examined.

As shown in Figure 8.6 (particularly in graphs a, c and e), the molar conductivity pre-
dicted by the model developed in this study aligns closely with the experimental data when
employing Schemes 1 or 3. In contrast, in line with observations from Chapter 4, the assump-
tion of complete dissociation according to Scheme 2 results in a significant overestimation
of the molar conductivity.

Upon closer inspection of the concentrations of species, it becomes evident that the concen-
trations of simple ions (Cd2+, Br−, Cl−, I−) deviate significantly from their stoichiometric
values. Consequently, for these systems, the assumption of full dissociation is notably erro-
neous. As demonstrated in this figure and confirmed by prior studies, electrical conductivity
models based on this assumption fail to accurately predict the molar conductivity.

It is crucial to emphasize that the molar conductivity presented in Figure 8.6 is a direct
prediction without any parameter adjustments made to align with the experimental data.
Furthermore, no adjustments were made during species concentration calculations; all prop-
erties and parameters were derived directly from the literature. To our knowledge, only the
ionic diameter of the cation was adjusted to fit the osmotic coefficient experimental data by
Simonin [302], which means that no empirical modifications were incorporated into the cal-
culations of the molar conductivity. Given the accurate predictions shown in Figure 8.6, this
confirms that our model developed effectively predicts the molar conductivity for systems
comprising more than two charged species.

Table 8.6 presents the predictions of the molar conductivity of the model developed using
Schemes 1-3 for the three CdX2-KX-H2O systems at 298.15 K, with X representing Br,
Cl, or I. It is apparent from the table that the predictions using Schemes 1 and 3 align
reasonably well with the experimental data. On the contrary, the predictions made with
Scheme 2 deviate significantly from the observed measurements.

In the systems highlighted in Table 8.6, the agreement between model predictions (using
Schemes 1 and 3) and experimental data for CdI2-KI aqueous solutions, particularly at ele-
vated concentrations of KI, is notably lacking. It is important to note that, unlike KBr and
KCl, the NIST database suggests that KI forms ion complexes with log10(β1) = −0.4. This
assumption, at high potassium iodide concentrations, implies that a significant portion of
potassium ions exists as neutral KI(aq) species. For instance, with cKI = 4 mol.L−1 and
cCdI2 = 0.5mol.L−1, nearly 44% of potassium ions are found as neutral KI(aq) species. Con-
sequently, the predicted molar conductivity considerably underestimates the experimental
readings at high concentrations of KI, in contrast to the outcomes for CdI2 aqueous solu-
tions (as seen in Figure 8.6) and CdBr2-KBr and CdCl2-KCl aqueous solutions (as detailed
in Table 8.6).

From the data obtained in this study, it remains not conclusive whether the postulated
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Figure 8.6. This figure illustrates the molar conductivity (Λ) predicted by the developed model
in Chapter 5 according to the schemes summarized in Table 8.5 and the concentration distribution
(ci) estimated using the CHEAQS Next software of (a) and (b) CdBr2, (c) and (d) CdCl2, and (e)
and (f) CdI2 aqueous solutions at 298.15 K (symbols are experimental data from ref. [211, 307]).
Reprinted with permission from ref. [200]. Copyright 2023 American Chemical Society.
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Table 8.6. This table displays the molar conductivity predicted by the model, taking into account
the formation of ion complexes with the diameter from ref. [302] (Λ1) and the Marcus diameter
(Λ3), compared to the experimental data (Λexp). It also includes the molar conductivity predicted
assuming full dissociation (Λ2) for CdX2-KX aqueous solutions at 298.15 K. (The experimental data
is from ref. [211]). Reprinted with permission from ref. [200]. Copyright 2023 American Chemical
Society.

cCdX2 cKX Λexp Λ1 Λ2 Λ3
X=Br–

0.167 0.667 65.314 62.982 87.705 64.864
0.250 0.500 47.440 46.464 78.349 47.485
0.333 0.333 34.545 33.286 70.261 33.596
0.333 1.333 58.290 54.937 82.822 57.532
0.417 0.167 23.972 22.653 63.221 22.414
0.500 1.000 40.456 38.744 73.823 40.250
0.667 0.667 26.659 26.995 66.148 27.560
0.833 0.333 18.335 17.287 59.581 17.078

X=Cl–

0.040 0.830 99.411 98.429 104.254 100.350
0.080 0.670 84.802 85.660 97.292 86.991
0.130 0.500 69.225 69.732 88.207 70.370
0.170 0.330 56.417 55.139 79.617 55.133
0.170 1.670 79.321 79.358 92.528 81.846
0.210 0.170 42.713 39.982 70.322 39.386
0.330 1.330 58.625 60.237 82.371 61.856
0.500 1.000 41.316 44.372 73.338 45.180
0.670 0.670 27.810 31.630 65.727 31.727
0.830 0.330 17.387 21.234 59.277 20.744
X=I–

0.100 0.100 35.575 31.094 77.390 31.091
0.100 1.000 88.677 69.412 98.840 71.226
0.200 1.000 69.869 53.351 89.958 55.037
0.300 0.300 28.975 25.168 72.150 25.335
0.500 0.100 15.263 13.006 61.391 11.986
0.500 0.200 18.424 15.580 63.914 14.801
0.500 0.300 21.300 18.217 66.114 17.777
0.500 0.500 26.490 23.124 69.748 23.326
0.500 0.800 33.378 27.689 73.803 28.636
0.500 1.000 37.676 30.482 75.846 31.818
0.500 1.500 48.043 35.631 79.451 37.399
0.500 2.000 55.329 37.674 81.677 39.566
0.500 3.000 63.160 37.300 83.916 39.217
0.500 4.000 65.451 35.111 84.606 36.959
0.800 0.800 23.891 21.385 67.275 21.515
1.000 1.000 22.503 20.095 65.895 20.137
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formation of ion complexes for potassium iodide is mistaken or if the value of β1 is erroneous.
A more detailed examination of both the thermodynamic and transport properties of these
systems is warranted. However, it is pertinent to highlight a distinct anomaly observed for
the CdI2-KI aqueous solutions, especially at elevated potassium iodide concentrations: the
predicted molar conductivity substantially deviates from the experimental values, skewing
considerably lower.

8.3 Summary and Conclusions

In this chapter, the models developed in the previous parts of this thesis were combined to
predict the molar conductivity and MIAC of the associative electrolyte solution simultane-
ously where the solvent is treated as a continuum medium.

The successful integration of ion pairing into the prediction of electrical conductivity
for associative electrolyte solutions has been demonstrated. We examined three pivotal
systems, which include 2:2 aqueous sulfates, NaCl-water-1,4-dioxane, and ionic liquid-co-
solvent systems. Across all these systems, the integration of the BiDH EoS introduced in
Chapter 7 and the electrical conductivity model established in Chapter 4 consistently led to
a modification in the predicted electrical conductivity.

The ability of the model developed in Chapter 5 to predict the electrical conductivity
of electrolytes that form ion complexes has been rigorously evaluated. Results reveal that
the model predictions, when considering ion complex formation, align very closely with the
experimental data for such systems. This underscores the reliability and robustness of our
model, even when applied to more complicated systems.

Chapter Message

Whether the systems form ion pairs or ion complexes, the combination of the BiDH
EoS and the electrical conductivity models (single- and multi-salt) has shown to be
accurate and reliable.
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CHAPTER 9
Binding eSAFT-VR-Mie

The Unified Framework

Binding-eSAFT-VR-Mie

𝑨𝑴𝑶𝑵𝑶 𝑨𝑪𝑯𝑨𝑰𝑵 𝑨𝑨𝑺𝑺𝑶𝑪 𝑨𝑩𝒊𝑫𝑯 𝑨𝑩𝒐𝒓𝒏

𝝀𝒊
𝟎

𝛅𝛎𝒊

𝛎𝒊
𝟎

𝛅𝒌𝒊
𝒌𝒊

Dielectric Constant
Modified MM 

𝜺∞ 𝜣𝒊𝒈𝒊 𝝁𝒊,𝟎
𝟐

𝜶𝒊𝑿𝑨𝒊 𝜺𝒓 𝒍𝒊𝒋

Electrical Conductivity 
DHO-Transport

In this chapter, we introduce a novel EoS termed Binding eSAFT-VR-Mie. The non-
electrostatic component of this EoS is derived from the SAFT-VR-Mie model, as formulated
by Lafitte et al. [68]. This base model was later modified in the association part by Dufal
et al. [308]. To address the electrostatic component, we employ the BiDH theory [286], as
explained in Chapter 7, in conjunction with the Born equation [288] to handle ion solvation.

In order to investigate ion pairing in electrolyte solutions, we recommend a unified frame-
work anchored on the concurrent examination of thermodynamic properties and electrical
conductivity. Utilizing this proposed electrolyte EoS along with the unified framework, we
set forth predictions for the properties of three binary salt-water systems at 298.15 K. Con-
sequent discussions will shed light on the implications of integrating the ion-ion association
into property calculations, the significance of the chosen reference state, the selection of
relative permittivity, and potential avenues for refinement.

This chapter brings together models from earlier chapters as well as additional ones from
the existing literature to conduct a comprehensive exploration of property predictions in
electrolyte solutions. To enhance readability, certain equations from the preceding chapters
are reiterated here. The aim is to make this chapter of the Ph.D. thesis self-contained,
eliminating the need for readers to be familiar with topics covered in the preceding chapter
before delving into this one.

In Section 9.1, we introduce the Binding eSAFT-VR-Mie, describing its framework along-
side the replication of the electrical conductivity models developed in Chapters 4 and 5.
Within this section, we also elaborate on our methods for calculating the thermodynamic
properties and molar conductivity, and unveil our unified framework. Following this, Section
9.2 provides our predictive results for liquid density, MIAC, osmotic coefficient, and molar
conductivity for three binary salt-water systems. The fraction of unbound ions is highlighted,
and a deep dive into the specific contributions to the activity coefficient of ions is provided.
In the subsequent Section 9.3, we discuss the implications of incorporating the ion-ion as-
sociation in predicting the properties of electrolyte solutions. We reflect on the importance
of the reference-state association constant, drawing from Onsager’s bookkeeping rule, while
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suggesting potential model enhancements. The chapter concludes in Section 9.4, where we
summarize the primary insights and conclusions derived from our theoretical exploration.

9.1 Methods

In this chapter, we consider a system comprising C components. Among these, Cion are
charged cations and anions, while the remaining components are neutral compounds. We
permit the formation of ion pairs between oppositely charged ions, but we neglect the emer-
gence of larger aggregates such as ion triplets. Long-range interactions are captured through
implicit solvent methodologies, which incorporate the RSP of the solvent or solvents into
the equations, termed "electrostatic contributions." For this purpose, we employ the recently
developed BiDH model [286] (as explained in Chapter 7). Meanwhile, the molecular in-
teractions, termed "non-electrostatic contributions," are described using the SAFT-VR-Mie
EoS [68,308].

For the system under consideration, the specific properties corresponding to the canonical
ensemble (denoted as NVT) include the number of species, represented as Ni (which includes
both ions and molecules), the volume of the system, indicated as V and the temperature,
symbolized as T . Throughout the chapter, we utilize the mole number (ni), mole fraction
(xi), number density (ρi), and concentration (ci) in line with the relationship given in Eq.
9.1.

xi = Ni

N̄
, ρi = Ni

V
, ni = Ni

NA
, ci = Ni

NAV
(9.1)

In Eq. 9.1, NA is the Avogadro number.

N̄ =
C∑

j=1

Nj , ρ̄ =
C∑

j=1

ρj (9.2)

Furthermore, we employ molality, a specific concentration measure tailored for electrolyte
solutions. Molality is defined as the number of moles of solute per kilogram of solvent.

mi = ni∑
j
wj
, j ∈ solvents (9.3)

In Eq. 9.3, wi is the mass of solvent molecules.

9.1.1 Equation of State
In this research, the EoS is articulated through contributions to the reduced residual Helmholtz
free energy, as described in Eq. 9.4:

ãr ≡ Ar

NkBT
≡ A−AIDEAL

NkBT
(9.4)

The contributions of the reduced residual Helmholtz free energy are expressed in Eq. 9.5.
Among these contributions, the non-electrostatic elements of the EoS are represented by
ãMONO, ãCHAIN , and ãASSOC [68]. The solvation effect on the reduced residual Helmholtz
free energy, when ions transition from a vacuum environment to a fluid medium, is captured
by ãBORN [288]. Furthermore, the BiDH theory [286] provides insight into ion-ion interac-
tions, which are denoted by ãDH and ãMAL in the equation. These components collectively
provide a comprehensive view of the interactions within the system being studied.
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Figure 9.1. This figure show a schematic representation of the Binding eSAFT-VR-Mie. (1) is the
ideal gas contribution, (2) is the hard sphere contribution, (3) is the solvation free energy based on
the Born model, (4) is the ion-ion interactions from the DH theory, (5) is the contribution due to
short-range dispersion interactions, (6) is the due to the formation of chain, (7) is the contribution
due to hydrogen bonding, and (8) is ion-ion association from the BiDH theory.

ãr = ãMONO + ãCHAIN + ãASSOC + ãBORN + ãDH + ãMAL (9.5)

9.1.2 SAFT-VR-Mie

The SAFT-VR-Mie EoS offers a molecular perspective on the thermodynamics of fluids,
linking the Helmholtz free energy to the temperature, volume, and composition of a given
system. Within this framework, the basic constituents of the fluid, be the molecules or ions,
are visualized as chains comprised of interconnected, homonuclear spherical segments. The
interactions between these segments are dictated by a spherically symmetric Mie potential
(Eq. 9.6), which captures the essence of both attractive and repulsive forces between particles.
For systems where hydrogen bonding is significant, the model incorporates off-center square-
well sites on these chains, ensuring an accurate portrayal of the attractive forces resulting
from such bonding. In this EoS, each entity is composed of mi of these segments, with their
mutual interactions encapsulated by the nuances of the Mie potential. This configuration
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allows SAFT-VR-Mie to model a wide range of molecular interactions, catering to the diverse
nature of fluids.

uMie
ij (r) = Cijϵij

[(
σij

rij

)λr,ij

−
(
σij

rij

)λa,ij

]
(9.6)

Cij = λr,ij

λr,ij − λa,ij

(
λr,ij

λa,ij

) λa,ij
λr,ij −λa,ij

(9.7)

Within Eq. 9.6, σij represents the diameter of the segment, ϵij corresponds to the
maximum energy of interaction between the segments, while λr,ij and λa,ij represent the
repulsive and attractive exponents, respectively. Eq. 9.8 presents the contributions to the
reduced residual Helmholtz free energy of the SAFT-VR-Mie EoS:

ãSAF T −V R−Mie = ãMONO + ãCHAIN + ãASSOC (9.8)

The contribution to the reduced Helmholtz free energy from monomer interactions through
a Mie potential in a mixture can be represented by Eq. 9.9:

ãMONO =

(
C∑

i=1

ximi

)(
ãHS + βã1 + β2ã2 + β3ã3) (9.9)

The equation incorporates several components. The term ãHS denotes the reduced
Helmholtz free energy of a reference hard sphere system, derived from the EoS by Boub-
lik [287] and Mansoori et al. [230]. The terms ã1, ã2, and ã3 represent the first-, second-,
and third-order perturbations of the hard sphere reference fluid, respectively. These per-
turbations stem from the high temperature perturbation theory formulated by Barker and
Henderson [309,310].

For brevity, the specific equations for the hard sphere reference fluid and the associated
perturbation terms are omitted in this context. For a comprehensive understanding and
detailed mathematical formulations, the readers are referred to the primary source by Lafitte
et al. [68].

The contribution to Helmholtz free energy from the formation of molecular chains within
the Mie segment fluid is rooted in the Wertheim TPT1 theory [246–251]. This theory draws
inspiration from a model that characterizes association at an infinite association strength,
as detailed in ref. [285]. This model presents a representation of spherical segments that are
tangentially bonded. Notably, the model is concise in its representation; its contribution is
determined exclusively by the RDF of the segments at their contact separation.

ãCHAIN = −
C∑

i=1

xi(mseg
i − 1) ln gMie

ii (σii) (9.10)

In Eq. 9.10, the term gMie
ii signifies the RDF of the monomeric Mie fluid evaluated at

the contact separation distance, σii [68].
In the SAFT framework, association interactions arise from a collection of off-center

attractive sites, usually characterized using spherically symmetric square-well potentials.
A key feature of this association description is the restriction that only two segments can
participate in each interaction, and each segment pair can only engage in a single interaction.
These association sites come into play within a limited range, which is approximately the
size of the segments, and they impart directional forces due to their off-centered placement.
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The component of the Helmholtz free energy attributed to association, represented as
ãASSOC , has its roots in Wertheim’s TPT1 theory [246–251]. A succinct representation of
this contribution can be articulated as [311,312]:

ãASSOC =
C∑

i=1

xi

S∑
Ai

(
lnXAi − 0.5XAi + 0.5

)
(9.11)

In Eq. 9.11, XAi is the fraction sites of type A that are not bonded to any other sites.
In addition, S is the number of association sites in each molecule. XAi is calculated from
Eq. 9.12:

1
XAi

= 1 +
C∑

j=1

ρj

S∑
Bj

(XBj ∆AiBj ) (9.12)

In Eq. 9.12, ∆AiBj signifies the bond strength between the site A of the molecule i
and the site B of the molecule j. This can be correlated with the volume of association
(KAiBj ), the Mayer function corresponding to the bonding interactions (FAiBj ), and the
termed association kernel (I(T ∗, ρ∗, λr)), as depicted in Eq. 9.13:

∆AiBj = FAiBjKAiBj I(T ∗, ρ∗, λr) (9.13)

In Eq. 9.14, the Mayer function is derived, where ϵAiBj represents the energy associated
with the interaction between the site A of molecule i and the site B of molecule j.

FAiBj = exp
(

− ϵAiBj

kBT

)
(9.14)

In this work, the Mie kernel, as introduced by Dufal et al. [308], is employed and is
described by Eq. 9.15:

I(T ∗, ρ∗, λr) =
i+j≤10∑

i=0

∑
j=0

aij(λr)(ρ∗)i(T ∗)j (9.15)

For the details on the definitions ρ∗ and T ∗, as well as the coefficients aij , readers are
referred to ref. [308]. To maintain conciseness, these details are omitted here.

9.1.3 BiDH Theory
In Section 9.1.2, the non-electrostatic components of the reduced Helmholtz free energy,
as dictated by the SAFT-VR-Mie EoS, were discussed. The contributions arising from
long-range ion-ion interactions are now examined, employing the recently developed BiDH
model [286], as detailed in Chapter 7 for this purpose.

Details of the derivation and equations have been presented in Chapter 7. Here, some
of the key information is reiterated, given that the intention is to present this work in a
standalone chapter without the necessity to read other chapters.

In the development of the BiDH model, we made the assumption that the solvent behaves
as a continuous medium with a relative permittivity that is independent of the concentration.
The solution comprises Cions types of cations and anions. Any given cation-anion pair has
the potential to form an ion pair, described by the subsequent equilibrium equation:

CaZ+ +AnZ− ⇌ [IP ]Z++Z− (9.16)
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The BiDH model is constructed upon a perturbation approach anchored to a reference
state. Within this reference state, it is posited that the electrolytes undergo complete disso-
ciation in the solution. Subsequently, the free energy of the system is adjusted to account
for the formation of ion pairs.

The reference state, which assumes complete dissociation, is based on DH theory [4]. Eq.
9.17 shows the contribution of the DH theory to the reduced residual Helmholtz free energy
of the system under this assumption:

ãDH = −
∑Cion

j=1 xjZ
2
j χ(κσj)

4πρ
∑

i
xiZ2

i

(9.17)

In Eq. 9.17, κ is the inverse Debye length defined as Eq. 9.18:

κ2 = 4πe2NA

ϵkBT

Cion∑
i=1

ρiZ
2
i (9.18)

Furthermore, χ(κσj) is the auxiliary function of the DH model defined as Eq. 9.19:

χ(κσj) = 1
σ3

j

(
ln(1 + κσj) − κσj + 0.5(κσj)2) (9.19)

In BiDH theory, the electrostatic contribution to the reduced residual Helmholtz free
energy is corrected for the effect of the ion-ion association by adding the association con-
tribution from Wertheim theory [246–251, 285, 311, 312]. To avoid an ambiguous notation
of the contributions to the reduced residual Helmholtz free energy, instead of association
(as used in the original work and also in Chapter 7), the contribution to ãr due to ion-ion
association is denoted as ãMAL.

The MAL contribution to ãr due to ion-ion association is obtained from Eq. 9.20:

ãMAL = −
Cion∑
i=1

xi

[
ln(αi) + 1 − αi

2

]
(9.20)

In Eq. 9.20, αi is the fraction of unbound ions (free ions) defined as:

αi = ρ̃i

ρi
(9.21)

In Eq. 9.21, ρ̃i is the number density of the ions after association or the number density
of free ions. ρi is the total number density of ions. In the BiDH theory, which allows only
the formation of ion pairs, the fraction of unbound ions is calculated from the solution to
Eq. 9.22:

1
αi

= 1 +
Cion∑
j=1

ρjαj∆ij (9.22)

Eq. 9.22 represents a more straightforward version of Eq. 9.12, wherein all the compo-
nents involved in association possess a single association site. Nevertheless, it is important
to note that in this equation, the association strength (∆ij) differs considerably from that
attributed to hydrogen bonding.

In BiDH theory, the association strength between a cation-anion pair is calculated from
Eq. 9.23:

∆ij = K◦
ijy

ref
ij (9.23)
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This association strength is derived based on the RCA of Stell and his co-workers [240–
244]. In the RCA, it has been assumed that the cavity function of an ion pair defined as
yij(r) ≡ gij(r) exp(uij(r)) can be approximated with the cavity function of two pairs of ions
in the non-association limit (where the number density of ion pairs approaches zero).

In Eq. 9.23, K◦
ij is the association constant at infinite dilution. It can be calculated using

the Bjerrum model, as demonstrated in Eq. 9.24:

K◦
ij = 4πNA

∫ lij

σij

r2 exp
(2qij

r

)
dr (9.24)

In Eq. 9.24, the variable qij is defined according to Eq. 9.25. Furthermore, lij represents
the upper boundary of the Bjerrum integral. The significance of this upper limit lies in the
fact that ions positioned closer to the central ion than a distance of lij are considered to be
part of ion pairs.

qij = e2 | ZiZj |
8πϵ0ϵrkBT

(9.25)

Bjerrum, in his work [216], introduced the concept that ion pairs with a separation
distance r < qij , where the ions possess opposite charges, should be considered as associated
pairs. On the contrary, those ions positioned farther apart should be regarded as independent.
His rationale for this criterion was based on the idea that, although somewhat arbitrary,
it makes sense because the energy required to separate such ion pairs is at least twice
the thermal energy. The choice of the upper limit of the Bjerrum integral will be further
discussed in detail in subsequent sections of this chapter.

The reference cavity function, represented as yref
ij , is determined by the combination

of two contributions: the electrostatic contribution, denoted as yELE
ij and the hard sphere

contribution, denoted as gHS
ij .

ln
(
yref

ij

)
= ln

(
yELE

ij

)
+ ln

(
gHS

ij (σij)
)

(9.26)

The hard sphere component of the reference cavity function, designated as gHS
ij , is derived

from the equations presented in the work of Boublik [287] and Mansoori et al. [230], as shown
in Eq. 9.27.

gHS
ij (σij) = 1

1 − ζ3
+ 2σiσj

σij

3ζ2

(1 − ζ3)2 + (2σiσj

σij
)2 2ζ2

2

(1 − ζ3)3 (9.27)

In this equation, σij is the distance of the closest approach defined as:

σij = σi + σj

2 (9.28)

ζl = π

6

C∑
j=1

ρjσ
l
j , l = {0, 1, 2, 3} (9.29)

The electrostatic contribution to the reference cavity function is obtained from Eq. 9.30:

ln
(
yELE

ij

)
= 1
kBT

[
µDH

i + µDH
j −

(
µDH

ij

)
ρij →0

−
(
µDI

ij

)
ρij →0

]
(9.30)

The equations for µDH
i , µDH

ij , and µDI
ij can be found in Chapter 7 or in ref. [286], and for

the sake of conciseness, they will not be reiterated here. However, it is essential to emphasize
that µDI

ij represents the contribution to the reference cavity function arising from ion-dipole
interactions, as described in the Kirkwood model [8, 235].
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9.1.4 Solvation Free Energy

The concept of solvation free energy is incorporated into the overall free energy of the system
during the charging process. This component quantifies the energy required to transfer
charged ions from the vacuum state to the fluid medium.

In this study, we employ the Born equation to describe the solvation of ions and Eq. 9.31
illustrates this particular contribution.

ãBORN = e2

4πε0kBT

(
1
εr

− 1
)Cion∑

i=1

xiZ
2
i

σB
i

(9.31)

In Eq. 9.31, the parameter σB
i corresponds to the Born diameter. There has been a

significant debate on the physical interpretation of this radius. Some researchers associate
it with σi from ion-ion interactions, as described in either the DH or MSA theories. On the
other hand, others consider it as a distinct radius that represents the volume occupied by
the ion within the solvent. In this study, we adopt the latter perspective, utilizing the Born
diameter reported in the literature.

9.1.5 Electrical Conductivity

The electrical conductivity of electrolyte solutions can be determined using DHO-transport
theory (models developed in Chapters 4 and 5) [184, 200] or MSA-transport theory [111,
114–117]. The details of these theories can be located in the existing literature. In this
study, to maintain consistency with the thermodynamic model employed, we utilize the
DHO-transport theory.

The derivation procedure and formulation of the electrical conductivity models, along
with the validation of these models, were extensively presented in Chapters 4 and 5. In this
section, a concise presentation of the models tailored for associative electrolyte solutions is
provided.

The electrical conductivity models have been formulated under two primary assumptions:
one for systems consisting of only two types of charged components, often referred to as the
single-salt version, and the other for systems with arbitrary types of charged components.
These models were developed with the premise that the solvent is a continuous medium,
possessing a RSP and viscosity that do not vary with concentration. To simplify the pre-
sentation of these models, it is necessary to introduce a pseudo-system comprising Cion ions
and Cip charged ion pairs. In total, this pseudo-system encompasses C̃ = Cion +Cip distinct
types of charged species within the solution.

In the context of this pseudo-system, we define ϱ as the number density of all charged
species present in the solution, encompassing both ions and ion pairs. As depicted in Eq.
9.32, Cion elements of this vector represent the number density of free ions, denoted αiρi.
The remaining Cip elements pertain to the number density of ion pairs. To simplify the
formulation of equations, the number density of ion pairs has been transformed from a
matrix representation into a vector format. Additionally, the number density of neutral ion
pairs has been excluded from this vector.
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α1ρ1
α2ρ2
α3ρ3

...
αCionρCion

 ∪


− ρ̃12 ρ̃13 · · · ρ̃1Cion

− − ρ̃23 · · · ρ̃2Cion

− − − · · · ρ̃3Cion

... · · ·
. . .

...
− − − · · · −

 ≡



α1ρ1
...

αCionρCion

ρ̃12
ρ̃13
...

ρ̃(Cion−1)Cion


≡ ϱ (9.32)

To predict electrical conductivity, in addition to the number density, information on the
valence type (Zi), diameter (σi), and ionic conductivity at infinite dilution (λ0

i ) of all charged
species is required.

To compute the electrical conductivity of associative electrolyte solutions, it is necessary
to establish a relationship between the parameters of the ion pairs and their constituent ions.
The valence type of the ion pairs is characterized as Zij = Zi +Zj . The diameter of ion pairs
is determined through a volumetric averaging process, which leads to the following mixing
rule.

σ̄3
ij = σ3

i + σ3
j (9.33)

It is important to distinguish between the diameter of the ion pairs (σ̄ij) and the distance
of the closest approach (σij) as defined earlier. The ionic conductivity at infinite dilution of
ion pairs is computed based on the ionic conductivity at infinite dilution of ions, as proposed
by Anderko et al. [127], as shown in Eq. 9.34:

(λ0
ij)3 = | Zi + Zj |[(

|Zi|
λ0

i

)3
+
(

|Zj |
λ0

j

)3
]1/3 (9.34)

The specific conductivity of this system can be obtained from Eq. 9.35:

χ = e2

kBT

[
C̃∑

i=1

ϱiD
0
iZ

2
i

(
1 + δvi

v0
i

)(
1 + δki

ki

)]
(9.35)

In Eq. 9.35, D0
i represents the diffusion coefficient of ions or ion pairs at infinite dilution.

The diffusion coefficient at infinite dilution for an ion or ion pair can be related to its ionic
conductivity at infinite dilution or absolute mobility using the Nernst-Einstein equation (Eq.
9.36). ϱi denotes the number density of charged species in the solution, which includes both
ions and charged ion pairs. δvi/v

0
i corresponds to the hydrodynamic corrections applied

to the specific conductivity of ions or ion pairs, while δki/k
0
i represents the electrostatic

corrections applied to the specific conductivity of ions or ion pairs.

ωi = D0
i

kBT
= NAλ

0
i

F 2|Zi|
(9.36)

Corrections for deviations from ideal behavior, stemming from hydrodynamic (or elec-
trophoretic) and electrostatic (or relaxation) effects, should be incorporated from an electri-
cal conductivity theory. In Chapters 4 and 5, we have introduced two innovative models for
the electrical conductance of single-salt [184] and multi-salt [200] electrolyte solutions. In
the former case, we assumed that there are only two types of charged components in the
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solution that contribute to its electrical conductance. In the latter, we presented a model
for a system containing arbitrary types of charged species.

In the context of ion-ion association, the single-salt model is suitable for binary salt-
solvent solutions, where the salt is symmetrical. Consequently, the ion pair formed in such
solutions is neutral and does not contribute to the electrical conductance of the solution.
Figure 9.2a illustrates this scenario schematically.

In this situation, the number density of the components of the pseudo-system is:

ϱ =
[
α+ρ+
α−ρ−

]
(9.37)

As a result, the only conducting components in the system are free ions.
In all other scenarios, there are more than two types of conducting species present in

the solution, and it is necessary to utilize the mixed-electrolyte version of the developed
models. This situation arises either in binary salt-solvent systems with asymmetrical salts
(as illustrated schematically in Figure 9.2b) or when there are more than two types of ions
in the solution.

For instance, for a binary salt-solvent system in which the salt is asymmetrical, the
number density of charged components is:

ϱ =

[
α+ρ+
α−ρ−
ρ̃+−

]
(9.38)

The hydrodynamic correction to the ideal behavior of electrical conductivity in the general
case, which applies to all situations involving arbitrary types of ions, is derived from Eq. 9.39:

δvi

v0
i

= − F 2 | Zi |
3ηϵkBTNAλ0

i

C̃∑
j=1

ϱje
2Z2

j

[
exp(κ′(σi − σij))
κ′(1 + κ′σi)

+ exp(κ′(σj − σij))
κ′(1 + κ′σj)

]
(9.39)
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Figure 9.2. This figure presents the schematic of the electrical conductance process for a binary
salt-solvent system where (a) the salt is symmetrical in which ion pairs does not contribute to the
electrical conductivity and (b) the salt is asymmetrical in which ion pairs carry charge and contribute
to the electrical conductivity.
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In Eq. 9.39, κ′ is the inverse Debye length after the ion-ion association defined as Eq.
9.40:

κ′2 = 4πe2NA

ϵkBT

C̃∑
i=1

ϱiZ
2
i (9.40)

In the case of binary symmetrical electrolytes, as previously mentioned and shown in
Figure 9.2a, the only conducting species in the solution are free cations and free anions. In
this scenario, the electrostatic correction to the ideal behavior of the electrical conductance
process can be determined using Eq. 9.41:

δk+

k+
= δk−

k−
= δk

k
= −Ωe

2 | Z+Z− |
2ϵkBT

exp(−κqσ+−)
(κ′ + κq)[

exp(κ′(σ+ − σ+−))
(1 + κ′σ+) + exp(κ′(σ− − σ+−))

(1 + κ′σ−)

]
(9.41)

In Eq. 9.41, Ω and κq are defined as Eq. 9.42 and Eq. 9.43, respectively:

Ω =
κ2

q

3

[
sinh (κqσ+−)

κqσ+−
− ϵkBTκqσ

2
+−

e2Z+Z−

(
cosh (κqσ+−)

κqσ+−
− sinh (κqσ+−)

κ2
qσ2

+−

)]
(9.42)

κ2
q = 4π

ϵkBT

ϱ−eZ−ω− + ϱ−eZ−ω−

ω+ + ω−
(9.43)

For electrolyte solutions containing more than two types of ions or for asymmetrical single-
salt solutions, the electrostatic correction to the ideal behavior of electrical conductivity is
obtained from Eq. 9.44:

δkm

km
= eZm

6ϵkBT

C̃∑
p=1

[
ςp

m√
qp + qp

C̃∑
j=1

C̃∑
i=1

(
tjς

p
j µi(eZiωi − eZjωj)

ωi − ωj

sinh
(
κ′√qpσji

)
σji[

exp(κ′σj)
1 + κ′σj

+ exp(κ′σi)
1 + κ′σi

]
exp
(
−κ′(1 + √

qp)σji

))]
(9.44)

In this equation, κ′ represents the inverse Debye length, as defined by Eq. 9.40, where
ϵ = 4πϵ0ϵr denotes the dielectric constant of the medium. Furthermore, tj and µj correspond
to the transport number at infinite dilution (as given by Eq. 9.45) and the relative ionic
strength (as defined in Eq. 9.46), respectively.

ti = µiωi

ω̄
(9.45)

µi = ϱie
2Z2

i∑C̃

j=1 ϱje2Z2
j

(9.46)

In Eq. 9.44, ωi and ω̄ denote the absolute and average absolute mobility of the ion i,
respectively. The absolute mobility of an ion can be determined on the basis of its ionic
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conductivity (λ0
i ) and diffusion coefficient at infinite dilution (D0

i ), as shown in Eq. 9.36.
Similarly, the average mobility of ions can be calculated using Eq. 9.47.

ω̄ =
C̃∑

j=1

µjωj (9.47)

The terms qp and ζp
i correspond to the eigenvalues and components of the eigenvector

obtained from the solution of a set of differential equations (equations 22-26 in ref. [116]).
The eigenvalues and eigenvectors are determined by equations 9.48 and 9.49, respectively.

qp =
C̃∑

j=1

= ω̄tj
ωj + δp

(9.48)

ςp
j = Npωj

ω2
j − δ2

p
(9.49)

In these equations, the variable Np is defined as per Eq. 9.50, and δp represents one of
the roots of Eq. 9.51.

1
N2

p
=

C̃∑
j=1

tjω
2
j

(ω2
j − δ2

p)2 (9.50)

−2ω̄δ
C̃∑

j=1

ti
ω2

i − δ2 = 0 (9.51)

In accordance with the recommendations of Onsager and Kim [109], Van Damme et
al. [116] proposed that the roots of Eq. 9.51 should follow the specified order:

0 = δ2
1 < ω2

1 < δ2
2 < ω2

2 < · · · < δ2
C̃ < ω2

C̃ (9.52)

This specific order streamlines the solution of Eq. 9.51 for δp enabling the use of root
bracketing, interval bisection, and inverse quadratic interpolation techniques. In our research,
we used the Brent algorithm [202], implemented in the SciPy library, to solve this nonlinear
equation.

9.1.6 Thermodynamic and Transport Properties

The systems investigated in this study are binary salt-water systems. Consequently, to
streamline the presentation of the equations, we introduce the thermodynamic and transport
properties specific to these binary salt-water systems.

In this study, we focus on four properties of the electrolyte solutions: MIAC, osmotic
coefficient, liquid density, and molar conductivity. Of these, molar conductivity is a transport
property of the system, while the others are thermodynamic properties.

MIAC, denoted as γm
± , and the osmotic coefficient, denoted as ϕ, are associated with the

fugacity of the ions and the solvent, respectively. The fugacity coefficient of the component
i in the mixture, represented as φ̂i, is determined using Eq. 9.53:

RT ln φ̂i(T, P,n) =
[
∂Ar

∂ni

]
T,V

−RT lnZ (9.53)
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In Eq. 9.53, Z = P V
N̄kBT

represents the compressibility factor, and R = kBNA denotes
the ideal gas constant. The asymmetrical rational activity coefficient of ions (γ∗

i ) is defined
as shown in Eq. 9.54:

γ∗
i = φ̂i(T, P,n)

φ̂∞
i (T, P,n∞) (9.54)

In Eq. 9.54, φ̂∞
i represents the fugacity coefficient of ion i in the infinitely diluted solution.

The activity coefficient of the ion i on the molality scale is subsequently determined using
Eq. 9.55:

γm
i = xwγ

∗
i (9.55)

In Eq. 9.55, xw stands for the mole fraction of water. MIAC in the molality scale is
derived from Eq. 9.56:

ln γm
± = 1

ν+ + ν−
(ν+ ln γm

+ + ν− ln γm
− ) (9.56)

In Eq. 9.56, ν+ and ν− are the stoichiometry coefficients of the cation and the anion
where the salt is dissolved in the solution. The activity coefficient of neutral compounds,
water, in this study is defined as Eq. 9.57:

γw = φ̂w(T, P,n)
φw(T, P ) (9.57)

In Eq. 9.57, φw(T, P ) is the fugacity coefficients of pure water. The osmotic coefficient
is defined as Eq. 9.58:

ϕ(T, P,n) = − ln xwγw

(ν+ + ν−)mMw
(9.58)

In Eq. 9.58, m is the molality of the electrolyte, and Mw is the molecular weight of water.
Finally, the molar conductivity is defined as Eq. 9.59:

Λ = χ

cE
(9.59)

In Eq. 9.59, cE is the molarity of the electrolyte defined in Eq. 9.1.

9.1.7 Unified Framework
Before exploring the introduction of the unified framework, it is crucial to establish the
relationship between a transport property, such as electrical conductivity, and the thermo-
dynamic properties of the system. When the electrolyte is completely dissociated within
the solution, the electrical conductivity and thermodynamic properties are entirely indepen-
dent of one another, at least when viewed from a macroscopic perspective. Conversely, in
situations where the ion-ion association plays a significant role and is taken into account, a
significant correlation exists between the thermodynamic properties, as illustrated in Figure
9.3.

As shown in Figure 9.3, the equations that govern the concentration-dependent behavior
of ion pairing are controlled by thermodynamic models. In this work, we employ an EoS,
while in chapters 6 and 8, an implicit solvent model was utilized for this purpose. The extent
of ion pairing can be quantified either by calculating the number density of ion pairs or by
assessing the fraction of unbound (or free) ions.
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Figure 9.3. The unified framework for investigation of ion-ion association in electrolyte solutions.

It is essential to emphasize that the utilization of the fraction of unbound ions is recom-
mended. This preference arises from the complexity of multi-component systems containing
various types of ions, where the number of different ion pairs increases significantly. Conse-
quently, working with the number density of ion pairs may not be a practical approach. In a
system comprising M cations and N anions, the total number of type of ions equals M +N ,
while the count of ion pairs is M ×N .

Determining the extent of ion pairing at the reference state, quantified by the association
constant at infinite dilution, proves challenging when relying solely on thermodynamic ap-
proaches. Several physical models have been proposed to address this issue, but they often
lack accuracy, except in cases of strong ion pairing, and typically require adjustments based
on experimental data [84]. The most precise method for estimating the association constant
at infinite dilution, or at the very least fine-tuning these physical models, involves the use
of electrical conductivity. Unlike many thermodynamic properties, electrical conductivity
can be measured at extremely low salt concentrations with a high degree of precision. Con-
sequently, it can be concluded that the reference state of ion pairing can be determined by
electrical conductivity.

In addition to the points mentioned above, thermodynamic models lack crucial informa-
tion regarding the structural properties of solutions. As elucidated in Chapter 6, all models
that we investigated were capable of predicting MIAC in strongly associative aqueous solu-
tions through parameter estimation. However, upon closer examination, it became evident
that the predicted fraction of unbound ions exhibited both quantitative and qualitative dis-
parities. This has led us to a standstill, as thermodynamic models and their associated
properties do not enable us to offer further insights into the accuracy of these models.

Furthermore, spectroscopic techniques such as UV/vis, NMR, or Raman spectroscopy
have been shown to be unreliable in quantifying the extent of ion pairing in electrolyte
solutions [313]. Instead, relaxation methods prove to be more suitable tools for this purpose
[314]. However, it is worth noting that studies quantifying the extent of ion pairing using
relaxation methods are limited in scope and primarily focus on a few electrolytes. Another
limitation of relaxation methods is their applicability only to relatively strong associations.
Additionally, it appears that the results obtained through relaxation methods are subject to
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some degree of uncertainty.
For example, in 2004, Buchner et al. [315] employed dielectric relaxation spectroscopy

(DRS) to identify three distinct types of ion pairs: CIP, SSIP, and SIP in MgSO4 aqueous
solutions. However, in a more recent investigation, Mamatkulov et al. [316] demonstrated
that within the MgSO4-H2O system, only SIPs and SSIPs could be detected. They meticu-
lously replicated dielectric relaxation spectra using MD simulations based on experimental
data. Subsequently, they compared the RDF of magnesium and sulfate ions with that of
sulfate ions and water molecules, ultimately concluding that the ion pairs in magnesium
sulfate solutions are indeed solvent-separated.

Nevertheless, it is worth noting that the extent of ion pairing initially reported by Buch-
ner et al. [315] has faced recent challenges [265, 317, 318]. Consequently, the reliability of
relaxation methods for quantifying the extent of ion pairing has come into question.

Electrical conductivity also plays a vital role in validating the predicted fraction of un-
bound ions. This is due to the fact that the electrical conductivity of an electrolyte solution
exhibits a high sensitivity to both the type and concentration of charged species present in
the solution. Any variation in these charged species resulting from the ion-ion association
can significantly impact the electrical conductivity. When we combine a reliable model for
electrical conductivity with the predicted fraction of unbound ions, as described in Section
9.1.3, we can expect to obtain an accurate prediction of electrical conductivity, provided
that the fraction of unbound ions has been accurately predicted.

The comprehensive examination of ion pairing through the integration of both thermody-
namic properties and electrical conductivity also serves as a valuable tool in the parameter
estimation of electrolyte equations of state. This topic constitutes the focus of our forth-
coming studies. In the present investigation, we employ this unified framework, illustrated
in Figure 9.3, to validate models or parameter sets.

9.2 Results

In this section, we begin by presenting the parameters employed in our study for both the
Binding eSAFT-VR-Mie model and the electrical conductivity model. Subsequently, we
present the results of our unified framework, focusing on three binary salt-water systems at
298.15 K. For each binary system, we begin by reviewing the evidence of ion pairing from
experimental methods available in the literature. Following this, we assess the accuracy of
selected prominent electrolyte equations of state from the literature. Finally, we compare the
predictions of our unified framework, pertaining to liquid density, MIAC, osmotic coefficient,
and molar conductivity, with the experimental data for the same three binary salt-water
systems, all at 298.15 K and 1 bar.

9.2.1 Parameters

In this study, we refrain from performing any parameter estimation. The properties of
the systems are solely calculated predictively, accounting for the ion-ion association. The
parameters pertaining to the solvent molecules have been adopted from the values reported
by Dufal et al. [308]. A summary of these parameters is provided in Table 9.1:

Table 9.1. SAFT-VR-Mie parameters for water [308].

Solvent mseg ϵ/kB (K) σ (m) λr λa ϵAB/kB (K) KAB × (m3)
H2O 1.0 418.0 3.0555E-10 35.823 6.0 1600.0 496.66E-30
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The parameters of the ions used in this study have been sourced from the research carried
out by Selam et al. [70]. These ion-specific parameters are detailed in Table 9.2. It should
be noted that for both thermodynamic and transport properties, a consistent ionic diameter
will be employed throughout this study.

Eq. 9.60 represents the formula for the dispersion energy between ions, both like and
unlike, as proposed by Selam et al. [70].

ϵij = 3
8

α0,iα0,j

(4πε0)2σ6
ij

IiIj

Ii + Ij
(9.60)

In this equation, α0,i represents the electronic polarizability of the species, while Ii de-
notes the ionization potential of the species.

The ionic conductivity at infinite dilution for the ions used in this study are tabulated in
Table 9.3.

In the figures presented in this section, the lines corresponding to the model predictions
are labeled as either S1 or S2. The results obtained for the properties of the system without
taking into account the effects of ion-ion association are referred to as the S1 label. Specifi-
cally, for MAIC, osmotic coefficient, and liquid density, the S1 lines replicate the findings of
Selam et al. [70]. However, for molar conductivity, the S1 lines replicate the results reported
by Naseri Boroujeni et al. [200].

Adjacent to each curve labeled S2, we provide the corresponding association constant at
infinite dilution (K◦

+−). It is worth noting that, across all systems, the highest association
constant at infinite dilution has been sourced from the literature and represents the most
reliable value reported in the literature.

All calculations carried out in this study employ composition-independent values for the
RSP (εr) and viscosity (η) of water. Given that all calculations are performed at 298.15 K,
these parameters are set to εr = 78.34 and η = 0.890 × 10−3 Pa · s.

9.2.2 NaCl-H2O

Sodium chloride aqueous solutions are typically categorized as non-associative electrolyte
solutions. Nevertheless, it is essential to note that the distinction between non-associative
and associative electrolyte solutions has yet to be definitively established.

From DRS studies of aqueous sodium chloride solutions, Buchner et al. [320] did not
observe an additional relaxation process associated with ion pairs. Recent research, employ-
ing DRS and MD simulations, has similarly reported the absence of detectable ion pairs in
sodium chloride aqueous solutions [316, 321, 322]. Conversely, experimental investigations

Table 9.2. Parameters for Ions [70].

Ions α0 (m3) I (e.V ) σ (m) σB (m) λr λa ϵiw/kB(K)
Na+ 0.179E-24 47.286 2.1607E-10 3.360E-10 12 6 187.62
Mg2+ 0.094E-24 80.144 2.3783E-10 2.910E-10 12 6 1371.65
NO−

3 4.049E-24 3.9370 4.0346E-10 4.280E-10 12 6 283.32
Cl− 3.660E-24 3.6130 3.0999E-10 3.874E-10 12 6 594.05
SO2−

4 4.432E-24 2.6000 2.7886E-10 4.665E-10 12 6 761.50

Table 9.3. The ionic conductivity at infinite dilution of ions studied in this work at 298.15 K [319].

Ions Na+ Cl− Mg2+ (SO4)2−

λ0
i × 104 (S · m2 · mol−1) 50.08 76.31 53.00 80.00



9.2 Results 197

of electrical conductivity, both at low concentrations [149] and in highly concentrated solu-
tions [148], have demonstrated the presence of ion pairs in the NaCl-H2O system. However,
it is noteworthy that the association constant at infinite dilution appears to depend on the
concentration range under investigation and the specific conductivity model employed.

The formation of ion pairs in aqueous sodium chloride solutions has also been extensively
explored through MD simulations. Fennell et al. [323] conducted investigations of the asso-
ciation constant at infinite dilution for alkali halide solutions, utilizing various force fields
and considering a system comprising 2 ions and 864 water molecules. Their findings indi-
cated an association constant at infinite dilution equal to 0.6 L · mol−1 for NaCl-H2O at
298.15 K. Numerous MD simulations have confirmed the existence of ion pairs in aqueous
sodium chloride solutions [324–328]. For instance, Lyubartsev et al. [326] proposed that in
NaCl aqueous solutions, the ratio of ion pairs increases from 4% to nearly 50% as the salt
concentration increases from 0.5 to 4 mol/L.

Nevertheless, it is important to highlight that, in comparison to other systems investi-
gated within this chapter, the extent of ion pairing in NaCl-H2O systems is notably lower.
Therefore, the inclusion of ion pairing should not be anticipated to miraculously resolve the
discrepancies between models and experimental data. Nonetheless, studying the impact of
including ion pairing in this system holds significant value for two primary reasons. Firstly,
it allows us to assess whether the inclusion of ion pairing in cases where the affinity for ion-
ion association is very weak has any adverse effects on already acceptable results. Secondly,
it provides an opportunity to evaluate the capability of the unified framework to investigate
systems with a very low likelihood of forming ion pairs.

It is worth noting that NaCl-H2O system represents one of the most extensively studied
systems within the realm of electrolyte solutions thermodynamics. This system finds its place
in nearly every study dedicated to electrolyte equations of state. A wide array of equations
of state, utilizing various parameter estimation methodologies and a diverse selection of RSP
models, have been employed to predict or estimate the thermodynamic properties of this
system. In Table 9.4, we present the average absolute relative deviation (AARD%) which
is defined in Eq. 9.61 for the estimation of several electrolyte equations of state concerning
MIAC, osmotic coefficient, and liquid density, as reported in the literature.

AARD% = 1
Nd

Nd∑
i=1

∣∣∣∣Xcalc
i −Xdata

i

Xdata
i

∣∣∣∣ (9.61)

Upon comparing the AARD% values of the models presented in Table 9.4 with those
found in the respective references, it becomes evident that the accuracy of the models can
be significantly influenced by simple variations in parameter estimation strategies or by
examining the impact of employing different RSP models. For example, the eCPA used
by Schlaikjer et al. [53] and Olsen et al. [51] are the same as those developed by Maribo-
Mogensen et al. [42]. The difference between the studies stems primarily from the variation
of parameter estimation strategy or the choice of RSP. This holds true when one compares
the works of Selam et al. [70] with Novak et al. [72, 73] or the works of Ahmed et al. [77]
and Yang et al. [329].

Figure 9.5 illustrates the behavior of the liquid density, MIAC, osmotic coefficient, and
molar conductivity in aqueous sodium chloride solutions at 298.15 K. In this figure and
in all subsequent figures throughout this chapter, the lines represent model predictions, as
indicated by the legend, while the symbols denote experimental data obtained from the
literature.

These properties were calculated using the Binding eSAFT-VR-Mie and eSAFT-VR-Mie
models in conjunction with the electrical conductivity model for single-salt systems. S1
curves correspond to the work of Selam et al. [70], where the ion-ion association is not
considered. S2 curves represent the results obtained using the Binding eSAFT-VR-Mie



198 9 Binding eSAFT-VR-Mie

Table 9.4. Summary of the AARD% of the equations of state reported in the literature for NaCl-
H2O solution.

AARD%
eEoS Ref. γm

± ϕ ρ
eCPA Maribo-Mogensen et al. [42] 2.37 1.48 0.73

Schlaikjer et al. [53] 6.96 9.37 0.75
Olsen et al. [53] 1.95 1.62 0.581

ePC-SAFT Held et al. [56] 3.43 - 0.74
Held et al. [59] - 2.95 0.69

ePPC-SAFT Rozmus et al. [76] 2.47 - 3.48
Ahmed et al. [77] 6.2 - -
Yang et al. [329] 0.76-2.2 - 0.38-0.79

SAFT-VRE Schreckenberg et al. [67] 5.51 1.55 1.74
eSAFT-VR-Mie Eriksen et al. [69] 20.43 3.04 5.07

Selam et al. [70] 2.55 2.07 0.99
Novak et al. [72] 3.1 - -
Novak et al. [73] 3.7-6.1 - 0.5-6.9

model introduced in this study, with association constants at infinite dilution (K◦
+−) set to

0.5, 0.3, and 0.1 mol ·L−1. The selection of the association constant at infinite dilution will
be extensively discussed in Section 9.3.2.

The details of calculations of thermodynamic properties including but not limited to the
volume solver algorithm, site fraction solver, derivative calculations can be found in the
existing literature [8, 330–332] and will not be explained here.

Figure 9.4a demonstrates that the liquid density of the solution exhibits insensitivity, or
very slight sensitivity, to the inclusion of ion-ion association in the EoS. As is evident in this
figure, all the curves closely overlap with each other. A minor deviation can be observed at
extremely high salt molalities.

In contrast to the liquid density, MIAC, the osmotic coefficient, and the molar conduc-
tivity of the solution exhibit a high degree of sensitivity to inclusion of ion-ion association,
as well as the specific value chosen for the association constant at infinite dilution.

From Figure 9.4b, it can be seen that the results of eSAFT-VR-Mie (S1) from Selam
et al. [70] for MIAC of the electrolyte are in better agreement with the experimental data
compared to Binding eSAFT-VR-Mie (S2). It is neither surprising nor interesting since the
result of a model that has been adjusted to the experimental data is better than a model
where no adjusting parameter are used. Furthermore, according to our previous discussion,
sodium chloride is slightly associative. As a result, it cannot be expected that the estimated
MIAC is modified by including an ion-ion association. However, it can be observed that the
green curve is also close to the experimental data.

The results of the osmotic coefficient depicted in Figure 9.4 differ from the MIAC. As
observed in this figure, the agreement with the experimental data is better for Binding
eSAFT-VR-Mie with K◦

+− = 0.1mol · L−1 compared to eSAFT-VR-Mie. What makes this
observation intriguing is that the osmotic coefficient data were not utilized in the parameter
estimation of eSAFT-VR-Mie by Selam et al. [70]. Consequently, although the MIAC (used
in parameter estimation) and osmotic coefficient are correlated, this comparison provides a
more equitable assessment of eSAFT-VR-Mie and Binding eSAFT-VR-Mie.

It is evident that the predicted molar conductivity, when considering ion-ion association
with K◦

+− = 0.1 mol · L−1, exhibits modifications compared to the S1 curve, where ion
pairing is neglected. However, a noticeable deviation from the experimental data still persists
at higher concentrations. Interestingly, increasing the association constant results in an
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Figure 9.4. This figure compares the predictions with the experimental data of NaCl-H2O at
298.15 K for (a) liquid density (ρ), (b) MIAC (ln γm

± ), (c) molar conductivity (Λ), and (d) osmotic
coefficient (ϕ). S1 is denoted to the predictions of the EoS or the electrical conductivity model
where the ion-ion association is ignored. S2 is the prediction that includes the effect of the ion-
ion association corresponding to the association constant written in front of it. The experimental
data denoted as points are from ref. [90] for MIAC, from ref. [90] for osmotic coefficient, from
ref. [131,134,148,149,166] for electrical conductivity and from ref. [333] for density.

underestimation of molar conductivity, even at very low molalities, as indicated by the blue
and red curves in Figure 9.4c.

Figure 9.5 shows the fraction of unbound ions (free ions) predicted by the Binding eSAFT-
VR-Mie model at 298.15 K, with the association constant at infinite dilution ranging from
0.1 to 0.51 mol/L. Notably, for this electrolyte, the fraction of free ions for both cations and
anions is equal, denoted as α+ = α−.

As observed in this figure, an increase in K◦
+− results in a decrease in the fraction of free

ions. Additionally, the variation of the fraction of free ions with salt molality follows either
a linear trend or closely approximates linearity. In cases where the predictions of MIAC,
the osmotic coefficient, and the molar conductivity are in better agreement, as indicated by
the green dashed lines, the variation of the fraction of free ions is linear, ranging from 1 at
infinite dilution to nearly 0.9 at m = 6mol · kg−1.

Figure 9.6 provides an overview of the contributions to the activity coefficient of both
cations and anions, originating from the terms PHYS, ASSOC, DH and MAL. The definitions
of these terms can be found in Table 9.5. These contributions to the Helmholtz free energy
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Figure 9.5. This figure presents the fraction of free ions (α+ = α−) for NaCl-H2O at 298.15 K. S1
corresponds to the eSAFT-VR-Mie that consider full dissociation. S2 curves corresponds to Binding
eSAFT-VR-Mie with the associations constant at infinite dilution (K◦

+−) equals to 0.51, 0.30, and
0.10 L · mol−1 for blue, red, and green curves, respectively.

are obtained from Eq. 9.62.

ln γCONT
i = 1

RT

[(
∂ACONT

∂ni

)
T,V,nj

−
(
∂ACONT

∂ni

)
T,V,∞

]
(9.62)

The colored lines in Figure 9.6 correspond to the colored lines in Figures 9.4 and 9.5, where
the Binding eSAFT-VR-Mie is utilized for the calculations. On the contrary, the black lines
represent the contributions to the activity coefficient when ion pairing is not considered
(eSAFT-VR-Mie). It should be noted that the PHYS, ASSOC, and DH contributions of
the Binding eSAFT-VR-Mie EoS are identical to those of eSAFT-VR-Mie. Consequently, in
Figure 9.6, these contributions are displayed in black for eSAFT-VR-Mie. The differentiating
factor between Binding eSAFT-VR-Mie and eSAFT-VR-Mie lies in the contributions from
the MAL term. In the case of eSAFT-VR-Mie, this contribution remains zero (black dashed
dotted lines in Figure 9.6). However, for the Binding eSAFT-VR-Mie, the MAL contribution
is nonzero and varies with salt molality.
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Figure 9.6. This figure presents the contributions to the activity coefficients of cation (ln γ+) and
anion (ln γ−) for NaCl-H2O at 298.15 K. Colored lines corresponds to colored ones in figures 9.4 and
9.5. Black lines are contributions to the activity coefficient from the eSAFT-VR-Mie.
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Table 9.5. The Contributions to the activity coefficient.

Term Description
PHYS ln γMONO

i + ln γCHAIN
i − lnZ

ASSOC ln γASSOC
i

DH ln γDH
i

MAL ln γMAL
i

The primary takeaway from Figure 9.6 is that the inclusion of ion-ion association in-
troduces an additional negative contribution to the activity coefficient of both cations and
anions. This explains why the incorporation of the ion-ion association leads to a downward
shift in the predicted MIAC. Furthermore, it should be noted that the variation of the MAL
contribution with salt molality exhibits an almost linear behavior.

Upon assessing the predictions made by the Binding eSAFT-VR-Mie for sodium chloride
aqueous solutions, several observations come to light. Notably, the inclusion of the ion-ion
association does not compromise the already commendable results yielded by the eSAFT-
VR-Mie. In fact, the opposite is evident: introducing the ion-ion association has subtly
refined predictions related to molar conductivity and the osmotic coefficient.

Moreover, it is evident that even in the absence of ion-ion association considerations,
the model can produce reasonably accurate results. This outcome aligns with expectations,
given that the NaCl-H2O system exhibits only mild associative behavior. Consequently, any
effects arising from neglecting ion-ion associations can be counterbalanced by fine-tuning
model parameters during the parameter estimation process.

9.2.3 Na2SO4-H2O
Sodium sulfate aqueous solutions constitute the second system under investigation to assess
the impact of ion-ion association. In comparison to sodium chloride, sodium sulfate is more
associative because of the propensity of sulfate ions to form ion pairs. However, it remains
less associative compared to the MgSO4 aqueous solution, which will be examined in the
subsequent section.

The association of ions in this electrolyte follows the following reaction equilibrium:

Na+ + (SO4)2− ⇌ (NaSO4)− (9.63)

As depicted in Eq. 9.63, ion pairs in the case of this electrolyte also carry charge and play
a role in the electrical conductance process. This underscores the significance of studying
this system, particularly in light of Marcus’s observation [80] that the primary limitation
of utilizing electrical conductivity to investigate ion pairing lies in its applicability to asym-
metrical electrolytes. With the development of a multi-salt extension for the DHO-based
electrical conductivity model (as outlined in Chapter 5), we now possess a robust theoretical
framework for examining ion pairing in asymmetrical electrolyte solutions. Consequently,
it can be asserted that the investigation of ion pairing in such systems through electrical
conductivity is no longer constrained by the previously mentioned disadvantage.

Investigations into the presence of ion pairs in aqueous sodium sulfate solutions have ex-
tended beyond electrical conductivity and encompassed various other methodologies. These
include studies based on the activity coefficient [334], the potentiometric analysis [335–337],
the DRS [338], the MD simulations [316,339,340], and the spectroscopic techniques [341–343].

For this electrolyte, Gilligan and Atkinson proposed a two-step mechanism based on
ultrasonic relaxation data [344]. Spectroscopic methods [341–343] have indicated that the
formation of CIP is unlikely. DRS [338] has also shown that the formation of SSIP and
SIP leads to a more consistent association constant at infinite dilution with potentiometric
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studies. In contrast, a recent study that combined MD simulations and DRS [316] has
suggested that the dominant ion pairs in this system are CIP.

Without additional structural investigations, it remains challenging to definitively deter-
mine which of the statements regarding the type of ion pairs in sodium sulfate solutions is
more closely aligned with the actual behavior of the system. Nevertheless, it can be confi-
dently asserted that this system exhibits ion association tendencies. Unlike sodium chloride
aqueous solutions, where the evidence regarding ion pairing is mixed, both simulation and
experimental investigations consistently provide evidence of ion pair formation in sodium
sulfate solutions.

From the macroscopic examination of ion pairing, it can be asserted that classical ap-
proaches that utilize thermodynamic and electrical conductivity properties continue to hold
value. Hence, as detailed in Section 9.1.7, a concurrent investigation of both thermodynamic
properties and electrical conductivity proves to be an advantageous approach, offering a com-
prehensive understanding of the dynamics of ions within the solution.

In the domain of thermodynamic modeling, sodium sulfate electrolyte solutions have been
subject to investigation by several electrolyte equations of state, including but not limited
to eCPA [42,52], ePC-SAFT [56,57,59], and eSAFT-VR-Mie [69,70]. Table 9.6 provides the
AARD% of the predicted MIAC, osmotic coefficient, and liquid density by the respective
equations of state.

All the studies listed in Table 9.6, apart from Held et al.’s [57], have assumed that sodium
sulfate aqueous solutions completely dissociate. Notably, the table reveals that the predictive
errors of the models consistently exhibit higher magnitudes when compared to the sodium
chloride system.

Furthermore, Held et al. [57] approached sodium sulfate aqueous solutions as if they were
weak electrolytes, adjusting the association constant on a molality scale. This treatment of
ion pairing aligns with chemical approaches. However, it can be gleaned from the AARD%
values in Table 9.6 that the inclusion of the ion-ion association has led to improved estimates
of MIAC. In a subsequent study, Held et al. [59] adopted a different parameter estimation
strategy, and despite the improved predictive performance when considering the ion-ion
association, they chose to disregard this effect. They were able to identify a set of parameters
that resulted in a reduced deviation from the experimental data.

AARD% values for other electrolyte equations of state have revealed substantial devi-
ations from the experimental data. Eriksen [345] postulated that this deviation may be
attributed to the omission of effects of ion-ion association.

Figure 9.7 illustrates the impact of incorporating ion pairing on liquid density, MIAC,
molar conductivity, and osmotic coefficient. In a manner similar to Figure 9.4, the black
lines depict the predicted properties employing eSAFT-VR-Mie [70] for thermodynamic prop-
erties. For molar conductivity, this line represents the prediction under the assumption of

Table 9.6. Summary of the AARD% of the equations of state reported in the literature for Na2SO4-
H2O solution.

AARD%
eEoS Ref. γm

± ϕ ρ
eCPA Maribo-Mogensen et al. [42] 3.71 2.06 4.59

Schlaikjer et al. [53] 6.96 9.37 0.75
ePC-SAFT Held et al. [56] 32.63 - 0.41

Held et al. [57] 6.43 - 0.41
Held et al. [59] - 2.41 0.87

eSAFT-VR-Mie Eriksen [345] - 39.21 1.34
Selam et al. [70] 17.49 16.47 0.74
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complete dissociation, employing equations for the single-salt case (equations 9.35, 9.41, and
9.39). The colored lines correspond to the Binding eSAFT-VR-Mie model elucidated in Sec-
tion 9.1.1, and the molar conductivity is determined using the multi-salt model (equations
9.35, 9.44, and 9.39).

Figure 9.7a reveals that the inclusion of the ion-ion association has an exceedingly minimal
impact, almost negligible, on the prediction of liquid density. This observation aligns with
the findings in Figure 9.4. Similar to the sodium chloride system, the incorporation of the ion-
ion association results in a downward shift in the predictions of MIAC, molar conductivity
and osmotic coefficient compared to the S1 curve, where ion pairing is disregarded. This shift
becomes more pronounced as the association constant at infinite dilution increases. Notably,
the association constants at infinite dilution for this system are one order of magnitude
greater than those for the sodium chloride system, as evidenced by Figure 9.7.

Unlike the sodium chloride system, as depicted in Figure 9.7, the S1 curves representing
the predictions for MIAC, molar conductivity and osmotic coefficient under the assumption
of complete dissociation deviate from the experimental data. The incorporation of the ion-
ion association leads to improved predictions for both the osmotic coefficient and the MIAC
compared to the predictions of eSAFT-VR-Mie [70] (S1 curve). However, when utilizing an
association constant at infinite dilution from the literature (blue curves), it is evident that
both the MIAC and osmotic coefficient are underestimated. For MIAC, the green curve
(where K◦

+− = 1.7L ·mol−1) shows a closer alignment with the experimental data, while for
the osmotic coefficient, the red curve (with K◦

+− = 4.4 L · mol−1) shows a better fit to the
experimental data.

Figure 9.7c, which presents the predictions of molar conductivity, highlights that neglect-
ing the ion-ion association leads to overestimations of molar conductivity, while incorporating
the ion-ion association results in underestimations. Furthermore, the degree of underestima-
tion increases with greater association constants at infinite dilution.

Figure 9.8 illustrates the fraction of unbound ions for the Na2SO4-H2O system. In this
figure, the fraction of unbound cations and anions is indicated by α+ and α−, respectively.
Initially, it is evident that the fraction of free ions for cations and anions differs by a factor
of two, as dictated by mass balance considerations. Furthermore, the figure reveals that the
fraction of free ions exhibits a steep decline when the salt molality is below 0.5 mol · kg−1.
At higher concentrations, the fraction of free ions decreases almost linearly with the salt
concentration.

Figure 9.9 illustrates the contributions to the activity coefficient derived from the terms
PHYS, ASSOC, DH and MAL, as defined in Table 9.5. In this figure, similar to Figure 9.6,
the colored curves represent the MAL contributions, corresponding to the colored curves
in Figures 9.7 and 9.8. Meanwhile, the black curves denote contributions shared between
eSAFT-VR-Mie and Binding eSAFT-VR-Mie.

Figure 9.9 illustrates that the inclusion of the ion-ion association leads to an additional
negative contribution to the activity coefficient of the ions. The negative contribution of
the sulfate ion, as shown in Figure 9.9, exceeds that of the sodium ion. Furthermore, it is
observed that the contribution from the MAL increases with larger association constants at
infinite dilution.

9.2.4 MgSO4-H2O

Aqueous solutions of MgSO4 have received significant attention in both theoretical and
experimental studies, owing to their relevance in fields such as biochemistry, physiology and
their prevalence as a major component of seawater. The exploration of the thermodynamics,
structural properties, and dynamic behavior of ion-ion and ion-solvent interactions in these
solutions have been the focus of research. Of particular interest has been the investigation of
ion pairing, or more broadly, ion-ion association in aqueous MgSO4 solutions. This interest
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Figure 9.7. This figure compares the predictions with the experimental data of Na2SO4-H2O at
298.15 K for (a) the liquid density (ρ), (b) the MIAC (ln γm

± ), (c) the molar conductivity (Λ), and (d)
the osmotic coefficient (ϕ). S1 is denoted to the predictions of the EoS or the electrical conductivity
model where the ion-ion association is ignored. S2 is the estimations including the effect of ion-
ion association corresponding to the association constant written in front of it. Experimental data
denoted as points are from ref. [90,219,346] for the MIAC, from ref. [90,263] for the osmotic coefficient,
from ref. [129,134,141,160] for the electrical conductivity, and from ref. [141] for the liquid density
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Figure 9.8. This figure presents the fraction of free ions (α+ and α−) for Na2SO4-H2O at 298.15
K. S1 corresponds to the eSAFT-VR-Mie that consider full dissociation. S2 curves corresponds to
Binding eSAFT-VR-Mie with the associations constant at infinite dilution (K◦

+−) equals to 6.6, 4.4,
and 1.7 L · mol−1 for blue, red, and green curves, respectively.
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Figure 9.9. This figure presents the contributions to the activity coefficients of cation (ln γ+) and
anion (ln γ−) for Na2SO4-H2O at 298.15 K.

dates back to the seminal work by Eigen and Tamm [347,348], who introduced the concept
of multi-step ion pairing based on sound absorption relaxation processes.

Various methods have been employed to investigate the dynamics and structure of ion
pairing in aqueous MgSO4 solutions since then. These methods include Raman spectroscopy
[189,191,343,349–352], DRS [264,314–316], terahertz and femtosecond infrared spectroscopy
[266], and sum frequency spectroscopy [353], among others.

While these methods offer insight into the structure and dynamics of ion-ion and ion-
solvent interactions, achieving a consistent and comprehensive understanding of these dy-
namics in MgSO4 aqueous solutions still requires further research efforts. In the meantime,
it remains crucial to investigate the thermodynamics of the ion-ion association using more
advanced macroscopic approaches, as proposed in this study.

The association of ions in MgSO4-H2O solutions has been methodically examined through
different avenues. One approach focuses on the investigation of thermodynamic properties,
utilizing implicit solvent models, as discussed in the works by Tikanen et al. [354] and
Simonin et al. [163]. A separate line of inquiry has been the interpretation of electrical
conductivity data, as shown by studies by Tomsic et al. [130], Turq et al. [112] and Chhih et
la. [113]. For both methodologies, model parameters are meticulously tuned to align with
the target experimental data, be it MIAC or molar conductivity, resulting in the formulation
of a semi-empirical model.

In Chapter 6, we delved into the phenomenon of ion pairing within MgSO4-H2O solutions,
contrasting the predictions of four implicit solvent models: FLGG [233, 234, 236], EG [220–
222], ZYS [242], and BiMSA [20]. Remarkably, all of these models adhered to the RPM,
assuming uniform size for both cations and anions. Our findings indicated that, despite their
inherent differences, each model could be effectively tuned to match the MIAC experimental
data. However, the proportions of unbound ions predicted by each differed both qualitatively
and quantitatively. It has been proposed that molar conductivity might serve as a validation
tool for these estimates, given the profound impact the species distribution exerts on the
molar conductivity of a solution.

Within the realm of electrolyte equations of state, the phenomenon of ion pairing in
aqueous MgSO4 solutions is often overlooked. A summary of the discrepancies observed in
the electrolyte equations of state for the MgSO4-H2O system can be found in Table 9.7.

From Table 9.7, it is evident that the AARD% for the MgSO4 system is consistently
higher compared to the sodium chloride system. Furthermore, the MgSO4 system has been
notably less explored in numerous electrolyte equations of state.

Figure 9.10 presents various properties of the aqueous magnesium sulfate solution at
298.15 K, including liquid density, MIAC, molar conductivity, and osmotic coefficient. The
S1 labeled curves are predictions from the eSAFT-VR-Mie model [70], which covers liquid
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Table 9.7. Summary of the AARD% of the equations of state reported in the literature for MgSO4-
H2O solution.

AARD%
eEoS Ref. γm

± ϕ ρ
eCPA Maribo-Mogensen et al. [42] 7.94 7.81 0.79

Schlaikjer et al. [53] 3.64 4.86 0.84
ePC-SAFT Held et al. [56] 19.36 - 0.54
eSAFT-VR-Mie Eriksen [345] - 12.61 0.849

Selam et al. [70] 13.92 11.28 0.67

density, MIAC, and osmotic coefficient. The molar conductivity under S1 is based on the
predictions of the single-salt model, which assumes full dissociation. In contrast, the S2
curves highlight predictions from the Binding eSAFT-VR-Mie, with the association constants
explicitly noted. For molar conductivity, the S2 curves use predictions that factor in the
fraction of unbound ions from the Binding eSAFT-VR-Mie EoS. This representation offers
a detailed comparison between experimental data and model predictions for the MgSO4
solution at the given temperature.

Just as with aqueous solutions of sodium chloride and sodium sulfate, the liquid density
predictions for the MgSO4 system seem to be largely unaffected by the incorporation of ion-
ion association factors. This is evident from Figure 9.10a, where all plotted curves closely
converge. The fidelity of these density predictions stems from the refinements implemented
by Selam et al. [70] in the eSAFT-VR-Mie model.

Regarding this system, Figure 9.10b reveals a deviation in the predicted MIAC by eSAFT-
VR-Mie from the experimental data when concentrations approach 1 mol · kg−1. However,
the Binding eSAFT-VR-Mie predictions are found to be reliable when K◦

+− = 80.7L ·mol−1,
a value which is nearly half of what has been previously cited in the literature. The use of
prior values for the association constant at infinite dilution led to an underestimation of the
MIAC.

The influence of incorporating ion-ion associations in model predictions becomes even
clearer when contrasting the S1 curve with the S2 curves in Figure 9.10d. This compari-
son illustrates that, independent of the precise value of the association constant at infinite
dilution, the S2 curves are more aligned with the experimental data than the S1 curve. A
similar trend can be discerned from graph c of Figure 9.10. Here, while the S2 curves align
remarkably well with the experimental data, the S1 curve tends to overestimate the molar
conductivity.

For the osmotic coefficient, even more pronounced modifications relative to eSAFT-VR-
Mie predictions are evident. At elevated salt concentrations, the predictions of eSAFT-VR-
Mie (represented by the S1 curve) overshoot the experimental data. On the other hand, the
Binding eSAFT-VR-Mie predictions lie much closer to the experimental data. At diluted
concentrations, where a minimum is observed in the osmotic coefficient experimental data,
neither the predictions from eSAFT-VR-Mie nor those from Binding eSAFT-VR-Mie closely
match the observed values.

To encapsulate, the inclusion of the ion-ion association provides improved accuracy in
predicting MIAC, molar conductivity, and osmotic coefficient for the MgSO4 system.

Figure 9.11 shows the fraction of unbound ions in aqueous magnesium sulfate solutions
at 298.15 K. An examination of this figure reveals that the trends exhibited by the curves
representing the fraction of free ions (as represented by the red, blue, and green curves) differ
markedly from those observed for sodium chloride and sodium sulfate systems. Specifically,
in Figure 9.11, there is a swift decline in the fraction of unbound ions as salt concentrations
increase. Following this initial sharp decline, the rate at which the fraction of unbound ions
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Figure 9.10. This figure compares the predictions with the experimental data of MgSO4-H2O at
298.15 K for (a) the liquid density (ρ), (b) the MIAC (ln γm

± ), (c) the molar conductivity (Λ), and (d)
the osmotic coefficient (ϕ). S1 is denoted to the predictions of the EoS or the electrical conductivity
model where the ion-ion association is ignored. S2 is the estimations that include the effect of the
ion-ion association corresponding to the association constant written in from it. Experimental data
denoted as points are from ref. [7,90,219,263,355–357] for the MIAC, from ref. [90,263,355,357–362]
for the osmotic coefficient, from ref. [129,130] for the electrical conductivity, and from ref. [363,364]
for the liquid density

changes in relation to salt concentration becomes more gradual. At elevated salt concentra-
tions, a nearly linear drop in both α+ and α− is discernible as a function of m.

Figure 9.12 displays the various contributions to the activity coefficient for the MgSO4-
H2O system, in alignment with the definitions provided in Table 9.5. Mirroring figures 9.6
and 9.9, the contributions that stem from the PHYS, ASSOC, and DH terms, which are
common to both the eSAFT-VR-Mie and Binding eSAFT-VR-Mie, are illustrated using
black lines. Meanwhile, the contributions of the MAL term, which correlates with the
association constant at infinite dilution as shown in figures 9.11 and 9.10, are also delineated.

From Figure 9.12, it is evident that the primary positive contribution to the activity coeffi-
cient arises from the PHYS term. Conversely, the DH and MAL terms contribute negatively.
In particular, the DH term stands out as the most significant contributor, overshadowing
the impact of the MAL term. That said, the contribution from the MAL term, although
smaller relative to the DH, is far from insignificant. Furthermore, when compared with
other systems, as depicted in Figures 9.6 and 9.9, the contribution of MAL in the MgSO4
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Figure 9.12. This figure presents the contributions to the activity coefficients of cation (ln γ+)
and anion (ln γ−) for MgSO4-H2O at 298.15 K. Black curves corresponds to the the terms shared
with the SAFT-VR-Mie and Binding eSAFT-VR-Mie. blue, red, and green curves corresponds to
the MAL term with the associations constant at infinite dilution (K◦

+−) equals to 165.0, 118.4, and
80.7 L · mol−1, respectively.

system appears more pronounced. At extremely low salt concentrations, the contribution
from the MAL term displays rapid variations as the salt concentration changes. In con-
trast, at moderate to high concentrations, its change is more linear in relation to the salt
concentration.

9.3 Discussion

In Section 9.2, we compared the predicted properties - liquid density, MIAC, molar con-
ductivity, and osmotic coefficient - of three aqueous electrolyte solutions at 298.15 K with
experimental data. Moreover, the fraction of free ions and contributions to the activity
coefficient were illustrated for each system.

The analysis underscored that the inclusion of the ion-ion association has a negligible
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impact on the liquid density predictions. Factoring in the ion-ion association yielded more
accurate predictions for sodium and magnesium sulfate solutions. However, for the sodium
chloride aqueous solution, slight improvements were observed in contrast to the eSAFT-VR-
Mie predictions.

In this section, the effect of considering the ion-ion association on the macroscopic prop-
erties of the system will be further discussed. Onsager’s bookkeeping rule will be introduced,
and the importance of the association constant at infinite dilution will be investigated. The
argument around the importance of ion pairing will be addressed, and what is ignored in
this study will be explained.

9.3.1 How ion-ion association affects the predictions of γm
± , ϕ, ρ, and Λ?

In the literature, a frequently cited reason for the divergence between model predictions
and experimental data is the assumption of full dissociation. The inclusion of ion-ion as-
sociation is commonly suggested as a remedy to bridge the gap between theoretical and
experimental findings. In this section, we delve into the circumstances under which ion-ion
association impacts the predictions of the electrolyte equations of state, and when it remains
inconsequential.

The influence of accounting for ion-ion associations, particularly in our approach, is rather
direct. As evidenced by figures 9.4, 9.7, and 9.10, the inclusion of the ion-ion association has
a negligible impact on the prediction of liquid density. This observation is crucial, given that
estimating liquid density presents a significant challenge within the framework of electrolyte
equations of state. In general, it has been observed that the primary determinant for liquid
density estimation is the ionic diameter.

Figures 9.4, 9.7 and 9.10 illustrate that the inclusion of the ion-ion association causes a
downward shift in the curves from eSAFT-VR-Mie to Binding eSAFT-VR-Mie for MIAC,
molar conductivity, and osmotic coefficient.

For the prediction of MIAC, the contributions to the activity coefficient are shown in fig-
ures 9.6, 9.9, and 9.12. As observed in these figures, the contribution of MAL is consistently
negative and exhibits an almost linear variation at high salt concentrations. Consequently,
accounting for the ion-ion association invariably introduces an additional negative contribu-
tion to the activity coefficient, leading to a downward shift of the MIAC curve.

For molar conductivity, the impact of incorporating ion-ion association is more nuanced
than that of MIAC. When this property is considered, the inclusion of ion-ion association
either decreases the number of charged species contributing to electrical conductance (in
symmetrical electrolytes) or decreases the charge of the species involved in the conductance
process. In either scenario, the predicted specific conductivity is reduced when ion-ion asso-
ciation is taken into account. In the systems we examined, the predicted molar conductivity
consistently shifts downward relative to the predictions based on full dissociation.

A similar trend observed for MIAC can also be seen for osmotic coefficient. Taking ion
pairing into account leads to a downward shift in the curves. This outcome is anticipated,
given that the osmotic coefficient is related to the MIAC of the electrolyte through the
Gibbs-Duhem equation (Eq. 9.64).

ln γm
± = ϕ− 1 +

∫ m

0

ϕ− 1
m

dm (9.64)

In summary, the incorporation of the ion-ion association has a negligible impact on the
prediction of liquid density. However, for MIAC, molar conductivity, and osmotic coefficient,
factoring in ion-ion association leads to a downward shift in the curves. Conclusively, it is
not reasonable to expect that simply including ion-ion association (without re-evaluating
the parameter estimation) would adjust the predictions of these properties when the model,
which assumes full dissociation, underestimates the property.
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9.3.2 Importance of standard state association constant; Onsager’s
Bookkeeping rule

Bjerrum [216] introduced a model for the association constant at infinite dilution concerning
ion pairing. He posited that the upper limit of the integral, as indicated in Eq. 9.24, could
be set at qij , where the likelihood of encountering the counter ion j near the central ion i
reaches a minimum.

Onsager [91] regarding the Bjerrum’s choice of this cut-off distance pointed out that:

"Bjerrum’s choice is good but we could vary it within reason. In a complete
theory this would not matter; what we remove from one side of the ledger would
be entered elsewhere with the same effect."

This is commonly referred to as Onsager’s bookkeeping rule [365]. This aligns with
Bjerrum’s beliefs regarding this selection. He remarked:

"Let us tentatively affirm that ion pairs, with an internal distance of less than
that corresponding to the minimum, are to he denoted as associated and all other
ion pairs as free. Naturally this distinction between free and associated ions is
rather arbitrary."

These two quotes from two of the most prominent scientists in the context of electrolyte
solutions could be used as a guideline for further investigation of ion pairing in electrolyte so-
lutions. From these statements, it can be understood that an exact choice for the association
constant does not exist. As a result, the focus should be on theory-experiment agreement
rather than on fixing the reference state. With this guideline in mind, we investigated the
effect of considering the ion-ion association in electrolyte solutions by adopting three asso-
ciation constant. One of them is the value reported in the literature, the other two are
reduced values since the experimental values resulted in under prediction of the properties
(see figures 9.4, 9.7, and 9.10).

In this section, we delve into the selection of the reference state association constant by
examining the values reported in the literature and the models devised for it.

Figure 9.13 illustrates the predicted association constant at infinite dilution using the
Bjerrum model (as represented by Eq. 9.24). Here, the upper limit of the integral spans
from σ+− to 5σ+−. In this figure, individual points represent the K◦

+− where Bjerrum’s
specified choice is employed as the upper limit.

Table 9.8 lists the association constants at infinite dilution as reported in the literature.
These values have been determined using various methods, including electrical conductivity,
DRS, Raman spectroscopy, ultrasonic absorption, MIAC, and MD simulations.

When comparing the values reported in the literature with the points depicted in Figure
9.13, it becomes evident that using the Bjerrum’s choice typically leads to an overestimation
of the association constant at infinite dilution. However, the model does account for the

Table 9.8. The association constant at infinite dilution of the systems studied in this work reported
in the literature from electrical conductivity (EC) [130, 148, 149, 159], DRS [264, 315], Raman Spec-
troscopy (RS) [349, 351], Ultrasonic Absorption (UA) [347, 366], MIAC [354], and MD Simulations
(MD) [323,367].

Salt Lit. (EC) Lit. (DRS) Lit. (MIAC) Lit (RS) Lit. (UA) Lit. (MD)
NaCl 0.37, 2.5 - - - - 0.60, 0.76
Na2SO4 12.6 6.7, 24.0 6.6 - - -
MgSO4 100-240 162, 167 164 165, 167 165, 197 -
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where the upper limit of integral (l+−) varies from σ+− to 5σ+−. Points show the Bjerrum choice
for the upper limit and the corresponding association constant.

effect of ion valences. In particular, as the valence type of the ions increases, Bjerrum’s
model predicts a greater K◦

+−.
Apart from the discrepancies between the Bjerrum’s model (using his specified choice

for the upper limit) and the values reported by the literature, Table 9.8 reveals that the
association constant at infinite dilution spans a broad range. For example, the association
constant at infinite dilution for MgSO4 aqueous solutions can fluctuate between 100 and
240, as highlighted by Apelblat [159], relying solely on the electrical conductivity data. For
Na2SO4 aqueous solutions, it is observed that selecting SSIP and SIP leads to an association
constant of 6.4, in stark contrast to 24.0 when SSIP and CIP are identified as ion pairs [338].
From MD simulations, Fennel et al. [323] emphasized the significance of force field selection.
They demonstrated that the association constant for lithium halide solutions can vary by
orders of magnitude depending on the chosen force fields.

In summary, there is significant uncertainty surrounding the association constant at infi-
nite dilution. The values reported in the literature are shown to be influenced by the model
employed to interpret the data, the range of salt concentration, the selection of ion pair
types and the choice of force fields. From this analysis, there is no alternative but to adjust
the association constant at infinite dilution, and consequently the upper limit of the integral.
Thus, adhering to Onsager’s bookkeeping rule is not merely an option; it is imperative.

In light of our investigation, as shown in figures 9.4, 9.7 and 9.10, it is often the case that
a smaller value for the association constant than what is reported in the literature (as shown
in Table 9.8) leads to satisfactory accuracy. The root of this observation can be attributed
to a couple of factors.

First and foremost, this study utilizes parameters presented by Selam et al. [70] for the
computations. These parameters (σi and ϵiw) have been fine-tuned to align with experimen-
tal data of liquid density and MIAC. This suggests that during the optimization process,
there is an underlying effort to make eSAFT-VR-Mie predictions closely resemble the exper-
imental data. Consequently, any oversight of ion pairing within the model might have been
counterbalanced during the parameter estimation phase. The osmotic coefficient graphs,
data for which was not incorporated in Selam et al.’s [70] parameter estimation, specifically
figures 9.4d, 9.7d and 9.10d, bolster this hypothesis. In these visual representations, the
modifications in the predicted osmotic coefficient by Binding eSAFT-VR-Mie appear to be
more pronounced compared to MIAC.

Thus, it can be inferred that aspects of the ion pairing’s contribution might have been
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inherently accounted for during the parameter estimation. This inclusion potentially explains
why less pronounced ion pairing leads to a harmonious alignment with the experimental data.

Onsager’s bookkeeping rule suggests that the selection of the cut-off distance and, subse-
quently, the value of the association constant at infinite dilution is not of primary importance
as long as the model can effectively predict properties that have been measured devoid of
specific assumptions or data manipulation. In other words, if a model adeptly predicts
macroscopic properties such as MIAC, electrical conductivity, and osmotic coefficient, the
concurrence of the association constant at infinite dilution with other methodologies is not
paramount.

However, it is worth noting that the assessment of the association constant should be
integrated into the parameter estimation process. Opting for the upper limit of the integral,
as advocated by Naseri Boroujeni [286], represents a rational choice. Another viable avenue
involves incorporating short-range solvation effects empirically within the Bjerrum model, as
delineated by Barthel [254] and subsequently adopted by others [213,252,253,368]. Adjusting
the association constant at infinite dilution directly based on experimental data is yet another
approach, although it is advised to exercise caution with this method. Doing so might
reduce the model’s ability to extrapolate to varied temperatures or solvents other than
water, limiting its broader applicability.

9.3.3 What If Ion-Ion Association Is Ignored?

Most electrolyte equations of state often omit the influence of ion-ion association, as only a
limited number of studies take this effect into account. Based on data from Tables 9.4, 9.6,
and 9.7, these models can still produce results that meet engineering requirements. However,
when it comes to strongly associative electrolyte solutions, the accuracy of these equations of
state diminishes. Some might argue that these approximations suffice for engineering needs.
They may further contend that, given the computational demands of electrolyte equations of
state, incorporating ion-ion association would intensify the computational costs, potentially
rendering these models less practical for engineers.

Foremost, numerous studies have repeatedly underscored the occurrence of ion-ion asso-
ciations in electrolyte solutions [193, 315]. This phenomenon becomes especially significant
in multivalent electrolyte solutions, under elevated temperatures, and in solvents with low
permittivity. Hence, the debate should transition from whether ion-ion associations occur
to whether their effects can be feasibly overlooked.

Furthermore, it is essential to recognize that bypassing ion-ion associations essentially
disregards one of the primary factors governing long-range interactions. Relying on modifi-
cations to short-range interactions, like adjusting the kij in mixing rules, cannot be seen as
genuine remedies for this omission. Incorporating association sites, akin to those for hydro-
gen bonding, still represents a short-range solution to a fundamentally long-range problem.

Moreover, when a crucial physical aspect of a system is sidestepped, compensatory adjust-
ments in parameters are often made during parameter estimation to fit certain macroscopic
properties. Such compensations might be misleading and can obstruct the accurate extrap-
olation of data for systems not previously considered during parameter estimation.

In conclusion, the significance of the ion-ion association varies with the system. It is
imperative to understand the particular system under study before passing judgment on the
relevance of ion-ion association. For example, while ion pairing might be inconsequential
for sodium chloride aqueous solutions, falling within an acceptable error margin, it becomes
indispensable for systems like magnesium sulfate.

The computational demands of the Binding eSAFT-VR-Mie are undeniably higher than
those of the eSAFT-VR-Mie. However, during the development of the BiDH theory, we en-
sured that the influence of the ion-ion association is captured without significantly increasing
computational costs. In particular, when a solution contains only one type of cation and
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anion, the theory offers an analytical solution for determining the fraction of free ions. This
is crucial, especially given that parameter estimation, which is computationally intensive, is
primarily carried out for binary salt-water systems. Having an analytical solution greatly
reduces the computational time required to determine the fraction of free ions.

For more complex situations, as detailed in ref. [286], the strength of association is not
influenced by the degree of association, differentiating it from its MSA counterparts [20].
This means that efficient methods similar to those used in hydrogen bonding calculations
can be applied to determine the fraction of free ions.

In conclusion, while factoring in the ion-ion association does elevate the computational
demands of the equations of state, the increase is not substantial enough to deter their
practical application in engineering contexts.

9.3.4 Higher Aggregates

Another point of contention regarding the inclusion of ion-ion association centers on the
aspects that have been overlooked within this model. Like all models, while this one might
be more physically attuned to the system’s reality, it still operates under certain assumptions.

Primarily, within the BiDH theory and consequently in this context, ion-ion association is
confined to the formation of ion pairs. This implies that the model disregards the potential
formation of larger aggregates. In the scope of the systems examined in this research, this
simplification is defendable. To our current understanding, there is either no compelling
evidence pointing to the formation of larger aggregates in these systems, or the emergence
of triplet ions is so limited that it can be effectively neglected. However, there are certain
electrolyte solutions, different from those explored here, where ion complexes might indeed
form. In these instances, bypassing the potential development of larger aggregates is an
indefensible assumption. As a consequence, there is a need to refine and expand the BiDH
model to accommodate the formation of these higher-order aggregates.

9.4 Summary and Conclusions

In this study, we developed a new EoS for electrolyte solutions. The non-electrostatic compo-
nent was derived from the SAFT-VR-Mie framework, while the electrostatic component was
based on the BiDH theory, which effectively captures ion-ion interactions and associations.
We proposed a unified approach to the study of electrolyte solutions, emphasizing the role of
ion-ion associations. Within this model, we analyzed various thermodynamic properties of
the solutions, including liquid density, MIAC, osmotic coefficient, and electrical conductivity.

Using our EoS and the unified approach, we predicted the properties of three different
binary salt-water systems at 298.15 K. Notably, throughout our calculations of thermody-
namic properties and electrical conductivity, we did not adjust any parameters to match
experimental data. When comparing our model’s predictions with the experimental data,
we observed interesting differences. Specifically, the prediction of liquid density was rela-
tively unchanged by the ion-ion associations. However, incorporation of these associations
noticeably influenced the values of the MIAC, molar conductivity, and osmotic coefficient,
pushing them downward compared to models that ignore ion-ion associations.

After reviewing experimental data related to sodium chloride, sodium sulfate, and magne-
sium sulfate, we found clear evidence of ion pairing. Interestingly, the degree of association
was seen to be in the sequence NaCl < Na2SO4 < MgSO4. Our findings highlighted that
while the effect of considering ion-ion associations on modifying the predicted properties
for sodium chloride aqueous solutions is subtle, the implications for sodium and magnesium
sulfate aqueous solutions are significantly more pronounced.
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Chapter Message

Incorporation of ion-ion association in the property prediction of electrolyte solutions
is important, and indeed, result in better agreement with the experimental data.
However, one might be cautious, since it does not solve all the problems.



CHAPTER 10
Conclusions and Future Works

10.1 Summary of Findings

Predicting the thermodynamic, transport, and physical properties of electrolyte solutions,
which are crucial in various industrial and natural processes, continues to pose a formidable
task for engineers and scientists. Despite considerable recent efforts to address these chal-
lenges, the current state of modeling tools remains unsatisfactory.

This Ph.D. thesis, stemming from the ERC-funded project titled "New Paradigm in Elec-
trolyte Thermodynamics," endeavors to advance the comprehension of ion-ion association
in electrolyte solutions. Two concurrent lines of research were pursued and subsequently
integrated into a cohesive framework. The thesis, structured in four parts, aligns with this
research design. The initial part addresses the identification of a knowledge gap. Part II
delves into the investigation of electrical conductivity, a transport property of electrolyte
solutions. Part III focuses on the thermodynamic modeling of the ion-ion association. In
the concluding part, insights gained from preceding parts, along with the developed models,
were combined to present a unified framework for predicting the properties of electrolyte
solutions, with a specific emphasis on the ion-ion association.

Part II of the thesis involved a comprehensive review of existing research on the electrical
conductivity of electrolyte solutions. Prominent models for predicting electrical conductivity
in such solutions were identified and systematically and impartially assessed. To account for
ion-solvent interactions, an effort was made to incorporate them by employing composition-
dependent relative static permittivity and viscosity.

It has been shown that there is a clear need to evolve new models grounded in the DHO
theory that accurately account for the size-asymmetry of ions and are versatile enough to
be expanded to multi-salt systems. In addition, it has been concluded that the MSA, MSA-
Simple, and DHO3 models stand out.

Ultimately, two novel models for the electrical conductivity of electrolyte solutions, assum-
ing complete dissociation, were formulated based on the Ebeling hierarchy of Smoluchowski
dynamics and DHO theory. These models were meticulously validated through extensive
comparison with the experimental data. The precision of the developed models was thor-
oughly evaluated, revealing that, when the ion-ion association can be disregarded, these
models exhibit predictive accuracy. Furthermore, the prevailing notion in the literature sug-
gesting that electrical conductivity models based on the DHO theory are solely applicable to
low-concentration solutions was challenged. It was demonstrated that these models are as
accurate as the MSA-based counterparts, essentially resembling twins of the MSA-transport
models.

In the third part of the thesis, the thermodynamic perspective on the ion-ion association,
particularly ion pairing, was explored. A comprehensive review of the literature on the ther-
modynamic modeling of ion pairing was conducted. Various equations of state for charged
hard sphere fluids were identified and systematically compared.

In this comparative study, different models for associative electrolyte solutions were eval-
uated and compared with numerical solutions of the PB equation, MC simulations, and
experimental data. Notably, despite differences in theoretical foundations, all models demon-
strated the capability to estimate the MIAC of electrolyte solutions when certain parameters
were adjusted to align with the experimental data. The fraction of unbound ions exhibited
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a significant variation, even though the predicted MIAC curves overlapped. The validation
of the fraction of free ions, crucially emphasizing electrical conductivity, revealed that the
FLGG model provided a more accurate depiction of the system’s physics than the others.

Additionally, a novel EoS for these systems, named BiDH, was developed on the basis of
the DH, Kirkwood, Wertheim, and RCA theories. This EoS was thoroughly validated for
future application by comparing its predictions for the MIAC, the osmotic coefficient, and
the IIAC with MC simulations documented in the literature.

Conclusively, the developed EoS exhibited promising predictive capabilities for charged
hard sphere fluids with ion-ion association. Comparisons with MC simulations not only vali-
dated the model but also showcased its accuracy and applicability across diverse electrolyte
systems.

In the concluding section of the thesis, Part IV, an in-depth examination of ion-ion
association was conducted within a unified framework. Initially, the solvent was treated as a
continuum medium, and a combination of the BiDH EoS and electrical conductivity models
was employed to estimate the electrical conductivity of associative electrolyte solutions.

Successful incorporation of ion pairing into the prediction of electrical conductivity was
demonstrated across three crucial systems: 2:2 aqueous sulfates, NaCl-water-1,4-dioxane,
and ionic liquid-co-solvent systems. Consistently, the integration of the BiDH EoS and
the electrical conductivity model resulted in notable adjustments to the predicted electrical
conductivity across these diverse systems.

The model’s capacity to accurately predict the electrical conductivity of electrolytes form-
ing ion complexes was rigorously assessed. Results indicated a close alignment between model
predictions, accounting for ion complex formation, and experimental data for such systems,
highlighting the reliability and robustness of the model, even in more intricate scenarios.

Subsequently, a new electrolyte EoS was formulated, leveraging the SAFT-VR-Mie EoS
for the non-electrostatic component and the BiDH EoS for the electrostatic part. A unified
framework was introduced for the validation and development of models when considering ion
pairing. The method was applied to predict various thermodynamic properties of associative
aqueous electrolyte solutions, including the liquid density, MIAC, osmotic coefficient, and
electrical conductivity.

The analysis revealed that the prediction of the liquid density remained relatively unaf-
fected by ion-ion associations. However, the inclusion of these associations notably influ-
enced the values of the MIAC, molar conductivity, and osmotic coefficient, causing them to
decrease in comparison to models neglecting the ion-ion associations.

On investigation of experimental data related to sodium chloride, sodium sulfate, and
magnesium sulfate, clear evidence of ion pairing emerged. Interestingly, the degree of as-
sociation followed the sequence NaCl < Na2SO4 < MgSO4. This observation underscored
that, while the impact of considering ion-ion associations on modifying predicted properties
for sodium chloride aqueous solutions is subtle, the implications for sodium and magnesium
sulfate aqueous solutions are markedly more pronounced.

10.2 Impact of the Research

In this Ph.D. thesis, I, along with other colleagues in the ERC project, have endeavored to
expand the boundaries of knowledge concerning the thermodynamics of electrolyte solutions.
Specifically, I conducted various types of research to shed light on the concept of ion-ion
association. Although I cannot assess the impact and quality of the research, I can list the
impacts we attempted to make on the scientific community.

We have devoted a considerable amount of time to a subject that we deemed important,
but which the community considered a dead end. Initially, electrical conductivity was not a
popular topic, yet it has been demonstrated to be significant due to its various applications
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in batteries and energy storage, as well as its role in thermodynamic modeling of electrolyte
solutions. After three years of research, I can confidently say that our published works have
made a positive contribution to the understanding of the chemical engineering community
regarding electrical conductivity. Furthermore, we have developed two new models for elec-
trical conductivity that the community can benefit from. Notably, the mixed electrolyte
model eliminates the need for engineering averaging to predict the electrical conductivity of
multi-component electrolyte solutions.

In the area of thermodynamic modeling of ion-ion association, which has been studied
for more than a hundred years, we looked back at "old works" that are familiar to physicists
but not so much to chemical engineers. Our investigation included a comparative study of
these theories, identifying and addressing gaps in knowledge concerning equations of state
based on the DH theory. This led to the development of the BiDH model, which, in my
opinion, fills the void and ensures that the chemical engineering community will no longer
encounter the challenge of lacking robust theories for ion-ion association.

The primary contribution of this Ph.D. thesis to the scientific community lies in the
introduction of a unified framework for studying ion-ion association. With the development
of this framework, we provide the community with a valuable guide for model development
when considering the ion-ion association in the physics of the system.

10.3 Future Works

Similar to the approach adopted in various engineering disciplines, our research delved into
theory and model development, necessitating the formulation of simplifying assumptions.
As is customary in the intricate landscape of scientific inquiry, these assumptions served as
a pragmatic framework to facilitate exploration and analysis.

Taking into account the theories we have discussed, I will now outline the possible exten-
sions of them, providing a guide for further investigation within the scope of our discoveries.
Additionally, I will point out potential areas of focus for future studies, recognizing the
ever-changing nature of scientific exploration and the ongoing pursuit of more profound
understanding and comprehensive information.

Theory Development:

• Generalizing the model developed for the electrical conductivity of electrolyte solutions
to other transport properties through Onsager transport coefficients.

• Developing robust and reliable models for the prediction of the ionic conductivity at
infinite dilution.

• Extension of the BiDH model to account for formation of ion aggregates.

• Integration of ion-ion and ion-solvent associations in the theory development.

• Prediction of the relative static permittivity of associative electrolyte solutions.

Model Development:

• Performing a parameter estimation for the Binding eSAFT-VR-Mie.

• Implementing the unified framework in other equations of state.

• Using the developed framework in non-aqueous and mixed solvent electrolyte solutions.

• Using the developed framework in ionic liquid and ionic liquid-co-solvent systems.

• Investigating the impact of the ion-ion association on liquid-liquid equilibrium.
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APPENDIX B
Electrical Conductivity Models

B.1 MSA Model
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B.2 QV Model
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Tr (γκa) = exp(γκa)
∫ a

∞

exp(−γκr)
r

dr (B.32)

For the formulation of Q1,2 (κa, q) and P1,2,...,5 (κa, q), the reader can refer to the original
papers [103–105].



256



APPENDIXC
Implicit Solvent Models

C.1 Ebeling and Grigo (EG) Approach
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C.2 Fisher-Levin-Guillot-Guissani (FLGG) Approach
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C.3 Zhou-Yeh-Stell (ZYS) Approach
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C.4 Binding Mean Spherical Approximation (BiMSA) Approach
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APPENDIX D
Supporting Figures

D.1 Chapter 4

Figure D.1. The comparison of three formulations of MSA models (Simple, Full, and Modified)
for (a) KCl, (b) LaCl3, (c) MgSO4, (d) K4Fe(CN)6, (e) K3Fe(CN)6, (f) Ca2Fe(CN)6 at 298.15 K in
water. Reprinted with permission from ref. [120]. Copyright 2022 American Chemical Society.
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Figure D.2. The relaxation term and electrophoretic term of (a) K3Fe(CN)6 (1:3), (b)
Ca3(Fe(CN)6)2 (2:3), (c) La2(SO4)3 (3:2), (d) Ca2Fe(CN)6 (2:4), (e) K4Fe(CN)6 (1:4) predicted
by DHOLL, DHOEE, DHOSiS, MSA, MSA Simple and QV models versus the square root of ionic
strength at 298.15 K. Reprinted with permission from ref. [120]. Copyright 2022 American Chemical
Society.
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Figure D.3. The RSP of a) LiCl, b) LiNO3, c) NaCl, d) NaNO3, e) KCl, and f) KNO3 at 298.15
k estimated by RSP models (exp. data are from references [157, 369]). Reprinted from ref. [124],
Copyright 2023, with permission from Elsevier.
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Figure D.4. The viscosity of NaCl-water system at 298.15 K estimated by Eq. 3.42 (experimental
data are from references [164,165]). Reprinted from ref. [124], Copyright 2023, with permission from
Elsevier.
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Figure D.5. The effect of a concentration dependent RSP on the prediction of MSA model for
a) CsCl, b) KBr, and c) LiBr at 298.15 (acronyms 2016-HR-SBH [129], 2011-MR-JCED [134] ,
1984-TI-JCED [141], and 1970-PM-CCCC-a [131] show the references for the collected data points).
Reprinted from ref. [124], Copyright 2023, with permission from Elsevier.
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I.

III.

II.

Figure D.6. The effect of a concentration-dependent RSP on contributions to the relaxation and
electrophoretic terms predicted by the MSA model for (I) LiNO3, (II) NaNO3, and (III) KNO3-water
systems at 298.15 K. Reprinted from ref. [124], Copyright 2023, with permission from Elsevier.
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Figure D.7. The effect of a concentration-dependent viscosity and RSP on the MSA-Simple and
DHO3 predictions for LiNO3, NaNO3, and KNO3-water systems at 298.15 K (Acronyms are the
same as in Figure 3.10). Reprinted from ref. [124], Copyright 2023, with permission from Elsevier.
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Figure D.8. The effect of a concentration-dependent viscosity and RSP on the MSA-Simple and
DHO3 predictions for LiBr, KBr, CsCl, CsBr-water solutions at 298.15 K (Acronyms are the same
as in Figure 3.10). Reprinted from ref. [124], Copyright 2023, with permission from Elsevier.
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Figure D.9. The relative average absolute deviation in percent (RAAD%) of MSA model predic-
tions when the solvents and solutions RSP and viscosity are used for LiCl, LiNO3, NaCl, NaNO3,
KCl, KNO3, LiBr, KBr, and CsCl aqueous solutions at 298.15 K. Reprinted from ref. [124], Copy-
right 2023, with permission from Elsevier.
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Figure D.10. The Comparison of DHO1, DHO3, and MSA predictions when the RSP model 1
and 3 are used for KBr, CsCl, and CsBr aqueous solutions at 298.15 K. Reprinted from ref. [124],
Copyright 2023, with permission from Elsevier.
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Figure D.11. The molar conductivity predicted by Models 1-3, MSA, MSA-simple, and DHO3
models and compared with experimental measurements for (a) LiCl, (b) LiBr, (c) KCl, (d) NaBr,
(e) NaCl, and (f) KBr aqueous solutions at 298.15 K. Reprinted with permission from ref. [184].
Copyright 2023 American Chemical Society.
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Figure D.12. The same as D.11, but for (a) BaCl2, (b) CoCl2, (c) CaCl2, (d) CdCl2, (e) MgCl2,
and (f) MnCl2 aqueous solutions at 298.15 K. Reprinted with permission from ref. [184]. Copyright
2023 American Chemical Society.
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Figure D.13. The same as D.11, but for (a) BaBr2, (b) CoBr2, (c) CaBr2, (d) CdBr2, (e) MgBr2,
and (f) MnBr2 aqueous solutions at 298.15 K. Reprinted with permission from ref. [184]. Copyright
2023 American Chemical Society.
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Figure D.14. The same as D.11, but for (a) LiNO3, (b) Mg(NO3)2, (c) NaNO3, (d) Ca(NO3)2, (e)
KNO3, and (f) Sr(NO3)2 aqueous solutions at 298.15 K. Reprinted with permission from ref. [184].
Copyright 2023 American Chemical Society.
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Figure D.15. The same as D.11, but for (a) AlBr3, (b) AlCl3, (c) Al(NO3)3, (d) LaBr3, (e)
LaCl3, and (f) La(NO3)3 aqueous solutions at 298.15 K. Reprinted with permission from ref. [184].
Copyright 2023 American Chemical Society.
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Figure D.16. The same as D.11, but for (a) MgSO4, (b) CdSO4, (c) CoSO4, (d) CuSO4, (e)
MnSO4, and (f) ZnSO4 aqueous solutions at 298.15 K. Reprinted with permission from ref. [184].
Copyright 2023 American Chemical Society.
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Figure D.17. The same as D.11, but for (a) H2SO4, (b) Li2SO4, (c) Na2SO4, (d) K2SO4, (e)
Cs2SO4, and (f) Ag2SO4 aqueous solutions at 298.15 K. Reprinted with permission from ref. [184].
Copyright 2023 American Chemical Society.



278 Appendix D Supporting Figures

D.3 Chapter 7

0 1 2 3 4
I(mol/L)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ln
(γ

c i
)

S1− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0 1 2 3 4
I(mol/L)

0.0

0.5

1.0

1.5

ln
(γ

c i
)

S2− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0 1 2 3 4
I(mol/L)

0.0

0.5

1.0

1.5

2.0

ln
(γ

c i
)

S3− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0 1 2 3 4
I(mol/L)

0.0

0.5

1.0

1.5

2.0

2.5

ln
(γ

c i
)

S4− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0.0 0.5 1.0 1.5 2.0 2.5 3.0
I(mol/L)

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ln
(γ

c i
)

S5− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0 1 2 3 4
I(mol/L)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ln
(γ

c i
)

S6− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0.0 0.5 1.0 1.5 2.0 2.5 3.0
I(mol/L)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ln
(γ

c i
)

S7− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0 1 2 3 4
I(mol/L)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ln
(γ

c i
)

S8− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0.0 0.5 1.0 1.5 2.0
I(mol/L)

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

ln
(γ

c i
)

S9− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0.0 0.5 1.0 1.5 2.0 2.5 3.0
I(mol/L)

−0.2

0.0

0.2

0.4

ln
(γ

c i
)

S10− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0 1 2 3 4
I(mol/L)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ln
(γ

c i
)

S11− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

0 1 2 3 4
I(mol/L)

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ln
(γ

c i
)

S12− T = 298.15(K)

ln γBiDH±
ln γBiDH+

ln γBiDH−
lnMC
±

lnMC
+

lnMC
−

Figure D.18. Comparison of the BiDH predictions with the MC simulations for systems S1-
S12 [289].
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Figure D.19. Comparison of the BiDH predictions with the MC simulations for systems S13-
S24 [289].
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Figure D.20. Comparison of the BiDH predictions with the MC simulations for systems S25-
S36 [289].
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Figure D.21. Comparison of the BiDH predictions with the MC simulations for systems S37-
S48 [289].
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Figure D.22. Comparison of the BiDH predictions with the MC simulations for systems S49-
S60 [289].
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Figure D.23. Comparison of the BiDH predictions with the MC simulations for systems S61-
S72 [289].
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Figure D.24. Comparison of the BiDH predictions with the MC simulations for systems S73-
S84 [289].
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Figure D.25. Comparison of the BiDH predictions with the MC simulations for systems S85-
S96 [289].
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Figure D.26. Comparison of the BiDH predictions with the MC simulations for systems S97-
L4 [64,258,289].
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Figure D.27. Comparison of the BiDH predictions with the MC simulations for systems L5-
V11 [258,290].
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Figure D.28. Comparison of the BiDH predictions with the MC simulations for systems V12-
V23 [290].
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Figure D.29. The molar conductivity of CoSO4 aqueous solutions predicted by the Model 3
where ion pairing is (solid lines) and is not (dashed lines) considered (symbols are experimental
measurements from ref. [130]). Reprinted with permission from ref. [184]. Copyright 2023 American
Chemical Society.
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Figure D.30. The molar conductivity of CoSO4 aqueous solutions predicted by the Model 3
where ion pairing is (solid lines) and is not (dashed lines) considered (symbols are experimental
measurements from ref. [130]).
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Figure D.31. The molar conductivity of ZnSO4 aqueous solutions predicted by the Model 3
where ion pairing is (solid lines) and is not (dashed lines) considered (symbols are experimental
measurements from ref. [130]). Reprinted with permission from ref. [184]. Copyright 2023 American
Chemical Society.
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Figure D.32. The molar conductivity of ZnSO4 aqueous solutions predicted by the Model 3
where ion pairing is (solid lines) and is not (dashed lines) considered (symbols are experimental
measurements from ref. [130]).
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