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Preface 

This thesis is based on the work carried out at the Technical University of 

Denmark, Department of Environmental and Resource Engineering. The 

project was supported by the Integrated Water Technology (InWaTech) 

project, which promotes collaborative research between DTU and KAIST, and 

was performed under the supervision of Professor Barth F. Smets and 

Associate Professor Borja Valverde Pérez. 

 

The thesis is composed of a synopsis and three research papers. The synopsis 

introduces the subject “Individual-based modeling unveils pattern formation 

and population dynamics in microbial aggregates”, it provides a general 

overview of the carried out research, while it provides additional detail for the 

work that is not covered in the three included research papers. 

 

I Bastiaan J R Cockx, Tim Foster, Robert J Clegg, Kieran Alden, 

Sankalp Arya, Dov J Stekel, Barth F Smets, Jan-Ulrich Kreft, 2023. Is 

it selfish to be filamentous in biofilms? Individual-based modeling links 

microbial growth strategies with morphology using the new and modular 

iDynoMiCS 2.0. PLOS computational biology, in revision. 

II Bastiaan J R Cockx, Jan-Ulrich Kreft, Barth F Smets. Force mediated 

spatial structure in granular biofilm assembly. Manuscript in 

preparation 

III Tim Foster, Bastiaan J R Cockx, Robert J Clegg, Shirin Moossavi, 

Kieran Alden, Tariq H Iqbal, Barth F Smets, Jan-Ulrich Kreft. eGUT, a 

platform enabling agent-based modelling of the gut microbiome and its 

spatial interactions with the host mucosa. Manuscript in preparation. 

 

In addition, the following publication, not included in this thesis, was also 

concluded during the PhD study. 

 

• Boris Parra, Bastiaan Cockx, Veronika T. Lutz, Lone Brøndsted, Barth F. 

Smets, Arnaud Dechesne. Isolation and Characterization of Novel Plasmid-

specific Phages Infecting Bacteria Carrying Diverse Conjugative Plasmids. 

Microbiology Spectrum, accepted. 
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Summary 

Microbes are commonly found in aggregated form, where a community of var-

ious microbial species fill a variety of ecological niches. They play an essential 

role in global nutrient cycles, human and animal health, and in numerous in-

dustrial applications. Microbial aggregates, in many cases referred to as bio-

films, have a dynamic life cycle. The cycle starts when planktonic cells start 

attaching to a surface or other cells. In this so called reversible attachment 

phase microbial surface properties such as the hydrophobicity of the cell play 

a key role. After this the nascent biofilm enters the irreversible attachment 

phase, more cells continue to be embedded in the growing aggregate, and phe-

notypic changes associated with microbial life in a biofilm, including the pro-

duction of large quantities of Extracellular Polymeric Substances (EPS), start 

to occur. As the aggregate grows, spatial structures such as microcolonies and 

stratification start to emerge. Mature biofilms may get into a final phase in 

which EPS degradation occurs and cells disperse into the environment.  

The spatial and community structure of a microbial aggregate result from a 

combination of physical processes such as matter transport and mechanical 

stresses acting upon the microbial aggregate, and the individual traits and be-

havior of the microbes embedded in the aggregate. Due to the complexity of 

multi-species microbial aggregates and our limited ability to observe the dy-

namic development of internal structures and biochemical conditions in micro-

bial aggregates, modeling approaches have played a substantial role in biofilm 

research. The first mathematical and computational biofilm models, developed 

over half a century ago, clarified how, through diffusion limitation, chemical 

gradients form within microbial aggregates that can in turn, lead to the strati-

fication of microbial species in the aggregate. Later, Individual-based Models 

(IbM) showed how individual traits and variability can affect the development 

of the microbial aggregate and how subtle differences can lead to vastly differ-

ent outcomes. 

Over two decades of IbM assisted biofilm research has proven fruitful and the 

approach is increasingly being used in contemporary research. An increasing 

number of modeling platforms facilitate the development of IbMs. However, 

current drawbacks and limitations restrain us from using the methodology in a 

broader palette of studies. These drawbacks include the limited scale of com-

putationally feasible model systems, the limited availability of individual 

based observations required to parameterize the model systems, the expertise 
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required to develop an IbM, and limitations in the ability to accurately repre-

sent some important microbial traits or model systems with currently available 

modeling tools. Recent efforts by multiple research consortia have brought 

substantial improvements in some of these limitations, but an integrated ap-

proach that addresses all these limitations simultaneously is still missing. 

Central to my thesis is the development of such an integrated approach, and 

thereby facilitating a wide range of biofilm research to help explain how indi-

vidual microbial traits lead to emergent properties of the microbial aggregate. 

This goal can be subdivided into the following objectives: 

1 Enabling a larger range of dynamic individual-based characteristics and 

behaviors for a better representation of various microbial traits.  

2 Widening the range of (bio-)chemical sub-models to provide a better 

representation of microbial metabolisms. 

3 Improving the physical representation and interaction models available.  

4 Closing the gap between experimental and modeling work facilitating a 

better integration of experiments and modeling and reducing the re-

quired expertise to construct a model. 

5 Facilitating model parameterization where individual based experi-

mental observations may be lacking. 

6 Improving computational efficiency to allow for models at larger scales.  

To achieve this goal, I have worked with a dedicated group of collaborators on 

the development of the novel individual-based modeling framework iDynoM-

iCS 2.0 and the closely related gut modeling software eGUT. The latter ex-

pands on iDynoMiCS 2.0 with an epithelium and mucus facilitating gut lumen 

and mucosa models. iDynoMiCS 2.0 introduces a new structure where modeled 

microbes, often referred to as agents, can be assembled from orthogonal mod-

ules. Any characteristic, including the morphology, biochemical and biophys-

ical behavior, can dynamically change in response to external or internal cues. 

These cues include solute or signal molecule concentrations, the internal avail-

ability of storage molecules, or even stochastic processes. This allows for a 

better representation of dynamic microbial traits. A new biochemical sub-

model allows to express kinetic models through arithmetic functions. These 

arithmetic functions may include conditions in agent’s local environment such 

as solute or signal molecule concentrations, and the internal conditions or prop-

erties of the agent. This massively expands the range of (bio-)chemical sub-

models available as any model that can be expressed arithmetically can be 

used. The new mechanical interaction and microbial morphology sub-models 

introduce rod-shaped and filamentous microbes to the modeling platform and, 
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like the (bio-)chemical models, allow the modeler to express these interactions 

through arithmetic functions. 

By removing the necessity to provide abstract software or model parameters 

and enabling biologists to formulate their system in their own language rather 

than computer code, the gap between experimental and modeling work is re-

duced. This was achieved with iDynoMiCS 2.0 by the development of self-

analyzing and optimizing algorithms, a set of default parameters where they 

make sense and relying on understandable parameters with biological meaning 

where they are needed. A graphical user interface further helps lower the bar-

rier of entry into individual-based modeling. The integration of quantitative 

tools for spatial structure analysis provides insight into the structural develop-

ment of microbial aggregates. By quantifying the spatial structure, it becomes 

easier to compare model results with experimental observations. Sensitivity 

analysis tools, utilizing Morris screening, reveal what state variables (proper-

ties of the modeled biofilm) are sensitive to the model inputs and thus what 

properties of the biofilm may change resulting from changing properties of 

individual microbes in the model. In this way it becomes easier to link emer-

gent properties of the biofilm to microbial traits. A genetic algorithm was im-

plemented to help estimate the model parameters. Despite the long evaluation 

times, stochastic processes, and localized variability, the genetic algorithm 

proves to be effective in optimizing an individual based biofilm model. The 

combination of tools facilitates Pattern-Oriented Modeling (POM) with 

iDynoMiCS 2.0. POM is a modeling approach that aims to identify and repli-

cate the patterns that characterize the modeled system observed at different 

levels of the system’s organization and scale. With the modeling platforms de-

veloped for this thesis, it is now possible to identify these characteristic multi -

level patterns, and to infer individual based properties from them. POM can 

help mitigate the issues caused by the limited availability of individual based 

observations. In many cases reasonable initial parameter estimation can be 

made using existing empirical models. A focused effort addressing software 

bottlenecks enables biofilm simulations with over 10 million agents. This is 

over two orders of magnitudes more than iDynoMiCS 2.0’s predecessor. A 

rigorous testing process verifies the effectiveness and numerical accuracy of 

the solvers and algorithms used in the platforms. 

This thesis further includes multiple models utilizing iDynoMiCS 2.0 and 

eGUT, which provide interesting insights into the ecological processes and the 

dynamic community development of microbial aggregates. This includes a 
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model studying the interactions of yield- and rate strategists with either fila-

mentous or spherical morphologies. The model reveals a strong competitive 

advantage for filament forming agents under nutrient limiting conditions. The 

next model explores spatial pattern formation during the initial aggregation 

process under various hydrological conditions and shows how differences in 

agent surface properties can lead to cell sorting. Agents with large Gibbs free 

energy of adhesion (∆𝐺𝑎𝑑ℎ) form the center of an aggregate, surrounded by 

agents with small ∆𝐺𝑎𝑑ℎ. Further, a partial nitritation anammox model was de-

veloped. This model was used to identify how the growth characteristics of 

simulated microbes affect the structure and shape of the emergent biofilm. Fi-

nally, a multi-compartment gut model is developed using eGUT. The model 

simulates the microbial community composition and spatial structure of the 

proximal, transverse and distal colon. The insights into the spatial structure 

development of the mucosa are particularly valuable as it is often not possible 

to obtain this in vivo. Additional models are presented in the included manu-

scripts and/or available through the open source software repositories. The 

work presented in this thesis allows for a more accurate representation of mi-

crobes embedded in microbial aggregates in computational models. This im-

proved representation enables these models to better capture the processes and 

interactions within biofilms and thereby predict patterns and phenomena that 

could not be captured with previous approaches. 
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Dansk sammenfatning 

Mikrober findes almindeligvis i aggregatform, hvor en samling af forskellige 

mikrobielle arter fylder forskellige økologiske nicheområder. De spiller en 

essentiel rolle i globale næringscyklusser, menneskers og dyrs sundhed samt i 

talrige industrielle anvendelser. Mikrobielle aggregater, i mange tilfælde 

benævnt som biofilm, har en dynamisk livscyklus. Cyklussen begynder, når 

planktoniske celler begynder at binde sig til en overflade eller andre celler. I 

denne såkaldte reversible tilknytningsfase spiller mikrobielle 

overfladeegenskaber, som cellers hydrofobicitet, en nøglerolle. Derefter går 

den nydannede biofilm over i den irreversible tilknytningsfase, hvor flere celler 

fortsætter med at blive indlejret i det voksende aggregat, og fænotypiske 

ændringer, der er forbundet med mikrobiel liv i en biofilm, herunder 

produktion af store mængder ekstracellulære polymere stoffer (EPS), begynder 

at forekomme. Når aggregatet vokser, begynder rumlige strukturer som 

mikrokolonier og stratifikation at opstå. Modne biofilm kan nå en sidste fase, 

hvor nedbrydning af EPS forekommer, og celler spredes ud i miljøet. Den 

rumlige og samfundsmæssige struktur af et mikrobielt aggregat skyldes en 

kombination af fysiske processer som stoftransport og mekaniske belastninger, 

der virker på det mikrobielle aggregat, og de individuelle træk og adfærd hos 

mikroberne indlejret i aggregatet.  

På grund af kompleksiteten af multi-arts mikrobielle aggregater og vores 

begrænsede evne til at observere den dynamiske udvikling af interne strukturer 

og biokemiske forhold i mikrobielle aggregater, har modelleringsmetoder 

spillet en væsentlig rolle i biofilmforskning. De første matematiske og 

beregningsmæssige biofilmmodeller, udviklet for over et halvt århundrede 

siden, afklarede, hvordan kemiske gradienter dannes inden for mikrobielle 

aggregater, der igen kan føre til stratifikation af mikrobielle arter i aggregatet. 

Senere viste Individual-based Models (IbM), hvordan individuelle træk og 

variation kan påvirke udviklingen af det mikrobielle aggregat, og hvordan 

subtile forskelle kan føre til helt forskellige resultater.  

Mere end to årtier med IbM-assisteret biofilmforskning har vist sig frugtbar, 

og tilgangen bruges i stigende grad i moderne forskning. Et stigende antal 

modelleringsplatforme muliggører udviklingen af IbM'er. Imidlertid begrænser 

nuværende ulemper og begrænsninger os fra at bruge metoden i en bredere 

vifte af studier. Disse ulemper inkluderer den begrænsede skala af 

beregningsegnede modelsystemer, den begrænsede tilgængelighed af 

individuelle observationer, der kræves til parametrisering af modelsystemer, 
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den ekspertise, der kræves for at udvikle en IbM, og begrænsninger i evnen til 

præcist at repræsentere nogle vigtige mikrobielle træk eller modelsystemer 

med de i øjeblikket tilgængelige modelleringsværktøjer. Nylige bestræbelser 

fra flere forskningskonsortier har bragt betydelige forbedringer i nogle af disse 

begrænsninger, men en integreret tilgang, der adresserer alle disse 

begrænsninger samtidigt, mangler stadig. 

Centralt i min afhandling er udviklingen af en sådan integreret tilgang og 

dermed lette en bred vifte af biofilmforskning for at forklare, hvordan 

individuelle mikrobielle træk fører til emergente egenskaber af det mikrobielle 

aggregat. Dette mål kan opdeles i følgende mål: 

1. Muliggøre en større række dynamiske individbaserede karakteristika og 

adfærd for en bedre repræsentation af forskellige mikrobielle træk. 

2. Udvide omfanget af (bio-)kemiske delmodeller for at give en bedre 

repræsentation af mikrobielle stofskifter. 

3. Forbedre den fysiske repræsentation og de tilgængelige 

interaktionsmodeller. 

4. Lukke kløften mellem eksperimentelt og modelarbejde ved at lette en 

bedre integration af eksperimenter og modellering og reducere den 

nødvendige ekspertise til at konstruere en model. 

5. Muliggøre modelparametrisering, hvor individbaserede eksperimentelle 

observationer kan mangle. 

6. Forbedre beregningseffektiviteten for at tillade modeller i større skalaer.  

For at opnå dette mål har jeg arbejdet sammen med en dedikeret gruppe af 

samarbejdspartnere om udviklingen af den nye individbaserede 

modelleringsramme iDynoMiCS 2.0 og den nært beslægtede 

tarmmodelleringssoftware eGUT. Sidstnævnte udvider iDynoMiCS 2.0 med et 

epitel og slimhinde, der tillader modeller af tarmens lumen og slimhinde. 

iDynoMiCS 2.0 introducerer en ny struktur, hvor modellerede mikrober, ofte 

benævnt som agenter, kan samles fra ortogonale moduler. Enhver 

karakteristika, herunder morfologi, biokemisk og biologisk adfærd, kan 

dynamisk ændres som respons på eksterne eller interne signaler. Disse signaler 

inkluderer koncentrationer af opløsningsmidler eller signalmolekyler, den 

interne tilgængelighed af opbevaringsmolekyler eller endda stokastiske 

processer. Dette muliggør en bedre repræsentation af dynamiske mikrobielle 

træk. En ny biokemisk delmodel tillader at udtrykke kinetiske modeller 

gennem aritmetiske funktioner. Disse aritmetiske funktioner kan omfatte 

betingelser i agentens lokale miljø, såsom koncentrationer af opløsningsmidler 

eller signalmolekyler, og agentens interne forhold eller egenskaber. Dette 
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udvider kraftigt rækken af (bio-)kemiske delmodeller, da enhver model, der 

kan udtrykkes aritmetisk, kan bruges. De nye mekaniske interaktions- og 

mikrobielle morfologi-delmodeller introducerer stangformede og filamentøse 

mikrober til modelleringsplatformen og tillader, ligesom (bio-)kemiske 

modeller, at modelleren kan udtrykke disse interaktioner gennem aritmetiske 

funktioner. 

Ved at fjerne nødvendigheden af at levere abstrakte software- eller 

modelparametre og muliggøre, at biologer formulerer deres system på deres 

eget sprog i stedet for computerkode, reduceres kløften mellem eksperimentelt 

og modelarbejde. Dette blev opnået med iDynoMiCS 2.0 ved udvikling af 

selvanalyserende og optimerende algoritmer, en række standardparametre, 

hvor de giver mening, og ved at stole på forståelige parametre med biologisk 

betydning, hvor de er nødvendige. En grafisk brugergrænseflade hjælper 

yderligere med at sænke barrieren for at kunne benytte den individbaseret 

modellering. Integrationen af kvantitative værktøjer til rumlig strukturanalyse 

giver indsigt i udviklingen af mikrobielle aggregaters struktur. Ved at 

kvantificere den rumlige struktur bliver det lettere at sammenligne 

modelresultater med eksperimentelle observationer. Værktøjer til 

følsomhedsanalyse, der anvender Morris-screening, afslører, hvilke 

tilstandsvariable (egenskaber ved den modellerede biofilm) der er følsomme 

over for modelindgange, og dermed hvilke egenskaber af biofilmen der kan 

ændre sig som følge af ændrede egenskaber af individuelle mikrober i 

modellen. På denne måde bliver det lettere at forbinde emergente egenskaber 

af biofilmen til mikrobielle træk. En genetisk algoritme blev implementeret for 

at hjælpe med at estimere modelparametre. På trods af de lange 

evalueringstider, stokastiske processer og lokaliseret variabilitet viser den 

genetiske algoritme sig effektiv i at optimere en individbaseret biofilmmodel. 

Kombinationen af værktøjer gør det muligt at modellere  mønsterorienteret 

(POM) med iDynoMiCS 2.0. POM er en modelleringsmetode, der sigter mod 

at identificere og replikere de mønstre, der karakteriserer det modellerede 

system observeret på forskellige niveauer af systemets organisation og skala. 

Med de modelleringsplatforme, der er udviklet til denne afhandling, er det nu 

muligt at identificere disse karakteristiske flerlagsmønstre og udlede 

individuelle baserede egenskaber fra dem. POM kan hjælpe med at afbøde 

problemerne forårsaget af den begrænsede tilgængelighed af individuelle 

baserede observationer. I mange tilfælde kan der foretages rimelige initiale 

estimater af parametre ved hjælp af eksisterende empiriske modeller. En 

fokuseret indsats for at tackle softwareflaskehalse muliggør 
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biofilmsimulationer med over 10 millioner agenter. Dette er over to 

størrelsesordener mere end iDynoMiCS 2.0's forgænger. En omhyggelig 

testproces bekræfter effektiviteten og numeriske nøjagtighed af de løsere og 

algoritmer, der bruges i platformene. 

Denne afhandling inkluderer yderligere flere modeller, der anvender 

iDynoMiCS 2.0 og eGUT, hvilket giver interessante indblik i økologiske 

processer og den dynamiske fællesskabsudvikling af mikrobielle aggregater. 

Dette inkluderer en model, der studerer interaktionerne mellem udbytte- og 

ratestrateger med enten filamentøse eller sfæriske morfologier. Modellen 

afslører en stærk konkurrencefordel for agenter, der danner filamenter under 

betingelser med næringsbegrænsning. Den næste model udforsker rumlig 

mønsterdannelse under den indledende aggregationsproces under forskellige 

hydrologiske forhold og viser, hvordan forskelle i agenternes 

overfladeegenskaber kan føre til celle-sortering. Agenter med stor fri energi af 

adhæsion (∆𝐺𝑎𝑑ℎ) danner centrum af et aggregat, omgivet af agenter med lille 

∆𝐺𝑎𝑑ℎ. Derudover blev der udviklet en model for partial nitritation anammox. 

Denne model blev brugt til at identificere, hvordan vækstegenskaberne for 

simulerede mikrober påvirker strukturen og formen af den fremkomne biofilm. 

Endelig udvikles en multi-kammer tarmmodel ved hjælp af eGUT. Modellen 

simulerer sammensætningen af mikrobiel samfund og rumlig struktur i den 

proksimale, transversale og distale tyktarm. Indsigter i udviklingen af 

slimhindens rumlige struktur er særlig værdifulde, da det ofte ikke er muligt at 

opnå dette in vivo. Yderligere modeller præsenteres i de medfølgende 

manuskripter og/eller er tilgængelige gennem open source software 

repositorier. Arbejdet præsenteret i denne afhandling tillader en mere nøjagtig 

repræsentation af mikrober indlejret i mikrobielle aggregater i 

beregningsmodeller. Denne forbedrede repræsentation muliggør, at disse 

modeller bedre kan fange processerne og interaktionerne inden for biofilm og 

dermed forudsige mønstre og fænomener, der ikke kunne fanges med tidligere 

tilgange. 



xiv 

Table of contents 

Preface .......................................................................................................... iv 

Acknowledgements ....................................................................................... v 

Summary ...................................................................................................... vi 

Dansk sammenfatning .................................................................................. x 

Table of contents ....................................................................................... xiv 

1 Introduction and objectives .................................................................... 1 

1.1 Objectives and thesis structure ...................................................................... 8 

2 Individual-based modeling of microbial aggregates ........................... 12 

2.1 Components of biofilm models ................................................................... 12 

2.2 (Bio-)chemical conversion and transport processes .................................... 12 

2.3 Physical representation of microbes (agents) .............................................. 16 

2.3.1 Drag force and inertia .................................................................................. 17 

2.3.2 Repulsion, attachment, and motor force ....................................................... 19 

2.4 Other processes ........................................................................................... 20 

3 Verification of solvers and algorithms ................................................. 21 

3.1 Force-based Mechanics ............................................................................... 21 

3.2 Well-mixed bioreactor model ..................................................................... 22 

3.3 Spatial reaction and diffusion model ........................................................... 23 

3.4 Stress test .................................................................................................... 25 

3.5 Benchmark problem 3 ................................................................................. 26 

3.6 Microbial competition ................................................................................ 28 

4 The estimation of microbial growth characteristics............................ 30 

4.1 Calculation of microbial yield .................................................................... 31 

4.1.1 Thermodynamic electron equivalent method ............................................... 31 

4.1.2 Energy dissipation method .......................................................................... 32 

4.1.3 ATP-balancing method ................................................................................ 33 

4.2 Maintenance energy .................................................................................... 33 

4.3 Maximum growth rate ................................................................................. 34 

4.4 Substrate affinity ........................................................................................ 35 

4.5 Limitations and considerations ................................................................... 36 

5 Model analysis and parameterization .................................................. 37 

5.1 Analysis of an individual based partial nitritation anammox biofilm model  38 

5.2 Spatial analysis ........................................................................................... 40 

5.3 Sensitivity analysis: Elementary Effects method......................................... 44 

5.4 Parameter optimization: Genetic algorithm ................................................. 51 

5.5 Concluding ................................................................................................. 57 



xv 

6 Pattern formation and population development in microbial aggregates

 58 

6.1 Force mediated spatial sorting in aggregate formation ................................ 58 

6.2 Microbial growth strategies for filamentous microbes ................................ 62 

6.3 Individual based gut modeling: fermentation of colonic polysaccharides  ... 64 

7 Conclusions and perspectives ............................................................... 68 

7.1 Perspectives ................................................................................................ 73 

8 References .............................................................................................. 75 

9 Appendix ................................................................................................ 83 

9.1 Substrate utilization and diffusion in a catalyst layer over an inert surface . 83 

9.2 Substrate utilization and diffusion on spherical particle .............................. 84 

9.3 Partial nitritation anammox......................................................................... 87 

9.4 Graphical thesis overview ........................................................................... 96 

9.5 Publications ................................................................................................ 97 

 
  



1 

1 Introduction and objectives 

Microbial communities are omnipresent and play important roles in human and 

planetary health. Antimicrobial resistant biofilms can hinder effective treat-

ment of microbial infections. The human microbiome found on the skin, oral 

cavity, respiratory- and gastronomic tract plays a vital role in human health 

and wellbeing. Environmental microbial communities play an essential role in 

global elemental cycles and in the breakdown of environmental toxins and pol-

lutants (Costerton et al., 1987; Davey and O’Toole, 2000; Wanner et al., 2006). 

Microbial communities are widely used for various processes including water 

and residuals treatment, feed and food preservation and processing and plant 

growth promotion. These microbial communities  are often found to form self-

organized assemblages such as surface adhering biofilms (Flemming and 

Wuertz, 2019) (Costerton et al., 1995), loosely associated flocs or more tightly 

bound granular biofilms. Microbes have evolved and diversified over a long 

evolutionary history and harbor fascinating characteristics and behaviors. 

Within a single environment microbial diversity can be astonishing. For exam-

ple in activated sludge flocs, thousands of unique species can be identified 

(Gonzalez-Gil et al., 2015; Peces et al., 2022). The complexity coming from 

the high diversity within microbial communities, which in turn are subject to 

spatio-temporal dynamics, can make it difficult to predict all the internal pro-

cesses and the development of these communities (Widder et al., 2016).  

Microbial life in aggregated form is vastly different from a planktonic lifestyle. 

Possibly one of the most obvious differences is the ability of aggregated cells 

to form distinct spatial structures. Multiple processes drive this spatial struc-

ture. Microbes can metabolize a wide variety of chemical compounds. In mi-

crobial aggregates, concentration gradients form resulting from the constant 

consumption and diffusion of these compounds in and out of the aggregate. 

This in turn can result in stratification often found in these microbial assem-

blages. Microbial growth and limited mobility within the aggregate can result 

in micro colonies of clonal populations (Davey and O’Toole, 2000). In partial 

nitritation anammox granules (figure 1.1), used in nitrogen removal systems 

utilizing microbial communities of ammonia oxidizing bacteria (AOB), anam-

mox bacteria (AMX), and the typically unwanted nitrite oxidizing bacteria 

(NOB), both stratification and the formation of small clusters of bacteria can 

be observed. Microbes embedded in an aggregate show different characteris-

tics, behavior and gene expression compared to planktonic cells (Parsek and 
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Fuqua, 2004). Microbes have been found to increase the production of extra-

cellular polysaccharides (EPS) in biofilms, an important substance commonly 

associated with biofilms. Also genes involved in metabolism have been found 

to be upregulated in microbial aggregates (Becker et al., 2001). Microbes have 

developed intricate communication mechanisms such as quorum sensing, a 

mechanism involved in the self-regulation microbial communities, aiding their 

survival in certain environments (Lupp et al., 2003). Biofilms are often asso-

ciated with increased anti-microbial resistance. Multiple mechanisms and 

properties of the biofilm aid this resistance (Stewart and William Costerton, 

2001). At least part of this increased resistance can be directly linked to phe-

notype changes of the aggregated microbes. Phenotypic heterogeneity is even 

observed among individuals in single species microbial populations (Acker-

mann, 2013; Zimmermann et al., 2015). This makes life in microbial aggre-

gates a complex symphony of dynamic processes and mechanisms occurring 

simultaneously. 

Observations from classic laboratory experiments utilizing suspended cultures 

may not be applicable to the behavior of the same microbes in biofilms, since 

microbes within aggregates experience different selective pressures and envi-

ronmental conditions from microbes with a planktonic lifestyle, and because 

they express different phenotypes and employ different mechanisms within an 

aggregate. Researchers have developed new approaches to overcome this issue 

(Costerton et al., 1987; Parsek and Fuqua, 2004). Specialized microscopy 

methods such as Fluorescence In Situ Hybridization (FISH) coupled to Confo-

cal Laser Scanning Microscopy (CSLM) have provided insight in the spatial 

structure and species distribution in microbial aggregates, but they also come 

with important downsides. Detailed analysis of the internal structure of micro-

bial aggregates are typically disruptive, making it impossible to follow the dy-

namic development of the spatial structures in these aggregates.  
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Figure 1.1. Micrographs of microbial aggregates, reprint from Vlaeminck et al.  (2010)1. 

FISH with CLSM (B,C,G,H,I1) or epifluorescence microscope (E,I2) were used to determine 

the spatial organization of the aggregate, with FISH probes for AOB (green), NOB (blue) 

and AMX (red). Due to metabolic transformations of resources diffusing into the granules 

and the co-localization of sibling cells leading to clonal populations, the aggregates become 

spatially structured.  

 

                                              

 

 

1 This figure was published in Applied and environmental microbiology, 76,  Vlaeminck, SE, Terada 

A, Smets BF, De Clippeleir H, Schaubroeck T, Bolca S, Demeestere L, Mast J, Boon N, Carballa M, 

Verstraete W, Aggregate size and architecture determine microbial activity balance for one -stage 

partial nitritation and anammox, 900-909, Copyright American Society for Microbiology (2010).  
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Mathematical and computational models have helped to gain a better under-

standing of these dynamic processes, the nature of distinct spatial structures 

and the ecology of microbial aggregates. The first mathematical biofilm mod-

els were developed in the 1970s (Wanner et al., 2006). Initially, these models 

considered the biofilm as a one dimensional continuum. Although simple, these 

initial models help explain the formation of chemical gradients and stratifica-

tion of species in microbial aggregates (Kissel et al., 1984; Rittmann and 

Manem, 1992; Wanner and Gujer, 1986). Later two- and three-dimensional 

models were used to help understand the formation of more complex spatial 

structures. This includes the formation of finger-like structures in biofilms, re-

sulting from a positive feedback loop where cells in an extrusion from the bio-

film have better access to nutrients and thus can grow faster enlarging the ex-

trusion (Dockery and Klapper, 2001; Picioreanu et al., 1998a; van Loosdrecht 

et al., 2002).  

Cellular Automata (CA) and Individual-based Models (IbM) of biofilms first 

started to appear in the 1990s (Wimpenny and Colasanti, 1997; Picioreanu et 

al., 1998b; Kreft et al., 1998, 2001). These models discretized biomass into 

separate entities, restricted to a spatial-lattice in case of CA or unrestricted in 

case of IbMs, rather than modeling biomass as a concentration in a continuous 

biofilm. These models follow a bottom-up approach where the biomass enti-

ties, representing either small groups of cells or single cells, adhere to a certain 

set of rules or behaviors. These entities are sometimes referred to as biomass 

units, agents or individuals. With these models the properties of the microbial 

aggregate including spatial patterns, community composition, productivity and 

resilience are emergent properties resulting from the collective of properties 

and behaviors of the agents and interactions with their environment. Early CA 

models were used to simulate model micro colony formation (Schindler and 

Rataj, 1992) and different biofilm structures (Wimpenny and Colasanti, 1997). 

At present IbMs have become the more common approach among the two, as 

CA models come with a number of drawbacks concerning biomass spreading 

including over dispersion of microbial species and model outcomes that are 

sensitive to coordinate system (Eberl et al., 2001; Picioreanu et al., 2004). In-

dividual based models are particularly good at capturing the effects of local 

interactions, individuality and adaptive behavior on the spatio-temporal dy-

namics of microbial aggregates. This includes stochastic events such as disper-

sal and community assembly, mutations, up- and down-regulation of genes or 

horizontal gene transfer. For example, the Individual based Anabaena spp. 
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model by Hellweger et al. (2016) incorporated gene expression and differenti-

ation of Anabaena spp. individuals within a filament, and reproduced nearly 

all of the patterns observed in vitro. 

IbMs ability of capturing fine grained spatial pattern formation, such as the co-

localization of sibling cells forming micro colonies, allowed Kreft (2004) to 

demonstrate how this phenomenon can explain altruistic behavior in biofilms. 

This type of microstructure is also essential in understanding and more accu-

rately predicting the behavior of engineered systems. Picioreanu et al. (2016) 

showed how the formation of micro colonies in nitrifying microbial aggregates 

affects local oxygen availability, the perceived microbial affinity for oxygen 

and consequently the growth rate of microbes embedded in the aggregate. 

Hence, the spatial structure of the microbial aggregates plays an important role 

in the microbial community composition and can play a key role in optimizing 

engineered systems. An example of this is the suppression of NOB in partial 

nitritation anammox nitrogen removal systems, where NOB is unwanted due 

to its competition for oxygen with AOB and for nitrite with AMX (Picioreanu 

et al., 2016). 

The first generation of IbMs used a simple shoving algorithm to resolve over-

lap between agents. Later more detailed mechanical interaction models were 

developed. Janulevicius et al. (2010) used an individual-based model to show 

how striking circular patterns in myxobacteria aggregates can be explained by 

the swimming behavior of these bacteria. Celler et al. (2014) used an individ-

ual-based Diatoma model to explain the intricate structures of interconnected 

filaments observed in naturally occurring Diatoma biofilms. Others coupled 

individual-based modeling with computational fluid dynamics (CFD) to simu-

late biofilm detachment and deformation processes (Xavier et al., 2005; Martin 

et al., 2013; Jayathilake et al., 2017). 

Individual-based modeling can provide useful abstractions from a more com-

plex biological reality. Schluter et al. (2015) coupled experiments with EPS 

producing V. cholera in combination with a mutant variant lacking this ability, 

with an IbM. This was done to demonstrate how the adhesive properties of EPS 

affect microbial competition within the biofilm. It may not always be possible 

to obtain a mutant with the desired trait variation when studying other proper-

ties or behaviors of microbes, and if the mutant is obtained it may change in 

multiple aspects. This makes it difficult to distinguish what the primary causes 

of changes at the community level are. In such cases individual-based model-

ing can provide insight on questions in fundamental microbial ecology, as it 

allows us to study the effects of a single property in isolation. Setting up an 
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IbM, using one of the IbM platforms that have come available, is typically also 

far less time consuming than obtaining mutant strains, and thus IbMs can be 

an effective tool to inform later experimental work. Once a good computational 

model is established, it becomes trivial to run thousands of combinations of in 

situ experiments for a given model microbial aggregate. The position, environ-

mental conditions and lineage of any given simulated microbe can be tracked 

over time, providing insight in dynamic developments within the simulated 

microbial aggregate.  

The development of an IbM platform requires expert knowledge and is a time 

consuming effort, especially if it is developed to facilitate a wide variety of 

processes and answer a wide variety of research questions. A collaborative ef-

fort of multiple leading research groups in the field resulted in inception of the 

open source modeling platform (individual-based Dynamics of Microbial 

Communities Simulator) iDynoMiCS (Lardon et al., 2011). The platform com-

bines features of previous models and facilitates the use of individual-based 

modeling of microbial communities for scientists with less programming ex-

perience. To date the platform is used in numerous scientific studies and is one 

of the most cited (243)2 general purpose individual-based microbial commu-

nity modeling platforms, only following its predecessor BacSim (508)2. The 

platform has received multiple extensions, such as the ability to simulate hor-

izontal gene transfer (Seoane et al., 2010), a process that plays a central role in 

the spread of anti-microbial resistance genes, and has influenced the design of 

other modeling platforms (Bogdanowski et al., 2022; Breitwieser et al., 2022; 

Goñi-Moreno and Amos, 2015; Gorochowski et al., 2012; Jang et al., 2012; Li 

et al., 2019). 

Now, over a decade after the introduction of iDynoMiCS, there is a wide vari-

ety of individual-based modeling platforms that focus on microbes and can 

support a range of specific models. Platforms similar to iDynoMiCS include 

Biocellion (Kang et al., 2014), Simbiotics (Naylor et al., 2017), BacArena 

(Bauer et al., 2017), NUFEB (Li et al., 2019), ACBM (Karimian and 

Motamedian, 2020) and McComedy (Bogdanowski et al., 2022). These plat-

forms focus on microbial growth, metabolism, and mass transport and assess 

                                              

 

 

2 Number of citations according to google scholar.  
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how different growth strategies or metabolic interactions affect the fitness of 

species growing in a biofilm or how they impact systems-level outcomes in 

wastewater treatment systems or bioreactors. iDynoMiCS, NUFEB and Simbi-

otics can all model growth using equations originating from enzyme kinetics 

that determine reaction rates from substrate concentrations, such as Monod ki-

netics. NUFEB can additionally model agent growth based on thermodynam-

ics, calculating the Gibb’s free energy of catabolism (Gogulancea et al., 2019).  

Reaction rates and diffusion are coupled and solved using partial differential 

equation (PDE) solvers. These solvers are made efficient by taking advantage 

of a separation of timescales. The growth of microbes is on a much slower 

timescale than diffusion, and thus a pseudo steady state is reached rapidly after 

any changes occur within the system. BacArena and ACBM are unique in uti-

lizing flux-balance analysis to estimate the metabolic flux based on their local 

solute concentrations. However, this is a computationally demanding process, 

making the platforms more restrictive in terms of model scale. BacArena only 

models agents in a fixed 2D grid, with one agent per grid cell, like cellular 

automata, while ACBM groups agents together when evaluating internal pro-

cesses. The other biofilm modeling platforms simulate grid-free agents that 

evaluate internal processes on an individual basis. NUFEB and Simbiotics also 

allow adhesive forces to be modeled. In NUFEB and iDynoMiCS, agents are 

spherical, while in Simbiotics and ACBM they can be spherical or rod-shaped. 

There is an additional group of platforms that originates from systems and syn-

thetic biology and seek to discover how specific microbial community behav-

iors or phenomena can be achieved through the creation of synthetic microbial 

communities (Gorochowski et al., 2020): CellModeller (Rudge et al., 2012), 

BSim 2.0 (Matyjaszkiewicz et al., 2017) and gro (Gutiérrez et al., 2017). They 

can simulate microbial communities made up of rod-shaped microbial agents 

with specific metabolic, sensing and signaling properties. All three can simu-

late gene regulatory networks and diffusion of signaling molecules to explore 

and/or design synthetic microbial communities. While gro can only simulate 

2D systems, CellModeller can simulate both 2D and 3D systems, BSim 2.0 can 

only simulate 3D systems. In models that use these platforms, growth kinetics 

are typically less important than gene regulation, hence growth is modeled as 

a simple rate, as in CellModeller, or a rate based on cell length, as in BSim 2.0. 

Gro allows growth to be based on Monod kinetics. CellModeller and gro do 

not include environmental constraints such as physical boundaries, thus agents 

tend to grow outwards to form round colonies. BSim 2.0, can model physical 
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spaces such as microfluidic chemostats where cells may grow and release dif-

fusing signaling molecules. 

Mathematical and computational modeling has delivered valuable insights into 

the dynamic processes occurring within microbial aggregates. Increasingly de-

tailed models have improved our understanding of the ecological processes 

shaping these microbial assemblages and have informed the design of essential 

technologies and processes utilizing multispecies biofilms, in particular water 

treatment systems. The advent of accessible open source modeling tools ena-

bled a broader group of researchers to utilize the method in their work. Alt-

hough useful, these modeling tools still come with several limitations and 

drawbacks. This includes the limited scale of computationally feasible model 

systems, the limited availability of individual based observations required to 

parameterize the model systems, the expertise required to develop an IbM, and 

limitations in the ability to accurately represent some important microbial traits 

or model systems. Recent efforts by multiple research consortia have brought 

substantial improvements in some of these limitations, but an integrated ap-

proach that addresses all these limitations simultaneously is still missing. Ide-

ally an individual based modeling platform should be able to capture all bio-

logically significant processes and properties and thereby aid our understand-

ing of microbial aggregates and ultimately improve our ability to construct pre-

dictive biofilm models. 

1.1 Objectives and thesis structure 

The goal of this thesis is to develop an integrated IbM approach that addresses 

the key limitations found in prior work. An approach that facilitates a wide 

range of biofilm research and helps explain how individual microbial traits lead 

to emergent properties of the microbial aggregate. This goal can be subdivided 

into the following objectives: 

1 Enabling a larger range of dynamic individual-based characteristics and 

behaviors for a better representation of various microbial traits 

2 Widening the range of (bio-)chemical sub-models to provide a better 

representation of microbial metabolisms. 

3 Improving the physical representation and interaction models available.  

4 Closing the gap between experimental and modeling work facilitating a 

better integration of experiments and modeling and reducing the re-

quired expertise to construct a model. 

5 Facilitating model parameterization where individual based experi-

mental observations may be lacking. 
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6 Improving computational efficiency to allow for models at larger scales. 

Dynamic individual-based characteristics and behaviors 

A key insight is that not only biofilms but also microbes themselves are dy-

namic in nature. The characteristics of microbes can change in many ways due 

to a variety of different causes. This can involve their metabolism, production 

of enzymes or EPS, their morphology, or other aspects such as motility. While 

some prior frameworks, such as iDynoMiCS 1, already allow for some dynamic 

traits, for example through metabolic switching, other changes in agent char-

acteristics are typically not possible. By enabling higher degree of flexibility 

in agent characteristic a larger variety of dynamic phenomena could be cap-

tured through an IbM, including sporulation, dormancy, signaling (quorum 

sensing), genetic mutation, genetic switching, adaptation, microbial life cycles, 

ageing, chemotaxis and more. 

(Bio-)chemical conversion and microbial metabolism 

Although the Monod equation has been a staple in biofilm modeling, the ki-

netic model substantially simplifies the metabolism of microbes. Most IbM 

platforms only allow for kinetic models following a predefined structure such 

as Monod kinetics. Yet in some situations other kinetic models may be more 

suitable or even required, such as a modified Monod model adjusting for light-

limitation in microalgae (Lee et al., 2015). Others have used thermodynamic 

based kinetic models to gain new insights (Gogulancea et al., 2019). By allow-

ing the formulation of kinetic expression through an arithmetic function, it 

should become possible to use any type of kinetic model, and thus it should 

become possible to model organisms with metabolisms that cannot be accu-

rately defined through Monod kinetics. 

Microbial morphology and physical interaction 

There is a lot of variety in microbial shape (Angert, 2005) and size (Schulz and 

Jørgensen, 2001). It has been argued that these properties are as important as 

other traits in ecological success (Kevin D. Young, 2006). Further, it is known 

that microbial aggregation involves drastic changes in microbial surface prop-

erties, allowing them to adhere to substrates or other microbes. First generation 

IbM platforms model microbes as spherical particles that avoid overlap through 

a shoving algorithm, but do not model microbial adherence. By integrating and 

further developing on the mechanical agent model by Janulevicius et al. (2010), 

Celler et al. (2014) and (Storck et al., 2014) a better representation of how 
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mechanical interactions and microbial morphology affect microbial interac-

tions and structural development of microbial aggregates should become pos-

sible.  

Closing the gap between experimental and modeling work 

IbMs typically depend on many software and model parameters. This includes 

abstract concepts such as a shoving factor, which has no parallel in biology. 

Instead, IbM tools that enable biologists to formulate their system in their own 

language rather than computer code could bridge the gap between experimen-

talists and modelers (Hellweger et al., 2016). By implementing solvers that 

self-inspect convergence and automatically adjust in order produce outcomes 

within a reasonable error range, and by relying on parameters that can be ob-

tained from experimental observations or literature, individual based modeling 

should become feasible for a broader range of researchers.  

Model parameterization with limited experimental observations 

The implementation of pattern analysis, sensitivity analysis and parameteriza-

tion tools should make it possible to directly compare experimental and mod-

eling results and enable model calibration on experimental data. Multi-scale 

pattern analysis facilitates Pattern-Oriented Modeling (POM). POM is a mod-

eling approach that aims to identify and replicate the patterns that characterize 

the modeled system observed at different levels of the system’s organization 

and scale. Identifying and quantifying these characteristic multi-level system 

patterns allows the inference individual based properties from them. This helps 

mitigate the issues caused by the limited availability of individual based ob-

servations. In many cases reasonable initial parameter estimation can be made 

using existing empiric models. 

Computational efficiency 

The spatial detail and complexion of IbMs limit the scale of the computational 

domain at which a simulation is feasible. Some spatial pattern formation may 

not be captured in a limited computational domain, it may further hinder mod-

eling biofilms with substantial height, and it may force researchers to limit 

their model to two spatial dimensions, which in turn comes with a variety of 

side effects. The computational intense workload also makes large scale pa-

rameter sweeps with IbMs time consuming, which is probably one of the main 

reasons why many studies utilizing IbMs do not include detailed sensitivity 
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analysis and model calibration. By addressing software bottlenecks and ineff i-

ciencies, simulations at a much larger scale or model evaluation in a shorter 

duration of time should become feasible. 

This thesis is organized in 7 chapters starting with this introduction reviewing 

the scientific context and prior biofilm modeling research. This thesis further 

includes 3 manuscripts which provide additional detail on the covered topics.  

Chapter 2. Individual-based biofilm modeling in microbial ecology and bio-

technology. Provides an overview of the inner workings of IbMs and highlights 

key differences between iDynoMiCS 2.0 from other platforms. 

Chapter 3. Verification of solvers and algorithms. Provides a short overview 

of the verification process of iDynoMiCS 2.0. The platform was evaluated with 

known analytical solutions as well as compared to prior work. 

Chapter 4. The estimation of microbial growth characteristics. Reviews ther-

modynamics based approaches and insights that can aid estimating initial pa-

rameters for biofilm models that include under characterized microbes.  

Chapter 5. Model analysis and parameterization. Provides an overview of the 

analysis and parameterization strategy developed for IbMs. A basic partial ni-

tritation/anammox model was used to provide context to the concept.  

Chapter 6. Pattern formation and population development in microbial aggre-

gates. Provides an overview of initial pattern formation and microbial ecology 

case studies using iDynoMiCS 2.0. 

Chapter 7. Conclusions and perspectives 

Manuscript I. Is it selfish to be filamentous in biofilms? Individual-based 

modeling links microbial growth strategies with morphology using the new and 

modular iDynoMiCS 2.0. Introduces the individual-based modeling platform 

iDynoMiCS 2.0, which addresses many key limitations. 

Manuscript II. Force mediated spatial structure in granular biofilm assembly. 

Utilizes iDynoMiCS 2.0 to investigate the ecology and processes involved in 

microbial aggregates, including the role of differential adhesion on pattern for-

mation in incipient aggregates. 

Manuscript III. eGUT, a platform enabling agent-based modelling of the gut 

microbiome and its spatial interactions with the host mucosa . Combines the 

capabilities of iDynoMiCS 2.0 with a gut lumen and mucosa model to enable 

gut biofilm modeling.  
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2 Individual-based modeling of microbial 
aggregates 

2.1 Components of biofilm models 

Although microbial aggregates are found in many shapes and forms in a wide 

variety of environments, the chemical and physical processes and properties 

impacting the biofilm are of the same nature, and thus many biofilm models 

share a similarity in what properties and processes they describe. Biofilm mod-

els, including IbMs, describe the biofilm and its environment as a collection of 

numbers and mathematical equations.  

Space is described through a Cartesian coordinate system and is typically lim-

ited by boundaries. This limited space is also known as the computational do-

main. IbMs describe biomass as individual agents which have properties and 

conduct programmed behavior. The complexity of these agents can be quite 

different from one model implementation to the other, but typical properties 

are position, mass, volumetric mass density, shape and chemical composition. 

Typical behavior includes chemical conversion, growth and cell division. 

These agents are located in an environment which also comprises a number of 

properties and processes. Most model implementations include local concen-

trations of chemical species, also referred to as solutes, and diffusivity, while 

some models may include other properties such as pH, temperature and even 

light intensity. Processes that are usually considered in IbMs are mass transport 

and shearing.  

2.2 (Bio-)chemical conversion and transport pro-

cesses 

Advection and diffusion are the processes that drive matter transport in and 

around the biofilm. Some advective transport may occur in the biofilm, as ob-

served in channel forming biofilms (Wimpenny and Colasanti, 1997), yet, gen-

erally the majority of matter transport in the biofilm is considered to be diffu-

sion driven. Matter transport further away from the biofilm is typically advec-

tion driven. The intermediate zone transitions from diffusion dominated to ad-

vection dominated.  

Some models have utilized computational fluid dynamics to model matter 

transport and mechanical stress over the biofilm. These simulations are com-
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putationally intense however and are not feasible over the timescales consid-

ered in biofilm development. Therefore, the model system is typically simpli-

fied and modeled as separate regions (figure 2.1). This includes a region that 

is perfectly well-mixed called the bulk, which is the furthest away from the 

biofilm, and a region where mass transport is considered fully diffusion driven, 

this includes the biofilm and a so called diffusion boundary layer which sepa-

rates the biofilm from the bulk. Models of surface adhering biofilm may addi-

tionally include a support region which represents the substratum the biofilm 

is attached to. 

 

Figure 2.1. Schematic representations of the different regions in a typical biofilm model 

(Left), chemical species are assumed to be completely mixed within the bulk region where 

transport due to advection is dominant. Experimental observations of oxygen concentrations 

and consumption rates in a partial nitritation anammox granule (Right), reprint from 

Vázquez-Padín et al.  (2010)3, reveal typical concentration profiles for a rate limiting sub-

strate. 

 

                                              

 

 

3 This figure was published in Water research, 44, Vázquez-Padín J, Mosquera-Corral A, Campos JL, 

Méndez R, Revsbech NP, Microbial community distribution and activity dynamics of granular bio-

mass in a CANON reactor, 4359-4370, Copyright Elsevier (2010) 
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The bulk region is free of any chemical gradients. Temporal dynamics may still 

affect this compartment and it is therefore chemical concentrations in this com-

partment are often modeled using a classical bioreactor model: 

 

𝑑

𝑑𝑡
𝑆𝑠(𝑡) = ∑ 𝐷𝑖𝑆𝑠,𝑖(𝑡)

𝑖𝑛𝑓𝑙𝑜𝑤𝑠

− ∑ 𝐷𝑖𝑆𝑠(𝑡)

𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠

+ 𝑞
𝑠
(𝑡) 2.1 

where Ss(t) is the concentration of solute s at time t and Di the dilution rate for 

a given inflow/outflow and the rate expression qs(t), which is the net sum of all 

local consumption and production rates for solute S. Alternatively, the concen-

trations in this region may be kept constant.  

Due to the consumption of chemical species by microbes in the biofilm and 

diffusive fluxes occurring in and around the biofilm, chemical gradients form 

in the biofilm and in its proximity. The majority of IbMs model the concentra-

tion gradient in the proximity of the biofilm as a diffusion boundary layer 

(DBL). The DBL is a hypothetical layer assuming matter transport is fully 

driven by diffusion, which allows estimation of the chemical concentrations at 

the biofilm surface without simulating advection explicitly. The thickness of 

this layer can be determined experimentally by extrapolating the concentration 

gradient at the surface of the biofilm to the bulk concentration.  

Alternatively, the Sherwood number (𝑆ℎ) can be used to estimate the thickness 

of the diffusion boundary layer (Wanner et al., 2006): 

 𝑆ℎ =
𝑘𝑚𝑑𝑝

𝜔𝑠

 2.2 

Where 𝑘𝑚 is the mass-transfer coefficient, 𝑑𝑝 is the characteristic length and 

𝜔𝑠 the diffusion coefficient of the liquid (usually water). The layer thickness 

(𝐿𝐷𝐵𝐿) is defined as follows (Rittmann and McCarty, 2018): 

 𝐿𝐷𝐵𝐿 = 𝜔𝑠/𝑘𝑚 2.3 

Empiric correlations using the Reynolds number (𝑅𝑒) and Schmidt number (𝑆𝑐) 

have been established to estimate the Sherwood number, and thus also 𝑘𝑚, un-

der various hydrodynamic conditions. For fluid flow over a flat plate the fol-

lowing correlation exists (Ruocco, 2018): 

 𝑆ℎ = 0.332 𝑆𝑐1/3 𝑅𝑒1/2 for 𝑆𝑐 ≳ 0.5 2.4 

For fluid flow around a rigid spherical particle the following equation can be 

used (Wanner et al., 2006): 

 𝑆ℎ = 2 + 0.6 𝑆𝑐1/3 𝑅𝑒1/2 2.5 
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Picioreanu et al (2000a) developed a correlation that adjusts for the biofilm 

surface area, while other geometries or conditions may require different corre-

lations. Many of these correlations are available in scientific literature (Horn 

and Lackner, 2014). 

Microbial growth happens on a far larger time-scale than chemical reactions 

and diffusion (Picioreanu et al., 2000b). This allows biofilm models (including 

IbMs) to make a pseudo steady state assumption. This is to say that over a small 

enough time step the overall change in biomass is small enough to consider it 

constant over a short period of time. The model can approximate the chemical 

concentrations during that period by calculating steady state conditions, where 

Fickian diffusion and (bio-)chemical conversion balances. This simplification, 

known as the separation of timescales, can drastically reduce the computational 

demand of the simulation.  The rate of change for each solute is now given by 

the elliptic Partial Differential Equation (PDE) that combines Fickian diffu-

sion, given by the divergence div of the diffusional flux driven by the concen-

tration gradient ∇𝑆𝑠, and local reactions (Dyke, 1998). 

 
𝜕

𝜕𝑡
𝑆𝑠(𝑥, 𝑡) = div(𝜔𝑠(𝑥) ∙ ∇𝑆𝑠(𝑥, 𝑡)) + 𝑞𝑠(𝑥, 𝑡) 2.6 

where x is the spatial position, ωs is the local diffusivity, and Ss(x,t) the local 

concentration of solute s. The gradient of a field, ∇, is commonly defined as:  

 ∇= 𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
 2.7 

At the outer bounds of the computational domain any one of the following 

boundary conditions may be of effect; (1) An (impermeable) Neumann bound-

ary with the following condition: 

 ∇S(𝑥) ∙ 𝑛̂|Γ = 0 2.8 

The domain’s solute concentration gradient ∇S(𝑥) normal (normal vector: 𝑛̂) 

to the boundary Γ is 0. Neumann boundaries are used to represent hard sur-

faces. (2) A Dirichlet boundary where solute concentrations have a fixed value 

S𝑏: 

 S(𝑥)|Γ = S𝑏  2.9 
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Dirichlet boundaries are used to connect the bulk environment to the rest of the 

biofilm model. (3) A Periodic boundary that matches the concentration and 

gradient on opposite side of the computational domain:  

 
S(𝑥)|Γmin = S(𝑥)|Γmax 

∇S(𝑥)|Γmin = ∇S(𝑥)|Γmax 

2.10 

2.11 

Periodic boundaries allow the modeler to represent an overall larger biofilm by 

simulating a smaller representative segment. 

The diffusion coefficient in the biofilm is typically different from that in the 

liquid the biofilm diffusivity (𝜔𝑠,𝑓) over liquid diffusivity ratio can range from 

0.5 to 0.8, for small molecules 𝜔𝑠,𝑓 = 0.8𝜔𝑠 is typically an appropriate approx-

imation (Rittmann and McCarty, 2018). 

2.3 Physical representation of microbes (agents) 

Microbes in IbMs are represented at the level of single cells, rather than a bio-

mass continuum as in classic biofilm models. The simulated cells are referred 

to as agents. In early IbMs these agents are represented as small circles or 

spheres that resolve overlap using a shoving algorithm (figure 2.2). These al-

gorithms do not model intricate interaction forces (repulsion, attraction, agent 

attachment), but are still effective in decompressing a growing biofilm. 

 

Figure 2.2. Shoving algorithms calculate a movement vector that is the inverse of the sum 

of overlap vectors from neighboring cells. Small differences in how these vectors are calcu-

lated exist. In BacSim this overlap vector is defined as follows: 𝑅0 = 𝑘𝑅𝑥 + 𝑅𝑦 − 𝐶1 where 

𝑅𝑥 and 𝑅𝑦 are the radius of the focal cell and its neighbor, C1 is the Euclidean distance 

between the centers and k is a radius multiplier controlling the packing density of the bio-

film. 

Later models introduce new shapes and physical interactions agents may have 

(figure 2.3). These mass-spring models were first implemented by Janulevicius 

et al. (2010), Celler et al. (2014) and Storck et al. (2014). iDynoMiCS 2.0 

builds further on this approach but is no longer limited by spring forces and 

therefore dubs it Force-based Mechanics (FbM). 
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Figure 2.3 IbMs with advanced physical representation and mechanical interaction allow 

the modeling of agents with other morphologies such as rod-shaped bacilli or filamentous 

organisms. Multiple IbMs use a mass-spring system or similar approach to model these 

shapes. Dashed lines indicate sphere-swept volumes of ‘dots’ or line-segments. Dots are 

mass-points indicating position and orientation of agents. Solid lines indicate mechanical 

interactions between points (forces between points modeled as springs): The spring from b 

to c is responsible for the rigidity of rod-shaped agent, c and d connects two rod-shaped 

agents. α is the angle between two elements of a filament. This angle can be counteracted by 

a torsion spring applying forces on b, c and d. L1 and L2 are the moment arms.  

Forces acting upon the agent may arise from multiple sources. This includes 

interaction forces such as collisions, structural forces such as the forces con-

necting the segments of a filament, motor forces, gravity buoyancy and (vis-

cous) drag force.  

2.3.1 Drag force and inertia 

Drag force works in opposite direction of the movement of the cell relative to 

its environment. Inertia is the tendency of a moving object to maintain its speed 

and trajectory. Although this may be counter intuitive, inertia can usually be 

considered negligible on microbial scale (Purcell, 1977; Berg, 1993). In other 

words, the time it takes for a microbe to change its velocity due to a change in 

forces acting upon it is expected to be so small that it can be ignored. This is a 

logical conclusion when looking at the dimensionless Reynolds number (Re), 

which is interpreted as the ratio between inertial and viscous forces:  

 𝑅𝑒 =
𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠

 2.12 
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For a spherical particle such as an agent, the Reynolds number can be calcu-

lated as follows: 

 𝑅𝑒𝑎 =
𝜌𝑓v𝑑𝑎

𝜇𝑓

 2.13 

Where 𝜌𝑓 and 𝜇𝑓 are the density and the dynamic viscosity of the fluid. v is the 

mean velocity of the object relative to the fluid, 𝑑𝑎 the diameter of the agent. 

For typical motile microbes the particle Reynolds number will be around 10 -4, 

for non-motile cells this will be less. Under these conditions ( 𝑅𝑒𝑎 ≤ 0.1) 

Stokes’ law can be used to calculate the drag force on the particle (Rhodes, 

2008). 

 𝑅𝑒𝑎 ≤ 0.1 → 𝐹𝐷 = 3𝜋𝑑𝑎v𝜇𝑓  2.14 

A very small Reynolds number tells us that the inertial component is very small 

in comparison to the viscous component. Even in more extreme microbial sce-

narios this holds. We can use the drag force in combination with newton’s sec-

ond law of motion to calculate the deceleration of the agent:  

 
𝑑𝑣

𝑑𝑡
=

−3𝜋𝑑𝑎v𝜇𝑓

𝑚
 2.15 

The derivative of this equation allows us to obtain the time it takes the agent 

to lose all of its velocity after any driving force is taken away and the amount 

of distance it travels during this time (See Box 2.1). 

Box 2.1: The coasting time and distance after the fastest swimming microorganisms stops 

propelling itself. 

The record holder of fastest swimming microorganism “Candidatus Ovobac-

ter propellens”. This prokaryote is able to swim at velocities up to 1000 

μm s⁄  and has diameter of up to 5 µm (Fenchel and Thar, 2004). Even in this 

case we still find a Reynolds number of only 5·10 -3 during its fastest swim. 

Using Newton’s second law coasting time and distance can be calculated. At 

a steady initial swimming speed of 1000 μm s⁄  in water, a cell density of 1 

g cm3⁄  we find that it takes only 1.39·10-6 s and 13.9 Å for Candidatus Ovo-

bacter propellens to lose all of its inertia after it stops propelling itself.  

 

The amount of distance traveled as a consequence of inertia is minuscule, and 

therefore considered to be negligible (Purcell, 1977; Berg, 1993). This means 

the terminal velocity is a very good approximation of the actual velocity of the 
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microbe, and thus the system of equations can be simplified by ignoring inertia 

under low Reynolds number conditions: 

 
𝑑𝑥

𝑑𝑡
≈ v𝑡(𝑡) 2.16 

The terminal velocity is reached if the drag force is in equilibrium with all 

other forces acting upon a mass-point of the agent ∑ 𝐹𝑝. 

 ∑ 𝐹𝑝 − 𝐹𝐷 = 0 2.17 

The terminal velocity can be expressed as follows:  

 v𝑡 =
∑ 𝐹𝑝

3𝜋𝑑𝑎𝜇𝑓

 2.18 

This simplification is reasonable for cells in agent-based biofilm models as in 

typical biofilms cell velocity or size is never expected to be large enough to 

break the low Reynolds number assumption. iDynoMiCS 2.0 distinguishes it-

self by implementing it, effectively halving the number of ordinary differential 

equations that need to be solved. 

2.3.2 Repulsion, attachment, and motor force 

The other forces that can act upon the agent may be quite different from one 

model to the other. These forces may result from collisions with other cells or 

surfaces, structural forces maintaining the length of rod shaped cells or the 

rigidity of filaments, attachment to other agents or the substratum, motor 

forces, etc. Where models utilizing shoving typically only consider expansion 

of the biofilm due to overlap and in some cases retraction of the biofilm be-

cause of decreasing local densities, force based implementation may include a 

wider variety of physical interactions. Initial mass spring models mostly rely 

on linear springs following Hooke’s law:  

 𝐹 = 𝑘𝛿𝑙 2.19 

Where k is the spring constant and 𝛿𝑙 the difference between the current length 

and the rest length. Janulevicius et al. (2010) also implemented angular springs 

and motor forces. iDynoMiCS 2.0 can model a wide variety of physical inter-

actions, including springs and DLVO (Derjaguin, Landau, Verwey and Over-

beek) interactions, as interactions can be expressed as a standard arithmetic 

expression.  
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By default agent collisions are modeled using the Hertz soft sphere model (Ste-

vens and Hrenya, 2005): 

 𝐹 =
4

3
√𝑟𝑒𝑓𝑓 𝐸𝑒𝑓𝑓  𝜉3/2 2.20 

Where reff is the effective radius, Eeff the effective Young’s modulus and ξ the 

agent overlap. 

2.4 Other processes 

Microbial detachment and attachment are other processes many IbMs imple-

ment. Although it can be an important factor in the development of the biofilm, 

there does not seem to be a consensus on how to model these processes (Horn 

and Lackner, 2014). A variety of factors including biological, chemical and 

physical processes can play a role. These processes include sloughing, for ex-

ample due to increased shear force on the biofilm during backwashing, or pro-

tozoan grazing of the biofilm. Other processes or changes may affect the 

strength of the EPS matrix, such as hydrolysis or sudden shifts in pH (Wang et 

al., 2012). Some models directly model shear stress on the biofilm resulting 

from fluid flow (Jayathilake et al., 2017). Horn and Lackner (2014) present a 

variety of biofilm detachment models of which a subset is also available in 

iDynoMiCS 2.0. iDynoMiCS 2.0 also implements an attachment algorithm that 

implements a 2D or 3D random walk that can be used to determine an attach-

ment site for newly introduced agents (coming from the bulk or other sources). 

Many more processes may be modeled as part of an IbM. This includes pro-

cesses such as plasmid invasion (Seoane et al., 2010), damage repair and aging 

(Clegg et al., 2014; Wright et al., 2020), quorum sensing and chemotaxis 

(Sweeney et al., 2019) and more. Although discussing detailed model imple-

mentations of these processes goes beyond the scope of this section, a key take-

away is that IbMs are well suited to capture individual variability, local inter-

actions, and adaptive behavior. IbMs can predict unique outcomes that may be 

lost in continuum models, where population averages are considered. 
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3 Verification of solvers and algorithms  

To ensure the newly developed iDynoMiCS 2.0 platform functions correctly a 

thorough testing and verification procedure was performed. A detailed descrip-

tion of this procedure is included with the supporting information of manu-

script I, while this chapter summarizes the procedure and reports the main find-

ings. This procedure includes single-component testing, where individual solv-

ers or algorithms are tested, and multi-component testing, where multiple solv-

ers or algorithms are tested simultaneously. For the single-component tests 

simple test cases with known outcomes are compared to the outcomes of the 

iDynoMiCS 2.0 solvers. For multi-component tests no analytical- or otherwise 

absolute solutions exist, and the iDynoMiCS 2.0 outcomes are compared to 

those of other biofilm models. 

3.1 Force-based Mechanics  

Two components have been tested to verify the correct functioning of iDynoM-

iCS 2.0’s Force-based Mechanics (FbM). The first part is the detection of col-

lisions. In total, 36 scenarios were created, including different agent morphol-

ogies, agent-voxel collision detection and multiple domain boundary scenarios 

including agent-boundary collision, but also agent-agent/voxel collision 

through periodic boundaries. iDynoMiCS 2.0 identifies all collisions and 

misses of these scenarios correctly. The second part is the collision response. 

Here the FbM solver is used to decompress an initial over compressed state. 

The correct behavior here is that the solver converges to a state were agent to 

agent/surface forces minimized. Over the 1000 performed iterations, the max-

imum interaction force dropped from 275.1 fN to 0.08 fN (figure 3.1), and thus 

the solver works as expected. 
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Figure 3.1. FbM leads to rapid relaxation of mechanical stress from an initially over -com-

pressed state. Left panels from the top showing highest interaction force next to the biofilm 

structure: 275.1 fN for the initial state and 0.08 fN after 1,000 steps. The panel on the right 

shows exponential drop of the highest interaction force towards zero, demonstrat ing conver-

gence of the FbM solver. This figure is reproduced from Manuscript I. 

3.2 Well-mixed bioreactor model 

The dynamics in the bulk region in iDynoMiCS 2.0 simulations can be de-

scribed using a classical bioreactor model (Equation 2.1). The bioreactor model 

is solved using a basic Ordinary Differential Equation (ODE) solver. This 

solver was tested using two scenarios. The first scenario is a chemostat model 

with a single substrate (S) and a catalyst converting the substrate. This system 

can be described by the following differential equation: 

 
𝑑𝑆

𝑑𝑡
=

𝑄𝑆0

𝑉
−  

𝑄𝑆

𝑉
−  

𝑚𝑞𝑆

𝑉
 3.1 

where S0 is the solute concentration in the inflowing medium, Q is the flow 

rate with dimension volume per time, V is the volume of the chemostat, t is 

time, q is the rate of solute consumption by the catalyst and m is the mass of 

the catalyst. The steady-state solution for this differential equation is:  

 𝑆∗ =
𝑄𝑆0

𝑄 + 𝑚𝑞
 3.2 

The solver converged to the exact steady state solution (figure 3.2 A).  

The following scenario includes growing biomass. This can be implemented as 

a classic chemostat model with a deterministic outcome, or as an individual 

based model which introduces stochasticity. Both cases were implemented. 

The biomass or agents grow according to Monod kinetics and have a probabil-

ity of being washed out of the chemostat creating a new steady state scenario 

where solute concentration, agent growth and wash out balance (A detailed 
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description of this model is included with supporting information of Manu-

script I). The steady state solutions for the solute 𝑆∗ and total agent mass 𝑃∗ 

are: 

 𝑆∗ =  

𝑄
𝑉⁄ 𝐾𝑆

𝜇𝑚𝑎𝑥 −  
𝑄

𝑉⁄
 3.3 

 𝑃∗ =  𝑌(𝑆0 − 𝑆∗) 3.4 

Where 𝜇𝑚𝑎𝑥, 𝐾𝑆 and Y are the maximum specific growth rate, substrate affinity 

and the yield of the agent. The iDynoMiCS 2.0 simulation resulted in concen-

trations that closely approached those of the analytical solution, the differences 

in steady state concentration were 0.0008% and 0.0006% respectively figure 

3.2 b and d. The stochastic model introduces a degree of variance to the model 

outcomes (figure 3.2 c). However, over 9 repetitions revealed that the model 

consistently converges to the same expected outcome, without any evident 

bias, with average steady state concentrations of S* = 6.64 𝑚𝑔 𝐿−1 and P* = 

498.40 𝑚𝑔 𝐿−1 over the 9 repetitions. 

3.3 Spatial reaction and diffusion model 

To test (bio-)chemical reactions and diffusion in a spatial explicit domain, 

again two test scenarios were constructed. The first scenario includes a row of 

catalyst agents on an inert surface at the base of a spatial compartment and a 

diffusion boundary layer at a set distance over this row of catalyst agents. This 

matches a 1E system of a catalyzing surface (see the supporting information of 

Manuscript I) for which a steady state solution can be calculated: 

 𝑆∗ =  
𝐷 𝐴 𝑆0

∆𝑥 𝑚 𝑞 + 𝐷 𝐴
 3.5 

where S* is the steady-state concentration at the catalyst surface, D is the dif-

fusivity of the solute S, A is the surface area of the catalyst and Δx is the depth 

of the diffusion-dominated boundary layer. The iDynoMiCS 2.0 solvers con-

verged to the predicted surface concentration of 1.8 mg/l (figure 3.2 d).  

The second scenario includes a thicker layer of catalyst agents and is meant to 

study the concentration profile within the biomass region. For a homogene-

ously distributed catalyst following first order kinetics on an inert surface the 

following analytical model for the solute concentration can be used: 

 
𝑑𝑆

𝑑𝑡
= 𝐷∇2𝑆 − 𝑘𝑆 3.6 
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Where ∇2 is the Laplacian operator and 𝑘 is the reaction rate constant. The 

agents are placed on an inert surface where a gradient forms perpendicular from 

the surface, at the inert surface 𝑥 = 0, there is no solute gradient  
𝑑𝑆

𝑑𝑥
= 0. With 

a known solute concentration 𝑆𝑏 at the top of the biofilm 𝑥𝑏, the steady state 

solute concentration in the catalyst layer can be found:  

 𝑆∗(𝑥) = 𝑆𝑏𝑒
−(𝑥−𝑥𝑏)√𝑘

𝐷⁄ 1 + 𝑒
2𝑥√𝑘

𝐷⁄

1 + 𝑒
2𝑥𝑏√𝑘

𝐷⁄

 3.7 

This solution is further elaborated in the appendix. This problem can also be 

solved for a catalyst layer around an inert spherical particle (also included in 

the appendix).  

Multiple tests were performed with this setup, both with diffusion boundary 

layer (Figure 3.2 e) as well as without (thus having the boundary concentration 

matching the bulk concentration). The solute concentration profiles through 

the catalyst region are as expected. Further, for the test excluding a boundary 

layer a unit-test was constructed, sampling the numeric solution every 2 µm 

throughout the catalyst region revealed a mean square error (MSE) of 0.0049.  

The single-component tests demonstrated that the solutions were numerically 

correct with deviations of <0.02% in all test scenarios. Further, 3 multi-com-

ponent tests were developed, these include a large scale stress test, an iDynoM-

iCS 2.0 implementation of benchmark problem 3, and a test case comparing 

iDynoMiCS 2.0 outcomes of yield and rate strategist competition with a prior 

BacSim model (Kreft, 2004). These tests use multiple model components sim-

ultaneously (hence the name) and are further distinctly different from the pre-

vious test cases as there are no analytical- or otherwise known correct solutions 

for these problems. 
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Figure 3.2. Results of numerical tests of the ODE and PDE solvers. A – Results from the 

non-growing chemostat population. Concentration tended towards the expected steady state 

of 0.4 𝑔 𝑙−1. B, c – Results from the growing chemostat population. Concentrations tended 

towards the expected steady states of 498.33 𝑚𝑔 𝐿−1 for the biomass in the deterministic 

model (b) and a single repetition of the stochastic model (c). The expected solute concentra-

tion of 6.67 𝑚𝑔 𝐿−1 was reached in both versions of the model. The graphs are nearly indis-

tinguishable for the stochastic and deterministic model (d).  (e) – Results from thin cell layer. 

Concentration at biofilm surface matched predicted concentration of 1.8 𝑚𝑔 𝐿−1.  (f) – Re-

sults from thick cell layer. The vertical line marks biofilm surface (𝑥𝑏). The substrate con-

centration gradient was linear in the diffusion boundary layer above the biofilm surface and 

then decreased towards zero at the inert boundary at height 0, as expected. 

3.4 Stress test 

The stress test was developed to verify whether iDynoMiCS 2.0 can simulate 

large scale model systems. In these scenarios 1000 Ammonium Oxidizing Or-

ganisms (AOO) and 1000 Nitrite oxidizing Organisms (NOO) are randomly 

distributed over 500 µm by 500 µm to simulate a simple nitrifying biofilm. The 

agents produce EPS particles coupled to their growth rate. When the mass of 

an agent drops below 20% of its division mass it ‘dies’ and becomes inert. The 

model was adopted from Hubaux et al. (2015), and updated to include EPS 

production and cell death. The simulated biofilm reached over 10 million 

agents in 175 days of simulated time (figure 3.3), the simulation ran for 11.34 

days on a single processor. This simulation reached approximately two orders 
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of magnitude more agents than the largest iDynoMiCS 1 simulations, currently 

NUFEB (Li et al., 2019) and iDynoMiCS 2.0 are the only two platforms shown 

to be capable of biofilm simulations at this scale, Biocellion (Kang et al., 2014) 

has been used in cell sorting simulations with over 1 billion agents, but there 

is no information on large biofilm simulations. 

 

Figure 3.3. iDynoMiCS 2.0 is capable of simulating large 3D biofilms. A nitrifying biofilm 

was initiated with 1,000 AOO (red) and 1,000 NOO (blue) in a 500x500x500 µm domain.  

Both species produced EPS particles (gray semi-transparent). Agents that dropped below 

20% of their division mass as a result of endogenous respiration (maintenance metabolism) 

became inactive (black). The 175-day biofilm contained 1.02×107 agents (bacteria and EPS 

particles). This figure is reproduced from Manuscript I.  

3.5 Benchmark problem 3 

To facilitate comparisons between different modeling approaches and establish 

the effects of different model designs, an International Water Association 

(IWA) task group was established. The task group developed Benchmark 3 

(BM3), a model for microbial completion in biofilm systems. The model was 

implemented in a variety of modeling platforms to establish the effects of dif-

ferent model designs and simplifying assumptions on simulation outputs (Wan-

ner et al., 2006). The benchmark problem comprises a model biofilm with het-

erotrophic bacteria oxidizing a source of Chemical Oxygen Demand (COD) 

and autotrophic bacteria oxidizing ammonia to nitrate. By implementing 

Benchmark 3 in iDynoMiCS 2.0, the platform could be compared to a variety 

of other model approaches, the comparison includes: 

 W – a one-dimensional continuum biomass model run on the AQUASIM 

software (Reichert, 1994) and developed by Peter Reichert and Oskar 

Wanner (Reichert and Wanner, 1997; Wanner and Reichert, 1996). 

 M1 – a variant of the W model with a fixed boundary-layer thickness by 

Eberhard Morgenroth (Morgenroth and Wilderer, 2000). 
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 DN – a two-dimensional cellular automaton model developed by Daniel 

Noguera and colleagues (Noguera et al., 2004). 

 CP – a two-dimensional individual-based model, with biomass spread-

ing via shoving, developed by Cristian Picioreanu and colleagues (Pi-

cioreanu et al., 2004). 

 NUFEB – A three-dimensional individual-based model that uses a plat-

form derived from a molecular dynamics simulator by Li et al. (Li et al., 

2019). 

 iDynoMiCS 1 – An individual-based model by Lardon et al. (2011) used 

here for 2D simulations. This platform is the precursor to the one de-

scribed in this paper, and the implementation of BM3 is very similar. 

Even though the comparison includes vastly different modeling approaches 

(continuum based, Cellular automaton and other individual based models), no 

major differences were observed in the resulting biofilm. The only significant 

difference observed is steady state COD concentration in the high ammonium 

test scenario for iDynoMiCS 2.0 using FbM (Hotelling’s T2 tests p-value of 

0.0431). 

 

Figure 3.4. Comparing steady states in BM3. Steady state organic carbon (Chemical Oxygen 

Demand, COD) and ammonium concentrations in the bulk liquid for the three different BM3 

cases (HA: High ammonium, SC: Standard case, LA: Low ammonium) across 7 model im-

plementations (W: Wanner, M1: Morgenroth, DN: Dan Noguera, CP: Cristian Picioreanu, 

NUFEB: NUFEB, iD: iDynoMiCS 1, iD2: iDynoMiCS 2.0, either with shoving algorithm 

similar to iD or the new Force-based Mechanics). This figure is reproduced from Manuscript 

I. 
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3.6 Microbial competition 

The final multi-component test is the implementation of a competition model 

by Kreft (2004), where a Yield Strategist (YS) with a high growth yield and 

low maximum growth rate competing against a Rate Strategist (RS) with a 

higher growth rate and lower yield in several initial configurations. In this 

model initial small differences can be amplified by positive feedback, leading 

to divergent outcomes. Our simulations revealed the same qualitative outcomes 

(figure 3.5), even though initial agent density thresholds that separate regions 

where different strategies win were somewhat shifted.  

This effect may be explained by the difference in biomass spreading algo-

rithms. Shoving, as used in BacSim, leads to more open spaces and local agent 

mixing, while iDynoMiCS 2.0’s FbM, without the explicit modeling of EPS, 

results in denser biofilms. To keep the overall biofilm density similar, the agent 

density was reduced by 47% in iDynoMiCS 2.0. Shoving can model the effect 

of EPS production implicitly by generating space between agents, while EPS 

particles need to be included explicitly to generate space when using FbM sim-

ulations. With iDynoMiCS 2.0 both approaches can be used. 

The extensive testing procedure performed on iDynoMiCS 2.0 confirms cor-

rect solver and algorithm behavior. The stress test demonstrates that iDynoM-

iCS 2.0 can be used for model scenarios at a far larger scale than its predeces-

sor, while Benchmark 3 and the reproduction of the biofilms promote altruism 

model show that iDynoMiCS 2.0 can generally reproduce prior modeling stud-

ies even though small differences do exist. 
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Figure 3.5. Biofilms promote altruism case study. Rate Strategist (RS, blue) and Yield Strat-

egist (YS, red) competitions using the shoving algorithm in BacSim (Kreft, 2004) (repro-

duced from “Kreft J-U (2004) with permission) were replicated in iDynoMiCS 2.0 with its 

force-based mechanics. Cells were initially placed in alternating, equidistant positions with 

increasing density from 5 cells per strategy (Scenario 1: a-b), 10 cells each (Scenario 2: e-

h) to 50 cells each (Scenario 3: i-l and c-d). iDynoMiCS 2.0 panels show local oxygen con-

centration as a linear gray-level gradient from zero oxygen (0 mg/L, white) to a maximum 

concentration (Sox_bulk = 1 mg/L, black). Box 1 shows 3-week-old biofilms. Box 2 zooms 

into panels i and j. Box 3 shows 10-week-old biofilms developed from the 3-week-old bio-

films shown in the same position on the left. This figure is reproduced from Manuscript I.  
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4 The estimation of microbial growth 
characteristics 

Microbes are found in many different environments and are found to be able 

to utilize a broad array of resources. Typically, microbes are not found to be 

generalists, but rather filling specific ecological niches. Microbes perform bi-

ochemical conversions in order to generate the energy they need (catabolism) 

and in order to grow and reproduce, or to synthesize other beneficial products 

(anabolism). The characteristics of these biochemical conversions are central 

to many microbial models. Classic Monod kinetics is one of the simplest and 

commonly used models describing microbial growth: 

 µ = µ𝑚𝑎𝑥

𝑆

𝐾𝑠 + 𝑆
 4.1 

The Monod equation describes the specific growth rate (µ) as function of the 

half-saturation coefficient (Ks) defined as the substrate concentration (S) at 

which the growth rate exactly half of the maximum growth rate (µ = µ𝑚𝑎𝑥/2). 

The equation describes the growth of an organism limited by a single limiting 

substrate. The substrate-to-biomass- or growth-yield 𝑌𝑠 is a stoichiometric pa-

rameter that discloses what amount of substrate is consumed per amount bio-

mass produced. The Monod equation is an empiric relationship where µ𝑚𝑎𝑥, 𝐾𝑠 

and 𝑌𝑠 are typically determined experimentally. Alternatively, the biomass spe-

cific substrate utilization rate 𝑞𝑠 can be expressed using the Monod equation: 

 𝑞𝑠 = 𝑞𝑠
𝑚𝑎𝑥

𝑆

𝐾𝑠 + 𝑆
 4.2 

Here 𝑞𝑠
𝑚𝑎𝑥 is the maximum substrate utilization rate per unit of biomass. Clas-

sic Monod kinetics ignores endogenous respiration, cellular maintenance or 

biomass decay which can constitute a non-negligible amount of the substrate 

consumed by the microbe, and thus skew the apparent growth-yield. To ac-

count for this effect many studies include a decay constant 𝑏𝑑𝑒𝑐𝑎𝑦. 

Ideally these parameters are determined experimentally, the required data is 

not always available. While kinetic parameters are typically determined with 

pure cultures of free-living cells, these cultures can prove hard if not impossi-

ble to obtain for some microbial species found in biofilms. Examples are the 

efforts made to quantify the growth parameters of multiple anammox and co-

mammox species, where allot of research efforts has gone into obtaining en-
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richment cultures used for kinetic quantifications, as obtaining truly pure cul-

tures remained unsuccessful. Multiple methods and empirical relationships 

have been developed to estimate these parameters based on the thermodynam-

ics of the microorganism. These methods may provide initial parameter esti-

mates for microorganisms that are found in biofilms but have not sufficiently 

been characterized for modeling purposes. This chapter provides a brief over-

view of these methods and reflects on the use of these methods in relation to 

individual based biofilm models. 

4.1 Calculation of microbial yield 

Generally, three different methods to estimate microbial growth yield are used. 

This includes the thermodynamic electron equivalent method (McCarty, 1965; 

Rittmann and McCarty, 2018), which estimates the growth-yield based on a 

microbes energy transfer efficiency 𝜀. The black box model to calculate bio-

mass yields based on Gibbs energy dissipation (Heijnen et al., 1992), which 

estimates the growth-yield based on the amount of energy dissipated ∆𝐺𝐷𝑖𝑠 per 

amount of newly formed biomass. And the ATP-balancing method (Kleer-

ebezem and Van Loosdrecht, 2010), which shares a lot of principles with the 

previous methods, but instead of utilizing an empiric ∆𝐺𝐷𝑖𝑠 relationship, it de-

scribes the growth-yield in terms of ATP-yield per amount of substrate con-

sumed 𝑌𝐴𝑇𝑃
𝐶𝑎𝑡 and biomass yield per amount of ATP consumed 𝑌𝐴𝑇𝑃

𝐴𝑛 . 

All three methods are based in thermodynamics and utilize the Gibbs free en-

ergy change of the biochemical conversions performed by the microbe. For any 

reaction this Gibbs free energy change can be expressed as follows:  

 𝛥𝐺𝑟 = 𝛥𝐺𝑟
0 + 𝑅𝑇 ∑ 𝜐𝑖𝑟

𝑛

𝑖=1

𝑙𝑛𝑎𝑖  4.3 

Where 𝑛 is the number of constituents in the reaction 𝜐𝑖𝑟 is the stoichiometric 

coefficient for a constituent in reaction 𝑟, 𝑎𝑖 is the activity of the constituent 

and  𝛥𝐺𝑟
0 is the free energy of formation, 𝑅 is the universal gas constant and 𝑇 

the temperature.  

4.1.1 Thermodynamic electron equivalent method 

To estimate the heterotrophic yield, Rittmann calculates 𝛥𝐺𝑠, the energy re-

quired to synthesize one unit of biomass from a given carbon substrate and uses 

this number to calculate how much equivalents of electron donor must be oxi-

dized to supply this energy. 𝛥𝐺𝑝 is obtained by subtracting the electron-donor 

half-reaction free energy from the electron-acceptor half-reaction free energy 
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(Rittmann). 𝛥𝐺𝑝𝑐 is obtained by multiplying the energy requirement per gram 

of cells with the electron equivalent of the cells (depending on the nitrogen 

source). The energy transfer efficiency 𝜖 corrects for energy lost with electron 

transfer, transfer efficiencies between 0.55 and 0.7 are typical  (Rittmann and 

McCarty, 2018). 

 𝛥𝐺𝑠 =
𝛥𝐺𝑝

𝜖𝑛
+

𝛥𝐺𝑝𝑐

𝜖
 4.4 

When energy is required for intermediate production 𝑛 = +1 in case energy is 

released 𝑛 = −1. 

To sustain growth, 𝐴 equivilents of electron donor must be oxidized. 

 𝛥𝐺𝑠 = −𝐴𝜖𝛥𝐺𝑑  4.5 

Were 𝛥𝐺𝑑 is the amount of energy released per amount oxidized electron do-

nor. 

Thus: 

 𝐴 = −

𝛥𝐺𝑝

𝜖𝑛 +
𝛥𝐺𝑝𝑐

𝜖
𝜖𝛥𝐺𝑑

 
4.6 

The growth-yield is then calculated as follows: 

 𝑌𝑠 =
𝑓𝑠

0𝑀𝑐

𝑛𝑒𝐿
 4.7 

Where 𝑀𝑐 is the specific weight of 1 Cmol biomass, 𝑛𝑒 the number of electron 

equivalents per Cmol biomass, L electron donor mass per amount of electron 

equivalents, and 𝑓𝑠
0 the fraction of electrons used in cell sythesis:  

 𝑓𝑠
0 =

1

1 + 𝐴
 4.8 

 

4.1.2 Energy dissipation method 

Heijnen describes microbial growth in terms of an anabolic reaction 𝐴𝑛, which 

represents the conversion of substrates to produce 1 Cmol of biomass, and 

which requires an amount of energy ∆𝐺𝐴𝑛. And a catabolic reaction 𝐶𝑎𝑡, which 

represents the conversion of substrates to generate an amount of energy ∆𝐺𝐶𝑎𝑡. 

Finally, Heijnen describes an amount of energy dissipated ∆𝐺𝐷𝑖𝑠.  
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The Gibbs free energy change associated with full metabolism normalized to 1 

Cmol biomass is than written as follows: 

 ∆𝐺𝑀𝑒𝑡 = 𝜆𝐶𝑎𝑡∆𝐺𝐶𝑎𝑡 + ∆𝐺𝐴𝑛 + ∆𝐺𝐷𝑖𝑠 4.9 

Note that since ∆𝐺𝑀𝑒𝑡, ∆𝐺𝐴𝑛 and ∆𝐺𝐷𝑖𝑠 are normalized for 1 Cmol biomass they 

can be expressed in kJ/Cmol. The net energy change of the metabolism is as-

sumed to be zero (∆𝐺𝑀𝑒𝑡 = 0) and the ratio 𝜆𝐶𝑎𝑡 can be found by solving the 

energy balance. Heijnen proposed the following empiric equation to estimate 

∆𝐺𝐷𝑖𝑠: 

 ∆𝐺𝐷𝑖𝑠 = 200 + 18(6 − 𝐶𝑙)1.8 + 𝑒((3.8−𝛾𝐷)2)0.16(3.6+0.4𝐶𝑙) 4.10 

Where 𝐶𝑙 is the carbon chain length of the carbon source and 𝛾𝐷 the oxidation 

state. Heijnen further proposed that in cases with weak electron donors in the 

anabolic reaction, reversed electron transfer is required and ∆𝐺𝐷𝑖𝑠 = −3500 

kJ/Cmol can be used. The growth-yield is than defined as follows: 

 𝑌𝑠 =
1

𝜆𝐶𝑎𝑡𝑌𝑠
𝐶𝑎𝑡 + 𝑌𝑠

𝐴𝑛
 4.11 

With 𝑌𝑠
𝐶𝑎𝑡 and 𝑦𝑠

𝐴𝑛 are the stoichiometric coefficients of substrate s in the cat-

abolic and anabolic reactions respectively.  

4.1.3 ATP-balancing method 

Rather than balancing the catabolic energy production with the anabolic energy 

consumption and energy dissipation, Kleerebezem and van Loosdrecht (2010) 

instead consider an ATP production and consumption balance: 

 𝜆𝐶𝑎𝑡𝑌𝐴𝑇𝑃
𝐶𝑎𝑡 + 𝜆𝐴𝑛𝑌𝐴𝑇𝑃

𝐴𝑛 = 0 4.12 

The growth yield is then expressed as follows:  

 
𝑌𝑠 =

1

𝑦𝑠
𝐴𝑛 − 𝑌𝑠

𝐶𝑎𝑡 𝑌𝐴𝑇𝑃
𝐴𝑛

𝑌𝐴𝑇𝑃
𝐶𝑎𝑡

 
4.13 

4.2 Maintenance energy 

Endogenous respiration, cellular maintenance or biomass decay can be ex-

pressed as an amount of substrate that needs to be consumed per hour per 

amount of biomass 𝑚𝑠, or in terms of decaying biomass per hour per amount 

of biomass. Since the amount of biomass that needs to grow to compensate the 

decayed biomass has a specific substrate requirement these values can be con-

verted.  Heijnen and Dijken (1992)  found that for a large range of microbial 
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species the energy requirement for maintenance 𝑚𝐺, can be estimated with an 

Arrhenius function with an activation energy of 69 kJ/mol: 

 𝑚𝐺 = −4.5 ⋅ 𝑒𝑥𝑝[
−69 ⋅ 103

𝑅
(

1

𝑇
−

1

298
)] 4.14 

The estimation proved applicable in a wide range of temperatures (5 − 75∘𝐶) 

where the type of electron donor and acceptor are of minor importance (Kleer-

ebezem and Van Loosdrecht, 2010). 

The energy requirement for maintenance can be written in terms of substrate 

requirement by dividing by the Gibbs free energy of the catabolic reaction. 

 𝑚𝑠 =
𝑚𝐺

𝛥𝐺𝑐𝑎𝑡

 4.15 

Apart from energy requirements and biomass synthesis, microbes can consume 

substrates to produce other anabolic products. This can be expressed using the 

Herbert-Pirt substrate distribution relationship:  

 𝑞𝑠 = 𝑎µ + 𝑏𝑞𝑝 + 𝑚𝑠  4.16 

Where 𝑞𝑝 is the biomass specific product rate and 𝑎 and 𝑏 are stoichiometric 

parameters for substrate utilization for the growth and product reaction. The 

estimation of these parameters goes beyond the scope of this chapter, but a 

detailed procedure can be found in (von Stockar, 2013). 

4.3 Maximum growth rate 

The maximum specific substrate utilization- and microbial growth rate can be 

estimated using the maximum biomass specific electron-transfer rate 𝑞𝑒
𝑚𝑎𝑥 . 

Rittmann and McCarty (2018) claim that value should be about 1 electron 

equivalents per gram VSS (volatile suspended solids) per day at 20℃. The 

maximum substrate utilization rate is then obtained as follows: 

 q𝑠
𝑚𝑎𝑥 = 𝑞𝑒

𝑚𝑎𝑥/(1 − 𝑓𝑠
0) 4.17 

Which can be adjusted for different temperatures using the following relation:  

 q𝑠,𝑇
𝑚𝑎𝑥 = q

𝑠,𝑇𝑅
𝑚𝑎𝑥(1.07)(𝑇−𝑇𝑅) 4.18 

Heijnen and Kleerebezem (2010) proposed the following correlation for 𝑞𝑒
𝑚𝑎𝑥. 

 𝑞𝑒
𝑚𝑎𝑥 = −3 ⋅ 𝑒𝑥𝑝[

−69 ⋅ 103

𝑅
(

1

𝑇
−

1

298
)] 4.19 
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Which can be converted into a maximum specific growth rate using: 

 µ𝑚𝑎𝑥 =
𝑞𝑒

𝑚𝑎𝑥 ⋅
−𝛥𝐺𝑐𝑎𝑡

𝛾𝐷
∗ − 𝑚𝐺

∆𝐺𝐷𝑖𝑠

 
4.20 

Were 𝛾𝐷
∗  is the number of electrons transferred in the catabolic reaction.  

4.4 Substrate affinity 

The substrate affinity, also known as the half-saturation constant 𝐾𝑠, is possi-

bly the hardest parameter to predict. This becomes evident when reviewing the 

wide range of parameter values that can be found in literature, for example 

reported ammonia affinity for ammonia oxidizing microbes differ over 4 orders 

of magnitude (Kits et al., 2017). Part of this disparity may be explained by how 

they are obtained. When substrate affinities are determined with aggregated 

biomass, this effectively lumps together the substrate affinity with the transport 

processes occurring in the system, as the microbes will be exposed to lower 

substrate concentrations than measured in the bulk liquid due to transport lim-

itations. In this case the constant is often referred to as the apparent affinity 

constant 𝐾𝑠
𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡

. Transport limitations can still play a role in cultures of sus-

pended cells, but the effect is expected to be smaller. Researchers have made 

efforts to compensate for these transport effects in order to be able to compare 

𝐾𝑠 values in different experimental systems (Shaw et al., 2015, 2013).  Affinity 

constants without transport limitations are called intrinsic 𝐾𝑠. Intrinsic affinity 

constants should be used for IbMs, as matter transport is modeled explicitly in 

this case. It should be taken into account that also for intrinsic affinity con-

stants, large variation in observed values exist. 

For typical molecules involved in the microbial metabolisms, intrinsic 𝐾𝑠 val-

ues are expected be < 1 mg/l. For an unknown species, under normal condi-

tions, intrinsic 𝐾𝑠 may be guessed to be in the range 0.1 to 0.001 mg/l based on 

𝐾𝑠 values of other species that perform the same conversion. Similar to previ-

ously discussed parameters, methods to estimate 𝐾𝑠 based on thermodynamic 

properties have been proposed. Heijnen proposed affinity constants should be 

close to threshold concentrations that results in a ∆𝐺𝐶𝑎𝑡 of 15 kJ/mol, as this is 

the energy required to generate the required proton motive force (von Stockar, 

2013). Alternatively 𝐾𝑠 could be linked to the thermodynamic equilibrium con-

stant 𝐾, (Liu et al., 2003) proposed 𝐾𝑠 = 𝐾−1 which results in: 

 𝐾𝑠 = 𝑒∆𝐺𝑟
0/𝑅𝑇 4.21 
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However, because of the large variation of observed 𝐾𝑠 values, caution should 

be taken before using these values to parameterize a model. When the local 

substrate concentration is high relative to the 𝐾𝑠 value, the impact of an error 

in 𝐾𝑠 in the estimated growth or substrate utilization rate should remain rela-

tively low. 

4.5 Limitations and considerations  

Studying microbial energetics is useful to identify the thermodynamics bound-

aries of microbial metabolisms, and to explore potential ecological niches. A 

great example of this is the total oxidation of ammonia by so called complete 

ammonia oxidizing ‘comammox’ bacteria. Their ecological niche was first pre-

dicted to exist in environments with strong selective pressures for high yields 

(Costa et al., 2006). Based on a trade-off of between growth rate and yield 

dependent on the metabolic pathway length proposed by Pfeiffer and Bonhoef-

fer (2004). The niche was identified again in a study using a thermodynamics 

based model by van de Leemput et al. (Leemput et al., 2011), together with a 

niche for a still undiscovered organism performing nitrite dismutation to nitrate 

and dinitrogen gas. Until comammox bacteria were finally identified in various 

oligotrophic environments (Daims et al., 2015; van Kessel et al., 2015; Pinto 

et al., 2016; Palomo et al., 2016). 

While the methods reviewed in this chapter can prove useful to estimate growth 

characteristics of un- or under quantified microbes, it is important to keep in 

mind that these are generalized ‘rule of thumb’ methods that do not take the 

intricacies of the occurring biological processes into account. While from an 

evolutionary point of view, it makes sense that microbes optimize their metab-

olism to approach the best thermodynamic efficiency possible, microbes may 

make trade-offs, sacrificing one beneficial trait for another one.  

One of these trade-offs is that between growth yield and growth rate, as ob-

served with nitrification comammox bacteria or divided by ammonia- and ni-

trite oxidizing bacteria (AOB and NOB), a concept which is also addressed in 

more detail in Manuscript I.  

Other microbes may make an anabolic investment to decrease their sensitivity 

for extreme environments (extremophiles), resist environmental toxins, or 

make other beneficial anabolic investments such as the production of EPS.   
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5 Model analysis and parameterization 

It is important to be able to relate experimental observations with those found 

in modeling studies and vice versa. Historically there has been a strong focus 

on (bio-)chemical conversion processes and resulting solute concentrations, 

which is a metric that can easily be compared. Often the biofilm’s spatial struc-

ture is a secondary concern, even though its impacts and importance are be-

coming more apparent. Most population level models simplify internal inter-

actions, the spatial and community structure and thus they are typically less 

parameter rich compared to IbMs where these phenomena are explicitly mod-

elled (spatial and community structure are emergent properties of IbMs). Mod-

els are often only calibrated using solute concentration data, resulting in mod-

els that poorly predict spatial structure. For many individual based models, a 

rigorous parameterization or calibration procedure is often not performed as 

their computational intense nature and relatively large number of input param-

eters can make this procedure very time consuming. The calibration of IbM is 

further complicated by model stochasticity, decision based behavior and very 

limited observation data. 

This work implements analysis tools enabling direct comparisons between ex-

perimental and model observations not only on a chemical and population 

level, but also in terms of the spatial distribution of microbial species and the 

resulting biofilm structure. This work further implements sensitivity analysis 

and parameter optimization methods that are relatively computationally effi-

cient and can handle the ‘noisy’ (stochasticity and decision based behavior) 

nature of IbMs. This includes the Elementary Effects (EE) method (Morris, 

1991; Campolongo et al., 2007) for global sensitivity analysis and model pa-

rameter optimization procedure utilizing a Genetic Algorithm (GA) (Micha-

lewicz and Schoenauer, 1996). These are two essential steps required for model 

calibration (van Waveren, 1999), subsequently uncertainty analysis and finally 

model validation is still required to finish the calibration procedure.  

The full procedure enables the development of IbMs that can predict both 

chemical performance, population distributions as well as the spatial structure 

of biofilms. The detailed modeling and analysis of microbial aggregates has 

the potential to reveal more information about the biological system than can 

currently be obtained with laboratory techniques alone. Sensitivity analysis and 

parameter optimization can be used to improve the model and improve our 

understanding of the growth and behavior of biofilm dwelling microorganisms, 

even if these microorganisms have never been obtained in pure cultures. The 
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procedure should help reduce the gap between experimental and model-based 

biofilm work and facilitate pattern oriented modeling (POM) (Grimm et al., 

2005), and facilitate parameter estimation informed by the emergent properties 

of the biofilm where individual observations may be difficult or even impossi-

ble to obtain. 

5.1 Analysis of an individual based partial nitritation 

anammox biofilm model 

An individual based partial nitritation anammox (PNA) model was constructed 

to test these procedures (figure 5.1). Rather than only looking at microbial 

guilds, where each guild is represented in the model as a single representative 

organism, this model incorporates two specific microbial strains for each guild: 

ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and 

anammox bacteria (AMX). Some important differences include: AOB1 has a 

strong affinity for oxygen, AOB2 has a strong affinity for ammonium, NOB1 

has a strong affinity for nitrite, NOB2 has a strong affinity for oxygen, AMX1 

is more sensitive to oxygen, but also has a stronger affinity for ammonium and 

nitrite than AMX2. The model is configured to simulate a chemostat with a 

continues in- and outflow. A detailed description of the model is included in 

the appendix (table 9.1 to 9.3).  

The population composition (figure 5.2) is a model outcome, prevalent species, 

and extension characteristics of the biofilm can change considerably depending 

on the selective pressures exerted by the environment. In other words, an en-

vironment with an abundance of resources will select for fast growing organ-

isms, whereas a famine environment will select for organisms with a better 

resource economy, and the biochemical kinetics of the biofilm will be different 

depending on the environment. 
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Figure 5.1. Partial nitritation anammox model. The initial model state contains 100 agents 

of each microbial agent species (no inert or EPS agents) randomly distributed over a solid 

bottom surface of the computational domain. The size of the computational domain is 128 

by 256 µm, the top of the domain is truncated from the image panels. Panels show; the spatial 

biofilm structure upon model initiation (top left), after 50 days (top middle), after 100 days 

(top right), after 150 days (bottom left), after 200 days (bottom middle). The model includes 

2 different strains or species of AOB (light and dark orange), NOB (light and dark green) 

and anammox bacteria (AMX) in light and dark blue. The simulation also includes EPS 

(gray) and inert cells (black). The background color indicates local nitrite concentrations, 

using a linear color gradient, where white indicates 0 mg N/L and black 0.5 mg N/L.  

After 200 days AOB2 completely disappeared, suggesting strong competition 

for oxygen, while the NOB2 and AMX2 populations are slowly but steadily 

declining, suggesting strong competition for nitrite and/or ammonium and a 

limited effect from oxygen inhibition. The oxygen and ammonia concentra-

tions drop quickly after the initial state as a population of AOB develops 

quickly. The AOB form much of the top layer of the biofilm where both am-

monia and oxygen are available. The nitrite produced by the AOB helps to 

support the NOB and AMX populations. The total AMX population grows 

slowly but steadily at the base of the biofilm, where the oxygen concentration 

is lowest. A small population of NOB1 develops closer to the top of the biofilm 

where both nitrite and oxygen are available. 
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Figure 5.2. Partial nitritation anammox model. Population distribution over time (top) bulk 

solute concentration over time (bottom). The model includes 2 different strains or species of 

AOB (light and dark orange), NOB (light and dark green) and AMX in light and dark blue. 

The simulation also includes EPS (gray) and inert cells (black). The model includes 4 dif-

ferent solutes; oxygen, ammonium, nitrite and nitrate, carbon sources are considered to be 

non-limiting and are therefore not explicitly modeled. 

5.2 Spatial analysis 

The spatial analysis package allows further quantification of the biofilm struc-

ture, opening the opportunity for a more in-depth analysis. The spatial structure 

analysis relies on the same methodologies applied in microscopy image analy-
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sis (Yang et al., 2000), thereby allowing for direct comparison between exper-

imental and modeling work. The computational domain is discretized into 

voxels (small cubes aligned with the coordinate system). The voxel dimensions 

should be set to match the microscopy image pixel size. Here the voxel dimen-

sions are set to 1 µm. For each voxel, collisions with agents are detected and a 

list of species or agents with specific traits of interest overlapping with the 

voxel is compiled. This allows for further spatial analysis on these traits (figure 

9.1). The spatial properties of the entire biofilm can be quantified. Quantifiable 

parameters include the porosity, surface roughness and overall diffusion depth. 

It is further possible to include a more detailed analysis based on specific agent 

traits or species localization such as trait specific diffusion depth, trait co-lo-

calization and agent cluster size.    

The (areal) porosity quantifies the amount of void space enclosed within the 

biofilm and is reported as a fraction. Throughout the simulation, the areal po-

rosity always remained below 0.1%, thus the biofilm was dense with no to little 

enclosed void space. The surface roughness can be quantified using the fractal 

dimension. A perfectly smooth surface will result in a fractal dimension of 1, 

while a theoretical maximum fractal dimension of 2 would describe an ex-

tremely rough surface structure. 

The fractal dimension (figure 5.3) of the initial state is close to 1, as can be 

expected for a flat biofilm. The fractal dimension increases, as the biofilm sur-

face becomes more grooved, the fractal dimension increases to just over 1.09. 

Although the fractal dimension increases over time, it never gets close to the 

theoretical maximum of 2. The emergent biofilm surface profile is rougher than 

a flat surface, but the structure remains smooth overall. A higher fractal dimen-

sion would be expected for ‘tree-like’ surface structures. 

The diffusion depth, measured in voxel lengths (1 µm), is the shortest distance 

of the agent to the surface of the biofilm. For the average diffusion depth this 

quantity is averaged over all agents or all agents belonging to a specific group. 

Diffusion depths can also be determined for a specific species or agents with a 

specific trait to provide information on their localization in the biofilm (figure 

9.2). 
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Figure 5.3. Biofilm fractal dimension over time. At the first time step, when the biofilm is 

almost perfectly flat a fractal dimension of 1.017 is observed. The fractal dimension quickly 

increases after, it fluctuates around an average of 1.06 and reaches a maximum of just over 

1.094. A linear trendline reveals an increasing trend over the course of the simulation (R 2 

0.4521).  

In iDynoMiCS 2.0, the relative position of two groups of agents can be quan-

tified with two metrics: the Average Diffusion Distance (ADD) and the Man-

ders (co-localization) coefficient (Manders et al., 1993). The first is the short-

est distance between an agent and an agent of the second group. The second is 

the number of voxels that collide with both groups divided by the number of 

voxels that collide only with one of the two groups. The Manders coefficient 

ranges from 0, agent group A is never found together with agent group B, to 1, 

where agent group A is always together with agent group B. Note that two 

Manders coefficients can be calculated per pair of agent groups. For example, 

agent group A may always be co-located with agent group B (coefficient of 1), 

while agent group B may be found both with or without agent group A. 

One may argue that when agents of the two groups are in neighboring voxels 

this could still be considered co-localization, therefore two additional adjusted 

Manders coefficients are calculated. The first considers agents to be co-located 

if they are in directly adjacent voxels, and the second if they can be reached in 

3 steps. The 3 coefficients are denoted with 1, 2 and 4 µm, after the maximum 

number of voxel lengths co-located agents can be removed from each other. A 

subset of co-localization plots for the PNA biofilm simulation are shown in 

figure 5.4. 

R² = 0.4521

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

0 50 100 150 200

Fr
ac

ta
l d

im
en

si
o

n

Time (day)



43 

 

 

Figure 5.4. Co-localization of agent species. Agent species co-localization was quantified 

over the timespan of the simulation. With 6 unique agent species (ignoring inert and EPS 

agents), 15 unique pairs can be made, co-localization of two of those pairs are shown; 

AMX1-AOB1 (top) and NOB1-AOB1 (bottom). The plots show the Manders co-localization 

coefficient (left axis) and the ADD (right axis). 

The first pair of agent groups includes the AMX1 and AOB1 agents. At the 

start of the simulation, there is a high degree of co-localization as at this stage 

the agents are randomly placed at the base of the computational domain. From 

this point, the co-localization coefficients start to drop, co-localization of 

AOB1 relative to AMX1 drops quicker than AMX1 relative to AOB1. This 

effect is caused by the rapid expansion of the AOB1 population at the start of 

the simulation. The chances of finding AOB1 agents close to an AMX1 agent 

are greater than vice versa. Approximately halfway through the simulation the 
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agent groups are nearly completely separated (Represented by a Manders co-

efficient of 0). Agents that are strictly not co-located can be an indicator of 

negative interaction, such as growth suppression through antibiotic production. 

In this case, however, the separation of the two groups is due to the different 

niches of the groups. Where AOB require oxygen for their metabolism, AMX 

growth is inhibited by it. 

The interactions between AOB and NOB are of a different nature. The NOB 

are dependent on AOB for nitrite, while also competing with AOB for oxygen. 

Both species benefit from being localized at the surface of the biofilm where 

the oxygen concentration is higher, while NOB also benefits from co-localiza-

tion with AOB, close to the nitrite supply. This tendency can also be seen in 

figure 5.4, where NOB1 co-localizes with AOB1. 

5.3 Sensitivity analysis: Elementary Effects method 

Apart from providing insights on the biofilm and its structure, these quantifi-

cations can be used directly in sensitivity analysis. Sensitivity analysis reveals 

how sensitive the model outputs are to changes in the input parameters. This 

procedure can also be used to reduce the parameter set to be included for sub-

sequent parameter optimization. Parameter optimization efforts are focused on 

the parameters the model is most sensitive to. The procedure may further pro-

vide insight in the important processes and may guide experimental design.  

With the purpose of model calibration in mind it is sensible to perform global 

sensitivity analysis of the model (as the aim is to uncover the sensitivity of 

parameters that could be unknown or uncertain). Derivative based global sen-

sitivity measure (DGSM) with Monte Carlo sampling is a popular approach. 

Unfortunately, Monte Carlo based methods require a very high number of 

model evaluations (thousands to tens of thousands) and therefore are less suit-

able for notoriously computational intense models. The Elementary Effects 

method, also known as Morris screening and Morris method (Morris, 1991), is 

a good alternative as it may already provide insight after several hundred model 

evaluations. The method is considered a quasi-global sensitivity analysis 

method. With modern high-performance computing (HPC) systems, these 

model evaluations can be performed simultaneously. The main drawback of 

EE is the risk for false negatives (parameters that are wrongly considered not 

sensitive), due to elementary effects with opposing signs canceling each other 

out. This effect can be mitigated by also observing the mean of the distribution 

of the absolute values of the elementary effects (µ*) as proposed by Campo-

longo et al. (2007). 
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Morris screening has been implemented as a multi-step process that allows for 

model evaluation on HPC infrastructure (figure 5.5). The first step (staging) 

has been integrated within the iDynoMiCS 2.0 framework. In this step, a pre-

defined parameter space is sampled using Morris sampling. The parameter 

space is defined in a master file that specifies the parameter ranges for selected 

parameters. The master file is interpreted and a collection of child protocol 

files with unique parameter combinations is created. The child protocol files 

can be used to run concurrent model evaluations. Finally, the resulting model 

output is analyzed and Elementary Effects can be calculated. Morris screening 

takes quasi-random samples on a predefined grid distributed within a parame-

ter space of interest. After selecting a point on this grid a perturbation is made 

in each of the dimensions of the parameter space, these perturbations are in 

random order and direction.  

 

Figure 5.5. The sensitivity analysis is split-up in a few steps. First, the parameters and range 

of interest for the sensitivity analysis are chosen, these values are used to generate a set of 

child protocol files (1 per parameter set). Secondly all scenarios are evaluated on a high 

performance computer. Finally, model results are imported in R and analyzed.  

For testing purposes, the model system was simplified to only include the agent 

species that become dominant (AOB1, NOB1, AMX1). The computational do-

main was reduced to 64 by 128 µm and the length of the simulation was scaled 

back to 100 days. This reduced version of the model can be evaluated in a few 
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minutes up to half an hour. For the 3 species, the affinity and inhibition con-

stants, the maximum growth rates and decay rates are included in Morris 

screening, for a total of 13 parameters. The lower and upper bounds of the 

parameter space were chosen by taking -50% and +50% relative to the initial 

parameters. This parameter space was discretized into 1000 levels. With 50 

repetitions, a total of 700 unique parameter combinations were generated. The 

total microbial agent mass (including inert) for all 700 simulations are shown 

in figure 5.6. Additional timeseries data are in the appendix, including solute 

concentrations (figure 9.3), surface roughness and diffusion depth (figure 9.4) 

and co-localization data (figure 9.5).  

 

Figure 5.6. AOB (top left), NOB (top right), AMX (bottom left) and inert (bottom right) 

agent populations over time for all 700 simulations. 

Elementary effects can reveal how perturbations in input parameters can affect 

specific state variables. All elementary effects are evaluated for the final state 

of the simulation. Plotting the mean (µ) and standard deviation (σ) of the ele-

mentary effects can help to get an overview of what input parameters a state 

variable is sensitive to. This type of plot, further referred to as an EE plot, is 

included for the total mass of the microbial agents (figure 5.7), for the final 
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concentration of chemical species in the bulk region (figure 5.8), for biofilm 

structure parameters (figure 5.9) and for a selection of agent (co-) localization 

variables (figure 5.10). The plotted lines indicate ±2 times the standard error 

of the mean (SEM) and indicate which input parameters appear to have a sig-

nificant effect on the observed state variable (not in between the lines). Addi-

tionally, the µ* for all EE are calculated and included in table 9.4, for the ob-

served state variables the µ* did not provide additional insights.  

The sensitivity of the total AOB mass to the AOB decay rate (𝑏𝐴𝑂𝐵) is quite 

evident (figure 5.7). Furthermore, small but significant effects from the oxygen 

and ammonia affinity can be seen, as well as an effect from the NOB decay 

rate. A higher NOB decay rate may positively affect the total AOB mass due 

to reduced competition for oxygen in simulations with less NOB agents.  

Figure 5.7. EE plots for AOB (top left), NOB (top right), AMX (bottom left) and inert (bot-

tom right) total mass (pg). The lines indicate ±2 times the standard error of the mean (SEM).  

The same input parameters appear to have a significant effect on the total NOB 

mass (although with different estimated effects). The importance of AOB prop-

erties on the total NOB mass can be explained by the AOB-NOB interactions, 

NOB is dependent on nitrite production by AOB, but competes for oxygen. For 
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AMX, significant effects of nearly all tested parameters are found. Since AMX 

is inhibited by oxygen, AMX agents benefit from the AOB and NOB oxygen 

consumption. AMX is also dependent on the nitrite produced by AOB, while 

it competes with AOB for ammonia and with NOB for nitrite. 

AOB properties also play an important role in the bulk solute concentrations 

(figure 5.8). A large portion of the agents belong to this group while other 

groups have dependent and competitive interactions with AOB. Although NOB 

only consume small amounts of ammonium for biomass synthesis, the NOB 

oxygen affinity, nitrite affinity and decay rate also have a significant effect on 

the ammonium concentration. Possibly due to competition for oxygen with 

AOB or the competition for nitrite with AMX. 

 

Figure 5.8. EE plots for the final concentration (mg/L) of ammonium (top left), oxygen (top 

right), nitrite (bottom left) and nitrate (bottom right) in the bulk region. The lines indicate 

±2 times the standard error of the mean (SEM). 

The biofilm structure parameters included in figure 5.9 also appear mostly sen-

sitive to AOB parameters. Apart from representing a large portion of the bio-

film, strongly affecting the average and maximum diffusion depth, AOB is 

mostly found in the top section of the biofilm. Hence, the surface profile of the 



49 

biofilm mostly consists of AOB, explaining the significance of AOB parame-

ters on the biofilm fractal dimension. Further the NOB decay rate also appears 

to significantly affect the average and maximum diffusion depth. Average and 

maximum diffusion distance are related model outputs, it should therefore not 

be surprising the two elementary effect plots show a similar profile of input 

parameters. Finally, none of the tested parameters appears to have a significant 

effect on the fraction encapsulated void space. 

 

Figure 5.9. EE plots for the average diffusion depth (top left), maximum diffusion depth 

(top right), fractal dimension (bottom left) and the fraction of encapsulated void space (bot-

tom right). Diffusion depths are in µm, the other output parameters are unitless. The  lines 

indicate ±2 times the standard error of the mean (SEM).  

A subset of the quantified localization and co-localization parameters (figure 

5.10) again show strong effects from AOB parameters. Since the AMX bacteria 

are inhibited by oxygen, they are found at the base of the biofilm, where the 

oxygen concentration is lowest. The EE plot for AMX depth shows a similar 

profile as that of the average diffusion depth plot, as a thicker biofilm will 

increase the average diffusion depth and AMX depth in a similar fashion. The 
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EE plot for NOB depth shows a very different profile. NOB depth appears to 

be mostly affected by AOB and NOB decay rates.  

 

Figure 5.10. EE plots for the average AMX and NOB diffusion depth (top left and right), 

and the AOB to NOB and NOB to AOB Manders colocalization coefficients (bottom right 

and left). Diffusion depths are in µm, agents within a 2 voxel range (with a voxel length of 

1 µm) are considered co-located. The lines indicate ±2 times the standard error of the mean 

(SEM). 

EE plots for AOB to NOB and NOB to AOB Manders coefficients (2µm) show 

some overlap between what input parameters are affecting the coefficient. For 

the AOB and NOB decay rate, the effects are opposite in the two scenarios. A 

higher NOB decay rate will lead to fewer NOB and potentially fewer NOB 

microcolonies in the final simulation state, leading to a lower AOB to NOB 

Manders coefficient. Yet, since there are fewer NOB, there will also be fewer 

NOB and smaller micro-colonies and the percentage of NOB co-located with 

AOB will be higher. For the AOB decay rate the effect is inverted. A higher 

AOB decay rate can lead to the formation of more NOB micro-colonies as there 

is reduced competition for oxygen and space coming from the AOB. 
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The Morris screening procedure reveals the dominant position of AOB in the 

modelled PNA biofilm, and for many state variables, all, or a subset of the 

AOB parameters are affecting the observed model outcomes. NOB parameters, 

in particular the NOB decay rate, are sensitive factors for some of the output 

parameters. AMX parameters appear to have a strong effect mostly on AMX 

bacteria themselves. Their effects can be seen in the total AMX mass, as well 

as in co-localization values involving AOB and AMX, small effects on AOB 

and NOB co-localization, but no strong effects on NOB and AMX co-localiza-

tion. 

5.4 Parameter optimization: Genetic algorithm 

For IbMs, parameter optimization poses similar challenges as sensitivity anal-

ysis. Due to the typical model complexity, stochasticity, as decision-based 

agent behavior as well as long model evaluation time, many typical methods 

are unsuitable. Methods that assume the model to be deterministic can’t be 

used, while methods that rely largely on many sequential evaluations or a very 

high number of model evaluations may take too long to evaluate. Genetic al-

gorithms (GA) can function well under these circumstances. A GA has been 

implemented into iDynoMiCS 2.0 (figure 5.11). Each generation of a genetic 

algorithm can be evaluated in parallel whilst reaching a good estimation with 

a relatively low number of generations / model evaluations. 

The genetic algorithm works by evaluating an initial yet limited sample popu-

lation from a given parameter space. After a first iteration all sampled param-

eters are ranked using an objective function. Subsequently a new population is 

constructed from randomly selecting parameter sets with a high fitness score, 

these parameter sets undergo an evolution step by randomly interchanging sub-

sets of parameters and by random adjustment of these parameters (mutation). 

The new generation is then again evaluated and ranked. The process continues 

until a given fitness threshold is reached or the maximum number of iterations 

is reached. The entire cycle is implemented in iDynoMiCS and shell script and 

runs fully automated after initialization. 

Ideally, the GA would be utilized to optimize the input parameters based on a 

rich experimental dataset containing information on the spatial structure of the 

biofilm, spatial distribution of the microbial species, the microbial community 

structure as well as (bio-)chemical information such as conversion rates and 

concentrations. Unfortunately, upon writing this chapter, there is no dataset 

available that has sufficient detail for this purpose. The parameter optimization 

could be limited to only optimize for a subset of output parameters discussed 
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here (such as bio-chemical performance), however this defeats the purpose of 

looking at the full scope of the biofilm. Therefore, instead a simulated “ground 

truth” was constructed. The ground truth serves the purpose of replacing data 

that would have been obtained experimentally otherwise, such that the GA can 

be tested over the full range of output parameters. 

 

Figure 5.11. The genetic algorithm is an iterative process. A given parameter space is sam-

pled using Latin Hypercube sampling. Child protocols are generated incorporating these pa-

rameter sets. After evaluation on a high performance computer the parameter sets are scored. 

A new generation is created and evaluated until the exit criteria are met. The ‘fittest’ candi-

date is the candidate that produces the best representation of the measured data.  

The ground truth used here is the same as the simplified PNA biofilm as de-

scribed in the sensitivity analysis section. Rather than optimizing all model 

parameters, the input parameter set included in the parameter optimization can 

be limited to the sensitive parameters as observed in the sensitivity analysis. In 

this case, the AOB growth and decay parameters are included µ𝐴𝑂𝐵
𝑚𝑎𝑥 , 𝐾𝑂2

𝐴𝑂𝐵 , 

𝐾𝑁𝐻4

𝐴𝑂𝐵  and 𝑏𝐴𝑂𝐵. The model further showed sensitive to the NOB decay rate 

𝑏𝑁𝑂𝐵. All other parameters are kept at their default values. There is also a large 

quantity of outputs the model could be optimized for. There are over 40 differ-

ent quantified state variables per simulation presented in the first half of this 

chapter and this number could be extended further, for example by including 
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chemical gradients and temporal simulation data. Some of these model out-

comes may have strong correlations (such as average and maximum diffusion 

depth, or 1, 2 and 4µm Manders coefficients), while others may not be sensitive 

to the observed input parameters (such as the fraction of encapsulated void 

space). Finally, there may be state variables that are generally considered to be 

of less importance. A subset of all available outputs was selected to be used in 

the objective function of the GA (table 5.1).  

The objective function is used by the GA to rank parameter sets. A model out-

come that more closely resembles the target outcome (the observations) will 

be ranked above outcomes that are less similar. The objective function can be 

quite simple, such as the mean squared error (MSE). In this case, the MSE is 

less suitable as the state variables are not directly comparable with each other. 

It is further important to be aware of the random processes in the model system. 

Observations such as the number of microcolonies in a section of biofilm, and 

consequently co-localization coefficients, can have a relatively high variance 

compared to other observations. Some scenarios may lead to multiple potential 

outcomes, for example one of the species may die-off or wash out early in the 

experiment, leading to a distinctly different biofilm after 100 days. By repeat-

edly simulating the ground truth with different random seeds (thus leading to 

different initial configurations and random number sequences in the simula-

tions) insight in the stability and variability of the observed biofilm properties 

is obtained. With sufficient repetitions, scenarios with multiple stable out-

comes reveal themselves and the mean and variance of the model outcomes 

due to stochasticity in the model system itself can be calculated (table 5.1).  

By plotting the observations (here state variables of the ground truth instead of 

experimental observations) for all repetitions, insight is gained on their distri-

bution. Here, several observations appear to be skewed in one or both tails, 

although the ±𝜎 intervals do appear to follow normal distributions (figure 9.6). 

Common transformation methods did not resolve the skewness for the obser-

vations. However, for the purpose of the objective function this is acceptable. 

A one-sample Z-test is used for each of the observations to rank each individual 

simulation in the GA. Due to the skewness of some of the observations, this 

ranking is not optimal far away from the sample mean µ0, but it should work 

well in the ±𝜎 interval of the ground simulations and thus allow the GA to 

converge to an optimized input parameter set.  
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Table 5.1. Selected state variables used to calculate the GA objective function and thei r 

theoretical range given the model input parameters. 

Parameter Mean Standard de-

viation 

Theoretical 

range 

Oxygen concentration 1.311 𝑚𝑔/𝐿 0.0360 𝑚𝑔/𝐿 0 to 8.74 𝑚𝑔/𝐿 

Ammonium concentration 1.029 𝑚𝑔/𝐿 0.0944 𝑚𝑔/𝐿 0 to 3.0 𝑚𝑔/𝐿 

Nitrite concentration 0.102 𝑚𝑔/𝐿 0.0576 𝑚𝑔/𝐿 0 to 3.0 𝑚𝑔/𝐿 

Nitrate concentration 1.528 𝑚𝑔/𝐿 0.0947 𝑚𝑔/𝐿 0 to 3.0 𝑚𝑔/𝐿 

Total AOB mass 387.16 pg 7.296 pg 0 to 5 mg 

Total NOB mass 68.71 pg 4.134 pg 0 to 5 mg 

Total AMX mass 169.72 pg 27.60 pg 0 to 5 mg 

Fractal dimension 1.058 0.0164 1 to 2 

Average diffusion depth 22.98 µm 0.997 µm 0 to 128 µm 

AOB NOB co-localization 0.638 0.148 0 to 1 

NOB AOB co-localization 0.208 0.057 0 to 1 

Fitness scores can be calculated using a probability density function (PDF) for 

each of the observed model outputs: 

 𝑓𝑧(𝑧𝑖) = 𝑒𝑥𝑝 {−
𝑧𝑖

2

2
}, for all 𝑧 ∈ ℝ 5.1 

With: 

 𝑧𝑖 =
𝑌𝑗 − µ0

𝜎
 5.2 

Where µ0 is the sample mean and 𝜎 the standard deviation of the observation 

obtained from the ground truth simulations. The objective function is defined 

as: 

 
1

𝑛
∑ 1 − 𝑓𝑧(𝑧𝑖)

𝑛

𝑖=1

 5.3 

When all output parameters of a GA simulation approach the sample means the 

objective function will approach 0.  

In some cases, one may want to weigh observed output parameters differently 

from one another, for example if certain parameters are considered more im-

portant, if there is an over representation of certain types of parameters, or if 

some parameters are strongly correlated. In this case there is a similar amount 

of solute concentration (4), microbial population (3) and spatial structure (4) 

parameters included. Parameters with obvious strong correlations, for example 

the maximum diffusion depth which strongly correlates to average diffusion 
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depth, are not included. Thus, weight adjustments for the objective function 

are not considered to be necessary.  

To populate an initial generation of 100 different input parameter combina-

tions, Latin Hypercube Sampling (LHC) was used to sample the parameter 

space. Similar to the sensitivity analysis section, the lower and upper bounds 

of the parameter space were chosen by taking -50% and +50% relative to the 

initial parameters. The 2 parameter sets of a single generation that scored the 

best fitness ratings are promoted to the next generation and are thus maintained 

until replaced by candidates with a better fitness score; these ‘elite’ parameter 

sets do not undergo modification before the next model evaluation. The other 

parameter sets are generated by cloning the fittest candidate out of a randomly 

selected subset of 8 parameter sets from the previous generation. After selec-

tion, the sets are adjusted by parameter cross-over with another randomly se-

lected fit candidate and random mutation (modification of the parameter). The 

cross-over probability was set to 0.25 (per parameter) and the mutation proba-

bility of 0.6 (per parameter). The mutation scale was determined by random 

sampling from a normal distribution 𝒩 (𝑋𝑖 ,
𝑏−𝑎

10
) with the mean equal to the 

previous value 𝑋𝑖 and the variance scaled to the interval of the input parameter 

[𝑎, 𝑏] as previously defined for the parameter space. 

The fittest parameter set resulted in a fitness score of 0.223, after 9 generation 

a fitness score of 0.022 was reached (table 5.2). The fittest parameter set ob-

tained in the first generation (using Latin Hypercube Sampling) provides a 

good starting point. The fittest parameter set shows a large deviation in total 

NOB mass, but most output parameters are already relatively close. Following 

generations lead to a further optimization of the parameter set, and the GA 

managed to converge to a parameter set that resembles the ground truth popu-

lation very closely (table 5.1 and 5.2), after 9 generations all values are within 

a single standard deviation of the ground truth population mean values.  

The average fitness and the most fit parameter set improved over the genera-

tions of the genetic algorithm (figure 5.12). Note that the model includes sto-

chastic elements and thus even for the same parameter set the outcome and 

fitness score can vary over consecutive runs. This effect resulted in a poorer 

fitness ranking for the fittest candidate in generation 4 and 8 relative to the 

fittest candidate in generation 3 and 7. Further adjustment of the mutation and 

cross-over probability parameters used for the GA could improve the conver-

gence of the algorithm. 
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Table 5.2. The fitness score, input parameters and state variables of the fittest parameter 

sets found in the first and last (9) generation. Input parameters not included in the table are 

kept the same as in the base scenario (table 9.1) 

 Gen 1 Gen 9   Gen 1 Gen 9  

Fitness scores State variables 

Fitness 0.223 0.022  Oxygen concentration 1.293 1.309 𝑚𝑔/𝐿 

 Ammonium concentration 1.034 1.020 𝑚𝑔/𝐿 

Input parameters Nitrite concentration 0.112 0.080 𝑚𝑔/𝐿 

AOB_Kam 1.583 1.938 𝑚𝑔 𝑁/𝐿 Nitrate concentration 1.531 1.538 𝑚𝑔/𝐿 

AOB_Kox 0.133 0.274 𝑚𝑔 𝐷𝑂/𝐿 Total AOB mass 391.83 387.30 𝑝𝑔 

AOB_mux 0.452 0.817 𝑑−1 Total NOB mass 96.97 69.36 𝑝𝑔 

AOB_b 0.044 0.044 𝑑−1 Total AMX mass 156.82 164.83 𝑝𝑔 

NOB_b 0.042 0.060 𝑑−1 fractal dimension 1.043 1.053  

 

average diffusion depth 24.20 23.42 µ𝑚 

AOB-NOB co-localization 0.558 0.631 
 

NOB-AOB co-localization 0.214 0.205 

 

 

Figure 5.12. The average population fitness and the fitness score of the fittest parameter set 

in each generation of the genetic algorithm (lower values represent a better fit). The initial 

population is obtained using Latin Hypercube Sampling, while consecutive populations are 

obtained from the genetic algorithm. 
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5.5 Concluding 

The procedure described in this chapter shows how methods developed for the 

analysis of microscopy images can be used to quantify various spatial phenom-

ena observed in IbM outcomes. Quantification of these spatial as well as other 

model outcomes also allows for sensitivity analysis providing insight into what 

input parameters affect the model outcomes and in what way (both scale and 

direction of the effect). The sensitivity analysis can further be used to limit the 

amount of input parameters considered in a following parameter optimization 

step, where only the input parameters that have a clear impact on the state var-

iables of interest are optimized, and thereby reducing the amount of required 

model evaluations. Parameter optimization is essentially a way to adjust the 

input parameters to have the model better represent the system that is being 

modelled. Ideally, this procedure would be followed by an uncertainty analysis 

step and finally model validation on a second independent dataset.  

Both sensitivity analysis by Morris screening and parameter estimation by ge-

netic algorithm proved to be effective strategies and met the expectations to 

effectively reveal the sensitive parameters and estimate parameters with a fea-

sible number of model evaluations. Morris sampling provides qualitative out-

put model parameters can be ranked based on their sensitivity but can’t deter-

mine the change in input parameter for a certain change in output. Genetic 

algorithms can be effectively utilized in parameter estimation problems where 

prior knowledge on these parameter values is limited. The method can be ef-

fectively performed in parallel, yet also requires several subsequent iterations. 

The genetic algorithm was stopped after 9 generations, but already showed 

strong improvements after a few iterations. This makes the GA very suitable 

for computationally intensive models like IbMs. The genetic algorithm may 

benefit from some tweaking to improve its efficiency. As by design the genetic 

algorithm provides a lot of information around the estimated optimal parameter 

set. These ‘redundant’ runs may prove useful to gain initial insights in the 

model uncertainty, although for a complete picture of the model uncertainties, 

a better simulation coverage of the parameter space is likely required.  
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6 Pattern formation and population devel-
opment in microbial aggregates 

iDynoMiCS 2.0 has already been used for multiple computational studies of 

microbial aggregates. This chapter provides a brief overview of the most nota-

ble studies and summarizes the main findings. Much of the content discussed 

here can be found in more detail in the included manuscripts I, II and III. 

6.1 Force mediated spatial sorting in aggregate for-

mation 

Before a biofilm is formed, several processes and physical interactions play a 

key role in the initial aggregation of microbial cells. Surface characterist ics of 

suspended cells can change, leading to small groups of cells clustering to-

gether. These cells may further mediate the aggregation processes through nan-

ofibers such as pili and flagella extending from the cell surface, and through 

the production of extracellular polysaccharides (EPS) and other adhesins. The 

initial reversible attachment phase shifts to what is known as the irreversible 

phase. In this phase cell-surface interactions become fortified and gene expres-

sion of the aggregated microbes shifts; microbial behavior commonly associ-

ated with biofilms emerges. 

Although this thesis focuses mostly on biofilms in the second phase, the initial 

stage of biofilm formation can have important implications on the biofilm that 

is formed. As shown in the paper “biofilms promote altruism” (Kreft, 2004) 

and reproduced in Manuscript I, the initial organization of microbes can have 

determining implications on the mature biofilm. The initial reversible attach-

ment is often specifically targeted to mitigate biofilm formation on abiotic sur-

faces. DLVO (Derjaguin, Landau, Verwey and Overbeek) theory (van Oss, 

2006) is commonly used to predict microbial attachment success with these 

types of surfaces. DLVO theory describes (1) Lifshitz-van der Waals interac-

tion, (2) Polar, electron-donor/acceptor, or Lewis acid-base interactions and 

(3) Electrostatic interactions. 

Surface properties of cells can also lead to cell sorting effects, where cell-cell 

interaction cause to spontaneous segregation of different cell types, altering the 

spatial structure of the aggregate. Cell sorting due to difference in adhesive 

properties was first proposed in the 1960s and is also known as the differential 

adhesion hypothesis (Steinberg, 1962). The principle has been used to explain 

spontaneous cell sorting in vertebrate embryos (Steinberg, 1963; Duguay et al., 
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2003; Foty and Steinberg, 2013; Krieg et al., 2008). The role of differential 

adhesion mediated cell sorting in microbial biofilms came into focus of re-

searchers much later (Maier, 2021), and is ignored completely in many existing 

biofilm models.  

To investigate the spontaneous aggregation as well as cell sorting of initially 

planktonic microbial cells, an individual based model using DLVO interaction 

forces was constructed. iDynoMiCS 2.0 was further extended with a fluid dy-

namics process. The process implements an open source D2Q9 Lattice Boltz-

mann algorithm developed by Falcone and Latt (2006). The fluid simulation 

both introduces mixing within the computational domain, allowing agents near 

each other to interact and attach, as well as certain degree of shearing, resulting 

in detachment of weakly adhered cells. This model is described in detail in 

Manuscript II. A short summary of the main results and findings are included 

in this section. 

16 co-aggregation scenarios were simulated (figure 6.1). The scenarios com-

bine strongly adhering cells, as predicted by the large Gibbs free energy of 

adherence (∆𝐺𝑎𝑑ℎ) calculated using DLVO theory, with 4 different agent types 

with decreasing ∆𝐺𝑎𝑑ℎ, as well as different flow regimes. Scenario A includes 

two equally strong adhering agent types. In scenarios B, C and D the adhering 

strength of the second agent type (blue) is reduced stepwise. The surface char-

acteristics of each agent are included in the supplementary information of Man-

uscript II. The model does not include agent growth or decay and thus the ob-

served patterns are exclusively resulting from the modeled physical interac-

tions. 

Extended testing revealed four aggregation patterns: (1) both species auto ag-

gregate, (2) only species with strong interactions auto aggregate but then form 

a scaffold for weak adherents, (3) only strong adhering species aggregate, (4) 

no species aggregate (typical of high Reynolds number flow regimes). The sce-

narios presented in figure 6.1 show a transition from pattern 1 (bottom left) to 

pattern 3 (top right), pattern 4 only occurs with more shearing or a weaker 

∆𝐺𝑎𝑑ℎ. The size of irregular clusters can be measured as diffusion distance. 

This revealed trends and differences of aggregate sizes also visible in figure 

6.1. In accordance with the differential adhesion hypothesis, when the differ-

ence in interaction energy is large, strong adherents form the center of the ag-

gregate whereas weak adherents form the outer shell. In other words, the ag-

gregate becomes stratified. This effect is most clear in Scenarios Re 125 D and 

Re 250 D, yet the effects are still significant at lower differential adhesion 

(figure 6.2). 
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Figure 6.1. Simulation results of 16 aggregation scenarios. Left to right depicts 2 fold in-

creases of turbulence (Reynolds). Bottom to top depicts a stepwise increase of the difference 

in interaction energies, where red particles remain strong interactors and the blue particles 

interaction energy decreases. This figure is reproduced from Manuscript II.  

The average position within the aggregate relative to the aggregate surface (av-

erage diffusion distance from the aggregate surface) of the more adherent cells 

increases relative to the less adherent cells with increasing difference in adhe-

siveness (figure 6.2). This trend becomes significant at large enough differ-

ences in adhesiveness and holds for all tested flow regimes. 
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Figure 6.2. Averaged diffusion distances for strong adherent (Red) and weak adherent 

(Blue). For Re 125, 250, 500 and 1000 scenarios. Scenario A includes two equally strong 

adhering agent types, while in scenarios B, C and D the adhering strength of the second 

agent type (blue) is reduced stepwise. Stars indicate a significant difference of the average 

diffusion depth between the strong and weak adherent in a model scenario. Boxes indicate 

the interquartile range (IQR) split by a bolt line which represents the median. Bars indicate 

1.5 times the IQR over the third quartile and under the second quartile, dots indicate obser-

vations outside this range. In the absence of observation outside the 1.5 IQR range, the bar 

is reduced to indicate the highest or lowest observed value. This figure is reproduced from 

Manuscript II. 

Spatial sorting in microbial aggregates, specifically stratification, is typically 

explained by the presence of biochemical gradients. This study shows that dis-

tinct spatial pattern formation can occur in nascent aggregates due to an inter-

play between adhesive forces and shear forces occurring in and on the aggre-

gate in absence of biochemical gradients. In the initial stages of microbial ag-

gregates formation, differential adhesion is expected to play a dominant role 

as biochemical gradients will be weaker in small aggregates. A microbial strat-

egy in which microbes regulate their adhesive properties to adjust their position 

within an aggregate is conceivable. For example, anammox bacteria, notorious 

for their strong adhesive properties (Ali et al., 2018), are reversibly inhibited 

by oxygen and benefit from a position deeper in an aggregate surrounded by 

aerobic bacteria serving as an oxygen sink. 
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6.2 Microbial growth strategies for filamentous mi-

crobes 

Microbial morphologies are often not considered in biofilm models. Although 

some recent modelling efforts have included non-spherical agents (Smith et al., 

2017; Winkle et al., 2017), the majority of IbMs simplify microbial morphol-

ogy to spheres, despite the importance of microbial shape and size in relation 

to many selective forces including; nutrient limitation, predation, dispersal, 

motility, attachment, etc. (Schulz and Jørgensen, 2001; Angert, 2005; Kevin D 

Young, 2006). iDynoMiCS 2.0 enables the modelling of additional microbial 

morphologies including rod shapes and filaments. Filament formation is often 

associated with microbial resource scavenging. The strategy derives from the 

ability of filaments to focus the growth of biomass into one direction rather 

than merely producing offspring adding to an existing heap of cells. This way, 

longer distances can be covered, and new, nutrient rich territories colonized. 

This strategy is employed by cord-forming fungi who can quickly grow to-

wards new resource hotspots (Aguilar-Trigueros et al., 2022; Boddy, 1993). 

A case study was developed extending prior work by Kreft (2004), by intro-

ducing filament forming microbes. The original scenario consisted of two com-

peting growth strategies, a Rate Strategist (RS) that grew faster at every sub-

strate concentration (higher 𝜇𝑚𝑎𝑥 , same specific affinity/initial slope of the 

Monod kinetics) but had a lower growth yield, with a Yield Strategist (YS) that 

grew slower but had a higher growth yield and therefore converted the substrate 

diffusing into the biofilm with higher efficiency into biomass. This more eco-

nomical use of resources is an example of altruistic behavior as it benefits self-

ish neighbors more than self. It can be reasoned that growing as a filament, 

which can be considered a cluster of cells in one dimension, gives YS an addi-

tional advantage. Here all combinations were tested in a biofilm setting: coc-

coid RS vs. coccoid YS, filamentous RS vs coccoid YS, coccoid RS vs. fila-

mentous YS and filamentous RS vs. filamentous YS (figure 6.3). As filaments 

need a larger domain and freedom to bend and spread in all directions, these 

simulations required a sizable 3D domain, and the 3rd dimension was extended 

relative to the original study. A full model description is included with Manu-

script I. 

The simulations demonstrate that filamentous growth can provide a strong 

competitive advantage under nutrient limiting conditions. RS filaments win the 

competition against YS filaments in each case where the outcome can be in-

ferred from the final biofilm structures (Fig 6.3) and population dynamics over 
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time (included in Manuscript I figure 7). A striking difference between RS 

filaments and YS filaments is the more open and less dense ‘forest’ structure 

produced by RS. This could be due to the lower substrate consumption rate of 

the YS which allows their filaments to grow better in deeper regions of the 

biofilms in comparison with the RS filaments. The RS gain a larger advantage 

when they happen to grow towards the top. Thus, the stronger competition (or 

self-inhibition) between RS filaments favors expansion over density, leading 

to a ‘fluffier forest’ structure. 

The advantage of large clusters of YS, who compete less and therefore grow 

faster than a cluster of RS (figure 6.3 a, m), turns into a disadvantage as RS 

reach the top of the biofilm faster where substrate flux is highest. The filamen-

tous RS experience stronger positive feedback than the YS (figure 6.3 d, p). 

This suggests that filamentous growth is a strategy to escape competition be-

tween siblings. Given the huge advantage of filamentous growth found here 

one may wonder why filamentous bacteria are not more abundant. It is cer-

tainly common in fungi and streptomycetes, probably because of improved for-

aging for scattered patches of resources. Also in stream biofilms, filament or 

chain formation as employed by Diatoma spp. enhances nutrient access (Celler 

et al., 2014). Gradient microbes such as Beggiatoa spp. or the intriguing cable 

bacteria (Pfeffer et al., 2012) form filaments to access electrons from a reduced 

sediment and electron acceptors from the oxidized water layer above the sedi-

ment. Filamentous bacteria are also found in activated sludge flocs in 

wastewater treatment, where they have the advantage of growing out of the 

floc into the nutrient richer bulk liquid but are selected against at the settling 

stage where only fast sinking sludge flocs are recirculated into the activated 

sludge stage (Martins et al., 2004; Ofiţeru et al., 2014).  

Potential disadvantages of filament formation are not represented in the model. 

These disadvantages include exposure mechanical or physiological stresses 

and attack by phages or predators and a higher resistance to either active or 

passive dispersal (Mitchell, 2002; Kevin D. Young, 2006). Cell size is also an 

important factor for pathogenesis and some microbes may avoid forming fila-

ments to prevent being killed by the host (Yang et al., 2016). 
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Figure 6.3. Filaments are dominant and give Rate Strategists an advantage.  Rate Strategists 

(RS, blue) and Yield Strategists (YS, red) competed in a 3D biofilm domain (200x200x12.5 

µm) for 3 weeks. Simulations in each row were initiated with a different amount of equally 

spaced agents; 5 each in the first row, 10 each in row 2, 50 each in row 3, row 4 contains 10 

each but split between the left and right of the domain. Column 1 corresponds to spherical 

cell scenarios in Fig 2 of Ref (Kreft, 2004) but were now simulated in 3D. In column 2, RS 

formed filaments and in column 3, YS formed filaments. In column 4, both formed filaments 

and RS won or likely won. This figure is reproduced from Manuscript I. 

6.3 Individual based gut modeling: fermentation of 

colonic polysaccharides 

Apart from studying relatively abstract aspects of microbial physiology and 

ecology, IbMs can be used as an effective tool to study more concrete biolog-

ical systems, including biofilms applied in industrial applications (such as the 

PNA biofilm presented in chapter 5), but also the biofilms that are part of the 

human microbiome. The amount of bacterial cell in typical humans is estimated 

to be over 1013 of which the majority is found in the gut (Sender et al., 2016). 

A growing body of research reveals links between gut microbiota and human 

health and the list of microbiota associated diseases and disorders includes in-

flammatory bowel disease, immune disorders, obesity and allergies (Atarashi 



65 

et al., 2011; Gophna et al., 2006; Manichanh, 2006; Panzer et al., 2015; 

Turnbaugh et al., 2006). 

A large amount of the gut microbiota research uses animal models such as mice 

models (Robinson et al., 2019). Animal models allow for a wide range of stud-

ies and are relatively easy to work with. One of the drawbacks of most animal 

models is their difference from human guts in structure, length, cross-sectional 

area, transit time, and microbial composition. Others have developed in vitro 

gut models using mechanical component to construct an artificial gut system 

(Vermeiren et al., 2012; Shah et al., 2016). In silico models form a third option 

that, like in vitro models, describe a simplified gut system. Examples include 

gut microbial invasion modeling by Freter et al. (1983) and the colon polysac-

charide fermentation model by Muñoz-Tamayo et al. (2010). In silico models 

allow researchers to evaluate a large variety of model scenarios within a small 

amount of time and few resource requirements. 

iDynoMiCS 2.0 was extended to enable individual based gut modeling. This 

extended software package includes a model of the epithelium, mucosa, and 

gut lumen. The software, known as eGUT, models epithelial cells explicitly, 

includes mucus production, models solute transport between the mucosa and 

blood, and it models the gut lumen as a (well-mixed) bulk compartment. The 

earlier mentioned gut polysaccharide fermentation model (Muñoz-Tamayo et 

al., 2010) was extended to include extended to include epithelial dynamics 

(cellular maintenance, globlet cell mucus production, mucus decay) and imple-

mented in eGUT to test and demonstrate its capabilities (figure 6.4). The model 

includes four trophic guilds: (1) Glucose-utilizing bacteria, which can hydro-

lyze polysaccharides into glucose, and ferment glucose, producing lactate, hy-

drogen, CO2 and the short-chain fatty acids acetate, propionate and butyrate. 

(2) Lactate-utilizing bacteria, which ferment lactate, producing acetate, propi-

onate, butyrate, hydrogen and CO2. (3) Acetogens, which form acetate by re-

ducing CO2 with hydrogen. (4) Methanogens, which form methane from hy-

drogen and CO2. The maintenance of epithelial cells and the metabolic cost of 

mucus production is modeled through the consumption of butyrate. 

The proximal colon lumen receives inflow at a steady rate, containing polysac-

charides representing the average-fibre diet proposed in the original model by 

Muñoz-Tamayo et al. (2010). Digesta (containing agents and solutes) flows 

from the proximal colon lumen to the transverse colon lumen at an equal rate, 

and likewise from the transverse colon lumen to the distal colon lumen and out 

of the distal colon lumen (excretion). Agent and solutes exchange between the 
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lumen and the corresponding mucosa. A full model description is available in 

Manuscript III. 

After five simulated days, the glucose-utilizing bacteria are most abundant in 

the proximal colon, while the acetogens are most abundant in the transverse 

and distal colon (figure 6.4). Methanogens are far less abundant than other 

species. These population differences may be explained by polysaccharide and 

hydrogen availability in the different compartments.  

The proximal colon receives a high influx of polysaccharide, but no hydrogen, 

while the transverse and distal colon receive hydrogen produced in the prior 

compartments, but far less polysaccharide. The total biomass in the proximal 

colon is lower than the total biomass in either of the other colon sections. This 

is likely due to the products produced by the glucose-utilizing bacteria, includ-

ing hydrogen, the limiting substrate in acetogenesis, are carried by the flow of 

digesta from the proximal colon lumen to the other compartments, while the 

proximal colon receives no supply of hydrogen. Another factor that may drive 

the differences in species composition between the compartments is the poly-

saccharide concentration, which differs dramatically between the three com-

partments. 

The case study shows that eGUT can simulate a complex, multi compartmental 

model of the gut, providing users with comprehensive time courses, solute con-

centration profiles and detailed image outputs. The patterns that emerge from 

the model provide opportunities for further research, and data that can be com-

pared to other models and measurements. 
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Figure 6.4. Individual based model of the fermentation of colonic polysaccharides after 5 

simulated days. Three regions of the colon (proximal, transverse and distal) are modeled 

using a small representing spatial section of 32x32x256µm representing the mucosa. A lu-

men compartment is connected to every mucosa section, while also exchanging solutes and 

agents with the other lumen sections (unidirectional). The lumen, represented by well-mixed 

compartments, provide the bulk resource of solutes, and allow for the exchange of agents. 

The base of each mucosa compartment is lined with epithelial (11 colonocytes, 5 globlet 

cells) agents. Glucose utilizing bacteria are most abundant in the proximal colon, while 

acetogenic bacteria are most common in the transverse and distal colon. This figure is re-

produced from Manuscript III. 
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7 Conclusions and perspectives 

Microbial biofilms and other microbial aggregates play an important role in 

human and animal health, in various industrial applications, and in the envi-

ronment. The development of new experimental techniques and increasingly 

detailed computational models have greatly increased our understanding of mi-

crobial aggregates and the dynamic processes occurring within them. New sci-

entific insights and discoveries were made possible by pushing the boundaries 

of the available research methods. 

Computer models that define natural phenomena in mathematical terms and 

structures, played a key role in obtaining the insight. Computer models help 

better understand the underlying processes and characteristics which define 

and influence the microbial aggregate. The processes and phenomena that oc-

cur within and around microbial communities that shape the composition, spa-

tial structure and other characteristics of the biofilm are the central interest in 

this thesis. A better understanding of these processes and phenomena may lead 

to new control strategies, which in turn may help direct microbial community 

development in industrial, health and environmental applications. Individual-

based microbial community models have helped us understand how individual 

behavior and local interactions affect the dynamics and spatial structure of mi-

crobial aggregates. These models come with several limitations. On one hand, 

due to the simplified representation of microbes ecologically important prop-

erties or behavior may get lost, leading to models that cannot accurately cap-

ture essential phenomena. On the other hand, the relative high level of detail 

and complexity of individual-based models compared to population based 

modeling approaches can be overwhelming for those not already experienced 

with IbMs and can lead to a gap between experimental and modeling work. 

The level of detail can also make the models computationally intense and 

thereby limit the scale of the model systems. The aim of this thesis has been to 

improve our capability of accurately modeling these microbial aggregates and 

the processes and phenomena associated with them, to better predict the dy-

namic processes and spatial structures found in microbial aggregates and to 

enable new innovative research that has not been possible before. 

Key limitations of existing modeling tools and development needs have been 

assessed, and the following objectives have been formulated: 

1 Enabling a larger range of dynamic individual-based characteristics and 

behaviors for a better representation of various microbial traits 
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2 Widening the range of (bio-)chemical sub-models to provide a better 

representation of microbial metabolisms. 

3 Improving the physical representation and interaction models available.  

4 Closing the gap between experimental and modeling work facilitating a 

better integration of experiments and modeling and reducing the re-

quired expertise to construct a model. 

5 Facilitating model parameterization where individual based experi-

mental observations may be lacking. 

6 Improving computational efficiency to allow for models at larger scales.  

To achieve this, I have worked with a dedicated group of scientific collabora-

tors to develop the new microbial community modeling framework iDynoM-

iCS 2.0 and the closely related gut simulation software eGUT. The framework 

combines many new developments, but also integrates concepts and ap-

proaches developed prior.  

With iDynoMiCS 2.0 agent properties and behavior can be assembled from 

orthogonal modules for pick and mix flexibility. Any characteristic of the 

agent, including the morphology, biochemical and biophysical behavior, can 

dynamically change in response to external or internal queues. These queues 

include solute or signal molecule concentrations, the internal availability of 

storage molecules, or even due to a stochastic process (Manuscript I). This 

gives enormous flexibility in the range of dynamic individual-based character-

istics and behaviors that can be modeled with the framework. Possibilities in-

clude sporulation, dormancy, signaling, genetic mutation, genetic switching, 

adaptation, microbial life cycles, ageing, chemotaxis and more. 

Prior general purpose individual-based microbial community modeling frame-

works are typically restricted to a limited set of kinetic models to formulate the 

biochemistry of a microbe, while with iDynoMiCS 2.0 the kinetic model can 

be freely expressed through any kind of arithmetic function (Manuscript I). 

The function may include local solute or signal molecule concentrations as well 

as properties of the agent, allowing for fully individual behavior. 

The first IbMs implement a shoving method in combination with spherical par-

ticles to represent agents. The mass-spring approach by Janulevicius et al. 

(2010) allows for other agent morphologies such as rod-like and filamentous 

agents, while also greatly improving the physical interaction model of agents. 

This approach has been refined further and iDynoMiCS 2.0 implementation 

enables the expression of any type of physical/force-interaction through arith-

metic functions. The new implementation is referred to Force-based Mechanics 
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(FbM). The ability to represent microbes as filament forming agents provides 

insights in the role of microbial morphology where rate- and yield strategists 

compete for a limited substrate (Manuscript I). While the framework was fur-

ther used to construct an exDLVO based interaction model. The model imple-

menting CFD based hydrological environment, demonstrates how differential 

adhesion can lead to different cell sorting patterns under various hydrodynamic 

conditions (Manuscript II).  

An IbM framework that enables biologists to formulate their system in their 

own language rather than computer code is an important factor to bridge the 

gap between experimentalists and modelers. This concept was taken to hearth 

during the development of iDynoMiCS 2.0. By implementing numerical solv-

ers that self-inspect convergence and automatically adjust in order produce 

outcomes within a reasonable error range, by providing default parameters 

where they are sensible, and by relying on parameters that can be obtained from 

experimental observations or literature instead of relying on abstract concepts 

without direct biological parallels. Formulating an individual-based model has 

been greatly simplified. The gut modelling software eGUT extends iDynoM-

iCS 2.0 with an epithelium and mucus model and allows for individual-based 

modeling of the gut lumen and mucosa (Manuscript III). The software lowers 

the barrier for researchers studying gut microbiota to incorporate individual 

based modeling in their work.  

The extensive model analysis, sensitivity analysis and model parameterization 

tools can further bring experimental and modeling work together. They provide 

insight into the structural development of microbial aggregates and make it 

easier to quantitatively compare model and experimental observations. The 

Morris method implementation makes it easier to link individual traits to emer-

gent properties of the biofilm, while the genetic algorithm is an effective tool 

for the parameterization of iDynoMiCS 2.0 models. The tools are also an im-

portant asset in pattern based modeling and help to identify and replicate the 

patterns that characterize the microbial aggregate, and thereby mitigating some 

of the issues caused by the limited availability of individual based observations 

(chapter 5, Manuscript III). In many cases good initial parameter estimates can 

be obtained with empiric models, such as those for microbial growth charac-

teristics (chapter 4). 

iDynoMiCS 2.0’s orthogonal modules and the possibility to freely formulate 

mechanical and biochemical models through arithmetic expressions open-up 

many possibilities for modelers without requiring any modification of source 

code (Manuscript I). The chosen software structure generalizes many standard 
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procedures through software interfaces, including the management and timing 

of processes, importing model parameters through protocols and exporting data 

and figures. This design choice simplifies extending the framework with new 

functionality for advanced users and iDynoMiCS 2.0 has already received mul-

tiple extensions and upgrades. iDynoMiCS 2.0 also comes with a basic graph-

ical user interface allowing any user to run a simulation and analyze the results 

in just a few mouse clicks, lowering the barrier for new users. 

Throughout the development of iDynoMiCS 2.0 the software was subjected to 

detailed analysis, testing and software profiling to identify computational bot-

tlenecks. The amount of efficiency optimizations are too numerous to summa-

rize in this section, but some of the key improvements are iDynoMiCS 2.0’s 

spatial sorting and searching algorithm, the self-analyzing partial differential 

equation solver and efficient spatial mapping through Euclidian distance map-

ping (Manuscript I). These optimization efforts made it possible to reach a 

model scale of 10M+ agents (microbes, inert and EPS) using a single CPU 

core, an achievement that up until now was only demonstrated with the mod-

eling framework NUFUB using 100 CPU cores. 

The rigorous testing process gives me strong confidence about the quality and 

reliability of the framework. This was done with a focus on numerical solvers, 

code that inspects the state at each iteration and diagnoses convergence of solv-

ers. The process helped eliminate bugs and software inefficiencies and demon-

strated that solutions were numerically correct with deviations of <0.1% from 

known analytical solutions. 

The first individual-based models using iDynoMiCS 2.0 and eGUT already 

provide interesting insights in societal relevant applications, and they help ex-

plain how individual traits can affect the microbial aggregate. The models in-

clude the composition and spatial structure development of microbial commu-

nities in the human colon and water treatment systems. iDynoMiCS 2.0 also 

yields interesting insights in more fundamental studies including the effects of 

microbial morphology on microbial competition and the effects of differential 

adhesion on the spatial structure of nascent microbial aggregates.  

Some of the functionality new to iDynoMiCS is available in other IbM frame-

works. For example, agents with rod shaped morphologies are possible through 

CellModeller (Rudge et al., 2012), BSim 2.0 (Matyjaszkiewicz et al., 2017) 

and gro (Gutiérrez et al., 2017). Nevertheless, iDynoMiCS 2.0 can provide this 

functionality at a much larger scale. This makes iDynoMiCS 2.0 more capable 

of showing the effects of these microscopic differences on the macroscopic 
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properties of the biofilm. Fluid dynamics is another example of functionality 

that is available with other frameworks. CellModeller implements a simple im-

plicit advection model which imposes a linear bulk flow in a given direction, 

while NUFEB (Li et al., 2019) can simulate fluid dynamics explicitly through 

coupling with the fluid dynamics toolbox OpenFOAM. iDynoMiCS 2.0 also 

implements fluid dynamics explicitly, but it can do this with agents of various 

morphologies while also modeling agent interactions based on exDLVO. 

The suitability of different individual-based modeling platforms depends on 

the needs of the researcher. For exploring synthetic bacterial communities 

where gene regulation and signaling circuits are engineered into cells, Cell-

Modeller, gro or BSim 2.0 may be the most suitable platforms. BacArena 

(Bauer et al., 2017) and ACBM (Karimian and Motamedian, 2020) offer flux-

balance models for metabolism, but come with strong limitations on model 

scales. When it comes to large scale spatially structured biofilm models where 

mass transport is crucial, including local variability, physical and biochemical 

interactions between agents and the environment, NUFEB and iDynoMiCS 2.0 

are the most suitable modeling platforms. NUFEB outcompetes iDynoMiCS 

2.0 if it comes to its maximum model scale (NUFEB can utilize 100+ proces-

sors on HPC systems), but iDynoMiCS 2.0 comes with a broader palette of 

features and functionality and works efficiently on any kind of computer sys-

tem. 

In conclusion, as a central part of this PhD thesis I have worked on the devel-

opment and have applied the new individual-based modeling framework 

iDynoMiCS 2.0. The modeling framework combines many new developments 

within the field, while also innovating and addressing key limitations found in 

prior work. Dedication and years of hard work have led to a powerful general 

purpose biofilm modeling framework that is both easy to use and easy to ex-

tend. iDynoMiCS 2.0 can be used to predict and analyze the biochemical per-

formance, community composition and spatial structure of biofilms. It can be 

used in practical applications such as predictive modeling applied for water 

treatment systems or health applications, as well as for fundamental microbial 

ecological questions as seen with the fitness shift observed when yield- and 

rate-strategists form filamentous instead of spherical cells. Extensions of this 

framework, also covered in this thesis, enable an even broader array of possi-

bilities. This includes eGUT (Manuscript III), which enables individual-based 

gut modeling, by implementing epithelium and mucus sub-model. It further 

includes the fluid dynamics extension that enabled the exDLVO based micro-
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bial aggregate formation study, revealing differential adhesion mediated spa-

tial pattern formation under various hydrological conditions covered in Manu-

script II. 

7.1 Perspectives 

Individual-based biofilm modeling has become increasingly popular in the past 

decades, possibly aided by the increasing availability of ready to use modeling 

tools, alongside the excellent ability of IbMs to model and predict emergent 

properties of the biofilm such as spatial structure and community composition. 

An increasing number of sub-models and detail is incorporated into IbMs, 

which allows us to use the methodology in pursuit of an increasing amount of 

research questions and objectives. One of the difficulties that remains with the 

approach is the often limited individual-based observations available to param-

eterize these sub-models. For some parameters, smart methodologies to obtain 

parameter estimates, such as thermodynamics based approaches to estimate 

microbial growth and decay kinetics, may help. Observation and quantification 

of secondary biofilm characteristics, such as used in pattern-oriented model-

ling (POM) can also play an important role. The modeling tools developed as 

part of this thesis should make this a lot easier. The next step would be to obtain 

and utilize experimental observations, rather than relying on synthetic data as 

done in this thesis, which merely serves as a proof of concept. 

As previously asserted (Kreft et al., 2013; Hellweger et al., 2016), a deeper 

integration of experimental and computational work can be mutually beneficial 

and plays an important role in deepening our understanding of microbial sys-

tems. High quality experimental data is essential for the development of high 

quality predictive models. In return computational studies can aid experimental 

work by providing detailed insights in the dynamic development of microbial 

aggregates or by assisting the optimization of culturing processes and condi-

tions. I believe that the continued development and improvement of advanced 

modeling tools such as Individual-based models that can adequately capture 

the biological heterogeneity, local interactions and adaptive behavior occurring 

within biofilms is an essential part of enabling future biofilm and microbial 

ecology research. All software developed and covered in this thesis is open 

source and has been made available online. I hope that these new software tools 

enable a wider range of researchers to incorporate IbM in their work.  

The first iDynoMiCS 2.0 and eGUT models utilize their new functionalities to 

provide interesting insights in how individual traits affect the formation of spa-

tial patterns and the dynamic nature of the microbial community composition 
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of microbial aggregates in various applications. Nevertheless, these models 

only scratch the surface of what is possible. Quite some of the new functional-

ity introduced in this thesis has been tested and included as proof of concept in 

the software repositories of iDynoMiCS 2.0 and eGUT, but is not used in a 

fully developed model, or only to a very limited extent. A good example is 

iDynoMiCS 2.0’s dynamic individual-based characteristics and behavior. The 

functionality was used to give agents a lifecycle in the filamentous rate- and 

yield strategist model, but the wide range of possibilities including sporulation, 

dormancy, signaling, genetic mutation, genetic switching, adaptation, ageing, 

and chemotaxis remains for future model implementations. 

The focus of this thesis is on the development of IbM methodologies and pro-

cedures, and the application of these methodologies and procedures on theo-

retical microbial aggregates. I expect this work will aid future research that 

combines experimental and computational approaches and so assist new in-

sights in microbial aggregates, microbial ecology and so advance our scientific 

field. I hope this work can facilitate the development of novel treatment strat-

egies for those with gastrointestinal diseases and digestive conditions, and that 

it may facilitate the development refined bio-based processes such as water 

treatment, leading to improved water quality and the mitigation of greenhouse 

gas emissions.  
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9 Appendix 

9.1 Substrate utilization and diffusion in a catalyst 

layer over an inert surface 

For a catalyst utilizing a substrate with concentration 𝑆 with first-order kinetic 

the following kinetic expression can be used: 

 
𝑑𝑆

𝑑𝑡
= −𝑘𝑆 9.1 

Here 𝑘 is the first-order kinetic parameter and 𝑡 is time. This can be combined 

with Fick’s second law of diffusion resulting in:  

 
𝑑𝑆

𝑑𝑡
= 𝐷∇2𝑆 − 𝑘𝑆 9.2 

Here 𝐷 is the solute diffusivity and ∇2 the Laplacian operator. For an inert par-

ticle with a constant solute concentration at the surface a steady state concen-

tration profile can be reached: 

 0 = 𝐷∇2𝑆 − 𝑘𝑆 9.3 

Within a Cartesian coordinate system this can be rewritten as:  

 0 = 𝐷 (
𝑑2𝑆

𝑑𝑥2
+

𝑑2𝑆

𝑑𝑦2
+

𝑑2𝑆

𝑑𝑧2
) − 𝑘𝑆 9.4 

The catalyst is assumed to be perfectly homogeneously distributed over a flat 

inert surface such that a solute gradient only forms perpendicular to the surface 

(
𝑑𝑆

𝑑𝑦
= 0, 

𝑑𝑆

𝑑𝑧
= 0), and thus the equation can be simplified to: 

 
𝑑2𝑆

𝑑𝑥2
= 𝑘

𝐷⁄ 𝑆 9.5 

The general solution to this problem is: 

 𝑆∗(𝑥) = 𝐴𝑒
−𝑥√𝑘

𝐷⁄
+ 𝐵𝑒

𝑥√𝑘
𝐷⁄
 

9.6 

𝐴 and 𝐵 can be found using boundary conditions. At the inert surface (𝑥 = 0), 

there is no solute gradient (
𝑑𝑆

𝑑𝑥
= 0). The solute concentration at the top of the 
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catalyst layer is assumed to be known  𝑆(𝑥𝑏) = 𝑆𝑏. Using these boundary con-

ditions, the steady state solute concentration in the catalyst layer can be found:  

 𝑆∗(𝑥) = 𝑆𝑏𝑒
−(𝑥−𝑥𝑏)√𝑘

𝐷⁄ 1 + 𝑒
2𝑥√𝑘

𝐷⁄

1 + 𝑒
2𝑥𝑏√𝑘

𝐷⁄

 9.6 

 

9.2 Substrate utilization and diffusion on spherical 

particle 

Like substrate diffusion and consumption of a catalyst on a flat inert surface, 

for a spherical catalyst particle, or a catalyst layer around a spherical particle 

the problem can be solved analytically. This section elaborates on an analytical 

solution by Hoogendoorn and Meer (2005). 

For a catalyst utilizing a substrate with concentration 𝑆 with first-order kinetic 

the following kinetic expression can be used: 

 
𝑑𝑆

𝑑𝑡
= −𝑘𝑆 9.7 

Here 𝑘 is the first-order kinetic parameter and 𝑡 is time. This can be combined 

with Fick’s second law of diffusion resulting in:  

 
𝑑𝑆

𝑑𝑡
= 𝐷∇2𝑆 − 𝑘𝑆 9.8 

Here 𝐷 is the solute diffusivity and ∇2 the Laplacian operator. For an inert par-

ticle with a constant solute concentration at the surface a steady state concen-

tration profile can be reached: 

 0 = 𝐷∇2𝑆 − 𝑘𝑆 9.9 

When the Laplacian operator for spherical coordinates is written out (the La-

placian can be found in any standard calculus handbook) this equation be-

comes:  

 

 
0 =

𝑑2𝑆

𝑑𝑟2
+

1

𝑟2

𝑑2𝑆

𝑑𝜑2
+

1

𝑟2𝑠𝑖𝑛2𝜑

𝑑2𝑆

𝑑𝜃2
+

2

𝑟

𝑑𝑆

𝑑𝑟
+

𝑐𝑜𝑠𝜑

𝑟2

𝑑𝑆

𝑑𝜑
−

𝑘

𝐷
𝑆 9.10 

With the center of the inert particle on the origin of the coordinate system at 

r=0. The assumption is made that all concentric layers surrounding the particle 
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have a perfectly homogenous composition and structure, and thus a concentra-

tion gradient will only exist in the r dimension (
𝑑𝑆

𝑑𝜃
= 0, 

𝑑𝑆

𝑑𝜑
= 0). This allows 

the simplification of previous equation:  

 
𝑑2𝑆

𝑑𝑟2
+

2

𝑟

𝑑𝑆

𝑑𝑟
−

𝑘

𝐷
𝑆 = 0 9.11 

A general solution for this differential exists: 

 𝑆 =
𝐴

𝑟
𝑠𝑖𝑛 (√−

𝑘

𝐷
𝑟) +

𝐵

𝑟
𝑐𝑜𝑠 (√−

𝑘

𝐷
𝑟) 9.12 

The validity of this solution can be checked by finding the first and second 

derivative (S’ and S’’) of this equation and checking whether 𝑆′′ +
2

𝑟
𝑆′ −

𝑘

𝐷
𝑆 

equals zero. 

Since both k and D are greater than zero, √−1 = 𝑖, sin(𝑖𝑥) = 𝑖 ∗

sinh(𝑥) , cos(𝑖𝑥) = cosh(𝑥) the equation can be rewritten as: 

 𝑆 =
𝐴∗

𝑟
𝑠𝑖𝑛ℎ (√

𝑘

𝐷
𝑟) +

𝐵

𝑟
𝑐𝑜𝑠ℎ (√

𝑘

𝐷
𝑟) 9.13 

Here 𝐴∗ = 𝑖𝐴. 𝐴∗ and 𝐵 can be found using boundary conditions. The solute 

gradient in the center of the catalyst particle (or at the inert particle surface) 𝑟0 

is zero ( 
𝑑𝑆

𝑑𝑟
= 0), this boundary condition is only met with B = 0 and thus: 

 𝑆 =
𝐴∗

𝑟
𝑠𝑖𝑛ℎ (√

𝑘

𝐷
𝑟) +

0

𝑟
𝑐𝑜𝑠ℎ (√

𝑘

𝐷
𝑟) =

𝐴∗

𝑟
𝑠𝑖𝑛ℎ (√

𝑘

𝐷
𝑟) 9.14 

𝐴∗ can be found by saying that on the outermost layer of the catalyst region 

𝑟 = 𝑅 the concentration will be equal to the ‘boundary concentration’ 𝑆 = 𝑆𝑏: 

 𝑆𝑏 =
𝐴∗

𝑅
𝑠𝑖𝑛ℎ (√

𝑘

𝐷
𝑅) 9.15 
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Thus: 

 
𝐴∗ = 𝑆𝑏𝑅

1

𝑠𝑖𝑛ℎ (√𝑘
𝐷 𝑅)

 
9.16 

This results in the following analytical solution for steady state solute concen-

tration 𝑆∗ at a distance 𝑟 from the center of the catalyzing particle, or from the 

inert particle surface: 

 𝑆∗(𝑟) = 𝑆𝑏

𝑅

𝑟

𝑠𝑖𝑛ℎ (√𝑘
𝐷 𝑟)

𝑠𝑖𝑛ℎ (√𝑘
𝐷 𝑅)

 9.17 

This reaction diffusion model was used in an assignment for the master course 

‘12104 Modelling of Environmental Processes and Technologies’, where the 

students had to use the model to predict solute penetration depth.  
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9.3 Partial nitritation anammox 

Table 9.1. Microbial growth parameters partial nitritation anammox model.  

Parameter Symbol Unicode Value  source 

AOB1 

Species/name   Nitrosomonas sp. ML1 

Park2007 

Maximum growth rate µ𝐴𝑂𝐵
𝑚𝑎𝑥 AOB_mux 0.66 𝑑−1 

Oxygen affinity 𝐾𝑂2

𝐴𝑂𝐵 AOB_Kox 0.24 𝑚𝑔 𝐷𝑂/𝐿 

Ammonia affinity 𝐾𝑁𝐻4

𝐴𝑂𝐵 AOB_Kam 1.62 𝑚𝑔 𝑁/𝐿 

Decay rate 𝑏𝐴𝑂𝐵 AOB_b 0.044 𝑑−1 

Growth yield 𝑌𝐴𝑂𝐵  0.15 𝑔𝐶𝑂𝐷/𝑔𝑁 Wiesmann1994 

Nitrogen content 𝑖𝑁𝑋𝐵  0.083 𝑔𝑁/𝑔𝐶𝑂𝐷 Hubaux2014 

AOB2 

Species/name   Nitrosomonas sp. NL7 

Park2007 

Maximum growth rate µ𝑁𝑂𝐵
𝑚𝑎𝑥  0.77 𝑑−1 

Oxygen affinity 𝐾𝑂2

𝐴𝑂𝐵  1.22 𝑚𝑔 𝐷𝑂/𝐿 

Ammonia affinity 𝐾𝑁𝐻4

𝑁𝑂𝐵  0.48 𝑚𝑔 𝑁/𝐿 

Decay rate 𝑏𝐴𝑂𝐵  0.83 𝑑−1 

Growth yield 𝑌𝐴𝑂𝐵  0.15 𝑔𝐶𝑂𝐷/𝑔𝑁 Wiesmann1994 

Nitrogen content 𝑖𝑁𝑋𝐵  0.083 𝑔𝑁/𝑔𝐶𝑂𝐷 Hubaux2014 

NOB1 

Species/name   Nitrospira sp. ND1 

Ushiki2017 
Maximum growth rate µ𝑁𝑂𝐵

𝑚𝑎𝑥 NOB_mux 1.71 𝑑−1 

Oxygen affinity 𝐾𝑂2

𝑁𝑂𝐵 NOB_Kox 0.13 𝑚𝑔 𝐷𝑂/𝐿 

Nitrite affinity 𝐾𝑁𝑂2

𝑁𝑂𝐵 NOB_Kni 0.084 𝑚𝑔 𝑁/𝐿 

Growth yield 𝑌𝑁𝑂𝐵  0.041 𝑔𝐶𝑂𝐷/𝑔𝑁 Wiesmann1994 

Decay rate 𝑏𝑁𝑂𝐵 NOB_b 0.06 𝑑−1 Koch2000 

Nitrogen content 𝑖𝑁𝑋𝐵  0.083 𝑔𝑁/𝑔𝐶𝑂𝐷 Hubaux2014 

NOB2 

Species/name   N. japonica 

Ushiki2017 
Maximum growth rate µ𝑁𝑂𝐵

𝑚𝑎𝑥  1.26 𝑑−1 

Oxygen affinity 𝐾𝑂2

𝑁𝑂𝐵  0.083 𝑚𝑔 𝐷𝑂/𝐿 

Nitrite affinity 𝐾𝑁𝑂2

𝑁𝑂𝐵  0.14 𝑚𝑔 𝑁/𝐿 

Growth yield 𝑌𝑁𝑂𝐵  0.041 𝑔𝐶𝑂𝐷/𝑔𝑁 Wiesmann1994 

Decay rate 𝑏𝑁𝑂𝐵  0.06 𝑑−1 Koch2000 

Nitrogen content 𝑖𝑁𝑋𝐵  0.083 𝑔𝑁/𝑔𝐶𝑂𝐷 Hubaux2014 

AMX1 

Species/name   B. Anammoxidans 

Kartal2012 

Maximum growth rate µ𝐴𝑀𝑋
𝑚𝑎𝑥  AMX_mux 0.065 𝑑−1 

Oxygen inhibition constant 𝐾𝑖,𝑂2

𝐴𝑀𝑋 AMX_Kiox 0.032 𝑚𝑔 𝐷𝑂/𝐿 

Ammonia affinity 𝐾𝑁𝐻4

𝐴𝑀𝑋 AMX_Kam 0.07 𝑚𝑔 𝑁/𝐿 

Nitrite affinity 𝐾𝑁𝑂2

𝐴𝑀𝑋 AMX_Kni 0.07 𝑚𝑔 𝑁/𝐿 

Growth yield 𝑌𝐴𝑀𝑋  0.159 𝑔𝐶𝑂𝐷/𝑔𝑁 Strous1998 

Decay rate 𝑏𝐴𝑀𝑋 AMX_b 0.003 𝑑−1 Hao2002 

Nitrogen content 𝑖𝑁𝑋𝐵  0.058 𝑔𝑁/𝑔𝐶𝑂𝐷 Hubaux2014 

AMX2 

Species/name   B.Sinica 

Kartal2012 

Maximum growth rate µ𝐴𝑀𝑋
𝑚𝑎𝑥   0.098 𝑑−1 

Oxygen inhibition constant 𝐾𝑖,𝑂2

𝐴𝑀𝑋  2.016 𝑚𝑔 𝐷𝑂/𝐿 

Ammonia affinity 𝐾𝑁𝐻4

𝐴𝑀𝑋  0.392 𝑚𝑔 𝑁/𝐿 

Nitrite affinity 𝐾𝑁𝑂2

𝐴𝑀𝑋  1.204 𝑚𝑔 𝑁/𝐿 

Growth yield 𝑌𝐴𝑀𝑋  0.159 𝑔𝐶𝑂𝐷/𝑔𝑁 Strous1998 

Decay rate 𝑏𝐴𝑀𝑋  0.003 𝑑−1 Hao2002 

Nitrogen content 𝑖𝑁𝑋𝐵  0.058 𝑔𝑁/𝑔𝐶𝑂𝐷 Hubaux2014 
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Table 9.2. Petersen (stoichiometric) matrix for microbial growth and decay in the partial 

nitritation anammox model. 
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Table 9.3. Operation conditions and computational domain properties of the partial nitrita-

tion anammox model. 

 X Y DBL Bulk/surface ratio  Dilution rate  

Base model size 128 µm 256 µm 20 µm 3.13 m3/m2 0.015 h-1 

reduced model size 64 µm 128 µm 20 µm 3.13 m3/m2 0.015 h-1 

 ammonium oxygen nitrite nitrate  

Initial/influent    

concentration 

3 mg/l 8.74 mg/l 0.05 mg/l 0 mg/l  

 

 

  

Figure 9.1. Discretization of the computational domain allows for detailed spatial analysis. 

The computational domain is discretized with a voxel size of 1 µm, a visualization of several 

regions at the final timestep is shown. The biofilm region is detected (top left), gray indicates 

the region with biomass. The algorithm can also detect regions with specific traits or species, 

here the regions with AOB1 (top right), NOB1 (bottom left) and AMX1 (bottom right) are 

visualized. Colors indicate the number of agents that meet the filter criteria (fx. Species = 

AOB1) colliding with a voxel: cyan = 0, magenta = 1, yellow = 2, blue = 3, red = 4.  
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Figure 9.2. average species specific diffusion depth over the course of the simulation. 

Anammox bacteria are inhibited by oxygen and are thus found deeper in the biofilm, where 

the oxygen concentration is lower. AOB and NOB1 are located where their substrates are 

most abundant. After 70 days AOB2 disappeared from, due to its competition for ammonium 

with AOB1 and oxygen with AOB1 and the NOB. NOB2 is located relatively deeper in the 

biofilm than NOB1.  
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Figure 9.3. Solute concentration over time for all 700 simulations. The panels show ammo-

nium (top left), oxygen (top right), nitrite (bottom left) and nitrate (bottom right) concentra-

tions. 
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Figure 9.4. A subset of structural parameters over time for all 700 simulations, quantified 

every 25 days (simulation time). The panels show the fractal dimension (top left), average 

diffusion depth (top right) and the fraction of encapsulated void space (bottom).   
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Figure 9.5. A subset of species to species co-localizationl parameters over time for all 700 

simulations, quantified every 25 days (simulation time). The panels show AOB to NOB (top 

left), NOB to AOB (top right) AOB to AMX (mid let), AMX to AOB (mid right), AMX to 

NOB (bottom left) and NOB to AMX (bottom right). 
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Table 9.4. The mean of the distribution of the absolute values of the elementary effects (µ*) 

for the sampled input parameters and observed state variables.  

 𝐾𝑁𝐻4

𝐴𝑂𝐵 𝐾𝑂2

𝐴𝑂𝐵 µ𝐴𝑂𝐵
𝑚𝑎𝑥 𝑏𝐴𝑂𝐵 𝐾𝑁𝑂2

𝑁𝑂𝐵 𝐾𝑂2

𝑁𝑂𝐵 µ𝑁𝑂𝐵
𝑚𝑎𝑥 𝑏𝑁𝑂𝐵 𝐾𝑖,𝑂2

𝐴𝑀𝑋 𝐾𝑁𝐻4

𝐴𝑀𝑋 𝐾𝑁𝑂2

𝐴𝑀𝑋 µ𝐴𝑀𝑋
𝑚𝑎𝑥  𝑏𝐴𝑀𝑋 

Bulk solute conc.              

oxygen 0.150 0.177 0.230 0.137 0.115 0.102 0.147 0.086 0.098 0.128 0.113 0.132 0.099 

ammonium 0.465 0.357 0.636 0.469 0.239 0.190 0.242 0.234 0.172 0.251 0.230 0.236 0.222 

nitrite 0.322 0.296 0.377 0.247 0.269 0.179 0.283 0.173 0.136 0.362 0.242 0.321 0.157 

nitrate 0.421 0.347 0.554 0.419 0.309 0.226 0.344 0.236 0.186 0.389 0.301 0.336 0.231 

Total agent mass              

AOB 30.203 30.221 41.606 656.495 24.227 17.477 26.901 20.203 17.716 32.379 22.526 28.842 18.320 

NOB 22.943 19.883 30.070 22.421 13.353 9.432 14.390 109.651 9.434 15.403 11.812 13.923 10.646 

AMX 219.921 147.468 308.371 199.035 83.610 72.006 87.038 92.301 76.932 83.383 91.520 87.210 93.000 

EPS 53.075 39.336 88.361 11.183 8.265 6.898 9.236 8.142 6.229 6.956 6.630 8.248 7.925 

inert 102.145 89.293 156.742 62.823 26.111 23.040 35.212 27.957 22.200 25.349 24.911 27.388 17.265 

Biofilm properties              

fractal dimension 0.050 0.044 0.049 0.057 0.054 0.056 0.046 0.050 0.051 0.051 0.048 0.052 0.047 

max diffusion dis-

tance 
14.685 13.726 19.902 27.797 11.389 9.351 11.932 12.886 8.332 11.209 9.590 10.490 9.652 

average diffusion 

depth 
5.958 5.274 8.974 15.677 3.461 3.070 3.997 5.887 2.799 4.556 3.451 4.207 3.141 

fraction encapsu-

lated void space 

(x1000) 

0.495 0.098 0.154 0.711 0.264 0.219 0.229 0.691 0.454 0.268 0.259 0.229 0.176 

Agent localization              

AMX depth 11.093 9.336 17.291 27.525 6.968 6.078 9.368 11.154 6.016 8.879 6.939 8.043 6.581 

AOB depth 4.447 3.044 5.376 20.229 3.280 3.491 3.433 3.869 2.364 3.701 3.097 3.005 2.886 

NOB depth 11.184 12.075 15.395 13.534 9.309 11.319 13.792 13.314 9.100 12.896 11.439 10.329 10.011 

AOB to AMX ADD 14.959 9.228 22.831 8.186 5.676 6.449 8.231 6.768 6.237 7.355 5.392 7.750 5.420 

AMX to AOB ADD 12.545 8.226 19.545 11.417 3.001 3.014 4.761 4.597 2.392 3.041 3.703 3.550 2.657 

AOB to AMX 1µm 0.108 0.080 0.156 0.082 0.038 0.047 0.050 0.061 0.038 0.032 0.033 0.047 0.039 

AMX to AOB 1µm 0.247 0.188 0.323 0.188 0.075 0.088 0.090 0.122 0.077 0.064 0.058 0.097 0.073 

AOB to AMX 2µm 0.250 0.165 0.359 0.133 0.067 0.084 0.098 0.105 0.071 0.072 0.064 0.096 0.078 

AMX to AOB 2µm 0.450 0.331 0.646 0.351 0.113 0.141 0.166 0.182 0.114 0.125 0.096 0.169 0.124 

AOB to AMX 4µm 0.384 0.238 0.609 0.198 0.121 0.141 0.151 0.179 0.126 0.149 0.097 0.157 0.127 

AMX to AOB 4µm 0.577 0.418 0.892 0.452 0.139 0.152 0.191 0.233 0.127 0.148 0.116 0.209 0.140 

NOB to AMX ADD 17.090 14.714 24.546 18.526 11.560 11.910 17.088 10.632 12.055 14.837 12.931 15.725 11.221 

AMX to NOB ADD 12.439 15.289 20.365 17.161 9.634 6.800 11.497 10.670 7.764 10.537 9.020 9.009 7.890 

NOB to AMX 1µm 0.154 0.158 0.192 0.139 0.091 0.107 0.088 0.102 0.114 0.120 0.111 0.078 0.121 

AMX to NOB 1µm 0.085 0.096 0.117 0.095 0.041 0.044 0.039 0.084 0.058 0.051 0.055 0.035 0.057 

NOB to AMX 2µm 0.324 0.323 0.429 0.337 0.189 0.214 0.225 0.194 0.223 0.272 0.230 0.196 0.234 

AMX to NOB 2µm 0.202 0.236 0.305 0.249 0.109 0.099 0.109 0.185 0.128 0.118 0.115 0.098 0.132 

NOB to AMX 4µm 0.491 0.507 0.686 0.527 0.312 0.358 0.438 0.349 0.339 0.400 0.378 0.350 0.348 

AMX to NOB 4µm 0.379 0.444 0.576 0.472 0.207 0.203 0.267 0.309 0.204 0.239 0.235 0.189 0.262 

NOB to AOB ADD 2.475 1.423 3.414 1.997 1.454 1.334 1.678 1.845 1.193 1.327 1.293 1.634 1.522 

AOB to NOB ADD 8.545 5.101 11.430 8.306 4.075 3.982 4.286 6.019 4.217 5.203 4.760 4.226 4.804 

NOB to AOB 1µm 0.364 0.214 0.496 0.329 0.284 0.180 0.226 0.213 0.220 0.230 0.214 0.278 0.258 

AOB to NOB 1µm 0.136 0.092 0.180 0.099 0.088 0.067 0.073 0.127 0.074 0.072 0.081 0.075 0.085 

NOB to AOB 2µm 0.559 0.310 0.782 0.434 0.379 0.282 0.348 0.374 0.258 0.324 0.313 0.365 0.336 

AOB to NOB 2µm 0.289 0.189 0.404 0.232 0.156 0.120 0.127 0.223 0.133 0.139 0.144 0.130 0.148 

NOB to AOB 4µm 0.378 0.206 0.492 0.278 0.214 0.192 0.259 0.286 0.182 0.199 0.197 0.244 0.225 

AOB to NOB 4µm 0.454 0.302 0.651 0.423 0.228 0.195 0.220 0.324 0.231 0.233 0.211 0.187 0.239 
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Figure 9.6. QQ-plots reveal a normal distribution of the observed output parameters.  

 



96 

9.4 Graphical thesis overview 
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