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Summary

Transportation systems are integral to modern societies’ functioning, facilitating people’s
movement to complete their daily tasks, such as going to work and school, as well as
delivering goods to meet people’s diverse needs. However, the escalating transportation
demands resulting from the rapid urbanization and the boom of E-commerce have exac-
erbated traffic congestion and given rise to environmental issues. Consequently, actions
must be taken to mitigate the negative externalities of growing transportation demands.

In 2007, the “Green Paper: Towards a New Culture for Urban Mobility” presented by the
European Commission advocated for better integration of passenger and goods trans-
port in urban planning. It emphasized that “Local authorities need to consider all urban
logistics related to passenger and freight transport together as a single logistics system.”
The integration of passenger and goods transport offers a multitude of advantages. First,
it could reduce traffic congestion and environmental pollution by reducing the number of
used vehicles on the road and the total vehicle kilometers traveled. This is achieved by
optimizing the routes of passenger and freight vehicles to curtail the overlap between
them. Second, this integration could enhance cost-effectiveness and boost the economy
by efficiently utilizing transportation resources (e.g., roads and vehicles), reducing oper-
ational expenses for businesses and improving mobility for people and goods. This, in
turn, increases trade and economic activity. Third, the integrated transportation system
improves the equity and accessibility to transport services, particularly in rural areas, as
merging logistics services with public transport makes the transportation service more
viable, ultimately reducing the isolation experienced by rural residents.

This thesis comprises four papers and makes several contributions to the realm of in-
tegrated people and goods transportation. It provides an overview of the development
of integrated transportation systems, introduces two novel forms to integrate passengers
and goods, validates their viability, and advances mathematical optimization within this
field.

The first study (Paper 1) comprehensively reviews integrated people-and-goods trans-
portation systems. It categorizes three forms of integrating people and goods transporta-
tion: people and parcels sharing a taxi, freight on transit, and crowdshipping. For each
integration form, this study introduces real-life applications and summarizes the corre-
sponding research problems. Furthermore, this study proposes a general framework for
planning integrated people-and-goods transportation systems, along with directions for
future research.

Followingly, this thesis explores two innovative solutions within the concept of integration
of people and goods transportation. The first solution combines passenger and parcel
transportation using demand-responsive vehicles (DRBs) and drones, considering the
advantages of DRBs in terms of flexibility and large capacity, as well as the fast speed and
low emissions of drones. DRBs can transport both passengers and parcels, while drones
are dedicated to parcel delivery. This thesis initially proposes a passenger and parcel
share-a-ride problem with drones (SARP-D) to address the routing problems for DRBs
and drones in this context and devises different solution approaches. Paper 2 develops an
arc-based mixed integer programming model solvable by CPLEX for small instances and
an adaptive large neighborhood search (ALNS) metaheuristic for large instances with 200
nodes, the largest instance in the existing literature. Paper 3 reformulates the arc-based
model to a path-based model and develops a column generation algorithm to solve it. The
column generation approach can produce high-quality solutions for SARP-D instances
involving 50 nodes. Meanwhile, it can be used to evaluate the metaheuristics for SARP-
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D.

The second solution this thesis investigates is public transport (PT)-based crowdship-
ping. In this concept, parcel lockers are installed in several PT stations. PT users act as
crowdshippers, picking up parcels from parcel lockers at their origin PT stations, taking
public transport, and delivering parcels to parcel lockers at their destination PT stations.
Paper 4 develops a parcel locker location model and a vehicle routing model to simulate
the PT-based crowdshipping system. A case study in a central district in Copenhagen is
conducted to assess the impacts of PT-based crowdshipping.

Computation results reveal that both SARP-D and PT-based crowdshipping could de-
crease the number of used vehicles on the road and total vehicle kilometers traveled,
effectively alleviating traffic congestion. This thesis will inspire innovation in practical
applications and contribute to advancing the research on integrated people and goods
transportation in academia.
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Resumé (Danish)

Transportsystemer er en integreret del af det moderne samfund og understotter perso-
ners mobilitet for at udfgre deres daglige opgaver, sasom at tage pa arbejde og skole,
samt levere varer. De stigende mobilitetskrav og deraf felgende transport har dog for-
veerret traengsel og givet trafikpropper i nettet, og det stigende transportarbejde har givet
anledning til miljgproblemer. Derfor bgr der traeffes beslutninger for at afbade de negative
eksternaliteter af voksende transportbehov.

| 2007 blev “the Green Paper: Towards a New Culture for Urban Mobility” fremlagt af
Europa-Kommissionen for bedre integration af passager- og godstransport i byplanleeg-
ning. Den understregede, at “De lokale myndigheder er ngdt til at overveje al bylogistik
relateret til passager- og godstransport sammen som et samlet logistiksystem.” Integra-
tionen af person- og godstransport giver en lang reekke fordele. For det forste kan det
reducere traengsel og miljgbelastning ved at reducere antallet af benyttede karetgjer pa
vejen og de samlede kgrte keretajskilometre. Dette opnas ved at optimere ruterne for
passager- og godskaretgjer for at begraense overlappet imellem dem. For det andet kan
denne integration gge omkostningseffektiviteten og booste gkonomien ved effektivt at
udnytte transportressourcer (f.eks. veje og karetgjer), reducere driftsudgifter for virksom-
heder og forbedre mobiliteten for mennesker og varer. Dette @ger igen handel og gko-
nomisk aktivitet. For det tredje forbedrer det integrerede transportsystem ligheden og
tilgeengeligheden til logistiktjenester, iszer i landdistrikter, da sammenlaegning af logistik-
tienester med offentlig transport ger transporttjenesten mere levedygtig, hvilket i sidste
ende reducerer den isolation, som landbeboere oplever.

Denne afhandling bestar af fire artikler og giver adskillige bidrag til omradet integreret
menneske- og godstransport. Den giver et overblik over udviklingen af integrerede trans-
portsystemer, introducerer to relativt nye former til at integrere passagerer og varer, va-
liderer deres levedygtighed og formulerer matematiske modeller og formulerer optime-
ringsteknikker inden for dette felt.

Den fgrste undersggelse (artikel 1) gennemgar integrerede transportsystemer for men-
nesker og varer. Den kategoriserer tre former for integration af person- og godstransport:
personer og pakker, der deler en taxa, fragt pa kollektiv trafik og crowdshipping (delegko-
nomi). For hver integrationsform introducerer afhandlingen dens virkelige applikationer
og opsummerer de tilsvarende forskningsproblemer. Desuden foreslas et generel fra-
mework for planleegning af integrerede transportsystemer for personer og varer, samt
retninger for fremtidig forskning.

Efterfelgende udforskes to innovative Igsninger inden for konceptet integration af person-
og godstransport. Den farste lasning kombinerer passager- og pakketransport ved hjzelp
af efterspgrgselsfglsomme kgretgjer (DRB’er) og droner, idet man tager fordelene ved
DRB’er i betragtning med hensyn til fleksibilitet og stor kapacitet, savel som dronernes
hgje hastighed og lave udledning af drivhusgasser. DRB’er kan transportere bade pas-
sagerer og pakker, mens droner er dedikeret til pakkelevering. Afhandlingen foreslar
indledningsvis et passager- og pakke-share-a-ride-problem med droner (SARP-D) for at
I@se ruteproblemerne for DRB’er og droner i denne sammenhang og udtaenke forskellige
lgsningstilgange. Artikel 2 udvikler en buebaseret blandet heltalsprogrammeringsmodel,
der kan lgses af CPLEX softwaren til sma forekomster og en adaptiv storkvarterssagning
(ALNS) metaheuristisk for store forekomster med 200 knuder, den starste forekomst i den
eksisterende litteratur. Artikel 3 omformulerer den kantbaserede model til en sti-baseret
model og udvikler en kolonnegenereringsalgoritme til at Isse den. Kolonnegenererings-
algoritmen kan producere Igsninger af hgj kvalitet til SARP-D-instanser, der involverer 50
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knuder. | mellemtiden kan den bruges til at evaluere metaheuristikken for SARP-D for
problemer af denne stgrrelse, inden SARP-D benyttes til Iasning af stgrre problemer.

Den anden lgsning, der undersgges, er offentlig transport-baseret crowdshipping. Her er
der installeret pakkeskabe pa flere offentlige transportstationer (PT). PT-brugere fungerer
som crowdshippere, henter pakker fra pakkeskabe pa deres oprindelige PT-stationer, ta-
ger offentlig transport og leverer pakker til pakkeskabe pa deres destinations PT-stationer.
Artikel 4 udvikler en pakkeskabsplaceringsmodel og en kgretgjsrutemodel for at simule-
re det PT-baserede crowdshipping-system. Virkningerne af PT-baseret crowdshipping er
undersggt med et casestudie i en central bydel i Kgbenhavn baseret pa data fra en starre
logistikudbyder i Danmark.

Beregningsresultaterne afslgrer, at bade SARP-D og PT-baseret crowdshipping kan re-
ducere antallet af brugte karetgjer pa vejen og det samlede antal karte karetajskilometer,
hvilket effektivt kan afhjaelpe trafikpropper. Denne afhandling vil inspirere til innovation
i praktiske anvendelser og bidrage til at fremme forskningen i integreret menneske- og
godstransport i den akademiske verden.
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1 Introduction

1.1 Background

Over the past few decades, the world has experienced a significant transformation marked
by rapid population growth, urbanization, and the rise of E-commerce. Back in 1950, the
global population was 2.5 billion, with the majority (75%) residing in rural areas. The urban
population has outpaced overall population growth since then. By 2020, the urban popu-
lation swelled to 4.4 billion, constituting 56% of the world’s population. It is projected that
the urban population will escalate to 6.7 billion by 2050, making up 68% of the world’s
inhabitants (Habitat, 2022). This urban expansion has coincided with the exponential
growth of E-commerce, primarily driven by the evolution of the Internet and accelerated
during the COVID-19 pandemic. Global E-commerce sales, which amounted to $1.3 tril-
lion in 2014, soared to $5.717 trillion in 2022, and are expected to ascend to $8.1 trillion
by 2026 (Statista, 2022).

The remarkable rise in urbanization and E-commerce has inevitably led to an increased
demand for transportation in urban areas. This escalating transportation demand has un-
doubtedly contributed to economic growth, but it also placed immense pressure on urban
transportation networks, increasing greenhouse gas (GHG) emissions and exacerbating
traffic congestion. As reported by the European Environment Agency (2022), GHG emis-
sions from the transport sector increased by 33% between 1990 and 2019. Furthermore,
the estimated annual road congestion cost in the EU is €110 billion, exceeding 1% of the
EU’s GDP (European Court of Auditors, 2019).

Numerous cities around the world are grappling with the challenge of mitigating traffic
congestion and environmental concerns while striving to meet people’s expectations for
convenient transport and cost-effective and timely delivery, especially for the last mile.
To cope with the surge of transportation demands and tackle the last-mile dilemma, the
European Commission (2007) has advocated for local authorities to view passenger and
freight transport together as a unified logistics system, departing from the conventional
practice of managing and operating them separately. While the integration of passenger
and freight transportation over decades has been successfully implemented in long-haul
journeys such as water and air transport, it is less prevalent for short-distance travel.
Given that both passenger and freight vehicles share and vie for the capacity of the same
urban transport infrastructure, integrating their transportation, particularly when they ex-
hibit similar travel patterns, is a logical and beneficial endeavor. Moreover, the integration
of passenger and freight transportation holds several compelling advantages:

Mitigated traffic congestion and reduced environmental pollution. When pas-
sengers and freight are transported simultaneously, some overlapping routes of
passenger and freight vehicles could be shared. Consequently, the total vehicle
kilometers traveled, along with the carbon footprints and air pollution, could be re-
duced. Meanwhile, the number of used vehicles to serve the same transportation
demands would also be reduced, alleviating the traffic congestion.

Improved cost-efficiency and bolstered economic growth. A well-developed
integrated transportation system efficiently utilizes transportation resources (e.g.,
roads and vehicles), leading to reduced operational expenses and labor costs for
businesses. Additionally, the alleviation of traffic congestion streamlines the flow of

Innovative Last-mile Solutions:Integrating People and Goods Transportation 1



people and goods, benefiting both businesses and individuals, ultimately fostering
economic activity and trade.

Enhanced equity and access to transport services. Integrating passenger and
freight transportation contributes to bridging the urban-rural divide by extending
transport services accessibility, including logistics service and public transport ser-
vice, to rural areas. Rural areas often have limited public transport and logistics ser-
vices due to low density and high transportation costs. Combining logistics service
with public transport will augment the revenues of public transport companies and
diminish the operational cost of logistics companies. Consequently, public transport
companies and logistics companies will not reduce or shut down their services in ru-
ral areas. This ensures that residents in rural areas get easier access to transport
services and feel less isolated.

Motivated by these potential benefits, innovative last-mile solutions have emerged in the
last decade. These solutions, having various terminologies such as passenger and par-
cel share-a-ride (Li et al., 2014), crowdshipping (Le et al., 2019), freight on transit (Elbert
& Rentschler, 2022), and cargo hitching (Van Duin et al., 2019), are all centered on the
core idea of integrating people and goods transportation. Some of them leverage emerg-
ing technologies such as mobile communication technology and are the products of the
sharing economy and gig economy, e.g., passenger and parcel share-a-ride and crowd-

shipping.

Despite these strides, the field of integrated people-and-goods transportation is still in
its infancy, with new integration forms continually emerging alongside technological ad-
vancements. Two critical questions arise: Is there a unified framework capable of guiding
the planning and operation of such an integrated system when a new integration form
emerges? What untapped opportunities await for merging people and goods transporta-
tion within our evolving technological landscape? This thesis answers these two ques-
tions.

1.2 Objective and research questions

The objective of this thesis is thus to advance the understanding of integrated people-and-
goods transportation systems and explore innovative integration forms that fuse the idea
of integrating people and goods transportation with emerging last-mile solutions to im-
prove transportation efficiency and reduce congestion in urban areas. In order to achieve
the aforementioned objective, a set of research questions are formulated and addressed
in corresponding chapters of the thesis.

Research question 1 (Q1). Which framework can comprehensively represent and
guide the planning and operation of an integrated people-and-goods transportation
system?

The integration of people and goods transportation has gained considerable attention
in both literature and practice, resulting in a multitude of integration forms. What is the
present status of the development of integrated people-and-goods transportation? What
lessons can we learn from past successful and failed applications? Despite the diver-
sity in integration forms, is it possible to find a unified framework that could encapsulate
the characteristics of integrated people-and-goods transportation systems and serve as
a guidance for planning and operation of existing integration forms and future endeav-
ors? Such a framework is essential for understanding the integrated people-and-goods
transportation system.
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Research question 2 (Q2). Are there innovative solutions that incorporate the con-
cept of integrating people and goods transportation with other last-mile solutions?

Besides integrating people and goods transportation, various solutions have been pro-
posed to address the last-mile problem from distinct angles. Concerning transportation
means, one notable initiative is Amazon’s introduction of drone delivery services in Cal-
ifornia and Texas. Drone delivery has been regarded as a promising last-mile solution
owing to its fast speed and environmental benefits. Regarding handover ways, parcel
lockers have been developed rapidly in recent years, especially in Nordic countries, as
they could reduce the number of not-at-home deliveries and the last-mile delivery cost.
As reported by the European Regulators Group for Postal Services (2022), the counts of
parcel lockers in Denmark and Norway in 2021 quadrupled compared to 2017, reaching
1740 and 2288 in Denmark and Norway, respectively. This research question seeks to
explore the synergy between integrating people and goods transportation and emerging
last-mile solutions. By delving into this synergy, researchers and practitioners can unlock
new opportunities to mitigate adverse impacts of transportation while meeting peoples’
expectations for swift and reliable last-mile services.

Research question 3 (Q3). What are the benefits of the proposed innovative solu-
tions, and how can they be quantified?

This research question shifts the focus from theoretical concepts to practical outcomes,
aiming to provide valuable insights into the tangible benefits of integrated people-and-
goods transportation. The critical planning problems involved in the innovative solutions
that this thesis proposes are optimization problems. By solving these optimization prob-
lems, this thesis gains insights into how the proposed integrated people-and-goods trans-
portation systems compare to traditional separated transportation systems. The key per-
formance indicators considered in this thesis are total operation costs, the number of used
vehicles, and the vehicle kilometers traveled. Comparing these indicators in the proposed
systems with those in separated people and goods transportation systems, the benefits
of the proposed solutions in this thesis are quantified. There are two types of methods
for solving optimization problems: exact methods and heuristics/metaheuristics. Exact
methods are acknowledged for their ability to provide global optimal solutions, but they
are also recognized for their limitations in solving large instances. In contrast, heuristic-
s/metaheuristics are highlighted for their computational efficiency and capacity to solve
large instances, but they do not guarantee the global optimality of their solutions.

1.3 Overview of the thesis

The remainder of this thesis comprises four papers that address the aforementioned
three research questions and a concluding chapter. Chapter 2 is a review paper on inte-
grated people-and-goods transportation systems that addresses research question Q1.
Chapters 3 and 4 focus on the first proposed solution: passenger and parcel share-a-
ride problem with drones (SARP-D), which uses demand-responsive buses (DRBs) and
drones to combine passenger and parcel transportation. In this concept, DRBs could
serve both passenger and parcel requests, while drones perform only parcel delivery.
These chapters present different solution methods and address research questions Q2
and Q3. Chapter 5 focuses on the second proposed solution: public transport (PT)-based
crowdshipping, where PT passengers act as crowdshippers, transporting parcels between
parcel lockers positioned at their origin and destination PT stations. This chapter tackles
research questions Q2 and Q3. Finally, Chapter 6 concludes this thesis by responding to
the three research questions, summarizing contributions, and providing future research
directions. Figure 1.1 presents the overview of this thesis.
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Figure 1.1: Overview of the thesis

Chapter 2 begins with categorizing three distinctive forms of integrating people and goods
transportation: people and goods share-a-ride, freight on transit, and crowdshipping.
Subsequently, this chapter delves into real-world applications of these integration forms
and points out the main challenges for implementing the integrated transportation system.
The challenges encompass various dimensions: policy, economics, society, organization,
and technology. Given that technical challenges are more tractable and solving technical
problems contributes to mitigating other problems, this chapter embarks on an examina-
tion of technical problems and corresponding solutions that have been explored in existing
literature for each integration form. Drawing from this extensive review, this chapter pro-
poses a framework designed for planning and operating an integrated people-and-goods
transportation system. By mapping the technical problems studied within existing inte-
gration forms onto the proposed general framework, two key research opportunities are
identified: to enhance or expand existing research and to conduct pioneering research to
fill the blanks in the framework.

Chapter 3 elaborates on the SARP-D and formulates it as an arc-based mixed integer
non-linear programming model. The objective is to minimize the total costs, including
transportation costs of DRBs and drones and the delay penalty cost at each node. A
linearization method is presented to make the model solvable by a commercial solver
(CPLEX) for small instances with up to 12 nodes. An adaptive large neighborhood search
(ALNS) metaheuristic is devised to solve large instances. Two works are conducted to
evaluate the effectiveness of the ALNS algorithm. First, this chapter compares the re-
sults given by ALNS and CPLEX on small instances of SARP-D instances. The results
reveal that our ALNS could produce the optimal solutions as CPLEX does but takes much
less time. Second, this chapter applies the proposed ALNS to solve instances of vehicle
routing problems with drones (VRP-D) provided by Sacramento et al. (2019). The com-
parison results demonstrate that although the proposed ALNS is not explicitly designed
for the VRP-D, it can effectively solve the VRP-D, yielding results very close to a special-
ized algorithm for the VRP-D proposed by Sacramento et al. (2019). Then, this chapter
uses ALNS to solve large SARP-D instances with up to 200 nodes and conducts sen-
sitivity analysis on some key parameters in the SARP-D to provide valuable managerial
insights to SARP-D operators. The computation results show that integrating passenger
and parcel transportation reduces the total operation costs, the number of used vehicles,
and total DRB-traveled miles.
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Chapter 4 is a follow-up study of Chapter 3. Chapter 4 focuses on the same problem as
Chapter 3, but employs a different solution methodology, which can be used to evaluate
the ALNS presented in Chapter 3. Specifically, Chapter 4 formulates a path-based model
for the SARP-D and uses the column generation (CG) approach to solve it. The pric-
ing problem of the CG is an elementary shortest path problem with resource constraints,
which is solved by a tailored labeling algorithm. To speed up the procedure of CG, this
chapter devises a heuristic to find paths with negative reduced costs and proposes two
propositions to reduce the number of generated labels in the labeling algorithm, hereby
reducing the computation time of the labeling algorithm. Extensive experiments are con-
ducted to test the efficiency of the CG. The results prove that the CG is able to solve not
only the SARP-D efficiently for instances comprising up to 50 nodes, but also two vari-
ations of the SARP-D, i.e., VRP-D and one-to-one pickup and delivery problem (PDP).
Moreover, this chapter conducts sensitivity analysis on key parameters of the SARP-D,
e.g., the distribution area of the network, the maximum number of intermediate stops be-
tween one passenger request, the maximum drone flying time, and the time window. The
results are consistent with what has been found in Chapter 3.

Chapter 5 focuses on the second solution: PT-based crowdshipping. This chapter aims
to assess the potential benefits of PT-based crowdshipping. PT-based crowdshipping
involves two critical problems: the location problem for parcel lockers and the vehicle
routing problem for delivery vans. For the former problem, a mixed integer programming
model is formulated to determine in which PT stations to install parcel lockers for recipi-
ents picking up their parcels. The model can be solved by CPLEX. The routing problem
of delivery vans is formulated as a capacitated vehicle routing problem with deadlines.
A mixed integer programming model and an ALNS metaheuristic were developed to find
vehicle routes with minimum operation costs. A case study in a central district in Copen-
hagen using real-world data is conducted to estimate the impacts of PT-based crowdship-
ping. The results reveal that compared with the traditional distribution mode, PT-based
crowdshipping offers several key advantages, specifically, reductions in the total vehicle
kilometers traveled, the number of used vehicles, and the total working time of drivers.
The extent of these benefits depends on the proportion of parcels shifted from delivery
vans to crowdshippers.

The chapters of this thesis are based on the following papers:

Chapter 2 (Paper 1): Cheng, R., Jiang, Y., & Nielsen, O. A. (2023). Integrated
people-and-goods transportation systems: from a literature review to a general
framework for future research. Transport Reviews, 1-24. DOI: 10.1080/01441647.
2023.2189322.

Chapter 3 (Paper 2): Cheng, R., Jiang, Y., Nielsen, O. A., & Pisinger, D. (2023).
An adaptive large neighborhood search metaheuristic for a passenger and parcel
share-a-ride problem with drones. Transportation Research Part C: Emerging Tech-
nologies, 153, 104203. DOI: 10.1016/j.trc.2023.104203.

Chapter 4 (Paper 3): Cheng, R., Jiang, Y., Nielsen, O. A., & Van Woensel, T. (2023).
A passenger and parcel share-a-ride problem with drones: A column generation
approach. Under review in Transportation Research Part B: Methodological.

Chapter 5 (Paper 4): Cheng, R., Fessler A., Larsen, A., Nielsen, O. A. & Jiang,
Y. Assessing the impacts of public transport-based crowdshipping: A case study
in a central district in Copenhagen. To be submitted to Frontiers of Engineering
Management.
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2 Integrated people-and-goods
transportation systems: from a
literature review to a general framework
for future research

Cheng, R., Jiang, Y., & Nielsen, O. A. (2023). Integrated people-and-goods transportation
systems: from a literature review to a general framework for future research. Transport
Reviews, 1-24.

Abstract

The promotion of urban mobility by integrating people-and-goods transportation has at-
tracted increasing attention in recent years. Within this framework, diversified forms such
as co-modality, freight on transit, and crowdshipping have been proposed, piloted or im-
plemented. The success of the implementation and market penetration depends on not
only the novelties of the concept but also the planning and operational efficiency. Thus,
a comprehensive review focusing on the operation of integrated people-and-goods trans-
portation systems and associated critical decisions and subproblems is performed. Dif-
ferent practical forms in which people and goods are transported in an integrated manner
are identified. The critical decisions associated with each form and subproblem are dis-
cussed, along with corresponding models and solution approaches. Notably, because
integrated transportation systems are in the early exploration stage at present, new forms
are expected to emerge. Therefore, this paper proposes a general framework to realise
the planning and operation of new forms in the future. The decisions and subproblems
identified from existing forms are fed to the proposed general framework to identify two key
research opportunities: to improve or extend existing research and to conduct pioneer-
ing research to fill the gaps in the frameworks for operating potential forms of integrated
people-and-goods transportation.

Keywords: Integrated people-and-goods transportation; shared mobility; share-a-ride;
freight on transit; crowdshipping
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2.1 Introduction

Urban mobility faces increasing challenges with population growth, urbanisation, e-commerce
and varying land-use patterns. Many daily tasks require transporting people or goods.
While transport services enhance the convenience of daily life, they also have adverse
effects, such as greenhouse gas emissions, local air pollution, traffic accidents, and con-
gestion (European Commission, 2019). These negative externalities can be mitigated
by establishing shared and integrated transportation systems (Mourad et al., 2019). Al-
though moving people and goods together has been successfully implemented in long-
haul transportation modes such as aircraft and ferries, passenger and goods movements
in urban transport systems are typically planned and performed separately. Since the
transportation of people and goods is mutually affected by sharing and competition for
road space and infrastructures, a separate implementation may underutilise the existing
infrastructure and vehicle capacity. Thus, a promising solution, integrating people-and-
goods transportation systems, has attracted increasing attention in recent years.

The idea of transporting people and goods together in an urban transportation context was
highlighted by the European Commission, stating that “Local authorities need to consider
all urban logistics related to passenger and freight transport together as a single logistics
system” (European Commission, 2007). Since then, several researchers have focused on
integrated people-and-goods transportation systems (hereinafter referred to as integrated
transportation systems). Diverse novel terms such as co-modality, freight on transit (FOT),
crowdshipping, cohabitation of passengers and goods, and cargo hitching have been
proposed, coupled with various methodological developments.

There have been several remarkable reviews focusing on particular forms of integrated
transportation systems, like crowdshipping and FOT (Alnaggar et al., 2021; Elbert &
Rentschler, 2022; Le et al., 2019), discussing it within broader topics such as shared
mobility (Mourad et al., 2019), collaborative urban transportation (Cleophas et al., 2019),
and city logistics (Savelsbergh & Van Woensel, 2016), or conducting bibliometric analysis
(Cavallaro & Nocera, 2022). This paper offers a systematic review to complement ex-
isting reviews with the following objectives: (1) categorising different forms of integrated
transportation systems; (2) identifying the key issues for different forms and discussing
corresponding solutions; (3) proposing a general framework to describe the operation of
integrated transportation systems; and (4) giving recommendations for future develop-
ment and research.

The remaining paper is organised as follows. Section 2.2 describes different forms of
integrated transportation systems. Section 2.3 specifies the research problems in existing
studies. These problems are incorporated in a general framework proposed in Section
2.4. Section 2.5 highlights the research gaps and future research directions.

2.2 Forms of integrated people-and-goods transportation

We define an integrated people-and-goods transportation system as a system in which
the resources for transporting people and goods are jointly utilised such that people and
goods are transported in the same vehicle, either private or public, or share the same
infrastructure, such as railways, stations, and platforms. We then categorise three forms:
people and goods share-a-ride (SAR), FOT, and crowdshipping. In what follows, we will
first introduce the definition and characteristics of each form (see Table 2.1), then com-
ment on real-world applications.

2.21 Definition
(1) People and goods share-a-ride
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Table 2.1: Forms of integrated transportation systems in the literature

Integration form  Transportation means Shared resource Goods operators

Vehicles Infrastructure Dedicated workers* Crowd-shippers** Senders and receivers Practical application

Share-a-ride

N
N

Taxis
SAVs

22 2|2 2

Buses v )
Metros v v v
Trains v v v
Freight on transit Trams v v v
Personal rapid transit v N v
Drones v v
Robots v N
Crowdshipping Private cars/bikes/ cargo bikes ‘/ N
Public transport N v \

*Dedicated workers: Staff at stations or distribution centres are in charge of loading and unloading goods.
**Crowdshippers: Ordinary people assist in picking up and delivering goods.

(2)

©)

In this form, a shared vehicle, e.g., a taxi or shared autonomous vehicle (SAV),
provides door-to-door service for both passengers and goods. The vehicle with
passengers can simultaneously transport small parcels such as mail, documents,
and takeaway meals. The primary research problem involved is the routing problem,
known as the people and parcel SAR problem (SARP, Li et al., 2014).

Freight on transit

Elbert and Rentschler (2022) defined FOT as “the integrated and organised trans-
portation of passengers and goods within urban areas using a system of vehicles
such as buses and trains that operate at regular times on fixed routes and are used
by the public.” We hereby extend this definition by considering (1) emerging flexible
public transport, particularly, demand-responsive services such as personal rapid
transit and freight rapid transit; (2) urban-suburban and urban-rural transit. Depend-
ing on the public transport vehicles used, goods and passengers could share three
resources in FOT: carriage, vehicle, and tracks.

Crowdshipping

Buldeo Rai et al. (2017) defined crowdshipping as “an information connectivity en-
abled marketplace concept that matches supply and demand for logistics services
with an undefined and external crowd that has free capacity with regards to time
and/or space, participates on a voluntary basis and is compensated accordingly”.
Crowdshippers are categorised into dedicated and ad-hoc crowdshippers. Dedi-
cated crowdshippers devoted their available time to perform deliveries using dedi-
cated trips. In contrast, ad-hoc crowdshippers utilise their already planned trips with
extra capacities. The two modes of crowdshipping have their own advantages and
disadvantages. For example, crowdshipping with dedicated crowdshippers usually
provides more efficient crowd logistics than ad-hoc crowdshippers, but it leads to
much longer travel distances than crowdshipping with ad-hoc drivers (Buldeo Rai
et al., 2018). Both types of crowdshipping are likely to be functional in the future.
Nonetheless, in this study, we do not consider dedicated crowdshippers because,
although people and goods move simultaneously, they do not integrate peoples’
existing travel demands but induce new ones. Without further specification, the
crowdshippers in the rest of this paper refer to as ad-hoc crowdshippers. Primar-
ily, crowdshippers perform crowdsourced delivery through a single transportation
mode, e.g., taxis, public transit, or their vehicles. With the emerging concept of mo-
bility as a service (MaaS), He and Csiszar (2021) and Le Pira et al. (2021) proposed
utilising multiple transportation modes.
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2.2.2 Applications and barriers

2.2.21 Applications

Table 2.2 lists the applications of different forms. To the best of the authors’ knowl-
edge, there are no real-world applications of people-and-goods SAR yet. Hence, we
only present FOT and crowdshipping.

Table 2.2: Application of integrated people-and-goods transportation

Integration form  Transportation means Projects Status Comment / Failure reason
Bussgods (Sweden) On going
Matkahuolto (Finland) On going
Bus Greyhound Freight (Australia) On going
Maritime Bus (Canada) On going
Greyhound Package Express (US) Closed in September 2022 Concentrate on passenger services
Metro Subway-integrated city logistics system (Japan) September 2-15, 2010 Lack of money
Freight on transit  Train Dabbawalas (India) On going
CarGo Tram of Volkswagen (Dresden) November 2000 — December 2020 End of producing
Cargo-Trams/E-Trams (Zurich) On going
Tram Recycling Tram (lasi) On going
GuterBim (Vienna) May 2005 — June 2007 Lack of customer interest
City Cargo (Amsterdam) March 2007 — April 2007 Lack of money
TramFret (Saint-Etienne) June 2017 — July 2017 Lack of customer interest
DHL Myways (Stockholm) September 2013 — Unknown Unknown
Private vehicles Hitch (US) Unknown Unknown
Crowdshipping Nimber (London, Athens, Oslo) On going
Roadie (US) On going
. Crowd ship (Denmark) September — October 2020
Public transport Offi-Packerl (Austria) Planning
Sources:
Alnaggar et al., 2021; Arvidsson et al., 2016; Arvidsson and Browne, 2013; Cochrane et al., 2017; Fessler et al., 2022; Kikuta et al., 2012; Qu et al., 2022;
https://www.railjournal.com/passenger/metros/tokyo-metro-to-test-parcel-operation /;
https://en.wikipedia.org/wiki/CarGoTram;
https://industriemagazin.at/artikel /die-wiener-gueterbim-das-kurze-gastspiel-der-transport-strassenbahn /;
http://www.tautonline.com/zurichs-cargo-tram/;

https:/
https:

(1) FOT

10

(a)

(b)

agtr.com/association/actualites/freight-transit-new-concept-city-logistics;
brutkasten.com /oeffi- packerl-entwicklung-startet/.

Bus-based FOT. This is the most widely implemented FOT system worldwide,
e.g., Bussgods in Sweden, Matkahuolto in Finland, Greyhound Freight in Aus-
tralia, Maritime Bus in Canada, and Greyhound Package Express US. It usually
operates on existing long-distance transit routes connecting regional centres
and rural areas. Goods utilise the available space on passenger vehicles, e.g.,
the luggage compartment or a dedicated goods compartment of a bus. Most
above-mentioned systems are still in operation, except Greyhound Package
Express US, which ends on September 30, 2022, for concentrating on pas-
senger services.

Tram-based FOT. Most of the tram-based FOT are implemented in Europe in
the form that dedicated freight trams share tracks with passenger trams con-
necting urban and suburban areas. Three projects (CarGo Tram of Volkswa-
gen, Cargo-Trams/E-Trams in Zurich, and Recycling Trams in lasi) succeed un-
der specific conditions. The success of the first one is attributed to its low cost
of building additional connection tracks, as the factory is only about three miles
away from the logistics centre. The other two are provided as public service
and avoid additional infrastructure investment and interference with passen-
ger traffic by carefully selecting stop stations. Three projects are short-lived.
City Cargo in Amsterdam was abandoned because it failed to acquire ade-
quate finance for investments in trams, electric last-mile delivery vehicles, new
tracks, and distribution centres, and there were conflicting objectives among
stakeholders (Arvidsson & Browne, 2013). The other two projects, GiterBim
in Vienna and TramFret in Saint-Etienne were discontinued due to a lack of
customer interest.
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(c) Train-based FOT. One successful example of the train-based FOT is the Dab-
bawala food delivery system in Mumbai. It links kitchens in local villages to
people working in metropolitan areas using a hub-and-spoke transport system
with passenger trains and bicycles.

(d) Metro-based FOT. We only found one trial in Sapporo that tested using the
metro to transport parcels from the suburbs to the city centre. The trial was
successful, but the project ceased due to poor demand and the high cost of
retrofitting metro stations to handle goods.

(2) Crowdshipping

Alnaggar et al. (2021) reviewed crowdsourced delivery platforms operated by E-
retailers (e.g., Amazon Flex) and couriers (e.g., DHL), among which four are with
ad-hoc crowdshippers, i.e., DHL Myways, Hitch, Nimber, and Roadie. Hitch mainly
supports local deliveries, while others allow for both local and long-haul deliveries.
Notably, public transport-based crowdshipping has emerged in recent years. It al-
lows passengers to bring a parcel from a parcel locker located in a public transport
station to another along their ride. A “Crowd ship” trial was conducted in the Greater
Copenhagen Area in 2020 to analyse people’s preference for public transport-based
crowdshipping. A similar project, “Offi-Packerl” in Vienna, is expected to make the
first test in Vienne in 2024.

2.2.2.2 Barriers
We summarise the main challenges for deploying the integrated system from five aspects,
policy, economics, society, organisation, and technology.

First, passengers and goods transportation are usually regulated by different authorities
with separate rules and policies (Bruzzone et al., 2021). Passengers can carry goods on
their trip, but taxi drivers and privately hired vehicles are forbidden to be couriers if no
passenger is on board. This could explain why taxi companies or technology companies
(e.g., Uber, Grab, etc.) do not offer integrated people and goods transportation services.
However, in practice, there is a grey area where a passenger hires a taxi while the “real
passenger” is a package. The good news is that the Land Transport Authority of Singa-
pore is monitoring recent trends to see if these regulations need to be reviewed, and a
temporary relaxation of this rule was extended for a third time .

Secondly, economic viability is important for the success of a project. Many FOT projects
were terminated due to a lack of money or customer interests and conflicting objectives
among stakeholders. These issues could be partially avoided by carefully identifying
suitable markets and optimising the organisation/operation/revenue allocation of the inte-
grated transport service.

Thirdly, people may have psychological barriers. For example, passengers may feel un-
safe or reluctant to share a ride with goods; the conflicts between freight operators and
passengers at transit stations may increase passengers’ discomfort level; crowdshippers
may be concerned about privacy. These problems could be mitigated by regulating the
type of goods, proper planning of integrated transportation services, and tightening regu-
lations on privacy and data security.

Fourthly, organisational challenges include finding initial capital investment, coordinat-
ing various stakeholders and entities, dealing with resistance from passengers, transit

https://tnp.straitstimes.com /news/singapore/cabbies- private- hire-drivers-can-make- deliveries-until-
march
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agencies, workers from logistics service providers, ensuring the safety of passengers
and goods, etc (Cochrane et al., 2017).

Lastly, technical challenges include searching underutilised capacity, designing the routes
and schedules of shared vehicles, selecting routes for FOT, integrating freight delivery and
passenger schedules, coordinating last-mile delivery with FOT, matching crowdshippers
with parcels, designing an optimal price for the integrated transportation systems, etc.

Overall, the technical challenges are easier to overcome than the challenges on other
dimensions. Besides, solving technical challenges could contribute to resolving other
challenges. For example, deploying advanced techniques aiming at operating integrated
transportation systems cost-effectively could enhance the economic viability of the inte-
grated system, which contributes to attracting investors; well-planned freight hub location,
route and schedules of freight vehicles could reduce unnecessary conflicts between pas-
sengers and goods or inconvenience to passengers.

2.3 Literature review

As discussed in the previous section, solving technical problems contributes to mitigating
the barriers to implementing integrated transportation systems. This section reviews the
technical problems examined in the existing studies for each form listed in Table 2.1 (see
Figure 2.1).

Integrated people-and-goods transportation system

v

A

v

People and goods share-a-ride
(SAR)

Route planning for SAR vehicles
(Section 3.1.1)

Pricing
(Section 3.1.2)

Freight on transit
(FOT)

Crowd shipping

Freight hub location
(Section 3.2.1)

Demand and supply prediction
(Section 3.3.1)

Route planning
(Section 3.2.2)

Matching strategy
(Section 3.3.2)

Timetabling
(Section 3.2.3)

Facility location

(Section 3.3.3)

Freight flow assignment
(Section 3.2.4)

Route planning for vehicles and
goods
(Section 3.3.4)

Pricing
(Section 3.2.5)

Pricing and compensation
(Section 3.3.5)

Figure 2.1: Technical problems that have been studied for different integration forms

2.3.1 People-and-goods share-a-ride

2.3.1.1 Route planning for share-a-ride vehicles

Li et al. (2014) first defined the routing problem for integrated transportation using taxis
as SARP. Several regulations were introduced to ensure high-quality services: (R1) Pas-
sengers must have a maximum ride time. (R2) An upper limit exists on the number of
parcels served during one passenger service. (R3) Two passengers cannot be served
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simultaneously by one taxi. R1 and R2 aim to decrease the influence of parcel delivery
on passenger services, and R3 aims to ensure personal security and convenience (e.g.,
gender or smoking preferences). These regulations were gradually relaxed to present a
more general SARP, leading to more profits. Beirigo et al. (2018) and Tholen et al. (2021)
eliminated R2 and R3. Yu et al. (2018, 2023) relaxed all these regulations.

Many features have been added to the original SARP to accommodate various application
scenarios. Yu et al. (2021a) allowed passenger compartments to store parcels, which
utilises the total vehicle capacity more flexibly and efficiently. Yu et al. (2023) extended a
single depot to multiple depots, given that it is challenging to serve scattered transportation
demands from one depot. To make the models closer to real life, Li et al. (2016b) took
stochastic travel times and delivery locations into account. Ren et al. (2021) described the
dynamics in SAR by updating parcel delivery information and reoptimizing routes when
vehicles arrive at distribution centres (the origins of parcels). Considering the trends of
electrification and automation in transportation, Lu et al. (2022) investigated a system with
a mixed fleet of electric and gasoline taxis, while Beirigo et al. (2018), Tholen et al. (2021),
and Zhang et al. (2022) envisioned a system with SAVs.

To solve these problems, scholars have developed different models and solution ap-
proaches. MIP models and two-stage stochastic programming models are commonly
used for deterministic problems and problems with uncertainty, respectively. Regarding
solution approaches, commercial solvers such as CPLEX and Gurobi can solve small in-
stances (Beirigo et al., 2018; Li et al., 2014; Tholen et al., 2021). Metaheuristics, e.g.,
genetic algorithm (Ren et al., 2021), adaptive large neighbourhood search (ALNS) (Li
et al., 2016a, 2016b), simulated annealing (Yu et al., 2021a; Yu et al., 2018; Yu et al.,
2023), are widely applied to solve large-scale instances since SARP is an NP-hard prob-
lem. Other solution methods include the Lagrangian dual decomposition method (Zhang
et al., 2022), math-heuristic (Lu et al., 2022), and model-free deep reinforcement learning
(Manchella et al., 2021a; Manchella et al., 2021b).

2.3.1.2 Pricing

The above-mentioned studies were based on a given pricing strategy. Specifically, the ini-
tial price for each passenger and parcel was considered to remain unchanged or increase
based on travel distance. However, a passenger may obtain a discount depending on the
degree of deviation from his/her direct route (Li et al., 2014; Ren et al., 2021; Yu et al.,
2021a). A more interesting strategy developed by Manchella et al. (2021a) allows drivers
and passengers to negotiate for the best price.

2.3.2 Freight on transit

2.3.2.1 Freight hub location

The freight hub location problem aims to choose among existing passenger public trans-
port stations as distribution centres for delivering or transhipping goods. Most papers on
this topic rely on the metro system as the backbone, indicating that researchers are opti-
mistic that freight can be successfully integrated with the metro system. We divide these
studies into two groups based on whether all selected freight hubs have the function of
connecting underground and ground networks. In the first group, goods can enter the
metro system from the ground and leave from the metro system to the ground at any
selected freight hubs (Ji et al., 2020; Kizil & Yildiz, 2023; Zhao et al., 2018). The deci-
sion variables are the locations of freight hubs. In the second group, there are two types
of freight hubs (Dong et al., 2018; Sun et al., 2022). Freight hubs of the first type are
similar to the freight hubs in the first group, where goods have access and egress to the
underground and ground networks. Freight hubs of the second type can only be used for
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transhipping freight between different metro lines, not connected to the ground network.
In addition to deciding the locations of freight hubs, their functions are decided as well.

Azcuy et al. (2021) considered a more general urban delivery system using public trans-
port where the public transport could be the bus, metro, tram, etc. Freight can be trans-
ferred from public transport to last-mile delivery vehicles at any selected station.

2.3.2.2 Route planning

(1)

(2)

14

Route planning for public transport vehicles

Two types of public transport services have been studied in FOT, scheduled public
transport (with fixed lines and schedules) and demand-responsive public transport
(with flexible routes and schedules). When scheduled public transport is used in
FOT, it is usually assumed that the capacity of the public transport system is un-
derutilised, and the existing routes and schedules of public transport vehicles are
treated as exogenous model parameters. Only Li et al. (2021) designed the stations
where added freight trains should stop, categorised as a route planning problem.

When FOT is based on demand-responsive public transport, passengers and freight
could be on a shared network or in the same vehicle. For the former scenario,
Fatnassi et al. (2015) devised two routing strategies: a reactive dynamic matching
strategy and a proactive one for passenger rapid transit (PRT) and freight rapid
transit (FRT). For the latter, Chebbi and Chaouachi (2016) studied an empty vehicle
redistribution problem that minimizes the empty movement and the number of used
vehicles while reducing the wasted capacity of PRT. Peng et al. (2021) explored a
bus-pooling service at a railway station, where demand-responsive buses pick up
passengers and parcels and deliver them to their destinations. Parcels with similar
itineraries and departure times to passengers were matched and inserted into bus
routes following the shortest road route.

Route planning for supportive vehicles

As conventional public transport modes with fixed routes cannot provide door-to-
door services, support vehicles (e.g., small trucks or electric vehicles run by logistic
companies) are typically used to realise the first/last-mile transportation.

Route planning for supportive vehicles is usually formulated as variants of pickup
and delivery problem (PDP) to accommodate operation modes. Masson etal. (2017)
modelled a PDP with transfers in a setting where all goods originate from ware-
houses known as consolidation and distribution centres (CDCs). Buses start from a
CDC and travel to bus stops where goods are unloaded and transhipped to support
vehicles for the last-mile delivery. Similar work was performed by Ye et al. (2021)
for a metro-based FOT. The difference is that the supportive vehicles also perform
the first-mile delivery from the CDC to metro stations.

Another variant is the PDP with scheduled lines (PDP-SL). Different from the PDP
with transfers where goods must take public transport, the PDP-SL allows goods to
be either delivered directly to customers by support vehicles or first collected by a
support vehicle, transported via scheduled lines (SLs) such as bus, train, metro, etc.,
and then delivered to customers by another support vehicle (Ghilas et al., 2016b).
Ghilas et al. (2016c) extended the deterministic PDP-SL problem proposed by Ghi-
las et al. (2016b) into a stochastic PDP-SL problem by considering uncertain freight
demand. People and parcels only share public transport vehicles in the two studies,
whereas they share supportive vehicles in Ghilas et al. (2013). All three studies as-
sume that the freight capacity is fixed and not influenced by passenger flows. This
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assumption is relaxed by Mourad et al. (2021), in which robots function as support
vehicles. When the delivery robots travel on a bus, they share the same bus capac-
ity with passengers but have a lower priority. In other words, at some stations, the
robots may be unable to board a bus or be required to deboard to make space for
passengers.

As an alternative to using ground vehicles as support vehicles, Huang et al. (2020)
introduced an innovative integrated transportation system that involves trains with
given routes and timetables for passenger transportation and drones for parcel de-
livery.

In terms of the solution approaches, most studies apply metaheuristics to solve
large-scale instances, e.g., ALNS (Ghilas et al., 2016a, 2016¢; Masson et al., 2017;
Mourad et al., 2021) and variable neighbourhood search (Ye et al., 2021). Ghilas et
al. (2018) developed a branch-and-price algorithm to solve medium-sized instances.

2.3.2.3 Timetabling

The design of timetables for scheduled public transport vehicles in the context of FOT
has been considered only in rail-based FOT, i.e., trams and trains. When people and
freight share the vehicles/carriage, the timetables of passenger vehicles were designed
from scratch, aiming to transport more freight in less time without influencing passenger
transport (Li et al., 2022). When people and freight share the rail infrastructure, two strate-
gies are found to design timetables for added dedicated freight trains: 1) Timetables for
freight trains are created while the timetables of passenger trains remain unchanged (Oz-
turk & Patrick, 2018); 2) Schedules for both passenger and freight trains are constructed
from scratch (Horsting & Cleophas, 2023; Li et al., 2021). Horsting and Cleophas (2023)
compared the two transportation modes and concluded that sharing vehicles/carriages is
more robust towards fluctuating demand while sharing infrastructures allows higher dwell
time for dedicated freight trains/trams.

2.3.2.4 Freight flow assignment

The freight flow assignment problem determines where, when, and on which vehicle a
request takes a public transport ride. The flow assignment can be obtained either as key
decision variables in a model that exclusively determines the flow given public transport
routes and schedules of vehicles that can be used for freight transportation or as auxiliary
variables in a model that designs the hub location, route, and timetable (Ji et al., 2020; Li
et al., 2021; Ozturk & Patrick, 2018). This section focuses on the former case.

For bus-based FOT, Pimentel and Alvelos (2018) developed an MIP model to determine
the freight flow that minimises the delivery time. Their system allows goods to be unloaded
at any stop but only loaded at specific bus stops. This situation was relaxed by Cheng
et al. (2018) by permitting goods to be loaded and unloaded at any stop. If the goods
capacity on the part of the selected route is not adequate, the goods are unloaded at
intermediate stops and wait for the next vehicle along the same route.

For rail-based FOT, Behiri et al. (2018) hypothesised that physical components of a rail
network, i.e., stations, railways, and trains, are shared by participants, and freights can
be loaded and unloaded at any station. The objective of their model is to minimise the
total waiting time of each demand, defined as the difference between the time at which
demand is loaded into the train and that at which it arrives at the departure station. In this
manner, the turnover of goods in stations can be maximised. Sahli et al. (2022) simplified
the model and improved the heuristic solution algorithm proposed by Behiri et al. (2018).
Di et al. (2022) considered a system where freight and passengers are allowed to share
each service train. In addition to optimising the flow assignment, they also optimised the
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carriage arrangement.

2.3.2.5 Pricing

Most studies on FOT focus on solving operation management problems to reduce opera-
tion costs and total delivery time. Only a few consider the price charged to customers and
the profits operators gain. We only found two papers mentioning the price. The first one is
Li et al. (2021), which set a parameter representing the price of transporting a container.
The other is Ma et al. (2022), which jointly optimised a logistic company’s modal split
strategy and a metro company’s pricing strategy based on non-cooperative and coopera-
tive game theoretical models. The results showed that metro-based FOT could generate
Pareto-improving outcomes for the metro and logistics companies.

2.3.3 Crowdshipping
2.3.3.1 Demand and supply prediction

Two approaches can be used to predict the demand and supply in crowdshipping. The
first one is to use historical data (Shen & Lin, 2020), while the second one is to identify
the factors that influence the demand and supply through a survey (Ermagun et al., 2020;
Gatta et al., 2019; Le et al., 2019; Le & Ukkusuri, 2019; Rechavi & Toch, 2022). As
crowdshipping is a new service, only a limited amount of historical data is available. Thus,
most are based on the second approach. The key factors influencing the demand and
supply of crowdshipping are listed as follows.

(1) Demand: Dry cleaning, groceries, and home-delivered foods are favoured cate-
gories of goods in crowdshipping. Factors influencing people’s acceptance rate
of crowdshipping include personal attributes (including socio-demographic charac-
teristics), built environments, crowd types, and driver performance. Specifically,
younger people, online shoppers, and people with a strong sense of community
and environmental concern are more likely to accept crowdshipping; areas with high
population density but low job accessibility are suitable for crowdshipping develop-
ment (Buldeo Rai et al., 2021; Le et al., 2019).

(2) Supply: Young individuals and students are more likely to work as crowdshippers.
The supply of crowdshipping is enhanced by lower additional travel time spent on
crowdsourced tasks, higher remuneration, and higher levels of crowdshipping expe-
rience (Ermagun et al., 2020; Fessler et al., 2022; Gatta et al., 2019; Le & Ukkusuri,
2019; Rechavi & Toch, 2022).

2.3.3.2 Matching strategy

As defined in Section 2.2.1, in this review, we focus on the case in which crowdshippers
are matched with delivery requests on their way to a pre-planned trip, known as en route
matching (Alnaggar et al., 2021).

The key component in the en route matching problem is the criteria for an acceptable
matching. Most studies set a maximum percentage by which crowdshippers can deviate
from their normal trip in terms of the distance or travel time (Al Hla et al., 2019; Archetti
et al., 2016; Martin-Santamaria et al., 2021; Zehtabian et al., 2022). Additionally, the
crowdshipper’s earliest departure time at his/her origin and latest arrival time at the desti-
nation can be confined (Arslan et al., 2019; Chen et al., 2018; Macrina et al., 2020). Other
than time-specified criteria, the maximum number of parcels or stops that crowdshippers
accept are used by Arslan et al. (2019), Voigt and Kuhn (2022), Wang et al. (2016), and
Zehtabian et al. (2022). Instead of a single match, Ausseil et al. (2022) and Mancini and
Gansterer (2022) provided several options for a crowdshipper to choose from.
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2.3.3.3 Facility location

Most studies on crowdshipping have focused on operational-level decisions and consid-
ered point-to-point deliveries in which the origin-destination pairs of crowdshippers are
close to those of the parcels to be delivered. This may cause a lower success delivery
rate compared with crowdshipping allowing relays. To overcome this challenge, facili-
ties such as parcel lockers could be established to connect multiple crowdshippers for
the same task, leading to a facility location problem. Ghaderi et al. (2022) developed
a two-phase algorithm to locate the parcel lockers to maximise total profits and delivery
rate. Considering the stochastic crowd capacity and demands, Nieto-Isaza et al. (2022)
developed a two-stage stochastic programming model to determine the locations of mini
depots to minimise total expected installation and transportation costs.

2.3.3.4 Route planning for vehicles and goods

The route planning problem includes routing for a fleet owned by an operator and oc-
casional drivers. Archetti et al. (2016) initially modelled this problem as a VRP with oc-
casional drivers (VRPOD). This framework involves a single depot from where goods,
dedicated vehicles, and occasional drivers start. Many variants of this simple setting
have been studied. For example, Al Hla et al. (2019) considered the behaviours of both
regular and occasional drivers. Triki (2021) allowed occasional drivers to bid for deliv-
ery tasks. Macrina et al. (2017) considered the time windows of customers. Lan et al.
(2022), Macrina et al. (2020), and Yu et al. (2021b), Yu et al. (2022) introduced tranship-
ment nodes. Besides, the stochasticity and dynamics of the crowdshipping system have
been addressed by Archetti et al. (2021), Dahle et al. (2017), Dayarian and Savelsbergh
(2020), Mousavi et al. (2022), Santini et al. (2022), and Silva and Pedroso (2022).

In the above-mentioned VRPOD framework, all parcels originate from the depot, and a
single crowdshipper fulfils the crowdsourced delivery. This overlooks the possibility that
relaying crowdsourced tasks between crowdshippers could attract more participants to
work as crowdshippers and increase the delivery success rate, addressed by Chen et al.
(2018) and Voigt and Kuhn (2022). They extended the VRPOD to a pickup and delivery
problem with occasional drivers, where each parcel has a different origin, vehicles not only
deliver parcels but also collect parcels, and relays between crowdshippers are allowed.

Unlike the VRPOD that determines the operator-scheduled vehicle routes, Yildiz (2021a,
2021b) explored the express package routing problem to determine the combinations of
self-scheduled trips of crowdshippers to fulfil transportation requests. They designed a
system involving service points at which pickup and drop-off operations occur. Senders
drop off goods at their selected service points, and receivers pick up goods from other ser-
vice points. Crowdshippers are responsible for transferring goods between the selected
service points. Each crowdshipper only performs one single trip between service points,
but one task may have multi-leg trips.

Crowdshippers are typically ordinary people. In addition, taxi drivers can serve as crowd-
shippers to transport parcels without influencing the passenger service (Chen et al., 2017;
Chenetal., 2016; Cheng et al., 2022). Elsewhere, Boysen et al. (2022) considered volun-
tary employees of distribution centres as crowdshippers and optimised the delivery routes
for these employees to maximise the number of parcels assigned to them.

2.3.3.5 Pricing and compensation

Crowdshippers usually receive compensation from retailers such as Walmart and logis-
tics companies. Five compensation schemes have been proposed in the literature: 1)
Customer-dependent compensation: The compensation for crowdshippers depends on
the customer’s location. A larger distance between the customer and depot corresponds
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to a higher compensation for crowdshippers (Archetti et al., 2021; Archetti et al., 2016;
Dahle et al., 2019; Macrina et al., 2017); 2) Crowdshipper dependent compensation: The
compensation for crowdshippers depends on the amount of additional distance travelled
or additional time spent compared with normal travel (Dahle et al., 2019; Yu et al., 2021b;
Yu et al., 2022); 3) Fixed compensation for each delivery: The compensation for crowd-
shippers depends on the number of deliveries performed (Boysen et al., 2022; Dahle et
al., 2019; Lan et al., 2022; Santini et al., 2022; Yildiz, 2021a, 2021b); 4) Combined com-
pensation: The compensation for crowdshippers consists of two elements. Specifically,
a fixed compensation is provided when the crowdshippers fulfil at least one delivery, and
variable compensation is provided depending on additional efforts (extra travel distance
or travel time) made for crowdsourced deliveries (Dahle et al., 2019; Dayarian & Savels-
bergh, 2020; Mousavi et al., 2022); 5) Auction-based compensation: Crowdshippers bid
for crowdsourced tasks and are paid their bidding price if they win (Triki, 2021).

In terms of optimising the compensation provided to crowdshippers and the price charged
for requesters, we found three studies in which a third-party platform controls the crowd-
shipping service. Le et al. (2021) optimised the price and compensation from the plat-
form’s perspective, aiming to maximise the platform’s profits. Zhou et al. (2021) proposed
a pricing strategy considering the varying package—driver ratio in a local region to max-
imise the number of stable matches such that both the requester and crowdshipper have
strong incentives to be matched. These two studies neglect attributes associated with
the parcel, e.g., weight and size, which may influence the behaviours of the receivers
and crowdshippers. This aspect is addressed by Xiao et al. (2021), wherein a multi-unit
multi-attribute auction for crowdsourced delivery to maximise social welfare is designed.

2.4 General framework

Based on the above review of the existing forms of integrated transportation systems,
we propose a general framework for planning and operating such systems, as shown in
Figure 2.2.

First, we divide an integrated transportation system into three core components, each
comprising various elements worthy of investigation.

(1) Passenger and goods demand. Demand is generated by the requirement of people
to move from origins to destinations for a certain purpose, such as work, while goods
must be delivered from senders to recipients to fulfil customers’ requirements.

(2) Transport supply. Integrated people-and-goods transportation operators may be
public transport operators (e.g., bus, metro, and train companies), private trans-
portation companies, retailers with their own fleets and dedicated drivers, or third-
party companies that employ occasional drivers who use their vehicles to perform
tasks.

(3) Infrastructure and technology. The infrastructure includes all materials that support
the integrated transportation of people and goods, e.g., roads, railways, and infor-
mation and communications technology.

In this context, each operator must address the following three main problems, which
contain two or three subproblems.

(1) Demand management. This problem includes i) demand prediction to understand
how travellers and senders make transportation decisions; ii) pricing strategies to
control the spatiotemporal distribution of transportation demand.
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Figure 2.2: A general framework for integrated people-and-goods transportation systems

(2) Supply management. This problem includes predicting and planning the capacity
that can be used to fulfil the transportation demand and designing compensation
strategies to control the supply.

(3) Demand and supply matching. This problem aims at matching a specific request
with a vehicle, which typically involves the design of the routes and schedules of
vehicles or the assignment of requests to a vehicle, depending on the integration
form.

Figure 2.2 also shows the subproblems examined in the existing studies. Several gaps
remain, considered promising research directions, as described in Section 2.5.

The performance of the integrated transportation system could be evaluated from different
perspectives. On the demand side, passengers care mostly about the travel time, waiting
time, and travel cost, while shippers are more concerned with the transportation costs
and whether the goods are delivered in a satisfactory condition and timely manner. On
the supply side, operators focus mostly on profit, operation cost, and demand satisfaction
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rate. Solving the operation management problems will directly influence the indicators on
the two sides, which will further influence the demand and supply. The demand and sup-
ply, in turn, influence the operational strategies and decisions and the resulting efficiency
of the integrated people-and-goods transportation system. The application of integrated
people-and-goods transportation will inevitably impact various aspects of sustainability,
like environmental (e.g., air pollutants) and social (e.g., employment, equity). Neverthe-
less, they are well beyond the scope of this review and are left for future work.

2.5 Research gaps and future directions

Based on the framework proposed in Section 2.4, we specify future research directions
from three aspects. For each aspect, we categorise two types of future research aimed
at, respectively, filling the research gap and enhancing the existing research. Notably,
research gaps may exist owing to the different implementation methods of different forms
in practice. Then, we presented some research opportunities in the era of technology.

2.51 Demand management

2.51.1 Pioneering research

As shown in Figure 2.2, demand prediction for SAR and FOT has not been extensively
studied, despite its importance for service operators in providing supply that matches the
demand. Currently, both SAR and FOT are in the early implementation stage, and the
amount of historical data is inadequate. In this context, the demand can be predicted by
identifying the factors influencing people’s choices. To this end, unique features/phenom-
ena associated with the system must be understood. For example, in terms of passenger
demand, some passengers may transfer from separated to integrated modes due to de-
creased travel costs. In contrast, passengers with a high value of time are less likely to
accept a detour for the delivery of goods even if a discount is available. Moreover, some
passengers may refuse to be transported with goods owing to safety and comfort con-
cerns when the goods are placed in the same vehicle (or carriage). In terms of goods
demands, the incomes of senders and recipients, environmental conscientiousness, and
requirement for time windows determine whether the senders and recipients choose an
SAR vehicle or public transport for delivery. Additionally, the goods’ attributes (type, size,
weight, volume, value, etc.) determine whether they can be transported with people and
the mode suitable for transporting them. For example, dangerous goods cannot be trans-
ported with passengers, while groceries, which typically involve a large volume and num-
ber of goods, can be transported by trains or metros instead of taxis. In the future, with
the development of SAR and FOT and the availability of adequate data, historical data
may be used to predict the spatiotemporal transportation demand distribution.

2.5.1.2 Research for improvement

Most studies have considered the price charged to customers as a parameter under differ-
ent pricing schemes. Because the influence of pricing on demand and supply is complex,
the pricing can instead be considered a decision variable and determined using an opti-
mization model.

2.5.2 Supply management

2.5.2.1 Pioneering research

Supply management in SAR frameworks has not been extensively investigated. This is
probably because SAR can be implemented in multiple ways, and a common supply man-
agement strategy cannot be applied to all methods. In practice, the supply management
subproblem to be addressed depends on the type of operator. Operators are classified
in terms of the possession of the fleet and drivers. The supply management subproblem
for operators with their own fleet and drivers is focused on resource planning because
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the supply is determined by the fleet size, the dedicated drivers must follow the routes
designed by the operators to service customers, and the drivers are paid salaries by the
operators. In this framework, the supply distribution does not need to be predicted, and
no compensation exists. The supply management subproblem for operators without their
own fleet and drivers is focused on supply prediction and compensation because the sup-
ply of drivers is affected by various factors such as age, income, and compensation for
each request.

The supply prediction for FOT has not been extensively studied. Compensation for drivers
might not be considered a problem that needs to be practically addressed, as drivers of
public transport vehicles typically receive a regular monthly salary. For public transport
operators, supply prediction is focused on predicting the available capacity that can be
used for transporting passengers and goods. This supply decides whether goods and
passengers can be transported simultaneously in specific periods. This aspect can be
considered a counterpart to predicting the passengers’ route choice behaviour given the
transit capacities. In the case of underused capacity, companies can enter the integrated
people-and-goods transport market. Otherwise, the companies can simply serve passen-
gers as usual.

2.5.2.2 Research for improvement

Scheduled-public-transport-based FOT consists of two parts: a public transport mode for
backbone transportation and support vehicles for first/last-mile transportation. Although
several researchers have studied FOT based on various transportation means, the back-
bone transportation consisted of a single public transport mode. In practice, each public
transport mode has its advantages and disadvantages. For example, metros and trains
are faster and more punctual than buses, while buses have a wider service area. Dif-
ferent public transportation modes can be combined to fully exploit the advantages of all
parties to provide a more time-efficient or cost-efficient service. Because hubs for trans-
ferring passengers from one public transport mode to another already exist, goods can
also be transhipped at these nodes. In addition, as described in Section 2.3.2.1, most
studies on freight hub selection have focused on metro-based FOT. For bus-based FOT,
it is typically assumed that all bus stations can be used to handle and tranship goods.
However, considering the goods transportation demand and cost of reforming a passen-
ger platform to an enhanced platform suitable for goods storage and transhipment, it is
not reasonable to set all passenger boarding/alighting points as goods loading/unloading
points. Therefore, the hub location problem must also be addressed in bus-based FOT.
In addition, the fleet size of scheduled and demand-responsive public transport vehicles
considerably influences the supply and must be further investigated.

For crowdshipping, research can be performed to understand peoples’ attitudes toward
public-transport-based crowdshipping. Moreover, as in the case of the pricing problem
in demand management, the compensation provided to crowdshippers affects the supply
of crowdshippers. Therefore, the compensation of crowdshippers must be optimised. In
addition, researchers can optimise the location and capacity of the support infrastructure.
In this way, similar origin-destination pairs between crowdshippers and parcels do not
need to be identified, making the system more flexible and efficient.

2.5.3 Matching

2.5.3.1 Pioneering research

The matching problem for SAR has not been studied, probably because the existing stud-
ies have assumed that the SAR operators belong to the first type of operator, as described
in Section 2.5.2.1. In this scenario, the dedicated drivers working for the operator cannot
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reject requests assigned to them. If the operators belong to the second type, the occa-
sional drivers can reject requests assigned to them. In this scenario, an optimal matching
problem must be solved to increase the successful matching rate. Different matching
strategies can be explored, e.g., en route matching and negotiation between occasional
drivers and requesters.

2.5.3.2 Research for improvement
The following research directions can be considered for improving research on matching
transportation demands with supply.

First, for SAR with the second type of operators, occasional drivers can be guided to
reposition their vehicles after finishing their tasks to increase their chance of accepting
another task when they do not have a personal trip planned after the delivery.

Second, for scheduled-public-transport-based FOT, matching between goods requests
with a specific public transport vehicle can be examined in the context of multimodal urban
transport so that a goods request can be matched to a multimodal trip chain of public
transport services.

Third, we recommend developing models to solve the matching problem in public-transport-
based crowdshipping. This matching is different from that in private-vehicle-based crowd-
shipping because a parcel request suitable for a private-vehicle-based crowdshipper might
not be accepted by a public-transport-based crowdshipper.

Fourth, researchers can attempt to solve the subproblems associated with all three forms
of integrated systems in a stochastic and dynamic setting, as this is more realistic and
research in this domain is limited.

2.5.4 Opportunities in the era of technology

Rapid developments of new technologies, e.g., 5G technology, artificial intelligence (Al),
Internet of things (loT), autonomous vehicles (AVs), digital twins, etc., will revolutionize
the transportation industry, which brings opportunities for the development of integrated
transportation system. First, the potential deployment of AVs, drones, and robots and their
impacts on integrated transportation systems should be studied before they are widely ap-
plied. Second, technologies such as ICT and intelligent transportation systems enable the
synchromodality, which aims to provide efficient, reliable, and flexible transportation ser-
vices using real-time information. This strengthens the need for fast online algorithms to
support real-time re-optimisation. Third, driven by Al, 10T, etc., digital twins could be used
to simulate different activities in the integrated transportation system, which enables plan-
ners to manage transportation dynamically, react to unexpected events appropriately, etc.
Moreover, digital twins could be used to analyse the potential impacts of new concepts
before real implementations. As Arvidsson and Browne (2013) recommended, it is better
to try a new concept in a small-scale fashion and gradually scale up, especially for big
projects requiring high investment or new infrastructure. This could be achieved by digital
twins in a time and cost-efficient way to explore the economic viability and scalability to
meet the exploding delivery demand and the need for infrastructure and equipment invest-
ment for the integrated transportation system before real application. We recommend that
researchers apply more advanced methods, e.g., digital twins, in the era of technologies
to assess the feasibility of an integrated system, in addition to using traditional methods
such as simulation.

22 Innovative Last-mile Solutions:Integrating People and Goods Transportation



References

Al Hla, Y. A., Othman, M., & Saleh, Y. (2019). Optimising an eco-friendly vehicle rout-
ing problem model using regular and occasional drivers integrated with driver be-
haviour control. Journal of Cleaner Production, 234, 984—-1001.

Alnaggar, A., Gzara, F., & Bookbinder, J. H. (2021). Crowdsourced delivery: A review of
platforms and academic literature. Omega, 98, 102139.

Archetti, C., Guerriero, F., & Macrina, G. (2021). The online vehicle routing problem with
occasional drivers. Computers & Operations Research, 127, 105144.

Archetti, C., Savelsbergh, M., & Speranza, M. G. (2016). The vehicle routing problem with
occasional drivers. European Journal of Operational Research, 254(2), 472—-480.

Arslan, A. M., Agatz, N., Kroon, L., & Zuidwijk, R. (2019). Crowdsourced delivery—a dy-
namic pickup and delivery problem with ad hoc drivers. Transportation Science,
53(1), 222-235.

Arvidsson, N., & Browne, M. (2013). A review of the success and failure of tram systems to
carry urban freight: The implications for a low emission intermodal solution using
electric vehicles on trams.

Arvidsson, N., Givoni, M., & Woxenius, J. (2016). Exploring last mile synergies in passen-
ger and freight transport. Built Environment, 42(4), 523-538.

Ausseil, R., Pazour, J. A., & Ulmer, M. W. (2022). Supplier menus for dynamic matching in
peer-to-peer transportation platforms. Transportation Science, 56(5), 1304—1326.

Azcuy, ., Agatz, N., & Giesen, R. (2021). Designing integrated urban delivery systems us-
ing public transport. Transportation Research Part E: Logistics and Transportation
Review, 156, 102525.

Behiri, W., Belmokhtar-Berraf, S., & Chu, C. (2018). Urban freight transport using pas-
senger rail network: Scientific issues and quantitative analysis. Transportation Re-
search Part E: Logistics and Transportation Review, 115, 227-245.

Beirigo, B. A., Schulte, F., & Negenborn, R. R. (2018). Integrating people and freight trans-
portation using shared autonomous vehicles with compartments. /IFAC-PapersOnLine,
51(9), 392-397.

Boysen, N., Emde, S., & Schwerdfeger, S. (2022). Crowdshipping by employees of dis-
tribution centers: Optimization approaches for matching supply and demand. Eu-
ropean Journal of Operational Research, 296(2), 539-556.

Bruzzone, F., Cavallaro, F., & Nocera, S. (2021). The integration of passenger and freight
transport for first-last mile operations. Transport policy, 100, 31-48.

Buldeo Rai, H., Verlinde, S., & Macharis, C. (2018). Shipping outside the box. environ-
mental impact and stakeholder analysis of a crowd logistics platform in belgium.
Journal of Cleaner Production, 202, 806—816.

Buldeo Rai, H., Verlinde, S., & Macharis, C. (2021). Who is interested in a crowdsourced
last mile? a segmentation of attitudinal profiles. Travel Behaviour and Society, 22,
22-31.

Buldeo Rai, H., Verlinde, S., Merckx, J., & Macharis, C. (2017). Crowd logistics: An oppor-
tunity for more sustainable urban freight transport? European Transport Research
Review, 9, 1-13.

Cavallaro, F., & Nocera, S. (2022). Integration of passenger and freight transport: A concept-
centric literature review. Research in Transportation Business & Management, 43,
100718.

Innovative Last-mile Solutions:Integrating People and Goods Transportation 23



Chebbi, O., & Chaouachi, J. (2016). Reducing the wasted transportation capacity of per-
sonal rapid transit systems: An integrated model and multi-objective optimization
approach. Transportation research part E: logistics and transportation review, 89,
236-258.

Chen, C., Pan, S., Wang, Z., & Zhong, R. Y. (2017). Using taxis to collect citywide e-
commerce reverse flows: A crowdsourcing solution. International Journal of Pro-
duction Research, 55(7), 1833—-1844.

Chen, C., Zhang, D., Ma, X., Guo, B., Wang, L., Wang, Y., & Sha, E. (2016). Crowddeliver:
Planning city-wide package delivery paths leveraging the crowd of taxis. IEEE
Transactions on Intelligent Transportation Systems, 18(6), 1478—1496.

Chen, W., Mes, M., & Schutten, M. (2018). Multi-hop driver-parcel matching problem with
time windows. Flexible services and manufacturing journal, 30, 517-553.

Cheng, G., Guo, D., Shi, J., & Qin, Y. (2018). When packages ride a bus: Towards efficient
city-wide package distribution. 2018 IEEE 24th international conference on parallel
and distributed systems (ICPADS), 259-266.

Cheng, S., Chen, C., Pan, S., Huang, H., Zhang, W., & Feng, Y. (2022). Citywide package
deliveries via crowdshipping: Minimizing the efforts from crowdsourcers. Frontiers
of Computer Science, 16, 1-13.

Cleophas, C., Caottrill, C., Ehmke, J. F., & Tierney, K. (2019). Collaborative urban trans-
portation: Recent advances in theory and practice. European Journal of Opera-
tional Research, 273(3), 801-816.

Cochrane, K., Saxe, S., Roorda, M. J., & Shalaby, A. (2017). Moving freight on public
transit: Best practices, challenges, and opportunities. International Journal of Sus-
tainable Transportation, 11(2), 120-132.

Dahle, L., Andersson, H., & Christiansen, M. (2017). The vehicle routing problem with dy-
namic occasional drivers. Computational Logistics: 8th International Conference,
ICCL 2017, Southampton, UK, October 18-20, 2017, Proceedings 8, 49-63.

Dahle, L., Andersson, H., Christiansen, M., & Speranza, M. G. (2019). The pickup and de-
livery problem with time windows and occasional drivers. Computers & Operations
Research, 109, 122—-133.

Dayarian, I., & Savelsbergh, M. (2020). Crowdshipping and same-day delivery: Employing
in-store customers to deliver online orders. Production and Operations Manage-
ment, 29(9), 2153-2174.

Di, Z., Yang, L., Shi, J., Zhou, H., Yang, K., & Gao, Z. (2022). Joint optimization of car-
riage arrangement and flow control in a metro-based underground logistics sys-
tem. Transportation Research Part B: Methodological, 1569, 1-23.

Dong, J., Hu, W., Yan, S., Ren, R., & Zhao, X. (2018). Network planning method for capac-
itated metro-based underground logistics system. Advances in civil engineering,
2018.

Elbert, R., & Rentschler, J. (2022). Freight on urban public transportation: A systematic lit-
erature review. Research in Transportation Business & Management, 45, 100679.

Ermagun, A., Punel, A., & Stathopoulos, A. (2020). Shipment status prediction in online
crowd-sourced shipping platforms. Sustainable Cities and Society, 563, 101950.

European Commission. (2007). Green paper, towards a new culture for urban mobility,
Luxembourg: Publications Office of the European Union.

European Commission. (2019). Transport in the European union — current trends and
issues. https://ec.europa.eu/transport /sites/transport /files /2019- transport-in-
theeu-current-trends-and-issues.pdf.

24 Innovative Last-mile Solutions:Integrating People and Goods Transportation


https://ec.europa.eu/transport/sites/transport/files/2019-transport-in-theeu-current-trends-and-issues.pdf.
https://ec.europa.eu/transport/sites/transport/files/2019-transport-in-theeu-current-trends-and-issues.pdf.

Fatnassi, E., Chaouachi, J., & Klibi, W. (2015). Planning and operating a shared goods and
passengers on-demand rapid transit system for sustainable city-logistics. Trans-
portation Research Part B: Methodological, 81, 440-460.

Fessler, A., Thorhauge, M., Mabit, S., & Haustein, S. (2022). A public transport-based
crowdshipping concept as a sustainable last-mile solution: Assessing user pref-
erences with a stated choice experiment. Transportation Research Part A: Policy
and Practice, 158, 210-223.

Gatta, V., Marcucci, E., Nigro, M., & Serafini, S. (2019). Sustainable urban freight trans-
port adopting public transport-based crowdshipping for b2c deliveries. European
Transport Research Review, 11(1), 1-14.

Ghaderi, H., Zhang, L., Tsai, P.-W., & Woo, J. (2022). Crowdsourced last-mile delivery
with parcel lockers. International Journal of Production Economics, 251, 108549.

Ghilas, V., Cordeau, J.-F., Demir, E., & Woensel, T. V. (2018). Branch-and-price for the
pickup and delivery problem with time windows and scheduled lines. Transporta-
tion Science, 52(5), 1191-1210.

Ghilas, V., Demir, E., & Van Woensel, T. (2013). Integrating passenger and freight trans-
portation: Model formulation and insights.

Ghilas, V., Demir, E., & Van Woensel, T. (2016a). An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows and scheduled
lines. Computers & Operations Research, 72, 12-30.

Ghilas, V., Demir, E., & Van Woensel, T. (2016b). The pickup and delivery problem with
time windows and scheduled lines. INFOR: Information Systems and Operational
Research, 54(2), 147-167.

Ghilas, V., Demir, E., & Van Woensel, T. (2016c¢). A scenario-based planning for the pickup
and delivery problem with time windows, scheduled lines and stochastic demands.
Transportation Research Part B: Methodological, 91, 34-51.

He, Y., & Csiszar, C. (2021). Model for crowdsourced parcel delivery embedded into mo-
bility as a service based on autonomous electric vehicles. Energies, 14(11), 3042.

Horsting, L., & Cleophas, C. (2023). Scheduling shared passenger and freight transport on
a fixed infrastructure. European Journal of Operational Research, 306(3), 1158—
1169.

Huang, H., Savkin, A. V., & Huang, C. (2020). A new parcel delivery system with drones
and a public train. Journal of Intelligent & Robotic Systems, 100, 1341-1354.

Ji,Y.,, Zheng, Y., Zhao, J., Shen, Y., & Du, Y. (2020). A multimodal passenger-and-package
sharing network for urban logistics. Journal of Advanced Transportation, 2020, 1—
16.

Kikuta, J., Ito, T., Tomiyama, I., Yamamoto, S., & Yamada, T. (2012). New subway-integrated
city logistics szystem. Procedia-Social and Behavioral Sciences, 39, 476—489.

Kizil, K. U., & Yildiz, B. (2023). Public transport-based crowd-shipping with backup trans-
fers. Transportation Science, 57(1), 174—196.

Lan, Y.-L., Liu, F., Ng, W. W., Gui, M., & Lai, C. (2022). Multi-objective two-echelon city
dispatching problem with mobile satellites and crowd-shipping. IEEE Transactions
on Intelligent Transportation Systems, 23(9), 15340-15353.

Le, T. V., Stathopoulos, A., Van Woensel, T., & Ukkusuri, S. V. (2019). Supply, demand,
operations, and management of crowd-shipping services: A review and empirical
evidence. Transportation Research Part C: Emerging Technologies, 103, 83—103.

Le, T. V., & Ukkusuri, S. V. (2019). Modeling the willingness to work as crowd-shippers and
travel time tolerance in emerging logistics services. Travel Behaviour and Society,
15, 123-132.

Innovative Last-mile Solutions:Integrating People and Goods Transportation 25



Le, T. V., Ukkusuri, S. V., Xue, J., & Van Woensel, T. (2021). Designing pricing and com-
pensation schemes by integrating matching and routing models for crowd-shipping
systems. Transportation Research Part E: Logistics and Transportation Review,
149, 1022009.

Le Pira, M., Tavasszy, L. A., de Almeida Correia, G. H., Ignaccolo, M., & Inturri, G. (2021).
Opportunities for integration between mobility as a service (maas) and freight
transport: A conceptual model. Sustainable Cities and Society, 74, 103212.

Li, B., Krushinsky, D., Reijers, H. A., & Van Woensel, T. (2014). The share-a-ride prob-
lem: People and parcels sharing taxis. European Journal of Operational Research,
238(1), 31-40.

Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016a). An adaptive large neigh-
borhood search heuristic for the share-a-ride problem. Computers & Operations
Research, 66, 170-180.

Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016b). The share-a-ride prob-
lem with stochastic travel times and stochastic delivery locations. Transportation
Research Part C: Emerging Technologies, 67, 95-108.

Li, F., Guo, X., Zhou, L., Wu, J., & Li, T. (2022). A capacity matching model in a collabora-
tive urban public transport system: Integrating passenger and freight transporta-
tion. International Journal of Production Research, 60(20), 6303—-6328.

Li, Z., Shalaby, A., Roorda, M. J., & Mao, B. (2021). Urban rail service design for collabo-
rative passenger and freight transport. Transportation Research Part E: Logistics
and Transportation Review, 147, 102205.

Lu, C.-C., Diabat, A, Li, Y.-T., & Yang, Y.-M. (2022). Combined passenger and parcel
transportation using a mixed fleet of electric and gasoline vehicles. Transportation
Research Part E: Logistics and Transportation Review, 157, 102546.

Ma, M., Zhang, F., Liu, W., & Dixit, V. (2022). A game theoretical analysis of metro-
integrated city logistics systems. Transportation Research Part B: Methodological,
156, 14-27.

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., & Lagana, D. (2017). The vehicle rout-
ing problem with occasional drivers and time windows. Optimization and Decision
Science: Methodologies and Applications: ODS, Sorrento, Italy, September 4-7,
2017 47, 577-587.

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., & Laporte, G. (2020). Crowd-shipping
with time windows and transshipment nodes. Computers & Operations Research,
113, 104806.

Manchella, K., Haliem, M., Aggarwal, V., & Bhargava, B. (2021a). Passgoodpool: Joint
passengers and goods fleet management with reinforcement learning aided pric-
ing, matching, and route planning. IEEE Transactions on Intelligent Transportation
Systems, 23(4), 3866-3877.

Manchella, K., Umrawal, A. K., & Aggarwal, V. (2021b). Flexpool: A distributed model-free
deep reinforcement learning algorithm for joint passengers and goods transporta-
tion. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2035-2047.

Mancini, S., & Gansterer, M. (2022). Bundle generation for last-mile delivery with occa-
sional drivers. Omega, 108, 102582.

Martin-Santamaria, R., Lépez-Sanchez, A. D., Delgado-Jalon, M. L., & Colmenar, J. M.
(2021). An efficient algorithm for crowd logistics optimization. Mathematics, 9(5),
509.

Masson, R., Trentini, A., Lehuédé, F., Malhéné, N., Péton, O., & Tlahig, H. (2017). Op-
timization of a city logistics transportation system with mixed passengers and
goods. EURO Journal on Transportation and Logistics, 6(1), 81—109.

26 Innovative Last-mile Solutions:Integrating People and Goods Transportation



Mourad, A., Puchinger, J., & Chu, C. (2019). A survey of models and algorithms for op-
timizing shared mobility. Transportation Research Part B: Methodological, 123,
323-346.

Mourad, A., Puchinger, J., & Van Woensel, T. (2021). Integrating autonomous delivery
service into a passenger transportation system. International Journal of Production
Research, 59(7), 2116-2139.

Mousavi, K., Bodur, M., & Roorda, M. J. (2022). Stochastic last-mile delivery with crowd-
shipping and mobile depots. Transportation Science, 56(3), 612—630.

Nieto-Isaza, S., Fontaine, P., & Minner, S. (2022). The value of stochastic crowd resources
and strategic location of mini-depots for last-mile delivery: A benders decomposi-
tion approach. Transportation Research Part B: Methodological, 157, 62—79.

Ozturk, O., & Patrick, J. (2018). An optimization model for freight transport using urban
rail transit. European Journal of Operational Research, 267(3), 1110-1121.

Peng, Z., Feng, R., Wang, C., Jiang, Y., & Yao, B. (2021). Online bus-pooling service at
the railway station for passengers and parcels sharing buses: A case in dalian.
Expert Systems with Applications, 169, 114354.

Pimentel, C., & Alvelos, F. (2018). Integrated urban freight logistics combining passenger
and freight flows—mathematical model proposal. Transportation research proce-
dia, 30, 80-89.

Qu, X., Wang, S., & Niemeier, D. (2022). On the urban-rural bus transit system with
passenger-freight mixed flow. Communications in Transportation Research, 2(1),
100054.

Rechavi, A., & Toch, E. (2022). Crowd logistics: Understanding auction-based pricing
and couriers’ strategies in crowdsourcing package delivery. Journal of Intelligent
Transportation Systems, 26(2), 129-144.

Ren, T., Jiang, Z., Cai, X., Yu, Y,, Xing, L., Zhuang, Y., & Li, Z. (2021). A dynamic routing
optimization problem considering joint delivery of passengers and parcels. Neural
Computing and Applications, 33, 10323—10334.

Sahli, A., Behiri, W., Belmokhtar-Berraf, S., & Chu, C. (2022). An effective and robust ge-
netic algorithm for urban freight transport scheduling using passenger rail network.
Computers & Industrial Engineering, 173, 108645.

Santini, A., Viana, A., Klimentova, X., & Pedroso, J. P. (2022). The probabilistic travelling
salesman problem with crowdsourcing. Computers & Operations Research, 142,
105722.

Savelsbergh, M., & Van Woensel, T. (2016). 50th anniversary invited article—city logistics:
Challenges and opportunities. Transportation science, 50(2), 579-590.

Shen, H., & Lin, J. (2020). Investigation of crowdshipping delivery trip production with real-
world data. Transportation Research Part E: Logistics and Transportation Review,
143, 102106.

Silva, M., & Pedroso, J. P. (2022). Deep reinforcement learning for crowdshipping last-mile
delivery with endogenous uncertainty. Mathematics, 10(20), 3902.

Sun, X., Hu, W., Xue, X., & Dong, J. (2022). Multi-objective optimization model for planning
metro-based underground logistics system network: Nanjing case study. Journal
of Industrial and Management Optimization, 19(1), 170-196.

Tholen, M. v. d., Beirigo, B. A., Jovanova, J., & Schulte, F. (2021). The share-a-ride
problem with integrated routing and design decisions: The case of mixed-purpose
shared autonomous vehicles. Computational Logistics: 12th International Confer-
ence, ICCL 2021, Enschede, The Netherlands, September 27-29, 2021, Proceed-
ings 12, 347-361.

Innovative Last-mile Solutions:Integrating People and Goods Transportation 27



Triki, C. (2021). Using combinatorial auctions for the procurement of occasional drivers
in the freight transportation: A case-study. Journal of Cleaner Production, 304,
127057.

Voigt, S., & Kuhn, H. (2022). Crowdsourced logistics: The pickup and delivery problem
with transshipments and occasional drivers. Networks, 79(3), 403—426.

Wang, Y., Zhang, D., Liu, Q., Shen, F., & Lee, L. H. (2016). Towards enhancing the
last-mile delivery: An effective crowd-tasking model with scalable solutions. Trans-
portation Research Part E: Logistics and Transportation Review, 93, 279-293.

Xiao, F., Wang, H., Guo, S., Guan, X., & Liu, B. (2021). Efficient and truthful multi-attribute
auctions for crowdsourced delivery. International Journal of Production Economics,
240, 108233.

Ye, Y., Guo, J., & Yan, L. (2021). A mixed decision strategy for freight and passenger trans-
portation in metro systems. Computational intelligence and neuroscience, 2021,
1-22.

Yildiz, B. (2021a). Express package routing problem with occasional couriers. Transporta-
tion Research Part C: Emerging Technologies, 123, 102994.

Yildiz, B. (2021b). Package routing problem with registered couriers and stochastic de-
mand. Transportation Research Part E: Logistics and Transportation Review, 147,
102248.

Yu, V. F,, Indrakarna, P. A., Redi, A. A. N. P, & Lin, S.-W. (2021a). Simulated annealing
with mutation strategy for the share-a-ride problem with flexible compartments.
Mathematics, 9(18), 2320.

Yu, V. F.,, Jodiawan, P., Hou, M.-L., & Gunawan, A. (2021b). Design of a two-echelon
freight distribution system in last-mile logistics considering covering locations and
occasional drivers. Transportation Research Part E: Logistics and Transportation
Review, 154, 102461.

Yu, V. F.,, Jodiawan, P., & Redi, A. P. (2022). Crowd-shipping problem with time windows,
transshipment nodes, and delivery options. Transportation Research Part E: Lo-
gistics and Transportation Review, 157, 102545.

Yu, V. F., Purwanti, S. S., Redi, A. P, Lu, C.-C., Suprayogi, S., & Jewpanya, P. (2018).
Simulated annealing heuristic for the general share-a-ride problem. Engineering
Optimization, 50(7), 1178-1197.

Yu, V. F,, Zegeye, M. M., Gebeyehu, S. G., Indrakarna, P. A., & Jodiawan, P. (2023). The
multi-depot general share-a-ride problem. Expert Systems with Applications, 213,
119044.

Zehtabian, S., Larsen, C., & Wghlk, S. (2022). Estimation of the arrival time of deliveries
by occasional drivers in a crowd-shipping setting. European Journal of Operational
Research, 303(2), 616—632.

Zhang, S., Markos, C., & James, J. (2022). Autonomous vehicle intelligent system: Joint
ride-sharing and parcel delivery strategy. IEEE Transactions on Intelligent Trans-
portation Systems, 23(10), 18466—-18477.

Zhao, L., Li, H., Li, M., Sun, Y., Hu, Q., Mao, S., Li, J., & Xue, J. (2018). Location selection
of intra-city distribution hubs in the metro-integrated logistics system. Tunnelling
and Underground Space Technology, 80, 246-256.

Zhou, Z., Chen, R., & Guo, S. (2021). A domain-of-influence based pricing strategy for task
assignment in crowdsourcing package delivery. IET Intelligent Transport Systems,
15(6), 808-823.

28 Innovative Last-mile Solutions:Integrating People and Goods Transportation



3 An adaptive large neighborhood search
metaheuristic for a passenger and
parcel share-a-ride problem with drones

Cheng, R., Jiang, Y., Nielsen, O. A., & Pisinger, D. (2023). An adaptive large neighbor-
hood search metaheuristic for a passenger and parcel share-a-ride problem with drones.
Transportation Research Part C: Emerging Technologies, 153, 104203.

Abstract

With the increasing concerns about traffic congestion and climate change, much effort has
been made to enhance sustainable urban mobility for passengers and goods. One emerg-
ing promising strategy is to transport passengers and goods in an integrated manner, as it
could reduce the number of vehicles on the road compared with the separate transporta-
tion of passengers and goods. This study proposes the simultaneous transportation of
passengers and goods using demand-responsive buses and drones. Compared with the
prevalent strategies that rely only on ground vehicles to integrate passenger and parcel
transportation, we propose the joint usage of ground vehicles and drones to transport pas-
sengers and deliver parcels. The ground vehicles for passenger and parcel delivery are
on-demand buses, which combine the advantages of the flexibility of taxis and the large
capacity of public transport modes. The drones automatically take off from and land on
the on-demand buses’ rooftops and are only for parcel delivery. A new optimization prob-
lem that designs the routes for both demand-responsive buses and drones is proposed
and denoted as the passenger and parcel share-a-ride problem with drones (SARP-D). A
mixed-integer nonlinear programming model is devised; the nonlinearity exists because
drone launch/recovery can occur simultaneously with request servicing by a bus at the
same node. To solve the model for large-scale instances, we develop an adaptive large
neighborhood search metaheuristic. Numerical experiments are conducted to validate
the correctness of the model and evaluate the efficiency of the metaheuristic. Moreover,
sensitivity analyses are performed to explore the influences of the maximum number of
intermediate stops during one passenger request service, the drone flight endurance,
and the unit delay penalty on the total cost, which comprises the transportation and delay
costs.

Keywords: Urban logistics; On-demand transit; Adaptive large neighborhood search; In-

tegrated passenger-and-goods transportation; Share-a-ride problem with drones; Vehicle
routing problem with drones
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3.1 Introduction

Rapid urbanization and the boom in E-commerce have increased the demands for pas-
senger and goods transportation. Traditionally, the demands for passenger and goods
transportation are separately managed. In 2007, the European Commission (2007) stated
that “local authorities need to consider all urban logistics related to passenger and freight
transport as a single logistics system.” Integrating passengers and goods transportation
has emerged as a new research topic to achieve sustainable urban mobility because of its
great potential to reduce the number of road vehicles serving the transportation demand
(Cavallaro & Nocera, 2022; Cheng et al., 2023; Li et al., 2014).

Recently, Elbert and Rentschler (2022) summarized the literature on integrating passen-
gers and parcels using public transport modes, such as buses and light rail. These con-
ventional public transport modes are operated according to predefined routes and timeta-
bles and can hardly provide door-to-door services, as public transport stations are seldom
the final destinations of passengers and goods. Thus, feeder vehicles must be used for
last-mile delivery, which can cause additional traffic congestion and cost. Li et al. (2014)
suggested that taxis, which are flexible and can deliver door-to-door services, are a bet-
ter alternative to public transport for the integrated transport of passengers and goods.
However, a taxi is characterized by limited capacity and availability and high costs. Con-
sidering the limitations associated with conventional public transport and taxis, this study
proposes the use of on-demand transit, which can allow for the provision of door-to-door
demand-responsive services with a larger capacity. Although on-demand transit has been
extensively studied (e.g., Vansteenwegen et al., 2022), to the best of our knowledge, only
Peng et al. (2021) considered it a means of integrating passengers and parcels trans-
portation.

Another trend in urban mobility is the exploration and exploitation of autonomous tech-
nologies. Autonomous vehicle (AV) technology offers the possibility of relieving passen-
ger transport-related congestion in various ways, such as improving coordination between
vehicles and reducing accidents (Anderson et al., 2014), reducing parking demand and
the congestion caused by the search for parking space (Othman, 2022), and reducing
the time gap and thereby increasing the road capacity and mitigating congestion (Milanés
& Shladover, 2014). Integrating shared autonomous vehicles (SAVs) with ridesharing
services could further reduce congestion through traveler trip combination and SAV fleet
size reduction (Golbabaei et al., 2021; Levin et al., 2017). Although accurately evaluating
the influence of AVs on the environment is difficult, the potential positive environmental
benefits of electrifying AVs have been generally acknowledged (Anderson et al., 2014;
Golbabaei et al., 2021; Williams et al., 2020).

For goods transportation, drone delivery has attracted increasing attention in smart city lo-
gistics (Buyukozkan & llicak, 2022), particularly in last-mile delivery (Boysen et al., 2021;
Lemardelé et al., 2021). Recently, Amazon and Walmart have launched drone delivery
services in some areas '. Drones have also been used to transport nucleic acid samples in
Hangzhou, China 2, Compared with traditional delivery vehicles, such as trucks and vans,
drones are faster, do not occupy road space, and do not use fossil fuels. Therefore, drone
usage has the potential of providing faster delivery and reducing urban congestion and
greenhouse gas emissions (Agatz et al., 2018; Chiang et al., 2019; Moshref-Javadi et al.,
2020b). However, drones have a limited service range owing to their battery capacity con-

'(1)https: //www.aboutamazon.com /news /transportation /amazons-drone-delivery-is-coming-to-texas;
(2)https://corporate.walmart.com/newsroom /2022 /05 /24 /were-bringing-the-convenience- of-drone-delivery-
to-4-million-u-s-households-in-partnership-with-droneup

Zhttp://www.caacnews.com.cn/1/6,/202211/t20221106_1356856.html
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straint. To tackle this challenge, a truck—drone hybrid delivery system has been proposed.
In this system, ground vehicles (typically vans or trucks) carry drones to a site near the
customer’s location and are responsible for launching and recovering the drones. More
recently, scholars have investigated the potential of drone hitchhiking on public transit
with fixed routes and timetables (Choudhury et al., 2021; Huang et al., 2020). The benefit
of the hybrid system is that the drones utilize vehicles operating on fixed schedules.

Considering the two trends discussed above, this study explores a novel transporta-
tion system in which passengers and goods are simultaneously transported via demand-
responsive buses (DRBs) and drones. In this system, a DRB contains separated passen-
ger and parcel compartments and is equipped with a drone for goods delivery. A robotic
shelving system is installed in the parcel compartment; the system automatically locates
and prepares the parcel for the drone and customers, thereby relieving the driver of the
task of placing the parcel on the drone and directly delivering the parcel to the customers.
A DRB departs from the terminal, where it loads drones and parcels. The route of one
DRB trip is determined by both passengers’ requests and parcel delivery requests. The
bus does not need to stop and visit every parcel delivery location; drones can be launched
from the bus to undertake the delivery task and return to the bus. The launch and recovery
of the drone are automatic. A more detailed problem description is provided in Section
3.3.1.

The envisioned system is inspired by the Mercedes-Benz vision van 3. Most of the compo-
nents of the proposed system have been implemented or are under piloting experiments
for verification of their feasibility and attractiveness to the industry. For example, KT Corp,
a telephone company in South Korea, demonstrated the practicability of a drone stored on
the top of an autonomous bus delivering parcels to a designated pick-up point . Transport
for London ran two demand-responsive bus trials and found that 60% of users were willing
to reduce car usage in favor of DRBs °. The Netherlands launched a project named Cargo
Hitching to prove the viability of using the unused capacity of buses for parcel transport
(Van Duin et al., 2019).

Operating the proposed system requires planning routes for both DRBs and drones. The
corresponding optimization problem is denoted as the passenger and parcel share-a-ride
problem with drones (SARP-D). This study devises a mixed-integer nonlinear program-
ming (MINP) model for SARP-D to minimize the total operation costs, which comprise
the transportation costs of DRBs and drones and delay penalties, considering both sup-
ply and demand constraints. Regarding supply, we consider the capacity constraints for
passengers and parcels, the maximum operation time of a DRB, and the maximum bat-
tery endurance of drones. Regarding demand, we consider the time windows for both
passenger and parcel requests. To reduce the inconvenience to passengers caused by
extra stops to deliver parcels and pick up or drop off passengers, we restrict the maximum
number of intermediate stops during the service for one passenger request.

We present an adaptive large neighborhood search (ALNS) algorithm that solves the pro-
posed model for large-scale applications, given the high performance of the ALNS for a
large variant of vehicle routing problems (Ghilas et al., 2016a, 2016b; Li et al., 2016a;
Mourad et al., 2021; Ropke & Pisinger, 2006; Sacramento et al., 2019).

The remainder of this paper is organized as follows. Section 3.2 presents a literature re-
view and summarizes our main contributions. Section 3.3 introduces the MINP model for

3https:/ /www.youtube.com /watch?v=rnnSiK5mayY
*https:/ /www.ajudaily.com /view /20170314142937637
Shttps://content.tfl.gov.uk /drb-research-report-july-2021.pdf
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SARP-D, inspired by Li et al. (2014) and Sacramento et al. (2019). Section 3.4 describes
the ALNS metaheuristic tailored to solve the proposed problem. Section 3.5 presents the
numerical experiments conducted to validate the developed model, the analysis of op-
erator performance in ALNS, and the algorithm performance under different instances.
Section 3.6 provides some management insights. Finally, Section 3.7 concludes this pa-
per and provides various directions for future research.

3.2 Passenger and parcel share-a-ride problem and the

truck—drone routing problem

Ouir literature review focuses on two problems closely related to the proposed model: the
passenger and parcel share-a-ride problem (SARP) and the truck—drone routing problem.

3.2.1 Passenger and parcel SARP

The SARP was first established by Li et al. (2014). It aims to determine a set of routes for
taxis to serve both passenger and parcel requests and maximize profit for taxi companies,
considering the time windows at both the origins and destinations of requests. Not all
parcel requests can be served by taxis; hence, rejected parcels are served by a logistics
company. Li et al. (2014) imposed three assumptions to ensure that passengers are
assigned a higher priority than parcels: A1) Passengers have a maximum ride time; A2)
a maximum number of parcels can be inserted within one passenger service; and A3)
multiple passenger requests cannot be simultaneously served by one taxi. The authors
developed a mixed-integer programming (MIP) model and solved instances with up to 12
requests (24 nodes) using Gurobi. Li et al. (2016a) solved large-scale instances with up
to 300 requests using the ALNS metaheuristic.

Unlike in Li et al. (2014, 2016a, 2016b), in which passenger and parcel shared the same
taxi capacity, Yu et al. (2018) set the vehicle capacity for each request type. They gen-
eralized the SARP by relaxing the three assumptions in Li et al. (2014). Moreover, the
authors developed a simulated annealing heuristic to solve the general SARP with up to
288 requests. Later, following the assumptions of Li et al. (2014),Yu et al. (2021) stud-
ied an SARP with flexible compartments, in which passengers’ capacity is considered in
parcel storage, and the total capacities for passengers and parcels are fixed. They de-
veloped an MIP model and designed a mutation-based simulated annealing algorithm to
solve the proposed problem. Beirigo et al. (2018) investigated an SARP model, focusing
on SAVs with passenger and freight compartments, where each compartment has a fixed
capacity. They relaxed assumptions A2 and A3 in Li et al. (2014) and devised an MIP
model. Tholen et al. (2021) extended the model in Beirigo et al. (2018) by taking pas-
senger and parcel capacities as decision variables. Unlike the aforementioned studies
that aimed to maximize the profits of integrated passenger and parcel transportation, the
authors aimed to minimize the total transportation cost, which depends on travel distance
and vehicle capacity for each request type. Both Beirigo et al. (2018) and Tholen et al.
(2021) solved only small instances with Gurobi.

3.2.2 Truck—drone routing problem

In a truck—drone delivery system, trucks can 1) perform deliveries in the same manner as
drones and 2) serve as mobile carriers of drones, without performing the delivery them-
selves. Chung et al. (2020), Li et al. (2021), Macrina et al. (2020), and Otto et al. (2018)
have provided a comprehensive review of truck—drone routing problems. This section
focuses on the literature on the former scenario, in which trucks perform deliveries in the
same manner as drones. The corresponding routing problem is classified into the travel-
ing salesman problem with drones (TSP-D) and the vehicle routing problem with drones
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(VRP-D), according to the number of trucks in the delivery system (Macrina et al., 2020).
TSP-D involves only one truck, while VRP-D involves multiple trucks. The main charac-
teristics of TSP-D and VRP-D are summarized in Table 3.1.

Table 3.1: Characteristics of TSP-D and VRP-D

Number of trucks Cooperation* Synchronization

Y N Y N

TSP-D FSTSP One Drones take off from and land on the truck. At customer locations or depot
PDSTSP One v‘ v
. Option 1: Drones take off from and land on the same truck. . |
VRP-D FSVRP Multiple Option 2: Drones take off from a truck and land on a docking hub to travel with another truck. At customer locations or depot
PDSVRP  Multiple v N

* Remark
Most papers do not mention how drones take off and land. Generally, a human is needed to perform setup operations for drone launch and recovery (Otto et al., 2018).

Macrina et al. (2020) further classified TSP-D into the flying sidekick TSP (FSTSP) and the
parallel drone scheduling TSP (PDSTSP). In FSTSP, the truck and the drones coordinate
with other as the drones take off from and land on the truck. Truck—drone synchronization
at a customer location or the depot is required. In contrast, in PDSTSP, the truck and
the drone work independently, and no synchronization is required. VRP-D can be further
classified into the flying sidekick VRP (FSVRP), which is a VRP-D in which trucks and
drones cooperate, and the parallel drone scheduling VRP (PDSVRP), which is a VRP-D
in which trucks and drones work individually. FSVRP and FSTSP differ in two aspects:
cooperation and synchronization. For the first aspect, drones must return to the truck
from where they took off in FSTSP, while some FSVRPs allow drones to take off from
trucks but land on docking hubs serving as transfer locations for drones (Wang & Sheu,
2019) instead of at trucks. For the second aspect, FSTSP requires that the truck and
drones are synchronized at customer locations or the depot, while some FSVRPs do not
require synchronization in cases with docking hubs (Wang & Sheu, 2019) or allow en-route
launch and rendezvous operations (Marinelli et al., 2018). Most papers do not mention
how drones take off and land (i.e., autonomously or manually). Generally, a human is
needed to perform setup operations for drone launch and recovery (Otto et al., 2018).

Murray and Chu (2015) first developed an MIP model to formulate an FSTSP. In their
model, a single truck and a single drone cooperatively deliver parcels to customers. The
drone can only take off and land at the depot or a customer location when the truck is
stationary. The two vehicles wait for each other at rendezvous points. The objective
of their model is to minimize the time required for both vehicles to return to the depot.
The authors developed a heuristic with the idea of “truck-first, drone-second” to solve
instances with 10 customers. Inspired by the work of Murray and Chu (2015), various
studies emerged to study TSP-D (Agatz et al., 2018; Moshref-Javadi et al., 2020a) and
VRP-D (Chiang et al., 2019; Kitjacharoenchai et al., 2020; Wang et al., 2017), considering
different constraints and objective functions.

Because the problem proposed in the present study belongs to FSVRP and considers time
windows, we focus on the works on FSTSP and FSVRP. Although there are numerous
studies on FSTSP and FSVRP, only a few consider time windows. Table 3.2 summarizes
related works on FSTSP and FSVRP with time windows. All of them require truck—drone
synchronization.

In their studies on FSTSP and FSVRP considering time windows, Di Puglia Pugliese and
Guerriero (2017) assumed that the time for preparing a drone for a new delivery is negligi-
ble, while the service time at each customer location is not. An MIP model was proposed,
and instances with 5 and 10 nodes were solved using CPLEX. Di Puglia Pugliese et al.
(2020) further compared three transportation systems for parcel delivery: truck delivery,
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Table 3.2: Related works on FSTSP and FSVRP considering time windows

Launch/
Reference Variant Service time  Flight range Objective Solution approach Maximum no. of nodes
recovery time

Di Puglia Pugliese and Guerriero (2017) FSVRP
Di Puglia Pugliese et al. (2020) FSVRP
Di Puglia Pugliese et al. (2021a) FSVRP
Di Puglia Pugliese et al. (2021b) FSVRP
Kuo et al. (2022) FSVRP
Coindreau et al. (2021) FSVRP
Luo et al. (2021) FSTSP
Wang et al. (2022) FSVRP

Distance Cost CPLEX 10
Distance Cost CPLEX 15
Energy-related Cost Benders decomposition 15
Distance Cost Heuristic 100
Endurance Cost Metaheuristic 50
Endurance Cost Metaheuristic 100
Endurance Cost & customer satisfaction Metaheuristic 80
Distance Cost Metaheuristic 200

<<zZz=<zZ<ZZ
<< < << <<=

drone delivery, and truck—drone delivery systems. The results of instances with up to 15
nodes solved by CPLEX indicated that the drone delivery system could reduce CO2 emis-
sions by a factor of 144 compared with the truck delivery system; however, 44% of cus-
tomers were not catered for. The truck—drone delivery system leveraged the advantages
of drone delivery while overcoming its drawbacks. Specifically, the truck—drone delivery
system could serve all customers and reduce transportation costs and CO2 emissions by
39% and 48%, respectively, compared with the truck delivery system. In addition to the
service time at each customer location, Di Puglia Pugliese et al. (2021a) also considered
the drone take-off and landing times. They proposed a Benders decomposition approach
to solve instances with 5, 10, and 15 customers.

The previous studies developed exact methods to solve the truck—drone routing problem
with time windows. Owing to computational complexity, the methods can only solve small
instances. Several heuristic/metaheuristic algorithms have been proposed to solve large-
scale instances. Di Puglia Pugliese et al. (2021b) extended Di Puglia Pugliese and Guer-
riero (2017) work by providing a two-phase heuristic embedded in a multi-start framework
that can solve instances with up to 100 nodes. Kuo et al. (2022) devised a variable neigh-
borhood search algorithm to solve the VRP-D considering time windows (VRP-DTW) with
50 customers, considering both customer service time and drone launch and recollection
times. Coindreau et al. (2021) presented an ALNS algorithm for a VRP-DTW considering
customer service time while neglecting drone launch and recollection times. They intro-
duced a speed-up procedure to reduce the time consumed for each insertion process
in the ALNS. Their proposed algorithm could solve instances with up to 100 customers.
Wang et al. (2022) included the drone launch and recovery times into the service time
and devised an iterative local search algorithm to solve VRP-DTW instances with up to
200 customers. The aforementioned studies aimed to minimize the total monetary costs
of truck and drone operations. Luo et al. (2021) considered two objectives: minimizing
transportation costs related to the travel distance and maximizing overall customer sat-
isfaction related to the arrival time at each customer location. They designed a hybrid
multi-objective genetic optimization approach combined with a Pareto local search algo-
rithm, and the largest instance solved involved 80 customers.

Considering the limited drone battery capacity, Di Puglia Pugliese and Guerriero (2017),
Di Puglia Pugliese et al. (2020, 2021b), and Wang et al. (2022) set a maximum distance
that a drone can travel for one delivery. Di Puglia Pugliese et al. (2021a) embedded an
energy consumption model into a VRP-DTW model. Coindreau et al. (2021), Kuo et al.
(2022), and Luo et al. (2021) set a maximum flight endurance for drones. All of the above
studies neglected the drone recharge time or assumed that the drones could be fully
recharged instantly.

3.2.3 Paper contributions
The model developed in our study shares similarities with the SARP model in Li et al.
(2014) and the VRP-D model in Sacramento et al. (2019). Nonetheless, our study has
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several novelties, as described below.

(1) Compared with SARP, we introduce drones to cooperate with ground vehicles. This
will lead to efficiency gains but also considerably increase the SARP model com-
plexity.

(2) This study differs from the studies on VRP-D in five aspects.

(i) In the existing VRP-D studies, the ground vehicles collect goods and originate
from the depot. They only perform delivery. In our study, ground vehicles not
only deliver goods from the depot to customers but also pick up and deliver
passengers. Each passenger request is characterized by a pair of origin and
destination nodes and time windows at these nodes.

(i) We introduce time window constraints into VRP-D because passengers usually
have their preferred departure and arrival times, and customers can usually
pick up the parcels at a specific time only.

(iii) We assume that a drone can automatically take off from and land on DRBs.
Meanwhile, the goods compartment of DRBs houses a robotic shelving sys-
tem that can automatically locate and prepare goods for drone delivery and
customer pick-up; this means that drone launch/recovery and DRBs’ serving
of a request can occur simultaneously. In contrast, existing models require the
drivers to launch/recover the drone and deliver the parcel to the customers in
person, and the two processes cannot happen simultaneously.

(iv) In contrast to the literature on VRP-DTW, we consider soft time windows in-
stead of hard time windows asssociated with each request. If a vehicle arrives
at a node before its service time window, it is required to wait until the start
time; otherwise, a penalty is imposed.

(v) Most existing models can only solve large-scale instances with up to 100 nodes.
In our study, the largest instance contains 200 nodes.

In conclusion, the contributions of this paper are summarized as follows:

(1) We propose a new transport system that utilizes drones and on-demand transit for
the simultaneous transportation of passengers and goods.

(2) We introduce a new problem termed the passenger and parcel SARP-D, which en-
riches the existing studies on SARP, VRP-D, and VRP-DTW.

(3) We devise an MINP model for SARP-D. The nonlinearity originates from the possi-
bility of the drone to take off from or land on the DRBs at a node while passengers
are getting on/off or customers are picking up parcels at the same node. This leads
to a nonlinear formula for computing the arrival times of DRBs and drones at each
node. The MINP is then linearized to make it solvable by CPLEX for small instances.

(4) We develop an ALNS algorithm to solve the proposed problem and conduct nu-
merical experiments to demonstrate the model properties and examine the ALNS
efficiency. The largest instance solved in this study has 200 nodes.

3.3 Model formulation

3.3.1 Problem description
We consider a set of homogeneous DRBs, each containing separated and capacitated
compartments for passengers and goods and equipped with a drone for goods delivery.
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Owing to capacity and battery constraints, the drone only visits one customer during each
flight. We assume that enough backup DRBs and drones are present at the depot so that
each request can be served by one vehicle following the “depot—request location—depot”
route. This is a reasonable assumption because transportation companies usually pur-
chase sufficient vehicles to fulfill customer demands (Wang & Sheu, 2019). The task of the
DRBs is to deliver goods to customers and fulfill travel requests from passengers. Each
route is restricted by a maximum travel time. All goods requests have the same origin
(i.e., a single depot). The parcel for each goods request is placed in a single position on
the shelf inside the goods compartment of the DRBs. Considering the attributes of goods,
such as weight and the suitability of the delivery location for drone landing, some goods
can only be served by the DRBs, while others can be served by either a DRB or a drone.
Each passenger’s travel request includes origin and destination nodes and time windows
at the corresponding nodes. If more than one passenger travels between the same ori-
gin and destination nodes within the same time interval, these passenger requests are
combined into one, with an additional attribute indicating the number of passengers.

Both request types have a soft time window. If a vehicle arrives at a node before its earliest
service time, it is required to wait until its start time. If a vehicle or drone arrives at a node
after its latest service time, there is a penalty cost.

Both DRBs and drones must depart from and return to the depot at most once, either in
tandem or independently. When the drone is not in service, it is transported by a DRB.
The drone can be launched and retrieved at the depot or request locations when the DRB
is stationary. It can be launched and recovered multiple times during a DRB route, but
the launch and recovery points for a sortie (i.e., drone flight) cannot be the same. There
is a setup time required to launch and retrieve a drone at the launch and recovery nodes.
There is also a constant service time for each stop visited by the DRB, during which
customers can pick up goods from the goods compartment and passengers can get on
and off the passenger coach. As mentioned in Section 3.2.3, drone launch and recovery
can occur while customers are picking up parcels or passengers are getting on/off the
bus, owing to the robotic shelving system installed in the goods compartment.

We categorize all stops into five types according to the drone activities at the node, and
designate the corresponding nodes as follows: (i) Stops in which no drone-related activity
occurs belong to the “common node”; (ii) stops in which a drone is taking off belong to
the “launch node”; (iii) stops in which a node is served by the drone belong to the “drone
service node”; (iv) stops in which a drone is landing belong to the “recovery node”; and
(v) stops in which a drone first lands and then takes off belong to the “recovery—launch
node”. At each node, the activities of customers/passengers and drone launch and recov-
ery operations do not influence each other, meaning that the activities can be completed
simultaneously.

To save the drone’s battery, we assume that the drone can start landing immediately when
the DRB arrives at the node, while the drone can start taking offimmediately when or after
the DRB starts catering to the service requests at the node. The launch and recovery times
are longer than the service time at a node.

SARP-D aims to determine the DRB and drone routes according to the above description.
The objective is to minimize the total transportation cost and penalty cost associated with
the violation of time windows for serving all customers and passengers.

3.3.2 Notation
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Set of homogeneous DRBs, K = {1,2,...,|K|}, where |K| is the number
of vehicles.

Set of origins of passenger requests, S, = {1,2,...,|P
number of passenger requests.

Set of destinations of passenger requests, Sg =
{|P|+1,|P|+2,...,2|P|}.

Set of passenger stops, S5, = S U Sg.

Set of goods stops (destinations), S, = {2|P| + 1,2|P| + 2,...,2|P| + |G|},
where |G| is the number of parcel requests.

Sy C Sy, set of parcel requests that can be delivered by a drone.

Set of passenger and goods stops, S = S, U S,.

Setofallnodes, N = S,US,U{0,2|P| + |G| + 1}, where 0 and 2| P|+|G|+1
are the depot nodes indicating the start and end nodes of a route.

Set of nodes from which a DRB may depart, Ny = {0, 1, ..., 2| P| + |G|}.
Set of nodes to which a DRB may arrive, N, = {1,2,...,2|P| + |G| + 1}.
Set of nodes reachable from node i € Ny, AT (i) = N\ {i}.

Set of nodes that can be used to reach node i € N;, A~ (i) = No\ {i}.

}, where |P| is the

Capacity of the passenger compartment of a DRB.

Capacity of the goods compartment of a DRB.

Time required for a DRB to travel from node i € Ny to node j € V...
Time required for a drone to travel from node i € Ny to node j € N,..
Maximum flight duration of a drone.

Service time for a DRB at node i € S.

Service time for a drone at node i € S’

Number of passengers boarding a DRB atnode i € S. Q4 p) = —Q;,Vi €
S, and Q; = 0,Vi € 5.

Maximum travel time on a DRB route.

Transportation cost for a DRB traveling from node i € Ny to node j € N,.
Transportation cost for a drone flying from node i € Ny to node j € N,.
The earliest and latest service start times at node i € S.

Setup time required to launch a drone.

Setup time required to retrieve a drone.

Unit delay penalty at node i € S.

Maximum intermediate stops between the origin and destination of a pas-
senger request.

Decision Variables

k

Ty

k
yajb

N

xfj = 1ifDRB k € K travels from node i € Ny to node j € N, ; otherwise,
xf] = 0.

yfjjb = 1 if sortie < a,j,b > is used in the route of DRB £ € K, where
a € Ny represents the launch node of the drone, j € S, represents the
goods request served by the drone, b € N, represents the rendezvous
node of the drone; otherwise, y{jjb = 0.

Load of the passenger compartment of DRB k£ € K after the visitation of
node i € §S.
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th If node j € N, is a recovery node or recovery-launch node, té? is the time
point at which the drone is recovered by DRB k € K at node j € Ng;
otherwise, té‘? is the arrival time of DRB k& € K at node j € N or the arrival
time of drone k € K atnode j € S,/

" If node j € S is a recovery node, t’? is the time point at which DRB k € K

leaves node j € S;ifnode j € Sis alaunch node or recovery-launch node,

' is the time point at which drone k € K starts taking off; otherwise, t'% is

the time point at which DRB k € K starts service at node j € S or drone

k € K starts service at node j € S,

uf A continuous variable indicating the position of node ¢ € N in the route of
DRB k € K.

k. p}; = lifnode j € S'is visited after node i € Ny in the route of DRB k € K.

vfj Binary auxiliary variable for linearization.

Ak Delay of DRB/drone k € K atnode a € S.

3.3.3 Formulation
In this section, SARP-D is modeled as an MINP model and then linearized. The con-
straints are categorized into three groups:

(i) routing and flow constraints (constraints 3.2-3.16 and 3.29-3.36);
(ii) scheduling and synchronization constraints (constraints 3.17-3.28);

(iii) decision variable domain constraints (constraints 3.37-3.40).
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€A ()) iE€AT())
wh =0,Vk € K (3.9)
wh >wf +Q; — (1—af;) M,Vi € No,j € S\{i} , k€ K (3.10)
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max {0,Q;} < wf < min{Cap”, Cap” + Q;} Vi€ S,k € K (3.11)
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+Tb+max 1- Z Z Y — Z Z yfnnaao ST, + SL Z Z Yni

heS," 1eAt(h) ne€S,” meA~ heSy" leAt(h)
h#a l#a n#a m#a h#a l#a

+SR DY N Yy S8+ Tiax (L—2k,) ,Ya € S,b e AT (a) k€ K
9€S," fer(g)

g7#b f#b
(3.21)
P+ TR +SL—Toax [1— Y 4l | <tiVjeS,/ie A (j) ke K (3.22)
bEAT (j5),b#i
N TR+ STP 4 SR—Tmax [1— Y. yhy | <th Vi€ S/ be At (j), ke K (3.23)

a€A™ (4),a7b
+

M Ee+TH+SL Y. ST gy~ Toax (1—ab,) — Ly | WbeSkek (3.24)
heS,’ leA+(h)

+
k
t/ + T ab +max | 1- Z Z yahl Z Z yfnnav 0 ST(Y
heSy" leAt(h) neSy" meA™ (n)
)\I[f > h;éa l#a n;ﬁ; m#a ;

(3.25)

—I—SLZ Z Yk — Tmax(l—x) Ly

heSy" 1eAt (k)
h;éa l#a

Va€ S,be At (a), ke K
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JF
)\fz(t’f—kTi’f—kSL—Tmax(l— > yfjb>—Lj) Vi€ S,/ ie AT (j), ke K
i

beAT ()

(3.26)
th—sTy > S Y EaVaeSkeK (3.27)

neSy’ n#a meA~ (n),m#a
th — t”j < E + Tmax (1 - Z yfjb) ,Ya € No,b € At (a),k € K (3.28)

JES' jFa,j#b
1—-M(1—af;) <uf —uf Vie No,je AT (i), ke K (3.29)
uf —uf <1—M (xf; —1),Vi € No,j € AT (i), k€ K (3.30)
ub <M > 2l VjeNpkeK (3.31)
i€A=(j)
uy —uf < Mpf;, Vi € No,j € S\{i}, k€ K (3.32)
uf —uf > M(pf; — 1)+ 1,¥i € No,j € S\ {i}, k€ K (3.33)
ty — Tmax | 3 — Z Yniv — Z Z Yiomn — Dh | <t
JES,’ meSy m#l neAT(m) (3.34)
m#a,m#b  n#a,n#b

Vk € K,a € Ny,b € Ny,l € S\ {a,b}
ugp—uf >0,Vie Sy keK (3.35)
ub p—uf —1<nVieSS ke K (3.36)
aj; €{0,1},Vi € No,j € AT (i), k € K (3.37)
yrp €{0,1} ,Vk € K,a € No,j € {Sy':j #a},be {AT(j):b#a} (3.38)
ubtF ¥ >0vie N ke K (3.39)
Pl €{0,1},Vi € No,j € S\{i} .k € K (3.40)

Objective function (3.1) minimizes the sum of transportation costs and the penalty cost of
time window violation for serving all passenger and goods requests.

Constraints (3.2) ensure that each pick-up point of passengers and each goods delivery
point that can only be served by DRBs (i.e.,Sg\S;) are visited by DRBs exactly once.
Constraints (3.3) ensure that whenever the pick-up point of a passenger is visited, the
corresponding drop-off point is also visited. The constraints also ensure that the pick-up
and delivery points of a passenger request are served by the same DRB. Constraints
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(3.4) ensure that the delivery points of goods that can be served by drones are visited
exactly once, either by a DRB or a drone. Constraints (3.5) ensure that all DRBs depart
from the depot at most once, and constraints (3.6) ensure that all DRBs return to the
depot at most once. Constraints (3.7) prohibit travel between depots. Constraints (3.8)
ensure flow conservation. Constraints (3.9) ensure that the DRB leaves the depot with no
passengers. Constraints (3.10) update the passenger load of the DRB, and constraints
(3.11) ensure that the DRB load does not exceed the passenger capacity. Constraints
(3.12) ensure that for one DRB route, the amount of goods served by the DRB or the
drone carried by the DRB does not exceed the capacity of the DRB’s goods compartment.
Constraints (3.13) ensure that the drone can be launched at most once in each location.
Constraints (3.14) ensure that the drone can be recovered at most once in each location.
Constraints (3.15) ensure that if a drone carried by DRB k£ € K is launched from node
a € Ny, visits node j € {S,': j # a}, and is recovered at node b € {A*(j) : b # a}, the
DRB must visit both nodes a and b. Constraints (3.16) prohibit the drone from launching
from the depot, serving a single customer, and returning to the depot because under
this condition, no cooperation exists between the drone and a DRB, which is not within
the scope of this study. Constraints (3.17) indicate that DRB k£ € K and its drone are
ready at the depot at time 0. Constraints (3.18) limit the maximum travel time of a route.
Constraints (3.19) regulate the relationship between tg? and t’f. Given node b visited by a
DRB and its preceding node « visited by the same DRB, if node b is designated for drone
retrieval, constraints (3.20) and (3.21) ensure that the time point at which the drone is
retrieved is later than the sum of the time point at which the corresponding vehicle finishes
all tasks (including serving a passenger/goods request and launching and/or retrieving a
drone) at node a, the time required for the vehicle to travel between nodes a and b, and
the drone recovery duration. If node b does not have a recovery task, constraints (3.20)
and (3.21) ensure that the arrival time of the vehicle at node b is later than the sum of
the time point at which the corresponding vehicle finishes all tasks (including serving a
passenger/goods request and launching and/or retrieving a drone) at node a and the
travel time between nodes a and b. If node « is the depot, constraints (3.20) are applied;
otherwise, constraints (3.21) are applied. Constraints (3.22) ensure that the arrival time
of a drone at its service node is later than the sum of the time point at which the drone
takes off at the launch node, the time required for launching, and the travel time between
the launch and service nodes. Constraints (3.23) ensure that the time point at which a
drone is retrieved at the recovery node is later than the sum of the time point at which
the drone starts its service, the customer service duration, the travel time between the
service and recovery nodes, and the drone recovery duration. Constraints (3.24) and
(3.25) calculate the delay of the DRB at its first visited node and other nodes, respectively.
Constraints (3.26) calculate the delay of drones at each drone service node. Constraints
(3.27) ensure that the vehicle can only start service after the earliest service start time.
Constraints (3.28) ensure the drone flight time does not exceed the battery’s endurance
time. Constraints (3.29) to (3.33) define the position of each node that DRB k € K visits
and eliminate the sub-tours of DRBs. Constraints (3.34) prohibit new launches while the
drone is already performing a delivery task. Constraints (3.35) ensure that a DRB visits the
origin of passenger request i before its destination. Constraints (3.36) state that the DRB
can stop at most n times during a passenger request service. Constraints (3.37) to (3.40)
are the definitional constraints for the decision variables. Constraints (3.21) and (3.25)
are nonlinear. To linearize them, we introduce a binary auxiliary variable v*. Constraints
(3.41) to (3.44) are introduced to replace constraints (3.21). Constraints (3.42) to (3.46)
are introduced to replace constraints (3.25).
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v ST=5 | Do D0 Yewt Do DL Une | VaE€SKEK (3.43)
heSy" leAt(h) neSy” meA~(n)
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heS," leAt(h)
h#a l#a
(3.45)

MN>0veSkekK (3.46)

3.4 ALNS

To solve SARP-D, an ALNS metaheuristic is proposed. The ALNS was first introduced by
Ropke and Pisinger (2006). It has been widely used and has shown high performance in
various VRP variants. In this section, we present the ALNS framework and introduce the
destroy and repair methods and the proposed time slack strategy.

3.4.1 The ALNS framework

Let s and s* denote the current and best solutions, respectively. sis initialized via the repair
method RO described in Section 3.4.3 (Line 1) and set as the current best solution (Line
2). The ALNS improves the best solution s* by repeatedly generating a new solution s’ by
destroying and repairing the current solution (Lines 8-29). Let O~ and Q™ respectively
denote the sets of destroy methods, which eliminate part of the current solution, and repair
methods, which rebuild the partial solution to a feasible solution. In each iteration, one
destroy method d € Q~ and one repair method r € QT are selected (Line 9) via the
roulette wheel selection method. Let w; (w;") denote the weights of the destroy (repair)
method d € Q~ (r € Q7). The probabilities of selecting a destroy and a repair method are
calculated as (3.47) and (3.48), respectively.

probg = dew_ Vde Q- (3.47)
acN—
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Algorithm 1 ALNS

0N N AW~

10

11

12
13
14
15
16

17
18

19
20
21

22

23

24
25

26
27
28
29

Input: Initial temperature 7, ; score o ; cooling parameter /3 ; reaction factor p; maximum
non-improvement iterations to set the best solution as the current solution: s < s : nolmp™> .
Current solution s <— InitialSolution() .

Best solution s* < s .

The number of non-improvement iterations nofmp <0 .

Current temperature 7' « T,

o ,o" < InitialWeights() .

0 ,0" < InitialOperationTimes() .

&7,&E" « InitialScores() .

‘While the stop criteria are not met, do
Choose a destroy method d and a repair method 7 from the destroy method set 2~

: + : - _ - + _ +
and the repair method set Q" according to @ —{wd }deg_ and @ —{m, }rew ,
respectively.

Generate the new solution s’ « r(d (s))
If f(s")< f(s"), then

s «s'

s« s’

nolmp <0

Else
nolmp < nolmp +1

If nolmp < nolmp™ , then

If Random(0,1) < exp((f(s)—f(s'))/T) , then

s< s
Else

s<s
o <« UpdateOperationT imes(a’ ) ; 0" < UpdateOperationT imes(r)
& «UpdateScores(o,d); £ < UpdateScores(o,r)
T « pT
If the update criterion is met, then
T UpdateWeights(f’ ,o’,p); @' <« UpdateWeights (f* ,o*,p)
0 ,0" < ResetOperationTimes()
& ,E" < ResetScores()

Return s°

ot
prob, = ————,¥r € Q" (3.48)
Wa
aeQt

At the start of the metaheuristic, the weights of each destroy method and repair method
are initialized to 1 (Line 5). When the update criterion is met, the values of the weights will
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be updated accordingto o~ = {0, } ;.- @nd o™ = {0}, o+, which represents the sets of
the number of times that the destroy and repair methods are selected, and ¢~ = {¢;} .,
and ¢ = {{},cq+, Which denote the sets of accumulated scores of destroy and repair
methods. Each element in the above four sets is initialized to 0 (Lines 6—7) and updated
after each iteration.

Specifically, after each iteration, the usage frequencies of the destroy method o, Vd € 2~
and the repair method o;", vr € Q* are increased by 1 (Line 22). The accumulated scores
of the selected destroy method ¢, Vd € Q~ and repair method &', Vr € QT are increased
by the same score o (Line 23). In each iteration, there are four preset values for o to be
chosen from: o1, 02, 03, and o4, depending on the quality of the newly generated solution
for the iteration under consideration. We explain how to choose the ¢ value later.

The selected destroy and repair methods are sequentially applied to the current solution
to generate a new solution s’ (Line 10); however, the newly generated solution may not
always be accepted. The simulated annealing acceptance criterion is adopted to avoid
being stuck in a local optimum. Specifically, when the number of non-improvement itera-
tions is less than or equal to a predefined number nolmp™@(Lines 11-19), we accept the
new solution s’ and set it as the current solution s with a probability p(s’, s) computed as

p(s’,s) = min {1, exp (W)} (3.49)

where T is the current temperature, which starts at T;; and decreases after each iteration
according to the expression 7' = 5T, where 3 € (0,1) is a cooling parameter (Line 24). If
the number of non-improvement iterations is greater than noImp™2*, we set the best solu-
tion at hand s* as the current solution s (Lines 20-21). The ¢ value is selected according
to the quality of the newly generated solution s'. If s’ results in a global best solution, then
o = o,. Otherwise, if s’ is accepted and better than the current solution s, then o = o9;
if 5" is accepted but worse than the current solution s, then o = o3; if s’ is rejected, then
o = o4. The four values, i.e., 01,092,053, and o4, can be tuned in the metaheuristic. In
Ropke and Pisinger (2006), the default setting was o1 = 33, 09 = 9, 03 = 13, and o4 = 0.

The entire search is divided into several segments, where a segment is a certain number
of iterations iter®¢9. At the end of each segment, the weights of the destroy and repair
methods are updated according to equations (3.50) and (3.51).

wy + pw; +(1—-p) gi_,Vd eN” (3.50)
Oq
§+

w:r<—pw:'+(1—p)i+,VT€Q+ (3.51)
Or

where p € [0,1] is a reaction factor controlling the degree of change in weights. The
accumulated scores and the number of times each destroy or repair operator is selected
are reset to 0 (Lines 25-28).

The two termination criteria for the ALNS metaheuristic are as follows: the maximum
number of iterations iter!°? is reached and the maximum number of iterations in which
the best solution is not improved nolmp®°? is reached. The algorithm stops and outputs
the best solution when either criterion is met.

3.4.2 Destroy methods
In each iteration, the selected destroy method removes a certain number of requests §
from the current solution. The number is set as

6 € {min (rmin, Max (1, 710w (| P| + |GI))) , min (rmax, max (1, rup (| P| + |GI)))} -
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row @nd ry,, are the lowest and highest ratios to control the percentage of requests to
be removed, respectively. rmin and rmax are the absolute upper bounds of the minimum
and maximum numbers of requests that can be removed, respectively; these parameters
ensure that the number of removed requests § is reasonable for very large instances
(Sacramento et al., 2019). The absolute lower bounds on the minimum and maximum
numbers of removed requests are set to 1 in the case of very small instances.

We propose four removal operators. For ease of explanation, the following notation is
used in this subsection. Given a request regq, let O(req) and D(req) denote the origin and
destination of req. If req is a goods request, O(req) is the depot. d;; is the DRB travel
distance between nodes i and j. For all removal methods, the actual number of removed
requests when removing a selected request req could be more than one, such as between
two and five, depending on the type of selected request and the nature of the stop(s) of
the selected request. If request req is a goods request, we only need to check the type of
node D(req). If D(req) has launch or recovery tasks, the corresponding goods request
served by the drone should be removed. If request req is a passenger request, the type
of its origin node O(req) and destination node D(req) should be checked. Similarly, if
O(req) or D(req) is associated with a launch or recovery task, the corresponding goods
request served by the drone should also be removed.

DO)

D1)

D2)

D3)

Random removal

This method randomly removes requests from the current solution until § requests
are removed.

Worst removal

Given a request req in a current solution s, the insertion cost of request req is de-
fined as InsCost (req,s) = f(s) — f-req (5), Where f_,.,(s) is the objective value of
solution s without request req. The worst removal method repeatedly removes the
request with the largest insertion cost InsCost (req, s) until § requests are removed.

Shaw removal

This method was proposed by Shaw (1998). The idea is to remove requests that
are similar in certain aspects. The similarity between requests req and req’, denoted
as R (req,req’), is measured according to the following equation:

R (T@q, req/) =¥ (dO(req),O(req’) + dD('r‘eq),D(req/)) + 2 (‘TO(req) - TO(req’)‘ + |TD(req) - TD(req’) D
+ @3 (|Wreq - W'r‘eq’|) + @4kreq,req’
(3.52)

where T; is the service start time of the vehicle at node i; W,., is the number of
passengers/goods included in request req; and k;.., ., = —1 if requests req and
req’ are in the same route; otherwise, kregreq = 15 ©1, 2, w3, and ¢, are weights
associated with the four terms. d;;, 7;, and W,., are normalized. The smaller the
R (req,req’) value, the higher the similarity between requests req and req’. The
Shaw removal method first randomly chooses a request req from the current solu-
tion s and then selects the request req” = argmin, .- {R (reg, req')} to remove,

where Req denotes the requests in the current solution s. The two steps are re-
peated until 6 requests are removed.

Nearest removal
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In this method, the request req to be removed is randomly selected. If request req is
a goods request, the node i* = argmin,_x {dp(req); } is determined, where N de-
notes the nodes in the current solution s. Then, the req’s nearest request req’ whose
origin or destination node is i* is removed. If request req is a passenger request,
nodes i} = argmin,_ {do(req),i } and i3 = argmin,_x {dp(cq),:} are determined.
If do(req)it < dD(req)i3» the req’s nearest request req’ whose origin or destination
node is i} is removed. Otherwise, the req’s nearest request req’ whose origin or
destination node is i3 is removed. The two steps are repeated until § requests are
removed.

3.4.3 Repair methods

The repair methods rebuild a solution by inserting removed requests into the current partial
solution. Five customized repair methods are developed. Not all repair methods ensure
a feasible solution. We explain which repair methods may produce an infeasible solu-
tion and how to deal with the infeasible solution after the introduction of all of the repair
methods.

The following notations are used in this section. Given a request req, the cost of inserting
request req into solution s in route rt at position pos is defined as InsCost (req, s, rt, pos) =
f (req, s, rt,pos)— f (req, s), where f (req, s, rt, pos) is the objective value of solution s with
request req in route rt at position pos, and f (req, s) is the objective value of solution s
with request req in its current position®. If req is not in solution s, f (req, s) is the objec-
tive value of solution s without request req. Route rt refers to a DRB route. If request
req is a passenger request, pos represents the combination of the positions of both the
origin and destination nodes of req, and it can only be in a DRB route; if request req is
a goods request, pos could be the position of the delivery point of req in a DRB route
or in a drone sortie described by a tuple <launch node, delivery point of req, recovery
node>. RemovedSet is the set containing all removed requests in the previous destroy
step. RouteSet is the set containing all routes in solution s. DRBPositionSet is the set
containing all positions in the DRB route in route rt. DinRSet is the set containing goods
requests that can be served by drones but is now assigned to a DRB route. SortieSet
is the set containing all possible sorties for request req in route rt. If req is a passenger
request or goods request not eligible for drone service, the corresponding SortieSet is
empty.

RO) Greedy DRB-first drone-second repair method
This repair method consists of two phases.
In the first phase, request req* is repeatedly inserted into route rt* in solution s at

position pos*, where

* * * ;
(Teq , Tt pos ) =argmin req€ RemovedSet,rt€ RouteSet, {ITLSCOSt (Tecb S, T‘t,pOS)}-
pos€ D RB PositionSet

After the insertion of one request into the solution, RemovedSet, RouteSet,DinRSet,
DRBPositionSet, SortieSet, and s are updated. This phase stops until all requests
have been inserted into DRB routes.

®In the second phase of repair methods RO and R1, a goods request eligible for drone service may be
moved from its current position (in a DRB route) to a new position (a drone sortie). “Inserting” a request
means either adding a request from the removed request set to a current solution or moving a request already
existing in the current solution from its current position to a new position.
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In the second phase, the minimum insertion cost of moving a goods request that
drones can serve fromits current position in a DRB route to a drone sortie is checked.
If the cost is less than 0, then request dreq* will be inserted into a sortie dpos* in
route drt* in solution s, where

(dreq*, d’l“t*, deS*) = arg min reqeDinRSet,rte RouteSet, {I?’LSCOSt (7”6(], S, Tt, pos)} .
pos€SortieSet
Subsequently, solution s and sets RouteSet,DinRSet, DRB PositionSet, and SortieSet
are updated. If the corresponding request at the launch or recovery node of request
dreq* is eligible for drone service, the request(s) at the launch or recovery node will
be removed from DinRSet. This procedure is repeated until DinRSet is empty or

min req€ DinRSet,rt€ RouteSet, {ITLSCOSt (re% s, rt, pOS)} > 0.
pos€SortieSet

Putting all requests in the removed request set RemovedSet, we use RO to construct
the initial solution.

R1) Regret DRB-first drone-second repair method

Repair method R1 involves two phases similar to RO. The difference is that in each
phase of R1, we use the 2-regret criterion to select requests to operate. That is,
we insert the request with the largest regret value at the best position in solution s.
The regret value represents the difference in the costs associated with inserting a
request into the best and second-best positions. Let InsCost (req, s, rt*, pos*) and
InsCost (req, s, rt**, pos™) denote the insertion cost of inserting req into the best
and the second-best positions in solution s, respectively. The regret value of req in
solution s is calculated as

reg (req, s) = InsCost (req, s, rt*, pos™) — InsCost (req, s, rt*™*, pos™) .

R2) Best insertion repair method

This method involves the sequential insertion of request req from RemovedSet into
route rt* in solution s at position pos*, where

(rt*, pos™) = argmin rt€ RouteSet, {InsCost (req, s, rt,pos)} .
pos€ D RBPositionSetUSortieSet

Sets RouteSet, DRBPositionSet, SortieSet, and RemovedSet, and solution s are
updated after each insertion.
R3) Balanced best insertion repair method

The balanced best insertion repair method aims to generate a relatively balanced
solution in which each route has a similar objective value. This method involves the
sequential insertion of request req from RemovedSet into route rtn,;,, @ non-empty
route with the minimum objective value, and the insertion position pos* is determined
as

pOS* = arg minposeDRBPositionSetUSOTtieSet {ITLSCOSLL (T@q, S, ’I"tmin, pos)} .

Sets RouteSet, DRBPositionSet, SortieSet, and RemovedSet, and solution s are
updated after each insertion.
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R4) Nearest best insertion repair method

The nearest best insertion repair method attempts to sequentially insert request req
from RemovedSet into the best position pos* of route rt,cqrest iN Solution s, where

pOS* = arg minposeDRBPositionSetUSortieSet {ITLSCOSt (Te% S, 7Atneareshpos)} 5

and route rt,.qrest iS the route that contains req’s nearest request req’. The concept
of the nearest request is defined in destroy method D3. Sets RouteSet, DRB PositionSet,
SortieSet, and RemovedSet, and solution s are updated after each insertion.

The five repair methods are categorized into two groups. RO and R1 belong to the first
group, G1. R2, R3, and R4 belong to the second group, G2. The basis for this classifica-
tion is as follows: i) RO and R1 are two-stage heuristics. In the first stage, all requests are
inserted into a DRB route. In the second stage, requests that drones can serve may be
moved from the DRB route into a drone sortie. In contrast, R2, R3, and R4 feature one
stage. The costs of inserting a request eligible for drone service into a DRB route and
a drone sortie are compared, and the better route is selected. ii) In G1, we evaluate the
cost of inserting each candidate request into each position and choose the best request
with the best position to perform operations. This means that the request to be inserted
into the partial solution at each time is not known before the evaluation of all removed
requests. In contrast, in G2, the request to be inserted at each time is known.

RO, R1, and R2 will always produce feasible solutions because 1) we assume that there
are a sufficient number of vehicles (routes) ensuring that all requests can be served by
the DRB and 2) the request can be inserted into any route, including the empty route.
In contrast, R3 and R4 may produce infeasible solutions because a request can only be
inserted into a specific non-empty route, which may cause a violation of vehicle capacity
or the maximum travel time on a route. If an infeasible solution is generated, the repair
method returns the solution obtained before executing the destroy and repair operations
in the iteration.

3.4.4 Time slack strategy

The objective function minimizes the sum of the transportation and delay costs. Trans-
portation costs can be reduced through the use of drones to deliver as many goods re-
quests as possible because the operational cost of drones is much lower than that of
DRBs. To mitigate the delay cost, DRBs and drones should leave a preceding node as
soon as possible. If a preceding node is a launch node, leaving it too early may cause a
long drone or DRB waiting time at the service node. This may result in an infeasible flight
sortie because of the limited drone battery capacity. To address this, this study proposes
a time slack strategy. DRBs and drones are allowed to wait at a node after completing
the service task at the node. The time slack strategy will be adopted whenever the repair
methods try to insert a drone sortie into a DRB route but the total flight time of the drone
exceeds the maximum flight endurance. Through the implementation of this strategy, an
infeasible flight sortie may be rendered feasible.

An illustrative example is presented in Figure 3.1. The numbers above the black and blue
arrows represent the DRB and drone travel times between two nodes. The time window
at each node is indicated in brackets below the node box. The launch, recovery, and
service times at each node are set to 1 min. The maximum drone flight time is 30 min.
Consider a scenario in which a DRB carrying a drone arrives at node 1 at time 5 and the
earliest service time at node 1 is time 5. If the time slack strategy is not considered, at
time 5, the DRB starts its service at node 1, and the drone starts taking off at the same
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time. At time 6, the DRB leaves node 1 and proceeds to node 2, while the drone flies
to node 4. The two vehicles wait at nodes 2 and 4 until the earliest time window at their
service node is reached. Then, they travel to recovery node 3. Because the drone arrives
at node 3 earlier than the DRB, it continues flying and waits for the DRB’s arrival. Once
the DRB arrives at node 3, the drone starts landing. The total flight time of the drone is
33 min. Because 33 is greater than 30, the solution is infeasible.

{4]

— Drone sortie 8 [18, 24] 10
DRB route E 10 E 14 E
[5. 10] [22.25] [40. 45]
Without time slack With time slack
ISR T

DRB arrival time DRB arrival time
DRB service start time 3 22 40 DRB service start time 5 22 40
DRB departure time 6 23 DRB departure time 9 23
Drone arrival time 14 29 Drone arrival time 7y | 22
Drone service start time 18 Drone service start tume 18
Drone launch start time S Drone launch start time 8
Drone departure time 6 19 Drone departure time 9 19
Drone recovery time 38 Drone recovery time 38
Drone flight time 38-5=33>30 Drone flight time 38-8=30

Infeasible solution Feasible solution

Figure 3.1: Time slack strategy

Consider a time slack strategy in which the drone starts taking off at time 5 + (33 — 30) =
8. The drone flight time is recalculated as 30 min and is within the maximum flight time;
therefore, the solution becomes feasible. The time slack strategy does not guarantee a
better solution because postponing the departure time at a node may cause a delay at the
subsequently visited nodes. The time slack strategy is applied only when an infeasible
drone sortie occurs in the repair stage. The implementation of the strategy may render
an infeasible solution feasible and better than the current best solution.

3.5 Numerical experiments

All numerical experiments were conducted on a Huawei XH620 V3 computer with an Intel
Xeon Processor 2660v3 at 2.60 GHz. The CPLEX version was 12.9.0.0, and the ALNS
was coded in C++. For each instance, we ran the ALNS 10 times and chose the best
solution with the minimum objective value for our analysis.

3.5.1 Test instances and parameter tuning

The tested networks were generated according to the work by Sacramento et al. (2019).
The coordinates of each node were the same as those in Sacramento et al. (2019). The
coordinates were uniformly distributed on a grid of dimensions 2d x 2d around the depot
(0, 0). The distribution is expressed as U (—d,d). The first |P| nodes are the passen-
ger request origins, and the following |P| nodes represent the passenger request des-
tinations. The rest of the nodes denote goods requests, some of which can be visited
by drones. Each node is associated with a time window, and the interval between the
latest and earliest service start time is 15 min. The instances are named as structure
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|S|_|P|_|G|_|D| — — — Dim. |S| is the sum of the number of passenger stops and goods
stops; | D| is the number of goods requests that can be served by the drones; Dim rep-
resents the grid dimensions; |S| and Dim are the same as in Sacramento et al. (2019),
while for instances with the same size, we use the instances with the generic name “1” in
Sacramento et al. (2019).

Here, we introduce the main setup of our experiments. The travel distances for a DRB
and a drone between two nodes were equal to the Manhattan distance and Euclidean
distance between the two nodes, respectively (Murray & Chu, 2015). The number of pas-
sengers for a passenger request was randomly selected from {1,2,3}. The maximum
number of stops between the origin and destination of a passenger request service was
2. The DRB and drone service time at each node was 1 min. The delay penalty cost
was 1 $ /min for passenger requests (Transport DTU, 2022) and 0.5 $ /min for goods
requests’. The DRB speed was set to 35 miles/h, which is the same as the truck speed in
Sacramento et al. (2019) and similar to the speed limit of buses, passenger cars, and
vans in Denmark (https://trip.studentnews.eu/s/4086/77069-Buses-standard-speed-limits-
in-Europe.htm). The transportation cost for a DRB was 0.2 $/mile (Litman, 2022), and
the transportation cost for a drone was 10% of that for a ground vehicle (Sacramento et
al., 2019). It was assumed that there were enough DRBs and drones. The capacities for
passengers and goods were set to be the same, but they varied with the network settings.
When the number of nodes was less than 50, the capacity was set as 6; when the num-
ber of nodes was 50 or 100, the capacity was 10; when the number of nodes was 150 or
200, the capacity was 20. The values of the other parameters were the same as those
in Sacramento et al. (2019); that is, the speed of a drone was 50 miles/h; the maximum
duration times of a DRB and a drone were set to 480 and 30 min, respectively; the launch
and recovery times were 1 min.

We set the values of most of the parameters used in ALNS to those in Sacramento et al.
(2019). We tuned two parameters: the lowest ratio of the number of removed requests
T10w 10 the number of overall requests (0.01, 0.05, 0.1) and the highest ratio of the number
of removed requests r,, to the number of overall requests (0.2, 0.3, 0.4). The instances
used for parameter tuning were those with the largest dimensions for each instance with
a different number of nodes. We ran ALNS 10 times for each instance. The parameter
values with the best behavior (in terms of the average value of the minimum objective
values for tuning instances) were selected. The final parameter values were set as follows:
The initial temperature T, was calculated as 0.004 x 1.1 times the objective value of the
initial solution for small instances and 0.004 times the objective value of the initial solution
for large instances. The cooling parameter 8 was set as 0.9997. The absolute upper
bounds on the minimum and maximum numbers of requests to be removed were set to
Tmin = 20 and rmax = 40. The lowest and highest ratios of the number of requests to be
removed to the number of total requests were set to r,,, = 0.1 and r,;, = 0.2, respectively.
The value of each weight used in the Shaw removal was set to 0.25. The reaction factor
was set to p = 0.9. The scores of the methods were set to o1 = 33, 09 = 9, 03 = 13,
and o4, = 0. The number of iterations in a segment was iter®*® = 100. The maximum
number of non-improvement iterations for setting the best solution as the current solution
was set to noImp™M®* = 250. The parameters defining the stopping criteria were set to
iters®P = 25000 and nolmp*°? = 7000.

"In the numerical experiments, we used the same aies, value (i.e., the unit delay penalty for passenger
requests) for all passenger requests and the same a5, value (i.e., the unit delay penalty for goods requests)
for all goods requests. The value of the unit delay penalty for a passenger request was greater than that for
a goods request.
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3.5.2 Comparison with CPLEX

Table 3.3 compares the results given by CPLEX and the ALNS for the instances with 6, 10,
and 12 nodes. For each instance, we ran the ALNS 10 times and obtained the minimum
objective value (zarns,,;, ), the average objective value (zaLns,,,), the standard deviation
(Std.), and the average computation time of the 10 runs. The gap was calculated as
“LNSPM x 100%. CPLEX solved all instances to optimality. The computation time
increased from 0.5 to 140.0 s with increasing instance size. In contrast, the proposed
ALNS yielded the same solution as CPLEX within 1.5 s and had a stable performance,
with a standard deviation of 0.0000.

Table 3.3: Results from CPLEX and ALNS for small SARP-D instances

n Network CPLEX ALNS Gap
20PLEX Time ZALNSmn ZALNS, Std. Time
(S) min avg (S)
2 2 2—5 4.0834 1.0 4.0834 4.0834 0.0000 0.6 0.00%
2 2 2—10 8.3111 0.9 8.3111 8.3111 0.0000 04 0.00%
2 2 2—20 10.4419 0.6 10.4419 10.4419 0.0000 04 0.00%

6

6

6
10_3 4. 3—5 52563 38.7 52563 52563 0.0000 0.7 0.00%
0 10_3_4.3—10 12.5398 5.2 12.5398 12.5398 0.0000 1.1 0.00%
10_3 4_3—20 17.6415 6.6 17.6415 17.6415 0.0000 0.6 0.00%
12_.4 4 3—5 7.1948 140.0 7.1948 7.1948 0.0000 1.0 0.00%
12_4 4 3—10 10.6261 254 10.6261 10.6261 0.0000 0.9 0.00%
12_4_4 3—20 25.2007 10.8 25.2007 25.2007 0.0000 0.6 0.00%
6.2 2 2—5 3.3346 0.5 3.3346  3.3346  0.0000 0.6 0.00%
6.2 2 2—10 8.3111 1.1 8.3111 8.3111 0.0000 0.5 0.00%
6.2 2 2—20 104419 0.5 10.4419 10.4419 0.0000 0.4 0.00%
10_3_4 3—5 45126 429 45126 45126 0.0000 0.8 0.00%
1 10_3.4.3—10 10.7309 4.6 10.7309 10.7309 0.0000 1.2 0.00%
10_3 4_3—20 17.5246 6.7 17.5246 17.5246 0.0000 0.8 0.00%
12_.4 4 3—5 6.6085 1184 6.6085 6.6085 0.0000 1.0 0.00%
12_4_4 3—10 10.5319 314 10.5319 10.5319 0.0000 1.0 0.00%
12_4_4 3—20 25.2007 14.7 25.2007 25.2007 0.0000 0.7 0.00%
6.2 2 2—5 3.2699 0.5 3.2699 3.2699 0.0000 0.8 0.00%
6.2 2 2—10 8.1790 1.1 8.1790 8.1790  0.0000 0.6 0.00%
6_2 2 2—20 10.4419 0.7 10.4419 10.4419 0.0000 0.5 0.00%
10_3 4 3—5 44476 358 44476 44476 0.0000 0.9 0.00%
2 10.3_4 3—10 10.7309 4.3 10.7309 10.7309 0.0000 1.5 0.00%
10_3_4_3—20 17.5246 6.5 17.5246 17.5246 0.0000 0.9 0.00%
12_.4 4 3—5 6.4138 109.3 6.4138 6.4138 0.0000 1.2 0.00%
12_4_4 3—10 10.5319 31.3 10.5319 10.5319 0.0000 1.2 0.00%
12_4 4 _3—20 25.2007 13.4 25.2007 25.2007 0.0000 0.9 0.00%

3.5.3 Analysis of operators
In this section, the performance of ALNS operators is analyzed using instances from the
tuning set.

3.5.3.1 Percentage of usage and scores of operators
Figure 3.2a presents the percentage of the total usage of operators. All destroy and
repair methods were used, and the usage frequency of each operator differed in the test
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instances. This suggests that the roulette wheel selection method can select appropriate
destroy and repair methods for each instance. On average, all destroy methods were
used with similar frequencies (Figure 3.2a, Average). Each of the repair methods RO, R1,
and R2 accounted for about 30.0% of the iterations. In contrast, the percentages of the
total usage of R3 and R4 were 6.5% and 4.8%, respectively (Figure 3.2a, Average).

Because we rewarded the new accepted solution according to the simulated annealing
acceptance criterion, the most used operators were not necessarily those that improved
the best-found or current solution the most times. Following the analysis method adopted
by Sun et al. (2020), we present the percentages of the usage of operators that generated
a solution that improved the best-found solution and the current solution in Figures 3.2b
and 3.2c, respectively. These percentages can help identify which operators are likely to
improve the best-found and current solutions. Compared with other destroy methods, D1
was less likely to improve the best-found and current solutions (Figures 3.2b and 3.2c,
Average). Regarding the repair methods, R1 exhibited the best performance (46.0%)
in improving the best-found solution, followed by RO (26.4%) and R2 (23.4%), while R3
(4.2%) and R4 (0.0%) made minimal contributions (Figure 3.2b, Average). Similarly, R1
also exhibited the best performance (45.7%) in improving the current solution, followed
by RO (27.7%) and R2 (22.4%). R3 and R4 contributed almost equally (2.1%) to the im-
provement of the current solution (Figure 3.2c, Average). Figures 3.2b and 3.2c indicate
that all destroy and repair methods contribute to the improvement of the best-found or
current solution. Although R3 and R4 had limited impacts, they showed effectiveness in
some instances (Figure 3.2c, instances 10_3 4 3—20 and 12_4_4 3—20). Moreover,
as shown in Section 3.5.3.2, there were instances in which R3 and R4 were required to
diversify the search and help improve the overall performance of ALNS. Similar observa-
tions have been reported by Chen et al. (2021), Ghilas et al. (2016a), Sun et al. (2020),
and Zhao et al. (2022).

Figure 3.3 presents the percentage of the total scores of operators. A comparison of
Figure 3.2a and Figure 3.3 reveals that the performances of each operator in terms of the
total usage and total scores were almost the same, with only minor differences in their
values.

3.5.3.2 Effects of operators and the time slack strategy

We examined the effects of the destroy and repair methods by removing one or more
operators from ALNS operators and compared the corresponding results with those given
by base-operators, which contain all operators introduced in Section 3.4. The objective
function value gaps and computation time gaps of different combinations of operators
and base-operators are presented in Tables 3.4 and 3.5, respectively. The column name
indicates the operator combination. NoDO, NoD1, NoD2, NoD3, NoRO, NoR1, NoR2,
NoR3, NoR4, NoR3R4, NoG1, and NoG2 represent the combination of operators without
DO, D1, D2, D3, RO, R1, R2, R3, R4, R3 and R4, G1, and G2 from the base-operators,
respectively. Moreover, the effects of the time slack strategy were examined, and the
results are presented in the last column of the two tables.

Table 3.4 reveals that on average, removing operators degraded the solution’s quality,
with a maximum gap of 21.1%, which indicates that all elements in the ALNS contributed
to ensuring the solution’s quality. Although Figure 3.2 suggests that repair methods
R3 and R4 seemed to make limited contributions to improving the solution, the optimal
solution worsened without them in some instances (instances 150 55 40 30—40 and
200_60_80_60—40). The primary purpose of these operators was to enhance the di-
versity of the neighborhood search and improve the overall ALNS performance. Repair
methods without G2 (R2, R3, and R4) resulted in a large gap for the small instances
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Figure 3.3: Percentage of the total scores of operators

6_2 2 2—20 with six nodes (21.1%) and 12_4 4 3—20 with 12 nodes (10.0%). There-
fore, the best insertion-based repair methods (G2) played an essential role in the ALNS.
The reason is explained in more detail as follows.
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Table 3.4: Comparison of the objective function value yielded by different combinations of operators with that yielded by
base-operators

Objective value gap noDO noD1 noD2 noD3 noRO noR1 noR2 noR3 noR4 noG1 noG2 noR3R4 noSlack

6.2 2 2 20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 00% 0.0% 00% 0.0% 21.1% 0.0% 0.0%
10_3_4_3—20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 00% 0.0% 0.0% 0.0%
12_4_4 3—20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 00% 0.0% 00% 0.0% 10.0% 0.0% 0.3%
20_6_8 5—20 0.0% 0.0% 0.0% 0.0% 00% 0.0% 00% 0.0% 00% 0.0% 0.0% 0.0% 0.7%
50_20_10_8—40 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 00% 0.0% 0.0% 3.0%

100_40_20_15—40 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 00% 01% 0.0% 0.0% 0.0%
150_55_40_30—40 0.4% 1.0% 11% 05% 08% 06% 06% 03% 06% 06% 06% 0.9% 1.3%
200_60_80_60—40 1.8% 13% 1.0% 1.7% 20% 31% 14% 05% 13% 21% 13% 1.8% 3.4%
Average 03% 03% 03% 03% 04% 05% 03% 01% 02% 04% 41% 0.3% 1.1%

In repair methods RO and R1, not all nodes eligible for drone service could be inserted
into a drone sortie, causing the loss of good solutions. This is explained by the example
in Figure 3.4. We considered a scenario in which requests 3 and 4 were removed by a
destroy method and both could be visited by a drone; the partial solution after the destroy
procedure was a DRB route: 1—-2-5. For RO or R1, we first inserted requests 3 and 4 into
the DRB route. If drone sortie <1,4,3> is good enough (that is, regardless of the sequence
of the DRB route after the first stage, removing request 4 from the DRB route and inserting
it into a drone sortie whose launch node is at request 1 and recovery node is at request 3
will always be the first operation in the second stage of RO and R1), there is no opportunity
for request 3 to be inserted into the drone sortie. This is because when a request from the
DRB route is moved to a drone sortie, supposing the drone can serve the corresponding
request(s) at its launch node or recovery node, the corresponding request(s) at the launch
node or recovery node, together with the drone service request, will be deleted from the
set of candidate requests that can be served by the drone. In this example, when we
moved request 4 from the DRB route to a sortie, both requests 3 and 4 were deleted from
the set of candidate requests that could be served by the drone, because request 3 was
the recovery node of a sortie. If the optimal solution is DRB route 1 — 2 — 5 with drone
sorties <1, 4, 2> and <2, 3, 5>, the ALNS with only repair methods RO and R1 will not be
able to find the optimal solution.

Set of candidate requests that can be served by drones: {3, 4} Drone sortie
Set of removed requests: {3, 4} DRB route

RO andR1

Solution after the first stage

Solution after applying the destroy method - - - -

Solution after the second stage
iy

Optimal solution

RN EN

Figure 3.4: An example in which ALNS with only repair methods RO and R1 cannot find the optimal solution
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According to Table 3.4, removing the time slack strategy degraded the solution quality
by up to 3.4%. Although the time slack strategy contributed to minimizing the total cost,
it caused extra waiting time at some locations. Table 3.6 presents the total waiting time
caused by the time slack strategy in different instances. In real life, DRBs may not be able
to wait at every location, and idle DRBs may cause traffic obstructions. This problem could
be solved by a model that considers different objectives, such as minimizing the total time
span of serving all requests, regulating the locations where vehicles can wait, or setting
the maximum waiting time at each location. Nevertheless, this problem is beyond the
scope of this study, and we leave it for our future research.

As indicated by Table 3.5, removing destroy operators from base-operators reduced the
computation time. Specifically, on average, the computation time was reduced by 14.2%,
15.2%, and 20.5% when repair methods DO, D1, and D3 were removed, respectively.
Removing D2 reduced the computation time by only 1.8%. The influence of the removal
of repair operators on computation time was complex. Removing repair operators RO,
R1, R3, and R4 reduced the computation time by 10.3% to 21.8% on average. The com-
putation time was considerably reduced (by 52.3%) when operators in group G1 were
removed, which is logical considering the higher time complexities of RO and R1. In con-
trast, operator combinations without repair method R2 (i.e., NoR2 and NoG2) led to a
longer computation time. As presented in Figure 3.2, repair methods RO, R1, and R2
were the most frequently used operators in the ALNS. Compared with RO and R1, R2
had a lower time complexity. When R2 was removed, the usage of RO and R1 increased,
leading to a longer computation time. Because R3 and R4 were seldom used, remov-
ing them did not significantly affect the computation time. Moreover, eliminating the time
slack strategy reduced the computation time by 12.5% on average.

According to the results presented in Table 3.4 and Table 3.5, we recommend that decision
makers use the operator combination NoG1 when they need to make a fast decision.
This could significantly reduce the computation time without sacrificing too much solution
quality. However, to better understand the proposed model’s properties, we used the
base-operators in our following experiments because they produced the best solutions
among all operator combinations.

Table 3.5: Comparison of computation time used by different combinations of operators with that used by base-operators

CPU time gap noDO noD1 noD2 noD3 noR0O noR1 noR2 noR3 noR4 noG1 noG2 noR3R4 noSlack
6.2 2220 -15.0% -6.9% 2.8% -25.9% -85% -91% 95% -103% -10.9% -30.6% -15.6% 4.9% 0.0%
10_3_4_3—20 -121% -9.5% 5.2% -23.2% -19.4% -16.2% 9.2% 8.6% -22% -50.1% 53.1% 37.6% -14.0%
12_4_4 3—20 96% -1M17% -27% -221% -11.3% -139% 75% -47% -72% -40.1% 13.3% 13.3% -16.5%
20_6_8_5—20 -16.2% -21.2% 0.7% -20.8% -153% -13.8% 6.6% -3.7% -10.8% -355% 124% 5.5% 1.0%

50_20_10_8—40 -19.2% -24.9% 1.4% -16.6% -17.6% -5.0% 14.9% -19.6% -89% -43.1% 4.9% -6.5% -11.9%
100_40_20_15—40 -25.0% -22.2% -12.0% -242% -391% -153% 27.7% -21.5% -153% -705% -4.7% -141% -91%

150_55_40_30—40 -18.2% -19.0% -14.6% -24.2% -31.0% -159% 269% -22.7% -17.9% -655% 7.9% -12.5%  -20.3%
200_60_80_60—40 1.3% -64% 4.8% -6.8% -320% -226% 16.4% -87% -94% -82.8% 182% -8.4% -28.9%

Average -142% -152% -18% -205% -21.8% -14.0% 14.9% -10.3% -10.3% -52.3% 11.2% 2.5% -12.5%

3.5.4 Results for VRP-D and SARP-D instances

Because this work is the first study of SARP-D, there are no benchmark instances in the
published literature. We first applied our algorithm to a similar VRP-D to assess its per-
formance and then used the proposed ALNS to solve SARP-D. As introduced in Section
3.2, SARP-D combines the features of both SARP and VRP-D. We tested our algorithm
with VRP-D instead of SARP because SARP-D is much more similar to VRP-D. Table
3.7 summarizes the characteristics of SARP, VRP-D, and SARP-D. As seen in Table 3.7,
SARP-D shares more similarities with VRP-D. Moreover, from the modeling viewpoint, if
we set the number of passenger requests to 0, SARP-D is reduced to VRP-D. If we set
the number of parcel requests to 0, SARP-D cannot be converted into SARP, and we
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Table 3.6: Total waiting time yielded by time slack strategy (min)

Total waiting time yielded by the time slack strategy (min)

6.2 2 2 20 0
10 3 4_3—20 0
12 4 4 3—20 20
20 6 8 5—20 31
50 20 _10_8—40 51
100_40_20 15—40 32
150_55_40_30—40 146
200 60_80_60—40 402

automatically lose the characteristics of drones. If we assume that no goods requests
can be served by drones, SARP-D cannot be transformed to SARP, because in SARP,
for both passenger and goods requests, the vehicle is required to visit its origin before its
destination, while in SARP-D, the vehicle is not required to visit a goods request’s origin
(i.e., the depot) before the destination.

Table 3.7: Summary of the characteristics of SARP, VRP-D, and SARP-D

SARP VRP-D SARP-D

Passenger request described by <origin, destination> \ \
Parcel request described by <delivery point> \ <
Drone \ \

3.5.41 VRP-D instances

Under the assumption that there are no passenger requests and that the time windows
at each node are very wide, SARP-D is completely reduced to the VRP-D presented by
Sacramento et al. (2019). In this subsection, “VRP-D” refers to the problem described by
Sacramento et al. (2019). Table 3.8 reports the computation results of our proposed ALNS
with base-operators on VRP-D instances used by Sacramento et al. (2019). Columns
Min., Avg., and Std. present the minimum objective value, average objective value, and
standard deviation of the 10 runs of our algorithm, respectively. The “Gap” column rep-
resents the gap between the minimum objective value found by our ALNS out of 10 runs
and the minimum objective value found by Sacramento et al. (2019). For the first nine
instances, Sacramento et al. (2019) presented the optimal solution given by CPLEX. Our
algorithm generated the optimal solution, as in Sacramento et al. (2019). For the other
instances for which Sacramento et al. (2019) only presented the best solution obtained
using their proposed ALNS algorithm, our algorithm sometimes found better solutions.
On average, the gap between the best solution found by our algorithm and that found
by Sacramento et al. (2019) was 0.04%. The results show that although our algorithm is
designed for a more general SARP-D instead of VRP-D, it can effectively solve VRP-D,
similarly to a specialized algorithm for VRP-D proposed by Sacramento et al. (2019).

3.5.4.2 SARP-D instances

We conducted experiments on networks with 20, 50, 100, 150, and 200 nodes and three 7
values (i.e., 0, 1, and 2). The results are presented in Table 3.9. Columns Min., Avg., and
Std. represent the minimum objective value, the average objective value, and the stan-
dard deviation of the 10 runs. Gap is calculated as % x 100%. The proposed ALNS
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Table 3.8: Results of our ALNS on VRP-D instances

Instance Sacramento et al. (2019) Min. Avg. Std. Gap CPU time (min)
6.5.1 1.09821 1.09821  1.09821 0.0000 0.00% 0.0
6.10.1 2.40611 240611 240611 0.0000 0.00% 0.0
6.20.1 2.67759 267759 2.67759 0.0000 0.00% 0.0
10.5.1 1.65563 1.65563 1.65563 0.0000 0.00% 0.1
10.10.1  2.32647 232647 2.34515 0.0394 0.00% 0.1
10.20.1  4.45240 445240 4.45240 0.0000 0.00% 0.1
12.5.1 1.37381 1.37381 1.37381 0.0000 0.00% 0.1
12.10.1  2.68103 2.68103 2.68937 0.0264 0.00% 0.1
12.20.1  5.77759 577759 578967 0.0382 0.00% 0.1
20.5.1 1.79347 1.79347 1.79380 0.0010 0.00% 0.2
20.10.1  3.25253 3.25253 3.35375 0.0698 0.00% 0.3
20.20.1  7.34453 7.32295 7.37756 0.0373 -0.29% 0.2
50.10.1  5.86134 5.86133 5.94868 0.1072 0.00% 4.7
50.20.1  10.45526 10.46399 10.62728 0.0578 0.08% 2.7
50.30.1  15.81788 15.77222 15.90068 0.1578 -0.29% 2.2
50.40.1  20.37508 20.09076 20.42130 0.4499 -1.40% 2.5
100.10.1 6.85741 6.86435 6.95659 0.0695 0.10% 32.3
100.20.1  13.60671 14.01043 14.08554 0.0532 2.97% 32.2
100.30.1 22.58818 21.97805 22.37424 0.2410 -2.70% 25.1
100.40.1 29.13966 29.04801 29.49945 0.4113 -0.31% 21.1
150.10.1  8.79027 8.71331  8.84395 0.1164 -0.88% 153.8
150.20.1  17.31938 17.65019 18.18175 0.4526 1.91% 127.4
150.30.1 25.98537 25.68835 26.64764 0.7296 -1.14% 106.1
150.40.1 34.01210 33.78728 35.05252 0.7552 -0.66% 92.6
200.10.1 10.09452 10.38412 10.67978 0.2022 2.87% 355.3
200.20.1 21.21505 21.23676 21.75325 0.4384 0.10% 316.0
200.30.1 30.36023 30.58005 31.02294 0.3528 0.72% 266.2
200.40.1 41.49802 41.51556 42.14891 0.4578 0.04% 257.7
Average - - - - 0.04% 64.2

exhibited a stable performance over the 57 instances. The gap and standard deviation
are within 2% and 3, respectively, with a few exceptions.

Table 3.9: Performance of the proposed ALNS metaheuristic on large-scale SARP-D instances

n  Network Min. Avg. Std. Gap CPU time (min)
20 6 8 5—5 11.1375 11.1375 0.0000 0.00% 0.0
20_6_8 5—10 214303 214318 0.0046 0.01% 0.0
20_6 8 5—20 457637 458995 0.0477 0.30% 0.0

50 20 10 8—10  55.6624 55.6908 0.0886 0.05% 0.7
50 20 10 8—20  88.6438 88.6499 0.0192 0.01% 0.7
50 20 10 8—30  159.7266 159.7273 0.0009 0.00% 0.4
50 20 10 8—40  230.6791 230.6896 0.0169 0.00% 0.3
100_40 20 15—10 99.6675 99.8171 0.1225 0.15% 8.3
100_40 20 15—20 186.8728 187.4096 0.6067 0.29% 6.6

0 100 40 20 15—30 291.5774 291.8542 0.4793 0.10% 5.7
100_40 20 15—40 388.0544 389.0056 0.5156 0.25% 3.5
150 _55 40 30—10 123.9080 124.4212 0.4775 0.41% 41.8
150 _55 40 30—20 248.8823 250.8753 0.8585 0.80% 38.5
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150_55_40_30—30 361.9345 363.8738 2.0932 0.54% 24.0
150_55_40_30—40 532.1596 534.1503 1.6316 0.37% 19.5
200_60_80_60—10 132.2916 133.3536 0.8808 0.80% 169.6
200_60_80_60—20 276.6224 277.9824 1.1870 0.49% 93.4
200_60_80_60—30 459.4269 462.9329 2.2421 0.76% 80.7
200_60_80_60—40 537.2808 539.1963 1.8413 0.36% 76.1

20 6 8 55 10.0928 10.0928 0.0000 0.00% 0.1
20 6.8 5—10 19.7241  19.7242  0.0000 0.00% 0.1
20 6 8 5—20 413300 41.3300 0.0000 0.00% 0.0

50 20 10 8—10  45.0251 456618 0.5508 1.41% 0.8
50 20 10 8—20  78.0259 78.1545 0.1660 0.16% 0.6
50 20 10 8—30  136.1432 136.1432 0.0000 0.00% 0.5
50 20 10 8—40  205.0499 205.0499 0.0000 0.00% 0.4
100_40 20 _15—10 81.0970 82.1286 0.6780 1.27% 10.7
100_40_20_15—20 169.9069 170.7529 0.5037 0.50% 6.4
1 100_40 20 15—30 247.4877 249.2932 1.9043 0.73% 5.7
100_40_20_15—40 353.2098 354.3277 1.4020 0.32% 4.6
150_55_40_30—10 104.3026 105.6459 0.8814 1.29% 50.6
150 _55_40_30—20 215.7509 217.3335 1.4215 0.73% 42.1
150_55_40_30—30 318.2711 320.0464 1.7279 0.56% 32.1
150_55_40_30—40 448.1320 451.8578 3.2835 0.83% 25.3
200 60 _80_60—10 114.9565 116.6402 0.8800 1.46% 171.5
200 60_80 60—20 229.8977 231.7293 1.7907 0.80% 132.1
200_60_80_60—30 404.2448 408.9268 2.6839 1.16% 126.8
200 60 _80_60—40 4925034 495.4947 2.5606 0.61% 103.3

20_6_8 5—5 9.2524 9.2524 0.0000 0.00% 0.1
20_6_8_5—10 19.6796 19.6796 0.0000 0.00% 0.1
20_6_8_5—20 39.4754  39.4754 0.0000 0.00% 0.0

50_20_10_8—10 40.3762  40.7470 0.5819 0.92% 0.9
50_20_10_8—20 77.9900 78.1306 0.1496 0.30% 0.8
50_20_10_8—30 130.9397 131.1947 0.4169 0.19% 0.6
50_20_10_8—40 203.2683 203.3346 0.2097 0.03% 0.5
100_40_20_15—10 77.0423 78.4299 0.7457 1.80% 13.3
100_40_20_15—20 158.7958 159.9565 0.8639 0.73% 9.0

2 100_40_20_15—30 235.2368 236.6466 1.3188 0.60% 6.6
100_40_20_15—40 343.5126 345.5041 1.5995 0.58% 7.3
150_55_40_30—10 100.0475 100.9884 0.7961 0.94% 61.1
150_55_40_30—20 205.9190 207.8299 1.2262 0.93% 50.5
150_55_40_30—30 304.1630 305.9224 1.7162 0.58% 30.4
150_55_40_30—40 4229446 428.5706 3.8084 1.33% 32.3
200_60_80_60—10 111.1394 114.0036 1.7025 2.58% 168.9
200_60_80_60—20 223.1800 227.5098 2.6625 1.94% 160.7
200_60_80_60—30 392.0947 394.0151 1.5241 0.49% 132.8
200_60_80_60—40 461.2592 4721302 5.2387 2.36% 107.1

3.6 Management insights

In this study, we conducted sensitivity analysis by changing the values of the maximum
number of intermediate stops during one passenger request service, the maximum drone
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flight time, and the unit delay penalty for passengers and parcels.

3.6.1 Effects of the maximum number of intermediate stops during one
passenger request service

This study compared the system performances of 19 networks containing over 12 nodes
withn = 0,1,2. At n = 0, no passenger request shared a ride with either other passenger
requests or goods requests. The transportation system in this case can be regarded as a
separate passenger and parcel system, although it is not precisely a traditional separated
passenger and goods transportation system. Taking n = 0 as a base scenario for each
network, we calculated the percentage changes in the total cost and the DRB-traveled
miles for each network with » = 1 and n = 2.

As shown in Figure 3.5, the percentage changes in the total cost and DRB-traveled miles
were negative, which indicates that sharing a passenger request with another passenger
request or goods request caused a significant reduction in the total cost and DRB-traveled
miles. With increasing n value, the reduction in the total cost and DRB-traveled miles
increased in the 19 networks. On average, at » = 1 and n = 2, the total cost decreased
by 12.80% and 16.53%, respectively. The average percentage reduction in DRB-traveled
miles was comparable to the total cost reduction: 13.29% and 17.47% atn =1andn = 2,
respectively.

n=1
n=2

Figure 3.5: Percentage changes in the total cost (left) and the DRB-traveled miles (right) with different values of the
maximum number of stops during one passenger request service

We examined the optimal solution for each instance. Although there were enough DRBs,
sometimes postponing the service for some requests resulted in a lower total cost com-
pared with using another DRB to serve the requests. This is reflected in the left plot of
Figure 3.6, as a delay cost occurred in 26 instances. Moreover, the increase in the n value
did not necessarily lead to a higher delay cost. On average, at » = 0, goods experienced
more delays than passengers, whereas atn = 1 and n = 2, passengers experienced more
delays than goods. The right side of Figure 3.6 shows that for all networks, fewer DRBs
were used when a passenger request shared a ride with other requests. With increasing
n value, the reduction in the number of used DRBs increased or was unchanged.

3.6.2 Effects of the endurance time of drones

This section compares the objective values under five drone battery endurance time set-
tings: 5, 10, 20, 30, and 60 min at n = 2. Experiments were conducted on networks
with 100, 150, and 200 nodes. The scenario with an endurance time of 5 min was the
base scenario. Under this setting, the drones could fly for 2 min at most. Thus, few
sorties could be performed. Figure 3.7 shows the percentage change in the total cost
compared with the base scenario. The increase in the endurance of the drones magni-
fied the reduction in the total cost, where the reduction degree depended on the degree of
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Figure 3.6: Delay cost (left) and the number of used DRBs (right) for each instance

the increase in endurance and the network dimensions. Increasing the endurance from
5 to 10 min saved more cost for smaller networks with dimensions of 10 and 20 than for
networks with dimensions of 30 and 40. Increasing the endurance to 20 min significantly
reduced cost (by 4.48% on average) for all networks. With the increase in endurance
to 30 and 60 min, the total cost decreased by up to 10.39% and 10.58%, respectively.
For some networks (100_40_20_15—10, 100_40_20_15—20, 200_60_80_60—10, and
200_60_80_60—20), the total costs under the two endurance settings did not largely dif-
fer. This indicates that an increase in endurance is not always attractive.

0.000%
-2.000% ‘ ‘ ‘
-4.000%

-6.000%

-8.000%

Percentage change in total cost

-10.000%

-12.000%

endurance = 10 endurance = 20 endurance =30  MWendurance = 60

Figure 3.7: Percentage change in the total cost under different endurance levels

We present the percentage changes in DRB-traveled miles, drone flight miles, and the
delay time in Figure 3.8. In most scenarios, with increasing battery endurance, the DRB-
traveled miles decreased, and the drone flight miles increased. However, there were
some exceptions, because although the increased endurance allowed for the long-distance
traveling of drones, the long-distance traveling was time-consuming; therefore, fewer sor-
ties were performed in a route, which may result in more DRB-traveled miles or fewer
drone flight miles. There were no significant trends in delay time with increasing battery
endurance. Overall, the increase in drone battery endurance ultimately reduced the total
cost but possibly at the expense of increasing the total travel cost or the delay penalty.

3.6.3 Effects of unit delay penalty
The values of the unit delay penalty for passengers and goods can be used to control the
service level measured by the delay time. We examined the SARP-D system performance
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Figure 3.8: Performance of DRB-traveled miles (a), drone flight miles (b), and delay time (c) under different endurance
levels

Innovative Last-mile Solutions:Integrating People and Goods Transportation 61



with three unit delay penalty combinations: (0, 0), (1, 0.5), and (10, 5). The first number
in the bracket is the unit delay penalty for passengers, and the second is for goods. We
conducted experiments using the instances depicted in Section 3.6.2. Table 3.10 presents
the total delay time for passengers and goods under different unit delay penalties. When
the unit delay penalty is 0 for both passengers and goods, the time windows at each node
are ignored during decision making, causing a huge total delay time for both passengers
and goods. Increasing the values of the unit delay penalty can considerably reduce the
total delay time. The larger the unit penalty value, the less the violation of the time window
constraints.

Table 3.10: Total delay time under different unit delay penalties

Total delay Passenger delay Goods delay
(0,0) (1,0.5) (10,5) (0,0) (1,0.5) (10,5) (0,0) (1,0.5) (10,5)

100_40 20 _15—10 5684 O 0 4594 0 0 1090 O 0
100_40 20 15—20 7832 O 0 6699 O 0 1133 O 0
100_40 20 _15—30 7629 2 0 6644 2 0 985 O 0
100_40_20_15—40 5387 2 2 4915 0 0 472 2 2
150_55 40 _30—10 12670 1 0 10326 1 0 2344 0 0
150_55 40_30—20 11794 1 0 10232 1 0 1562 O 0
150_55 40 _30—30 12095 6 0 9839 6 0 2256 O 0
150_55 40 _30—40 9382 4 0 7062 3 0 2320 1 0
200_60_80_60—10 13392 O 0 8981 0 0 4411 O 0
200_60_80_60—20 10658 1 0 7051 1 0 3607 O 0
200_60_80_60—30 10607 6 2 7697 3 0 2910 3 2
200_60_80_60—40 14625 5 0 9603 5 0 5022 0 0
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Figure 3.9: Percentage change in DRB-traveled miles under different unit delay penalties

Considering the unit delay penalty (0, 0) as the base scenario, Figure 3.9 presents the
percentage change in DRB-traveled miles. Figure 3.10 shows the number of used DRBs.
The two figures show that more DRBs were used, and more miles were traveled to reduce
the time window violation and improve the service level.
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Figure 3.10: Number of used DRBs under different unit delay penalties

3.7 Conclusion

This paper introduces a new system that integrates passenger and goods transportation
using demand-responsive vehicles (DRBs) and drones. The problem combines the fea-
tures of both passenger and parcel SARP and VRP-D. The novelties of the proposed pas-
senger and parcel SARP-D are as follows: First, compared with SARP, in which parcels
are delivered using only ground vehicles, the proposed SARP-D incorporates drones to
also perform parcel deliveries. Second, compared with VRP-D, in which ground vehicles
undertake only delivery tasks, the ground vehicles in SARP-D undertake both pick-up and
delivery tasks.

We developed an MINP model for SARP-D to determine the DRB and drone routes to
minimize the total transportation cost of vehicles and the delay cost. The MINP was
then linearized. Small instances with up to 12 nodes could be solved to optimality using
CPLEX. To solve large instances with up to 200 nodes, we developed an ALNS meta-
heuristic. Numerical experiments showed that the proposed ALNS could find optimal
solutions equivalent to those of CPLEX for small networks and demonstrated the stable
and high-quality performance of the ALNS on large networks. The results showed that
on average, sharing a passenger request with other passenger or parcel requests could
significantly reduce the total cost and the miles traveled by ground vehicles by more than
10%. Allowing more stops during a passenger request service increased cost savings.
Moreover, we revealed that extending the drone flight time reduced the total cost by up
to 10.58% but did not always guarantee a reduction in ground vehicle-traveled miles.

Future studies could extend the model by introducing multiple objectives, such as mini-
mizing the time span, maximizing the profit, and reducing carbon emissions. Moreover,
researchers may be able to develop more efficient algorithms for SARP-D, for example,
by exploring more efficient ways to identify better ALNS operator combinations and us-
ing reinforcement learning techniques. In addition, methods to optimize the DRB and
drone routes in a stochastic and dynamic environment should be developed. Finally, re-
searchers should consider replacing DRBs with more environmentally friendly vehicles
such as electric vehicles and SAVs and develop corresponding models considering the
features of electric vehicles.

Innovative Last-mile Solutions:Integrating People and Goods Transportation 63



Acknowledgment

The first author acknowledges financial support from the China Scholarship Council (No.
202107940012).

64 Innovative Last-mile Solutions:Integrating People and Goods Transportation



References

Agatz, N., Bouman, P., & Schmidt, M. (2018). Optimization approaches for the traveling
salesman problem with drone. Transportation Science, 52(4), 965-981.

Anderson, J. M., Nidhi, K., Stanley, K. D., Sorensen, P., Samaras, C., & Oluwatola, O. A.
(2014). Autonomous vehicle technology: A guide for policymakers. Rand Corpo-
ration.

Beirigo, B. A., Schulte, F., & Negenborn, R. R. (2018). Integrating people and freight trans-
portation using shared autonomous vehicles with compartments. /IFAC-PapersOnLine,
51(9), 392-397.

Boysen, N., Fedtke, S., & Schwerdfeger, S. (2021). Last-mile delivery concepts: A survey
from an operational research perspective. Or Spectrum, 43, 1-58.

Buyikézkan, G., & llicak, O. (2022). Smart urban logistics: Literature review and future
directions. Socio-Economic Planning Sciences, 81, 101197.

Cavallaro, F., & Nocera, S. (2022). Integration of passenger and freight transport: A concept-
centric literature review. Research in Transportation Business & Management, 43,
100718.

Chen, C., Demir, E., & Huang, Y. (2021). An adaptive large neighborhood search heuristic
for the vehicle routing problem with time windows and delivery robots. European
journal of operational research, 294(3), 1164—-1180.

Cheng, R., Jiang, Y., & Nielsen, O. A. (2023). Integrated people-and-goods transporta-
tion systems: From a literature review to a general framework for future research.
Transport Reviews, 1-24.

Chiang, W.-C., Li, Y., Shang, J., & Urban, T. L. (2019). Impact of drone delivery on sustain-
ability and cost: Realizing the uav potential through vehicle routing optimization.
Applied energy, 242, 1164—-1175.

Choudhury, S., Solovey, K., Kochenderfer, M. J., & Pavone, M. (2021). Efficient large-
scale multi-drone delivery using transit networks. Journal of Artificial Intelligence
Research, 70, 757-788.

Chung, S. H., Sah, B., & Lee, J. (2020). Optimization for drone and drone-truck combined
operations: A review of the state of the art and future directions. Computers &
Operations Research, 123, 105004.

Coindreau, M.-A., Gallay, O., & Zufferey, N. (2021). Parcel delivery cost minimization with
time window constraints using trucks and drones. Networks, 78(4), 400—420.

Di Puglia Pugliese, L., & Guerriero, F. (2017). Last-mile deliveries by using drones and
classical vehicles. Optimization and Decision Science: Methodologies and Appli-
cations: ODS, Sorrento, Italy, September 4-7, 2017 47, 557-565.

Di Puglia Pugliese, L., Guerriero, F., & Macrina, G. (2020). Using drones for parcels de-
livery process. Procedia Manufacturing, 42, 488—497.

Di Puglia Pugliese, L., Guerriero, F., & Scutella, M. G. (2021a). The last-mile delivery
process with trucks and drones under uncertain energy consumption. Journal of
Optimization Theory and Applications, 191(1), 31-67.

Di Puglia Pugliese, L., Macrina, G., & Guerriero, F. (2021b). Trucks and drones coopera-
tion in the last-mile delivery process. Networks, 78(4), 371-399.

Elbert, R., & Rentschler, J. (2022). Freight on urban public transportation: A systematic lit-
erature review. Research in Transportation Business & Management, 45, 100679.

European Commission. (2007). Green paper, towards a new culture for urban mobility,
Luxembourg: Publications Office of the European Union.

Innovative Last-mile Solutions:Integrating People and Goods Transportation 65



Ghilas, V., Demir, E., & Van Woensel, T. (2016a). An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows and scheduled
lines. Computers & Operations Research, 72, 12-30.

Ghilas, V., Demir, E., & Van Woensel, T. (2016b). A scenario-based planning for the pickup
and delivery problem with time windows, scheduled lines and stochastic demands.
Transportation Research Part B: Methodological, 91, 34-51.

Golbabaei, F., Yigitcanlar, T., & Bunker, J. (2021). The role of shared autonomous vehicle
systems in delivering smart urban mobility: A systematic review of the literature.
International Journal of Sustainable Transportation, 15(10), 731-748.

Huang, H., Savkin, A. V., & Huang, C. (2020). A new parcel delivery system with drones
and a public train. Journal of Intelligent & Robotic Systems, 100, 1341-1354.

Kitjacharoenchai, P., Min, B.-C., & Lee, S. (2020). Two echelon vehicle routing problem
with drones in last mile delivery. International Journal of Production Economics,
225, 107598.

Kuo, R, Lu, S.-H., Lai, P.-Y., & Mara, S. T. W. (2022). Vehicle routing problem with drones
considering time windows. Expert Systems with Applications, 191, 116264.

Lemardelé, C., Estrada, M., Pagés, L., & Bachofner, M. (2021). Potentialities of drones
and ground autonomous delivery devices for last-mile logistics. Transportation Re-
search Part E: Logistics and Transportation Review, 149, 102325.

Levin, M. W., Kockelman, K. M., Boyles, S. D., & Li, T. (2017). A general framework for
modeling shared autonomous vehicles with dynamic network-loading and dynamic
ride-sharing application. Computers, Environment and Urban Systems, 64, 373—
383.

Li, B., Krushinsky, D., Reijers, H. A., & Van Woensel, T. (2014). The share-a-ride prob-
lem: People and parcels sharing taxis. European Journal of Operational Research,
238(1), 31-40.

Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016a). An adaptive large neigh-
borhood search heuristic for the share-a-ride problem. Computers & Operations
Research, 66, 170-180.

Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016b). The share-a-ride prob-
lem with stochastic travel times and stochastic delivery locations. Transportation
Research Part C: Emerging Technologies, 67, 95—-108.

Li, H., Chen, J., Wang, F., & Bai, M. (2021). Ground-vehicle and unmanned-aerial-vehicle
routing problems from two-echelon scheme perspective: A review. European Jour-
nal of Operational Research, 294(3), 1078—1095.

Litman, T. (2022). Autonomous vehicle implementation predictions: Implications for trans-
port planning. https://www.vtpi.org/avip.pdf

Luo, Q., Wu, G., Ji, B., Wang, L., & Suganthan, P. N. (2021). Hybrid multi-objective op-
timization approach with pareto local search for collaborative truck-drone rout-
ing problems considering flexible time windows. IEEE Transactions on Intelligent
Transportation Systems, 23(8), 13011-13025.

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., & Laporte, G. (2020). Drone-aided rout-
ing: A literature review. Transportation Research Part C: Emerging Technologies,
120, 102762.

Marinelli, M., Caggiani, L., Ottomanelli, M., & Dell'Orco, M. (2018). En route truck—drone
parcel delivery for optimal vehicle routing strategies. IET Intelligent Transport Sys-
tems, 12(4), 253-261.

Milanés, V., & Shladover, S. E. (2014). Modeling cooperative and autonomous adap-
tive cruise control dynamic responses using experimental data. Transportation
Research Part C: Emerging Technologies, 48, 285-300.

66 Innovative Last-mile Solutions:Integrating People and Goods Transportation


https://www.vtpi.org/avip.pdf

Moshref-Javadi, M., Hemmati, A., & Winkenbach, M. (2020a). A truck and drones model
for last-mile delivery: A mathematical model and heuristic approach. Applied Math-
ematical Modelling, 80, 290-318.

Moshref-Javadi, M., Lee, S., & Winkenbach, M. (2020b). Design and evaluation of a multi-
trip delivery model with truck and drones. Transportation Research Part E: Logis-
tics and Transportation Review, 136, 101887.

Mourad, A., Puchinger, J., & Van Woensel, T. (2021). Integrating autonomous delivery
service into a passenger transportation system. International Journal of Production
Research, 59(7), 2116-2139.

Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem:
Optimization of drone-assisted parcel delivery. Transportation Research Part C:
Emerging Technologies, 54, 86—109.

Othman, K. (2022). Exploring the implications of autonomous vehicles: A comprehensive
review. Innovative Infrastructure Solutions, 7(2), 165.

Otto, A., Agatz, N., Campbell, J., Golden, B., & Pesch, E. (2018). Optimization approaches
for civil applications of unmanned aerial vehicles (uavs) or aerial drones: A survey.
Networks, 72(4), 411-458.

Peng, Z., Feng, R., Wang, C., Jiang, Y., & Yao, B. (2021). Online bus-pooling service at
the railway station for passengers and parcels sharing buses: A case in dalian.
Expert Systems with Applications, 169, 114354.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science, 40(4),
455-472.

Sacramento, D., Pisinger, D., & Ropke, S. (2019). An adaptive large neighborhood search
metaheuristic for the vehicle routing problem with drones. Transportation Research
Part C: Emerging Technologies, 102, 289-315.

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle
routing problems. International conference on principles and practice of constraint
programming, 417-431.

Sun, P., Veelenturf, L. P., Hewitt, M., & Van Woensel, T. (2020). Adaptive large neighbor-
hood search for the time-dependent profitable pickup and delivery problem with
time windows. Transportation Research Part E: Logistics and Transportation Re-
view, 138, 101942.

Tholen, M. v. d., Beirigo, B. A., Jovanova, J., & Schulte, F. (2021). The share-a-ride
problem with integrated routing and design decisions: The case of mixed-purpose
shared autonomous vehicles. Computational Logistics: 12th International Confer-
ence, ICCL 2021, Enschede, The Netherlands, September 27-29, 2021, Proceed-
ings 12, 347-361.

Transport DTU. (2022). Transport economic unit prices v2.0. https:/ /www.cta.man.dtu.
dk/modelbibliotek /teresa/transportoekonomiske-enhedspriser

Van Duin, R., Wiegmans, B., Tavasszy, L., Hendriks, B., & He, Y. (2019). Evaluating new
participative city logistics concepts: The case of cargo hitching. Transportation
Research Procedia, 39, 565-575.

Vansteenwegen, P., Melis, L., Aktas, D., Montenegro, B. D. G., Vieira, F. S., & Sérensen,
K. (2022). A survey on demand-responsive public bus systems. Transportation
Research Part C: Emerging Technologies, 137, 103573.

Wang, X., Poikonen, S., & Golden, B. (2017). The vehicle routing problem with drones:
Several worst-case results. Optimization Letters, 11, 679-697.

Innovative Last-mile Solutions:Integrating People and Goods Transportation 67


https://www.cta.man.dtu.dk/modelbibliotek/teresa/transportoekonomiske-enhedspriser
https://www.cta.man.dtu.dk/modelbibliotek/teresa/transportoekonomiske-enhedspriser

Wang, Y., Wang, Z., Hu, X., Xue, G., & Guan, X. (2022). Truck—drone hybrid routing
problem with time-dependent road travel time. Transportation Research Part C:
Emerging Technologies, 144, 103901.

Wang, Z., & Sheu, J.-B. (2019). Vehicle routing problem with drones. Transportation re-
search part B: methodological, 122, 350-364.

Williams, E., Das, V., & Fisher, A. (2020). Assessing the sustainability implications of
autonomous vehicles: Recommendations for research community practice. Sus-
tainability, 12(5), 1902.

Yu, V. F,, Indrakarna, P. A., Redi, A. A. N. P, & Lin, S.-W. (2021). Simulated annealing
with mutation strategy for the share-a-ride problem with flexible compartments.
Mathematics, 9(18), 2320.

Yu, V. F., Purwanti, S. S., Redi, A. P, Lu, C.-C., Suprayogi, S., & Jewpanya, P. (2018).
Simulated annealing heuristic for the general share-a-ride problem. Engineering
Optimization, 50(7), 1178-1197.

Zhao, J., Poon, M., Zhang, Z., & Gu, R. (2022). Adaptive large neighborhood search
for the time-dependent profitable dial-a-ride problem. Computers & Operations
Research, 147, 105938.

68 Innovative Last-mile Solutions:Integrating People and Goods Transportation



4 A passenger and parcel share-a-ride
problem with drones: A column
generation approach

Cheng, R., Jiang, Y., Nielsen, O. A., & Van Woensel, T. (2023). A passenger and par-
cel share-a-ride problem with drones: A column generation approach. Under Review in
Transportation Research Part B: Methodological

Abstract

The increasing worries regarding traffic congestion and environmental pollution necessi-
tate innovative solutions to improve urban mobility for people and goods. An emerging and
innovative concept involves the integration of passenger and parcel transportation using
demand-responsive buses (DRBs) and drones. This integration aims to reduce the num-
ber of vehicles on the road by combining the movement of passengers and parcels. Each
DRB is equipped with a drone in this concept and collaborates in its operations. While
DRBs can serve passengers and parcels, drones are exclusively designated for parcel
delivery. In this context, we introduce the induced route planning problem for DRBs and
drones, termed the passenger and parcel Share-a-Ride Problem with Drones (SARP-D).
We formulate a model based on paths to address this challenge and propose a column
generation approach. We develop a specialized label correcting algorithm to tackle the
pricing problem of column generation, which involves finding the best paths with limited
resources. We conducted thorough numerical experiments to validate the effectiveness
of our proposed methods. Our computational results demonstrate that the column gen-
eration approach offers notable advantages: firstly, it outperforms the CPLEX solver for
smaller instances comprising up to 12 nodes; secondly, it achieves either optimal solu-
tions or solutions very close to optimality within 3 hours for instances involving 50 nodes.
Finally, we present several valuable insights for managerial considerations based on our
findings.

Keywords: Urban logistics; On-demand transit; Integrated passenger and parcel trans-
portation; Share-a-ride problem with drones; Vehicle routing problem with drones
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4.1 Introduction

The transportation demands for people and goods increased significantly due to the rapid
pace of urbanization and the E-commerce boom. Consequently, more and more vehicles
move on the road to fulfill the growing transportation demands, aggravating traffic conges-
tion and environmental pollution. Thereby, scholars and practitioners proposed several
solutions to mitigate negative externalities of transportation.

One novel idea is integrating people and goods transportation because it can serve the
same transportation demands with fewer vehicles. Traditionally, these two types of trans-
portation are operated separately. Given that passenger and freight vehicles usually
share and compete for road space and infrastructures, the European Commission (2007)
pointed out that “local authorities need to consider all urban logistics related to passenger
and freight transport as a single logistics system.” In recent decades, multiple forms of in-
tegrating people and goods transportation, e.g., people and parcels sharing a taxi, freight
on transit, have been explored in the literature (Ghilas et al., 2018; Ghilas et al., 2016; Li et
al., 2014; Mourad et al., 2021) and successfully implemented in real-life (Cochrane et al.,
2017). For example, Liftago, a taxi company in Prague, allows drivers to carry passengers
and parcels simultaneously'; Cargo-Tram/E-tram transports waste via scheduled trams
operated on existing public transport lines in Zurich?; buses with underutilized capacity
are used to deliver parcels to rural areas in China®. For a comprehensive review of the
integrated people and goods transportation, readers are referred to Cheng et al. (2023a).

Emerging technologies present another approach to alleviating the adverse impacts of
transportation. For example, mobile and wireless communication technologies enable
transportation companies to provide ride-hailing services, which could reduce traffic con-
gestion (Yao & Bekhor, 2023). Autonomous vehicles could reduce passenger transport-
related congestion by improving coordination between vehicles and reducing parking de-
mand (Anderson et al., 2014; Othman, 2022). Although the impacts of autonomous ve-
hicles on the environment vary depending on specific circumstances, there is a general
recognition of the positive environmental benefits of electrifying AVs (Golbabaei et al.,
2021). In city logistics, drones have been increasingly deployed for parcel delivery due to
their advantages in speed and low greenhouse gas emissions (Agatz et al., 2018). For
instance, Amazon and Walmart have provided drone delivery services to customers in
some areas, e.g., Texas, Arizona, and Florida*. Drones usually have a limited service
range, constrained by the limited battery capacity. To address this problem, a hybrid de-
livery system that involves trucks serving as mobile platforms for drones’ takeoff, landing,
and recharging has been proposed (Murray & Chu, 2015).

Inspired by the two ideas mentioned above, Cheng et al. (2023b) first proposed a novel in-
tegrated transportation system that combines the transportation of passengers and parcels
using demand-responsive vehicles (DRBs) and drones to mitigate the negative impacts of
increasing transportation demands in urban areas. In this integrated system, DRBs pro-
vide door-to-door service for passengers and parcels, while drones are only responsible

! https://www.prague-taxi.co.uk/taxi-drivers-to-become-couriers-and-carriers-liftago-will-be-delivering-
packages-and-food/

Zhttps:/ /www.stadt-zuerich.ch /ted /de/index/entsorgung_ recycling/publikationen_broschueren /fahrplan_
cargo_tram_und_e_tram.html

3https://m-live.cctvnews.cctv.com/live/landscape.html|?toc_style_id=feeds_only_back&
liveRoomNumber=8265779572060234721&share_to—=wechat&track_id=03E204C5-8EFA-4085-83AE-
5673F19394FE_701442053332

4(1) https://www.aboutamazon.com/news/transportation /amazons-drone-delivery-is-coming-to-texas; (2)
https://corporate.walmart.com/newsroom /2022 /05 /24 /were-bringing-the-convenience-of-drone-delivery-to-
4-million-u-s-households-in-partnership-with-droneup
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for parcel delivery.

Figure 4.1 provides a schematic overview of the integrated passenger and parcel trans-
portation system with DRBs and drones. This figure involves three passenger requests,
four parcel requests, and two DRBs, each equipped with a drone. The origin-destination
pairs for the three passenger requests are 1-4, 2-5, and 3-6. Parcel requests 8, 9, and 10
are eligible for drone service, while parcel request 7 can be served only by a DRB. Given
that passenger vehicles and vans share the same urban environment, it makes sense to
combine some passengers and parcels instead of utilizing dedicated passenger vehicles
and vans, especially when the passenger stops and parcel stops are close. It is expected
that the operation cost and the number of used vehicles will be reduced in the proposed
system. The successful operation of such an integrated transportation system relies on
planning the routes for DRBs and drones. The corresponding route planning problem is
the passenger and parcel Share-a-Ride Problem with Drones (SARP-D). Section 4.3.1
presents a more detailed description of the SARP-D.

/N Depot O Origin of passenger request O Destination of passenger request

[ | Destination of parcel request — DRBroute =~ - » Drone route

Figure 4.1: An illustrative example of the SARP-D

Since the SARP-D is a rather novel idea, little research has been conducted. To solve the
SARP-D, Cheng et al. (2023b) developed a mixed integer non-linear programming model
and an adaptive large neighborhood search (ALNS) metaheuristic for solving large-size
instances. Nevertheless, as it is generally acknowledged that metaheuristics can hardly
guarantee a global optimal solution, it is thus intriguing to evaluate the performance of
a metaheuristic algorithm by knowing the gap to a potential optimal solution. To fill this
niche, this study presents a column generation (CG) approach that provides a validated
lower bound for the SARP-D. To the best of our knowledge, this is the first study that
presents an approach for evaluating the algorithm performance for the SARP-D. Mean-
while, we conducted extensive numerical experiments to evaluate our proposed solution’s
performance and explore SARP-D’s properties.

To sum up, this paper studies an integrated passenger and goods transportation system
using DRBs and drones. It aims to reduce the number of vehicles on the road by combin-
ing passenger and goods flows. The integration is exemplified by cases where taxis carry
passengers and parcels, and buses deliver packages to rural areas. It also considers the
potential of emerging technologies, specifically drones, to alleviate transportation issues.
The contributions of this paper are summarized as follows:

» We formulate a path-based model to address the passenger and parcel share-a-ride
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problem with drones (SARP-D). This problem aims to optimize routes for DRBs and
drones to efficiently serve passengers and deliver parcels.

» The paper proposes a column generation approach to solve the SARP-D efficiently.
The column generation approach aims to find optimal or near-optimal solutions
within a reasonable time frame. The results of the extensive numerical experiments
demonstrate the advantages of the proposed column generation approach, particu-
larly for smaller instances compared with the CPLEX solver and instances involving
up to 50 nodes.

» The paper concludes by presenting insights that can be valuable for decision-makers
and managers in urban logistics. These insights are drawn from the computational
results and sensitivity analysis of critical parameters in the proposed transportation
system.

The remainder of this paper is organized as follows. Section 4.2 reviews the related
literature on SARP and VRP-D. Section 4.3 and Section 4.4 present the mathematical
models and column generation approach for the proposed SARP-D, respectively. Sec-
tion 4.5 conducts extensive numerical experiments to evaluate the performance of the
CG. Section 4.6 conducts sensitivity analysis to explore the properties of the proposed
transportation system. Section 4.7 concludes this paper and provides future directions.

4.2 Literature review

This section reviews the literature on passenger and parcel share-a-ride problem (SARP)
and vehicle routing problem with drones (VRP-D), two problems closely related to the
proposed SARP-D, and compares the differences between the SARP, VRP-D, and SARP-
D.

421 SARP

Li et al. (2014) first proposed the SARP, a routing problem for integrating passenger and
parcel transportation using taxis. Three assumptions are made in this pioneering work to
prioritize passengers to parcels: A1) Passengers’ rides are subject to a maximum time
limit; A2) When serving one passenger request, the number of parcel stops that can be
visited is no more than a maximum number; A3) Passengers only share a ride with parcels
instead of other passengers. Yu et al. (2018) proposed a general SARP, which relaxes
the three assumptions and leads to a higher profit. Additionally, numerous features have
been added to the original SARP to cater to diverse application scenarios. For example,
Li et al. (2016b) investigated the SARP with stochastic travel times and delivery locations;
Yu et al. (2021) allowed passenger compartments to be used by parcels; Lu et al. (2022)
explored the routing problem with a mixed fleet consisting of electric and gasoline vehicles.

Existing approaches to solving the SARP include ALNS (Li et al., 2016a, 2016b) and
simulated annealing (Yu et al., 2021; Yu et al., 2018), math-heuristic (Lu et al., 2022; Yu
et al., 2023), and Lagrangian dual decomposition (Zhang et al., 2022).

4.2.2 Truck-drone routing problem

Murray and Chu (2015) first introduced the traveling salesman problem with drones (TSP-
D) for a single truck and a single drone delivery system. The drone has maximum flight
endurance and can deliver only one parcel during one flight but can perform several flights
along the truck route. Itis restricted that the launch and recovery locations for a drone flight
should be different. Murray and Chu (2015) defined a flying sidekick traveling salesman
problem (FSTSP) and a parallel drone scheduling traveling salesman problem (PDSTSP).
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In the former case, the truck and the drone work cooperatively, and they must be synchro-
nized at some points, e.g., customer locations or the depot. In contrast, the truck and the
drone work independently without synchronization in the latter case. The objectives of
the FSTSP and PDSTSP in Murray and Chu (2015) are to minimize the latest time a
truck or a drone returns to the depot. Subsequently, various variants of the TSP-D have
been studied, e.g., allowing a drone to be retrieved at its launch point (Agatz et al., 2018),
equipping one truck with multiple drones (Murray & Raj, 2020), allowing a drone to visit
multiple nodes during one flight (Poikonen & Golden, 2020), minimizing the cost-related
objectives (Ha et al., 2018), modeling the energy used by a drone (Jeong et al., 2019),
and considering time windows (Luo et al., 2021).

Another important branch in the truck-drone routing problem is the vehicle routing prob-
lem with drones (VRP-D). Unlike the TSP-D, which involves only one truck, the VRP-D
has multiple trucks. Similar to the TSP-D, there are lots of variants of the VRP-D in terms
of the regulation of launch and recovery locations of drones, the number of drones asso-
ciated with each truck, multiple visits during one flight, objective functions, drone energy
modeling, time windows, etc. (Di Puglia Pugliese et al., 2021; Poikonen et al., 2017;
Sacramento et al., 2019; Wang et al., 2017; Xia et al., 2023). Most of the literature on
the VRP-D assumes that the drone should take off and land on the same truck. One in-
teresting variant of the VRP-D is the introduction of docking hubs which serve as transfer
locations for drones to land and travel with another truck (Wang & Sheu, 2019; Xia et al.,
2023).

The solution approaches for the TSP-D and VRP-D are classified into heuristic / meta-
heuristic algorithms and exact methods. Because both the TSP-D and VRP-D are NP-
hard and cannot be solved to optimality within a polynomial time for large instances, re-
searchers have devised many heuristic/metaheuristics such as evolutionary-based heuris-
tic algorithms (Jeong et al., 2019), hybrid heuristic algorithm (Luo et al., 2021; Salama &
Srinivas, 2022), greedy randomized adaptive search procedure (Ha et al., 2018), ALNS
(Sacramento et al., 2019). Although heuristics and metaheuristics could solve large-
scale instances with 100 to 200 nodes, evaluating the algorithm performance regarding
the solution quality is hard because these algorithms usually provide only the lower (up-
per) bounds of the instances. In comparison, the upper (lower) bounds are not known.
Therefore, several exact methods such as branch-and-cut (Cavani et al., 2021; Tamke
& Buscher, 2021; Tinig et al., 2023), branch-and-price (Roberti & Ruthmair, 2021; Yang
et al., 2023; Zhou et al., 2023), branch-and-price-and-cut (B-P-C) (Li & Wang, 2023; Xia
etal., 2023; Yin et al., 2023a; Yin et al., 2023b; Zhen et al., 2023), dynamic programming
(Bouman et al., 2018), have been proposed. These exact methods could solve instances
with up to 20 to 50 nodes, depending on the attributes of the problems.

Since there are multiple ground vehicles, each equipped with a single drone in our pro-
posed SARP-D, our reviews focus on the VRP-D variants, where there is at most one
drone per truck (see Table 4.1). For a more comprehensive review of the truck-drone
routing problem, readers are referred to Li et al. (2021) and Macrina et al. (2020).

Sacramento et al. (2019) developed a mixed integer programming model for a VRP-D
in which each truck is paired with a drone. The drones have a limited flying time and
serve one customer per flight. An ALNS metaheuristic was used to solve instances with
up to 200 customers. Kuo et al. (2022) extended the model of Sacramento et al. (2019)
by introducing time windows for each customer. They devised a variable neighborhood
search (VNS) procedure to solve instances with 50 nodes. Coindreau et al. (2021) as-
sumed each truck could carry at most one drone and set a limited number of used drones.
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Table 4.1: A summary of related studies on the VRP-D

Reference Time window Multi-visits  Flight range Objective Solution method Maximum instance size
Sacramento et al. (2019) No No Endurance Cost ALNS 200
Kuo et al. (2022) Hard No Endurance Cost VNS 50
Coindreau et al. (2021) Hard No Endurance Cost ALNS 100
Wang et al. (2022) Hard No Distance Cost Iterated local search 200
Yin et al. (2023a) Hard Yes Endurance Cost B-P-C 45
Yin et al. (2023b) Hard Yes Endurance Cost B-P-C 45
Zhen et al. (2023) No Yes Endurance Cost B-P-C 14
This paper Soft No Endurance Cost CG 50

Multi-visits: The drone visits more than one customer per flight.

They adopted an ALNS metaheuristic that could solve 100-node instances. Wang et al.
(2022) investigated a VRP-D with time windows (VRP-DTW) considering time-dependent
road travel time. Instances with 200 nodes were solved by an iterated local search heuris-
tic. The four studies above do not allow a drone to serve more than one customer during
each flight. This restriction is relaxed by Yin et al. (2023a, 2023b) and Zhen et al. (2023).
Yin et al. (2023a) developed a B-P-C algorithm that could optimally solve most VRP-DTW
instances with 45 customers. They further applied the B-P-C algorithm to a VRP-DTW
with uncertain demands and road travel times (Yin et al., 2023b). Zhen et al. (2023) used
the B-P-C algorithm to solve the VRP-D without considering time windows for customers,
causing a larger solution space than the VRP-DTW. The largest instances they could
solve to optimality contain 14 nodes. All literature presented in Table 4.1 optimizes the
cost-related objectives. Most of them assumed the flight range of drones is constrained
by endurance, except for Wang et al. (2022), which restricted the distance a drone can

fly.

4.2.3 Position of SARP-D

Table 4.2 summarizes the characteristics of the SARP, VRP-D, and SARP-D. From Table
4.2 we can see that the SARP-D shares some similarities with the SARP and VRP-D. For
example, both the SARP-D and SARP could serve passenger and parcel requests and
provide one-to-one pickup and delivery (PDP) service for passengers. Both the SARP-D
and VRP-D have two types of vehicles to serve parcel requests and the parcel requests
only have delivery requirements. By setting the count of passenger requests in SARP-D
to zero, the SARP-D is simplified to the VRP-D.

However, there are some attributes in the SARP-D, which make it more complicated than
the SARP-D and VRP-D. Compared with the SARP, the SARP-D additionally includes
drones and requires synchronization between the two types of vehicles. Even if we as-
sume no parcel request can be served by drones, the SARP-D can not be reduced to the
SARP. The SARP-D and SARP provide different services for parcels, i.e., delivery service
in the SARP-D and one-to-one PDP service in the SARP. Compared with the VRP-D, the
ground vehicles in the SARP-D perform one-to-one PDP tasks for passenger transporta-
tion and delivery tasks for parcel transportation. In contrast, the ground vehicles in the
VRP-D only perform delivery tasks. The different attributes of requests, i.e., PDP or only
delivery requirement, lead to a huge difference in modeling the transportation systems
because one-to-one PDP has pairing and precedence constraints on requests’ origins
and destinations while the other does not.

Overall, the SARP-D, which incorporates aerial vehicles for parcel delivery, along with
ground vehicles performing both one-to-one PDP and delivery services, is considerably
more complex than the SARP and VRP-D, but has the potential to yield significant ef-
ficiency gains. However, little research has been conducted on the SARP-D, and the
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prior work only developed a metaheuristic for it. This study enriches the research on
the SARP-D by providing an approach that could produce high-quality solutions and can
be used to evaluate the efficiency of metaheuristics. Meanwhile, this study enriches the
existing studies on the SARP and VRP-D.

Table 4.2: Summary of characteristics of the SARP, VRP-D, and SARP-D

| Ground vehicle | Drone
Passenger request Parcel request Parcel request
Delivery Pickup and Delivery | Delivery Pickup and Delivery Delivery
SARP v v
VRP-D v v
SARP-D v v v

4.3 Problem description and model formulation

4.3.1 Problem description and solution characteristics

Let |P| and |G| denote the number of passenger and parcel requests. The SARP-D is
defined on a complete undirected graph Graph = (N, A), where N = S, U S, U {0, 2|P| +
|G| +1}. Sp = Sy U Sg, where 57 denote the origin stops of passenger requests and Sg
denotes the destination stops of passenger requests. S, denote the destination stops of
parcel requests. Some parcel destinations, denoted by S/, could be visited by drones. 0
and 2|P| + |G| + 1 are the origin and destination depots of DRBs. Each arc (i,j) € A is
associated with a DRB travel cost (JZ-‘]/- , a drone travel cost C’g . Let K denote the set of
DRBs. Each DRB is equipped with a drone and can carry a limited number of passengers
and parcels.

In the model development, we make the following assumptions: First, each passenger
request is characterized by its origin, destination, and demand value. In contrast, all parcel
requests stem from a central depot with diverse destinations, albeit with a uniform demand
for each parcel. All service requests are fulfilled precisely once. An ample supply of both
DRBs and drones is available to serve the requests. DRBs and drones have maximum
travel and flying time, respectively. Drones are configured to visit a single customer per
flight, with the flexibility to conduct multiple flights along a single route. Drones’ take-off
and recovery points vary in each flight, although they can share the same node for landing
and take-off. Each node has a predefined service time for DRBs involving passenger
boarding/alighting and for drones at customer locations. Notably, the time required to
set up drone launch and recovery is no less than the DRB service time. The launch
and recovery of drones can occur concurrently with passenger actions or recipient parcel
pickups due to an integrated robotic shelving system. Drones are optimized to take off
when a DRB commences customer service to conserve battery energy. Drones hover
during waiting periods at recovery locations. Time windows are in place for each node,
dictating when DRBs and drones can initiate service; delays within these windows incur
penalties. Lastly, the travel time and cost matrices adhere to the triangle inequality, a
property attainable by transforming arbitrary matrices (Ropke & Cordeau, 2009).

The SARP-D presented in this study aims to find the paths of DRBs and drones to serve all
requests with the minimum operation costs, including the transportation costs of the two
types of vehicles and delay penalties. To facilitate the presentation of our mathematical
models in this section and solution method in Section 4.4, we introduce several concepts
to characterize the solution of SARP-D and explain the solution shown in Figure 4.1 using
these concepts.
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Nodes

The stops of passengers and parcels are categorized into three types according to which
type(s) of vehicles visit this node.

i) A DRB node is a node visited by a DRB alone.
ii) A drone node is a node visited by a drone alone.
iiiy A combined node is a node visited by a DRB and a drone together.
We define four additional node types according to the activities performed at a node.

iv) A common node is a node without either launch or recovery activities. It could be a
DRB node or a combined node.

v) A launch node is a combined node where a drone takes off.
vi) A recovery node is a combined node where a drone lands.

vii) A recovery-launch node is a combined node where a drone lands first and then takes
off to perform another flight.

Arcs
i) ADRB arc is an arc traversed by a DRB alone, represented by i — j.
ii) A drone arc is an arc traversed by a drone alone, represented by (i, j).
iii) A combined arc is an arc traversed by DRB and drone, represented by i = j.
Legs
i) A DRB leg is a series of DRB arcs between two consecutive combined nodes.

ii) A drone leg consists of two consecutive drone arcs between two combined nodes,
represented by < i, j, k >, where i is the launch node, j is the drone node, and & is
the recovery node.

iii) A combined leg is a sequence of consecutive combined arcs.
Operation

Finally, a DRB and drone legs between the same pair of combined nodes constitute an
operation represented by “[]”.

Path

A path is feasible only if the following constraints are satisfied: (i) It starts and ends at the
depot; (ii) It visits a node once; (iii) The vehicle capacity constraint, the DRB maximum
travel time constraint, the maximum number of intermediate stops between one passenger
request service constraint, pairing and precedence constraints on passenger origins and
destinations, and drone operation constraints (i.e., flying time, one customer per flight,
different launch and recovery points in a flight) are satisfied.

A path can be considered concatenating combined legs and operations, and a SARP-D
solution comprises one or multiple paths.

Example

Let 0 and 11 denote the start and end points of DRBs. We introduce the solution of Figure
4.1 using the previously defined concepts. The solution of Figure 4.1 has 1 DRB node

76 Innovative Last-mile Solutions:Integrating People and Goods Transportation



(7), 6 combined nodes (1, 4, 3, 2, 5, 6), 3 drone nodes (10, 8, 9), 2 launch nodes (1,
3), 2 recovery nodes (4, 5), 1 recovery-launch node (2), 2 common nodes (7, 6), 4 DRB
arcs (1—7, 7—4, 3—2, 2—5), 6 drone arcs ((1,10), (10,4), (3,8), (8,2), (2,9), (9,5)), 5
combinedarcs (0= 1,4=11,0=3,5=6,6 = 11 ), 3DRB legs (1—-7—4, 3—2, 2—5),
3 drone legs (<1,10,4>, <3,8,2>, <2,9,5>), and 4 combined legs (0=1, 4=11, 0=3,
5=-6=-11). The solution of Figure 4.1 contains two paths. The first path is represented by
a combination of 1 operation ([1—7—4, <1,10,4>]) and 2 combined legs (0 = 1, 4 = 11).
The second path is represented by a combination of 2 operations ([3—2, <3,8,2>], [2—5,
<2,9,5>]) and 2 combined legs (0 = 3,5 = 6 = 11).

4.3.2 Notation
All notations used in Sections 4.3.3 and 4.3.4 are summarized in Table 4.3.

Table 4.3: Notations

Sets

K Set of homogeneous DRBs, K = {1,2,...,|K|}, where | K| is the number
of vehicles.

Sy Set of origins of passenger requests, S; = {1,2,...,|P|}, where | P| is the
number of passenger requests.

Sg Set of destinations of passenger requests, Sg =
{|IP|+1,|P|+2,....2|P|}.

Sp Set of passenger stops, S, = S, U Sg.

Sy Set of goods stops (destinations), S, = {2|P| + 1,2|P| + 2,...,2|P| + |G|},
where |G| is the number of parcel requests.

Sy’ S,/ C Sy, set of parcel requests that a drone can deliver.

S Set of passenger and goods stops, S = S, U 5.

N Setofallnodes, N = S,US,U{0,2|P| + |G| + 1}, where 0 and 2| P|+|G|+1
are the depot nodes indicating the start and end nodes of a route.

No Set of nodes from which a DRB may depart, Ny = {0, 1, ..., 2| P| + |G|}.

Ny Set of nodes to which a DRB may arrive, N} = {1,2,...,2|P| + |G| + 1}.

AT (i) Set of nodes reachable from node i € Ny, A (i) = N\ {i}.

A~ (1) Set of nodes that can be used to reach node i € N, A~ (i) = No\ {i}.

R Set of all feasible paths.

Parameters

Cap® Capacity of the passenger compartment in each DRB.

Cap® Capacity of the goods compartment in each DRB.

Y Time required for a DRB to travel from node i € N to node j € V..

T3; Time required for a drone to travel from node i € Ny to node j € N,.

E Maximum flight duration of a drone.

STV Service time for a DRB at node i € S.

STP Service time for a drone at node i € S,/

Qi Number of passengers boarding a DRB atnode i € S. Q;yp| = —Q;,Vi €
Sg and Q; =0,Vi € S,.

Trax Maximum travel time on a DRB route.

cy Transportation cost for a DRB traveling from node i € Ny to node j € N,.

Ci Transportation cost for a drone flying from node i € N, to node j € N;.

[E;, L] The earliest and latest service start times at node i € S.

SL Setup time required to launch a drone.

SR Setup time required to retrieve a drone.

oy Unit delay penalty at node i € S.
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Cr
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Maximum intermediate stops between the origin and destination of a pas-
senger request.

Cost of a path r € R.

a; = 1 if path r € R visits node i € S, U S,; otherwise a;, = 0.

Decision Variables

k

x;

k
yajb

pz’
\F
Xr

xf] = 1ifDRB k € K travels from node i € Ny to node j € N ; otherwise,
xf} = 0.

yhy = 1if sortie < a,j,b > is used in the route of DRB k € K, where
a € Ny represents the launch node of the drone, j € S, represents the
goods request served by a drone, b € N, represents the rendezvous node
of the drone; otherwise, y/;, = 0.

Load of the passenger compartment of DRB k£ € K after the visitation of
nodei € §S.

If node j € N, is a recovery node or recovery-launch node, tg? is the time
point at which the drone is recovered by DRB k£ € K at node j € N.;
otherwise, t;? is the arrival time of DRB k € K at node j € N or the arrival
time of drone k € K atnode j € S,/

If node j € S is a recovery node, t’? is the time point at which DRB k£ € K
leaves node j € S;ifnode j € Sis alaunch node or recovery-launch node,
t’j? is the time point at which drone k € K starts taking off; otherwise, t’f is
the time point at which DRB k € K starts service at node j € S or drone
k € K starts service at node j € S,

A continuous variable indicating the position of node i € N in the route of
DRBk € K.

pfj = lifnode j € Sis visited after node i € Ny inthe route of DRB k € K.
Delay of DRB/drone k € K atnode a € S.

xr = 1 if path r € R is included in the solution; otherwise y, = 0.

4.3.3 Arc-based formulation

Cheng et al. (2023b) first devised an arc-based formulation for the SARP-D. They further
linearized the model to make it solvable by CPLEX for small instances. For the sake of
completeness of the paper and readers’ convenience, we copied their arc-based formu-
lation and briefly explained the constraints in this section. A detailed explanation of each
constraint and the linearization method can be found in Cheng et al. (2023b).

mnY | > > Cheli+ D Y Y (CRACR) et Y amAn| (A1)

keK
s.t.
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1€No jEAT(3) c€Sy’ acA™ (c) beAY (¢),b#a mes
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IEA~ () kEK
Yooah= Y alpViEeSkek (4.3)
1€EAT(J) i€A=(j+|P|)
> wi X X D vap=LVies) (44)
iI€EAT(j) keK a€A(5) be At (j),b#a kEK
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ufﬂpl—uf—lgn,ViES;,keK (4.36)
af; €{0,1},Vi € No,j € AT (i), k€ K (4.37)
yrp €{0,1} ,Vk € K,a € No,j € {8y :j #a},be {AT(j):b#a} (4.38)
ub Y >0 Vie N ke K (4.39)
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The obijective function (4.1) is to minimize the sum of transportation costs of DRBs and
drones and the delay penalty at each node. Constraints are classified into three cate-
gories.

* Routing and flow constraints (constraints (4.2)-(4.16) and (4.29) - (4.36)).

Regarding DRB operations, constraints (4.2) ensure that nodes that can only be
served by DRBs are visited by DRBs exactly once. Constraints (4.3) ensure the
pickup and delivery points of a passenger request are visited by the same vehicle,
and constraints (4.35) ensure that the origin of a passenger request is visited before
its destination. Constraints (4.5) - (4.7) state that each DRB leaves and returns to
the depot at most once, and DRBs do not travel between depots. Constraints (4.8)
ensure flow conservation. Constraints (4.9) - (4.12) ensure that the DRB load does
not exceed the capacity for passengers and goods. Constraints (4.29) - (4.33) de-
fine the position of each node that DRB visits and eliminate the sub-tours of DRBs.
Constraints (4.36) ensure at most n intermediate stops between one passenger re-
quest service.

Regarding drone operations, constraints (4.13) - (4.14) ensure that a drone can be
launched or recovered at each location at most once. Constraints (4.16) prohibit the
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drone from picking up a parcel from the depot, visiting the customer, and returning
to the depot. Constraints (4.34) ensure that a drone can perform another delivery
task only after finishing the previous one.

Regarding the cooperation between DRBs and drones, constraints (4.4) ensure that
nodes eligible for drone service are visited exactly once, either by a DRB or a drone.
Constraints (4.15) ensure that the DRB must visit nodes where its corresponding
drone takes off and lands.

+ Scheduling and synchronization constraints (constraints (4.17) - (4.28)). Constraints
(4.17) state that DRBs and drones are ready at the depot at time 0, and constraints
(4.18) ensure that DRBs and drones must return to the depot before exceeding the
maximum working time of a DRB. Constraints (4.19) - (4.23) calculate t* and t"; and
regulate their relations. Constraints (4.24) - (4.26) calculate the delay time at each
node. Constraints (4.27) ensure that DRBs and drones can only start services after
the earliest service start time. Constraints (4.28) regulate the maximum flying time
of a flight.

+ Decision variable domain constraints (constraints (4.37) - (4.40)).

4.3.4 Path-based formulation
This study proposes a path-based formulation that can be solved via a column generation
approach.

min Z CrXr (4.41)
reR
s.t.
> aiwxe > 1LVi€ S,US, (4.42)
reR
xr € {0,1},Vr € R (4.43)

The objective function (4.41) minimizes the total operation cost. Constraints (4.42) ensure
that each node is served exactly once. Note that “=" in constraints (4.42) is replaced with
“>” to reduce the computation time (Danna & Le Pape, 2005). Constraints (4.43) define

the domains of variables.

4.4 Column generation algorithm

Since it is impossible to enumerate all paths for large-scale instances, we developed
a column generation (CG) approach to solve the path-based SARP-D model. The CG
algorithm involves solving two problems: a restricted master problem (RMP) that selects
the combination of paths that has the minimum objective value, and a pricing problem
(PP) that aims to find new paths having the potential to reduce the objective value.

Initially, the RMP includes columns generated by the heuristic described in Section 4.4.4.
The CG first solves the linear RMP in each iteration and passes the dual variables to
the PP. Then, the PP is solved by algorithms introduced in Sections 4.4.1 and 4.4.3 to
find feasible paths with negative reduced costs. If the PP finds new paths with negative
reduced costs, all new paths are added to the RMP. The RMP and PP are solved iteratively
until the PP cannot identify paths with negative reduced costs. A validated lower bound of
the original problem is obtained in this situation. If the optimal solution at the last iteration
of the CG is fractional, an integer programming model of the RMP is solved to get an
upper bound of the original problem; otherwise, the optimal solution at the last iteration of
CG is the optimal solution of the original problem.
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The RMP is the linear relaxation of the path-based model, and the set of all possible paths,
i.e., R, is replaced by a subset of possible paths R’ C R. Let ;,i € S, U S, be the dual
variables associated with constraints (4.42), the reduced cost of path » € R is calculated

as¢ =c¢.— >, aif. The pricing problem of the SARP-D is an elementary shortest
i€SpUS,

path problem with resource constraints (ESPPRC), which can be solved efficiently by

a labeling algorithm. Inspired by Feillet et al. (2004), We developed a tailored labeling

algorithm to solve the PP of the SARP-D.

4.4.1 Label correcting algorithm

We define &; and II; are the sets of labels and temporary labels associated with node i.
Then, given a (partial) path p(x)° where the last node visited by a DRB (independently or
together with a drone) is node i € N, we define two concepts, ¢; € ®; and w; € II;. ¢;
is a label denoting path p(¢;) when node i is a combined node. ; is a temporary label
denoting path p(7;) when node i is a DRB node.

For each 7;, a drone leg between the last combined node and DRB node i on path p(7;) is
added to constitute a feasible path in a SARP-D solution. By adding the drone leg, node i
becomes a combined node and ; is transferred to ¢,;. For example, let 7, be a temporary
label of the partial path (0—1), if a drone leg <0,9,1> is added to the partial path (0—1),
we get a new label ¢; denoting the partial path ([0—1, <0,9,1>]). Both ¢; and 7; have
the following attributes:

* ¢(x): the last combined node on path p(x).

* v(x): the last node that a DRB visits on path p(x). It could be a combined node or a
DRB node.

* dr(x): the last drone node on path p(x).

* pos(x): a vector that records the position of each node except for the drone node on
path p(x). pos(*)j is the position of node j on path p(x).

* tp(*): a vector that records the type of each node on path p(x), i.e., common node,
launch node, recovery node, recovery-launch node, drone node. tp(*)j represents
the type of node j on path p(x).

* 7(*): a vector that records the arrival time at each node on path p(x). If node j is a
drone node, 7(x); is the arrival time of the drone at node j; otherwise, 7(x), is the
arrival time of the DRB at node ;.

 7/(x): the time point that the drone finishes landing at ¢(x).

+ 7"(x): a vector that records time-related attributes of each node on path p(x). Let
j be a node on path p(x), if j is a common node or drone node, 7”(x), is the start
service time at node j; if j is a launch node or recovery-launch node, T”(*)j is the
time point that the drone starts taking off at node j; if j is a recovery node, 7"(x),
is the time point that the DRB finishes all tasks at node j (including serving the
corresponding request and recovering the drone) and leaves node j.

* fly(x): the flying duration of the last flight of the drone on path p(x).
* pl(x): the occupied passenger capacity after vising all nodes on path p(x).

* gl(x): the occupied goods capacity after visiting all nodes on path p(x).

5The notation of “«” represents ¢; or 7; explained later in this paragraph.
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* Q(x): the set of visited nodes on path p(x).

* O(x): the set of open passenger requests whose origin is included on p(x) but the
destination is not. O(x), is the first passenger request in O(x), if O(x) is not empty.

* V(x): the set of nodes that could be visited by the DRB from v () without considering
the time windows and vehicle capacity constraint.

* D(x): the set of nodes that could be visited by a drone from ¢(x) without considering
the time windows, vehicle capacity, and drone battery endurance constraints.

* k(x): the accumulated dual value of path p(x).
* cost(x): the cost of path p(x).
* 7¢(*): the reduced cost of path p(x).

Algorithm 1 presents the procedure of the labeling algorithm to solve the PP of SARP-
D. In Algorithm 1, I represents the list of pending examination nodes. The function
AddDroneLeg(m;, j) appends a drone leg < ¢(m;), j, i > to path p(r;), creating a new label
¢;, ifthe extension is feasible. Here, j belongs to set D(r;). Function AddCombinedArc(¢;, j)
extends path p(¢;) by adding a combined arc (i = j), resulting in a new label ¢, provided
the extension is viable. The value of j is a member of set V' (¢;). Function AddDRBArc(¢;, j)
introduces a temporary label 7; by incorporating a DRB arc (i — j) into path p(¢;), given
that the extension is feasible. Here, j belongs to set V(¢;). Function AddDRBArc(m;, j)
generates a temporary label 7; by incorporating a DRB arc (i — j) into path p(m;),
if the extension is achievable. The value of j is within the set V(m;). The function
checkDominance(¢;, P;) determines whether the label ¢; dominates other labels within
&, or if it is dominated by any of them. It then returns &;, which solely contains non-
dominated labels.

The sets of labels and temporary labels associated with each node i € N are initialized as
follows. &, < {(0,0,/,{0}, {common node}, {0},0, {0},0,0,0,{0}, &, SpUS,, Sy',0,0,0)}
and I1y < @. Fornode i € N\{0}, &; «+ @ and II; < @. In addition, the list of nodes
waiting to be examined I is initialized as {0}.

The following steps are repeated while I" is not empty. First, choose the first node, de-
noted by ¢, from I" as the node to be treated. Second, extend each temporary label 7; € II;
to new labels of node i and new temporary label of node j € V (7;) by adding drone legs
< ¢(m;),d,i >,d € D(m;) and DRB arc (i — j) to path p(m;), respectively, if the exten-
sions are feasible; otherwise, do nothing. After that, =; is deleted from I7;. Third, extend
each untreated label ¢; in @; to new label and temporary label of j € V(¢;) by adding
combined arc (i = j) and DRB arc (i — j) to path p(¢;), respectively, if the extensions
are feasible. Then ¢; is marked as a treated label. In both the second the third steps,
two additional works based on the two propositions that will explain later have been done
to reduce the number of generated temporary labels and labels: 1) whenever cost(x) is
updated, the lower bound of the reduced cost of label ¢,,, denoted by LBre(44.,) where
bdep is extended from x and ¢(¢q4cp) is the returning depot, is calculated. If LBie($4.,) = 0
* is discarded. 2) When a new label ¢; of node j is generated, it will be compared with
each label in ;. If ¢; is not dominated by any label in &;, ¢; will be added to &;. If ¢;
dominates some labels in @, the dominated labels will be deleted. In addition, if I, or @;
has changed and node j is not in I", node j will be added to I". Fourth, node i is deleted
from I

As illustrated within Algorithm 1, a label extension exists for both temporary labels (Case
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Algorithm 1: Label correcting algorithm

//nitialization ;
?g + {(0,0,/,{0}, {common node}, {0},0,{0},0,0,0,{0}, 2, Sy U Sy, S,,0,0,0)} ;
Iy« @ ;
fori c N\{0} do

| @i« @, I, + @ ;
I« {0} ;
//Search ;
while I # o do

choose the first node ¢ in I ;

/ICase 1;
for m; € II; do
for j € D(m;) do

¢; < AddDroneLeg(m;,j) ;

&; «+ CheckDominance(p;, ;) ;
for j € V(m;) do
7j = AddDRBArc(m;, j) ;
j = I U {mj}
if II; has changed then

| I« Tru{j};

Hi — HZ\{ﬂ]} )

//Case 2 ;
for ¢; € &; do
if ¢; has not been treated then
for j € V(¢;) do
¢j < AddCombinedArc(¢;, j) ;
@; < CheckDominance(¢;, ®;) ;
if &; has changed then

| T« Tru{j};
mj <= AddDRBArc(¢i, j) ;
]Yj < ]Yj U {7Tj} ;
if II; has changed then

| '« Tu{j};

B Mark ¢; has been treated ;

T \{i}s

1) and regular labels (Case 2). When dealing with Case 1 and 2, our initial action involves
matching the attributes’ values of 2 to those of ! if the attributes of x? are derived from
x1. Subsequently, specific attributes’ values of %> undergo modification. After getting
the attributes of %2, we check its feasibility. For an extensive elaboration on these label

extensions, please refer to Appendices 4.A and 4.B.

4.4.2 Label elimination

As the instance size expands, the number of temporary labels and labels experiences ex-
ponential growth, resulting in substantial memory consumption and extended computation
durations. To address this issue, we introduce two propositions aimed at diminishing the
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volume of generated temporary labels and labels within the labeling algorithm. Initially,
we suggest eliminating temporary labels and labels that do not culminate in a finalized
path with a negative reduced cost. This proactive approach can contribute to a reduction
in computational burden and enhance efficiency.

Proposition 1. Let ¢4, denote a label of the returning depot that is extended from
temporary label 7;, the lower bound of 7¢(¢g4.,), denoted by LBie(g,.,) IS calculated by

LBre(g,,,) = cost(m) +Minjep( ) {CT ) +CP) ,)}+@V(m)—zs Ba, Where cost’ (m;)

ac
is the minimum cost of a DRB traveling from v(r;), visiting all destinations of O(x;), and
returning to the depot. If LB, ) = 0, the extension of temporary label 7; could not con-
stitute a completed path with a negative reduced cost and therefore 7; can be discarded.

Note that getting the value of@v(m) requires to solve a traveling salesman problem. In
this study, we can afford to enumerate all paths that start from v(r;), visiting all destinations
of O(m;), and ending at the depot, because the number of O(r;) is small, specifically, less
than or equal to n+1 due to the constraint of maximum intermediate stops between serving
one passenger request.

Proof 1. To construct a completed path p(¢4.,) by extending p(w;), a drone node in D(;)
and all destinations of passenger requests in O(;) should be visited at least. The min-
imum drone flight cost is calculated by min;cp(x,) {C o(mi)g T CD _)}. Because of the
triangle inequality of cost matrix, when more nodes that do not beIong to destinations of
passenger requests in O(w;) are added to p(m;), the calculation of Ev(m) still holds.
Since cost(¢gep) > cost(m;) + MiNjep(r) {CH } + cost (m) and k(Pgep) =

c(mi), ] v(7r

(Z )/811 < ZSBC“ 7AC(QZ)dep) = COSt(deep) - (¢dep) > cost(m;) + mlnjeD(m){CcD(ﬂ-i)J +
a€N Ddep ac

DU 7r,_)} +@V(m) >~ Ba- The lower bound of the reduced cost of ¢ge;, is LBrz(4,,,) =
aeS

cost(m;) + MiNjc p(x,) { ;T Cfv(m)} + cost” (m3) — > Ba-

e(mi), a€esS

A similar proposition is applied to label ¢; as well. The difference is that the lower bound
of reduced cost of label ¢, extended from ¢; is calculated by LBy, ) = cost(¢;) +

cost ( i) — > Ba, Where cost (qﬁi) is the minimum travel cost of a DRB traveling from
a€es
v(¢;), visiting all destinations of O(¢;), and returning to the depot.

Second, dominance rules are applied to determine whether a newly generated label will
be added to the label set.

For two labels of node i, ¢} and ¢?, ¢} dominates ¢?, if the following two conditions are
satisfied. 1) Any extensions of label ¢? used to construct a completed path can be con-
nected to ¢} as well; 2) 7e(¢}) < 7¢(¢?) (Ropke & Cordeau, 2009). Using this definition,
we propose the following dominance rules for the SARP-D.

Proposition 2. ¢! dominates ¢? if the following conditions are satisfied:
(i) c(¢7) = c(¢7)

(i) tp(¢7) = tp(¢7)

(iii) (4}) < 7"(¢7)

(V) e}) € QA¢7)

(v) O(¢1) = O(¢7)
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(Vi) V(¢7) 2 V(47)
(vil) 7e(¢;) < 7e(g7)

Proof 2. Given two labels ¢} and ¢? that satisfy the conditions in Proposition 2, condition
(i) implies that both partial path p(¢}) and p(¢?) ending at the same node. Conditions (iv),
(v), and (vi) ensure that any nodes that can be extended by ¢? can also be extended by
#t. We do not require D(¢1) D D(¢2), because Q(¢1) C Q(¢2) implies D(¢1) D D(¢2).
Conditions (iv) and (v) also ensure that the remaining load capacity for both passengers
and parcels of path p(¢}) is equal to or large than that of p(¢?). Conditions (ii), (iii), and (vii)
guarantee that every feasible extension of ¢? is a feasible extension of ¢} with a smaller
or equal reduced cost.

4.4.3 Heuristic column generation

Recognizing the typically time-intensive nature of the label correcting algorithm, we intro-
duce a Large Neighborhood Search (LNS) heuristic to expedite the CG procedure. The
LNS heuristic unfolds through the following steps: Initially, all paths with zero reduced
cost are chosen, as modifications to these paths can easily yield paths with negative re-
duced costs. For each zero reduced cost path ('), a set ) is formulated, encompassing
all nodes from S, U S, except those already incorporated in the path. The nodes within
) are arranged in descending order based on their dual values. Subsequently, a request
is randomly removed from 7/, and nodes from Q are progressively inserted into path 7/ at
their optimal positions. This process generates new paths with negative reduced costs
until all nodes in Q2 have been integrated or further node insertions no longer yield paths
with negative reduced costs.

When tackling the pricing problem, the initial application involves the LNS heuristic. In
cases where paths with negative reduced costs cannot be discovered, the label correcting
algorithm is employed.

4.4.4 Initial columns

We adopt the initial column generation approach proposed by Cheng et al. (2023b), known
as the greedy DRB-first drone-second repair method, to generate the starting columns
for the CG process. This heuristic comprises two distinct stages. In the first stage, all
requests are inserted greedily into a DRB route. Subsequently, in the second stage, parcel
requests that meet the criteria for drone service are selectively moved from a DRB route to
a drone flight in a greedy manner. To comprehensively understand this heuristic, readers
should refer to the details provided in Cheng et al. (2023b).

4.5 Computational results

This section presents a comprehensive array of numerical experiments to assess the
effectiveness of the CG approach. Our algorithm implementation used C++, and we em-
ployed CPLEX 12.10 as the solver for optimization tasks. The experiments were con-
ducted on a machine featuring an Intel(R) Xeon(R) CPU E5-2660 V3 clocked at 2.60
GHz. Each CG run was subject to a time limit of 3 hours, with a memory allocation of 300
GB.

4.5.1 Instance design

We employed instances from the vehicle routing problem with drones (VRP-D) dataset
provided by Sacramento et al. (2019) and adapted them to our specific SARP-D. Specif-
ically, we utilized nodes’ coordinates from Sacramento et al. (2019) instances involving
6, 10, 12, 20, and 50 nodes, labeled as “1”. Instances with node counts of 6, 10, and 12
were categorized as small. In comparison, those with 20 and 50 nodes were considered
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medium-size instances. Subsequently, we generated passenger and parcel requests for
each node, along with time windows, using the methodology proposed by Cheng et al.
(2023b). For instances up to 20 nodes, we distributed nodes across 5, 10, and 20 square
miles. For the 50-node instances, the distribution areas were 10, 20, 30, and 40 square
miles. Within each distribution category, we created ten instances by varying the ratios
of passenger requests (") from {0,1/3,2/3,1} and drone-eligible parcel requests (r")
from {0,0.25,0.5,0.75}. Instances with » = 0 or v = 1 corresponded to VRP-D and
pickup and delivery problem (PDP) instances, respectively. Notably, SARP-D instances
in Section 4.5 exclusively featured " = 1/3 or " = 2/3.

We formulated 79 networks, each characterized by the number of nodes, distribution
(Dim), passenger requests, and drone-eligible parcel requests. Both soft and hard time
windows were considered for each network. Distances traveled by DRBs adhered to
Manhattan distances, while drone travel distances were based on Euclidean distances.
The parameter configuration mirrored that of Cheng et al. (2023b). Specifically, the DRB
speed was set at 35 miles/h, and the drone speed was set at 50 miles/h. The service time
for DRBs and drones at each node was 1 minute, with an additional 1-minute setup time
for drone launch and recovery. Penalty costs of 1 $/min and 0.5 $/min were assigned
to passenger and parcel requests’ delay, respectively. The DRB transportation cost was
0.2 $/mile, with the drone transportation cost constituting 10%. Passenger and parcel
capacities, varying by instance size, were set at 6 for instances up to 20 nodes and 10
for 50-node instances. The maximum travel times for DRBs and drones were 480 and 30
minutes, respectively. Parameter n encompassed values of 0, 1, and 2, while £ was uni-
formly set to 30 minutes. Consequently, 390 instances were created to comprehensively
assess CG’s performance, as summarized in Table 4.4.

Table 4.4: Summary of the instances used

(a) Small-size instances

# nodes Dim | P| 1Sy’ n TW type E
6 {5, 10, 20} 2 2 {0,1,2}  {soft, hard} {30}
10 {5, 10, 20} 3 3 {0,1,2}  {soft, hard} {30}
12 {5, 10, 20} 4 3 {0,1,2}  {soft, hard} {30}

(b) Medium-size instances

noﬁes Dim rP rP n W E  Problem

type

0 {0.25, 0.5, 0.75} {0} {soft, hard} {30} VRP-D
1/3 {0.25,0.5,0.75} {0,1,2} {soft, hard} {30} SARP-D
2/3 {0.25,0.5,0.75} {0,1,2} ({soft, hard} {30} SARP-D
1 {0} {0,1,2} ({soft, hard} {30} PDP

0 {0.25, 0.5, 0.75} {0} {soft, hard} {30} VRP-D
1/3 {0.25,0.5,0.75} {0,1,2} {soft, hard} {30} SARP-D
2/3 {0.25,0.5,0.75} {0,1,2} ({soft, hard} {30} SARP-D
1 {0} {0,1,2} {soft, hard} {30} PDP

20 {5, 10, 20}

50 {10, 20, 30, 40}

4.5.2 Algorithm performance

In this section, we comprehensively evaluated the CG approach. We began by conduct-
ing a comparative analysis between CG outcomes and those obtained from the arc-based
model solved by CPLEX, focusing on small-size instances. Subsequently, we extended
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our assessment to medium-size instances. In both cases, we utilized z;;, and z,;, denot-
ing the lower and upper bounds, respectively, as outlined in Table 4.5 and Table C1 in
Appendix 4.C. To quantify the disparity between these bounds, we computed the relative
gap (Gap) using the formula: Gap = (zup — 21p) / zup ¥ 100%. Furthermore, in Table 4.5, we
introduced Gap*, computed as Gap* = (z,—2%)/z* x 100%, where z* denotes the optimal
solution obtained by CPLEX for the arc-based model. This metric captures the relative
difference between the upper bound attained through the CG and the optimal solution
given by CPLEX.

4.5.2.1 Small-size instances

Table 4.5 displays CG and CPLEX results for small-size instances, denoted by |S|_| P|_|G|_| D|—
Dim, where |S| represents the node count, |P| the passenger requests, |G| the parcel
requests, |D| the drone-eligible requests, and Dim indicates node distribution. As ev-

ident in Table 4.5, the CG surpassed CPLEX in solution quality and computation time.
Solution-wise, the CG matched CPLEX’s optimal solution in 53 of 54 instances, except
forinstance 6_2 2 2—10, featuring n = 2 and soft TW, where the CG achieved a 1.62%

gap for a near-optimal integer solution. For 48 of 53 cases, the CG yielded a 0.00% gap
between its lower and upper bounds. In terms of computation time, the CG significantly
outperformed CPLEX.
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4.5.2.2 Medium-size instances

Table 4.6 provides an overview of CG results for medium-size instances. The “# solved
instances” column enumerates instances considered and how many were resolved by
CG within a 3-hour limit, distinguished by their time window (TW) types. The “# optimal
instances” column details instances solved optimally (Gap = 0). The last column denotes
the average gap for solved instances by CG. Table C1 in Appendix 4.C offers in-depth
computation results for each instance.

Table 4.6: Summary of computation results of medium-size instances

Problem #nodes Dim P P n # solved instances  # optimal instances  CPU time (s) Average gap
Soft TW Hard TW Soft TW Hard TW Soft TW Hard TW Soft TW Hard TW
20 {5, 10, 20} 0 {0.25,05,0.75 {0} 9/9 9/9 0/9 0/9 ) .
VRP-D g {10,20,30,40} 0 {0.25,05,075 {0} 612 712 26 o7 80701 83012 190%  2.11%
2 {5, 10, 20} 173 {0.25,05,0.75) {0.1,2) 27727 27727 15027 1527
{5, 10, 20} 23 {0.25,0.5,0.75) {0,122} 27/27  27/27 2127 22127

| 0, 0,
SARP-D {10,20,30,40} 1/3 {0.25,05 075 {012} 29/36 34/36  21/20 2334 o082 13656 0.59%  053%

50 {10,20,30,40} 2/3 {0.25,0.5,0.75) {0,1,2} 36/36  36/36  20/36  24/36
20 {5, 10, 20} T {0y {0.1,2y 99 979 89 89
50 {10,20,30,40} 1 {0} {0120 1212 1212 912 912

PDP 1.99 0.69 0.46%  0.65%

Following Table 4.6, CG effectively tackled all 20-node instances (144 instances) and a
substantial number of 50-node instances (172 out of 192 instances). In sum, across the
316 solved instances, the average gap remained at 0.70%. Various factors influence CG’s
efficacy, broadly categorized into the two types discussed below.

Network and operation features. As mentioned before, network features include the
instance size, Dim, r*, and r”. The operation features refer to  and TW types. As
expected, the computation difficulty and time increased with the increase in instance size,
P, rP, and n, and the decrease in Dim. In addition, instances with hard TW were easier
to solve than instances with soft TW. The average computation time for VRP-D instances
with hard TW is slightly longer than that of VRP-D instances with soft TW. This is because
the computation time for the solved hard TW VRP-D instance with 50 nodes, r” = 0.75,
Dim = 30 is 8706 seconds, while the soft TW instance with the same network setting is
not solvable.

Problem classification. PDP instances had the largest percentage of solved instances
(100%), followed by SARP-D instances (96%). VRP-D instances were the most difficult to
solve. Notably, the proposed CG could solve 66% of SARP-D instances and 81% of PDP
instances to optimality. In terms of computation time, VRP-D instances took the longest
computation time. The computation time for SARP-D instances was around half of the
computation time for VRP-D instances. The PDP instances could be solved within a few
seconds. The main difference between the three types of problems is the ratio of pas-
senger requests to total requests. Due to the precedence requirement for the origin and
destination nodes of passengers and the limited number of intermediate stops between
serving one passenger request, instances with more passenger requests have smaller
solution space. They are easier to solve than instances with fewer passenger requests.
Overall, if we look at the average gaps, the proposed CG produces high-quality solutions
to the SARP-D, with an average gap of 0.59% for soft TW instances and 0.53% for hard
TW instances.

4.6 Sensitivity analysis and managerial insights

In this section, we conducted sensitivity analyses on Dim, n, TW types, and E, to inves-
tigate the properties of the integrated transportation system. All instances presented in
this section are solved to optimality by the CG.
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4.6.1 Node distribution

We selected 50-node instances characterized by ' = 2/3, »” = 0.5, p = 0, E = 30 min,
and soft TW to investigate the influence of distribution on system performance. The out-
comes of the chosen instances are presented in Table 4.7. From the results in Table 4.7,
it becomes evident that an increased number of DRBs is necessary to fulfill all requests
with a more expansive distribution of customers. This augmentation in DRBs leads to
higher total costs, DRB-traveled and drone-traveled miles.

Table 4.7: Impact of distribution

Dim Total costs # used vehicles DRB-traveled miles Drone-traveled miles

10 53.0490 6 263.6576 15.8748
20 89.7376 8 441.1657 25.2210
30 156.1879 9 766.2628 46.7663
40 2409552 12 1197.2296 75.4653

4.6.2 Number of intermediate stops between one passenger request

We conducted experiments using two sets of instances to examine how the maximum
number of intermediate stops between passenger request services, denoted as 7, impacts
the system. In Set 1, we utilized 20-node instances with Dim = 10, »* = 1/3, r” = 0.75,
and £ = 30 min. Meanwhile, Set 2 comprised 20-node instances with Dim = 20, rP =
2/3, 7P = 0.5, and E = 30 min. The values of 1 ranged from 0 to 5, where lower 7 values
indicated less inconvenience caused by shared rides among passengers. Forn = 0, a
passenger request wasn’t combined with any other request, whether passenger or parcel.

Table 4.8 showcases the effects of varying n on the system’s performance. About in-
stances with = 0 as the baseline, the columns “A_TC” and “A_DRB miles” display
the percentage changes in total costs and DRB-traveled miles, respectively, for different
n values. The table reveals that allowing more intermediate stops during passenger re-
quest servicing leads to savings in total costs and DRB-traveled miles, albeit to varying
extents across the two sets. A comparison between the percentage changes in total costs
and DRB-traveled miles for the same instances from Set 1 indicates minor differences,
while instances from Set 2 exhibit more significant variations when n exceeds 2. This
variance can be attributed to the composition of total costs, encompassing DRB trans-
portation costs, drone transportation costs, and delay penalties. Particularly, for the last
three instances in Set 2, a noteworthy reduction in DRB-traveled miles is counterbalanced
by a 6-minute delay at passenger stops.

Furthermore, the number of used vehicles experiences a decrease of one when transi-
tioning from n = 0 to n = 1 within Set 1. However, in Set 2, the number of used vehicles
remains constant as n increases. This phenomenon can be attributed to a minimum num-
ber of vehicles required to fulfill all requests while satisfying all stipulated constraints.

No specific conclusion can be drawn when it comes to drone-related indicators such as
the number of flights, flying time, and drone-traveled miles. Nevertheless, an elevated
value of n broadens the solution space, enabling more advantageous drone flights that
contribute to cost reduction.

4.6.3 Hard versus Soft time windows

The CG successfully determined lower bounds for 243 out of 252 SARP-D instances.
Moreover, 77 out of 119 instances with soft time windows (TW) and 84 out of 124 instances
with hard TW were solved optimally with a gap of 0%. Among these solved instances,
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Table 4.8: Impact of the maximum number of intermediate stops between one passenger request service

Total # used . Flying DRB-traveled A_DRB Drone-traveled Passenger Goods
Instance 17 A_TC . #flights . . - ) . .
costs vehicles time miles miles miles delay (min) delay (min)
0 15.6833 4 2 21 77.7561 6.6041 0 0
1 13.9275 -11.20% 3 5 113 66.3061 -14.73% 33.3163 0 0
Set 1 2 13.6314 -13.08% 3 4 55 66.3061 -14.73% 18.5105 0 0
3 13.5725 -13.46% 3 3 46 66.4050 -14.60% 14.5743 0 0
4 13.5725 -13.46% 3 3 46 66.4050 -14.60% 14.5743 0 0
5 13.5725 -13.46% 3 3 46 66.4050 -14.60% 14.5743 0 0
0 54.1807 4 1 30 270.2217 6.8168 0 0
1 537319 -083% 4 1 30 267.9777 -0.83% 6.8168 0 0
Set 2 2 537319 -0.83% 4 1 30 267.9777 -0.83% 6.8168 0 0
3 527747 -260% 4 1 30 233.1916 -13.70% 6.8168 6 0
4 527747 -260% 4 1 30 233.1916 -13.70% 6.8168 6 0
5 527747 -260% 4 1 30 233.1916 -13.70% 6.8168 6 0

A_TC: Percentage change in total costs; A_DRB miles: Percentage change in DRB-traveled miles

74 pairs® achieved optimality. Notably, for 60 out of these 74 instance pairs, the TW type
had no impact, implying that the objective value of an instance with soft TW was identical
to that of its hard TW counterpart. These findings suggest that, in scenarios with ample
vehicles, simultaneous achievement of cost reduction and on-time delivery satisfaction is
achievable for most cases. Nevertheless, there are instances where cost savings might
be attained at the expense of compromising on-time delivery performance.

From Table 4.9, it is apparent that the objective value for instances with soft TW is fre-
quently smaller than that of instances with hard TW for 14 pairs of instances. Additionally,
allowing TW violations can reduce the number of used DRBs, indicating potential opera-
tional cost savings.

Table 4.9: Impact of TW type

#nodes Dim P P g Soft TW Hard TW

Total #used DRB-traveled Passenger Goods Total #used DRB-traveled

costs vehicles miles delay (min) delay (min) | costs vehicles miles
20 10 2/3 075 1175621 3 82.3260 1 0 18.0266 4 90.1331
20 10 2/3 075 2|17.4271 3 81.6509 1 0 17.8916 4 89.4580
50 20 173 05 0851959 7 417.9187 0 1 86.1498 8 425.1883
50 20 2/3 05 0897376 8 441.1657 1 0 90.1728 8 448.2851
50 30 2/3 025 1| 145.3158 8 707.8330 2 3 151.4486 9 755.9968
50 30 2/3 05 0] 156.1879 9 766.2628 2 0 158.1425 10 786.3918
50 30 2/3 05 11445343 8 709.6336 2 0 145.8197 9 726.5047
50 30 2/3 05 2138.3083 7 682.5471 1 0 139.3776 8 692.8938
50 40 1/3 025 1 |164.4680 7 790.2199 3 6 166.6772 8 831.2659
50 40 1/3 025 2|162.8553 7 782.3964 3 6 165.8123 8 827.1816
50 40 1/3 0.75 0| 176.0732 10 865.2115 0 1 177.5712 10 875.9731
50 40 2/3 05 2]207.2107 9 1004.7700 5 2 214.3914 10 1070.2105
50 40 2/3 075 1]221.1591 10 1091.5211 2 0 226.5568 11 1128.9106
50 40 2/3 075 2|221.1591 10 1091.5211 2 0 226.5568 11 1128.9106

4.6.4 Maximum flight time of drones

We selected a 20-node instance with Dim = 20, »” = 1/3, r? = 0.75,and n = 2 to
investigate the influence of varying drone flight times by altering the value of E'to 5, 10, 20,
and 60 minutes. The summarized system performance under different drone endurance
levels is provided in Table 4.10, while Figure 4.2 illustrates the solutions for each scenario.

For the case of £ = 5, the drone had just 2 minutes for the journey from launch to cus-
tomer and back to recovery. This constraint severely limited flight possibilities. Compared
to this baseline scenario, as E increased to 10, 20, 30, and 60 minutes, total costs were
successively reduced by 1.04%, 8.79%, 18.68%, and 19.20%. When E reached 20 min-

5In Section 4.6.3, a pair of instances includes two instances sharing the same features such as node size,
distribution, ', 7, n, and E, with one having soft TW and the other hard TW.
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utes, a DRB could be spared, resulting in a 14.24% reduction in total DRB-traveled miles.
However, with further increases in F to 30 and 60 minutes, drone flight times notably
increased, although the reduction in DRB-traveled miles became more gradual. When
comparing solutions for E = 30 and E = 60, an intriguing observation emerges: the DRB
routes remained consistent for both cases.

Regarding drone flights, the main distinction lies in serving request 17, specifically <16,17,3>
for E = 30 and <0,17,10> for E = 60. Although the drone-traveled miles for <0,17,10>
were shorter than <16,17,3>, the total flying time for <0,17,10> exceeded that of <16,17,3>.
This discrepancy arises from the comprehensive drone flying time, encompassing travel
between locations and waiting times at customer sites and recovery nodes. The results
from Table 4.10 and Figure 4.2 affirm that extending the maximum drone flight time en-
ables more advantageous drone flights, facilitating long-distance travel or extended hov-
ering periods, ultimately contributing to cost reduction.

Table 4.10: Impact of the maximum flight time of drones

E  Total costs # uged # flights Elylng DRB—traveIed Drone-traveled Passengfar Goods .
vehicles time miles miles delay (min) delay (min)
5 40.7340 4 0 0 196.1697 0 0 3
10 40.3111 4 1 10 193.4886 5.6703 0 3
20 37.1527 3 3 42 168.2418 25.2146 0 6
30 33.1232 3 4 112 161.1567 44.5912 0 0
60 32.9111 3 4 153 161.1567 33.9894 0 0
5 min
Lo =l {1 =4 s =l {8 ={er]

RIS K = K= K S Sl (o 1={2] B =El

[o =iz =5 = 1s {13 J=f 2] [o F={iz] (13 =f 21

20 min

Lo Rl Bl R« B3 B Ble H{e1]

Legend

El Node

— Truck arc

------ > Drone arc

[0 B12] 13 =] 20 =2 21 ] —> Combined arc

Figure 4.2: Solutions for 20-node instance with Dim = 20, rf = 1/3, P = 0.75, and = 2 under different drone battery
endurance level

4.7 Conclusions
This study delves into a route planning dilemma centered on an integrated passenger
and parcel transportation system, intertwining demand-responsive vehicles (DRBs) and
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drones. The primary objective is to curtail operational expenses while accommodating
the varied transportation requests by amalgamating these two modes. We introduced a
path-based optimization model coupled with a column generation (CG) algorithm for exact
solutions to address this. A notable feature of the model is its adaptability, permitting a shift
from the integrated problem to simpler configurations such as vehicle routing problems
with drones (VRP-D) and pickup and delivery problems (PDP) by adjusting the passenger
request ratio. The CG algorithm is complemented by a custom label correcting procedure
for pricing problems and further enhanced by a large neighborhood search heuristic and
optimization strategies to expedite the CG process.

Extensive computational experiments were undertaken to evaluate the CG’s efficacy. The
outcomes showcased that the proposed CG solved all 20-node instances and 90% of the
50-node instances for the three problem variations (SARP-D, VRP-D, PDP), promptly
yielding optimal solutions. The mean discrepancy between the lower and upper bounds
across all resolved instances was a mere 0.7%. In-depth sensitivity analyses were con-
ducted on pivotal parameters within the SARP-D framework, yielding insightful findings.
For instance, allowing more intermediate stops during passenger service, relaxing hard
time windows to soft ones, and augmenting drone endurance were identified to expand
solution possibilities, leading to more efficient DRB routes or drone flights, ultimately cur-
tailing overall costs. Consequently, the count of employed DRBs and DRB-traveled dis-
tances witnessed reductions. However, such reductions sometimes entailed service de-
lays at specific stops, contingent on specific circumstances. Furthermore, when vehicle
resources are ample, it is highly probable to reduce total costs while preserving a robust,
on-time delivery service.

Future research can be directed toward several key areas. Firstly, explore further appli-
cation scenarios involving intricate drone operations within the SARP-D framework, like
incorporating advanced energy consumption models for drones or accommodating mul-
tiple drones for each DRB, and secondly, devising strategies to tackle the SARP-D chal-
lenge in uncertain environments, where factors such as unpredictable road travel times
and variable request locations come into play. Lastly, focus on developing more efficient
algorithms, either exact or metaheuristic, to efficiently handle larger and more complex
instances, thus enhancing the scalability of the proposed approach.
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Appendix

4. A Label extensions
Case 1. Extend a temporary label ;.

Subcase 1.1. Transfer 7; to ¢; by applying function AddDroneLeg(m;, j), where j € D(m;).
The attributes of ¢; inherit those from 7; and some of them are updated using the following
equations.

C((bz) =9
dr(¢:) =j
tp(¢;); < drone node

tp(¢i) (g, ¢ recovery node

7(0i); = 7" (Ti)o(myy + SL+ Tl

7'(¢i) = max{max{r(¢);, E;} + STP + TH , ) + SR, 7(mi) () + SR}
m(¢i); = max{7(¢i);, Ej}

T(Di) (g = MAX{T(¢4), 7" (i) () + STX@)}

fly(¢i) = 7'(di) = 7"(i) ()

g9l(¢i) = gl(m) +1

Q(¢i) = Q(m;) U {j}

V(i) = V(mi)\{j}

D(¢i) = D(mi)\{sj}

K(¢i) = K(m;) + B;

cost(@s) = cost(m) + CD | +CP, .+ ayxmax{0,7(6:), — L;}

7¢(¢i) = cost(d;) — k(i)

Note that if fly(¢;) > E, a time slack strategy that allows postponing the departure time
at some nodes (Li et al., 2016a; Savelsbergh, 1992) will be applied. In the SARP-D
context, the time slack strategy refers to postponing the time the drone starts taking off
at the launch or recovery-launch node. Consequently, the values of 7(¢;) and 7/(¢;) for
nodes associated with the newly added drone leg, fly(¢:), cost(¢;), and 7¢(¢;), will be
updated. For a more detailed description of the time slack strategy for SARP-D, readers
are referred to Cheng et al. (2023b).

Subcase 1.2. Extend 7; to 7; by applying function AddDRB Arc(r;,j), where j € V (m;).
The attributes of 7; inherit those from 7; and are updated using the following equations.

v(m;) =j
pos(m;); = pos(mi) y(myy + 1

tp(m;); < common node
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T(7); = 7" (Tiu(m)) T STy(my T Tolma).s

7(mj); = max{7(m;);, Ej}

{ (771)+Qj ifjeSp
pl(m) 5 &5,

gl(m;) = {gl(m)—i—l if j €5,

pl(m;)

gl(m;) if j &5,
Q(mj) = Qm;) U {j}

O(m;) ifj ¢S,
O(mj) =4 Olm)U{j} ifjes)
O(m)\{j — P} ifjeS)
Vin) = {O(7j) + [P[} if pos(mj); = pos(mi)o(r,) =1
PSouU S, U Sg(ﬂj)\Q(wj) else, where Sg(ﬂj) is the set of destinations of O(r;)
N [DE\G} ifje s
Dim) = { D(m) ] ¢S5,

K(mj) = k(m) + B;

cost(mj) = cost(m;) + CV/

v(m),j + a; * max{O, T(?Tj)j — Lj}
7¢(m;) = cost(m;) — k()
Case 2. Extend a label ¢;

Subcase 2.1. Extend ¢; to 7; by applying function AddDRBArc(¢;, j), where j € V(¢;).
The attributes of 7; inherit those from ¢; and are updated using the following equations.

o(mj) =j
pos(m;); = pos(i) (4, + 1

il launch node if (i) (4,) i common node
p(7; )C(¢i) < recovery-launch node if tp(qﬁi)cwi) is recovery node

tp(m;); < common node

v _ T(04) ) if tp(i) (4, IS COMmMoON node
) e = max{Eeg,), 7' (#:)} i tp(i) 4, is recovery node

T(7m5); = 7"(7)) gy + SL+ Ty 5
), = max{r(my), )

{ pl(di) +Q; ifjeSy
pl(¢s)  ifj¢S,

_Jogl(gs)+1 ifjels
g’(”j)‘{ gl(6) ¢S,

Q(mj) = Qo) U {5}

pl(m;)
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O(¢) ifj & .5y
O(mj) =q O(g)U{j} ifjes)
O(¢i)\{j — IP|} ifje Sy
V(r,) = {O(mj)o + [P} 'fPOS(WJ) POS(WJ)O( Do 1
=N seus,u Sdny\ Q) elsewhere S§, is the set of destinations of O(m;)
_ D@\t ifjesy
o) ={ "5 g 5

K(m;) = K(¢i) + B;
cost(m;) = cost(¢;) + CV, (o) T * max{0, T(Wg) — L}
re(mj) = cost(mj) — k(mj)

Subcase 2.2. Extend ¢; to ¢; by applying function AddCombinedArc(¢;,j), where j €
V(¢i). The attributes of ¢; inherit those from ¢; and are updated using the following
equations.

c(dj) =j
v(dj) =7
pos(9;); = pos(®i)y(p + 1

tp(¢;),; « common node

T D)ooy + ST gy + Ty, [T tP(0)es,) is common node
(95); = ! (¢) o(6s) T ‘@) )i if tp(i) o(s,) IS recovery node

7"(¢5); = max{7(¢;);, Ej}

C[plé)+Q; iES,
N@”‘{ i) ¢S,

l(pi)+1 ifjes,
WW”:{99¢» 7 é5,

Q(¢;) = Q¢i) U {5}

O(¢i) ifj ¢ Sp
O(¢;) =q Olx)u{j} ifjeSp
O(¢:)\{j —|PI} ifjesy
Vi(g;) = {O(¢5) + |1 PI} if p08(¢j)j —p03(¢j)0(¢j)0 =7
¢i) = SpUS;USG ., \Q0s)  else, where S§, s the set of destinations of O(¢;)
_ [D(e)\{j} ifjesy
pien={"5) g

k(9;) = k(i) + B;
cost(¢;) = cost(¢;) + CX(@)J + o« max{0,7(¢;),; — L;}

o(95) = cost(d;) = x(8))
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4.B Extension feasibility check

After getting the attributes of a new label ¢; (Subcase 1.1 and Subcase 2.2), we check
the feasibility of this label. There are two situations.

Situation 1. i is the returning depot. Then, the newly generated label ¢; is feasible when
the following constraints are satisfied.

gl(¢i) < Cap®
O(¢i) =@

7" (04); < Tmax
fly(¢i) < E

Situation 2. i is not the returning depot. Then, the newly generated label ¢; is feasible
when the following constraints are satisfied.

pl(¢i) < Cap®
gl(¢s) < Cap®

), < Tmax — ST if tp(¢;), is common node
v = Trnax if tp(¢;); is recovery node

fly(g;)) < E
If the new label ¢; is feasible, ¢; will be added to ¢;. Otherwise, ¢; will be discarded.

Similarly, when the attributes of a temporary label 7;,i € N\{0}( Subcase 1.2 and Sub-
case 2.1) are obtained, the feasibility of this temporary label should be checked. There
are two situations as well.

Situation 1. i is the returning depot. Then, the newly generated label =; is feasible when
the following constraints are satisfied.

gl(m;) < Cap®
O(m) =2
7" (73); < Tmax
D(m;) # @

Situation 2. i is not the returning depot. Then, the newly generated label ¢; is feasible
when the following constraints are satisfied.

pl(m;) < Cap”

gl(m;) < Cap®

7(7;); + STV < Trax
D(m;) # @

If the new temporary label =; is feasible, w; will be added to II;. Otherwise, m; will be
discarded.

4.C Results of medium-size instances
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5 Assessing the impacts of public
transport-based crowdshipping: A case
study in a central district in
Copenhagen

Cheng, R., Fessler, A., Nielsen, O. A., Larsen. A., Jiang, Y., (2023). Assessing the im-
pacts of public transport-based crowdshipping: A case study in a central district in Copen-
hagen. To be submitted to Frontiers of Engineering Management.

Abstract

The rapid development of E-commerce and sharing economy has created an opportunity
for crowdshipping as a novel solution to last-mile delivery. Prior research and applications
on crowdshipping mainly focus on private vehicle-based crowdshipping, which often gen-
erates rebound effects resulting in traffic congestion and emission increases due to the
dedicated trips performed for crowdsourced deliveries. To mitigate the rebound effects,
this paper proposes a public transport (PT)-based crowdshipping concept as a comple-
mentary solution to the traditional parcel delivery system, where public transport users
utilize their existing trips to carry out crowdsourced deliveries. We propose a methodol-
ogy comprising a parcel locker location model and a vehicle routing model to analyze the
impact of PT-based crowdshipping. It is worth noting that the parcel locker location model
not only helps to plan the PT-based crowdshipping network but also helps to understand
the barriers to the development of PT-based crowdshipping. A case study in a central
district in Copenhagen using real-world data is conducted to estimate the impacts of PT-
based crowdshipping. Our results indicate that PT-based crowdshipping could reduce
the total vehicle kilometers traveled, the total working time of drivers, and the number of
used vans (drivers) to perform last-mile deliveries, which would contribute to mitigating
traffic congestion and environmental pollution. However, the development of PT-based
crowdshipping might be restricted by the number of crowdshippers. Thus, our research
suggests that efforts should be made to increase the number of crowdshippers.

Keywords: Last-mile delivery; Crowdshipping; Public transport-based crowdshipping;
Integrated passenger and freight transportation; Impact assessment
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5.1 Introduction

E-commerce has been growing exponentially in the last decade, with global E-commerce
sales reaching 5.717 trillion dollars in 2022, compared to 1.336 trillion in 2014. The num-
ber is expected to grow by 50 percent by 2025 (Statista, 2022). With the growth comes
not only business opportunities but also great challenges for both retailers and logistics
services providers. On the one hand, the increased demand will bring more revenues to
companies. On the other hand, last-mile delivery, which is the most expensive and inef-
ficient part of the supply chain, becomes a pivotal factor in securing market share in the
competitive environment, as consumers are more and more sensitive to delivery speed
and flexibility. Moreover, the rising transportation demand has resulted in a surge of de-
livery vans entering the urban areas, exacerbating traffic congestion and environmental
issues. Consequently, both practitioners and academics are actively seeking viable solu-
tions to provide last-mile delivery in an efficient and sustainable manner.

One relatively new solution to last-mile delivery is the introduction of parcel lockers, offer-
ing various benefits. Parcel lockers allow logistics companies to deliver parcels to cen-
tralized facilities, capitalizing on economies of scale and reducing the cost caused by
“Not-at-Home” delivery. They allow recipients to collect their parcels in a flexible time
without having to wait for a delivery person or risking missing a delivery attempt. Further-
more, parcel lockers offer a way to deliver parcels without physical interaction between
the delivery man and customer, which facilitates delivery in situations where contactless
interaction is preferred, e.g., during a pandemic. According to a report by the European
Regulators Group for Postal Services (ERGP) (European Regulators Group for Postal
Services, 2022), the count of parcel lockers has witnessed substantial growth across
many countries, particularly in Denmark (465 in 2017 and 1740 in 2021), Finland (487
in 2017 and 2288 in 2021), and Norway (191 in 2020 and 2800 in 2021).

In recent years, the concept of crowdshipping, inspired by successful business models
under the sharing economy (e.g., Uber and Airbnb), has presented another novel solution
to last-mile delivery. In a crowdshipping system, ordinary people utilize their free capac-
ity regarding time and/or space to perform parcel delivery with monetary compensation.
Both logistics services providers and E-retailers have conducted experiments with crowd-
shipping (Alnaggar et al., 2021). For example, in 2013, DHL piloted a project, “Myways”
in Stockholm, which allowed individuals to deliver parcels on the way to their destination.
In 2015, Amazon introduced a service named “Amazon Flex”, where ordinary people use
their own cars to deliver Amazon orders to final customers. This service is now active in
more than 50 cities.

Crowdshipping can be implemented in various ways. The main body of prior research and
practical applications related to crowdshipping has focused on private personal vehicle
use, where dedicated trips or detours are often unavoidable (Allahviranloo & Baghestani,
2019; Punel & Stathopoulos, 2017). These personal vehicle-based concepts often entail
rebound effects resulting in emission increases instead of decreases (Buldeo Rai et al.,
2018). Additionally, sharing economic concepts have often been criticized for undermining
the rights of workers and creating a ‘gig-economy’ precariat (Paus, 2018).

To harness the benefits of parcel lockers and crowdshipping while mitigating the draw-
backs of personal vehicle-based crowdshipping, this paper focuses on public transport
(PT)-based crowdshipping. This concept is regarded as a form of integrating people and
goods transportation (Cheng et al., 2023a), which aligns with the European Commission’s
call for the integration of passenger and freight transportation (European Commission,
2007). Figure 5.1 presents a schematic overview of the PT-based crowdshipping. Before
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delving into the details of our PT-based crowdshipping, we first explain the terminologies
used in this context. Note that parcel lockers in our PT-based crowdshipping concept are
all installed in PT stations.

* Recipients: Customers who buy a PT-based crowdshipping service. They are also
the owners of the parcels.

* Pickup Parcel Lockers (P-PL): Parcel lockers that crowdshippers use to pick up
parcels. In this study, they are positioned at PT stations close to the distribution
center and are predetermined.

» Delivery Parcel Lockers (D-PL): Parcel lockers that crowdshippers use to drop off
parcels. These parcel lockers are also parcel lockers where the final recipients pick
up the parcels. Locations of D-PL are determined by the model presented in Section
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Figure 5.1: An illustration of PT-based crowdshipping

In the traditional distribution mode, all parcels are delivered by vans owned and operated
by logistics companies. In PT-based crowdshipping, parcel lockers are installed in some
PT stations to store small parcels. A proportion of parcels, termed crowdshipped parcels,
are shifted from vans to crowdshippers. The journey of these crowdshipped parcels from
the distribution center to their final destinations comprises three legs. In the first leg,
crowdshipped parcels are transported by trucks from the distribution center to P-PLs po-
sitioned at PT stations near the distribution center. In the second leg, crowdshippers, who
are PT users, transport parcels between different PT stations. They pick up crowdshipped
parcels from P-PLs at their origin PT stations, take the PT trips, and drop off parcels to
D-PLs at their destination PT stations. The final leg is completed by recipients who collect
their parcels from D-PLs positioned at PT stations near their homes. Note that crowdship-
pers are compensated with credit for the transit system. This could ensure that only trips
that would be taken anyway are utilized, preventing crowdshipping from creating a new
precarious job market lacking workers’ right.

It is expected that PT-based crowdshipping could bring positive impacts on mitigating
traffic congestion and reducing environmental pollution by reducing the number of vans
entering the city center and the total vehicle traveled miles. Prior to implementing a PT-
based crowdshipping service, operators should explore their target customers’ attitudes
and preferences, as well as assess the potential benefits of this service. By doing the for-
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mer, operators could tailor the service to meet customers’ needs and enhance its adoption
rate. Fessler et al. (2022) have conducted a study in this domain. They analyzed passen-
gers’ preference for PT-based crowdshipping within the Greater Copenhagen Area. This
study, on the other hand, focuses on evaluating the impacts of this service to explore its
viability.

The contributions of this paper are summarized as follows. First, we enrich the limited
studies on PT-based crowdshipping. Second, we develop an approach to estimate the
impacts of PT-based crowdshipping. This approach consists of a parcel locker location
model and a vehicle routing model. The parcel locker location model not only assists in
the strategic planning of the PT-based crowdshipping network but also provides insights
into the efforts required to achieve various development objectives for PT-based crowd-
shipping. Third, we present the potential benefits of PT-based crowdshipping based on a
case study using real-world data.

The remainder of the paper is organized as follows. Section 5.2 reviews related works
on PT-based crowdshipping. Section 5.3 introduces the methodology for assessing the
impacts of PT-based crowdshipping. Section 5.4 presents the results of a case study.
Finally, Section 5.5 concludes this paper and provides future research directions.

5.2 Related works

While PT-based crowdshipping is not a completely new concept, studies on PT-based
crowdshipping are still relatively limited compared with personal vehicle-based crowd-
shipping. In this section, we present an overview of related works on PT-based crowd-

shipping.

As we introduced in Section 5.1, there are three legs in PT-based crowdshipping: the first
leg delivery (from the parcel’s origin to P-PLs), the PT trip (from P-PLs to D-PLs), and
the last leg delivery (from D-PLs to the parcel’s destination). We categorize three ways
of organizing PT-based crowdshipping, depending on which legs involve crowdshippers’
participation.

+ Crowdshippers involved in the first and last legs (P1)

Kizil and Yildiz (2023) proposed a system where crowdshippers are responsible for
the first and last legs, which are usually short distances. Parcels that cannot be han-
dled by crowdshippers are transported by backup delivery vehicles. They presented
an optimization model to determine parcel locker locations and backup delivery ve-
hicle routes. The objective is to minimize the total transportation cost of backup
delivery vehicles. The simulation result of a case study in Istanbul demonstrated
that making use of public transport as a backbone of the crowdshipping system
could alleviate the negative externalities of last-mile delivery operations.

* Crowdshippers involved in the PT trip and the last leg (P2)

Zhang and Cheah (2023) and Zhang et al. (2023) investigated a PT-based crowd-
shipping system where crowdshippers are involved in the PT trip and the last leg.
Crowdshipped parcels are first transported by logistics companies from the distribu-
tion center to parcel lockers at PT stations, from where crowdshippers pick up the
parcels, take PT trips, and deliver parcels to the parcels’ final destinations. They
developed approaches consisting of a parcel allocation model and a vehicle rout-
ing model to assess the impacts of their proposed PT-based crowdshipping. The
results from a case study in Singapore showcased this PT-based crowdshipping
could reduce vehicle kilometers traveled and associated air emissions.
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* Crowdshippers involved only in the PT trip (P3)

Different from the previous two PT-based crowdshipping systems where customers
wait for their parcels at home, in this system, customers should pick up their parcels
from D-PLs at PT stations. Logistics companies and crowdshippers are responsi-
ble for the first leg and PT trips, respectively. Several studies on this concept have
been conducted from various perspectives. Gatta et al. (2019) estimated people’s
willingness to act as a crowdshipper and to buy a PT-based crowdshipping service
based on a survey in Rome. The results highlighted the importance of flexible deliv-
ery time for customers and compensation for passengers to participate in PT-based
crowdshipping. This observation aligns with Fessler et al. (2022), which analyzed
passengers’ willingness to act as crowdshippers based on a survey in Copenhagen.
Assuming that the locations of P-PLs and D-PLs are predetermined, Karakikes and
Nathanail (2022) estimated the impacts of PT-based crowdshipping by developing a
city-scale traffic freight microsimulation model in PTV Vissim, taking a middle-sized
Greek city as an example. Simulation results demonstrated the positive impacts of
PT-based crowdshipping on reducing traffic congestion and air pollution.

Table 5.1: Different PT-based crowdshipping systems

First leg PT trip Last leg References

P1  Crowdshipper and backup delivery vans  PT lines Crowdshipper and backup delivery vans  Kizil & Yildiz (2023)
P2 Logistics company Crowdshipper Crowdshipper Zhang et al. (2022); Zhang and Cheah (2023)
P3  Logistics company Crowdshipper Recipient Gatta et al. (2019); Fessler et al. (2022); Karakikes and Nathanail (2022); This study

Each PT-based crowdshipping system has its own advantages and challenges. P1 may
make the most significant impact on reducing delivery vehicles traveled miles by utilizing
PT lines, but it poses several practical challenges. For example, retrofitting passenger
vehicles (or carriages) and PT stations to facilitate and ensure the safety of the movement
of parcels. Moreover, dedicated operators might be required to handle parcels at PT
stations. P2 and P3 are easier to implement in practice compared to P1. Comparing
P2 and P3, P3 is more likely to attract more passengers to act as crowdshippers. This
is because P3 does not require crowdshippers to make the final delivery to customers,
the direction of which might be opposite to the crowdshippers’ own destinations. This
requirementin P2 reduces the passengers’ willingness to act as crowdshippers. However,
P3 may have lower crowdshipping demand because P3 requires customers to collect
parcels from D-PLs at PT stations near their homes instead of receiving parcels at their
homes. Nevertheless, this drawback could be mitigated by optimizing the locations of
D-PLs, as a case study in Rome (lannaccone et al., 2021) has shown that more than 72%
of customers would like to opt for picking up parcels from parcel lockers, if parcel lockers
are characterized by a short distance (less than 500m) from home/work, 24h accessibility,
and a small incentive (€ 1); even without a small incentive, the probability of a customer
willing to collect parcels from parcel lockers exceeds 60%. Given that PT stations are 24-
hour accessible and parcel lockers are cost-effective, and many countries plan to expand
their parcel locker networks, we believe that P3 is a promising and sustainable solution
for last-mile delivery, provided that locations of parcel lockers are well-designed.

5.3 Methodology

5.3.1 Overview of the methodology

Figure 5.2 presents the overview of the modeling framework to assess the impacts of
PT-based crowdshipping. Within this framework, the entire parcels are categorized into
crowdshipped parcels and van delivery parcels (Arrows 1 and 2 in Figure 5.2). The num-
ber of crowdshipped parcels is influenced by various factors from both the demand and
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supply sides.
From the demand side, primary influencing factors include:
DF1) parcels’ attributes such as weight, size, and type;

DF2) customers’ willingness to collect their parcels from parcel lockers instead of home,
which is mainly influenced by distance between parcel lockers and home and accessibility
of parcels lockers.

From the supply side, primary influencing factors include:
SF1) the number of passengers traveling between specific PT stations;

SF2) passengers’ willingness to act as crowdshippers, which is mainly influenced by pas-
sengers’ social-demographic characteristics and compensation;

SF3) the deployment of parcel lockers.

Itis essential to note that this study aims to assess the impacts of PT-based crowdshipping
instead of investigating customers’ and passengers’ preferences for this service. Thus,
crowdshippers and deliveries are predetermined to be “matched” based on given levels
of demand for such service and passenger volumes between specific PT stations (Arrows
1 and 3 in Figure 5.2). The compensation cost of PT-based crowdshipping is influenced
by the number of matched crowdshipped parcels (Arrow 11 in Figure 5.2). To prevent
D-PLs from constraining the number of crowdshipped parcels, we develop a D-PL loca-
tion model (see Section 5.3.3) to determine the locations of D-PLs. This model ensures
that each customer can be served by at least one D-PL within a short distance of their
homes. The inputs of this model include PT stations, passenger origin-destination pairs,
and crowdshipped parcels (Arrows 4, 5, and 6 in Figure 5.2). The outputs of this model
are the selected PT stations to install D-PLs and the allocation of D-PLs to customers
(Arrow 7 in Figure 5.2). Moreover, by conducting sensitivity analysis on certain parame-
ters within this model, we can get insights into potential actions and strategies that can
be implemented to achieve the objectives of shifting varying percentages of parcels from
vans to crowdshippers (see Section 5.4.2).

For van delivery parcels, we develop a vehicle routing model (see Section 5.3.3) to de-
termine the routes of vans (Arrow 8 in Figure 5.2). According to solutions provided by the
vehicle routing model, we could calculate various indicators related to vans, e.g., vehicle
kilometers traveled by vans and traveling time of vans (Arrow 9 in Figure 5.2).

Since the first journey of crowdshipper parcels (from the distribution center to P-PLs) is
transported by trucks, indicators related to trucks, which are associated with the loca-
tions of P-PLs, are also counted when assessing the impacts of PT-based crowdshipping
(Arrow 10 in Figure 5.2).

5.3.2 Notations and assumptions

Table 5.2: Notations

Sets

K Set of homogeneous delivery vans, K = {1,2,...,|K|}, where |K| is the
number of vans.

Se Set of PT stations to install P-PLs, S° = {1,2,...,|S°|}, where |S°| is the
number of candidate PT stations to install P-PLs.

S Set of candidate PT stations to install D-PLs, S = {1,2,..., S|}, where

|S9| is the number of candidate PT stations to install D-PLs.
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Vs Set of crowdshipping customers, V., = {1,2,...,|V.s|}, where |V4] is the
number of crowdshipping customers.

Vi, Set of van delivery customers, V;, = {1, 2, ...,|V,|}, where |V} is the num-
ber of home delivery customers.

N N =V, U{0,|V4] + 1}, where 0 and |V}| + 1 are the distribution center
nodes indicating the start and end nodes of a van route.

Parameters

Cap Capacity of a van.

T;i Travel time between nodes i € N and j € N.

ST} Service time at node j € V},.

Thax Maximum travel time of a van route.

Q< Demand value at node j € V..

Q? Demand value at node j € V},.

D;; Distance between nodes i € S¢ and j € V..

Dmax Service range of a D-PL. It also represents the maximum walking distance
that customers are willing to travel to pick up their parcels.

L;; The number of passengers traveling between i € S° and j € S¢.

n The average number of parcels a crowdshipper takes per trip.

Presshipper  The probability of a passenger acting as a crowdshipper.

Variables

Waij Amount of crowdshipped parcels traveling from a € S° to i € S¢ and finally
picked up by customer j € V_

i y; = 1, if a D-PL is installed at i € S¢; otherwise y; = 0.

Tijk zi;, = 1, if van k travels from nodes i € N to j € N; otherwise, z;;, = 0.

tik The arrival time of van k at node j € V.

We make the following assumptions.

* All parcels are delivered on the same day.

» Only one parcel locker is installed at each selected PT station, but the capacity
of parcel lockers is infinite. In reality, the capacity of each parcel locker can be
estimated according to the results of the D-PL location model.

» Given a specific compensation level, passengers’ willingness to act as crowdship-
pers Presshipper 18 UNiform. The value of Pr.gpiper iS set as the smallest value
provided in Fessler et al. (2022).

» The speed of the vans is constant.

* The distance matrix is obtained by finding the shortest path between two nodes
using a Julia Package (OpenStreetMapX.jl).

5.3.3 Delivery parcel locker location model
The D-PL location model is formulated as follows:

min Z Yi

i€Sd

(5.1)

s.t.

Z Z Waij = Q5 V] € Ves (5.2)
a€Se je5d
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Figure 5.2: Overview of the modeling framework

Z Waij < yiLainPrcsshipperyva €58%i¢€ Sd (53)
jEVcs

Waij > 0,Va € S°i € 8% j € Vg (5.4)

Waij = 0,Ya € S°,i € S%,§ € Vi, if Dij > Dpmax (5.5)

The objective function (5.1) minimizes the number of D-PLs. Constraints (5.2) ensure that
the total crowdshipped parcel flow to node ;j € V., satisfies all demands. Constraints (5.3)
ensure that if there is no D-PL at PT station i € S?, the crowdshipped parcels flow through
i € 8% is zero; otherwise, the crowdshipped parcel flow between o € S° and i € S¢ does
not exceed the product of the number of crowdshippers traveling between nodes a € S°
and i € S¢ and the average number of parcels carried per crowdshipper. Constraints
(5.4) - (5.6) define the domains of decision variables. Constraints (5.5) state that if the
distance between nodes i € S% and j € V., is larger than Dnax, the crowdshipper parcel
flow routed between nodes i € S¢ and j € V., is zero.

The model was solved by CPLEX in our case study.

5.3.4 Vehicle routing model
Similar to Zhang et al. (2023), we develop a vehicle routing model to determine the routes
of vans. The model is formulated as follows:

116 Innovative Last-mile Solutions:Integrating People and Goods Transportation



(ivj)eN keK
s.t.

Z Z Tijk = 1,V €V (58)

kEK i€N itj

> mup<1LVkeEK (5.9)

JEN{0}
> kS LVEEK (5.10)

iEN\ Vil +1)
Z Tijk — Z zjik =0,Vj € Vp, ke K (5.11)

IEN\{Vil 41} iEN\{0},i%]

> Y. Qg <Cap,Vke K (5.12)

PEN\{|Vi|+1} jeN\{0},i7)

tor = 0,Vk € K (5.13)

tik + ST + Tij — Tmax(1 — w4jx) < tj, Vi € N\{|Vi| +1},5 € N\{0},j #1i,k € K (5.14)

v+, < Tmax, Vk € K (5.15)

zign € {0,1},Vk € K, (i,j) € N (5.16)

The objective function (5.7) minimizes the total travel time of vans. Note that this ob-
jective function also minimizes distance-based cost because of our assumption of the
constant speed of vans. Constraints (5.8) ensure that each home delivery customer is
visited exactly once. Constraints (5.9) ensure that all vans depart from the depot at most
once. Constraints (5.10) ensure that all vans return to the depot at most once. Con-
straints (5.11) ensure flow conservation. Constraints (5.12) ensure the sum of demand at
customers served by van k does not exceed the capacity of that van. Constraints (5.13)
state that all vans are ready at time 0. Constraints (5.14) calculate the arrival time of van
k at node j € N\{0}. They also eliminate subtours. Constraints (5.15) ensure that all
vans should return to the depot before exceeding the maximum travel time of a route.
Constraints (5.16) define the domains of decision variables.

The vehicle routing problem is NP-hard, which means that it is difficult to get the optimal
solution to large instances within an acceptable time using exact methods. In this study,
we develop an adaptive large neighborhood search (ALNS) metaheuristic to solve the
routing problem, considering that the ALNS performs very well in many variants of vehicle
routing problems (Cheng et al., 2023b; Li et al., 2016; Ropke & Pisinger, 2006). The ALNS
was coded in C++.
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5.4 Case study

5.4.1 Study area and data sources

This study used a central district located in the northwest of Copenhagen as the study
area. It has a high population density at 18,820 persons per square kilometer. The dis-
trict also has good PT coverage with 3 S-train’ stations, 5 metro stations, and 56 bus
stops. The reasons for selecting this district as our study area are as follows: 1) It faces
serious traffic congestion due to its dense urban environment; 2) It has good PT cover-
age, which makes it suitable for PT-based crowdshipping; 3) There is a dedicated team
in an anonymous logistics services provider in Denmark responsible for last-mile delivery
in this district and this team validated our simulation results.

The total parcel data was provided by a major logistics services provider in Denmark. The
data set includes the coordinates and demand values of each customer in the selected
central district served by last-mile delivery vans. We extracted the data between October
11th — October 17th in 2021 for our study, representing a normal operation week, without
the pandemic restrictions, Black Friday, public holidays, etc. On average, 864 parcels
with 492 delivery points are delivered per weekday and 480 parcels with 146 delivery
points are delivered on the weekend. We also extracted the smart card data (Rejsekort)
from the same timeframe from Rejsekort & Rejseplanen A/S, which runs an electronic
ticketing system for traveling by bus, train, and metro on behalf of the transport operators
in Denmark. The data includes information on public transport users’ selected trips and
routes through the public transport network in Copenhagen. It represents approximately
40% of all public transport trips, excluding many monthly travel pass holders whose spe-
cific travel patterns were not known. The geospatial data, including the road map and PT
stations, is from OpenStreetMap.

The anonymous logistics services provider’s parcels distributed to the Copenhagen metropoli-
tan area are sorted in a distribution center in a southwestern suburb of Copenhagen. Vans
with smaller capacities depart from this distribution center, visit their designated areas for
last-mile delivery, and finally return to the distribution center. There are two S-train sta-
tions near this distribution center. We assume P-PLs are installed in the two S-train sta-
tions. The locations of D-PLs in the selected central district are determined by the D-PL
location model.

5.4.2 Scenario development and analysis

To assess the impacts of PT-based crowdshipping, we created four scenarios. The base
scenario (S0) mirrors the current delivery mode, where all parcels are delivered by vans.
In contrast, scenarios S1, S2, and S3 entail a transition of 10%, 20%, and 30% of parcels,
respectively, from vans to crowdshippers. To mitigate the stochastic effects of randomly
selecting crowdshipped parcels, we generate 15 samples for each scenario to obtain a
comprehensive understanding of the crowdshipping scenarios. The compensation for
crowdshippers is 10 DKK per parcel, aligning with the field test conducted in Denmark
(Fessler et al., 2023).

As highlighted in Section 5.3, the volume of crowdshipped parcels is shaped by influenc-
ing factors from both the demand and supply sides. While our data sets lack information
on demand-side factors (DF1 and DF2), we have drawn insights from other studies. Re-
garding DF1, a case study in Singapore indicates that approximately 74.9% of parcels
are suitable for crowdshipping (Zhang et al., 2023). Regarding DF2, findings from a case
study in Rome reveal that more than 60% of customers would opt to collect their parcels

'S-train serves the Copenhagen metropolitan area. It has 86 stations that connect the suburban and
urban areas. The S-train system carries more than 357,000 passengers a day.
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from parcel lockers if parcel lockers are installed within 500 m of their residences and are
accessible 24h a day. According to these studies, we believe that achieving a 30% share
of crowdshipped parcels is not insurmountable from the demand perspective, provided
that the deployment of D-PLs is well-designed.

Turning to influencing factors on the supply side (SF1, SF2, and SF3), we have access
to SF1 information through the Rejsekort data. For SF2, we set Pr gspipper = 30% in this
study. As reported by Fessler et al. (2022), when the compensation to the crowdshipper
is 10 DKK per parcel, the probability of a passenger bringing a parcel during his/her trip
is about 30%. To prevent SF3 from limiting the supply of PT-based crowdshipping, we do
not impose a maximum limit on the number of D-PLs that could be installed. Inputting this
data to the D-PL location model, we could acquire valuable insights into the feasibility of
achieving scenarios S1, S2, and S3, and evaluate the ease or difficulty associated with
each of them.

Ideally, the values of Dmax and n should be set to 500m and 1, respectively. However,
these ideal values could lead to infeasible solutions under some scenarios. Hence, we
conducted a sensitivity analysis on Dnax and n to explore the challenges of achieving
corresponding scenarios. We consider three values of Dpax: 500m, 600m, and 700m.
Given a value of Dnax, We initially set = 1 and solve the D-PL model. If there is no
feasible solution, we increase the value of n by 0.1 and re-run the model until there is a
feasible solution. By doing this, we ascertain the minimum number of parcels a passenger
should take under a specific value of Dnax. The corresponding objective value indicates
the minimum number of required D-PLs under the combination of (Dmnax, 1). Table 5.3
presents a view of the minimum number of parcels per crowdshipper should take and
the corresponding number of delivery parcel lockers to achieve varying scenarios under
different values of Dyax.

Table 5.3: The minimum number of parcels per crowdshipper should take and the corresponding number of delivery parcel
lockers to achieve varying scenarios under different values of Dmax

Scenario  Dmax  The minimum number of parcels per crowdshipper should take Number of delivery parcel lockers

S1 500 m 1 19
S1 600 m 1 16
S1 700 m 1 13
S2 500 m 1.5 30
S2 600 m 1.3 32
S2 700 m 1 30
S3 500 m 2.2 35
S3 600 m 1.9 37
S3 700 m 1.5 30

According to Table 5.3, S1 is very easy to achieve given current passenger volumes. This
is facilitated by the acceptability of a 500-meter distance to transit and the practice of a
crowdshipper carrying just one parcel per trip. When D« increases, the required number
of D-PLs decreases.

In contrast, the realization of S2 and S3 presents more challenges compared to S1. When
Dmax = 500m, each crowdshipper needs to carry 1.5 and 2.2 parcels per trip to achieve
S2 and S3, respectively. Although increasing Dmax leads to a reduction of the minimum
number of parcels a crowdshipper needs to carry, it may cause inconvenience for cus-
tomers and consequently affect the demand for PT-based crowdshipping. Certain mea-
sures should be implemented to cope with the challenges arising from higher Dyax values.
One such solution is to lower prices for PT-crowdshipping customers. Alternatively, if we
keep Dmax = 500 m and look at parameters on the supply side, there are two ideas to
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address the challenges to achieve S2 and S3. First, assuming that passenger volumes re-
main unchanged, efforts could be made to increase passengers’ willingness to participate
as crowdshippers or to bring more than one parcel. This could be achieved by increas-
ing the compensation level. As demonstrated by Fessler et al. (2022), increasing the
compensation level results in a higher likelihood of passengers acting as crowdshippers.
Moreover, a crowdshipper would like to carry an additional parcel if the compensation is
increased by 2.67 DKK. Second, if we maintain the compensation level unchanged and
each crowdshipper continues to carry only one parcel per trip, actions could be taken to
increase the number of PT users. This is beyond the capacity of logistics companies but
is congruent with the policies employed by numerous nations that advocate for a shift from
private car utilization towards the utilization of public transport.

5.4.3 Impacts

Using the methodology introduced in Section 5.3, we simulate the delivery operation of
the anonymous carrier across various scenarios. Three key performance indicators, ve-
hicles kilometers traveled per day (including the travel distance of trucks that transport
crowdshipped parcels from the distribution center to P-PLs), total working time of drivers,
and the number of used vans to serve the selected central district, are used to describe
the performance of each scenario. The simulation results of the base scenario were val-
idated by the anonymous carrier, which confirms that the three indicators obtained from
our simulation are very close to their actual operations on those days. The value of each
indicator for each scenario is equal to the average value of the 15 samples of the scenario.
The impacts of PT-based crowdshipping are presented below.

* Impacts on vehicle kilometers traveled

Figure 5.3 presents the percentage change of vehicle kilometers traveled during
the study period under different crowdshipping scenarios. All signs are negative,
indicating that using PT-based crowdshipping as a complementary solution to last-
mile delivery could effectively reduce the vehicle kilometers traveled to deliver the
parcels, even if some distances are needed to transport the crowdshipped parcels
from the distribution center to P-PLs. Moreover, there is a direct correlation between
the number of crowdshipped parcels and the percentage reduction of vehicle kilo-
meters traveled. Specifically, it is shown that the average percentage reduction of
vehicle kilometers traveled is 6%, 11%, and 20% under scenarios S1, S2, and S3,
respectively. In addition, the percentage reduction of vehicle kilometers traveled on
the weekdays (8%, 14%, and 25% for scenarios S1, S2, and S3, respectively) is
more significant than that on the weekend (2%, 4%, and 6% for scenarios S1, S2,
and S3, respectively).

* Impacts on total working time of drivers

Figure 5.4 demonstrates the percentage change in drivers’ total working time under
different scenarios. On average, a substantial reduction in drivers’ total working time
is evident, with scenarios S1, S2, and S3 leading to reductions of 11%, 20%, and
30% on weekdays, and 7%, 15%, and 21% on weekends, respectively. These ob-
servations underscore that PT-based crowdshipping is able to alleviate the growing
labor intensity of drivers.

* Impacts on the number of used vans

Figure 5.5 shows the change in the number of used vans to serve the selected cen-
tral district across different scenarios. The simulation results are in line with our
intuition that when parcels are progressively shifted from vans to crowdshippers,
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Figure 5.4: Percentage change of total working time under different scenarios

the number of used vans should be less than or equal to that of the base scenario.
Notably, the number of used vans on weekends remains uniform under the four sce-
narios. Additionally, the number of used vans remains unchanged in S1 on October
11th and October 13th. This intriguing phenomenon is attributed to the limited ca-
pacity of vans. In these cases, the number of used vans is equal to the minimum
number of vans required to serve the selected central district, which is calculated by
dividing the total demands in this district by the van’s capacity. This observation in-
dicates that realizing meaningful reductions in the number of required vans (drivers)
is contingent on the transition of a substantial parcel volume from vans to crowd-
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shippers. Generally, if 20% of the parcels could be delivered by crowdshippers, it
facilitates the release of one van (driver). If the percentage of crowdsourced parcels
reaches 30%, two vans (drivers) are released.
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Figure 5.5: Change of the number of used vans under different scenarios

+ Cost analysis

Our cost analysis accounts for four distinct types of costs, i.e., driving costs of vans
and trucks, external costs of traffic (e.g., marginal costs of air pollution and traf-
fic congestion), labor cost, and compensation paid to crowdshippers. This sec-
tion presents the potential benefits of PT-based crowdshipping based on the trans-
port economic unit prices (TEUP) of 2022 prepared by Transport DTU and COWI
for the Ministry of Transport (Denmark) (https://www.man.dtu.dk/forskningsbaseret-
raadgivning/teresa-og-transportoekonomiske-enhedspriser).

— Driving costs. The driving costs of vans and trucks encompass expenses
related to fuel, tires, repair and maintenance, and depreciation. These costs
are splitinto fixed and variable costs per hour and per kilometer, respectively, in
TEUP. Fixed costs for vans and trucks are 529 DKK/hour and 542 DKK/houir,
respectively. Variable costs for vans and trucks are 1.82 DKK/km and 4.19
DKK/km, respectively.

— External costs. The negative externalities of transport account for air pollution,
climate change, noise, accidents, congestion, and wear on the infrastructure.
The marginal external costs are used to estimate the cost per kilometer for
the external effects. The marginal external costs for vans and trucks are 1.46
DKK/km and 6.01 DKK/km, respectively.

— Labor cost. The average salary for a postal delivery worker is 24,274 DKK
per month (https://www.paylab.com/dk/salaries-in-country?lang=en).

— Compensation paid to crowdshippers. This stands at 10 DKK per parcel,
the same as the field test in Fessler et al. (2023).
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Table 5.4 presents the four types of costs under different crowdshipping scenarios.
The distribution of each type of cost among various scenarios is similar. Figure 5.6
illustrates the percentage distribution of each cost category. As shown in Figure 5.6,
the labor cost accounts for most of the total costs (71%), followed by the driving cost
(25%), the external cost (3%), and the compensation (1%). Since labor cost is the
predominant factor of total costs, a significant reduction in total costs occurs only
when at least one van is saved. On average, the total costs of S1, S2, and S3 are
reduced by 8%, 13%, and 24% on weekdays and 1%, 3%, and 4% on the weekend,
respectively, compared to the base scenario. Based on Table 5.4, we conclude
that PT-based crowdshipping has great potential to reduce last-mile delivery’s labor
cost and driving cost by providing small compensation. This will definitely benefit
logistics companies by reducing operational costs, while its impacts on employment
opportunities could be negative for markets oversaturated with delivery workers or
positive for markets lacking delivery workers.

m Driving Cost

m External cost
m Labor cost

m Compensation

Figure 5.6: Percentage of each cost type

5.5 Conclusions

In this study, we proposed a methodology consisting of a parcel locker location model and
a vehicle routing model to investigate the impact of implementing the PT-based crowd-
shipping as a complementary solution to the traditional last-mile solution. We selected a
central district in Copenhagen as study area because of its high population density and
good coverage of public transport. Three crowdshipping scenarios with varying percent-
ages of crowdshipped parcels were created to compare against the traditional delivery
method.

We evaluated the performance of different scenarios using three indicators, i.e., vehicle
kilometers traveled, total working time of drivers, and the number of used vans. All in-
dicators obtained reductions, with larger decreases corresponding to higher proportions
of crowdshipped parcels. In the most optimistic scenario, where 30% of the parcels are
delivered by crowdshippers, we observe an average reduction of 20% and 27% in vehicle
kilometers traveled and the total working time of drivers, respectively; two vans (drivers)
were released. The cost analysis reveals that substantial savings in labor and driving
costs could be achieved by offering small compensations to crowdshippers. However, the
challenge lies in achieving the shift of 30% of parcels from vans to crowdshippers. Consid-
ering customers’ high willingness to collect parcels from parcel lockers within 500m of their
homes, we believe the bottleneck that restricts the development of PT-based crowdship-
ping is not from the demand side but the supply side. Efforts could be made to increase
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Table 5.4: Cost analysis of public transport-based crowdshipping under different scenarios

11-Oct  12-Oct 13-Oct 14-Oct 15-Oct 16-Oct 17-Oct

SO0 16,123 17,275 17,010 16,239 15,230 2,717 7,747
S1 14,117 15431 14,882 14,502 13,558 2,487 6,965
S2 12,569 13,648 13,228 12,887 12,034 2,256 6,228
S3 11,239 12,192 11,806 11,529 10,780 2,082 5,618
SO 288 314 292 282 279 58 140
S1 281 289 283 255 252 57 138
S2 253 286 255 253 251 56 137
S3 225 259 228 225 223 56 137
SO 42,480 48,548 42,480 42,480 42,480 6,069 18,206
S1 42,480 42,480 42,480 36,411 36,411 6,069 18,206
S2 36,411 42,480 36,411 36,411 36,411 6,069 18,206
S3 30,343 36,411 30,343 30,343 30,343 6,069 18,206
SO 0 0 0 0 0 0 0
S1 870 970 870 830 800 120 360
S2 1,730 1,930 1,740 1,650 1,600 240 720
S3 2600 2900 2610 2,480 2,390 360 1,080
SO 58,890 66,137 59,782 59,000 57,989 8,843 26,092
S1 57,747 59,169 58,514 51,998 51,021 8,732 25,668
S2 50,962 58,344 51,634 51,201 50,297 8,621 25,291
S3 44,407 51,761 44,987 44,576 43,735 8,566 25,041
S1 2% -11% -2% -12% -12% -1% -2%
Percentage change in total costs S2  -13% -12% -14% -13% -13% -3% -3%
S3  -25%  -22%  -25% -24%  -25% -3% -4%

Driving costs (DKK)

External costs (DKK)

Labor costs (DKK)

Compensation (DKK)

Total costs (DKK)

the number of crowdshippers from several angles. For example, encouraging people to
take PT instead of driving private cars; increasing the compensation level to attract more
passengers to act as crowdshippers or to motivate crowdshippers to carry more parcels
per trip.

While our study provides valuable insights into the potential benefits and impacts of PT-
based crowdshipping and how to push its development, it has several limitations that can
be investigated in further studies. First, expanding the study area to encompass larger
regions. Second, developing optimization models to further optimize the deployment of
the system. For example, instead of merely choosing PT stations near the distribution
center to place P-PLs, an optimization model could be developed to optimize the loca-
tion of P-PLs to maximize the potential benefits of PT-based crowdshipping, especially
when expanding this service to a larger area. Third, developing more accurate method-
ologies and using advanced software to simulate the actual traffic in a city and using more
indicators to describe the system performance may be needed to scale the results to a
regional/city level rather than a district level only.
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6 Conclusions

Transportation plays a vital role in society and the economy. It facilitates the movement
of people and goods, enabling economic activities and providing people with access to
essential services such as education and healthcare. Over recent decades, factors such
as population growth and urbanization and the boom of E-commerce have led to a sig-
nificant increase in urban transportation demands. While this has undoubtedly boosted
the economy, it has also exacerbated traffic congestion and environmental pollution. In
response to the European Commission’s (2007) advocacy for the integration of passen-
ger and freight transportation, this thesis delves into the feasibility of mitigating negative
externalities of transportation by merging the two transportation flows. Initially, we pro-
vide an overview of the development of integrated transportation systems and propose
a general framework for planning such a system. Subsequently, we introduce two novel
forms of integrating passengers and goods and validate their viability. The contributions
of this thesis are not limited to advancing the comprehension of the development of in-
tegrated people-and-goods transportation but also enhancing mathematical optimization
within related fields such as VRP and crowdshipping.

This chapter concludes the thesis by responding to the research questions we proposed
in Chapter 1, summarizing the contributions, and presenting future research directions.

6.1 Research questions revisited

Research question 1 (Q1). Which framework can comprehensively represent and
guide the planning and operation of an integrated people-and-goods transportation
system?

In Chapter 2, we present such a framework comprising three interconnected modules.
The first module encompasses physical components in the integrated transportation sys-
tem, including people and goods transportation demands, transportation supply (e.g.,
public transport and private vehicles), and infrastructure underpinning the transportation
system (e.g., road and information and communications technology). The second module
relates to planning and operating the integrated transportation system, covering demand
management, supply management, and demand-supply matching. The third module in-
cludes key performance indicators for evaluating the effectiveness of the integrated trans-
portation system on both the demand and supply sides. There is a dynamic feedback loop
between the three modules. Module 1 serves as the input for Module 2, where the ac-
tions taken by operators according to the demand and supply status in Module 1 directly
influence the system performance (Module 3). The performance of the system (Module
3), in turn, influences the demand and supply in Module 1.

Research question 2 (Q2). Are there innovative solutions that incorporate other
last-mile solutions with the concept of integrating people and goods transporta-
tion?

This thesis investigates two innovative solutions that couple other prevailing last-mile so-
lutions with integrated people-and-goods transportation, presenting the concept and iden-
tifying the key planning problems involved.

Chapter 3 proposes our first solution: utilizing DRBs and drones to combine passenger
and parcel transportation. A passenger request is characterized by its origin, destination,
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and associated demand value, while parcel requests share unified demand values and are
characterized solely by their destinations. All requests have specified time windows. De-
lay is allowed with a penalty. DRBs can serve both passengers and parcels, while drones
are exclusively responsible for parcel delivery. To ensure passengers have a higher prior-
ity than parcel requests, we impose constraints on the maximum number of intermediate
stops between one passenger service request. The central challenge within this concept
is optimizing the routes for both DRBs and drones. We term the corresponding problem
as passenger and parcel share-a-ride problem with drones (SARP-D).

Chapter 5 introduces our second solution: public transport (PT)-based crowdshipping.
This innovative approach acts as a complementary solution to traditional delivery. Within
this framework, a portion of the parcels are delivered by crowdshippers, while the rest of
the parcels are delivered by logistics companies using their vans. Crowdshippers are PT
users who utilize their planned trips to transport parcels between parcel lockers positioned
at their origin and destination PT stops. This solution represents a potential synergy be-
tween urban PT and logistics systems. Two key problems are involved in this concept.
The first one is the parcel locker location problem: optimizing the locations of parcel lock-
ers while considering the accessibility and efficiency for both crowdshippers and parcel
recipients. The second one is the vehicle routing problem for vans that distribute parcels
that cannot be accommodated by crowdshippers, considering constraints on the vehicle
capacity, drivers’ maximum working time, etc.

Research question 3 (Q3). What are the benefits of the proposed innovative solu-
tions, and how can they be quantified?

The main key performance indicators considered in this thesis are total operations costs,
the number of used vehicles, and the total vehicle kilometers traveled. The results in
Chapters 3,4, and 5 demonstrate that both SARP-D and PT-based crowdshipping con-
tribute to a significant reduction in these three indicators. The reduction degree depends
on several factors, varying between the two solutions. For the SARP-D, it depends on
the distribution of the requests, the maximum intermediate stops between one passenger
request, etc. For PT-based crowdshipping, it depends on the number and percentage of
parcels that are delivered by crowdshippers.

Chapters 3 and 4 provide two distinct approaches to quantify the benefits of the SARP-D.
Specifically, Chapter 3 presents an arc-based mixed integer programming model solvable
by CPLEX for small instances with up to 12 nodes. Larger instances with up to 200
nodes are solved by the ALNS metaheuristic. Remarkably, our ALNS also demonstrates
exceptional performance in solving the VRP-D, comparable to a metaheuristic designated
for the VRP-D. In contrast, Chapter 4 reformulates the SARP-D into a path-based model,
which is solved by the CG. The CG provides a verified lower bound and an upper bound for
the SARP-D. If the lower and upper bounds are the same, the problem is solved optimally.
Computation results show that the CG could solve SARP-D instances with up to 50 nodes,
and 66% of SARP-D instances were solved optimally. Overall, the average gap between
the upper and lower bounds for all SARP-D instances is less than 0.6%. If the ratio of
passenger requests to the total requests is set to 0% and 100%, the SARP-D is simplified
to VRP-D and one-to-one PDP, respectively. Our CG could solve the VRP-D and one-to-
one PDP as well. The instances used in Chapters 3 and 4 are created based on VRP-D
instances presented by Sacramento et al. (2019).

In Chapter 5, we present a mixed integer programming model to optimize the locations of
parcel lockers. The model can be solved by CPLEX. We further devise an ALNS meta-
heuristic to optimize the vans’ routes for delivering parcels that are not delivered by crowd-
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shippers. To evaluate the impacts of PT-based crowdshipping, we create four scenarios.
The base scenario is the existing distribution mode, where all parcels are delivered by
vans. In other scenarios, we shift 10%, 20%, and 30% of parcels from vans to crowdship-
pers. Initially, we seek validation from an anonymous logistics company for the vehicle
routes derived from our algorithm in the baseline scenario. Then, we apply our parcel
locker location model and vehicle routing model to calculate the total vehicle kilometers
traveled, the total working time of drivers, and the number of used vehicles in other sce-
narios. The case study conducted in Chapter 5 is based on real-world data, with the parcel
data provided by a major logistics services provider in Denmark and the public transport
travel card data provided by Rejsekort & Rejseplanen A/S, which runs an electronic tick-
eting system for traveling by bus, train, and metro on behalf of the transport operators in
Denmark.

6.2 Contributions

Contributions to integrated people-and-goods transportation
This thesis’s contributions to the realm of integrated people-and-goods transportation are
twofold.

Comprehensive review and a general framework.

We provide a comprehensive review of integrated people-and-goods transportation
by categorizing various integration forms, exemplifying their applications, highlight-
ing key issues for different forms, and introducing corresponding solutions. Further-
more, we propose a general framework for describing, planning, and operating an
integrated transportation system. This review advances the understanding of inte-
grated people-and-goods transportation for the public, scholars, and practitioners in
this field.

Innovative integration forms.

We enrich studies on integrated people-and-goods transportation by proposing two
innovative integration forms that harness opportunities presented by emerging tech-
nologies and last-mile solutions: integrating passenger and parcel transportation by
DRBs and drones and PT-based crowdshipping. Meanwhile, we validate the fea-
sibility of the two integration forms. In Chapter 3, we elaborate on the operation
of the first integrated transportation system, identify the key problem of the sys-
tem (SARP-D), provide a mathematical formulation for the SARP-D, and develop
an ALNS metaheuristic for the SARP-D. An alternative method for the SARP-D is
presented in Chapter 4. Chapter 5 introduces the concept of PT-based crowdship-
ping, provides an approach to planning such a system, and analyzes its potential
impacts by conducting a case study using real-world data.

Contributions to the VRP
Introduction of a distinctive variant of the VRP.

Fundamentally, the VRP-D and one-to-one PDP are established variants of the VRP
due to their distinctive features. While the SARP-D bears some similarities with the
VRP-D and one-to-one PDP, it has special features that set it apart and could be-
come a new variant of the VRP. In particular, the SARP-D differs from the VRP-D
because the ground vehicles in the VRP-D do not serve passengers, whereas the
SARP-D involves passenger service. Furthermore, the SARP-D distinguishes itself
from the one-to-one PDP because the SARP-D necessitates coordination and syn-
chronization between ground and aerial vehicles, while the one-to-one PDP does
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not. More importantly, what truly sets the SARP-D apart from the VRP-D and one-
to-one PDP is that the ground vehicles in the SARP-D serve requests with different
features, i.e., pickup and delivery for passenger requests and delivery tasks for par-
cel requests, while the ground vehicles perform only delivery tasks in the VRP-D and
only pickup and delivery tasks in the one-to-one PDP. The different characteristics
of one-to-one pickup and delivery tasks and only delivery tasks make the model dif-
ferent because the one-to-one PDP involves pairing and precedence constraints,
whereas the delivery-only tasks do not. Overall, the hybrid tasks of one-to-one
pickup and delivery and delivery-only tasks in the SARP-D make it more compli-
cated than the VRP-D and one-to-one PDP and establish the SARP-D as a new
variant of the VRP.

Solution methods and benchmark instances.

In addition to introducing a new variant of the VRP, this thesis also provides solution
methods and benchmark instances that can serve as valuable resources for future
studies on the SARP-D.

Contributions to crowdshipping
Exploration of PT-based Crowdshipping.

Crowdshipping has been regarded as a complementary solution for last-mile logis-
tics in recent years. It has various application ways. Most of them rely on per-
sonal vehicles, where dedicated trips or subtours are unavoidable, which leads to
increases in the number of trips, vehicle kilometers traveled, etc. To avoid this, we
present the idea of PT-based crowdshipping, which utilizes passengers’ trips that will
be taken anyway to perform crowdsourced delivery. While PT-based crowdshipping
is not a completely new concept, it remains an underexplored area with limited prior
research. In this thesis, we delve deeper into the concept, drawing inspiration from
the following two works.

Optimization models for parcel locker location.

Existing studies on PT-based crowdshipping focus on analyzing passengers’ pref-
erences or assessing the impacts of PT-based crowdshipping based on a given
network, i.e., the locations of parcel lockers are determined. In contrast, we de-
velop an optimization model to determine the ideal PT stations for installing parcel
lockers to maximize the benefits of PT-based crowdshipping.

Real-world case study.

We conduct a case study in a central district in Copenhagen using real-world data.
The dataset includes actual parcel data provided by a major logistics services provider
in Denmark, public transport travel card data provided by Rejsekort & Rejseplanen
A/S, and geographic data from OpenStreetMap.

6.3 Future research

For SARP-D
Future research directions on SARP-D could be considered from modeling, solution meth-
ods, and operation aspects.

Extended models accounting for dynamics and uncertainties.

Chapters 3 and 4 consider static and deterministic SARP-D. These models can be
extended to accommodate dynamics and uncertainties. In practice, passenger and
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parcel requests might occur dynamically. In addition, there are lots of uncertainties
in real life. For example, travel time on the road may be influenced by the weather,
traffic congestion, or some unexpected events. A customer location’s suitability for
drone taking-off or landing might be influenced by the weather. Developing models
that can adapt to these real-world fluctuations will lead to more robust and adaptable
solutions.

Advanced solution methods.

Chapter 3 offers a metaheuristic, while Chapter 4 provides an alternative method
that is not exact but could yield solutions very close to optimality. Since the SARP-
D is quite a new problem, there is room for developing faster solution methods,
whether exact methods or heuristics, especially for solving large instances. More-
over, it would also be interesting to embed machine learning and reinforcement
learning with exact or heuristics, given that they have shown good performance in
solving some combinatorial optimization problems (Karimi-Mamaghan et al., 2022;
Nazari et al., 2018).

Complex drone operations.

In Chapters 3 and 4, we assume that each drone is capable of performing only one
delivery task during each flight. It is worth considering scenarios where this as-
sumption is relaxed, e.g., a drone has a larger load capacity and extended battery
life. Meanwhile, integrating a function that calculates the drone energy consumption
into the SARP-D model could provide valuable insights into energy-efficient drone
deployment. Moreover, it would be intriguing to replace aerial drones with ground-
based counterparts, i.e., autonomous delivery robots, because they are more polit-
ically acceptable.

Electric vehicle integration.

With people’s growing concern about GHG emissions, numerous countries around
the world are actively striving to transition from conventional vehicles to electric ve-
hicles as part of their climate action plans. Consequently, the DRBs in our SARP-D
could be replaced with electric vehicles, and our SARP-D models could be expanded
to incorporate considerations associated with electric vehicles, e.g., the charging
location and charging strategy of electric vehicles. It is also valuable to consider a
fleet of DRBs comprising both electric and conventional vehicles, recognizing that
transforming from conventional vehicles to electric vehicles takes a long time.

For PT-based crowdshipping
In Chapter 5, we explore PT-based crowdshipping from a high level. There exist several
limitations that could be studied in the future.

Extending the study area.

The study area in Chapter 5 is a district in Copenhagen. An extension of the study
area will produce a more comprehensive understanding of PT-based crowdship-
ping because first, the impacts of PT-based crowdshipping in areas that have short,
medium, and long distances to the distribution center might vary significantly; sec-
ond, implementing this service in larger areas may produce scale benefits by in-
volving more PT passengers. Moreover, extending this service to rural areas would
enhance the economic viability of transport services in such regions.

Optimization of origin PT stations of crowdshipped parcels.
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We assume all parcels designated for delivery by crowdshippers are transported
by trucks from the distribution center to S-train stations near the depot, from where
crowdshippers pick up the parcels. However, since distribution centers are usually
located in suburban areas, it might be more advantageous to consider transporting
crowdsourced parcels to some major PT stations having more passenger volume.
This results in a research problem of selecting PT stations, where the parcels are
transferred from trucks to crowdshippers, to maximize the utilization of both PT and
crowdshippers’ capacities and ultimately maximize the benefits of PT-based crowd-
shipping.

Handling unsuccessful deliveries.

We assume all crowdsourced parcels could be delivered by crowdshippers success-
fully. However, in practice, there may be situations where some crowdshippers do
not complete deliveries. Future research should explore the management of unde-
livered parcels to enhance the overall effectiveness of PT-based crowdshipping.
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