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Summary
Transportation systems are integral to modern societies’ functioning, facilitating people’s
movement to complete their daily tasks, such as going to work and school, as well as
delivering goods to meet people’s diverse needs. However, the escalating transportation
demands resulting from the rapid urbanization and the boom of Ecommerce have exac
erbated traffic congestion and given rise to environmental issues. Consequently, actions
must be taken to mitigate the negative externalities of growing transportation demands.

In 2007, the “Green Paper: Towards a New Culture for Urban Mobility” presented by the
European Commission advocated for better integration of passenger and goods trans
port in urban planning. It emphasized that “Local authorities need to consider all urban
logistics related to passenger and freight transport together as a single logistics system.”
The integration of passenger and goods transport offers a multitude of advantages. First,
it could reduce traffic congestion and environmental pollution by reducing the number of
used vehicles on the road and the total vehicle kilometers traveled. This is achieved by
optimizing the routes of passenger and freight vehicles to curtail the overlap between
them. Second, this integration could enhance costeffectiveness and boost the economy
by efficiently utilizing transportation resources (e.g., roads and vehicles), reducing oper
ational expenses for businesses and improving mobility for people and goods. This, in
turn, increases trade and economic activity. Third, the integrated transportation system
improves the equity and accessibility to transport services, particularly in rural areas, as
merging logistics services with public transport makes the transportation service more
viable, ultimately reducing the isolation experienced by rural residents.

This thesis comprises four papers and makes several contributions to the realm of in
tegrated people and goods transportation. It provides an overview of the development
of integrated transportation systems, introduces two novel forms to integrate passengers
and goods, validates their viability, and advances mathematical optimization within this
field.

The first study (Paper 1) comprehensively reviews integrated peopleandgoods trans
portation systems. It categorizes three forms of integrating people and goods transporta
tion: people and parcels sharing a taxi, freight on transit, and crowdshipping. For each
integration form, this study introduces reallife applications and summarizes the corre
sponding research problems. Furthermore, this study proposes a general framework for
planning integrated peopleandgoods transportation systems, along with directions for
future research.

Followingly, this thesis explores two innovative solutions within the concept of integration
of people and goods transportation. The first solution combines passenger and parcel
transportation using demandresponsive vehicles (DRBs) and drones, considering the
advantages of DRBs in terms of flexibility and large capacity, as well as the fast speed and
low emissions of drones. DRBs can transport both passengers and parcels, while drones
are dedicated to parcel delivery. This thesis initially proposes a passenger and parcel
sharearide problem with drones (SARPD) to address the routing problems for DRBs
and drones in this context and devises different solution approaches. Paper 2 develops an
arcbased mixed integer programming model solvable by CPLEX for small instances and
an adaptive large neighborhood search (ALNS) metaheuristic for large instances with 200
nodes, the largest instance in the existing literature. Paper 3 reformulates the arcbased
model to a pathbased model and develops a column generation algorithm to solve it. The
column generation approach can produce highquality solutions for SARPD instances
involving 50 nodes. Meanwhile, it can be used to evaluate the metaheuristics for SARP
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The second solution this thesis investigates is public transport (PT)based crowdship
ping. In this concept, parcel lockers are installed in several PT stations. PT users act as
crowdshippers, picking up parcels from parcel lockers at their origin PT stations, taking
public transport, and delivering parcels to parcel lockers at their destination PT stations.
Paper 4 develops a parcel locker location model and a vehicle routing model to simulate
the PTbased crowdshipping system. A case study in a central district in Copenhagen is
conducted to assess the impacts of PTbased crowdshipping.

Computation results reveal that both SARPD and PTbased crowdshipping could de
crease the number of used vehicles on the road and total vehicle kilometers traveled,
effectively alleviating traffic congestion. This thesis will inspire innovation in practical
applications and contribute to advancing the research on integrated people and goods
transportation in academia.
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Resumé (Danish)
Transportsystemer er en integreret del af det moderne samfund og understøtter perso
ners mobilitet for at udføre deres daglige opgaver, såsom at tage på arbejde og skole,
samt levere varer. De stigende mobilitetskrav og deraf følgende transport har dog for
værret trængsel og givet trafikpropper i nettet, og det stigende transportarbejde har givet
anledning til miljøproblemer. Derfor bør der træffes beslutninger for at afbøde de negative
eksternaliteter af voksende transportbehov.

I 2007 blev “the Green Paper: Towards a New Culture for Urban Mobility” fremlagt af
EuropaKommissionen for bedre integration af passager og godstransport i byplanlæg
ning. Den understregede, at “De lokale myndigheder er nødt til at overveje al bylogistik
relateret til passager og godstransport sammen som et samlet logistiksystem.” Integra
tionen af person og godstransport giver en lang række fordele. For det første kan det
reducere trængsel og miljøbelastning ved at reducere antallet af benyttede køretøjer på
vejen og de samlede kørte køretøjskilometre. Dette opnås ved at optimere ruterne for
passager og godskøretøjer for at begrænse overlappet imellem dem. For det andet kan
denne integration øge omkostningseffektiviteten og booste økonomien ved effektivt at
udnytte transportressourcer (f.eks. veje og køretøjer), reducere driftsudgifter for virksom
heder og forbedre mobiliteten for mennesker og varer. Dette øger igen handel og øko
nomisk aktivitet. For det tredje forbedrer det integrerede transportsystem ligheden og
tilgængeligheden til logistiktjenester, især i landdistrikter, da sammenlægning af logistik
tjenester med offentlig transport gør transporttjenesten mere levedygtig, hvilket i sidste
ende reducerer den isolation, som landbeboere oplever.

Denne afhandling består af fire artikler og giver adskillige bidrag til området integreret
menneske og godstransport. Den giver et overblik over udviklingen af integrerede trans
portsystemer, introducerer to relativt nye former til at integrere passagerer og varer, va
liderer deres levedygtighed og formulerer matematiske modeller og formulerer optime
ringsteknikker inden for dette felt.

Den første undersøgelse (artikel 1) gennemgår integrerede transportsystemer for men
nesker og varer. Den kategoriserer tre former for integration af person og godstransport:
personer og pakker, der deler en taxa, fragt på kollektiv trafik og crowdshipping (deleøko
nomi). For hver integrationsform introducerer afhandlingen dens virkelige applikationer
og opsummerer de tilsvarende forskningsproblemer. Desuden foreslås et generel fra
mework for planlægning af integrerede transportsystemer for personer og varer, samt
retninger for fremtidig forskning.

Efterfølgende udforskes to innovative løsninger inden for konceptet integration af person
og godstransport. Den første løsning kombinerer passager og pakketransport ved hjælp
af efterspørgselsfølsomme køretøjer (DRB’er) og droner, idet man tager fordelene ved
DRB’er i betragtning med hensyn til fleksibilitet og stor kapacitet, såvel som dronernes
høje hastighed og lave udledning af drivhusgasser. DRB’er kan transportere både pas
sagerer og pakker, mens droner er dedikeret til pakkelevering. Afhandlingen foreslår
indledningsvis et passager og pakkesharearideproblem med droner (SARPD) for at
løse ruteproblemerne for DRB’er og droner i denne sammenhæng og udtænke forskellige
løsningstilgange. Artikel 2 udvikler en buebaseret blandet heltalsprogrammeringsmodel,
der kan løses af CPLEX softwaren til små forekomster og en adaptiv storkvarterssøgning
(ALNS) metaheuristisk for store forekomster med 200 knuder, den største forekomst i den
eksisterende litteratur. Artikel 3 omformulerer den kantbaserede model til en stibaseret
model og udvikler en kolonnegenereringsalgoritme til at løse den. Kolonnegenererings
algoritmen kan producere løsninger af høj kvalitet til SARPDinstanser, der involverer 50
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knuder. I mellemtiden kan den bruges til at evaluere metaheuristikken for SARPD for
problemer af denne størrelse, inden SARPD benyttes til løsning af større problemer.

Den anden løsning, der undersøges, er offentlig transportbaseret crowdshipping. Her er
der installeret pakkeskabe på flere offentlige transportstationer (PT). PTbrugere fungerer
som crowdshippere, henter pakker fra pakkeskabe på deres oprindelige PTstationer, ta
ger offentlig transport og leverer pakker til pakkeskabe på deres destinations PTstationer.
Artikel 4 udvikler en pakkeskabsplaceringsmodel og en køretøjsrutemodel for at simule
re det PTbaserede crowdshippingsystem. Virkningerne af PTbaseret crowdshipping er
undersøgt med et casestudie i en central bydel i København baseret på data fra en større
logistikudbyder i Danmark.

Beregningsresultaterne afslører, at både SARPD og PTbaseret crowdshipping kan re
ducere antallet af brugte køretøjer på vejen og det samlede antal kørte køretøjskilometer,
hvilket effektivt kan afhjælpe trafikpropper. Denne afhandling vil inspirere til innovation
i praktiske anvendelser og bidrage til at fremme forskningen i integreret menneske og
godstransport i den akademiske verden.
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1 Introduction
1.1 Background
Over the past few decades, the world has experienced a significant transformationmarked
by rapid population growth, urbanization, and the rise of Ecommerce. Back in 1950, the
global population was 2.5 billion, with the majority (75%) residing in rural areas. The urban
population has outpaced overall population growth since then. By 2020, the urban popu
lation swelled to 4.4 billion, constituting 56% of the world’s population. It is projected that
the urban population will escalate to 6.7 billion by 2050, making up 68% of the world’s
inhabitants (Habitat, 2022). This urban expansion has coincided with the exponential
growth of Ecommerce, primarily driven by the evolution of the Internet and accelerated
during the COVID19 pandemic. Global Ecommerce sales, which amounted to $1.3 tril
lion in 2014, soared to $5.717 trillion in 2022, and are expected to ascend to $8.1 trillion
by 2026 (Statista, 2022).

The remarkable rise in urbanization and Ecommerce has inevitably led to an increased
demand for transportation in urban areas. This escalating transportation demand has un
doubtedly contributed to economic growth, but it also placed immense pressure on urban
transportation networks, increasing greenhouse gas (GHG) emissions and exacerbating
traffic congestion. As reported by the European Environment Agency (2022), GHG emis
sions from the transport sector increased by 33% between 1990 and 2019. Furthermore,
the estimated annual road congestion cost in the EU is €110 billion, exceeding 1% of the
EU’s GDP (European Court of Auditors, 2019).

Numerous cities around the world are grappling with the challenge of mitigating traffic
congestion and environmental concerns while striving to meet people’s expectations for
convenient transport and costeffective and timely delivery, especially for the last mile.
To cope with the surge of transportation demands and tackle the lastmile dilemma, the
European Commission (2007) has advocated for local authorities to view passenger and
freight transport together as a unified logistics system, departing from the conventional
practice of managing and operating them separately. While the integration of passenger
and freight transportation over decades has been successfully implemented in longhaul
journeys such as water and air transport, it is less prevalent for shortdistance travel.
Given that both passenger and freight vehicles share and vie for the capacity of the same
urban transport infrastructure, integrating their transportation, particularly when they ex
hibit similar travel patterns, is a logical and beneficial endeavor. Moreover, the integration
of passenger and freight transportation holds several compelling advantages:

Mitigated traffic congestion and reduced environmental pollution. When pas
sengers and freight are transported simultaneously, some overlapping routes of
passenger and freight vehicles could be shared. Consequently, the total vehicle
kilometers traveled, along with the carbon footprints and air pollution, could be re
duced. Meanwhile, the number of used vehicles to serve the same transportation
demands would also be reduced, alleviating the traffic congestion.

Improved costefficiency and bolstered economic growth. A welldeveloped
integrated transportation system efficiently utilizes transportation resources (e.g.,
roads and vehicles), leading to reduced operational expenses and labor costs for
businesses. Additionally, the alleviation of traffic congestion streamlines the flow of
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people and goods, benefiting both businesses and individuals, ultimately fostering
economic activity and trade.

Enhanced equity and access to transport services. Integrating passenger and
freight transportation contributes to bridging the urbanrural divide by extending
transport services accessibility, including logistics service and public transport ser
vice, to rural areas. Rural areas often have limited public transport and logistics ser
vices due to low density and high transportation costs. Combining logistics service
with public transport will augment the revenues of public transport companies and
diminish the operational cost of logistics companies. Consequently, public transport
companies and logistics companies will not reduce or shut down their services in ru
ral areas. This ensures that residents in rural areas get easier access to transport
services and feel less isolated.

Motivated by these potential benefits, innovative lastmile solutions have emerged in the
last decade. These solutions, having various terminologies such as passenger and par
cel sharearide (Li et al., 2014), crowdshipping (Le et al., 2019), freight on transit (Elbert
& Rentschler, 2022), and cargo hitching (Van Duin et al., 2019), are all centered on the
core idea of integrating people and goods transportation. Some of them leverage emerg
ing technologies such as mobile communication technology and are the products of the
sharing economy and gig economy, e.g., passenger and parcel sharearide and crowd
shipping.

Despite these strides, the field of integrated peopleandgoods transportation is still in
its infancy, with new integration forms continually emerging alongside technological ad
vancements. Two critical questions arise: Is there a unified framework capable of guiding
the planning and operation of such an integrated system when a new integration form
emerges? What untapped opportunities await for merging people and goods transporta
tion within our evolving technological landscape? This thesis answers these two ques
tions.

1.2 Objective and research questions
The objective of this thesis is thus to advance the understanding of integrated peopleand
goods transportation systems and explore innovative integration forms that fuse the idea
of integrating people and goods transportation with emerging lastmile solutions to im
prove transportation efficiency and reduce congestion in urban areas. In order to achieve
the aforementioned objective, a set of research questions are formulated and addressed
in corresponding chapters of the thesis.

Research question 1 (Q1). Which framework can comprehensively represent and
guide the planning and operation of an integrated peopleandgoods transportation
system?

The integration of people and goods transportation has gained considerable attention
in both literature and practice, resulting in a multitude of integration forms. What is the
present status of the development of integrated peopleandgoods transportation? What
lessons can we learn from past successful and failed applications? Despite the diver
sity in integration forms, is it possible to find a unified framework that could encapsulate
the characteristics of integrated peopleandgoods transportation systems and serve as
a guidance for planning and operation of existing integration forms and future endeav
ors? Such a framework is essential for understanding the integrated peopleandgoods
transportation system.
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Research question 2 (Q2). Are there innovative solutions that incorporate the con
cept of integrating people and goods transportation with other lastmile solutions?

Besides integrating people and goods transportation, various solutions have been pro
posed to address the lastmile problem from distinct angles. Concerning transportation
means, one notable initiative is Amazon’s introduction of drone delivery services in Cal
ifornia and Texas. Drone delivery has been regarded as a promising lastmile solution
owing to its fast speed and environmental benefits. Regarding handover ways, parcel
lockers have been developed rapidly in recent years, especially in Nordic countries, as
they could reduce the number of notathome deliveries and the lastmile delivery cost.
As reported by the European Regulators Group for Postal Services (2022), the counts of
parcel lockers in Denmark and Norway in 2021 quadrupled compared to 2017, reaching
1740 and 2288 in Denmark and Norway, respectively. This research question seeks to
explore the synergy between integrating people and goods transportation and emerging
lastmile solutions. By delving into this synergy, researchers and practitioners can unlock
new opportunities to mitigate adverse impacts of transportation while meeting peoples’
expectations for swift and reliable lastmile services.

Research question 3 (Q3). What are the benefits of the proposed innovative solu
tions, and how can they be quantified?

This research question shifts the focus from theoretical concepts to practical outcomes,
aiming to provide valuable insights into the tangible benefits of integrated peopleand
goods transportation. The critical planning problems involved in the innovative solutions
that this thesis proposes are optimization problems. By solving these optimization prob
lems, this thesis gains insights into how the proposed integrated peopleandgoods trans
portation systems compare to traditional separated transportation systems. The key per
formance indicators considered in this thesis are total operation costs, the number of used
vehicles, and the vehicle kilometers traveled. Comparing these indicators in the proposed
systems with those in separated people and goods transportation systems, the benefits
of the proposed solutions in this thesis are quantified. There are two types of methods
for solving optimization problems: exact methods and heuristics/metaheuristics. Exact
methods are acknowledged for their ability to provide global optimal solutions, but they
are also recognized for their limitations in solving large instances. In contrast, heuristic
s/metaheuristics are highlighted for their computational efficiency and capacity to solve
large instances, but they do not guarantee the global optimality of their solutions.

1.3 Overview of the thesis
The remainder of this thesis comprises four papers that address the aforementioned
three research questions and a concluding chapter. Chapter 2 is a review paper on inte
grated peopleandgoods transportation systems that addresses research question Q1.
Chapters 3 and 4 focus on the first proposed solution: passenger and parcel sharea
ride problem with drones (SARPD), which uses demandresponsive buses (DRBs) and
drones to combine passenger and parcel transportation. In this concept, DRBs could
serve both passenger and parcel requests, while drones perform only parcel delivery.
These chapters present different solution methods and address research questions Q2
and Q3. Chapter 5 focuses on the second proposed solution: public transport (PT)based
crowdshipping, where PT passengers act as crowdshippers, transporting parcels between
parcel lockers positioned at their origin and destination PT stations. This chapter tackles
research questions Q2 and Q3. Finally, Chapter 6 concludes this thesis by responding to
the three research questions, summarizing contributions, and providing future research
directions. Figure 1.1 presents the overview of this thesis.
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Figure 1.1: Overview of the thesis

Chapter 2 begins with categorizing three distinctive forms of integrating people and goods
transportation: people and goods sharearide, freight on transit, and crowdshipping.
Subsequently, this chapter delves into realworld applications of these integration forms
and points out the main challenges for implementing the integrated transportation system.
The challenges encompass various dimensions: policy, economics, society, organization,
and technology. Given that technical challenges are more tractable and solving technical
problems contributes to mitigating other problems, this chapter embarks on an examina
tion of technical problems and corresponding solutions that have been explored in existing
literature for each integration form. Drawing from this extensive review, this chapter pro
poses a framework designed for planning and operating an integrated peopleandgoods
transportation system. By mapping the technical problems studied within existing inte
gration forms onto the proposed general framework, two key research opportunities are
identified: to enhance or expand existing research and to conduct pioneering research to
fill the blanks in the framework.

Chapter 3 elaborates on the SARPD and formulates it as an arcbased mixed integer
nonlinear programming model. The objective is to minimize the total costs, including
transportation costs of DRBs and drones and the delay penalty cost at each node. A
linearization method is presented to make the model solvable by a commercial solver
(CPLEX) for small instances with up to 12 nodes. An adaptive large neighborhood search
(ALNS) metaheuristic is devised to solve large instances. Two works are conducted to
evaluate the effectiveness of the ALNS algorithm. First, this chapter compares the re
sults given by ALNS and CPLEX on small instances of SARPD instances. The results
reveal that our ALNS could produce the optimal solutions as CPLEX does but takes much
less time. Second, this chapter applies the proposed ALNS to solve instances of vehicle
routing problems with drones (VRPD) provided by Sacramento et al. (2019). The com
parison results demonstrate that although the proposed ALNS is not explicitly designed
for the VRPD, it can effectively solve the VRPD, yielding results very close to a special
ized algorithm for the VRPD proposed by Sacramento et al. (2019). Then, this chapter
uses ALNS to solve large SARPD instances with up to 200 nodes and conducts sen
sitivity analysis on some key parameters in the SARPD to provide valuable managerial
insights to SARPD operators. The computation results show that integrating passenger
and parcel transportation reduces the total operation costs, the number of used vehicles,
and total DRBtraveled miles.
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Chapter 4 is a followup study of Chapter 3. Chapter 4 focuses on the same problem as
Chapter 3, but employs a different solution methodology, which can be used to evaluate
the ALNS presented in Chapter 3. Specifically, Chapter 4 formulates a pathbased model
for the SARPD and uses the column generation (CG) approach to solve it. The pric
ing problem of the CG is an elementary shortest path problem with resource constraints,
which is solved by a tailored labeling algorithm. To speed up the procedure of CG, this
chapter devises a heuristic to find paths with negative reduced costs and proposes two
propositions to reduce the number of generated labels in the labeling algorithm, hereby
reducing the computation time of the labeling algorithm. Extensive experiments are con
ducted to test the efficiency of the CG. The results prove that the CG is able to solve not
only the SARPD efficiently for instances comprising up to 50 nodes, but also two vari
ations of the SARPD, i.e., VRPD and onetoone pickup and delivery problem (PDP).
Moreover, this chapter conducts sensitivity analysis on key parameters of the SARPD,
e.g., the distribution area of the network, the maximum number of intermediate stops be
tween one passenger request, the maximum drone flying time, and the time window. The
results are consistent with what has been found in Chapter 3.

Chapter 5 focuses on the second solution: PTbased crowdshipping. This chapter aims
to assess the potential benefits of PTbased crowdshipping. PTbased crowdshipping
involves two critical problems: the location problem for parcel lockers and the vehicle
routing problem for delivery vans. For the former problem, a mixed integer programming
model is formulated to determine in which PT stations to install parcel lockers for recipi
ents picking up their parcels. The model can be solved by CPLEX. The routing problem
of delivery vans is formulated as a capacitated vehicle routing problem with deadlines.
A mixed integer programming model and an ALNS metaheuristic were developed to find
vehicle routes with minimum operation costs. A case study in a central district in Copen
hagen using realworld data is conducted to estimate the impacts of PTbased crowdship
ping. The results reveal that compared with the traditional distribution mode, PTbased
crowdshipping offers several key advantages, specifically, reductions in the total vehicle
kilometers traveled, the number of used vehicles, and the total working time of drivers.
The extent of these benefits depends on the proportion of parcels shifted from delivery
vans to crowdshippers.

The chapters of this thesis are based on the following papers:

Chapter 2 (Paper 1): Cheng, R., Jiang, Y., & Nielsen, O. A. (2023). Integrated
peopleandgoods transportation systems: from a literature review to a general
framework for future research. Transport Reviews, 124. DOI: 10.1080/01441647.
2023.2189322.

Chapter 3 (Paper 2): Cheng, R., Jiang, Y., Nielsen, O. A., & Pisinger, D. (2023).
An adaptive large neighborhood search metaheuristic for a passenger and parcel
sharearide problem with drones. Transportation Research Part C: Emerging Tech
nologies, 153, 104203. DOI: 10.1016/j.trc.2023.104203.

Chapter 4 (Paper 3): Cheng, R., Jiang, Y., Nielsen, O. A., & VanWoensel, T. (2023).
A passenger and parcel sharearide problem with drones: A column generation
approach. Under review in Transportation Research Part B: Methodological.

Chapter 5 (Paper 4): Cheng, R., Fessler A., Larsen, A., Nielsen, O. A. & Jiang,
Y. Assessing the impacts of public transportbased crowdshipping: A case study
in a central district in Copenhagen. To be submitted to Frontiers of Engineering
Management.
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2 Integrated peopleandgoods
transportation systems: from a
literature review to a general framework
for future research

Cheng, R., Jiang, Y., & Nielsen, O. A. (2023). Integrated peopleandgoods transportation
systems: from a literature review to a general framework for future research. Transport
Reviews, 124.

Abstract

The promotion of urban mobility by integrating peopleandgoods transportation has at
tracted increasing attention in recent years. Within this framework, diversified forms such
as comodality, freight on transit, and crowdshipping have been proposed, piloted or im
plemented. The success of the implementation and market penetration depends on not
only the novelties of the concept but also the planning and operational efficiency. Thus,
a comprehensive review focusing on the operation of integrated peopleandgoods trans
portation systems and associated critical decisions and subproblems is performed. Dif
ferent practical forms in which people and goods are transported in an integrated manner
are identified. The critical decisions associated with each form and subproblem are dis
cussed, along with corresponding models and solution approaches. Notably, because
integrated transportation systems are in the early exploration stage at present, new forms
are expected to emerge. Therefore, this paper proposes a general framework to realise
the planning and operation of new forms in the future. The decisions and subproblems
identified from existing forms are fed to the proposed general framework to identify two key
research opportunities: to improve or extend existing research and to conduct pioneer
ing research to fill the gaps in the frameworks for operating potential forms of integrated
peopleandgoods transportation.

Keywords: Integrated peopleandgoods transportation; shared mobility; sharearide;
freight on transit; crowdshipping
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2.1 Introduction
Urbanmobility faces increasing challengeswith population growth, urbanisation, ecommerce
and varying landuse patterns. Many daily tasks require transporting people or goods.
While transport services enhance the convenience of daily life, they also have adverse
effects, such as greenhouse gas emissions, local air pollution, traffic accidents, and con
gestion (European Commission, 2019). These negative externalities can be mitigated
by establishing shared and integrated transportation systems (Mourad et al., 2019). Al
though moving people and goods together has been successfully implemented in long
haul transportation modes such as aircraft and ferries, passenger and goods movements
in urban transport systems are typically planned and performed separately. Since the
transportation of people and goods is mutually affected by sharing and competition for
road space and infrastructures, a separate implementation may underutilise the existing
infrastructure and vehicle capacity. Thus, a promising solution, integrating peopleand
goods transportation systems, has attracted increasing attention in recent years.

The idea of transporting people and goods together in an urban transportation context was
highlighted by the European Commission, stating that “Local authorities need to consider
all urban logistics related to passenger and freight transport together as a single logistics
system” (European Commission, 2007). Since then, several researchers have focused on
integrated peopleandgoods transportation systems (hereinafter referred to as integrated
transportation systems). Diverse novel terms such as comodality, freight on transit (FOT),
crowdshipping, cohabitation of passengers and goods, and cargo hitching have been
proposed, coupled with various methodological developments.

There have been several remarkable reviews focusing on particular forms of integrated
transportation systems, like crowdshipping and FOT (Alnaggar et al., 2021; Elbert &
Rentschler, 2022; Le et al., 2019), discussing it within broader topics such as shared
mobility (Mourad et al., 2019), collaborative urban transportation (Cleophas et al., 2019),
and city logistics (Savelsbergh & Van Woensel, 2016), or conducting bibliometric analysis
(Cavallaro & Nocera, 2022). This paper offers a systematic review to complement ex
isting reviews with the following objectives: (1) categorising different forms of integrated
transportation systems; (2) identifying the key issues for different forms and discussing
corresponding solutions; (3) proposing a general framework to describe the operation of
integrated transportation systems; and (4) giving recommendations for future develop
ment and research.

The remaining paper is organised as follows. Section 2.2 describes different forms of
integrated transportation systems. Section 2.3 specifies the research problems in existing
studies. These problems are incorporated in a general framework proposed in Section
2.4. Section 2.5 highlights the research gaps and future research directions.

2.2 Forms of integrated peopleandgoods transportation
We define an integrated peopleandgoods transportation system as a system in which
the resources for transporting people and goods are jointly utilised such that people and
goods are transported in the same vehicle, either private or public, or share the same
infrastructure, such as railways, stations, and platforms. We then categorise three forms:
people and goods sharearide (SAR), FOT, and crowdshipping. In what follows, we will
first introduce the definition and characteristics of each form (see Table 2.1), then com
ment on realworld applications.

2.2.1 Definition
(1) People and goods sharearide
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Table 2.1: Forms of integrated transportation systems in the literature

Integration form Transportation means Shared resource Goods operators Practical applicationVehicles Infrastructure Dedicated workers* Crowdshippers** Senders and receivers

Sharearide Taxis √ √
SAVs √ √

Freight on transit

Buses √ √ √
Metros √ √ √ √
Trains √ √ √ √
Trams √ √ √
Personal rapid transit √ √ √
Drones √ √
Robots √ √

Crowdshipping Private cars/bikes/ cargo bikes √ √ √
Public transport √ √ √

*Dedicated workers: Staff at stations or distribution centres are in charge of loading and unloading goods.
**Crowdshippers: Ordinary people assist in picking up and delivering goods.

In this form, a shared vehicle, e.g., a taxi or shared autonomous vehicle (SAV),
provides doortodoor service for both passengers and goods. The vehicle with
passengers can simultaneously transport small parcels such as mail, documents,
and takeawaymeals. The primary research problem involved is the routing problem,
known as the people and parcel SAR problem (SARP, Li et al., 2014).

(2) Freight on transit

Elbert and Rentschler (2022) defined FOT as “the integrated and organised trans
portation of passengers and goods within urban areas using a system of vehicles
such as buses and trains that operate at regular times on fixed routes and are used
by the public.” We hereby extend this definition by considering (1) emerging flexible
public transport, particularly, demandresponsive services such as personal rapid
transit and freight rapid transit; (2) urbansuburban and urbanrural transit. Depend
ing on the public transport vehicles used, goods and passengers could share three
resources in FOT: carriage, vehicle, and tracks.

(3) Crowdshipping

Buldeo Rai et al. (2017) defined crowdshipping as “an information connectivity en
abled marketplace concept that matches supply and demand for logistics services
with an undefined and external crowd that has free capacity with regards to time
and/or space, participates on a voluntary basis and is compensated accordingly”.
Crowdshippers are categorised into dedicated and adhoc crowdshippers. Dedi
cated crowdshippers devoted their available time to perform deliveries using dedi
cated trips. In contrast, adhoc crowdshippers utilise their already planned trips with
extra capacities. The two modes of crowdshipping have their own advantages and
disadvantages. For example, crowdshipping with dedicated crowdshippers usually
provides more efficient crowd logistics than adhoc crowdshippers, but it leads to
much longer travel distances than crowdshipping with adhoc drivers (Buldeo Rai
et al., 2018). Both types of crowdshipping are likely to be functional in the future.
Nonetheless, in this study, we do not consider dedicated crowdshippers because,
although people and goods move simultaneously, they do not integrate peoples’
existing travel demands but induce new ones. Without further specification, the
crowdshippers in the rest of this paper refer to as adhoc crowdshippers. Primar
ily, crowdshippers perform crowdsourced delivery through a single transportation
mode, e.g., taxis, public transit, or their vehicles. With the emerging concept of mo
bility as a service (MaaS), He and Csiszár (2021) and Le Pira et al. (2021) proposed
utilising multiple transportation modes.
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2.2.2 Applications and barriers
2.2.2.1 Applications
Table 2.2 lists the applications of different forms. To the best of the authors’ knowl
edge, there are no realworld applications of peopleandgoods SAR yet. Hence, we
only present FOT and crowdshipping.

Table 2.2: Application of integrated peopleandgoods transportation

Integration form Transportation means Projects Status Comment / Failure reason

Freight on transit

Bus

Bussgods (Sweden) On going
Matkahuolto (Finland) On going
Greyhound Freight (Australia) On going
Maritime Bus (Canada) On going
Greyhound Package Express (US) Closed in September 2022 Concentrate on passenger services

Metro Subwayintegrated city logistics system (Japan) September 2–15, 2010 Lack of money
Train Dabbawalas (India) On going

Tram

CarGo Tram of Volkswagen (Dresden) November 2000 – December 2020 End of producing
CargoTrams/ETrams (Zurich) On going
Recycling Tram (Iasi) On going
GuterBim (Vienna) May 2005 – June 2007 Lack of customer interest
City Cargo (Amsterdam) March 2007 – April 2007 Lack of money
TramFret (SaintEtienne) June 2017 – July 2017 Lack of customer interest

Crowdshipping
Private vehicles

DHL Myways (Stockholm) September 2013 – Unknown Unknown
Hitch (US) Unknown Unknown
Nimber (London, Athens, Oslo) On going
Roadie (US) On going

Public transport Crowd ship (Denmark) September – October 2020
ÖffiPackerl (Austria) Planning

Sources:
Alnaggar et al., 2021; Arvidsson et al., 2016; Arvidsson and Browne, 2013; Cochrane et al., 2017; Fessler et al., 2022; Kikuta et al., 2012; Qu et al., 2022;
https://www.railjournal.com/passenger/metros/tokyo-metro-to-test-parcel-operation/;
https://en.wikipedia.org/wiki/CarGoTram;
https://industriemagazin.at/artikel/die-wiener-gueterbim-das-kurze-gastspiel-der-transport-strassenbahn/;
http://www.tautonline.com/zurichs-cargo-tram/;
https://aqtr.com/association/actualites/freight-transit-new-concept-city-logistics;
https://brutkasten.com/oeffi-packerl-entwicklung-startet/.

(1) FOT

(a) Busbased FOT. This is the most widely implemented FOT system worldwide,
e.g., Bussgods in Sweden, Matkahuolto in Finland, Greyhound Freight in Aus
tralia, Maritime Bus in Canada, and Greyhound Package Express US. It usually
operates on existing longdistance transit routes connecting regional centres
and rural areas. Goods utilise the available space on passenger vehicles, e.g.,
the luggage compartment or a dedicated goods compartment of a bus. Most
abovementioned systems are still in operation, except Greyhound Package
Express US, which ends on September 30, 2022, for concentrating on pas
senger services.

(b) Trambased FOT. Most of the trambased FOT are implemented in Europe in
the form that dedicated freight trams share tracks with passenger trams con
necting urban and suburban areas. Three projects (CarGo Tram of Volkswa
gen, CargoTrams/ETrams in Zurich, and Recycling Trams in Iasi) succeed un
der specific conditions. The success of the first one is attributed to its low cost
of building additional connection tracks, as the factory is only about three miles
away from the logistics centre. The other two are provided as public service
and avoid additional infrastructure investment and interference with passen
ger traffic by carefully selecting stop stations. Three projects are shortlived.
City Cargo in Amsterdam was abandoned because it failed to acquire ade
quate finance for investments in trams, electric lastmile delivery vehicles, new
tracks, and distribution centres, and there were conflicting objectives among
stakeholders (Arvidsson & Browne, 2013). The other two projects, GüterBim
in Vienna and TramFret in SaintEtienne were discontinued due to a lack of
customer interest.
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(c) Trainbased FOT. One successful example of the trainbased FOT is the Dab
bawala food delivery system in Mumbai. It links kitchens in local villages to
people working in metropolitan areas using a hubandspoke transport system
with passenger trains and bicycles.

(d) Metrobased FOT. We only found one trial in Sapporo that tested using the
metro to transport parcels from the suburbs to the city centre. The trial was
successful, but the project ceased due to poor demand and the high cost of
retrofitting metro stations to handle goods.

(2) Crowdshipping

Alnaggar et al. (2021) reviewed crowdsourced delivery platforms operated by E
retailers (e.g., Amazon Flex) and couriers (e.g., DHL), among which four are with
adhoc crowdshippers, i.e., DHL Myways, Hitch, Nimber, and Roadie. Hitch mainly
supports local deliveries, while others allow for both local and longhaul deliveries.
Notably, public transportbased crowdshipping has emerged in recent years. It al
lows passengers to bring a parcel from a parcel locker located in a public transport
station to another along their ride. A “Crowd ship” trial was conducted in the Greater
Copenhagen Area in 2020 to analyse people’s preference for public transportbased
crowdshipping. A similar project, “ÖffiPackerl” in Vienna, is expected to make the
first test in Vienne in 2024.

2.2.2.2 Barriers
We summarise the main challenges for deploying the integrated system from five aspects,
policy, economics, society, organisation, and technology.

First, passengers and goods transportation are usually regulated by different authorities
with separate rules and policies (Bruzzone et al., 2021). Passengers can carry goods on
their trip, but taxi drivers and privately hired vehicles are forbidden to be couriers if no
passenger is on board. This could explain why taxi companies or technology companies
(e.g., Uber, Grab, etc.) do not offer integrated people and goods transportation services.
However, in practice, there is a grey area where a passenger hires a taxi while the “real
passenger” is a package. The good news is that the Land Transport Authority of Singa
pore is monitoring recent trends to see if these regulations need to be reviewed, and a
temporary relaxation of this rule was extended for a third time 1.

Secondly, economic viability is important for the success of a project. Many FOT projects
were terminated due to a lack of money or customer interests and conflicting objectives
among stakeholders. These issues could be partially avoided by carefully identifying
suitable markets and optimising the organisation/operation/revenue allocation of the inte
grated transport service.

Thirdly, people may have psychological barriers. For example, passengers may feel un
safe or reluctant to share a ride with goods; the conflicts between freight operators and
passengers at transit stations may increase passengers’ discomfort level; crowdshippers
may be concerned about privacy. These problems could be mitigated by regulating the
type of goods, proper planning of integrated transportation services, and tightening regu
lations on privacy and data security.

Fourthly, organisational challenges include finding initial capital investment, coordinat
ing various stakeholders and entities, dealing with resistance from passengers, transit

1https://tnp.straitstimes.com/news/singapore/cabbies-private-hire-drivers-can-make-deliveries-until-
march
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agencies, workers from logistics service providers, ensuring the safety of passengers
and goods, etc (Cochrane et al., 2017).

Lastly, technical challenges include searching underutilised capacity, designing the routes
and schedules of shared vehicles, selecting routes for FOT, integrating freight delivery and
passenger schedules, coordinating lastmile delivery with FOT, matching crowdshippers
with parcels, designing an optimal price for the integrated transportation systems, etc.

Overall, the technical challenges are easier to overcome than the challenges on other
dimensions. Besides, solving technical challenges could contribute to resolving other
challenges. For example, deploying advanced techniques aiming at operating integrated
transportation systems costeffectively could enhance the economic viability of the inte
grated system, which contributes to attracting investors; wellplanned freight hub location,
route and schedules of freight vehicles could reduce unnecessary conflicts between pas
sengers and goods or inconvenience to passengers.

2.3 Literature review
As discussed in the previous section, solving technical problems contributes to mitigating
the barriers to implementing integrated transportation systems. This section reviews the
technical problems examined in the existing studies for each form listed in Table 2.1 (see
Figure 2.1).

Figure 2.1: Technical problems that have been studied for different integration forms

2.3.1 Peopleandgoods sharearide
2.3.1.1 Route planning for sharearide vehicles
Li et al. (2014) first defined the routing problem for integrated transportation using taxis
as SARP. Several regulations were introduced to ensure highquality services: (R1) Pas
sengers must have a maximum ride time. (R2) An upper limit exists on the number of
parcels served during one passenger service. (R3) Two passengers cannot be served
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simultaneously by one taxi. R1 and R2 aim to decrease the influence of parcel delivery
on passenger services, and R3 aims to ensure personal security and convenience (e.g.,
gender or smoking preferences). These regulations were gradually relaxed to present a
more general SARP, leading to more profits. Beirigo et al. (2018) and Tholen et al. (2021)
eliminated R2 and R3. Yu et al. (2018, 2023) relaxed all these regulations.

Many features have been added to the original SARP to accommodate various application
scenarios. Yu et al. (2021a) allowed passenger compartments to store parcels, which
utilises the total vehicle capacity more flexibly and efficiently. Yu et al. (2023) extended a
single depot tomultiple depots, given that it is challenging to serve scattered transportation
demands from one depot. To make the models closer to real life, Li et al. (2016b) took
stochastic travel times and delivery locations into account. Ren et al. (2021) described the
dynamics in SAR by updating parcel delivery information and reoptimizing routes when
vehicles arrive at distribution centres (the origins of parcels). Considering the trends of
electrification and automation in transportation, Lu et al. (2022) investigated a system with
a mixed fleet of electric and gasoline taxis, while Beirigo et al. (2018), Tholen et al. (2021),
and Zhang et al. (2022) envisioned a system with SAVs.

To solve these problems, scholars have developed different models and solution ap
proaches. MIP models and twostage stochastic programming models are commonly
used for deterministic problems and problems with uncertainty, respectively. Regarding
solution approaches, commercial solvers such as CPLEX and Gurobi can solve small in
stances (Beirigo et al., 2018; Li et al., 2014; Tholen et al., 2021). Metaheuristics, e.g.,
genetic algorithm (Ren et al., 2021), adaptive large neighbourhood search (ALNS) (Li
et al., 2016a, 2016b), simulated annealing (Yu et al., 2021a; Yu et al., 2018; Yu et al.,
2023), are widely applied to solve largescale instances since SARP is an NPhard prob
lem. Other solution methods include the Lagrangian dual decomposition method (Zhang
et al., 2022), mathheuristic (Lu et al., 2022), and modelfree deep reinforcement learning
(Manchella et al., 2021a; Manchella et al., 2021b).

2.3.1.2 Pricing
The abovementioned studies were based on a given pricing strategy. Specifically, the ini
tial price for each passenger and parcel was considered to remain unchanged or increase
based on travel distance. However, a passenger may obtain a discount depending on the
degree of deviation from his/her direct route (Li et al., 2014; Ren et al., 2021; Yu et al.,
2021a). A more interesting strategy developed by Manchella et al. (2021a) allows drivers
and passengers to negotiate for the best price.

2.3.2 Freight on transit
2.3.2.1 Freight hub location
The freight hub location problem aims to choose among existing passenger public trans
port stations as distribution centres for delivering or transhipping goods. Most papers on
this topic rely on the metro system as the backbone, indicating that researchers are opti
mistic that freight can be successfully integrated with the metro system. We divide these
studies into two groups based on whether all selected freight hubs have the function of
connecting underground and ground networks. In the first group, goods can enter the
metro system from the ground and leave from the metro system to the ground at any
selected freight hubs (Ji et al., 2020; Kızıl & Yıldız, 2023; Zhao et al., 2018). The deci
sion variables are the locations of freight hubs. In the second group, there are two types
of freight hubs (Dong et al., 2018; Sun et al., 2022). Freight hubs of the first type are
similar to the freight hubs in the first group, where goods have access and egress to the
underground and ground networks. Freight hubs of the second type can only be used for
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transhipping freight between different metro lines, not connected to the ground network.
In addition to deciding the locations of freight hubs, their functions are decided as well.

Azcuy et al. (2021) considered a more general urban delivery system using public trans
port where the public transport could be the bus, metro, tram, etc. Freight can be trans
ferred from public transport to lastmile delivery vehicles at any selected station.
2.3.2.2 Route planning
(1) Route planning for public transport vehicles

Two types of public transport services have been studied in FOT, scheduled public
transport (with fixed lines and schedules) and demandresponsive public transport
(with flexible routes and schedules). When scheduled public transport is used in
FOT, it is usually assumed that the capacity of the public transport system is un
derutilised, and the existing routes and schedules of public transport vehicles are
treated as exogenous model parameters. Only Li et al. (2021) designed the stations
where added freight trains should stop, categorised as a route planning problem.

When FOT is based on demandresponsive public transport, passengers and freight
could be on a shared network or in the same vehicle. For the former scenario,
Fatnassi et al. (2015) devised two routing strategies: a reactive dynamic matching
strategy and a proactive one for passenger rapid transit (PRT) and freight rapid
transit (FRT). For the latter, Chebbi and Chaouachi (2016) studied an empty vehicle
redistribution problem that minimizes the empty movement and the number of used
vehicles while reducing the wasted capacity of PRT. Peng et al. (2021) explored a
buspooling service at a railway station, where demandresponsive buses pick up
passengers and parcels and deliver them to their destinations. Parcels with similar
itineraries and departure times to passengers were matched and inserted into bus
routes following the shortest road route.

(2) Route planning for supportive vehicles

As conventional public transport modes with fixed routes cannot provide doorto
door services, support vehicles (e.g., small trucks or electric vehicles run by logistic
companies) are typically used to realise the first/lastmile transportation.

Route planning for supportive vehicles is usually formulated as variants of pickup
and delivery problem (PDP) to accommodate operationmodes. Masson et al. (2017)
modelled a PDP with transfers in a setting where all goods originate from ware
houses known as consolidation and distribution centres (CDCs). Buses start from a
CDC and travel to bus stops where goods are unloaded and transhipped to support
vehicles for the lastmile delivery. Similar work was performed by Ye et al. (2021)
for a metrobased FOT. The difference is that the supportive vehicles also perform
the firstmile delivery from the CDC to metro stations.

Another variant is the PDP with scheduled lines (PDPSL). Different from the PDP
with transfers where goods must take public transport, the PDPSL allows goods to
be either delivered directly to customers by support vehicles or first collected by a
support vehicle, transported via scheduled lines (SLs) such as bus, train, metro, etc.,
and then delivered to customers by another support vehicle (Ghilas et al., 2016b).
Ghilas et al. (2016c) extended the deterministic PDPSL problem proposed by Ghi
las et al. (2016b) into a stochastic PDPSL problem by considering uncertain freight
demand. People and parcels only share public transport vehicles in the two studies,
whereas they share supportive vehicles in Ghilas et al. (2013). All three studies as
sume that the freight capacity is fixed and not influenced by passenger flows. This
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assumption is relaxed by Mourad et al. (2021), in which robots function as support
vehicles. When the delivery robots travel on a bus, they share the same bus capac
ity with passengers but have a lower priority. In other words, at some stations, the
robots may be unable to board a bus or be required to deboard to make space for
passengers.

As an alternative to using ground vehicles as support vehicles, Huang et al. (2020)
introduced an innovative integrated transportation system that involves trains with
given routes and timetables for passenger transportation and drones for parcel de
livery.

In terms of the solution approaches, most studies apply metaheuristics to solve
largescale instances, e.g., ALNS (Ghilas et al., 2016a, 2016c; Masson et al., 2017;
Mourad et al., 2021) and variable neighbourhood search (Ye et al., 2021). Ghilas et
al. (2018) developed a branchandprice algorithm to solvemediumsized instances.

2.3.2.3 Timetabling
The design of timetables for scheduled public transport vehicles in the context of FOT
has been considered only in railbased FOT, i.e., trams and trains. When people and
freight share the vehicles/carriage, the timetables of passenger vehicles were designed
from scratch, aiming to transport more freight in less time without influencing passenger
transport (Li et al., 2022). When people and freight share the rail infrastructure, two strate
gies are found to design timetables for added dedicated freight trains: 1) Timetables for
freight trains are created while the timetables of passenger trains remain unchanged (Oz
turk & Patrick, 2018); 2) Schedules for both passenger and freight trains are constructed
from scratch (Hörsting & Cleophas, 2023; Li et al., 2021). Hörsting and Cleophas (2023)
compared the two transportation modes and concluded that sharing vehicles/carriages is
more robust towards fluctuating demand while sharing infrastructures allows higher dwell
time for dedicated freight trains/trams.
2.3.2.4 Freight flow assignment
The freight flow assignment problem determines where, when, and on which vehicle a
request takes a public transport ride. The flow assignment can be obtained either as key
decision variables in a model that exclusively determines the flow given public transport
routes and schedules of vehicles that can be used for freight transportation or as auxiliary
variables in a model that designs the hub location, route, and timetable (Ji et al., 2020; Li
et al., 2021; Ozturk & Patrick, 2018). This section focuses on the former case.

For busbased FOT, Pimentel and Alvelos (2018) developed an MIP model to determine
the freight flow that minimises the delivery time. Their system allows goods to be unloaded
at any stop but only loaded at specific bus stops. This situation was relaxed by Cheng
et al. (2018) by permitting goods to be loaded and unloaded at any stop. If the goods
capacity on the part of the selected route is not adequate, the goods are unloaded at
intermediate stops and wait for the next vehicle along the same route.

For railbased FOT, Behiri et al. (2018) hypothesised that physical components of a rail
network, i.e., stations, railways, and trains, are shared by participants, and freights can
be loaded and unloaded at any station. The objective of their model is to minimise the
total waiting time of each demand, defined as the difference between the time at which
demand is loaded into the train and that at which it arrives at the departure station. In this
manner, the turnover of goods in stations can be maximised. Sahli et al. (2022) simplified
the model and improved the heuristic solution algorithm proposed by Behiri et al. (2018).
Di et al. (2022) considered a system where freight and passengers are allowed to share
each service train. In addition to optimising the flow assignment, they also optimised the
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carriage arrangement.

2.3.2.5 Pricing
Most studies on FOT focus on solving operation management problems to reduce opera
tion costs and total delivery time. Only a few consider the price charged to customers and
the profits operators gain. We only found two papers mentioning the price. The first one is
Li et al. (2021), which set a parameter representing the price of transporting a container.
The other is Ma et al. (2022), which jointly optimised a logistic company’s modal split
strategy and a metro company’s pricing strategy based on noncooperative and coopera
tive game theoretical models. The results showed that metrobased FOT could generate
Paretoimproving outcomes for the metro and logistics companies.

2.3.3 Crowdshipping
2.3.3.1 Demand and supply prediction
Two approaches can be used to predict the demand and supply in crowdshipping. The
first one is to use historical data (Shen & Lin, 2020), while the second one is to identify
the factors that influence the demand and supply through a survey (Ermagun et al., 2020;
Gatta et al., 2019; Le et al., 2019; Le & Ukkusuri, 2019; Rechavi & Toch, 2022). As
crowdshipping is a new service, only a limited amount of historical data is available. Thus,
most are based on the second approach. The key factors influencing the demand and
supply of crowdshipping are listed as follows.

(1) Demand: Dry cleaning, groceries, and homedelivered foods are favoured cate
gories of goods in crowdshipping. Factors influencing people’s acceptance rate
of crowdshipping include personal attributes (including sociodemographic charac
teristics), built environments, crowd types, and driver performance. Specifically,
younger people, online shoppers, and people with a strong sense of community
and environmental concern are more likely to accept crowdshipping; areas with high
population density but low job accessibility are suitable for crowdshipping develop
ment (Buldeo Rai et al., 2021; Le et al., 2019).

(2) Supply: Young individuals and students are more likely to work as crowdshippers.
The supply of crowdshipping is enhanced by lower additional travel time spent on
crowdsourced tasks, higher remuneration, and higher levels of crowdshipping expe
rience (Ermagun et al., 2020; Fessler et al., 2022; Gatta et al., 2019; Le & Ukkusuri,
2019; Rechavi & Toch, 2022).

2.3.3.2 Matching strategy
As defined in Section 2.2.1, in this review, we focus on the case in which crowdshippers
are matched with delivery requests on their way to a preplanned trip, known as en route
matching (Alnaggar et al., 2021).

The key component in the en route matching problem is the criteria for an acceptable
matching. Most studies set a maximum percentage by which crowdshippers can deviate
from their normal trip in terms of the distance or travel time (Al Hla et al., 2019; Archetti
et al., 2016; Martı́nSantamarı́a et al., 2021; Zehtabian et al., 2022). Additionally, the
crowdshipper’s earliest departure time at his/her origin and latest arrival time at the desti
nation can be confined (Arslan et al., 2019; Chen et al., 2018; Macrina et al., 2020). Other
than timespecified criteria, the maximum number of parcels or stops that crowdshippers
accept are used by Arslan et al. (2019), Voigt and Kuhn (2022), Wang et al. (2016), and
Zehtabian et al. (2022). Instead of a single match, Ausseil et al. (2022) and Mancini and
Gansterer (2022) provided several options for a crowdshipper to choose from.
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2.3.3.3 Facility location
Most studies on crowdshipping have focused on operationallevel decisions and consid
ered pointtopoint deliveries in which the origindestination pairs of crowdshippers are
close to those of the parcels to be delivered. This may cause a lower success delivery
rate compared with crowdshipping allowing relays. To overcome this challenge, facili
ties such as parcel lockers could be established to connect multiple crowdshippers for
the same task, leading to a facility location problem. Ghaderi et al. (2022) developed
a twophase algorithm to locate the parcel lockers to maximise total profits and delivery
rate. Considering the stochastic crowd capacity and demands, NietoIsaza et al. (2022)
developed a twostage stochastic programming model to determine the locations of mini
depots to minimise total expected installation and transportation costs.

2.3.3.4 Route planning for vehicles and goods
The route planning problem includes routing for a fleet owned by an operator and oc
casional drivers. Archetti et al. (2016) initially modelled this problem as a VRP with oc
casional drivers (VRPOD). This framework involves a single depot from where goods,
dedicated vehicles, and occasional drivers start. Many variants of this simple setting
have been studied. For example, Al Hla et al. (2019) considered the behaviours of both
regular and occasional drivers. Triki (2021) allowed occasional drivers to bid for deliv
ery tasks. Macrina et al. (2017) considered the time windows of customers. Lan et al.
(2022), Macrina et al. (2020), and Yu et al. (2021b), Yu et al. (2022) introduced tranship
ment nodes. Besides, the stochasticity and dynamics of the crowdshipping system have
been addressed by Archetti et al. (2021), Dahle et al. (2017), Dayarian and Savelsbergh
(2020), Mousavi et al. (2022), Santini et al. (2022), and Silva and Pedroso (2022).

In the abovementioned VRPOD framework, all parcels originate from the depot, and a
single crowdshipper fulfils the crowdsourced delivery. This overlooks the possibility that
relaying crowdsourced tasks between crowdshippers could attract more participants to
work as crowdshippers and increase the delivery success rate, addressed by Chen et al.
(2018) and Voigt and Kuhn (2022). They extended the VRPOD to a pickup and delivery
problemwith occasional drivers, where each parcel has a different origin, vehicles not only
deliver parcels but also collect parcels, and relays between crowdshippers are allowed.

Unlike the VRPOD that determines the operatorscheduled vehicle routes, Yıldız (2021a,
2021b) explored the express package routing problem to determine the combinations of
selfscheduled trips of crowdshippers to fulfil transportation requests. They designed a
system involving service points at which pickup and dropoff operations occur. Senders
drop off goods at their selected service points, and receivers pick up goods from other ser
vice points. Crowdshippers are responsible for transferring goods between the selected
service points. Each crowdshipper only performs one single trip between service points,
but one task may have multileg trips.

Crowdshippers are typically ordinary people. In addition, taxi drivers can serve as crowd
shippers to transport parcels without influencing the passenger service (Chen et al., 2017;
Chen et al., 2016; Cheng et al., 2022). Elsewhere, Boysen et al. (2022) considered volun
tary employees of distribution centres as crowdshippers and optimised the delivery routes
for these employees to maximise the number of parcels assigned to them.

2.3.3.5 Pricing and compensation
Crowdshippers usually receive compensation from retailers such as Walmart and logis
tics companies. Five compensation schemes have been proposed in the literature: 1)
Customerdependent compensation: The compensation for crowdshippers depends on
the customer’s location. A larger distance between the customer and depot corresponds
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to a higher compensation for crowdshippers (Archetti et al., 2021; Archetti et al., 2016;
Dahle et al., 2019; Macrina et al., 2017); 2) Crowdshipper dependent compensation: The
compensation for crowdshippers depends on the amount of additional distance travelled
or additional time spent compared with normal travel (Dahle et al., 2019; Yu et al., 2021b;
Yu et al., 2022); 3) Fixed compensation for each delivery: The compensation for crowd
shippers depends on the number of deliveries performed (Boysen et al., 2022; Dahle et
al., 2019; Lan et al., 2022; Santini et al., 2022; Yıldız, 2021a, 2021b); 4) Combined com
pensation: The compensation for crowdshippers consists of two elements. Specifically,
a fixed compensation is provided when the crowdshippers fulfil at least one delivery, and
variable compensation is provided depending on additional efforts (extra travel distance
or travel time) made for crowdsourced deliveries (Dahle et al., 2019; Dayarian & Savels
bergh, 2020; Mousavi et al., 2022); 5) Auctionbased compensation: Crowdshippers bid
for crowdsourced tasks and are paid their bidding price if they win (Triki, 2021).

In terms of optimising the compensation provided to crowdshippers and the price charged
for requesters, we found three studies in which a thirdparty platform controls the crowd
shipping service. Le et al. (2021) optimised the price and compensation from the plat
form’s perspective, aiming to maximise the platform’s profits. Zhou et al. (2021) proposed
a pricing strategy considering the varying package–driver ratio in a local region to max
imise the number of stable matches such that both the requester and crowdshipper have
strong incentives to be matched. These two studies neglect attributes associated with
the parcel, e.g., weight and size, which may influence the behaviours of the receivers
and crowdshippers. This aspect is addressed by Xiao et al. (2021), wherein a multiunit
multiattribute auction for crowdsourced delivery to maximise social welfare is designed.

2.4 General framework
Based on the above review of the existing forms of integrated transportation systems,
we propose a general framework for planning and operating such systems, as shown in
Figure 2.2.

First, we divide an integrated transportation system into three core components, each
comprising various elements worthy of investigation.

(1) Passenger and goods demand. Demand is generated by the requirement of people
to move from origins to destinations for a certain purpose, such as work, while goods
must be delivered from senders to recipients to fulfil customers’ requirements.

(2) Transport supply. Integrated peopleandgoods transportation operators may be
public transport operators (e.g., bus, metro, and train companies), private trans
portation companies, retailers with their own fleets and dedicated drivers, or third
party companies that employ occasional drivers who use their vehicles to perform
tasks.

(3) Infrastructure and technology. The infrastructure includes all materials that support
the integrated transportation of people and goods, e.g., roads, railways, and infor
mation and communications technology.

In this context, each operator must address the following three main problems, which
contain two or three subproblems.

(1) Demand management. This problem includes i) demand prediction to understand
how travellers and senders make transportation decisions; ii) pricing strategies to
control the spatiotemporal distribution of transportation demand.
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Figure 2.2: A general framework for integrated peopleandgoods transportation systems

(2) Supply management. This problem includes predicting and planning the capacity
that can be used to fulfil the transportation demand and designing compensation
strategies to control the supply.

(3) Demand and supply matching. This problem aims at matching a specific request
with a vehicle, which typically involves the design of the routes and schedules of
vehicles or the assignment of requests to a vehicle, depending on the integration
form.

Figure 2.2 also shows the subproblems examined in the existing studies. Several gaps
remain, considered promising research directions, as described in Section 2.5.

The performance of the integrated transportation system could be evaluated from different
perspectives. On the demand side, passengers care mostly about the travel time, waiting
time, and travel cost, while shippers are more concerned with the transportation costs
and whether the goods are delivered in a satisfactory condition and timely manner. On
the supply side, operators focus mostly on profit, operation cost, and demand satisfaction
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rate. Solving the operation management problems will directly influence the indicators on
the two sides, which will further influence the demand and supply. The demand and sup
ply, in turn, influence the operational strategies and decisions and the resulting efficiency
of the integrated peopleandgoods transportation system. The application of integrated
peopleandgoods transportation will inevitably impact various aspects of sustainability,
like environmental (e.g., air pollutants) and social (e.g., employment, equity). Neverthe
less, they are well beyond the scope of this review and are left for future work.

2.5 Research gaps and future directions
Based on the framework proposed in Section 2.4, we specify future research directions
from three aspects. For each aspect, we categorise two types of future research aimed
at, respectively, filling the research gap and enhancing the existing research. Notably,
research gaps may exist owing to the different implementation methods of different forms
in practice. Then, we presented some research opportunities in the era of technology.

2.5.1 Demand management
2.5.1.1 Pioneering research
As shown in Figure 2.2, demand prediction for SAR and FOT has not been extensively
studied, despite its importance for service operators in providing supply that matches the
demand. Currently, both SAR and FOT are in the early implementation stage, and the
amount of historical data is inadequate. In this context, the demand can be predicted by
identifying the factors influencing people’s choices. To this end, unique features/phenom
ena associated with the system must be understood. For example, in terms of passenger
demand, some passengers may transfer from separated to integrated modes due to de
creased travel costs. In contrast, passengers with a high value of time are less likely to
accept a detour for the delivery of goods even if a discount is available. Moreover, some
passengers may refuse to be transported with goods owing to safety and comfort con
cerns when the goods are placed in the same vehicle (or carriage). In terms of goods
demands, the incomes of senders and recipients, environmental conscientiousness, and
requirement for time windows determine whether the senders and recipients choose an
SAR vehicle or public transport for delivery. Additionally, the goods’ attributes (type, size,
weight, volume, value, etc.) determine whether they can be transported with people and
the mode suitable for transporting them. For example, dangerous goods cannot be trans
ported with passengers, while groceries, which typically involve a large volume and num
ber of goods, can be transported by trains or metros instead of taxis. In the future, with
the development of SAR and FOT and the availability of adequate data, historical data
may be used to predict the spatiotemporal transportation demand distribution.
2.5.1.2 Research for improvement
Most studies have considered the price charged to customers as a parameter under differ
ent pricing schemes. Because the influence of pricing on demand and supply is complex,
the pricing can instead be considered a decision variable and determined using an opti
mization model.

2.5.2 Supply management
2.5.2.1 Pioneering research
Supply management in SAR frameworks has not been extensively investigated. This is
probably because SAR can be implemented in multiple ways, and a common supply man
agement strategy cannot be applied to all methods. In practice, the supply management
subproblem to be addressed depends on the type of operator. Operators are classified
in terms of the possession of the fleet and drivers. The supply management subproblem
for operators with their own fleet and drivers is focused on resource planning because

20 Innovative Lastmile Solutions:Integrating People and Goods Transportation



the supply is determined by the fleet size, the dedicated drivers must follow the routes
designed by the operators to service customers, and the drivers are paid salaries by the
operators. In this framework, the supply distribution does not need to be predicted, and
no compensation exists. The supply management subproblem for operators without their
own fleet and drivers is focused on supply prediction and compensation because the sup
ply of drivers is affected by various factors such as age, income, and compensation for
each request.

The supply prediction for FOT has not been extensively studied. Compensation for drivers
might not be considered a problem that needs to be practically addressed, as drivers of
public transport vehicles typically receive a regular monthly salary. For public transport
operators, supply prediction is focused on predicting the available capacity that can be
used for transporting passengers and goods. This supply decides whether goods and
passengers can be transported simultaneously in specific periods. This aspect can be
considered a counterpart to predicting the passengers’ route choice behaviour given the
transit capacities. In the case of underused capacity, companies can enter the integrated
peopleandgoods transport market. Otherwise, the companies can simply serve passen
gers as usual.

2.5.2.2 Research for improvement
Scheduledpublictransportbased FOT consists of two parts: a public transport mode for
backbone transportation and support vehicles for first/lastmile transportation. Although
several researchers have studied FOT based on various transportation means, the back
bone transportation consisted of a single public transport mode. In practice, each public
transport mode has its advantages and disadvantages. For example, metros and trains
are faster and more punctual than buses, while buses have a wider service area. Dif
ferent public transportation modes can be combined to fully exploit the advantages of all
parties to provide a more timeefficient or costefficient service. Because hubs for trans
ferring passengers from one public transport mode to another already exist, goods can
also be transhipped at these nodes. In addition, as described in Section 2.3.2.1, most
studies on freight hub selection have focused on metrobased FOT. For busbased FOT,
it is typically assumed that all bus stations can be used to handle and tranship goods.
However, considering the goods transportation demand and cost of reforming a passen
ger platform to an enhanced platform suitable for goods storage and transhipment, it is
not reasonable to set all passenger boarding/alighting points as goods loading/unloading
points. Therefore, the hub location problem must also be addressed in busbased FOT.
In addition, the fleet size of scheduled and demandresponsive public transport vehicles
considerably influences the supply and must be further investigated.

For crowdshipping, research can be performed to understand peoples’ attitudes toward
publictransportbased crowdshipping. Moreover, as in the case of the pricing problem
in demand management, the compensation provided to crowdshippers affects the supply
of crowdshippers. Therefore, the compensation of crowdshippers must be optimised. In
addition, researchers can optimise the location and capacity of the support infrastructure.
In this way, similar origindestination pairs between crowdshippers and parcels do not
need to be identified, making the system more flexible and efficient.

2.5.3 Matching
2.5.3.1 Pioneering research
The matching problem for SAR has not been studied, probably because the existing stud
ies have assumed that the SAR operators belong to the first type of operator, as described
in Section 2.5.2.1. In this scenario, the dedicated drivers working for the operator cannot
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reject requests assigned to them. If the operators belong to the second type, the occa
sional drivers can reject requests assigned to them. In this scenario, an optimal matching
problem must be solved to increase the successful matching rate. Different matching
strategies can be explored, e.g., en route matching and negotiation between occasional
drivers and requesters.
2.5.3.2 Research for improvement
The following research directions can be considered for improving research on matching
transportation demands with supply.

First, for SAR with the second type of operators, occasional drivers can be guided to
reposition their vehicles after finishing their tasks to increase their chance of accepting
another task when they do not have a personal trip planned after the delivery.

Second, for scheduledpublictransportbased FOT, matching between goods requests
with a specific public transport vehicle can be examined in the context of multimodal urban
transport so that a goods request can be matched to a multimodal trip chain of public
transport services.

Third, we recommend developingmodels to solve thematching problem in publictransport
based crowdshipping. This matching is different from that in privatevehiclebased crowd
shipping because a parcel request suitable for a privatevehiclebased crowdshippermight
not be accepted by a publictransportbased crowdshipper.

Fourth, researchers can attempt to solve the subproblems associated with all three forms
of integrated systems in a stochastic and dynamic setting, as this is more realistic and
research in this domain is limited.

2.5.4 Opportunities in the era of technology
Rapid developments of new technologies, e.g., 5G technology, artificial intelligence (AI),
Internet of things (IoT), autonomous vehicles (AVs), digital twins, etc., will revolutionize
the transportation industry, which brings opportunities for the development of integrated
transportation system. First, the potential deployment of AVs, drones, and robots and their
impacts on integrated transportation systems should be studied before they are widely ap
plied. Second, technologies such as ICT and intelligent transportation systems enable the
synchromodality, which aims to provide efficient, reliable, and flexible transportation ser
vices using realtime information. This strengthens the need for fast online algorithms to
support realtime reoptimisation. Third, driven by AI, IoT, etc., digital twins could be used
to simulate different activities in the integrated transportation system, which enables plan
ners to manage transportation dynamically, react to unexpected events appropriately, etc.
Moreover, digital twins could be used to analyse the potential impacts of new concepts
before real implementations. As Arvidsson and Browne (2013) recommended, it is better
to try a new concept in a smallscale fashion and gradually scale up, especially for big
projects requiring high investment or new infrastructure. This could be achieved by digital
twins in a time and costefficient way to explore the economic viability and scalability to
meet the exploding delivery demand and the need for infrastructure and equipment invest
ment for the integrated transportation system before real application. We recommend that
researchers apply more advanced methods, e.g., digital twins, in the era of technologies
to assess the feasibility of an integrated system, in addition to using traditional methods
such as simulation.
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3 An adaptive large neighborhood search
metaheuristic for a passenger and
parcel sharearide problem with drones

Cheng, R., Jiang, Y., Nielsen, O. A., & Pisinger, D. (2023). An adaptive large neighbor
hood search metaheuristic for a passenger and parcel sharearide problem with drones.
Transportation Research Part C: Emerging Technologies, 153, 104203.

Abstract

With the increasing concerns about traffic congestion and climate change, much effort has
beenmade to enhance sustainable urbanmobility for passengers and goods. One emerg
ing promising strategy is to transport passengers and goods in an integrated manner, as it
could reduce the number of vehicles on the road compared with the separate transporta
tion of passengers and goods. This study proposes the simultaneous transportation of
passengers and goods using demandresponsive buses and drones. Compared with the
prevalent strategies that rely only on ground vehicles to integrate passenger and parcel
transportation, we propose the joint usage of ground vehicles and drones to transport pas
sengers and deliver parcels. The ground vehicles for passenger and parcel delivery are
ondemand buses, which combine the advantages of the flexibility of taxis and the large
capacity of public transport modes. The drones automatically take off from and land on
the ondemand buses’ rooftops and are only for parcel delivery. A new optimization prob
lem that designs the routes for both demandresponsive buses and drones is proposed
and denoted as the passenger and parcel sharearide problem with drones (SARPD). A
mixedinteger nonlinear programming model is devised; the nonlinearity exists because
drone launch/recovery can occur simultaneously with request servicing by a bus at the
same node. To solve the model for largescale instances, we develop an adaptive large
neighborhood search metaheuristic. Numerical experiments are conducted to validate
the correctness of the model and evaluate the efficiency of the metaheuristic. Moreover,
sensitivity analyses are performed to explore the influences of the maximum number of
intermediate stops during one passenger request service, the drone flight endurance,
and the unit delay penalty on the total cost, which comprises the transportation and delay
costs.

Keywords: Urban logistics; Ondemand transit; Adaptive large neighborhood search; In
tegrated passengerandgoods transportation; Sharearide problem with drones; Vehicle
routing problem with drones
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3.1 Introduction
Rapid urbanization and the boom in Ecommerce have increased the demands for pas
senger and goods transportation. Traditionally, the demands for passenger and goods
transportation are separately managed. In 2007, the European Commission (2007) stated
that “local authorities need to consider all urban logistics related to passenger and freight
transport as a single logistics system.” Integrating passengers and goods transportation
has emerged as a new research topic to achieve sustainable urban mobility because of its
great potential to reduce the number of road vehicles serving the transportation demand
(Cavallaro & Nocera, 2022; Cheng et al., 2023; Li et al., 2014).

Recently, Elbert and Rentschler (2022) summarized the literature on integrating passen
gers and parcels using public transport modes, such as buses and light rail. These con
ventional public transport modes are operated according to predefined routes and timeta
bles and can hardly provide doortodoor services, as public transport stations are seldom
the final destinations of passengers and goods. Thus, feeder vehicles must be used for
lastmile delivery, which can cause additional traffic congestion and cost. Li et al. (2014)
suggested that taxis, which are flexible and can deliver doortodoor services, are a bet
ter alternative to public transport for the integrated transport of passengers and goods.
However, a taxi is characterized by limited capacity and availability and high costs. Con
sidering the limitations associated with conventional public transport and taxis, this study
proposes the use of ondemand transit, which can allow for the provision of doortodoor
demandresponsive services with a larger capacity. Although ondemand transit has been
extensively studied (e.g., Vansteenwegen et al., 2022), to the best of our knowledge, only
Peng et al. (2021) considered it a means of integrating passengers and parcels trans
portation.

Another trend in urban mobility is the exploration and exploitation of autonomous tech
nologies. Autonomous vehicle (AV) technology offers the possibility of relieving passen
ger transportrelated congestion in various ways, such as improving coordination between
vehicles and reducing accidents (Anderson et al., 2014), reducing parking demand and
the congestion caused by the search for parking space (Othman, 2022), and reducing
the time gap and thereby increasing the road capacity and mitigating congestion (Milanés
& Shladover, 2014). Integrating shared autonomous vehicles (SAVs) with ridesharing
services could further reduce congestion through traveler trip combination and SAV fleet
size reduction (Golbabaei et al., 2021; Levin et al., 2017). Although accurately evaluating
the influence of AVs on the environment is difficult, the potential positive environmental
benefits of electrifying AVs have been generally acknowledged (Anderson et al., 2014;
Golbabaei et al., 2021; Williams et al., 2020).

For goods transportation, drone delivery has attracted increasing attention in smart city lo
gistics (Büyüközkan & Ilıcak, 2022), particularly in lastmile delivery (Boysen et al., 2021;
Lemardelé et al., 2021). Recently, Amazon and Walmart have launched drone delivery
services in some areas 1. Drones have also been used to transport nucleic acid samples in
Hangzhou, China 2. Compared with traditional delivery vehicles, such as trucks and vans,
drones are faster, do not occupy road space, and do not use fossil fuels. Therefore, drone
usage has the potential of providing faster delivery and reducing urban congestion and
greenhouse gas emissions (Agatz et al., 2018; Chiang et al., 2019; MoshrefJavadi et al.,
2020b). However, drones have a limited service range owing to their battery capacity con

1(1)https://www.aboutamazon.com/news/transportation/amazons-drone-delivery-is-coming-to-texas;
(2)https://corporate.walmart.com/newsroom/2022/05/24/were-bringing-the-convenience-of-drone-delivery-
to-4-million-u-s-households-in-partnership-with-droneup

2http://www.caacnews.com.cn/1/6/202211/t20221106_1356856.html
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straint. To tackle this challenge, a truck–drone hybrid delivery system has been proposed.
In this system, ground vehicles (typically vans or trucks) carry drones to a site near the
customer’s location and are responsible for launching and recovering the drones. More
recently, scholars have investigated the potential of drone hitchhiking on public transit
with fixed routes and timetables (Choudhury et al., 2021; Huang et al., 2020). The benefit
of the hybrid system is that the drones utilize vehicles operating on fixed schedules.

Considering the two trends discussed above, this study explores a novel transporta
tion system in which passengers and goods are simultaneously transported via demand
responsive buses (DRBs) and drones. In this system, a DRB contains separated passen
ger and parcel compartments and is equipped with a drone for goods delivery. A robotic
shelving system is installed in the parcel compartment; the system automatically locates
and prepares the parcel for the drone and customers, thereby relieving the driver of the
task of placing the parcel on the drone and directly delivering the parcel to the customers.
A DRB departs from the terminal, where it loads drones and parcels. The route of one
DRB trip is determined by both passengers’ requests and parcel delivery requests. The
bus does not need to stop and visit every parcel delivery location; drones can be launched
from the bus to undertake the delivery task and return to the bus. The launch and recovery
of the drone are automatic. A more detailed problem description is provided in Section
3.3.1.

The envisioned system is inspired by the MercedesBenz vision van 3. Most of the compo
nents of the proposed system have been implemented or are under piloting experiments
for verification of their feasibility and attractiveness to the industry. For example, KT Corp,
a telephone company in South Korea, demonstrated the practicability of a drone stored on
the top of an autonomous bus delivering parcels to a designated pickup point 4. Transport
for London ran two demandresponsive bus trials and found that 60% of users were willing
to reduce car usage in favor of DRBs 5. The Netherlands launched a project named Cargo
Hitching to prove the viability of using the unused capacity of buses for parcel transport
(Van Duin et al., 2019).

Operating the proposed system requires planning routes for both DRBs and drones. The
corresponding optimization problem is denoted as the passenger and parcel sharearide
problem with drones (SARPD). This study devises a mixedinteger nonlinear program
ming (MINP) model for SARPD to minimize the total operation costs, which comprise
the transportation costs of DRBs and drones and delay penalties, considering both sup
ply and demand constraints. Regarding supply, we consider the capacity constraints for
passengers and parcels, the maximum operation time of a DRB, and the maximum bat
tery endurance of drones. Regarding demand, we consider the time windows for both
passenger and parcel requests. To reduce the inconvenience to passengers caused by
extra stops to deliver parcels and pick up or drop off passengers, we restrict the maximum
number of intermediate stops during the service for one passenger request.

We present an adaptive large neighborhood search (ALNS) algorithm that solves the pro
posed model for largescale applications, given the high performance of the ALNS for a
large variant of vehicle routing problems (Ghilas et al., 2016a, 2016b; Li et al., 2016a;
Mourad et al., 2021; Ropke & Pisinger, 2006; Sacramento et al., 2019).

The remainder of this paper is organized as follows. Section 3.2 presents a literature re
view and summarizes our main contributions. Section 3.3 introduces the MINP model for

3https://www.youtube.com/watch?v=rnnSiK5mayY
4https://www.ajudaily.com/view/20170314142937637
5https://content.tfl.gov.uk/drb-research-report-july-2021.pdf
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SARPD, inspired by Li et al. (2014) and Sacramento et al. (2019). Section 3.4 describes
the ALNS metaheuristic tailored to solve the proposed problem. Section 3.5 presents the
numerical experiments conducted to validate the developed model, the analysis of op
erator performance in ALNS, and the algorithm performance under different instances.
Section 3.6 provides some management insights. Finally, Section 3.7 concludes this pa
per and provides various directions for future research.

3.2 Passenger and parcel sharearide problem and the
truck–drone routing problem

Our literature review focuses on two problems closely related to the proposed model: the
passenger and parcel sharearide problem (SARP) and the truck–drone routing problem.

3.2.1 Passenger and parcel SARP
The SARP was first established by Li et al. (2014). It aims to determine a set of routes for
taxis to serve both passenger and parcel requests and maximize profit for taxi companies,
considering the time windows at both the origins and destinations of requests. Not all
parcel requests can be served by taxis; hence, rejected parcels are served by a logistics
company. Li et al. (2014) imposed three assumptions to ensure that passengers are
assigned a higher priority than parcels: A1) Passengers have a maximum ride time; A2)
a maximum number of parcels can be inserted within one passenger service; and A3)
multiple passenger requests cannot be simultaneously served by one taxi. The authors
developed a mixedinteger programming (MIP) model and solved instances with up to 12
requests (24 nodes) using Gurobi. Li et al. (2016a) solved largescale instances with up
to 300 requests using the ALNS metaheuristic.

Unlike in Li et al. (2014, 2016a, 2016b), in which passenger and parcel shared the same
taxi capacity, Yu et al. (2018) set the vehicle capacity for each request type. They gen
eralized the SARP by relaxing the three assumptions in Li et al. (2014). Moreover, the
authors developed a simulated annealing heuristic to solve the general SARP with up to
288 requests. Later, following the assumptions of Li et al. (2014),Yu et al. (2021) stud
ied an SARP with flexible compartments, in which passengers’ capacity is considered in
parcel storage, and the total capacities for passengers and parcels are fixed. They de
veloped an MIP model and designed a mutationbased simulated annealing algorithm to
solve the proposed problem. Beirigo et al. (2018) investigated an SARP model, focusing
on SAVs with passenger and freight compartments, where each compartment has a fixed
capacity. They relaxed assumptions A2 and A3 in Li et al. (2014) and devised an MIP
model. Tholen et al. (2021) extended the model in Beirigo et al. (2018) by taking pas
senger and parcel capacities as decision variables. Unlike the aforementioned studies
that aimed to maximize the profits of integrated passenger and parcel transportation, the
authors aimed to minimize the total transportation cost, which depends on travel distance
and vehicle capacity for each request type. Both Beirigo et al. (2018) and Tholen et al.
(2021) solved only small instances with Gurobi.

3.2.2 Truck–drone routing problem
In a truck–drone delivery system, trucks can 1) perform deliveries in the same manner as
drones and 2) serve as mobile carriers of drones, without performing the delivery them
selves. Chung et al. (2020), Li et al. (2021), Macrina et al. (2020), and Otto et al. (2018)
have provided a comprehensive review of truck–drone routing problems. This section
focuses on the literature on the former scenario, in which trucks perform deliveries in the
same manner as drones. The corresponding routing problem is classified into the travel
ing salesman problem with drones (TSPD) and the vehicle routing problem with drones
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(VRPD), according to the number of trucks in the delivery system (Macrina et al., 2020).
TSPD involves only one truck, while VRPD involves multiple trucks. The main charac
teristics of TSPD and VRPD are summarized in Table 3.1.

Table 3.1: Characteristics of TSPD and VRPD
Number of trucks Cooperation* Synchronization

Y N Y N

TSPD FSTSP One Drones take off from and land on the truck. At customer locations or depot
PDSTSP One √ √

VRPD FSVRP Multiple Option 1: Drones take off from and land on the same truck.
Option 2: Drones take off from a truck and land on a docking hub to travel with another truck. At customer locations or depot √

PDSVRP Multiple √ √

* Remark
Most papers do not mention how drones take off and land. Generally, a human is needed to perform setup operations for drone launch and recovery (Otto et al., 2018).

Macrina et al. (2020) further classified TSPD into the flying sidekick TSP (FSTSP) and the
parallel drone scheduling TSP (PDSTSP). In FSTSP, the truck and the drones coordinate
with other as the drones take off from and land on the truck. Truck–drone synchronization
at a customer location or the depot is required. In contrast, in PDSTSP, the truck and
the drone work independently, and no synchronization is required. VRPD can be further
classified into the flying sidekick VRP (FSVRP), which is a VRPD in which trucks and
drones cooperate, and the parallel drone scheduling VRP (PDSVRP), which is a VRPD
in which trucks and drones work individually. FSVRP and FSTSP differ in two aspects:
cooperation and synchronization. For the first aspect, drones must return to the truck
from where they took off in FSTSP, while some FSVRPs allow drones to take off from
trucks but land on docking hubs serving as transfer locations for drones (Wang & Sheu,
2019) instead of at trucks. For the second aspect, FSTSP requires that the truck and
drones are synchronized at customer locations or the depot, while some FSVRPs do not
require synchronization in cases with docking hubs (Wang &Sheu, 2019) or allow enroute
launch and rendezvous operations (Marinelli et al., 2018). Most papers do not mention
how drones take off and land (i.e., autonomously or manually). Generally, a human is
needed to perform setup operations for drone launch and recovery (Otto et al., 2018).

Murray and Chu (2015) first developed an MIP model to formulate an FSTSP. In their
model, a single truck and a single drone cooperatively deliver parcels to customers. The
drone can only take off and land at the depot or a customer location when the truck is
stationary. The two vehicles wait for each other at rendezvous points. The objective
of their model is to minimize the time required for both vehicles to return to the depot.
The authors developed a heuristic with the idea of “truckfirst, dronesecond” to solve
instances with 10 customers. Inspired by the work of Murray and Chu (2015), various
studies emerged to study TSPD (Agatz et al., 2018; MoshrefJavadi et al., 2020a) and
VRPD (Chiang et al., 2019; Kitjacharoenchai et al., 2020; Wang et al., 2017), considering
different constraints and objective functions.

Because the problem proposed in the present study belongs to FSVRP and considers time
windows, we focus on the works on FSTSP and FSVRP. Although there are numerous
studies on FSTSP and FSVRP, only a few consider time windows. Table 3.2 summarizes
related works on FSTSP and FSVRP with time windows. All of them require truck–drone
synchronization.

In their studies on FSTSP and FSVRP considering time windows, Di Puglia Pugliese and
Guerriero (2017) assumed that the time for preparing a drone for a new delivery is negligi
ble, while the service time at each customer location is not. An MIP model was proposed,
and instances with 5 and 10 nodes were solved using CPLEX. Di Puglia Pugliese et al.
(2020) further compared three transportation systems for parcel delivery: truck delivery,
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Table 3.2: Related works on FSTSP and FSVRP considering time windows

Reference Variant
Launch/

recovery time
Service time Flight range Objective Solution approach Maximum no. of nodes

Di Puglia Pugliese and Guerriero (2017) FSVRP N Y Distance Cost CPLEX 10
Di Puglia Pugliese et al. (2020) FSVRP N Y Distance Cost CPLEX 15
Di Puglia Pugliese et al. (2021a) FSVRP Y Y Energyrelated Cost Benders decomposition 15
Di Puglia Pugliese et al. (2021b) FSVRP N Y Distance Cost Heuristic 100
Kuo et al. (2022) FSVRP Y Y Endurance Cost Metaheuristic 50
Coindreau et al. (2021) FSVRP N Y Endurance Cost Metaheuristic 100
Luo et al. (2021) FSTSP Y Y Endurance Cost & customer satisfaction Metaheuristic 80
Wang et al. (2022) FSVRP Y Y Distance Cost Metaheuristic 200

drone delivery, and truck–drone delivery systems. The results of instances with up to 15
nodes solved by CPLEX indicated that the drone delivery system could reduce CO2 emis
sions by a factor of 144 compared with the truck delivery system; however, 44% of cus
tomers were not catered for. The truck–drone delivery system leveraged the advantages
of drone delivery while overcoming its drawbacks. Specifically, the truck–drone delivery
system could serve all customers and reduce transportation costs and CO2 emissions by
39% and 48%, respectively, compared with the truck delivery system. In addition to the
service time at each customer location, Di Puglia Pugliese et al. (2021a) also considered
the drone takeoff and landing times. They proposed a Benders decomposition approach
to solve instances with 5, 10, and 15 customers.

The previous studies developed exact methods to solve the truck–drone routing problem
with time windows. Owing to computational complexity, the methods can only solve small
instances. Several heuristic/metaheuristic algorithms have been proposed to solve large
scale instances. Di Puglia Pugliese et al. (2021b) extended Di Puglia Pugliese and Guer
riero (2017) work by providing a twophase heuristic embedded in a multistart framework
that can solve instances with up to 100 nodes. Kuo et al. (2022) devised a variable neigh
borhood search algorithm to solve the VRPD considering time windows (VRPDTW) with
50 customers, considering both customer service time and drone launch and recollection
times. Coindreau et al. (2021) presented an ALNS algorithm for a VRPDTW considering
customer service time while neglecting drone launch and recollection times. They intro
duced a speedup procedure to reduce the time consumed for each insertion process
in the ALNS. Their proposed algorithm could solve instances with up to 100 customers.
Wang et al. (2022) included the drone launch and recovery times into the service time
and devised an iterative local search algorithm to solve VRPDTW instances with up to
200 customers. The aforementioned studies aimed to minimize the total monetary costs
of truck and drone operations. Luo et al. (2021) considered two objectives: minimizing
transportation costs related to the travel distance and maximizing overall customer sat
isfaction related to the arrival time at each customer location. They designed a hybrid
multiobjective genetic optimization approach combined with a Pareto local search algo
rithm, and the largest instance solved involved 80 customers.

Considering the limited drone battery capacity, Di Puglia Pugliese and Guerriero (2017),
Di Puglia Pugliese et al. (2020, 2021b), and Wang et al. (2022) set a maximum distance
that a drone can travel for one delivery. Di Puglia Pugliese et al. (2021a) embedded an
energy consumption model into a VRPDTW model. Coindreau et al. (2021), Kuo et al.
(2022), and Luo et al. (2021) set a maximum flight endurance for drones. All of the above
studies neglected the drone recharge time or assumed that the drones could be fully
recharged instantly.

3.2.3 Paper contributions
The model developed in our study shares similarities with the SARP model in Li et al.
(2014) and the VRPD model in Sacramento et al. (2019). Nonetheless, our study has
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several novelties, as described below.

(1) Compared with SARP, we introduce drones to cooperate with ground vehicles. This
will lead to efficiency gains but also considerably increase the SARP model com
plexity.

(2) This study differs from the studies on VRPD in five aspects.

(i) In the existing VRPD studies, the ground vehicles collect goods and originate
from the depot. They only perform delivery. In our study, ground vehicles not
only deliver goods from the depot to customers but also pick up and deliver
passengers. Each passenger request is characterized by a pair of origin and
destination nodes and time windows at these nodes.

(ii) We introduce time window constraints into VRPD because passengers usually
have their preferred departure and arrival times, and customers can usually
pick up the parcels at a specific time only.

(iii) We assume that a drone can automatically take off from and land on DRBs.
Meanwhile, the goods compartment of DRBs houses a robotic shelving sys
tem that can automatically locate and prepare goods for drone delivery and
customer pickup; this means that drone launch/recovery and DRBs’ serving
of a request can occur simultaneously. In contrast, existing models require the
drivers to launch/recover the drone and deliver the parcel to the customers in
person, and the two processes cannot happen simultaneously.

(iv) In contrast to the literature on VRPDTW, we consider soft time windows in
stead of hard time windows asssociated with each request. If a vehicle arrives
at a node before its service time window, it is required to wait until the start
time; otherwise, a penalty is imposed.

(v) Most existingmodels can only solve largescale instanceswith up to 100 nodes.
In our study, the largest instance contains 200 nodes.

In conclusion, the contributions of this paper are summarized as follows:

(1) We propose a new transport system that utilizes drones and ondemand transit for
the simultaneous transportation of passengers and goods.

(2) We introduce a new problem termed the passenger and parcel SARPD, which en
riches the existing studies on SARP, VRPD, and VRPDTW.

(3) We devise an MINP model for SARPD. The nonlinearity originates from the possi
bility of the drone to take off from or land on the DRBs at a node while passengers
are getting on/off or customers are picking up parcels at the same node. This leads
to a nonlinear formula for computing the arrival times of DRBs and drones at each
node. TheMINP is then linearized to make it solvable by CPLEX for small instances.

(4) We develop an ALNS algorithm to solve the proposed problem and conduct nu
merical experiments to demonstrate the model properties and examine the ALNS
efficiency. The largest instance solved in this study has 200 nodes.

3.3 Model formulation
3.3.1 Problem description
We consider a set of homogeneous DRBs, each containing separated and capacitated
compartments for passengers and goods and equipped with a drone for goods delivery.
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Owing to capacity and battery constraints, the drone only visits one customer during each
flight. We assume that enough backup DRBs and drones are present at the depot so that
each request can be served by one vehicle following the “depot–request location–depot”
route. This is a reasonable assumption because transportation companies usually pur
chase sufficient vehicles to fulfill customer demands (Wang & Sheu, 2019). The task of the
DRBs is to deliver goods to customers and fulfill travel requests from passengers. Each
route is restricted by a maximum travel time. All goods requests have the same origin
(i.e., a single depot). The parcel for each goods request is placed in a single position on
the shelf inside the goods compartment of the DRBs. Considering the attributes of goods,
such as weight and the suitability of the delivery location for drone landing, some goods
can only be served by the DRBs, while others can be served by either a DRB or a drone.
Each passenger’s travel request includes origin and destination nodes and time windows
at the corresponding nodes. If more than one passenger travels between the same ori
gin and destination nodes within the same time interval, these passenger requests are
combined into one, with an additional attribute indicating the number of passengers.

Both request types have a soft time window. If a vehicle arrives at a node before its earliest
service time, it is required to wait until its start time. If a vehicle or drone arrives at a node
after its latest service time, there is a penalty cost.

Both DRBs and drones must depart from and return to the depot at most once, either in
tandem or independently. When the drone is not in service, it is transported by a DRB.
The drone can be launched and retrieved at the depot or request locations when the DRB
is stationary. It can be launched and recovered multiple times during a DRB route, but
the launch and recovery points for a sortie (i.e., drone flight) cannot be the same. There
is a setup time required to launch and retrieve a drone at the launch and recovery nodes.
There is also a constant service time for each stop visited by the DRB, during which
customers can pick up goods from the goods compartment and passengers can get on
and off the passenger coach. As mentioned in Section 3.2.3, drone launch and recovery
can occur while customers are picking up parcels or passengers are getting on/off the
bus, owing to the robotic shelving system installed in the goods compartment.

We categorize all stops into five types according to the drone activities at the node, and
designate the corresponding nodes as follows: (i) Stops in which no dronerelated activity
occurs belong to the “common node”; (ii) stops in which a drone is taking off belong to
the “launch node”; (iii) stops in which a node is served by the drone belong to the “drone
service node”; (iv) stops in which a drone is landing belong to the “recovery node”; and
(v) stops in which a drone first lands and then takes off belong to the “recovery–launch
node”. At each node, the activities of customers/passengers and drone launch and recov
ery operations do not influence each other, meaning that the activities can be completed
simultaneously.

To save the drone’s battery, we assume that the drone can start landing immediately when
the DRB arrives at the node, while the drone can start taking off immediately when or after
the DRB starts catering to the service requests at the node. The launch and recovery times
are longer than the service time at a node.

SARPD aims to determine the DRB and drone routes according to the above description.
The objective is to minimize the total transportation cost and penalty cost associated with
the violation of time windows for serving all customers and passengers.

3.3.2 Notation
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Sets
K Set of homogeneous DRBs, K = {1, 2, ..., |K|}, where |K| is the number

of vehicles.
So
p Set of origins of passenger requests, So

p = {1, 2, ..., |P |}, where |P | is the
number of passenger requests.

Sd
p Set of destinations of passenger requests, Sd

p =
{|P |+ 1, |P |+ 2, ..., 2|P |}.

Sp Set of passenger stops, Sp = So
p ∪ Sd

p .
Sg Set of goods stops (destinations), Sg = {2|P |+ 1, 2|P |+ 2, ..., 2|P |+ |G|},

where |G| is the number of parcel requests.
Sg

′ Sg
′ ⊆ Sg, set of parcel requests that can be delivered by a drone.

S Set of passenger and goods stops, S = Sp ∪ Sg.
N Set of all nodes,N = Sp∪Sg∪{0, 2|P |+ |G|+ 1}, where 0 and 2|P |+|G|+1

are the depot nodes indicating the start and end nodes of a route.
N0 Set of nodes from which a DRB may depart, N0 = {0, 1, ..., 2|P |+ |G|}.
N+ Set of nodes to which a DRB may arrive, N+ = {1, 2, ..., 2|P |+ |G|+ 1}.
∆+(i) Set of nodes reachable from node i ∈ N0, ∆+ (i) = N+\ {i}.
∆−(i) Set of nodes that can be used to reach node i ∈ N+, ∆− (i) = N0\ {i}.
Parameters
CapP Capacity of the passenger compartment of a DRB.
CapG Capacity of the goods compartment of a DRB.
T V
ij Time required for a DRB to travel from node i ∈ N0 to node j ∈ N+.

TD
ij Time required for a drone to travel from node i ∈ N0 to node j ∈ N+.

E Maximum flight duration of a drone.
ST V

i Service time for a DRB at node i ∈ S.
STD

i Service time for a drone at node i ∈ Sg
′.

Qi Number of passengers boarding a DRB at node i ∈ S. Qi+|P | = −Qi, ∀i ∈
So
p and Qi = 0, ∀i ∈ Sg.

Tmax Maximum travel time on a DRB route.
CV
ij Transportation cost for a DRB traveling from node i ∈ N0 to node j ∈ N+.

CD
ij Transportation cost for a drone flying from node i ∈ N0 to node j ∈ N+.

[Ei, Li] The earliest and latest service start times at node i ∈ S.
SL Setup time required to launch a drone.
SR Setup time required to retrieve a drone.
αi Unit delay penalty at node i ∈ S.
η Maximum intermediate stops between the origin and destination of a pas

senger request.
Decision Variables
xkij xkij = 1 if DRB k ∈ K travels from node i ∈ N0 to node j ∈ N+; otherwise,

xkij = 0.
ykajb ykajb = 1 if sortie < a, j, b > is used in the route of DRB k ∈ K, where

a ∈ N0 represents the launch node of the drone, j ∈ Sg
′ represents the

goods request served by the drone, b ∈ N+ represents the rendezvous
node of the drone; otherwise, ykajb = 0.

wk
i Load of the passenger compartment of DRB k ∈ K after the visitation of

node i ∈ S.
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tkj If node j ∈ N+ is a recovery node or recoverylaunch node, tkj is the time
point at which the drone is recovered by DRB k ∈ K at node j ∈ N+;
otherwise, tkj is the arrival time of DRB k ∈ K at node j ∈ N or the arrival
time of drone k ∈ K at node j ∈ Sg

′.
t′kj If node j ∈ S is a recovery node, t′kj is the time point at which DRB k ∈ K

leaves node j ∈ S; if node j ∈ S is a launch node or recoverylaunch node,
t′kj is the time point at which drone k ∈ K starts taking off; otherwise, t′kj is
the time point at which DRB k ∈ K starts service at node j ∈ S or drone
k ∈ K starts service at node j ∈ Sg

′.
uki A continuous variable indicating the position of node i ∈ N in the route of

DRB k ∈ K.
pkij pkij = 1 if node j ∈ S is visited after node i ∈ N0 in the route of DRB k ∈ K.
υka Binary auxiliary variable for linearization.
λk
a Delay of DRB/drone k ∈ K at node a ∈ S.

3.3.3 Formulation
In this section, SARPD is modeled as an MINP model and then linearized. The con
straints are categorized into three groups:

(i) routing and flow constraints (constraints 3.2–3.16 and 3.29–3.36);

(ii) scheduling and synchronization constraints (constraints 3.17–3.28);

(iii) decision variable domain constraints (constraints 3.37–3.40).

min
∑
k∈K

[ ∑
i∈N0

∑
j∈∆+(i)

CV
ijx

k
ij +

∑
c∈Sg

′

∑
a∈∆−(c)

∑
b∈∆+(c),b̸=a

(
CD

ac + CD
cb

)
ykacb +

∑
m∈S

αmλk
m

]
(3.1)

s.t. ∑
i∈∆−(j)

∑
k∈K

xk
ij = 1,∀j ∈ So

p ∪
(
Sg\Sg

′) (3.2)

∑
i∈∆−(j)

xk
ij =

∑
i∈∆−(j+|P |)

xk
i,j+|P |,∀j ∈ So

p , k ∈ K (3.3)

∑
i∈∆−(j)

∑
k∈K

xk
ij +

∑
a∈∆−(j)

∑
b∈∆+(j),b ̸=a

∑
k∈K

ykajb = 1,∀j ∈ Sg
′ (3.4)

∑
j∈N+

xk
0j ≤ 1,∀k ∈ K (3.5)

∑
j∈N0

xk
j,2|P|+|G|+1 ≤ 1,∀k ∈ K (3.6)

xk
0,2|P|+|G|+1 = 0,∀k ∈ K (3.7)

∑
i∈∆−(j)

xk
ij =

∑
i∈∆+(j)

xk
ji,∀j ∈ S, k ∈ K (3.8)

wk
0 = 0,∀k ∈ K (3.9)

wk
j ≥ wk

i +Qj −
(
1− xk

ij

)
M, ∀i ∈ N0, j ∈ S\ {i} , k ∈ K (3.10)
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max {0, Qi} ≤ wk
i ≤ min

{
CapP , CapP +Qi

}
,∀i ∈ S, k ∈ K (3.11)

∑
i∈N0

∑
j∈Sg,j ̸=i

xk
ij +

∑
c∈Sg

′

∑
a∈∆−(c)

∑
b∈∆+(c),b ̸=a

ykacb ≤CapG,∀k ∈ K (3.12)

∑
j∈Sg

′,j ̸=a

∑
b∈∆+(j),b ̸=a

ykajb ≤ 1,∀a ∈ N0, k ∈ K (3.13)

∑
j∈Sg

′,j ̸=b

∑
a∈∆−(j),a ̸=b

ykajb ≤ 1,∀b ∈ N+, k ∈ K (3.14)

2ykajb ≤
∑

h∈∆+(a)

xk
ah +

∑
l∈∆−(b)

xk
lb,∀a ∈ N0, j ∈

{
Sg

′ : j ̸= a
}
, b ∈

{
∆+ (j) : b ̸= a

}
, k ∈ K (3.15)

yk0,j,2|P|+|G|+1 = 0,∀j ∈ Sg
′, k ∈ K (3.16)

tk0 = 0,∀k ∈ K (3.17)

tk2|P|+|G|+1 ≤ Tmax
∑
i∈N0

xk
i,2|P|+|G|+1,∀k ∈ K (3.18)

t′
k
a ≥ tka, a ∈ N, k ∈ K (3.19)

t′
k
0+TV

0b+SL
∑

h∈Sg
′

∑
l∈∆+(h)

yk0hl+SR
∑

g∈Sg
′,g ̸=b

∑
f∈∆−(g),f ̸=b

ykfgb ≤ tkb+Tmax
(
1− xk

0b

)
,∀b ∈ N+, k ∈ K

(3.20)

t′
k
a + TV

ab +max

1−
∑

h∈Sg
′

h ̸=a

∑
l∈∆+(h)

l ̸=a

ykahl −
∑

n∈Sg
′

n ̸=a

∑
m∈∆−(n)

m ̸=a

ykmna, 0

STV
a + SL

∑
h∈Sg

′

h̸=a

∑
l∈∆+(h)

l ̸=a

ykahl

+ SR
∑
g∈Sg

′

g ̸=b

∑
f∈∆−(g)

f ̸=b

ykfgb ≤ tkb + Tmax
(
1− xk

ab

)
,∀a ∈ S, b ∈ ∆+ (a) , k ∈ K

(3.21)

t′
k
i + TD

ij + SL− Tmax

1−
∑

b∈∆+(j),b̸=i

ykijb

 ≤ tkj ,∀j ∈ Sg
′, i ∈ ∆− (j) , k ∈ K (3.22)

t′
k
j + TD

jb + STD
j + SR− Tmax

1−
∑

a∈∆−(j),a ̸=b

ykajb

 ≤ tkb ,∀j ∈ Sg
′, b ∈ ∆+ (j) , k ∈ K (3.23)

λk
b ≥

t′
k
0 + TV

0b + SL
∑

h∈Sg
′

∑
l∈∆+(h)

yk0hl − Tmax
(
1− xk

0b

)
− Lb

+

,∀b ∈ S, k ∈ K (3.24)

λk
b ≥


t′
k
a + TV

ab +max

1−
∑

h∈Sg
′

h̸=a

∑
l∈∆+(h)

l ̸=a

ykahl −
∑

n∈Sg
′

n ̸=a

∑
m∈∆−(n)

m ̸=a

ykmna, 0

STV
a

+ SL
∑

h∈Sg
′

h̸=a

∑
l∈∆+(h)

l ̸=a

ykahl − Tmax
(
1− xk

ab

)
− Lb



+

,

∀a ∈ S, b ∈ ∆+ (a) , k ∈ K

(3.25)
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λk
j ≥

t′
k
i + TD

ij + SL− Tmax

1−
∑

b∈∆+(j),b ̸=i

ykijb

− Lj

+

,∀j ∈ Sg
′, i ∈ ∆− (j) , k ∈ K

(3.26)

t′
k
a − ST V

a

∑
n∈Sg

′,n ̸=a

∑
m∈∆−(n),m ̸=a

ykmna ≥ Ea, ∀a ∈ S, k ∈ K (3.27)

tkb − t′
k
a ≤ E + Tmax

1−
∑

j∈Sg
′,j ̸=a,j ̸=b

ykajb

 ,∀a ∈ N0, b ∈ ∆+ (a) , k ∈ K (3.28)

1−M
(
1− xk

ij

)
≤ uk

j − uk
i ,∀i ∈ N0, j ∈ ∆+ (i) , k ∈ K (3.29)

uk
j − uk

i ≤ 1−M
(
xk
ij − 1

)
,∀i ∈ N0, j ∈ ∆+ (i) , k ∈ K (3.30)

uk
j ≤M

∑
i∈∆−(j)

xk
ij ,∀j ∈ N+, k ∈ K (3.31)

uk
j − uk

i ≤Mpkij ,∀i ∈ N0, j ∈ S\ {i} , k ∈ K (3.32)

uk
j − uk

i ≥M(pkij − 1) + 1,∀i ∈ N0, j ∈ S\ {i} , k ∈ K (3.33)

tkb − Tmax

3−
∑
j∈Sg

′

ykajb −
∑

m∈Sg
′,m ̸=l

m̸=a,m ̸=b

∑
n∈∆+(m)
n ̸=a,n ̸=b

yklmn − pkal

 ≤ tkl ,

∀k ∈ K, a ∈ N0, b ∈ N+, l ∈ S\ {a, b}

(3.34)

uk
i+|P | − uk

i ≥ 0,∀i ∈ So
p , k ∈ K (3.35)

uk
i+|P | − uk

i − 1 ≤ η, ∀i ∈ So
p , k ∈ K (3.36)

xk
ij ∈ {0, 1} ,∀i ∈ N0, j ∈ ∆+ (i) , k ∈ K (3.37)

ykajb ∈ {0, 1} ,∀k ∈ K, a ∈ N0, j ∈
{
Sg

′ : j ̸= a
}
, b ∈

{
∆+(j) : b ̸= a

}
(3.38)

uk
i , t

k
i , t

′k
i ≥ 0,∀i ∈ N, k ∈ K (3.39)

pkij ∈ {0, 1} ,∀i ∈ N0, j ∈ S\ {i} , k ∈ K (3.40)

Objective function (3.1) minimizes the sum of transportation costs and the penalty cost of
time window violation for serving all passenger and goods requests.

Constraints (3.2) ensure that each pickup point of passengers and each goods delivery
point that can only be served by DRBs (i.e.,Sg\S′

g) are visited by DRBs exactly once.
Constraints (3.3) ensure that whenever the pickup point of a passenger is visited, the
corresponding dropoff point is also visited. The constraints also ensure that the pickup
and delivery points of a passenger request are served by the same DRB. Constraints
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(3.4) ensure that the delivery points of goods that can be served by drones are visited
exactly once, either by a DRB or a drone. Constraints (3.5) ensure that all DRBs depart
from the depot at most once, and constraints (3.6) ensure that all DRBs return to the
depot at most once. Constraints (3.7) prohibit travel between depots. Constraints (3.8)
ensure flow conservation. Constraints (3.9) ensure that the DRB leaves the depot with no
passengers. Constraints (3.10) update the passenger load of the DRB, and constraints
(3.11) ensure that the DRB load does not exceed the passenger capacity. Constraints
(3.12) ensure that for one DRB route, the amount of goods served by the DRB or the
drone carried by the DRB does not exceed the capacity of the DRB’s goods compartment.
Constraints (3.13) ensure that the drone can be launched at most once in each location.
Constraints (3.14) ensure that the drone can be recovered at most once in each location.
Constraints (3.15) ensure that if a drone carried by DRB k ∈ K is launched from node
a ∈ N0, visits node j ∈ {Sg

′ : j ̸= a}, and is recovered at node b ∈ {∆+(j) : b ̸= a}, the
DRB must visit both nodes a and b. Constraints (3.16) prohibit the drone from launching
from the depot, serving a single customer, and returning to the depot because under
this condition, no cooperation exists between the drone and a DRB, which is not within
the scope of this study. Constraints (3.17) indicate that DRB k ∈ K and its drone are
ready at the depot at time 0. Constraints (3.18) limit the maximum travel time of a route.
Constraints (3.19) regulate the relationship between tkj and t′kj . Given node b visited by a
DRB and its preceding node a visited by the same DRB, if node b is designated for drone
retrieval, constraints (3.20) and (3.21) ensure that the time point at which the drone is
retrieved is later than the sum of the time point at which the corresponding vehicle finishes
all tasks (including serving a passenger/goods request and launching and/or retrieving a
drone) at node a, the time required for the vehicle to travel between nodes a and b, and
the drone recovery duration. If node b does not have a recovery task, constraints (3.20)
and (3.21) ensure that the arrival time of the vehicle at node b is later than the sum of
the time point at which the corresponding vehicle finishes all tasks (including serving a
passenger/goods request and launching and/or retrieving a drone) at node a and the
travel time between nodes a and b. If node a is the depot, constraints (3.20) are applied;
otherwise, constraints (3.21) are applied. Constraints (3.22) ensure that the arrival time
of a drone at its service node is later than the sum of the time point at which the drone
takes off at the launch node, the time required for launching, and the travel time between
the launch and service nodes. Constraints (3.23) ensure that the time point at which a
drone is retrieved at the recovery node is later than the sum of the time point at which
the drone starts its service, the customer service duration, the travel time between the
service and recovery nodes, and the drone recovery duration. Constraints (3.24) and
(3.25) calculate the delay of the DRB at its first visited node and other nodes, respectively.
Constraints (3.26) calculate the delay of drones at each drone service node. Constraints
(3.27) ensure that the vehicle can only start service after the earliest service start time.
Constraints (3.28) ensure the drone flight time does not exceed the battery’s endurance
time. Constraints (3.29) to (3.33) define the position of each node that DRB k ∈ K visits
and eliminate the subtours of DRBs. Constraints (3.34) prohibit new launches while the
drone is already performing a delivery task. Constraints (3.35) ensure that a DRB visits the
origin of passenger request i before its destination. Constraints (3.36) state that the DRB
can stop at most η times during a passenger request service. Constraints (3.37) to (3.40)
are the definitional constraints for the decision variables. Constraints (3.21) and (3.25)
are nonlinear. To linearize them, we introduce a binary auxiliary variable υka . Constraints
(3.41) to (3.44) are introduced to replace constraints (3.21). Constraints (3.42) to (3.46)
are introduced to replace constraints (3.25).
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tka + TV
ab + υk

aST
V
a + SL

∑
h∈Sg

′

h̸=a

∑
l∈∆+(h)

l ̸=a

ykahl + SR
∑
g∈Sg

′

g ̸=b

∑
f∈∆−(g)

f ̸=b

ykfgb

≤ tkb + Tmax(1− xk
ab),∀a ∈ S, b ∈ ∆+(a), k ∈ K

(3.41)

υk
a ≥ 1−

∑
h∈Sg

′

h̸=a

∑
l∈∆+(h)

l ̸=a

ykahl −
∑

n∈Sg
′

n ̸=a

∑
m∈∆−(n)

m ̸=a

ykmna,∀a ∈ S, k ∈ K (3.42)

υk
a ≤ 1− 1

2

 ∑
h∈Sg

′

h̸=a

∑
l∈∆+(h)

l ̸=a

ykahl +
∑

n∈Sg
′

n ̸=a

∑
m∈∆−(n)

m̸=a

ykmna

 ,∀a ∈ S, k ∈ K (3.43)

υk
a ∈ {0, 1} ,∀a ∈ S, k ∈ K (3.44)

λk
b ≥ t′

k
a + TV

ab + υk
aST

V
a + SL

∑
h∈Sg

′

h̸=a

∑
l∈∆+(h)

l ̸=a

ykahl − Tmax(1− xk
ab)− Lb,∀a ∈ S, b ∈ ∆+(a), k ∈ K

(3.45)

λk
b ≥ 0,∀b ∈ S, k ∈ K (3.46)

3.4 ALNS
To solve SARPD, an ALNS metaheuristic is proposed. The ALNS was first introduced by
Ropke and Pisinger (2006). It has been widely used and has shown high performance in
various VRP variants. In this section, we present the ALNS framework and introduce the
destroy and repair methods and the proposed time slack strategy.

3.4.1 The ALNS framework
Let s and s∗ denote the current and best solutions, respectively. s is initialized via the repair
method R0 described in Section 3.4.3 (Line 1) and set as the current best solution (Line
2). The ALNS improves the best solution s∗ by repeatedly generating a new solution s′ by
destroying and repairing the current solution (Lines 8–29). Let Ω− and Ω+ respectively
denote the sets of destroy methods, which eliminate part of the current solution, and repair
methods, which rebuild the partial solution to a feasible solution. In each iteration, one
destroy method d ∈ Ω− and one repair method r ∈ Ω+ are selected (Line 9) via the
roulette wheel selection method. Let ϖ−

d (ϖ+
r ) denote the weights of the destroy (repair)

method d ∈ Ω− (r ∈ Ω+). The probabilities of selecting a destroy and a repair method are
calculated as (3.47) and (3.48), respectively.

probd =
ϖ−

d∑
a∈Ω−

ϖ−
a
,∀d ∈ Ω− (3.47)

42 Innovative Lastmile Solutions:Integrating People and Goods Transportation



probr =
ϖ+

r∑
a∈Ω+

ϖ+
a
,∀r ∈ Ω+ (3.48)

At the start of the metaheuristic, the weights of each destroy method and repair method
are initialized to 1 (Line 5). When the update criterion is met, the values of the weights will
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be updated according to o− =
{
o−d

}
d∈Ω− and o+ = {o+r }r∈Ω+ , which represents the sets of

the number of times that the destroy and repair methods are selected, and ξ− =
{
ξ−d

}
d∈Ω−

and ξ+ = {ξ+r }r∈Ω+ , which denote the sets of accumulated scores of destroy and repair
methods. Each element in the above four sets is initialized to 0 (Lines 6–7) and updated
after each iteration.

Specifically, after each iteration, the usage frequencies of the destroy method o−d , ∀d ∈ Ω−

and the repair method o+r , ∀r ∈ Ω+ are increased by 1 (Line 22). The accumulated scores
of the selected destroy method ξ−d ,∀d ∈ Ω− and repair method ξ+r , ∀r ∈ Ω+ are increased
by the same score σ (Line 23). In each iteration, there are four preset values for σ to be
chosen from: σ1, σ2, σ3, and σ4, depending on the quality of the newly generated solution
for the iteration under consideration. We explain how to choose the σ value later.

The selected destroy and repair methods are sequentially applied to the current solution
to generate a new solution s′ (Line 10); however, the newly generated solution may not
always be accepted. The simulated annealing acceptance criterion is adopted to avoid
being stuck in a local optimum. Specifically, when the number of nonimprovement itera
tions is less than or equal to a predefined number noImpmax(Lines 11–19), we accept the
new solution s′ and set it as the current solution s with a probability p(s′, s) computed as

p(s′, s) = min
{
1,exp

(
(f (s)− f (s′))

T

)}
(3.49)

where T is the current temperature, which starts at T0 and decreases after each iteration
according to the expression T = βT , where β ∈ (0, 1) is a cooling parameter (Line 24). If
the number of nonimprovement iterations is greater than noImpmax, we set the best solu
tion at hand s∗ as the current solution s (Lines 20–21). The σ value is selected according
to the quality of the newly generated solution s′. If s′ results in a global best solution, then
σ = σ1. Otherwise, if s′ is accepted and better than the current solution s, then σ = σ2;
if s′ is accepted but worse than the current solution s, then σ = σ3; if s′ is rejected, then
σ = σ4. The four values, i.e., σ1, σ2, σ3, and σ4, can be tuned in the metaheuristic. In
Ropke and Pisinger (2006), the default setting was σ1 = 33, σ2 = 9, σ3 = 13, and σ4 = 0.

The entire search is divided into several segments, where a segment is a certain number
of iterations iterseg. At the end of each segment, the weights of the destroy and repair
methods are updated according to equations (3.50) and (3.51).

ϖ−
d ← ρϖ−

d + (1− ρ)
ξ−d
o−d

,∀d ∈ Ω− (3.50)

ϖ+
r ← ρϖ+

r + (1− ρ)
ξ+r
o+r

,∀r ∈ Ω+ (3.51)

where ρ ∈ [0, 1] is a reaction factor controlling the degree of change in weights. The
accumulated scores and the number of times each destroy or repair operator is selected
are reset to 0 (Lines 25–28).

The two termination criteria for the ALNS metaheuristic are as follows: the maximum
number of iterations iterstop is reached and the maximum number of iterations in which
the best solution is not improved noImpstop is reached. The algorithm stops and outputs
the best solution when either criterion is met.

3.4.2 Destroy methods
In each iteration, the selected destroy method removes a certain number of requests δ
from the current solution. The number is set as

δ ∈ {min (rmin,max (1, rlow (|P |+ |G|))) ,min (rmax,max (1, rup (|P |+ |G|)))} .
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rlow and rup are the lowest and highest ratios to control the percentage of requests to
be removed, respectively. rmin and rmax are the absolute upper bounds of the minimum
and maximum numbers of requests that can be removed, respectively; these parameters
ensure that the number of removed requests δ is reasonable for very large instances
(Sacramento et al., 2019). The absolute lower bounds on the minimum and maximum
numbers of removed requests are set to 1 in the case of very small instances.

We propose four removal operators. For ease of explanation, the following notation is
used in this subsection. Given a request req, let O(req) and D(req) denote the origin and
destination of req. If req is a goods request, O(req) is the depot. dij is the DRB travel
distance between nodes i and j. For all removal methods, the actual number of removed
requests when removing a selected request req could be more than one, such as between
two and five, depending on the type of selected request and the nature of the stop(s) of
the selected request. If request req is a goods request, we only need to check the type of
node D(req). If D(req) has launch or recovery tasks, the corresponding goods request
served by the drone should be removed. If request req is a passenger request, the type
of its origin node O(req) and destination node D(req) should be checked. Similarly, if
O(req) or D(req) is associated with a launch or recovery task, the corresponding goods
request served by the drone should also be removed.

D0) Random removal

This method randomly removes requests from the current solution until δ requests
are removed.

D1) Worst removal

Given a request req in a current solution s, the insertion cost of request req is de
fined as InsCost (req, s) = f (s)− f−req (s), where f−req(s) is the objective value of
solution s without request req. The worst removal method repeatedly removes the
request with the largest insertion cost InsCost (req, s) until δ requests are removed.

D2) Shaw removal

This method was proposed by Shaw (1998). The idea is to remove requests that
are similar in certain aspects. The similarity between requests req and req′, denoted
as R (req, req′), is measured according to the following equation:

R (req, req′) = φ1

(
dO(req),O(req′) + dD(req),D(req′)

)
+ φ2

(
|TO(req) − TO(req′)|+ |TD(req) − TD(req′)|

)
+ φ3 (|Wreq −Wreq′ |) + φ4kreq,req′

(3.52)

where Ti is the service start time of the vehicle at node i; Wreq is the number of
passengers/goods included in request req; and kreq,req′ = −1 if requests req and
req′ are in the same route; otherwise, kreq,req′ = 1; φ1, φ2, φ3, and φ4 are weights
associated with the four terms. dij , Ti, and Wreq are normalized. The smaller the
R (req, req′) value, the higher the similarity between requests req and req′. The
Shaw removal method first randomly chooses a request req from the current solu
tion s and then selects the request req∗ = argminreq′∈Req {R (req, req′)} to remove,
where Req denotes the requests in the current solution s. The two steps are re
peated until δ requests are removed.

D3) Nearest removal
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In this method, the request req to be removed is randomly selected. If request req is
a goods request, the node i∗ = argmini∈N

{
dD(req),i

}
is determined, where N de

notes the nodes in the current solution s. Then, the req’s nearest request req′ whose
origin or destination node is i∗ is removed. If request req is a passenger request,
nodes i∗1 = argmini∈N

{
dO(req),i

}
and i∗2 = argmini∈N

{
dD(req),i

}
are determined.

If dO(req),i∗1
≤ dD(req),i∗2

, the req’s nearest request req′ whose origin or destination
node is i∗1 is removed. Otherwise, the req’s nearest request req′ whose origin or
destination node is i∗2 is removed. The two steps are repeated until δ requests are
removed.

3.4.3 Repair methods
The repair methods rebuild a solution by inserting removed requests into the current partial
solution. Five customized repair methods are developed. Not all repair methods ensure
a feasible solution. We explain which repair methods may produce an infeasible solu
tion and how to deal with the infeasible solution after the introduction of all of the repair
methods.

The following notations are used in this section. Given a request req, the cost of inserting
request req into solution s in route rt at position pos is defined as InsCost (req, s, rt, pos) =
f (req, s, rt, pos)−f (req, s), where f (req, s, rt, pos) is the objective value of solution swith
request req in route rt at position pos, and f (req, s) is the objective value of solution s
with request req in its current position6. If req is not in solution s, f (req, s) is the objec
tive value of solution s without request req. Route rt refers to a DRB route. If request
req is a passenger request, pos represents the combination of the positions of both the
origin and destination nodes of req, and it can only be in a DRB route; if request req is
a goods request, pos could be the position of the delivery point of req in a DRB route
or in a drone sortie described by a tuple <launch node, delivery point of req, recovery
node>. RemovedSet is the set containing all removed requests in the previous destroy
step. RouteSet is the set containing all routes in solution s. DRBPositionSet is the set
containing all positions in the DRB route in route rt. DinRSet is the set containing goods
requests that can be served by drones but is now assigned to a DRB route. SortieSet
is the set containing all possible sorties for request req in route rt. If req is a passenger
request or goods request not eligible for drone service, the corresponding SortieSet is
empty.

R0) Greedy DRBfirst dronesecond repair method

This repair method consists of two phases.

In the first phase, request req∗ is repeatedly inserted into route rt∗ in solution s at
position pos∗, where

(req∗, rt∗, pos∗) = argmin req∈RemovedSet,rt∈RouteSet,
pos∈DRBPositionSet

{InsCost (req, s, rt, pos)}.

After the insertion of one request into the solution,RemovedSet,RouteSet,DinRSet,
DRBPositionSet, SortieSet, and s are updated. This phase stops until all requests
have been inserted into DRB routes.

6In the second phase of repair methods R0 and R1, a goods request eligible for drone service may be
moved from its current position (in a DRB route) to a new position (a drone sortie). “Inserting” a request
means either adding a request from the removed request set to a current solution or moving a request already
existing in the current solution from its current position to a new position.
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In the second phase, the minimum insertion cost of moving a goods request that
drones can serve from its current position in a DRB route to a drone sortie is checked.
If the cost is less than 0, then request dreq∗ will be inserted into a sortie dpos∗ in
route drt∗ in solution s, where

(dreq∗, drt∗, dpos∗) = argmin req∈DinRSet,rt∈RouteSet,
pos∈SortieSet

{InsCost (req, s, rt, pos)} .

Subsequently, solution s and setsRouteSet,DinRSet,DRBPositionSet, and SortieSet
are updated. If the corresponding request at the launch or recovery node of request
dreq∗ is eligible for drone service, the request(s) at the launch or recovery node will
be removed from DinRSet. This procedure is repeated until DinRSet is empty or

min req∈DinRSet,rt∈RouteSet,
pos∈SortieSet

{InsCost (req, s, rt, pos)} ≥ 0.

Putting all requests in the removed request setRemovedSet, we use R0 to construct
the initial solution.

R1) Regret DRBfirst dronesecond repair method

Repair method R1 involves two phases similar to R0. The difference is that in each
phase of R1, we use the 2regret criterion to select requests to operate. That is,
we insert the request with the largest regret value at the best position in solution s.
The regret value represents the difference in the costs associated with inserting a
request into the best and secondbest positions. Let InsCost (req, s, rt∗, pos∗) and
InsCost (req, s, rt∗∗, pos∗∗) denote the insertion cost of inserting req into the best
and the secondbest positions in solution s, respectively. The regret value of req in
solution s is calculated as

reg (req, s) = InsCost (req, s, rt∗, pos∗)− InsCost (req, s, rt∗∗, pos∗∗) .

R2) Best insertion repair method

This method involves the sequential insertion of request req from RemovedSet into
route rt∗ in solution s at position pos∗, where

(rt∗, pos∗) = argmin rt∈RouteSet,
pos∈DRBPositionSet∪SortieSet

{InsCost (req, s, rt, pos)} .

Sets RouteSet, DRBPositionSet, SortieSet, and RemovedSet, and solution s are
updated after each insertion.

R3) Balanced best insertion repair method

The balanced best insertion repair method aims to generate a relatively balanced
solution in which each route has a similar objective value. This method involves the
sequential insertion of request req from RemovedSet into route rtmin, a nonempty
route with the minimum objective value, and the insertion position pos∗ is determined
as

pos∗ = argminpos∈DRBPositionSet∪SortieSet {InsCost (req, s, rtmin, pos)} .

Sets RouteSet, DRBPositionSet, SortieSet, and RemovedSet, and solution s are
updated after each insertion.
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R4) Nearest best insertion repair method

The nearest best insertion repair method attempts to sequentially insert request req
from RemovedSet into the best position pos∗ of route rtnearest in solution s, where

pos∗ = argminpos∈DRBPositionSet∪SortieSet {InsCost (req, s, rtnearest, pos)} ,

and route rtnearest is the route that contains req’s nearest request req′. The concept
of the nearest request is defined in destroymethodD3. SetsRouteSet,DRBPositionSet,
SortieSet, and RemovedSet, and solution s are updated after each insertion.

The five repair methods are categorized into two groups. R0 and R1 belong to the first
group, G1. R2, R3, and R4 belong to the second group, G2. The basis for this classifica
tion is as follows: i) R0 and R1 are twostage heuristics. In the first stage, all requests are
inserted into a DRB route. In the second stage, requests that drones can serve may be
moved from the DRB route into a drone sortie. In contrast, R2, R3, and R4 feature one
stage. The costs of inserting a request eligible for drone service into a DRB route and
a drone sortie are compared, and the better route is selected. ii) In G1, we evaluate the
cost of inserting each candidate request into each position and choose the best request
with the best position to perform operations. This means that the request to be inserted
into the partial solution at each time is not known before the evaluation of all removed
requests. In contrast, in G2, the request to be inserted at each time is known.

R0, R1, and R2 will always produce feasible solutions because 1) we assume that there
are a sufficient number of vehicles (routes) ensuring that all requests can be served by
the DRB and 2) the request can be inserted into any route, including the empty route.
In contrast, R3 and R4 may produce infeasible solutions because a request can only be
inserted into a specific nonempty route, which may cause a violation of vehicle capacity
or the maximum travel time on a route. If an infeasible solution is generated, the repair
method returns the solution obtained before executing the destroy and repair operations
in the iteration.

3.4.4 Time slack strategy
The objective function minimizes the sum of the transportation and delay costs. Trans
portation costs can be reduced through the use of drones to deliver as many goods re
quests as possible because the operational cost of drones is much lower than that of
DRBs. To mitigate the delay cost, DRBs and drones should leave a preceding node as
soon as possible. If a preceding node is a launch node, leaving it too early may cause a
long drone or DRB waiting time at the service node. This may result in an infeasible flight
sortie because of the limited drone battery capacity. To address this, this study proposes
a time slack strategy. DRBs and drones are allowed to wait at a node after completing
the service task at the node. The time slack strategy will be adopted whenever the repair
methods try to insert a drone sortie into a DRB route but the total flight time of the drone
exceeds the maximum flight endurance. Through the implementation of this strategy, an
infeasible flight sortie may be rendered feasible.

An illustrative example is presented in Figure 3.1. The numbers above the black and blue
arrows represent the DRB and drone travel times between two nodes. The time window
at each node is indicated in brackets below the node box. The launch, recovery, and
service times at each node are set to 1 min. The maximum drone flight time is 30 min.
Consider a scenario in which a DRB carrying a drone arrives at node 1 at time 5 and the
earliest service time at node 1 is time 5. If the time slack strategy is not considered, at
time 5, the DRB starts its service at node 1, and the drone starts taking off at the same
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time. At time 6, the DRB leaves node 1 and proceeds to node 2, while the drone flies
to node 4. The two vehicles wait at nodes 2 and 4 until the earliest time window at their
service node is reached. Then, they travel to recovery node 3. Because the drone arrives
at node 3 earlier than the DRB, it continues flying and waits for the DRB’s arrival. Once
the DRB arrives at node 3, the drone starts landing. The total flight time of the drone is
33 min. Because 33 is greater than 30, the solution is infeasible.

Figure 3.1: Time slack strategy

Consider a time slack strategy in which the drone starts taking off at time 5 + (33 − 30) =
8. The drone flight time is recalculated as 30 min and is within the maximum flight time;
therefore, the solution becomes feasible. The time slack strategy does not guarantee a
better solution because postponing the departure time at a node may cause a delay at the
subsequently visited nodes. The time slack strategy is applied only when an infeasible
drone sortie occurs in the repair stage. The implementation of the strategy may render
an infeasible solution feasible and better than the current best solution.

3.5 Numerical experiments
All numerical experiments were conducted on a Huawei XH620 V3 computer with an Intel
Xeon Processor 2660v3 at 2.60 GHz. The CPLEX version was 12.9.0.0, and the ALNS
was coded in C++. For each instance, we ran the ALNS 10 times and chose the best
solution with the minimum objective value for our analysis.

3.5.1 Test instances and parameter tuning
The tested networks were generated according to the work by Sacramento et al. (2019).
The coordinates of each node were the same as those in Sacramento et al. (2019). The
coordinates were uniformly distributed on a grid of dimensions 2d× 2d around the depot
(0, 0). The distribution is expressed as U (−d, d). The first |P | nodes are the passen
ger request origins, and the following |P | nodes represent the passenger request des
tinations. The rest of the nodes denote goods requests, some of which can be visited
by drones. Each node is associated with a time window, and the interval between the
latest and earliest service start time is 15 min. The instances are named as structure
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|S|_|P |_|G|_|D| − −−Dim. |S| is the sum of the number of passenger stops and goods
stops; |D| is the number of goods requests that can be served by the drones; Dim rep
resents the grid dimensions; |S| and Dim are the same as in Sacramento et al. (2019),
while for instances with the same size, we use the instances with the generic name “1” in
Sacramento et al. (2019).

Here, we introduce the main setup of our experiments. The travel distances for a DRB
and a drone between two nodes were equal to the Manhattan distance and Euclidean
distance between the two nodes, respectively (Murray & Chu, 2015). The number of pas
sengers for a passenger request was randomly selected from {1, 2, 3}. The maximum
number of stops between the origin and destination of a passenger request service was
2. The DRB and drone service time at each node was 1 min. The delay penalty cost
was 1 $ /min for passenger requests (Transport DTU, 2022) and 0.5 $ /min for goods
requests7. The DRB speed was set to 35 miles/h, which is the same as the truck speed in
Sacramento et al. (2019) and similar to the speed limit of buses, passenger cars, and
vans in Denmark (https://trip.studentnews.eu/s/4086/77069-Buses-standard-speed-limits-
in-Europe.htm). The transportation cost for a DRB was 0.2 $/mile (Litman, 2022), and
the transportation cost for a drone was 10% of that for a ground vehicle (Sacramento et
al., 2019). It was assumed that there were enough DRBs and drones. The capacities for
passengers and goods were set to be the same, but they varied with the network settings.
When the number of nodes was less than 50, the capacity was set as 6; when the num
ber of nodes was 50 or 100, the capacity was 10; when the number of nodes was 150 or
200, the capacity was 20. The values of the other parameters were the same as those
in Sacramento et al. (2019); that is, the speed of a drone was 50 miles/h; the maximum
duration times of a DRB and a drone were set to 480 and 30 min, respectively; the launch
and recovery times were 1 min.

We set the values of most of the parameters used in ALNS to those in Sacramento et al.
(2019). We tuned two parameters: the lowest ratio of the number of removed requests
rlow to the number of overall requests (0.01, 0.05, 0.1) and the highest ratio of the number
of removed requests rup to the number of overall requests (0.2, 0.3, 0.4). The instances
used for parameter tuning were those with the largest dimensions for each instance with
a different number of nodes. We ran ALNS 10 times for each instance. The parameter
values with the best behavior (in terms of the average value of the minimum objective
values for tuning instances) were selected. The final parameter values were set as follows:
The initial temperature T0 was calculated as 0.004 × 1.1 times the objective value of the
initial solution for small instances and 0.004 times the objective value of the initial solution
for large instances. The cooling parameter β was set as 0.9997. The absolute upper
bounds on the minimum and maximum numbers of requests to be removed were set to
rmin = 20 and rmax = 40. The lowest and highest ratios of the number of requests to be
removed to the number of total requests were set to rlow = 0.1 and rup = 0.2, respectively.
The value of each weight used in the Shaw removal was set to 0.25. The reaction factor
was set to ρ = 0.9. The scores of the methods were set to σ1 = 33, σ2 = 9, σ3 = 13,
and σ4 = 0. The number of iterations in a segment was iterseg = 100. The maximum
number of nonimprovement iterations for setting the best solution as the current solution
was set to noImpmax = 250. The parameters defining the stopping criteria were set to
iterstop = 25000 and noImpstop = 7000.

7In the numerical experiments, we used the same αi∈Sp value (i.e., the unit delay penalty for passenger
requests) for all passenger requests and the same αi∈Sg value (i.e., the unit delay penalty for goods requests)
for all goods requests. The value of the unit delay penalty for a passenger request was greater than that for
a goods request.
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3.5.2 Comparison with CPLEX
Table 3.3 compares the results given by CPLEX and the ALNS for the instances with 6, 10,
and 12 nodes. For each instance, we ran the ALNS 10 times and obtained the minimum
objective value (zALNSmin), the average objective value (zALNSavg), the standard deviation
(Std.), and the average computation time of the 10 runs. The gap was calculated as
zALNS−zCPLEX

zCPLEX
× 100%. CPLEX solved all instances to optimality. The computation time

increased from 0.5 to 140.0 s with increasing instance size. In contrast, the proposed
ALNS yielded the same solution as CPLEX within 1.5 s and had a stable performance,
with a standard deviation of 0.0000.

Table 3.3: Results from CPLEX and ALNS for small SARPD instances

η Network CPLEX ALNS Gap

zCPLEX
Time
(s) zALNSmin zALNSavg Std. Time

(s)

0

6_2_2_2—5 4.0834 1.0 4.0834 4.0834 0.0000 0.6 0.00%
6_2_2_2—10 8.3111 0.9 8.3111 8.3111 0.0000 0.4 0.00%
6_2_2_2—20 10.4419 0.6 10.4419 10.4419 0.0000 0.4 0.00%
10_3_4_3—5 5.2563 38.7 5.2563 5.2563 0.0000 0.7 0.00%
10_3_4_3—10 12.5398 5.2 12.5398 12.5398 0.0000 1.1 0.00%
10_3_4_3—20 17.6415 6.6 17.6415 17.6415 0.0000 0.6 0.00%
12_4_4_3—5 7.1948 140.0 7.1948 7.1948 0.0000 1.0 0.00%
12_4_4_3—10 10.6261 25.4 10.6261 10.6261 0.0000 0.9 0.00%
12_4_4_3—20 25.2007 10.8 25.2007 25.2007 0.0000 0.6 0.00%

1

6_2_2_2—5 3.3346 0.5 3.3346 3.3346 0.0000 0.6 0.00%
6_2_2_2—10 8.3111 1.1 8.3111 8.3111 0.0000 0.5 0.00%
6_2_2_2—20 10.4419 0.5 10.4419 10.4419 0.0000 0.4 0.00%
10_3_4_3—5 4.5126 42.9 4.5126 4.5126 0.0000 0.8 0.00%
10_3_4_3—10 10.7309 4.6 10.7309 10.7309 0.0000 1.2 0.00%
10_3_4_3—20 17.5246 6.7 17.5246 17.5246 0.0000 0.8 0.00%
12_4_4_3—5 6.6085 118.4 6.6085 6.6085 0.0000 1.0 0.00%
12_4_4_3—10 10.5319 31.4 10.5319 10.5319 0.0000 1.0 0.00%
12_4_4_3—20 25.2007 14.7 25.2007 25.2007 0.0000 0.7 0.00%

2

6_2_2_2—5 3.2699 0.5 3.2699 3.2699 0.0000 0.8 0.00%
6_2_2_2—10 8.1790 1.1 8.1790 8.1790 0.0000 0.6 0.00%
6_2_2_2—20 10.4419 0.7 10.4419 10.4419 0.0000 0.5 0.00%
10_3_4_3—5 4.4476 35.8 4.4476 4.4476 0.0000 0.9 0.00%
10_3_4_3—10 10.7309 4.3 10.7309 10.7309 0.0000 1.5 0.00%
10_3_4_3—20 17.5246 6.5 17.5246 17.5246 0.0000 0.9 0.00%
12_4_4_3—5 6.4138 109.3 6.4138 6.4138 0.0000 1.2 0.00%
12_4_4_3—10 10.5319 31.3 10.5319 10.5319 0.0000 1.2 0.00%
12_4_4_3—20 25.2007 13.4 25.2007 25.2007 0.0000 0.9 0.00%

3.5.3 Analysis of operators
In this section, the performance of ALNS operators is analyzed using instances from the
tuning set.
3.5.3.1 Percentage of usage and scores of operators
Figure 3.2a presents the percentage of the total usage of operators. All destroy and
repair methods were used, and the usage frequency of each operator differed in the test
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instances. This suggests that the roulette wheel selection method can select appropriate
destroy and repair methods for each instance. On average, all destroy methods were
used with similar frequencies (Figure 3.2a, Average). Each of the repair methods R0, R1,
and R2 accounted for about 30.0% of the iterations. In contrast, the percentages of the
total usage of R3 and R4 were 6.5% and 4.8%, respectively (Figure 3.2a, Average).

Because we rewarded the new accepted solution according to the simulated annealing
acceptance criterion, the most used operators were not necessarily those that improved
the bestfound or current solution the most times. Following the analysis method adopted
by Sun et al. (2020), we present the percentages of the usage of operators that generated
a solution that improved the bestfound solution and the current solution in Figures 3.2b
and 3.2c, respectively. These percentages can help identify which operators are likely to
improve the bestfound and current solutions. Compared with other destroy methods, D1
was less likely to improve the bestfound and current solutions (Figures 3.2b and 3.2c,
Average). Regarding the repair methods, R1 exhibited the best performance (46.0%)
in improving the bestfound solution, followed by R0 (26.4%) and R2 (23.4%), while R3
(4.2%) and R4 (0.0%) made minimal contributions (Figure 3.2b, Average). Similarly, R1
also exhibited the best performance (45.7%) in improving the current solution, followed
by R0 (27.7%) and R2 (22.4%). R3 and R4 contributed almost equally (2.1%) to the im
provement of the current solution (Figure 3.2c, Average). Figures 3.2b and 3.2c indicate
that all destroy and repair methods contribute to the improvement of the bestfound or
current solution. Although R3 and R4 had limited impacts, they showed effectiveness in
some instances (Figure 3.2c, instances 10_3_4_3—20 and 12_4_4_3—20). Moreover,
as shown in Section 3.5.3.2, there were instances in which R3 and R4 were required to
diversify the search and help improve the overall performance of ALNS. Similar observa
tions have been reported by Chen et al. (2021), Ghilas et al. (2016a), Sun et al. (2020),
and Zhao et al. (2022).

Figure 3.3 presents the percentage of the total scores of operators. A comparison of
Figure 3.2a and Figure 3.3 reveals that the performances of each operator in terms of the
total usage and total scores were almost the same, with only minor differences in their
values.
3.5.3.2 Effects of operators and the time slack strategy
We examined the effects of the destroy and repair methods by removing one or more
operators from ALNS operators and compared the corresponding results with those given
by baseoperators, which contain all operators introduced in Section 3.4. The objective
function value gaps and computation time gaps of different combinations of operators
and baseoperators are presented in Tables 3.4 and 3.5, respectively. The column name
indicates the operator combination. NoD0, NoD1, NoD2, NoD3, NoR0, NoR1, NoR2,
NoR3, NoR4, NoR3R4, NoG1, and NoG2 represent the combination of operators without
D0, D1, D2, D3, R0, R1, R2, R3, R4, R3 and R4, G1, and G2 from the baseoperators,
respectively. Moreover, the effects of the time slack strategy were examined, and the
results are presented in the last column of the two tables.

Table 3.4 reveals that on average, removing operators degraded the solution’s quality,
with a maximum gap of 21.1%, which indicates that all elements in the ALNS contributed
to ensuring the solution’s quality. Although Figure 3.2 suggests that repair methods
R3 and R4 seemed to make limited contributions to improving the solution, the optimal
solution worsened without them in some instances (instances 150_55_40_30—40 and
200_60_80_60—40). The primary purpose of these operators was to enhance the di
versity of the neighborhood search and improve the overall ALNS performance. Repair
methods without G2 (R2, R3, and R4) resulted in a large gap for the small instances
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(a) Percentage of the total usage of operators

(b) Percentage of the usage of operators that generated a solution that improved the bestfound solution

(c) Percentage of the usage of operators that generated a solution that improved the current solution

Figure 3.2: Percentage of the usage of operators

Figure 3.3: Percentage of the total scores of operators

6_2_2_2—20 with six nodes (21.1%) and 12_4_4_3—20 with 12 nodes (10.0%). There
fore, the best insertionbased repair methods (G2) played an essential role in the ALNS.
The reason is explained in more detail as follows.
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Table 3.4: Comparison of the objective function value yielded by different combinations of operators with that yielded by
baseoperators

Objective value gap noD0 noD1 noD2 noD3 noR0 noR1 noR2 noR3 noR4 noG1 noG2 noR3R4 noSlack

6_2_2_2_20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 21.1% 0.0% 0.0%
10_3_4_3—20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
12_4_4_3—20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 10.0% 0.0% 0.3%
20_6_8_5—20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7%
50_20_10_8—40 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.0%
100_40_20_15—40 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%
150_55_40_30—40 0.4% 1.0% 1.1% 0.5% 0.8% 0.6% 0.6% 0.3% 0.6% 0.6% 0.6% 0.9% 1.3%
200_60_80_60—40 1.8% 1.3% 1.0% 1.7% 2.0% 3.1% 1.4% 0.5% 1.3% 2.1% 1.3% 1.8% 3.4%
Average 0.3% 0.3% 0.3% 0.3% 0.4% 0.5% 0.3% 0.1% 0.2% 0.4% 4.1% 0.3% 1.1%

In repair methods R0 and R1, not all nodes eligible for drone service could be inserted
into a drone sortie, causing the loss of good solutions. This is explained by the example
in Figure 3.4. We considered a scenario in which requests 3 and 4 were removed by a
destroy method and both could be visited by a drone; the partial solution after the destroy
procedure was a DRB route: 1 – 2 – 5. For R0 or R1, we first inserted requests 3 and 4 into
the DRB route. If drone sortie <1,4,3> is good enough (that is, regardless of the sequence
of the DRB route after the first stage, removing request 4 from the DRB route and inserting
it into a drone sortie whose launch node is at request 1 and recovery node is at request 3
will always be the first operation in the second stage of R0 and R1), there is no opportunity
for request 3 to be inserted into the drone sortie. This is because when a request from the
DRB route is moved to a drone sortie, supposing the drone can serve the corresponding
request(s) at its launch node or recovery node, the corresponding request(s) at the launch
node or recovery node, together with the drone service request, will be deleted from the
set of candidate requests that can be served by the drone. In this example, when we
moved request 4 from the DRB route to a sortie, both requests 3 and 4 were deleted from
the set of candidate requests that could be served by the drone, because request 3 was
the recovery node of a sortie. If the optimal solution is DRB route 1 – 2 – 5 with drone
sorties <1, 4, 2> and <2, 3, 5>, the ALNS with only repair methods R0 and R1 will not be
able to find the optimal solution.

Figure 3.4: An example in which ALNS with only repair methods R0 and R1 cannot find the optimal solution
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According to Table 3.4, removing the time slack strategy degraded the solution quality
by up to 3.4%. Although the time slack strategy contributed to minimizing the total cost,
it caused extra waiting time at some locations. Table 3.6 presents the total waiting time
caused by the time slack strategy in different instances. In real life, DRBs may not be able
to wait at every location, and idle DRBsmay cause traffic obstructions. This problem could
be solved by a model that considers different objectives, such as minimizing the total time
span of serving all requests, regulating the locations where vehicles can wait, or setting
the maximum waiting time at each location. Nevertheless, this problem is beyond the
scope of this study, and we leave it for our future research.

As indicated by Table 3.5, removing destroy operators from baseoperators reduced the
computation time. Specifically, on average, the computation time was reduced by 14.2%,
15.2%, and 20.5% when repair methods D0, D1, and D3 were removed, respectively.
Removing D2 reduced the computation time by only 1.8%. The influence of the removal
of repair operators on computation time was complex. Removing repair operators R0,
R1, R3, and R4 reduced the computation time by 10.3% to 21.8% on average. The com
putation time was considerably reduced (by 52.3%) when operators in group G1 were
removed, which is logical considering the higher time complexities of R0 and R1. In con
trast, operator combinations without repair method R2 (i.e., NoR2 and NoG2) led to a
longer computation time. As presented in Figure 3.2, repair methods R0, R1, and R2
were the most frequently used operators in the ALNS. Compared with R0 and R1, R2
had a lower time complexity. When R2 was removed, the usage of R0 and R1 increased,
leading to a longer computation time. Because R3 and R4 were seldom used, remov
ing them did not significantly affect the computation time. Moreover, eliminating the time
slack strategy reduced the computation time by 12.5% on average.

According to the results presented in Table 3.4 and Table 3.5, we recommend that decision
makers use the operator combination NoG1 when they need to make a fast decision.
This could significantly reduce the computation time without sacrificing too much solution
quality. However, to better understand the proposed model’s properties, we used the
baseoperators in our following experiments because they produced the best solutions
among all operator combinations.

Table 3.5: Comparison of computation time used by different combinations of operators with that used by baseoperators

CPU time gap noD0 noD1 noD2 noD3 noR0 noR1 noR2 noR3 noR4 noG1 noG2 noR3R4 noSlack

6_2_2_2_20 15.0% 6.9% 2.8% 25.9% 8.5% 9.1% 9.5% 10.3% 10.9% 30.6% 15.6% 4.9% 0.0%
10_3_4_3—20 12.1% 9.5% 5.2% 23.2% 19.4% 16.2% 9.2% 8.6% 2.2% 50.1% 53.1% 37.6% 14.0%
12_4_4_3—20 9.6% 11.7% 2.7% 22.1% 11.3% 13.9% 7.5% 4.7% 7.2% 40.1% 13.3% 13.3% 16.5%
20_6_8_5—20 16.2% 21.2% 0.7% 20.8% 15.3% 13.8% 6.6% 3.7% 10.8% 35.5% 12.4% 5.5% 1.0%
50_20_10_8—40 19.2% 24.9% 1.4% 16.6% 17.6% 5.0% 14.9% 19.6% 8.9% 43.1% 4.9% 6.5% 11.9%
100_40_20_15—40 25.0% 22.2% 12.0% 24.2% 39.1% 15.3% 27.7% 21.5% 15.3% 70.5% 4.7% 14.1% 9.1%
150_55_40_30—40 18.2% 19.0% 14.6% 24.2% 31.0% 15.9% 26.9% 22.7% 17.9% 65.5% 7.9% 12.5% 20.3%
200_60_80_60—40 1.3% 6.4% 4.8% 6.8% 32.0% 22.6% 16.4% 8.7% 9.4% 82.8% 18.2% 8.4% 28.9%
Average 14.2% 15.2% 1.8% 20.5% 21.8% 14.0% 14.9% 10.3% 10.3% 52.3% 11.2% 2.5% 12.5%

3.5.4 Results for VRPD and SARPD instances
Because this work is the first study of SARPD, there are no benchmark instances in the
published literature. We first applied our algorithm to a similar VRPD to assess its per
formance and then used the proposed ALNS to solve SARPD. As introduced in Section
3.2, SARPD combines the features of both SARP and VRPD. We tested our algorithm
with VRPD instead of SARP because SARPD is much more similar to VRPD. Table
3.7 summarizes the characteristics of SARP, VRPD, and SARPD. As seen in Table 3.7,
SARPD shares more similarities with VRPD. Moreover, from the modeling viewpoint, if
we set the number of passenger requests to 0, SARPD is reduced to VRPD. If we set
the number of parcel requests to 0, SARPD cannot be converted into SARP, and we
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Table 3.6: Total waiting time yielded by time slack strategy (min)

Total waiting time yielded by the time slack strategy (min)

6_2_2_2_20 0
10_3_4_3—20 0
12_4_4_3—20 20
20_6_8_5—20 31
50_20_10_8—40 51
100_40_20_15—40 32
150_55_40_30—40 146
200_60_80_60—40 402

automatically lose the characteristics of drones. If we assume that no goods requests
can be served by drones, SARPD cannot be transformed to SARP, because in SARP,
for both passenger and goods requests, the vehicle is required to visit its origin before its
destination, while in SARPD, the vehicle is not required to visit a goods request’s origin
(i.e., the depot) before the destination.

Table 3.7: Summary of the characteristics of SARP, VRPD, and SARPD

SARP VRPD SARPD

Passenger request described by <origin, destination> √ √
Parcel request described by <delivery point> √ √
Drone √ √

3.5.4.1 VRPD instances
Under the assumption that there are no passenger requests and that the time windows
at each node are very wide, SARPD is completely reduced to the VRPD presented by
Sacramento et al. (2019). In this subsection, “VRPD” refers to the problem described by
Sacramento et al. (2019). Table 3.8 reports the computation results of our proposed ALNS
with baseoperators on VRPD instances used by Sacramento et al. (2019). Columns
Min., Avg., and Std. present the minimum objective value, average objective value, and
standard deviation of the 10 runs of our algorithm, respectively. The “Gap” column rep
resents the gap between the minimum objective value found by our ALNS out of 10 runs
and the minimum objective value found by Sacramento et al. (2019). For the first nine
instances, Sacramento et al. (2019) presented the optimal solution given by CPLEX. Our
algorithm generated the optimal solution, as in Sacramento et al. (2019). For the other
instances for which Sacramento et al. (2019) only presented the best solution obtained
using their proposed ALNS algorithm, our algorithm sometimes found better solutions.
On average, the gap between the best solution found by our algorithm and that found
by Sacramento et al. (2019) was 0.04%. The results show that although our algorithm is
designed for a more general SARPD instead of VRPD, it can effectively solve VRPD,
similarly to a specialized algorithm for VRPD proposed by Sacramento et al. (2019).
3.5.4.2 SARPD instances
We conducted experiments on networks with 20, 50, 100, 150, and 200 nodes and three η
values (i.e., 0, 1, and 2). The results are presented in Table 3.9. Columns Min., Avg., and
Std. represent the minimum objective value, the average objective value, and the stan
dard deviation of the 10 runs. Gap is calculated as Avg.−Min.

Min. ×100%. The proposed ALNS
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Table 3.8: Results of our ALNS on VRPD instances

Instance Sacramento et al. (2019) Min. Avg. Std. Gap CPU time (min)

6.5.1 1.09821 1.09821 1.09821 0.0000 0.00% 0.0
6.10.1 2.40611 2.40611 2.40611 0.0000 0.00% 0.0
6.20.1 2.67759 2.67759 2.67759 0.0000 0.00% 0.0
10.5.1 1.65563 1.65563 1.65563 0.0000 0.00% 0.1
10.10.1 2.32647 2.32647 2.34515 0.0394 0.00% 0.1
10.20.1 4.45240 4.45240 4.45240 0.0000 0.00% 0.1
12.5.1 1.37381 1.37381 1.37381 0.0000 0.00% 0.1
12.10.1 2.68103 2.68103 2.68937 0.0264 0.00% 0.1
12.20.1 5.77759 5.77759 5.78967 0.0382 0.00% 0.1
20.5.1 1.79347 1.79347 1.79380 0.0010 0.00% 0.2
20.10.1 3.25253 3.25253 3.35375 0.0698 0.00% 0.3
20.20.1 7.34453 7.32295 7.37756 0.0373 0.29% 0.2
50.10.1 5.86134 5.86133 5.94868 0.1072 0.00% 4.7
50.20.1 10.45526 10.46399 10.62728 0.0578 0.08% 2.7
50.30.1 15.81788 15.77222 15.90068 0.1578 0.29% 2.2
50.40.1 20.37508 20.09076 20.42130 0.4499 1.40% 2.5
100.10.1 6.85741 6.86435 6.95659 0.0695 0.10% 32.3
100.20.1 13.60671 14.01043 14.08554 0.0532 2.97% 32.2
100.30.1 22.58818 21.97805 22.37424 0.2410 2.70% 25.1
100.40.1 29.13966 29.04801 29.49945 0.4113 0.31% 21.1
150.10.1 8.79027 8.71331 8.84395 0.1164 0.88% 153.8
150.20.1 17.31938 17.65019 18.18175 0.4526 1.91% 127.4
150.30.1 25.98537 25.68835 26.64764 0.7296 1.14% 106.1
150.40.1 34.01210 33.78728 35.05252 0.7552 0.66% 92.6
200.10.1 10.09452 10.38412 10.67978 0.2022 2.87% 355.3
200.20.1 21.21505 21.23676 21.75325 0.4384 0.10% 316.0
200.30.1 30.36023 30.58005 31.02294 0.3528 0.72% 266.2
200.40.1 41.49802 41.51556 42.14891 0.4578 0.04% 257.7
Average     0.04% 64.2

exhibited a stable performance over the 57 instances. The gap and standard deviation
are within 2% and 3, respectively, with a few exceptions.

Table 3.9: Performance of the proposed ALNS metaheuristic on largescale SARPD instances

η Network Min. Avg. Std. Gap CPU time (min)

0

20_6_8_5—5 11.1375 11.1375 0.0000 0.00% 0.0
20_6_8_5—10 21.4303 21.4318 0.0046 0.01% 0.0
20_6_8_5—20 45.7637 45.8995 0.0477 0.30% 0.0
50_20_10_8—10 55.6624 55.6908 0.0886 0.05% 0.7
50_20_10_8—20 88.6438 88.6499 0.0192 0.01% 0.7
50_20_10_8—30 159.7266 159.7273 0.0009 0.00% 0.4
50_20_10_8—40 230.6791 230.6896 0.0169 0.00% 0.3
100_40_20_15—10 99.6675 99.8171 0.1225 0.15% 8.3
100_40_20_15—20 186.8728 187.4096 0.6067 0.29% 6.6
100_40_20_15—30 291.5774 291.8542 0.4793 0.10% 5.7
100_40_20_15—40 388.0544 389.0056 0.5156 0.25% 3.5
150_55_40_30—10 123.9080 124.4212 0.4775 0.41% 41.8
150_55_40_30—20 248.8823 250.8753 0.8585 0.80% 38.5
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150_55_40_30—30 361.9345 363.8738 2.0932 0.54% 24.0
150_55_40_30—40 532.1596 534.1503 1.6316 0.37% 19.5
200_60_80_60—10 132.2916 133.3536 0.8808 0.80% 169.6
200_60_80_60—20 276.6224 277.9824 1.1870 0.49% 93.4
200_60_80_60—30 459.4269 462.9329 2.2421 0.76% 80.7
200_60_80_60—40 537.2808 539.1963 1.8413 0.36% 76.1

1

20_6_8_5—5 10.0928 10.0928 0.0000 0.00% 0.1
20_6_8_5—10 19.7241 19.7242 0.0000 0.00% 0.1
20_6_8_5—20 41.3300 41.3300 0.0000 0.00% 0.0
50_20_10_8—10 45.0251 45.6618 0.5508 1.41% 0.8
50_20_10_8—20 78.0259 78.1545 0.1660 0.16% 0.6
50_20_10_8—30 136.1432 136.1432 0.0000 0.00% 0.5
50_20_10_8—40 205.0499 205.0499 0.0000 0.00% 0.4
100_40_20_15—10 81.0970 82.1286 0.6780 1.27% 10.7
100_40_20_15—20 169.9069 170.7529 0.5037 0.50% 6.4
100_40_20_15—30 247.4877 249.2932 1.9043 0.73% 5.7
100_40_20_15—40 353.2098 354.3277 1.4020 0.32% 4.6
150_55_40_30—10 104.3026 105.6459 0.8814 1.29% 50.6
150_55_40_30—20 215.7509 217.3335 1.4215 0.73% 42.1
150_55_40_30—30 318.2711 320.0464 1.7279 0.56% 32.1
150_55_40_30—40 448.1320 451.8578 3.2835 0.83% 25.3
200_60_80_60—10 114.9565 116.6402 0.8800 1.46% 171.5
200_60_80_60—20 229.8977 231.7293 1.7907 0.80% 132.1
200_60_80_60—30 404.2448 408.9268 2.6839 1.16% 126.8
200_60_80_60—40 492.5034 495.4947 2.5606 0.61% 103.3

2

20_6_8_5—5 9.2524 9.2524 0.0000 0.00% 0.1
20_6_8_5—10 19.6796 19.6796 0.0000 0.00% 0.1
20_6_8_5—20 39.4754 39.4754 0.0000 0.00% 0.0
50_20_10_8—10 40.3762 40.7470 0.5819 0.92% 0.9
50_20_10_8—20 77.9900 78.1306 0.1496 0.30% 0.8
50_20_10_8—30 130.9397 131.1947 0.4169 0.19% 0.6
50_20_10_8—40 203.2683 203.3346 0.2097 0.03% 0.5
100_40_20_15—10 77.0423 78.4299 0.7457 1.80% 13.3
100_40_20_15—20 158.7958 159.9565 0.8639 0.73% 9.0
100_40_20_15—30 235.2368 236.6466 1.3188 0.60% 6.6
100_40_20_15—40 343.5126 345.5041 1.5995 0.58% 7.3
150_55_40_30—10 100.0475 100.9884 0.7961 0.94% 61.1
150_55_40_30—20 205.9190 207.8299 1.2262 0.93% 50.5
150_55_40_30—30 304.1630 305.9224 1.7162 0.58% 30.4
150_55_40_30—40 422.9446 428.5706 3.8084 1.33% 32.3
200_60_80_60—10 111.1394 114.0036 1.7025 2.58% 168.9
200_60_80_60—20 223.1800 227.5098 2.6625 1.94% 160.7
200_60_80_60—30 392.0947 394.0151 1.5241 0.49% 132.8
200_60_80_60—40 461.2592 472.1302 5.2387 2.36% 107.1

3.6 Management insights
In this study, we conducted sensitivity analysis by changing the values of the maximum
number of intermediate stops during one passenger request service, the maximum drone
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flight time, and the unit delay penalty for passengers and parcels.

3.6.1 Effects of the maximum number of intermediate stops during one
passenger request service

This study compared the system performances of 19 networks containing over 12 nodes
with η = 0, 1, 2. At η = 0, no passenger request shared a ride with either other passenger
requests or goods requests. The transportation system in this case can be regarded as a
separate passenger and parcel system, although it is not precisely a traditional separated
passenger and goods transportation system. Taking η = 0 as a base scenario for each
network, we calculated the percentage changes in the total cost and the DRBtraveled
miles for each network with η = 1 and η = 2.

As shown in Figure 3.5, the percentage changes in the total cost and DRBtraveled miles
were negative, which indicates that sharing a passenger request with another passenger
request or goods request caused a significant reduction in the total cost and DRBtraveled
miles. With increasing η value, the reduction in the total cost and DRBtraveled miles
increased in the 19 networks. On average, at η = 1 and η = 2, the total cost decreased
by 12.80% and 16.53%, respectively. The average percentage reduction in DRBtraveled
miles was comparable to the total cost reduction: 13.29% and 17.47% at η = 1 and η = 2,
respectively.

Figure 3.5: Percentage changes in the total cost (left) and the DRBtraveled miles (right) with different values of the
maximum number of stops during one passenger request service

We examined the optimal solution for each instance. Although there were enough DRBs,
sometimes postponing the service for some requests resulted in a lower total cost com
pared with using another DRB to serve the requests. This is reflected in the left plot of
Figure 3.6, as a delay cost occurred in 26 instances. Moreover, the increase in the η value
did not necessarily lead to a higher delay cost. On average, at η = 0, goods experienced
more delays than passengers, whereas at η = 1 and η = 2, passengers experiencedmore
delays than goods. The right side of Figure 3.6 shows that for all networks, fewer DRBs
were used when a passenger request shared a ride with other requests. With increasing
η value, the reduction in the number of used DRBs increased or was unchanged.

3.6.2 Effects of the endurance time of drones
This section compares the objective values under five drone battery endurance time set
tings: 5, 10, 20, 30, and 60 min at η = 2. Experiments were conducted on networks
with 100, 150, and 200 nodes. The scenario with an endurance time of 5 min was the
base scenario. Under this setting, the drones could fly for 2 min at most. Thus, few
sorties could be performed. Figure 3.7 shows the percentage change in the total cost
compared with the base scenario. The increase in the endurance of the drones magni
fied the reduction in the total cost, where the reduction degree depended on the degree of
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Figure 3.6: Delay cost (left) and the number of used DRBs (right) for each instance

the increase in endurance and the network dimensions. Increasing the endurance from
5 to 10 min saved more cost for smaller networks with dimensions of 10 and 20 than for
networks with dimensions of 30 and 40. Increasing the endurance to 20 min significantly
reduced cost (by 4.48% on average) for all networks. With the increase in endurance
to 30 and 60 min, the total cost decreased by up to 10.39% and 10.58%, respectively.
For some networks (100_40_20_15—10, 100_40_20_15—20, 200_60_80_60—10, and
200_60_80_60—20), the total costs under the two endurance settings did not largely dif
fer. This indicates that an increase in endurance is not always attractive.

Figure 3.7: Percentage change in the total cost under different endurance levels

We present the percentage changes in DRBtraveled miles, drone flight miles, and the
delay time in Figure 3.8. In most scenarios, with increasing battery endurance, the DRB
traveled miles decreased, and the drone flight miles increased. However, there were
some exceptions, because although the increased endurance allowed for the longdistance
traveling of drones, the longdistance traveling was timeconsuming; therefore, fewer sor
ties were performed in a route, which may result in more DRBtraveled miles or fewer
drone flight miles. There were no significant trends in delay time with increasing battery
endurance. Overall, the increase in drone battery endurance ultimately reduced the total
cost but possibly at the expense of increasing the total travel cost or the delay penalty.

3.6.3 Effects of unit delay penalty
The values of the unit delay penalty for passengers and goods can be used to control the
service level measured by the delay time. We examined the SARPD system performance
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(a) Percentage change in DRBtraveled miles under different endurance levels

(b) Drone flight miles under different endurance levels

(c) Delay time under different endurance levels

Figure 3.8: Performance of DRBtraveled miles (a), drone flight miles (b), and delay time (c) under different endurance
levels
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with three unit delay penalty combinations: (0, 0), (1, 0.5), and (10, 5). The first number
in the bracket is the unit delay penalty for passengers, and the second is for goods. We
conducted experiments using the instances depicted in Section 3.6.2. Table 3.10 presents
the total delay time for passengers and goods under different unit delay penalties. When
the unit delay penalty is 0 for both passengers and goods, the time windows at each node
are ignored during decision making, causing a huge total delay time for both passengers
and goods. Increasing the values of the unit delay penalty can considerably reduce the
total delay time. The larger the unit penalty value, the less the violation of the time window
constraints.

Table 3.10: Total delay time under different unit delay penalties

Total delay Passenger delay Goods delay
(0, 0) (1, 0.5) (10, 5) (0, 0) (1, 0.5) (10, 5) (0, 0) (1, 0.5) (10, 5)

100_40_20_15—10 5684 0 0 4594 0 0 1090 0 0
100_40_20_15—20 7832 0 0 6699 0 0 1133 0 0
100_40_20_15—30 7629 2 0 6644 2 0 985 0 0
100_40_20_15—40 5387 2 2 4915 0 0 472 2 2
150_55_40_30—10 12670 1 0 10326 1 0 2344 0 0
150_55_40_30—20 11794 1 0 10232 1 0 1562 0 0
150_55_40_30—30 12095 6 0 9839 6 0 2256 0 0
150_55_40_30—40 9382 4 0 7062 3 0 2320 1 0
200_60_80_60—10 13392 0 0 8981 0 0 4411 0 0
200_60_80_60—20 10658 1 0 7051 1 0 3607 0 0
200_60_80_60—30 10607 6 2 7697 3 0 2910 3 2
200_60_80_60—40 14625 5 0 9603 5 0 5022 0 0

Figure 3.9: Percentage change in DRBtraveled miles under different unit delay penalties

Considering the unit delay penalty (0, 0) as the base scenario, Figure 3.9 presents the
percentage change in DRBtraveled miles. Figure 3.10 shows the number of used DRBs.
The two figures show that more DRBs were used, and more miles were traveled to reduce
the time window violation and improve the service level.
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Figure 3.10: Number of used DRBs under different unit delay penalties

3.7 Conclusion
This paper introduces a new system that integrates passenger and goods transportation
using demandresponsive vehicles (DRBs) and drones. The problem combines the fea
tures of both passenger and parcel SARP and VRPD. The novelties of the proposed pas
senger and parcel SARPD are as follows: First, compared with SARP, in which parcels
are delivered using only ground vehicles, the proposed SARPD incorporates drones to
also perform parcel deliveries. Second, compared with VRPD, in which ground vehicles
undertake only delivery tasks, the ground vehicles in SARPD undertake both pickup and
delivery tasks.

We developed an MINP model for SARPD to determine the DRB and drone routes to
minimize the total transportation cost of vehicles and the delay cost. The MINP was
then linearized. Small instances with up to 12 nodes could be solved to optimality using
CPLEX. To solve large instances with up to 200 nodes, we developed an ALNS meta
heuristic. Numerical experiments showed that the proposed ALNS could find optimal
solutions equivalent to those of CPLEX for small networks and demonstrated the stable
and highquality performance of the ALNS on large networks. The results showed that
on average, sharing a passenger request with other passenger or parcel requests could
significantly reduce the total cost and the miles traveled by ground vehicles by more than
10%. Allowing more stops during a passenger request service increased cost savings.
Moreover, we revealed that extending the drone flight time reduced the total cost by up
to 10.58% but did not always guarantee a reduction in ground vehicletraveled miles.

Future studies could extend the model by introducing multiple objectives, such as mini
mizing the time span, maximizing the profit, and reducing carbon emissions. Moreover,
researchers may be able to develop more efficient algorithms for SARPD, for example,
by exploring more efficient ways to identify better ALNS operator combinations and us
ing reinforcement learning techniques. In addition, methods to optimize the DRB and
drone routes in a stochastic and dynamic environment should be developed. Finally, re
searchers should consider replacing DRBs with more environmentally friendly vehicles
such as electric vehicles and SAVs and develop corresponding models considering the
features of electric vehicles.

Innovative Lastmile Solutions:Integrating People and Goods Transportation 63



Acknowledgment
The first author acknowledges financial support from the China Scholarship Council (No.
202107940012).

64 Innovative Lastmile Solutions:Integrating People and Goods Transportation



References
Agatz, N., Bouman, P., & Schmidt, M. (2018). Optimization approaches for the traveling

salesman problem with drone. Transportation Science, 52(4), 965–981.
Anderson, J. M., Nidhi, K., Stanley, K. D., Sorensen, P., Samaras, C., & Oluwatola, O. A.

(2014). Autonomous vehicle technology: A guide for policymakers. Rand Corpo
ration.

Beirigo, B. A., Schulte, F., & Negenborn, R. R. (2018). Integrating people and freight trans
portation using shared autonomous vehicles with compartments. IFACPapersOnLine,
51(9), 392–397.

Boysen, N., Fedtke, S., & Schwerdfeger, S. (2021). Lastmile delivery concepts: A survey
from an operational research perspective. Or Spectrum, 43, 1–58.

Büyüközkan, G., & Ilıcak, Ö. (2022). Smart urban logistics: Literature review and future
directions. SocioEconomic Planning Sciences, 81, 101197.

Cavallaro, F., & Nocera, S. (2022). Integration of passenger and freight transport: A concept
centric literature review. Research in Transportation Business & Management, 43,
100718.

Chen, C., Demir, E., & Huang, Y. (2021). An adaptive large neighborhood search heuristic
for the vehicle routing problem with time windows and delivery robots. European
journal of operational research, 294(3), 1164–1180.

Cheng, R., Jiang, Y., & Nielsen, O. A. (2023). Integrated peopleandgoods transporta
tion systems: From a literature review to a general framework for future research.
Transport Reviews, 1–24.

Chiang, W.C., Li, Y., Shang, J., & Urban, T. L. (2019). Impact of drone delivery on sustain
ability and cost: Realizing the uav potential through vehicle routing optimization.
Applied energy, 242, 1164–1175.

Choudhury, S., Solovey, K., Kochenderfer, M. J., & Pavone, M. (2021). Efficient large
scale multidrone delivery using transit networks. Journal of Artificial Intelligence
Research, 70, 757–788.

Chung, S. H., Sah, B., & Lee, J. (2020). Optimization for drone and dronetruck combined
operations: A review of the state of the art and future directions. Computers &
Operations Research, 123, 105004.

Coindreau, M.A., Gallay, O., & Zufferey, N. (2021). Parcel delivery cost minimization with
time window constraints using trucks and drones. Networks, 78(4), 400–420.

Di Puglia Pugliese, L., & Guerriero, F. (2017). Lastmile deliveries by using drones and
classical vehicles. Optimization and Decision Science: Methodologies and Appli
cations: ODS, Sorrento, Italy, September 47, 2017 47, 557–565.

Di Puglia Pugliese, L., Guerriero, F., & Macrina, G. (2020). Using drones for parcels de
livery process. Procedia Manufacturing, 42, 488–497.

Di Puglia Pugliese, L., Guerriero, F., & Scutellá, M. G. (2021a). The lastmile delivery
process with trucks and drones under uncertain energy consumption. Journal of
Optimization Theory and Applications, 191(1), 31–67.

Di Puglia Pugliese, L., Macrina, G., & Guerriero, F. (2021b). Trucks and drones coopera
tion in the lastmile delivery process. Networks, 78(4), 371–399.

Elbert, R., & Rentschler, J. (2022). Freight on urban public transportation: A systematic lit
erature review. Research in Transportation Business & Management, 45, 100679.

European Commission. (2007). Green paper, towards a new culture for urban mobility,
Luxembourg: Publications Office of the European Union.

Innovative Lastmile Solutions:Integrating People and Goods Transportation 65



Ghilas, V., Demir, E., & Van Woensel, T. (2016a). An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows and scheduled
lines. Computers & Operations Research, 72, 12–30.

Ghilas, V., Demir, E., & VanWoensel, T. (2016b). A scenariobased planning for the pickup
and delivery problemwith time windows, scheduled lines and stochastic demands.
Transportation Research Part B: Methodological, 91, 34–51.

Golbabaei, F., Yigitcanlar, T., & Bunker, J. (2021). The role of shared autonomous vehicle
systems in delivering smart urban mobility: A systematic review of the literature.
International Journal of Sustainable Transportation, 15(10), 731–748.

Huang, H., Savkin, A. V., & Huang, C. (2020). A new parcel delivery system with drones
and a public train. Journal of Intelligent & Robotic Systems, 100, 1341–1354.

Kitjacharoenchai, P., Min, B.C., & Lee, S. (2020). Two echelon vehicle routing problem
with drones in last mile delivery. International Journal of Production Economics,
225, 107598.

Kuo, R., Lu, S.H., Lai, P.Y., & Mara, S. T. W. (2022). Vehicle routing problem with drones
considering time windows. Expert Systems with Applications, 191, 116264.

Lemardelé, C., Estrada, M., Pagès, L., & Bachofner, M. (2021). Potentialities of drones
and ground autonomous delivery devices for lastmile logistics. Transportation Re
search Part E: Logistics and Transportation Review, 149, 102325.

Levin, M. W., Kockelman, K. M., Boyles, S. D., & Li, T. (2017). A general framework for
modeling shared autonomous vehicles with dynamic networkloading and dynamic
ridesharing application. Computers, Environment and Urban Systems, 64, 373–
383.

Li, B., Krushinsky, D., Reijers, H. A., & Van Woensel, T. (2014). The sharearide prob
lem: People and parcels sharing taxis. European Journal of Operational Research,
238(1), 31–40.

Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016a). An adaptive large neigh
borhood search heuristic for the sharearide problem. Computers & Operations
Research, 66, 170–180.

Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016b). The sharearide prob
lem with stochastic travel times and stochastic delivery locations. Transportation
Research Part C: Emerging Technologies, 67, 95–108.

Li, H., Chen, J., Wang, F., & Bai, M. (2021). Groundvehicle and unmannedaerialvehicle
routing problems from twoechelon scheme perspective: A review. European Jour
nal of Operational Research, 294(3), 1078–1095.

Litman, T. (2022). Autonomous vehicle implementation predictions: Implications for trans
port planning. https://www.vtpi.org/avip.pdf

Luo, Q., Wu, G., Ji, B., Wang, L., & Suganthan, P. N. (2021). Hybrid multiobjective op
timization approach with pareto local search for collaborative truckdrone rout
ing problems considering flexible time windows. IEEE Transactions on Intelligent
Transportation Systems, 23(8), 13011–13025.

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., & Laporte, G. (2020). Droneaided rout
ing: A literature review. Transportation Research Part C: Emerging Technologies,
120, 102762.

Marinelli, M., Caggiani, L., Ottomanelli, M., & Dell’Orco, M. (2018). En route truck–drone
parcel delivery for optimal vehicle routing strategies. IET Intelligent Transport Sys
tems, 12(4), 253–261.

Milanés, V., & Shladover, S. E. (2014). Modeling cooperative and autonomous adap
tive cruise control dynamic responses using experimental data. Transportation
Research Part C: Emerging Technologies, 48, 285–300.

66 Innovative Lastmile Solutions:Integrating People and Goods Transportation

https://www.vtpi.org/avip.pdf


MoshrefJavadi, M., Hemmati, A., & Winkenbach, M. (2020a). A truck and drones model
for lastmile delivery: Amathematical model and heuristic approach. AppliedMath
ematical Modelling, 80, 290–318.

MoshrefJavadi, M., Lee, S., & Winkenbach, M. (2020b). Design and evaluation of a multi
trip delivery model with truck and drones. Transportation Research Part E: Logis
tics and Transportation Review, 136, 101887.

Mourad, A., Puchinger, J., & Van Woensel, T. (2021). Integrating autonomous delivery
service into a passenger transportation system. International Journal of Production
Research, 59(7), 2116–2139.

Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem:
Optimization of droneassisted parcel delivery. Transportation Research Part C:
Emerging Technologies, 54, 86–109.

Othman, K. (2022). Exploring the implications of autonomous vehicles: A comprehensive
review. Innovative Infrastructure Solutions, 7(2), 165.

Otto, A., Agatz, N., Campbell, J., Golden, B., & Pesch, E. (2018). Optimization approaches
for civil applications of unmanned aerial vehicles (uavs) or aerial drones: A survey.
Networks, 72(4), 411–458.

Peng, Z., Feng, R., Wang, C., Jiang, Y., & Yao, B. (2021). Online buspooling service at
the railway station for passengers and parcels sharing buses: A case in dalian.
Expert Systems with Applications, 169, 114354.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science, 40(4),
455–472.

Sacramento, D., Pisinger, D., & Ropke, S. (2019). An adaptive large neighborhood search
metaheuristic for the vehicle routing problemwith drones. Transportation Research
Part C: Emerging Technologies, 102, 289–315.

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle
routing problems. International conference on principles and practice of constraint
programming, 417–431.

Sun, P., Veelenturf, L. P., Hewitt, M., & Van Woensel, T. (2020). Adaptive large neighbor
hood search for the timedependent profitable pickup and delivery problem with
time windows. Transportation Research Part E: Logistics and Transportation Re
view, 138, 101942.

Tholen, M. v. d., Beirigo, B. A., Jovanova, J., & Schulte, F. (2021). The sharearide
problem with integrated routing and design decisions: The case of mixedpurpose
shared autonomous vehicles. Computational Logistics: 12th International Confer
ence, ICCL 2021, Enschede, The Netherlands, September 27–29, 2021, Proceed
ings 12, 347–361.

Transport DTU. (2022). Transport economic unit prices v2.0. https://www.cta.man.dtu.
dk/modelbibliotek/teresa/transportoekonomiske-enhedspriser

Van Duin, R., Wiegmans, B., Tavasszy, L., Hendriks, B., & He, Y. (2019). Evaluating new
participative city logistics concepts: The case of cargo hitching. Transportation
Research Procedia, 39, 565–575.

Vansteenwegen, P., Melis, L., Aktaş, D., Montenegro, B. D. G., Vieira, F. S., & Sörensen,
K. (2022). A survey on demandresponsive public bus systems. Transportation
Research Part C: Emerging Technologies, 137, 103573.

Wang, X., Poikonen, S., & Golden, B. (2017). The vehicle routing problem with drones:
Several worstcase results. Optimization Letters, 11, 679–697.

Innovative Lastmile Solutions:Integrating People and Goods Transportation 67

https://www.cta.man.dtu.dk/modelbibliotek/teresa/transportoekonomiske-enhedspriser
https://www.cta.man.dtu.dk/modelbibliotek/teresa/transportoekonomiske-enhedspriser


Wang, Y., Wang, Z., Hu, X., Xue, G., & Guan, X. (2022). Truck–drone hybrid routing
problem with timedependent road travel time. Transportation Research Part C:
Emerging Technologies, 144, 103901.

Wang, Z., & Sheu, J.B. (2019). Vehicle routing problem with drones. Transportation re
search part B: methodological, 122, 350–364.

Williams, E., Das, V., & Fisher, A. (2020). Assessing the sustainability implications of
autonomous vehicles: Recommendations for research community practice. Sus
tainability, 12(5), 1902.

Yu, V. F., Indrakarna, P. A., Redi, A. A. N. P., & Lin, S.W. (2021). Simulated annealing
with mutation strategy for the sharearide problem with flexible compartments.
Mathematics, 9(18), 2320.

Yu, V. F., Purwanti, S. S., Redi, A. P., Lu, C.C., Suprayogi, S., & Jewpanya, P. (2018).
Simulated annealing heuristic for the general sharearide problem. Engineering
Optimization, 50(7), 1178–1197.

Zhao, J., Poon, M., Zhang, Z., & Gu, R. (2022). Adaptive large neighborhood search
for the timedependent profitable dialaride problem. Computers & Operations
Research, 147, 105938.

68 Innovative Lastmile Solutions:Integrating People and Goods Transportation



4 A passenger and parcel sharearide
problem with drones: A column
generation approach

Cheng, R., Jiang, Y., Nielsen, O. A., & Van Woensel, T. (2023). A passenger and par
cel sharearide problem with drones: A column generation approach. Under Review in
Transportation Research Part B: Methodological

Abstract

The increasing worries regarding traffic congestion and environmental pollution necessi
tate innovative solutions to improve urbanmobility for people and goods. An emerging and
innovative concept involves the integration of passenger and parcel transportation using
demandresponsive buses (DRBs) and drones. This integration aims to reduce the num
ber of vehicles on the road by combining the movement of passengers and parcels. Each
DRB is equipped with a drone in this concept and collaborates in its operations. While
DRBs can serve passengers and parcels, drones are exclusively designated for parcel
delivery. In this context, we introduce the induced route planning problem for DRBs and
drones, termed the passenger and parcel ShareaRide Problem with Drones (SARPD).
We formulate a model based on paths to address this challenge and propose a column
generation approach. We develop a specialized label correcting algorithm to tackle the
pricing problem of column generation, which involves finding the best paths with limited
resources. We conducted thorough numerical experiments to validate the effectiveness
of our proposed methods. Our computational results demonstrate that the column gen
eration approach offers notable advantages: firstly, it outperforms the CPLEX solver for
smaller instances comprising up to 12 nodes; secondly, it achieves either optimal solu
tions or solutions very close to optimality within 3 hours for instances involving 50 nodes.
Finally, we present several valuable insights for managerial considerations based on our
findings.

Keywords: Urban logistics; Ondemand transit; Integrated passenger and parcel trans
portation; Sharearide problem with drones; Vehicle routing problem with drones
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4.1 Introduction
The transportation demands for people and goods increased significantly due to the rapid
pace of urbanization and the Ecommerce boom. Consequently, more and more vehicles
move on the road to fulfill the growing transportation demands, aggravating traffic conges
tion and environmental pollution. Thereby, scholars and practitioners proposed several
solutions to mitigate negative externalities of transportation.

One novel idea is integrating people and goods transportation because it can serve the
same transportation demands with fewer vehicles. Traditionally, these two types of trans
portation are operated separately. Given that passenger and freight vehicles usually
share and compete for road space and infrastructures, the European Commission (2007)
pointed out that “local authorities need to consider all urban logistics related to passenger
and freight transport as a single logistics system.” In recent decades, multiple forms of in
tegrating people and goods transportation, e.g., people and parcels sharing a taxi, freight
on transit, have been explored in the literature (Ghilas et al., 2018; Ghilas et al., 2016; Li et
al., 2014; Mourad et al., 2021) and successfully implemented in reallife (Cochrane et al.,
2017). For example, Liftago, a taxi company in Prague, allows drivers to carry passengers
and parcels simultaneously1; CargoTram/Etram transports waste via scheduled trams
operated on existing public transport lines in Zurich2; buses with underutilized capacity
are used to deliver parcels to rural areas in China3. For a comprehensive review of the
integrated people and goods transportation, readers are referred to Cheng et al. (2023a).

Emerging technologies present another approach to alleviating the adverse impacts of
transportation. For example, mobile and wireless communication technologies enable
transportation companies to provide ridehailing services, which could reduce traffic con
gestion (Yao & Bekhor, 2023). Autonomous vehicles could reduce passenger transport
related congestion by improving coordination between vehicles and reducing parking de
mand (Anderson et al., 2014; Othman, 2022). Although the impacts of autonomous ve
hicles on the environment vary depending on specific circumstances, there is a general
recognition of the positive environmental benefits of electrifying AVs (Golbabaei et al.,
2021). In city logistics, drones have been increasingly deployed for parcel delivery due to
their advantages in speed and low greenhouse gas emissions (Agatz et al., 2018). For
instance, Amazon and Walmart have provided drone delivery services to customers in
some areas, e.g., Texas, Arizona, and Florida4. Drones usually have a limited service
range, constrained by the limited battery capacity. To address this problem, a hybrid de
livery system that involves trucks serving as mobile platforms for drones’ takeoff, landing,
and recharging has been proposed (Murray & Chu, 2015).

Inspired by the two ideas mentioned above, Cheng et al. (2023b) first proposed a novel in
tegrated transportation system that combines the transportation of passengers and parcels
using demandresponsive vehicles (DRBs) and drones to mitigate the negative impacts of
increasing transportation demands in urban areas. In this integrated system, DRBs pro
vide doortodoor service for passengers and parcels, while drones are only responsible

1https://www.prague-taxi.co.uk/taxi-drivers-to-become-couriers-and-carriers-liftago-will-be-delivering-
packages-and-food/

2https://www.stadt-zuerich.ch/ted/de/index/entsorgung_recycling/publikationen_broschueren/fahrplan_
cargo_tram_und_e_tram.html

3https://m-live.cctvnews.cctv.com/live/landscape.html?toc_style_id=feeds_only_back&
liveRoomNumber=8265779572060234721&share_to=wechat&track_id=03E204C5-8EFA-4085-83AE-
5673F19394FE_701442053332

4(1) https://www.aboutamazon.com/news/transportation/amazons-drone-delivery-is-coming-to-texas; (2)
https://corporate.walmart.com/newsroom/2022/05/24/were-bringing-the-convenience-of-drone-delivery-to-
4-million-u-s-households-in-partnership-with-droneup
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for parcel delivery.

Figure 4.1 provides a schematic overview of the integrated passenger and parcel trans
portation system with DRBs and drones. This figure involves three passenger requests,
four parcel requests, and two DRBs, each equipped with a drone. The origindestination
pairs for the three passenger requests are 14, 25, and 36. Parcel requests 8, 9, and 10
are eligible for drone service, while parcel request 7 can be served only by a DRB. Given
that passenger vehicles and vans share the same urban environment, it makes sense to
combine some passengers and parcels instead of utilizing dedicated passenger vehicles
and vans, especially when the passenger stops and parcel stops are close. It is expected
that the operation cost and the number of used vehicles will be reduced in the proposed
system. The successful operation of such an integrated transportation system relies on
planning the routes for DRBs and drones. The corresponding route planning problem is
the passenger and parcel ShareaRide Problem with Drones (SARPD). Section 4.3.1
presents a more detailed description of the SARPD.

Figure 4.1: An illustrative example of the SARPD

Since the SARPD is a rather novel idea, little research has been conducted. To solve the
SARPD, Cheng et al. (2023b) developed a mixed integer nonlinear programming model
and an adaptive large neighborhood search (ALNS) metaheuristic for solving largesize
instances. Nevertheless, as it is generally acknowledged that metaheuristics can hardly
guarantee a global optimal solution, it is thus intriguing to evaluate the performance of
a metaheuristic algorithm by knowing the gap to a potential optimal solution. To fill this
niche, this study presents a column generation (CG) approach that provides a validated
lower bound for the SARPD. To the best of our knowledge, this is the first study that
presents an approach for evaluating the algorithm performance for the SARPD. Mean
while, we conducted extensive numerical experiments to evaluate our proposed solution’s
performance and explore SARPD’s properties.

To sum up, this paper studies an integrated passenger and goods transportation system
using DRBs and drones. It aims to reduce the number of vehicles on the road by combin
ing passenger and goods flows. The integration is exemplified by cases where taxis carry
passengers and parcels, and buses deliver packages to rural areas. It also considers the
potential of emerging technologies, specifically drones, to alleviate transportation issues.
The contributions of this paper are summarized as follows:

• We formulate a pathbased model to address the passenger and parcel sharearide

Innovative Lastmile Solutions:Integrating People and Goods Transportation 71



problem with drones (SARPD). This problem aims to optimize routes for DRBs and
drones to efficiently serve passengers and deliver parcels.

• The paper proposes a column generation approach to solve the SARPD efficiently.
The column generation approach aims to find optimal or nearoptimal solutions
within a reasonable time frame. The results of the extensive numerical experiments
demonstrate the advantages of the proposed column generation approach, particu
larly for smaller instances compared with the CPLEX solver and instances involving
up to 50 nodes.

• The paper concludes by presenting insights that can be valuable for decisionmakers
and managers in urban logistics. These insights are drawn from the computational
results and sensitivity analysis of critical parameters in the proposed transportation
system.

The remainder of this paper is organized as follows. Section 4.2 reviews the related
literature on SARP and VRPD. Section 4.3 and Section 4.4 present the mathematical
models and column generation approach for the proposed SARPD, respectively. Sec
tion 4.5 conducts extensive numerical experiments to evaluate the performance of the
CG. Section 4.6 conducts sensitivity analysis to explore the properties of the proposed
transportation system. Section 4.7 concludes this paper and provides future directions.

4.2 Literature review
This section reviews the literature on passenger and parcel sharearide problem (SARP)
and vehicle routing problem with drones (VRPD), two problems closely related to the
proposed SARPD, and compares the differences between the SARP, VRPD, and SARP
D.

4.2.1 SARP
Li et al. (2014) first proposed the SARP, a routing problem for integrating passenger and
parcel transportation using taxis. Three assumptions are made in this pioneering work to
prioritize passengers to parcels: A1) Passengers’ rides are subject to a maximum time
limit; A2) When serving one passenger request, the number of parcel stops that can be
visited is no more than a maximum number; A3) Passengers only share a ride with parcels
instead of other passengers. Yu et al. (2018) proposed a general SARP, which relaxes
the three assumptions and leads to a higher profit. Additionally, numerous features have
been added to the original SARP to cater to diverse application scenarios. For example,
Li et al. (2016b) investigated the SARP with stochastic travel times and delivery locations;
Yu et al. (2021) allowed passenger compartments to be used by parcels; Lu et al. (2022)
explored the routing problemwith amixed fleet consisting of electric and gasoline vehicles.

Existing approaches to solving the SARP include ALNS (Li et al., 2016a, 2016b) and
simulated annealing (Yu et al., 2021; Yu et al., 2018), mathheuristic (Lu et al., 2022; Yu
et al., 2023), and Lagrangian dual decomposition (Zhang et al., 2022).

4.2.2 Truckdrone routing problem
Murray and Chu (2015) first introduced the traveling salesman problem with drones (TSP
D) for a single truck and a single drone delivery system. The drone has maximum flight
endurance and can deliver only one parcel during one flight but can perform several flights
along the truck route. It is restricted that the launch and recovery locations for a drone flight
should be different. Murray and Chu (2015) defined a flying sidekick traveling salesman
problem (FSTSP) and a parallel drone scheduling traveling salesman problem (PDSTSP).
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In the former case, the truck and the drone work cooperatively, and they must be synchro
nized at some points, e.g., customer locations or the depot. In contrast, the truck and the
drone work independently without synchronization in the latter case. The objectives of
the FSTSP and PDSTSP in Murray and Chu (2015) are to minimize the latest time a
truck or a drone returns to the depot. Subsequently, various variants of the TSPD have
been studied, e.g., allowing a drone to be retrieved at its launch point (Agatz et al., 2018),
equipping one truck with multiple drones (Murray & Raj, 2020), allowing a drone to visit
multiple nodes during one flight (Poikonen & Golden, 2020), minimizing the costrelated
objectives (Ha et al., 2018), modeling the energy used by a drone (Jeong et al., 2019),
and considering time windows (Luo et al., 2021).

Another important branch in the truckdrone routing problem is the vehicle routing prob
lem with drones (VRPD). Unlike the TSPD, which involves only one truck, the VRPD
has multiple trucks. Similar to the TSPD, there are lots of variants of the VRPD in terms
of the regulation of launch and recovery locations of drones, the number of drones asso
ciated with each truck, multiple visits during one flight, objective functions, drone energy
modeling, time windows, etc. (Di Puglia Pugliese et al., 2021; Poikonen et al., 2017;
Sacramento et al., 2019; Wang et al., 2017; Xia et al., 2023). Most of the literature on
the VRPD assumes that the drone should take off and land on the same truck. One in
teresting variant of the VRPD is the introduction of docking hubs which serve as transfer
locations for drones to land and travel with another truck (Wang & Sheu, 2019; Xia et al.,
2023).

The solution approaches for the TSPD and VRPD are classified into heuristic / meta
heuristic algorithms and exact methods. Because both the TSPD and VRPD are NP
hard and cannot be solved to optimality within a polynomial time for large instances, re
searchers have devisedmany heuristic/metaheuristics such as evolutionarybased heuris
tic algorithms (Jeong et al., 2019), hybrid heuristic algorithm (Luo et al., 2021; Salama &
Srinivas, 2022), greedy randomized adaptive search procedure (Ha et al., 2018), ALNS
(Sacramento et al., 2019). Although heuristics and metaheuristics could solve large
scale instances with 100 to 200 nodes, evaluating the algorithm performance regarding
the solution quality is hard because these algorithms usually provide only the lower (up
per) bounds of the instances. In comparison, the upper (lower) bounds are not known.
Therefore, several exact methods such as branchandcut (Cavani et al., 2021; Tamke
& Buscher, 2021; Tiniç et al., 2023), branchandprice (Roberti & Ruthmair, 2021; Yang
et al., 2023; Zhou et al., 2023), branchandpriceandcut (BPC) (Li & Wang, 2023; Xia
et al., 2023; Yin et al., 2023a; Yin et al., 2023b; Zhen et al., 2023), dynamic programming
(Bouman et al., 2018), have been proposed. These exact methods could solve instances
with up to 20 to 50 nodes, depending on the attributes of the problems.

Since there are multiple ground vehicles, each equipped with a single drone in our pro
posed SARPD, our reviews focus on the VRPD variants, where there is at most one
drone per truck (see Table 4.1). For a more comprehensive review of the truckdrone
routing problem, readers are referred to Li et al. (2021) and Macrina et al. (2020).

Sacramento et al. (2019) developed a mixed integer programming model for a VRPD
in which each truck is paired with a drone. The drones have a limited flying time and
serve one customer per flight. An ALNS metaheuristic was used to solve instances with
up to 200 customers. Kuo et al. (2022) extended the model of Sacramento et al. (2019)
by introducing time windows for each customer. They devised a variable neighborhood
search (VNS) procedure to solve instances with 50 nodes. Coindreau et al. (2021) as
sumed each truck could carry at most one drone and set a limited number of used drones.
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Table 4.1: A summary of related studies on the VRPD

Reference Time window Multivisits Flight range Objective Solution method Maximum instance size

Sacramento et al. (2019) No No Endurance Cost ALNS 200
Kuo et al. (2022) Hard No Endurance Cost VNS 50
Coindreau et al. (2021) Hard No Endurance Cost ALNS 100
Wang et al. (2022) Hard No Distance Cost Iterated local search 200
Yin et al. (2023a) Hard Yes Endurance Cost BPC 45
Yin et al. (2023b) Hard Yes Endurance Cost BPC 45
Zhen et al. (2023) No Yes Endurance Cost BPC 14
This paper Soft No Endurance Cost CG 50
Multivisits: The drone visits more than one customer per flight.

They adopted an ALNS metaheuristic that could solve 100node instances. Wang et al.
(2022) investigated a VRPD with time windows (VRPDTW) considering timedependent
road travel time. Instances with 200 nodes were solved by an iterated local search heuris
tic. The four studies above do not allow a drone to serve more than one customer during
each flight. This restriction is relaxed by Yin et al. (2023a, 2023b) and Zhen et al. (2023).
Yin et al. (2023a) developed a BPC algorithm that could optimally solve most VRPDTW
instances with 45 customers. They further applied the BPC algorithm to a VRPDTW
with uncertain demands and road travel times (Yin et al., 2023b). Zhen et al. (2023) used
the BPC algorithm to solve the VRPD without considering time windows for customers,
causing a larger solution space than the VRPDTW. The largest instances they could
solve to optimality contain 14 nodes. All literature presented in Table 4.1 optimizes the
costrelated objectives. Most of them assumed the flight range of drones is constrained
by endurance, except for Wang et al. (2022), which restricted the distance a drone can
fly.

4.2.3 Position of SARPD
Table 4.2 summarizes the characteristics of the SARP, VRPD, and SARPD. From Table
4.2 we can see that the SARPD shares some similarities with the SARP and VRPD. For
example, both the SARPD and SARP could serve passenger and parcel requests and
provide onetoone pickup and delivery (PDP) service for passengers. Both the SARPD
and VRPD have two types of vehicles to serve parcel requests and the parcel requests
only have delivery requirements. By setting the count of passenger requests in SARPD
to zero, the SARPD is simplified to the VRPD.

However, there are some attributes in the SARPD, which make it more complicated than
the SARPD and VRPD. Compared with the SARP, the SARPD additionally includes
drones and requires synchronization between the two types of vehicles. Even if we as
sume no parcel request can be served by drones, the SARPD can not be reduced to the
SARP. The SARPD and SARP provide different services for parcels, i.e., delivery service
in the SARPD and onetoone PDP service in the SARP. Compared with the VRPD, the
ground vehicles in the SARPD perform onetoone PDP tasks for passenger transporta
tion and delivery tasks for parcel transportation. In contrast, the ground vehicles in the
VRPD only perform delivery tasks. The different attributes of requests, i.e., PDP or only
delivery requirement, lead to a huge difference in modeling the transportation systems
because onetoone PDP has pairing and precedence constraints on requests’ origins
and destinations while the other does not.

Overall, the SARPD, which incorporates aerial vehicles for parcel delivery, along with
ground vehicles performing both onetoone PDP and delivery services, is considerably
more complex than the SARP and VRPD, but has the potential to yield significant ef
ficiency gains. However, little research has been conducted on the SARPD, and the
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prior work only developed a metaheuristic for it. This study enriches the research on
the SARPD by providing an approach that could produce highquality solutions and can
be used to evaluate the efficiency of metaheuristics. Meanwhile, this study enriches the
existing studies on the SARP and VRPD.

Table 4.2: Summary of characteristics of the SARP, VRPD, and SARPD

Ground vehicle Drone

Passenger request Parcel request Parcel request
Delivery Pickup and Delivery Delivery Pickup and Delivery Delivery

SARP ✓ ✓
VRPD ✓ ✓
SARPD ✓ ✓ ✓

4.3 Problem description and model formulation
4.3.1 Problem description and solution characteristics
Let |P | and |G| denote the number of passenger and parcel requests. The SARPD is
defined on a complete undirected graph Graph = (N,A), where N = Sp ∪Sg ∪ {0, 2|P |+
|G| + 1}. Sp = So

p ∪ Sd
p , where So

p denote the origin stops of passenger requests and Sd
p

denotes the destination stops of passenger requests. Sg denote the destination stops of
parcel requests. Some parcel destinations, denoted by Sg

′, could be visited by drones. 0
and 2|P | + |G| + 1 are the origin and destination depots of DRBs. Each arc (i, j) ∈ A is
associated with a DRB travel cost CV

ij , a drone travel cost CD
ij . Let K denote the set of

DRBs. Each DRB is equipped with a drone and can carry a limited number of passengers
and parcels.

In the model development, we make the following assumptions: First, each passenger
request is characterized by its origin, destination, and demand value. In contrast, all parcel
requests stem from a central depot with diverse destinations, albeit with a uniform demand
for each parcel. All service requests are fulfilled precisely once. An ample supply of both
DRBs and drones is available to serve the requests. DRBs and drones have maximum
travel and flying time, respectively. Drones are configured to visit a single customer per
flight, with the flexibility to conduct multiple flights along a single route. Drones’ takeoff
and recovery points vary in each flight, although they can share the same node for landing
and takeoff. Each node has a predefined service time for DRBs involving passenger
boarding/alighting and for drones at customer locations. Notably, the time required to
set up drone launch and recovery is no less than the DRB service time. The launch
and recovery of drones can occur concurrently with passenger actions or recipient parcel
pickups due to an integrated robotic shelving system. Drones are optimized to take off
when a DRB commences customer service to conserve battery energy. Drones hover
during waiting periods at recovery locations. Time windows are in place for each node,
dictating when DRBs and drones can initiate service; delays within these windows incur
penalties. Lastly, the travel time and cost matrices adhere to the triangle inequality, a
property attainable by transforming arbitrary matrices (Ropke & Cordeau, 2009).

The SARPD presented in this study aims to find the paths of DRBs and drones to serve all
requests with the minimum operation costs, including the transportation costs of the two
types of vehicles and delay penalties. To facilitate the presentation of our mathematical
models in this section and solution method in Section 4.4, we introduce several concepts
to characterize the solution of SARPD and explain the solution shown in Figure 4.1 using
these concepts.
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Nodes

The stops of passengers and parcels are categorized into three types according to which
type(s) of vehicles visit this node.

i) A DRB node is a node visited by a DRB alone.

ii) A drone node is a node visited by a drone alone.

iii) A combined node is a node visited by a DRB and a drone together.

We define four additional node types according to the activities performed at a node.

iv) A common node is a node without either launch or recovery activities. It could be a
DRB node or a combined node.

v) A launch node is a combined node where a drone takes off.

vi) A recovery node is a combined node where a drone lands.

vii) A recoverylaunch node is a combined node where a drone lands first and then takes
off to perform another flight.

Arcs

i) A DRB arc is an arc traversed by a DRB alone, represented by i→ j.

ii) A drone arc is an arc traversed by a drone alone, represented by (i, j).

iii) A combined arc is an arc traversed by DRB and drone, represented by i⇒ j.

Legs

i) A DRB leg is a series of DRB arcs between two consecutive combined nodes.

ii) A drone leg consists of two consecutive drone arcs between two combined nodes,
represented by < i, j, k >, where i is the launch node, j is the drone node, and k is
the recovery node.

iii) A combined leg is a sequence of consecutive combined arcs.

Operation

Finally, a DRB and drone legs between the same pair of combined nodes constitute an
operation represented by “[]”.

Path

A path is feasible only if the following constraints are satisfied: (i) It starts and ends at the
depot; (ii) It visits a node once; (iii) The vehicle capacity constraint, the DRB maximum
travel time constraint, themaximumnumber of intermediate stops between one passenger
request service constraint, pairing and precedence constraints on passenger origins and
destinations, and drone operation constraints (i.e., flying time, one customer per flight,
different launch and recovery points in a flight) are satisfied.

A path can be considered concatenating combined legs and operations, and a SARPD
solution comprises one or multiple paths.

Example

Let 0 and 11 denote the start and end points of DRBs. We introduce the solution of Figure
4.1 using the previously defined concepts. The solution of Figure 4.1 has 1 DRB node
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(7), 6 combined nodes (1, 4, 3, 2, 5, 6), 3 drone nodes (10, 8, 9), 2 launch nodes (1,
3), 2 recovery nodes (4, 5), 1 recoverylaunch node (2), 2 common nodes (7, 6), 4 DRB
arcs (1→7, 7→4, 3→2, 2→5), 6 drone arcs ((1,10), (10,4), (3,8), (8,2), (2,9), (9,5)), 5
combined arcs (0⇒ 1, 4⇒ 11, 0⇒ 3, 5⇒ 6, 6⇒ 11 ), 3 DRB legs (1→7→4, 3→2, 2→5),
3 drone legs (<1,10,4>, <3,8,2>, <2,9,5>), and 4 combined legs (0⇒1, 4⇒11, 0⇒3,
5⇒6⇒11). The solution of Figure 4.1 contains two paths. The first path is represented by
a combination of 1 operation ([1→7→4, <1,10,4>]) and 2 combined legs (0⇒ 1, 4⇒ 11).
The second path is represented by a combination of 2 operations ([3→2, <3,8,2>], [2→5,
<2,9,5>]) and 2 combined legs (0⇒ 3, 5⇒ 6⇒ 11).

4.3.2 Notation
All notations used in Sections 4.3.3 and 4.3.4 are summarized in Table 4.3.

Table 4.3: Notations

Sets
K Set of homogeneous DRBs, K = {1, 2, ..., |K|}, where |K| is the number

of vehicles.
So
p Set of origins of passenger requests, So

p = {1, 2, ..., |P |}, where |P | is the
number of passenger requests.

Sd
p Set of destinations of passenger requests, Sd

p =
{|P |+ 1, |P |+ 2, ..., 2|P |}.

Sp Set of passenger stops, Sp = So
p ∪ Sd

p .
Sg Set of goods stops (destinations), Sg = {2|P |+ 1, 2|P |+ 2, ..., 2|P |+ |G|},

where |G| is the number of parcel requests.
Sg

′ Sg
′ ⊆ Sg, set of parcel requests that a drone can deliver.

S Set of passenger and goods stops, S = Sp ∪ Sg.
N Set of all nodes,N = Sp∪Sg∪{0, 2|P |+ |G|+ 1}, where 0 and 2|P |+|G|+1

are the depot nodes indicating the start and end nodes of a route.
N0 Set of nodes from which a DRB may depart, N0 = {0, 1, ..., 2|P |+ |G|}.
N+ Set of nodes to which a DRB may arrive, N+ = {1, 2, ..., 2|P |+ |G|+ 1}.
∆+(i) Set of nodes reachable from node i ∈ N0, ∆+ (i) = N+\ {i}.
∆−(i) Set of nodes that can be used to reach node i ∈ N+, ∆− (i) = N0\ {i}.
R Set of all feasible paths.
Parameters
CapP Capacity of the passenger compartment in each DRB.
CapG Capacity of the goods compartment in each DRB.
T V
ij Time required for a DRB to travel from node i ∈ N0 to node j ∈ N+.

TD
ij Time required for a drone to travel from node i ∈ N0 to node j ∈ N+.

E Maximum flight duration of a drone.
ST V

i Service time for a DRB at node i ∈ S.
STD

i Service time for a drone at node i ∈ Sg
′.

Qi Number of passengers boarding a DRB at node i ∈ S. Qi+|P | = −Qi, ∀i ∈
So
p and Qi = 0, ∀i ∈ Sg.

Tmax Maximum travel time on a DRB route.
CV
ij Transportation cost for a DRB traveling from node i ∈ N0 to node j ∈ N+.

CD
ij Transportation cost for a drone flying from node i ∈ N0 to node j ∈ N+.

[Ei, Li] The earliest and latest service start times at node i ∈ S.
SL Setup time required to launch a drone.
SR Setup time required to retrieve a drone.
αi Unit delay penalty at node i ∈ S.
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η Maximum intermediate stops between the origin and destination of a pas
senger request.

cr Cost of a path r ∈ R.
air air = 1 if path r ∈ R visits node i ∈ Sp ∪ Sg; otherwise air = 0.
Decision Variables
xkij xkij = 1 if DRB k ∈ K travels from node i ∈ N0 to node j ∈ N+; otherwise,

xkij = 0.
ykajb ykajb = 1 if sortie < a, j, b > is used in the route of DRB k ∈ K, where

a ∈ N0 represents the launch node of the drone, j ∈ Sg
′ represents the

goods request served by a drone, b ∈ N+ represents the rendezvous node
of the drone; otherwise, ykajb = 0.

wk
i Load of the passenger compartment of DRB k ∈ K after the visitation of

node i ∈ S.
tkj If node j ∈ N+ is a recovery node or recoverylaunch node, tkj is the time

point at which the drone is recovered by DRB k ∈ K at node j ∈ N+;
otherwise, tkj is the arrival time of DRB k ∈ K at node j ∈ N or the arrival
time of drone k ∈ K at node j ∈ Sg

′.
t′kj If node j ∈ S is a recovery node, t′kj is the time point at which DRB k ∈ K

leaves node j ∈ S; if node j ∈ S is a launch node or recoverylaunch node,
t′kj is the time point at which drone k ∈ K starts taking off; otherwise, t′kj is
the time point at which DRB k ∈ K starts service at node j ∈ S or drone
k ∈ K starts service at node j ∈ Sg

′.
uki A continuous variable indicating the position of node i ∈ N in the route of

DRB k ∈ K.
pkij pkij = 1 if node j ∈ S is visited after node i ∈ N0 in the route of DRB k ∈ K.
λk
a Delay of DRB/drone k ∈ K at node a ∈ S.

χr χr = 1 if path r ∈ R is included in the solution; otherwise χr = 0.

4.3.3 Arcbased formulation
Cheng et al. (2023b) first devised an arcbased formulation for the SARPD. They further
linearized the model to make it solvable by CPLEX for small instances. For the sake of
completeness of the paper and readers’ convenience, we copied their arcbased formu
lation and briefly explained the constraints in this section. A detailed explanation of each
constraint and the linearization method can be found in Cheng et al. (2023b).

min
∑
k∈K

[ ∑
i∈N0

∑
j∈∆+(i)

CV
ijx

k
ij +

∑
c∈Sg

′

∑
a∈∆−(c)

∑
b∈∆+(c),b̸=a

(
CD

ac + CD
cb

)
ykacb +

∑
m∈S

αmλk
m

]
(4.1)

s.t. ∑
i∈∆−(j)

∑
k∈K

xk
ij = 1,∀j ∈ So

p ∪
(
Sg\Sg

′) (4.2)

∑
i∈∆−(j)

xk
ij =

∑
i∈∆−(j+|P |)

xk
i,j+|P |,∀j ∈ So

p , k ∈ K (4.3)

∑
i∈∆−(j)

∑
k∈K

xk
ij +

∑
a∈∆−(j)

∑
b∈∆+(j),b ̸=a

∑
k∈K

ykajb = 1,∀j ∈ Sg
′ (4.4)

∑
j∈N+

xk
0j ≤ 1,∀k ∈ K (4.5)∑

j∈N0

xk
j,2|P|+|G|+1 ≤ 1,∀k ∈ K (4.6)
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xk
0,2|P|+|G|+1 = 0,∀k ∈ K (4.7)∑

i∈∆−(j)

xk
ij =

∑
i∈∆+(j)

xk
ji,∀j ∈ S, k ∈ K (4.8)

wk
0 = 0,∀k ∈ K (4.9)

wk
j ≥ wk

i +Qj −
(
1− xk

ij

)
M, ∀i ∈ N0, j ∈ S\ {i} , k ∈ K (4.10)

max {0, Qi} ≤ wk
i ≤ min

{
CapP , CapP +Qi

}
,∀i ∈ S, k ∈ K (4.11)∑

i∈N0

∑
j∈Sg,j ̸=i

xk
ij +

∑
c∈Sg

′

∑
a∈∆−(c)

∑
b∈∆+(c),b ̸=a

ykacb ≤CapG,∀k ∈ K (4.12)

∑
j∈Sg

′,j ̸=a

∑
b∈∆+(j),b ̸=a

ykajb ≤ 1,∀a ∈ N0, k ∈ K (4.13)

∑
j∈Sg

′,j ̸=b

∑
a∈∆−(j),a ̸=b

ykajb ≤ 1,∀b ∈ N+, k ∈ K (4.14)

2ykajb ≤
∑

h∈∆+(a)

xk
ah +

∑
l∈∆−(b)

xk
lb,∀a ∈ N0, j ∈

{
Sg

′ : j ̸= a
}
, b ∈

{
∆+ (j) : b ̸= a

}
, k ∈ K (4.15)

yk0,j,2|P|+|G|+1 = 0,∀j ∈ Sg
′, k ∈ K (4.16)

tk0 = 0,∀k ∈ K (4.17)
tk2|P|+|G|+1 ≤ Tmax

∑
i∈N0

xk
i,2|P|+|G|+1,∀k ∈ K (4.18)

t′
k
a ≥ tka,∀a ∈ N, k ∈ K (4.19)

t′
k
0+TV

0b+SL
∑

h∈Sg
′

∑
l∈∆+(h)

yk0hl+SR
∑

g∈Sg
′,g ̸=b

∑
f∈∆−(g),f ̸=b

ykfgb ≤ tkb+Tmax
(
1− xk

0b

)
,∀b ∈ N+, k ∈ K

(4.20)

t′
k
a + TV

ab +max

1−
∑

h∈Sg
′

h ̸=a

∑
l∈∆+(h)

l ̸=a

ykahl −
∑

n∈Sg
′

n ̸=a

∑
m∈∆−(n)

m ̸=a

ykmna, 0

STV
a + SL

∑
h∈Sg

′

h̸=a

∑
l∈∆+(h)

l ̸=a

ykahl

+ SR
∑

g∈Sg
′,g ̸=b

∑
f∈∆−(g),f ̸=b

ykfgb ≤ tkb + Tmax
(
1− xk

ab

)
,∀a ∈ S, b ∈ ∆+ (a) , k ∈ K

(4.21)

t′
k
i + TD

ij + SL− Tmax

1−
∑

b∈∆+(j),b̸=i

ykijb

 ≤ tkj ,∀j ∈ Sg
′, i ∈ ∆− (j) , k ∈ K (4.22)

t′
k
j + TD

jb + STD
j + SR− Tmax

1−
∑

a∈∆−(j),a ̸=b

ykajb

 ≤ tkb ,∀j ∈ Sg
′, b ∈ ∆+ (j) , k ∈ K (4.23)

λk
b ≥

t′
k
0 + TV

0b + SL
∑

h∈Sg
′

∑
l∈∆+(h)

yk0hl − Tmax
(
1− xk

0b

)
− Lb

+

,∀b ∈ S, k ∈ K (4.24)

λk
b ≥


t′
k
a + TV

ab +max

1−
∑

h∈Sg
′

h̸=a

∑
l∈∆+(h)

l ̸=a

ykahl −
∑

n∈Sg
′

n ̸=a

∑
m∈∆−(n)

m ̸=a

ykmna, 0

STV
a

+ SL
∑

h∈Sg
′

h̸=a

∑
l∈∆+(h)

l ̸=a

ykahl − Tmax
(
1− xk

ab

)
− Lb



+

,

∀a ∈ S, b ∈ ∆+ (a) , k ∈ K

(4.25)
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λk
j ≥

t′
k
i + TD

ij + SL− Tmax

1−
∑

b∈∆+(j),b ̸=i

ykijb

− Lj

+

,∀j ∈ Sg
′, i ∈ ∆− (j) , k ∈ K

(4.26)

t′
k
a − ST V

a

∑
n∈Sg

′,n ̸=a

∑
m∈∆−(n),m ̸=a

ykmna ≥ Ea, ∀a ∈ S, k ∈ K (4.27)

tkb − t′
k
a ≤ E + Tmax

1−
∑

j∈Sg
′,j ̸=a,j ̸=b

ykajb

 ,∀a ∈ N0, b ∈ ∆+ (a) , k ∈ K (4.28)

1−M
(
1− xk

ij

)
≤ uk

j − uk
i ,∀i ∈ N0, j ∈ ∆+ (i) , k ∈ K (4.29)

uk
j − uk

i ≤ 1−M
(
xk
ij − 1

)
,∀i ∈ N0, j ∈ ∆+ (i) , k ∈ K (4.30)

uk
j ≤M

∑
i∈∆−(j)

xk
ij ,∀j ∈ N+, k ∈ K (4.31)

uk
j − uk

i ≤Mpkij ,∀i ∈ N0, j ∈ S\ {i} , k ∈ K (4.32)
uk
j − uk

i ≥M(pkij − 1) + 1,∀i ∈ N0, j ∈ S\ {i} , k ∈ K (4.33)

tkb−Tmax

3−
∑
j∈Sg

′

ykajb −
∑

m∈Sg
′,m ̸=l

m ̸=a,m̸=b

∑
n∈∆+(m)
n̸=a,n ̸=b

yklmn − pkal

 ≤ tkl ,∀k ∈ K, a ∈ N0, b ∈ N+, l ∈ S\ {a, b}

(4.34)

uk
i+|P | − uk

i ≥ 0,∀i ∈ So
p , k ∈ K (4.35)

uk
i+|P | − uk

i − 1 ≤ η, ∀i ∈ So
p , k ∈ K (4.36)

xk
ij ∈ {0, 1} ,∀i ∈ N0, j ∈ ∆+ (i) , k ∈ K (4.37)

ykajb ∈ {0, 1} ,∀k ∈ K, a ∈ N0, j ∈
{
Sg

′ : j ̸= a
}
, b ∈

{
∆+(j) : b ̸= a

}
(4.38)

uk
i , t

k
i , t

′k
i ≥ 0,∀i ∈ N, k ∈ K (4.39)

pkij ∈ {0, 1} ,∀i ∈ N0, j ∈ S\ {i} , k ∈ K (4.40)

The objective function (4.1) is to minimize the sum of transportation costs of DRBs and
drones and the delay penalty at each node. Constraints are classified into three cate
gories.

• Routing and flow constraints (constraints (4.2)(4.16) and (4.29)  (4.36)).

Regarding DRB operations, constraints (4.2) ensure that nodes that can only be
served by DRBs are visited by DRBs exactly once. Constraints (4.3) ensure the
pickup and delivery points of a passenger request are visited by the same vehicle,
and constraints (4.35) ensure that the origin of a passenger request is visited before
its destination. Constraints (4.5)  (4.7) state that each DRB leaves and returns to
the depot at most once, and DRBs do not travel between depots. Constraints (4.8)
ensure flow conservation. Constraints (4.9)  (4.12) ensure that the DRB load does
not exceed the capacity for passengers and goods. Constraints (4.29)  (4.33) de
fine the position of each node that DRB visits and eliminate the subtours of DRBs.
Constraints (4.36) ensure at most η intermediate stops between one passenger re
quest service.

Regarding drone operations, constraints (4.13)  (4.14) ensure that a drone can be
launched or recovered at each location at most once. Constraints (4.16) prohibit the
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drone from picking up a parcel from the depot, visiting the customer, and returning
to the depot. Constraints (4.34) ensure that a drone can perform another delivery
task only after finishing the previous one.

Regarding the cooperation between DRBs and drones, constraints (4.4) ensure that
nodes eligible for drone service are visited exactly once, either by a DRB or a drone.
Constraints (4.15) ensure that the DRB must visit nodes where its corresponding
drone takes off and lands.

• Scheduling and synchronization constraints (constraints (4.17)  (4.28)). Constraints
(4.17) state that DRBs and drones are ready at the depot at time 0, and constraints
(4.18) ensure that DRBs and drones must return to the depot before exceeding the
maximum working time of a DRB. Constraints (4.19)  (4.23) calculate tka and t′ka and
regulate their relations. Constraints (4.24)  (4.26) calculate the delay time at each
node. Constraints (4.27) ensure that DRBs and drones can only start services after
the earliest service start time. Constraints (4.28) regulate the maximum flying time
of a flight.

• Decision variable domain constraints (constraints (4.37)  (4.40)).

4.3.4 Pathbased formulation
This study proposes a pathbased formulation that can be solved via a column generation
approach.

min
∑
r∈R

crχr (4.41)

s.t. ∑
r∈R

airχr ≥ 1,∀i ∈ Sp ∪ Sg (4.42)

χr ∈ {0, 1},∀r ∈ R (4.43)

The objective function (4.41) minimizes the total operation cost. Constraints (4.42) ensure
that each node is served exactly once. Note that “=” in constraints (4.42) is replaced with
“≥” to reduce the computation time (Danna & Le Pape, 2005). Constraints (4.43) define
the domains of variables.

4.4 Column generation algorithm
Since it is impossible to enumerate all paths for largescale instances, we developed
a column generation (CG) approach to solve the pathbased SARPD model. The CG
algorithm involves solving two problems: a restricted master problem (RMP) that selects
the combination of paths that has the minimum objective value, and a pricing problem
(PP) that aims to find new paths having the potential to reduce the objective value.

Initially, the RMP includes columns generated by the heuristic described in Section 4.4.4.
The CG first solves the linear RMP in each iteration and passes the dual variables to
the PP. Then, the PP is solved by algorithms introduced in Sections 4.4.1 and 4.4.3 to
find feasible paths with negative reduced costs. If the PP finds new paths with negative
reduced costs, all new paths are added to the RMP. The RMP and PP are solved iteratively
until the PP cannot identify paths with negative reduced costs. A validated lower bound of
the original problem is obtained in this situation. If the optimal solution at the last iteration
of the CG is fractional, an integer programming model of the RMP is solved to get an
upper bound of the original problem; otherwise, the optimal solution at the last iteration of
CG is the optimal solution of the original problem.
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The RMP is the linear relaxation of the pathbasedmodel, and the set of all possible paths,
i.e., R, is replaced by a subset of possible paths R′ ⊆ R. Let βi, i ∈ Sp ∪ Sg be the dual
variables associated with constraints (4.42), the reduced cost of path r ∈ R is calculated
as cr = cr −

∑
i∈Sp∪Sg

airβi. The pricing problem of the SARPD is an elementary shortest

path problem with resource constraints (ESPPRC), which can be solved efficiently by
a labeling algorithm. Inspired by Feillet et al. (2004), We developed a tailored labeling
algorithm to solve the PP of the SARPD.

4.4.1 Label correcting algorithm
We define Φi and Πi are the sets of labels and temporary labels associated with node i.
Then, given a (partial) path p(∗)5 where the last node visited by a DRB (independently or
together with a drone) is node i ∈ N , we define two concepts, ϕi ∈ Φi and πi ∈ Πi. ϕi

is a label denoting path p(ϕi) when node i is a combined node. πi is a temporary label
denoting path p(πi) when node i is a DRB node.

For each πi, a drone leg between the last combined node and DRB node i on path p(πi) is
added to constitute a feasible path in a SARPD solution. By adding the drone leg, node i
becomes a combined node and πi is transferred to ϕi. For example, let π1 be a temporary
label of the partial path (0→1), if a drone leg <0,9,1> is added to the partial path (0→1),
we get a new label ϕ1 denoting the partial path ([0→1, <0,9,1>]). Both ϕi and πi have
the following attributes:

• c(∗): the last combined node on path p(∗).

• v(∗): the last node that a DRB visits on path p(∗). It could be a combined node or a
DRB node.

• dr(∗): the last drone node on path p(∗).

• pos(∗): a vector that records the position of each node except for the drone node on
path p(∗). pos(∗)j is the position of node j on path p(∗).

• tp(∗): a vector that records the type of each node on path p(∗), i.e., common node,
launch node, recovery node, recoverylaunch node, drone node. tp(∗)j represents
the type of node j on path p(∗).

• τ(∗): a vector that records the arrival time at each node on path p(∗). If node j is a
drone node, τ(∗)j is the arrival time of the drone at node j; otherwise, τ(∗)j is the
arrival time of the DRB at node j.

• τ ′(∗): the time point that the drone finishes landing at c(∗).

• τ ′′(∗): a vector that records timerelated attributes of each node on path p(∗). Let
j be a node on path p(∗), if j is a common node or drone node, τ ′′(∗)j is the start
service time at node j; if j is a launch node or recoverylaunch node, τ ′′(∗)j is the
time point that the drone starts taking off at node j; if j is a recovery node, τ ′′(∗)j
is the time point that the DRB finishes all tasks at node j (including serving the
corresponding request and recovering the drone) and leaves node j.

• fly(∗): the flying duration of the last flight of the drone on path p(∗).

• pl(∗): the occupied passenger capacity after vising all nodes on path p(∗).

• gl(∗): the occupied goods capacity after visiting all nodes on path p(∗).
5The notation of “∗” represents ϕi or πi explained later in this paragraph.
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• Ω(∗): the set of visited nodes on path p(∗).

• O(∗): the set of open passenger requests whose origin is included on p(∗) but the
destination is not. O(∗)0 is the first passenger request in O(∗), if O(∗) is not empty.

• V (∗): the set of nodes that could be visited by the DRB from v(∗)without considering
the time windows and vehicle capacity constraint.

• D(∗): the set of nodes that could be visited by a drone from c(∗) without considering
the time windows, vehicle capacity, and drone battery endurance constraints.

• κ(∗): the accumulated dual value of path p(∗).

• cost(∗): the cost of path p(∗).

• rc(∗): the reduced cost of path p(∗).

Algorithm 1 presents the procedure of the labeling algorithm to solve the PP of SARP
D. In Algorithm 1, Γ represents the list of pending examination nodes. The function
AddDroneLeg(πi, j) appends a drone leg< c(πi), j, i > to path p(πi), creating a new label
ϕi, if the extension is feasible. Here, j belongs to setD(πi). FunctionAddCombinedArc(ϕi, j)
extends path p(ϕi) by adding a combined arc (i⇒ j), resulting in a new label ϕj , provided
the extension is viable. The value of j is amember of set V (ϕi). FunctionAddDRBArc(ϕi, j)
introduces a temporary label πj by incorporating a DRB arc (i→ j) into path p(ϕi), given
that the extension is feasible. Here, j belongs to set V (ϕi). Function AddDRBArc(πi, j)
generates a temporary label πj by incorporating a DRB arc (i → j) into path p(πi),
if the extension is achievable. The value of j is within the set V (πi). The function
checkDominance(ϕi, Φi) determines whether the label ϕi dominates other labels within
Φi, or if it is dominated by any of them. It then returns Φi, which solely contains non
dominated labels.

The sets of labels and temporary labels associated with each node i ∈ N are initialized as
follows. Φ0 ← {(0, 0, /, {0}, {common node}, {0}, 0, {0}, 0, 0, 0, {0},∅, So

p∪Sg, Sg
′, 0, 0, 0)}

and Π0 ← ∅. For node i ∈ N\{0}, Φi ← ∅ and Πi ← ∅. In addition, the list of nodes
waiting to be examined Γ is initialized as {0}.

The following steps are repeated while Γ is not empty. First, choose the first node, de
noted by i, from Γ as the node to be treated. Second, extend each temporary label πi ∈ Πi

to new labels of node i and new temporary label of node j ∈ V (πi) by adding drone legs
< c(πi), d, i >, d ∈ D(πi) and DRB arc (i → j) to path p(πi), respectively, if the exten
sions are feasible; otherwise, do nothing. After that, πi is deleted from Πi. Third, extend
each untreated label ϕi in Φi to new label and temporary label of j ∈ V (ϕi) by adding
combined arc (i ⇒ j) and DRB arc (i → j) to path p(ϕi), respectively, if the extensions
are feasible. Then ϕi is marked as a treated label. In both the second the third steps,
two additional works based on the two propositions that will explain later have been done
to reduce the number of generated temporary labels and labels: 1) whenever cost(∗) is
updated, the lower bound of the reduced cost of label ϕdep, denoted by LBrc(ϕdep), where
ϕdep is extended from ∗ and c(ϕdep) is the returning depot, is calculated. If LBrc(ϕdep) ≥ 0,
∗ is discarded. 2) When a new label ϕj of node j is generated, it will be compared with
each label in Φj . If ϕj is not dominated by any label in Φj , ϕj will be added to Φj . If ϕj

dominates some labels in Φj , the dominated labels will be deleted. In addition, if Πj or Φj

has changed and node j is not in Γ , node j will be added to Γ . Fourth, node i is deleted
from Γ .

As illustrated within Algorithm 1, a label extension exists for both temporary labels (Case
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Algorithm 1: Label correcting algorithm
1 //Initialization ;
2 Φ0 ← {(0, 0, /, {0}, {common node}, {0}, 0, {0}, 0, 0, 0, {0},∅, So

p ∪ Sg, Sg
′, 0, 0, 0)} ;

3 Π0 ← ∅ ;
4 for i ∈ N\{0} do
5 Φi ← ∅, Πi ← ∅ ;
6 Γ ← {0} ;
7 //Search ;
8 while Γ ̸= ∅ do
9 choose the first node i in Γ ;
10 //Case 1 ;
11 for πi ∈ Πi do
12 for j ∈ D(πi) do
13 ϕi ← AddDroneLeg(πi, j) ;
14 Φi ← CheckDominance(ϕi, Φi) ;
15 for j ∈ V (πi) do
16 πj ← AddDRBArc(πi, j) ;
17 Πj ← Πj ∪ {πj} ;
18 if Πj has changed then
19 Γ ← Γ ∪ {j} ;

20 Πi ← Πi\{πi} ;
21 //Case 2 ;
22 for ϕi ∈ Φi do
23 if ϕi has not been treated then
24 for j ∈ V (ϕi) do
25 ϕj ← AddCombinedArc(ϕi, j) ;
26 Φj ← CheckDominance(ϕj , Φj) ;
27 if Φj has changed then
28 Γ ← Γ ∪ {j} ;
29 πj ← AddDRBArc(ϕi, j) ;
30 Πj ← Πj ∪ {πj} ;
31 if Πj has changed then
32 Γ ← Γ ∪ {j} ;

33 Mark ϕi has been treated ;

34 Γ ← Γ\{i} ;

1) and regular labels (Case 2). When dealing with Case 1 and 2, our initial action involves
matching the attributes’ values of ∗2 to those of ∗1 if the attributes of ∗2 are derived from
∗1. Subsequently, specific attributes’ values of ∗2 undergo modification. After getting
the attributes of ∗2, we check its feasibility. For an extensive elaboration on these label
extensions, please refer to Appendices 4.A and 4.B.

4.4.2 Label elimination
As the instance size expands, the number of temporary labels and labels experiences ex
ponential growth, resulting in substantial memory consumption and extended computation
durations. To address this issue, we introduce two propositions aimed at diminishing the
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volume of generated temporary labels and labels within the labeling algorithm. Initially,
we suggest eliminating temporary labels and labels that do not culminate in a finalized
path with a negative reduced cost. This proactive approach can contribute to a reduction
in computational burden and enhance efficiency.

Proposition 1. Let ϕdep denote a label of the returning depot that is extended from
temporary label πi, the lower bound of rc(ϕdep), denoted by LBrc(ϕdep), is calculated by
LBrc(ϕdep) = cost(πi)+minj∈D(πi){CD

c(πi),j
+CD

j,v(πi)
}+cost

V
(πi)−

∑
a∈S

βa, where cost
V
(πi)

is the minimum cost of a DRB traveling from v(πi), visiting all destinations of O(πi), and
returning to the depot. If LBrc(ϕdep) ≥ 0, the extension of temporary label πi could not con
stitute a completed path with a negative reduced cost and therefore πi can be discarded.

Note that getting the value of costV (πi) requires to solve a traveling salesman problem. In
this study, we can afford to enumerate all paths that start from v(πi), visiting all destinations
of O(πi), and ending at the depot, because the number of O(πi) is small, specifically, less
than or equal to η+1 due to the constraint of maximum intermediate stops between serving
one passenger request.

Proof 1. To construct a completed path p(ϕdep) by extending p(πi), a drone node inD(πi)
and all destinations of passenger requests in O(πi) should be visited at least. The min
imum drone flight cost is calculated by minj∈D(πi){CD

c(πi),j
+ CD

j,v(πi)
}. Because of the

triangle inequality of cost matrix, when more nodes that do not belong to destinations of
passenger requests in O(πi) are added to p(πi), the calculation of costV (πi) still holds.
Since cost(ϕdep) ≥ cost(πi) + minj∈D(πi){CD

c(πi),j
+ CD

j,v(πi)
} + cost

V
(πi) and κ(ϕdep) =∑

a∈Ω(ϕdep)

βa ≤
∑
a∈S

βa, rc(ϕdep) = cost(ϕdep) − κ(ϕdep) ≥ cost(πi) + minj∈D(πi){CD
c(πi),j

+

CD
j,v(πi)

}+ cost
V
(πi)−

∑
a∈S

βa. The lower bound of the reduced cost of ϕdep is LBrc(ϕdep) =

cost(πi) +minj∈D(πi){CD
c(πi),j

+ CD
j,v(πi)

}+ cost
V
(πi)−

∑
a∈S

βa.

A similar proposition is applied to label ϕi as well. The difference is that the lower bound
of reduced cost of label ϕdep extended from ϕi is calculated by LBrc(ϕdep) = cost(ϕi) +

cost
V
(ϕi) −

∑
a∈S

βa, where cost
V
(ϕi) is the minimum travel cost of a DRB traveling from

v(ϕi), visiting all destinations of O(ϕi), and returning to the depot.

Second, dominance rules are applied to determine whether a newly generated label will
be added to the label set.

For two labels of node i, ϕ1
i and ϕ2

i , ϕ1
i dominates ϕ2

i , if the following two conditions are
satisfied. 1) Any extensions of label ϕ2

i used to construct a completed path can be con
nected to ϕ1

i as well; 2) rc(ϕ1
i ) ≤ rc(ϕ2

i ) (Ropke & Cordeau, 2009). Using this definition,
we propose the following dominance rules for the SARPD.

Proposition 2. ϕ1
i dominates ϕ2

i if the following conditions are satisfied:

(i) c(ϕ1
i ) = c(ϕ2

i )

(ii) tp(ϕ1
i ) = tp(ϕ2

i )

(iii) τ ′′(ϕ1
i ) ≤ τ ′′(ϕ2

i )

(iv) Ω(ϕ1
i ) ⊆ Ω(ϕ2

i )

(v) O(ϕ1
i ) = O(ϕ2

i )

Innovative Lastmile Solutions:Integrating People and Goods Transportation 85



(vi) V (ϕ1
i ) ⊇ V (ϕ2

i )

(vii) rc(ϕ1
i ) ≤ rc(ϕ2

i )

Proof 2. Given two labels ϕ1
i and ϕ2

i that satisfy the conditions in Proposition 2, condition
(i) implies that both partial path p(ϕ1

i ) and p(ϕ2
i ) ending at the same node. Conditions (iv),

(v), and (vi) ensure that any nodes that can be extended by ϕ2
i can also be extended by

ϕ1
i . We do not require D(ϕ1) ⊇ D(ϕ2), because Ω(ϕ1) ⊆ Ω(ϕ2) implies D(ϕ1) ⊇ D(ϕ2).

Conditions (iv) and (v) also ensure that the remaining load capacity for both passengers
and parcels of path p(ϕ1

i ) is equal to or large than that of p(ϕ2
i ). Conditions (ii), (iii), and (vii)

guarantee that every feasible extension of ϕ2
i is a feasible extension of ϕ1

i with a smaller
or equal reduced cost.

4.4.3 Heuristic column generation
Recognizing the typically timeintensive nature of the label correcting algorithm, we intro
duce a Large Neighborhood Search (LNS) heuristic to expedite the CG procedure. The
LNS heuristic unfolds through the following steps: Initially, all paths with zero reduced
cost are chosen, as modifications to these paths can easily yield paths with negative re
duced costs. For each zero reduced cost path (r′), a set Ω̄ is formulated, encompassing
all nodes from Sp ∪ Sg, except those already incorporated in the path. The nodes within
Ω̄ are arranged in descending order based on their dual values. Subsequently, a request
is randomly removed from r′, and nodes from Ω̄ are progressively inserted into path r′ at
their optimal positions. This process generates new paths with negative reduced costs
until all nodes in Ω̄ have been integrated or further node insertions no longer yield paths
with negative reduced costs.

When tackling the pricing problem, the initial application involves the LNS heuristic. In
cases where paths with negative reduced costs cannot be discovered, the label correcting
algorithm is employed.

4.4.4 Initial columns
Weadopt the initial column generation approach proposed by Cheng et al. (2023b), known
as the greedy DRBfirst dronesecond repair method, to generate the starting columns
for the CG process. This heuristic comprises two distinct stages. In the first stage, all
requests are inserted greedily into a DRB route. Subsequently, in the second stage, parcel
requests that meet the criteria for drone service are selectively moved from a DRB route to
a drone flight in a greedy manner. To comprehensively understand this heuristic, readers
should refer to the details provided in Cheng et al. (2023b).

4.5 Computational results
This section presents a comprehensive array of numerical experiments to assess the
effectiveness of the CG approach. Our algorithm implementation used C++, and we em
ployed CPLEX 12.10 as the solver for optimization tasks. The experiments were con
ducted on a machine featuring an Intel(R) Xeon(R) CPU E52660 V3 clocked at 2.60
GHz. Each CG run was subject to a time limit of 3 hours, with a memory allocation of 300
GB.

4.5.1 Instance design
We employed instances from the vehicle routing problem with drones (VRPD) dataset
provided by Sacramento et al. (2019) and adapted them to our specific SARPD. Specif
ically, we utilized nodes’ coordinates from Sacramento et al. (2019) instances involving
6, 10, 12, 20, and 50 nodes, labeled as “1”. Instances with node counts of 6, 10, and 12
were categorized as small. In comparison, those with 20 and 50 nodes were considered
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mediumsize instances. Subsequently, we generated passenger and parcel requests for
each node, along with time windows, using the methodology proposed by Cheng et al.
(2023b). For instances up to 20 nodes, we distributed nodes across 5, 10, and 20 square
miles. For the 50node instances, the distribution areas were 10, 20, 30, and 40 square
miles. Within each distribution category, we created ten instances by varying the ratios
of passenger requests (rP ) from {0, 1/3, 2/3, 1} and droneeligible parcel requests (rD)
from {0, 0.25, 0.5, 0.75}. Instances with rP = 0 or rP = 1 corresponded to VRPD and
pickup and delivery problem (PDP) instances, respectively. Notably, SARPD instances
in Section 4.5 exclusively featured rP = 1/3 or rP = 2/3.

We formulated 79 networks, each characterized by the number of nodes, distribution
(Dim), passenger requests, and droneeligible parcel requests. Both soft and hard time
windows were considered for each network. Distances traveled by DRBs adhered to
Manhattan distances, while drone travel distances were based on Euclidean distances.
The parameter configuration mirrored that of Cheng et al. (2023b). Specifically, the DRB
speed was set at 35 miles/h, and the drone speed was set at 50 miles/h. The service time
for DRBs and drones at each node was 1 minute, with an additional 1minute setup time
for drone launch and recovery. Penalty costs of 1 $/min and 0.5 $/min were assigned
to passenger and parcel requests’ delay, respectively. The DRB transportation cost was
0.2 $/mile, with the drone transportation cost constituting 10%. Passenger and parcel
capacities, varying by instance size, were set at 6 for instances up to 20 nodes and 10
for 50node instances. The maximum travel times for DRBs and drones were 480 and 30
minutes, respectively. Parameter η encompassed values of 0, 1, and 2, while E was uni
formly set to 30 minutes. Consequently, 390 instances were created to comprehensively
assess CG’s performance, as summarized in Table 4.4.

Table 4.4: Summary of the instances used

(a) Smallsize instances

# nodes Dim |P | |Sg
′| η TW type E

6 {5, 10, 20} 2 2 {0,1,2} {soft, hard} {30}
10 {5, 10, 20} 3 3 {0,1,2} {soft, hard} {30}
12 {5, 10, 20} 4 3 {0,1,2} {soft, hard} {30}

(b) Mediumsize instances

#
nodes Dim rP rD η

TW
type E Problem

20 {5, 10, 20}

0 {0.25, 0.5, 0.75} {0} {soft, hard} {30} VRPD
1/3 {0.25, 0.5, 0.75} {0,1,2} {soft, hard} {30} SARPD
2/3 {0.25, 0.5, 0.75} {0,1,2} {soft, hard} {30} SARPD
1 {0} {0,1,2} {soft, hard} {30} PDP

50 {10, 20, 30, 40}

0 {0.25, 0.5, 0.75} {0} {soft, hard} {30} VRPD
1/3 {0.25, 0.5, 0.75} {0,1,2} {soft, hard} {30} SARPD
2/3 {0.25, 0.5, 0.75} {0,1,2} {soft, hard} {30} SARPD
1 {0} {0,1,2} {soft, hard} {30} PDP

4.5.2 Algorithm performance
In this section, we comprehensively evaluated the CG approach. We began by conduct
ing a comparative analysis between CG outcomes and those obtained from the arcbased
model solved by CPLEX, focusing on smallsize instances. Subsequently, we extended
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our assessment to mediumsize instances. In both cases, we utilized zlb and zub, denot
ing the lower and upper bounds, respectively, as outlined in Table 4.5 and Table C1 in
Appendix 4.C. To quantify the disparity between these bounds, we computed the relative
gap (Gap) using the formula: Gap = (zub−zlb)/zub×100%. Furthermore, in Table 4.5, we
introducedGap∗, computed asGap∗ = (zub−z∗)/z∗×100%, where z∗ denotes the optimal
solution obtained by CPLEX for the arcbased model. This metric captures the relative
difference between the upper bound attained through the CG and the optimal solution
given by CPLEX.
4.5.2.1 Smallsize instances
Table 4.5 displays CGandCPLEX results for smallsize instances, denoted by |S|_|P |_|G|_|D|—
Dim, where |S| represents the node count, |P | the passenger requests, |G| the parcel
requests, |D| the droneeligible requests, and Dim indicates node distribution. As ev
ident in Table 4.5, the CG surpassed CPLEX in solution quality and computation time.
Solutionwise, the CG matched CPLEX’s optimal solution in 53 of 54 instances, except
for instance 6_2_2_2—10, featuring η = 2 and soft TW, where the CG achieved a 1.62%
gap for a nearoptimal integer solution. For 48 of 53 cases, the CG yielded a 0.00% gap
between its lower and upper bounds. In terms of computation time, the CG significantly
outperformed CPLEX.
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4.5.2.2 Mediumsize instances
Table 4.6 provides an overview of CG results for mediumsize instances. The “# solved
instances” column enumerates instances considered and how many were resolved by
CG within a 3hour limit, distinguished by their time window (TW) types. The “# optimal
instances” column details instances solved optimally (Gap = 0). The last column denotes
the average gap for solved instances by CG. Table C1 in Appendix 4.C offers indepth
computation results for each instance.

Table 4.6: Summary of computation results of mediumsize instances

Problem # nodes Dim rP rD η # solved instances # optimal instances CPU time (s) Average gap
Soft TW Hard TW Soft TW Hard TW Soft TW Hard TW Soft TW Hard TW

VRPD 20 {5, 10, 20} 0 {0.25, 0.5, 0.75} {0} 9/9 9/9 0/9 0/9 807.01 830.12 1.90% 2.11%50 {10, 20, 30, 40} 0 {0.25, 0.5, 0.75} {0} 6/12 7/12 2/6 0/7

SARPD
20 {5, 10, 20} 1/3 {0.25, 0.5, 0.75} {0,1,2} 27/27 27/27 15/27 15/27

335.82 136.56 0.59% 0.53%{5, 10, 20} 2/3 {0.25, 0.5, 0.75} {0,1,2} 27/27 27/27 21/27 22/27

50 {10, 20, 30, 40} 1/3 {0.25, 0.5, 0.75} {0,1,2} 29/36 34/36 21/29 23/34
{10, 20, 30, 40} 2/3 {0.25, 0.5, 0.75} {0,1,2} 36/36 36/36 20/36 24/36

PDP 20 {5, 10, 20} 1 {0} {0,1,2} 9/9 9/9 8/9 8/9 1.99 0.69 0.46% 0.65%50 {10, 20, 30, 40} 1 {0} {0,1,2} 12/12 12/12 9/12 9/12

Following Table 4.6, CG effectively tackled all 20node instances (144 instances) and a
substantial number of 50node instances (172 out of 192 instances). In sum, across the
316 solved instances, the average gap remained at 0.70%. Various factors influence CG’s
efficacy, broadly categorized into the two types discussed below.

Network and operation features. As mentioned before, network features include the
instance size, Dim, rP , and rD. The operation features refer to η and TW types. As
expected, the computation difficulty and time increased with the increase in instance size,
rP , rD, and η, and the decrease in Dim. In addition, instances with hard TW were easier
to solve than instances with soft TW. The average computation time for VRPD instances
with hard TW is slightly longer than that of VRPD instances with soft TW. This is because
the computation time for the solved hard TW VRPD instance with 50 nodes, rD = 0.75,
Dim = 30 is 8706 seconds, while the soft TW instance with the same network setting is
not solvable.

Problem classification. PDP instances had the largest percentage of solved instances
(100%), followed by SARPD instances (96%). VRPD instances were the most difficult to
solve. Notably, the proposed CG could solve 66% of SARPD instances and 81% of PDP
instances to optimality. In terms of computation time, VRPD instances took the longest
computation time. The computation time for SARPD instances was around half of the
computation time for VRPD instances. The PDP instances could be solved within a few
seconds. The main difference between the three types of problems is the ratio of pas
senger requests to total requests. Due to the precedence requirement for the origin and
destination nodes of passengers and the limited number of intermediate stops between
serving one passenger request, instances with more passenger requests have smaller
solution space. They are easier to solve than instances with fewer passenger requests.
Overall, if we look at the average gaps, the proposed CG produces highquality solutions
to the SARPD, with an average gap of 0.59% for soft TW instances and 0.53% for hard
TW instances.

4.6 Sensitivity analysis and managerial insights
In this section, we conducted sensitivity analyses on Dim, η, TW types, and E, to inves
tigate the properties of the integrated transportation system. All instances presented in
this section are solved to optimality by the CG.
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4.6.1 Node distribution
We selected 50node instances characterized by rP = 2/3, rD = 0.5, η = 0, E = 30 min,
and soft TW to investigate the influence of distribution on system performance. The out
comes of the chosen instances are presented in Table 4.7. From the results in Table 4.7,
it becomes evident that an increased number of DRBs is necessary to fulfill all requests
with a more expansive distribution of customers. This augmentation in DRBs leads to
higher total costs, DRBtraveled and dronetraveled miles.

Table 4.7: Impact of distribution

Dim Total costs # used vehicles DRBtraveled miles Dronetraveled miles

10 53.0490 6 263.6576 15.8748
20 89.7376 8 441.1657 25.2210
30 156.1879 9 766.2628 46.7663
40 240.9552 12 1197.2296 75.4653

4.6.2 Number of intermediate stops between one passenger request
We conducted experiments using two sets of instances to examine how the maximum
number of intermediate stops between passenger request services, denoted as η, impacts
the system. In Set 1, we utilized 20node instances with Dim = 10, rP = 1/3, rD = 0.75,
and E = 30 min. Meanwhile, Set 2 comprised 20node instances with Dim = 20, rP =
2/3, rD = 0.5, and E = 30 min. The values of η ranged from 0 to 5, where lower η values
indicated less inconvenience caused by shared rides among passengers. For η = 0, a
passenger request wasn’t combined with any other request, whether passenger or parcel.

Table 4.8 showcases the effects of varying η on the system’s performance. About in
stances with η = 0 as the baseline, the columns “∆_TC” and “∆_DRB miles” display
the percentage changes in total costs and DRBtraveled miles, respectively, for different
η values. The table reveals that allowing more intermediate stops during passenger re
quest servicing leads to savings in total costs and DRBtraveled miles, albeit to varying
extents across the two sets. A comparison between the percentage changes in total costs
and DRBtraveled miles for the same instances from Set 1 indicates minor differences,
while instances from Set 2 exhibit more significant variations when η exceeds 2. This
variance can be attributed to the composition of total costs, encompassing DRB trans
portation costs, drone transportation costs, and delay penalties. Particularly, for the last
three instances in Set 2, a noteworthy reduction in DRBtraveled miles is counterbalanced
by a 6minute delay at passenger stops.

Furthermore, the number of used vehicles experiences a decrease of one when transi
tioning from η = 0 to η = 1 within Set 1. However, in Set 2, the number of used vehicles
remains constant as η increases. This phenomenon can be attributed to a minimum num
ber of vehicles required to fulfill all requests while satisfying all stipulated constraints.

No specific conclusion can be drawn when it comes to dronerelated indicators such as
the number of flights, flying time, and dronetraveled miles. Nevertheless, an elevated
value of η broadens the solution space, enabling more advantageous drone flights that
contribute to cost reduction.

4.6.3 Hard versus Soft time windows
The CG successfully determined lower bounds for 243 out of 252 SARPD instances.
Moreover, 77 out of 119 instances with soft time windows (TW) and 84 out of 124 instances
with hard TW were solved optimally with a gap of 0%. Among these solved instances,
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Table 4.8: Impact of the maximum number of intermediate stops between one passenger request service

Instance η
Total
costs ∆_TC # used

vehicles # flights Flying
time

DRBtraveled
miles

∆_DRB
miles

Dronetraveled
miles

Passenger
delay (min)

Goods
delay (min)

Set 1

0 15.6833 4 2 21 77.7561 6.6041 0 0
1 13.9275 11.20% 3 5 113 66.3061 14.73% 33.3163 0 0
2 13.6314 13.08% 3 4 55 66.3061 14.73% 18.5105 0 0
3 13.5725 13.46% 3 3 46 66.4050 14.60% 14.5743 0 0
4 13.5725 13.46% 3 3 46 66.4050 14.60% 14.5743 0 0
5 13.5725 13.46% 3 3 46 66.4050 14.60% 14.5743 0 0

Set 2

0 54.1807 4 1 30 270.2217 6.8168 0 0
1 53.7319 0.83% 4 1 30 267.9777 0.83% 6.8168 0 0
2 53.7319 0.83% 4 1 30 267.9777 0.83% 6.8168 0 0
3 52.7747 2.60% 4 1 30 233.1916 13.70% 6.8168 6 0
4 52.7747 2.60% 4 1 30 233.1916 13.70% 6.8168 6 0
5 52.7747 2.60% 4 1 30 233.1916 13.70% 6.8168 6 0

∆_TC: Percentage change in total costs; ∆_DRB miles: Percentage change in DRBtraveled miles

74 pairs6 achieved optimality. Notably, for 60 out of these 74 instance pairs, the TW type
had no impact, implying that the objective value of an instance with soft TW was identical
to that of its hard TW counterpart. These findings suggest that, in scenarios with ample
vehicles, simultaneous achievement of cost reduction and ontime delivery satisfaction is
achievable for most cases. Nevertheless, there are instances where cost savings might
be attained at the expense of compromising ontime delivery performance.

From Table 4.9, it is apparent that the objective value for instances with soft TW is fre
quently smaller than that of instances with hard TW for 14 pairs of instances. Additionally,
allowing TW violations can reduce the number of used DRBs, indicating potential opera
tional cost savings.

Table 4.9: Impact of TW type

# nodes Dim rP rD η Soft TW Hard TW
Total
costs

# used
vehicles

DRBtraveled
miles

Passenger
delay (min)

Goods
delay (min)

Total
costs

# used
vehicles

DRBtraveled
miles

20 10 2/3 0.75 1 17.5621 3 82.3260 1 0 18.0266 4 90.1331
20 10 2/3 0.75 2 17.4271 3 81.6509 1 0 17.8916 4 89.4580
50 20 1/3 0.5 0 85.1959 7 417.9187 0 1 86.1498 8 425.1883
50 20 2/3 0.5 0 89.7376 8 441.1657 1 0 90.1728 8 448.2851
50 30 2/3 0.25 1 145.3158 8 707.8330 2 3 151.4486 9 755.9968
50 30 2/3 0.5 0 156.1879 9 766.2628 2 0 158.1425 10 786.3918
50 30 2/3 0.5 1 144.5343 8 709.6336 2 0 145.8197 9 726.5047
50 30 2/3 0.5 2 138.3083 7 682.5471 1 0 139.3776 8 692.8938
50 40 1/3 0.25 1 164.4680 7 790.2199 3 6 166.6772 8 831.2659
50 40 1/3 0.25 2 162.8553 7 782.3964 3 6 165.8123 8 827.1816
50 40 1/3 0.75 0 176.0732 10 865.2115 0 1 177.5712 10 875.9731
50 40 2/3 0.5 2 207.2107 9 1004.7700 5 2 214.3914 10 1070.2105
50 40 2/3 0.75 1 221.1591 10 1091.5211 2 0 226.5568 11 1128.9106
50 40 2/3 0.75 2 221.1591 10 1091.5211 2 0 226.5568 11 1128.9106

4.6.4 Maximum flight time of drones
We selected a 20node instance with Dim = 20, rP = 1/3, rD = 0.75, and η = 2 to
investigate the influence of varying drone flight times by altering the value ofE to 5, 10, 20,
and 60 minutes. The summarized system performance under different drone endurance
levels is provided in Table 4.10, while Figure 4.2 illustrates the solutions for each scenario.

For the case of E = 5, the drone had just 2 minutes for the journey from launch to cus
tomer and back to recovery. This constraint severely limited flight possibilities. Compared
to this baseline scenario, as E increased to 10, 20, 30, and 60 minutes, total costs were
successively reduced by 1.04%, 8.79%, 18.68%, and 19.20%. When E reached 20 min

6In Section 4.6.3, a pair of instances includes two instances sharing the same features such as node size,
distribution, rP , rD, η, and E, with one having soft TW and the other hard TW.
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utes, a DRB could be spared, resulting in a 14.24% reduction in total DRBtraveled miles.
However, with further increases in E to 30 and 60 minutes, drone flight times notably
increased, although the reduction in DRBtraveled miles became more gradual. When
comparing solutions for E = 30 and E = 60, an intriguing observation emerges: the DRB
routes remained consistent for both cases.

Regarding drone flights, themain distinction lies in serving request 17, specifically<16,17,3>
for E = 30 and <0,17,10> for E = 60. Although the dronetraveled miles for <0,17,10>
were shorter than<16,17,3>, the total flying time for<0,17,10> exceeded that of<16,17,3>.
This discrepancy arises from the comprehensive drone flying time, encompassing travel
between locations and waiting times at customer sites and recovery nodes. The results
from Table 4.10 and Figure 4.2 affirm that extending the maximum drone flight time en
ables more advantageous drone flights, facilitating longdistance travel or extended hov
ering periods, ultimately contributing to cost reduction.

Table 4.10: Impact of the maximum flight time of drones

E Total costs # used
vehicles # flights Flying

time
DRBtraveled
miles

Dronetraveled
miles

Passenger
delay (min)

Goods
delay (min)

5 40.7340 4 0 0 196.1697 0 0 3
10 40.3111 4 1 10 193.4886 5.6703 0 3
20 37.1527 3 3 42 168.2418 25.2146 0 6
30 33.1232 3 4 112 161.1567 44.5912 0 0
60 32.9111 3 4 153 161.1567 33.9894 0 0

Figure 4.2: Solutions for 20node instance withDim = 20, rP = 1/3, rD = 0.75, and η = 2 under different drone battery
endurance level

4.7 Conclusions
This study delves into a route planning dilemma centered on an integrated passenger
and parcel transportation system, intertwining demandresponsive vehicles (DRBs) and
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drones. The primary objective is to curtail operational expenses while accommodating
the varied transportation requests by amalgamating these two modes. We introduced a
pathbased optimization model coupled with a column generation (CG) algorithm for exact
solutions to address this. A notable feature of themodel is its adaptability, permitting a shift
from the integrated problem to simpler configurations such as vehicle routing problems
with drones (VRPD) and pickup and delivery problems (PDP) by adjusting the passenger
request ratio. The CG algorithm is complemented by a custom label correcting procedure
for pricing problems and further enhanced by a large neighborhood search heuristic and
optimization strategies to expedite the CG process.

Extensive computational experiments were undertaken to evaluate the CG’s efficacy. The
outcomes showcased that the proposed CG solved all 20node instances and 90% of the
50node instances for the three problem variations (SARPD, VRPD, PDP), promptly
yielding optimal solutions. The mean discrepancy between the lower and upper bounds
across all resolved instances was a mere 0.7%. Indepth sensitivity analyses were con
ducted on pivotal parameters within the SARPD framework, yielding insightful findings.
For instance, allowing more intermediate stops during passenger service, relaxing hard
time windows to soft ones, and augmenting drone endurance were identified to expand
solution possibilities, leading to more efficient DRB routes or drone flights, ultimately cur
tailing overall costs. Consequently, the count of employed DRBs and DRBtraveled dis
tances witnessed reductions. However, such reductions sometimes entailed service de
lays at specific stops, contingent on specific circumstances. Furthermore, when vehicle
resources are ample, it is highly probable to reduce total costs while preserving a robust,
ontime delivery service.

Future research can be directed toward several key areas. Firstly, explore further appli
cation scenarios involving intricate drone operations within the SARPD framework, like
incorporating advanced energy consumption models for drones or accommodating mul
tiple drones for each DRB, and secondly, devising strategies to tackle the SARPD chal
lenge in uncertain environments, where factors such as unpredictable road travel times
and variable request locations come into play. Lastly, focus on developing more efficient
algorithms, either exact or metaheuristic, to efficiently handle larger and more complex
instances, thus enhancing the scalability of the proposed approach.
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Appendix
4.A Label extensions
Case 1. Extend a temporary label πi.

Subcase 1.1. Transfer πi to ϕi by applying functionAddDroneLeg(πi, j), where j ∈ D(πi).
The attributes of ϕi inherit those from πi and some of them are updated using the following
equations.

c(ϕi) = i

dr(ϕi) = j

tp(ϕi)j ← drone node

tp(ϕi)c(ϕi)
← recovery node

τ(ϕi)j = τ ′′(πi)c(πi)
+ SL+ TD

c(πi),j

τ ′(ϕi) = max{max{τ(ϕi)j , Ej}+ STD
j + TD

j,c(ϕi)
+ SR, τ(πi)c(ϕi)

+ SR}

τ ′′(ϕi)j = max{τ(ϕi)j , Ej}

τ ′′(ϕi)c(ϕi)
= max{τ ′(ϕi), τ

′′(πi)v(ϕi)
+ ST V

v(ϕi)
}

fly(ϕi) = τ ′(ϕi)− τ ′′(ϕi)c(πi)

gl(ϕi) = gl(πi) + 1

Ω(ϕi) = Ω(πi) ∪ {j}

V (ϕi) = V (πi)\{j}

D(ϕi) = D(πi)\{j}

κ(ϕi) = κ(πi) + βj

cost(ϕi) = cost(πi) + CD
c(πi),j

+ CD
j,c(ϕi)

+ αj ∗max{0, τ(ϕi)j − Lj}

rc(ϕi) = cost(ϕi)− κ(ϕi)

Note that if fly(ϕi) > E, a time slack strategy that allows postponing the departure time
at some nodes (Li et al., 2016a; Savelsbergh, 1992) will be applied. In the SARPD
context, the time slack strategy refers to postponing the time the drone starts taking off
at the launch or recoverylaunch node. Consequently, the values of τ(ϕi) and τ ′(ϕi) for
nodes associated with the newly added drone leg, fly(ϕi), cost(ϕi), and rc(ϕi), will be
updated. For a more detailed description of the time slack strategy for SARPD, readers
are referred to Cheng et al. (2023b).

Subcase 1.2. Extend πi to πj by applying function AddDRBArc(πi, j), where j ∈ V (πi).
The attributes of πj inherit those from πi and are updated using the following equations.

v(πj) = j

pos(πj)j = pos(πi)v(πi)
+ 1

tp(πj)j ← common node
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τ(πj)j = τ ′′(πi)v(πi)
+ ST V

v(πi)
+ T V

v(πi),j

τ ′′(πj)j = max{τ(πj)j , Ej}

pl(πj) =

{
pl(πi) +Qj if j ∈ Sp

pl(πi) if j /∈ Sp

gl(πj) =

{
gl(πi) + 1 if j ∈ Sg

gl(πi) if j /∈ Sg

Ω(πj) = Ω(πi) ∪ {j}

O(πj) =


O(πi) if j /∈ Sp

O(πi) ∪ {j} if j ∈ So
p

O(πi)\{j − |P |} if j ∈ Sd
p

V (πj) =

{
{O(πj)0 + |P |} if pos(πj)j − pos(πj)O(πj)0

= η

So
p ∪ Sg ∪ Sd

O(πj)
\Ω(πj) else, where Sd

O(πj)
is the set of destinations of O(πj)

D(πj) =

{
D(πi)\{j} if j ∈ Sg

′

D(πi) if j /∈ Sg
′

κ(πj) = κ(πi) + βj

cost(πj) = cost(πi) + CV
v(πi),j

+ αj ∗max{0, τ(πj)j − Lj}

rc(πj) = cost(πj)− κ(πj)

Case 2. Extend a label ϕi

Subcase 2.1. Extend ϕi to πj by applying function AddDRBArc(ϕi, j), where j ∈ V (ϕi).
The attributes of πj inherit those from ϕi and are updated using the following equations.

v(πj) = j

pos(πj)j = pos(ϕi)v(ϕi)
+ 1

tp(πj)c(ϕi)
←

{
launch node if tp(ϕi)c(ϕi)

is common node
recoverylaunch node if tp(ϕi)c(ϕi)

is recovery node

tp(πj)j ← common node

τ ′′(πj)c(ϕi)
=

{
τ ′′(ϕi)c(ϕi)

if tp(ϕi)c(ϕi)
is common node

max{Ec(ϕi), τ
′(ϕi)} if tp(ϕi)c(ϕi)

is recovery node

τ(πj)j = τ ′′(πj)c(ϕi)
+ SL+ T V

c(ϕi),j

τ ′′(πj)j = max{τ(πj)j , Ej}

pl(πj) =

{
pl(ϕi) +Qj if j ∈ Sp

pl(ϕi) if j /∈ Sp

gl(πj) =

{
gl(ϕi) + 1 if j ∈ Sg

gl(ϕi) if j /∈ Sg

Ω(πj) = Ω(ϕi) ∪ {j}
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O(πj) =


O(ϕi) if j /∈ Sp

O(ϕi) ∪ {j} if j ∈ So
p

O(ϕi)\{j − |P |} if j ∈ Sd
p

V (πj) =

{
{O(πj)0 + |P |} if pos(πj)j − pos(πj)O(πj)0

= η

So
p ∪ Sg ∪ Sd

O(πj)
\Ω(πj) else,where Sd

O(πj)
is the set of destinations of O(πj)

D(πj) =

{
D(ϕi)\{j} if j ∈ Sg

′

D(ϕi) if j /∈ Sg
′

κ(πj) = κ(ϕi) + βj

cost(πj) = cost(ϕi) + CV
v(ϕi),j

+ αj ∗max{0, τ(πj)j − Lj}

rc(πj) = cost(πj)− κ(πj)

Subcase 2.2. Extend ϕi to ϕj by applying function AddCombinedArc(ϕi, j), where j ∈
V (ϕi). The attributes of ϕj inherit those from ϕi and are updated using the following
equations.

c(ϕj) = j

v(ϕj) = j

pos(ϕj)j = pos(ϕi)v(ϕi)
+ 1

tp(ϕj)j ← common node

τ(ϕj)j =

{
τ ′′(ϕi)c(ϕi)

+ ST V
c(ϕi)

+ T V
c(ϕi),j

if tp(ϕi)c(ϕi)
is common node

τ ′′(ϕi)c(ϕi)
+ T V

c(ϕi),j
if tp(ϕi)c(ϕi)

is recovery node

τ ′′(ϕj)j = max{τ(ϕj)j , Ej}

pl(ϕj) =

{
pl(ϕi) +Qj if j ∈ Sp

pl(ϕi) if j /∈ Sp

gl(ϕj) =

{
gl(ϕi) + 1 if j ∈ Sg

gl(ϕi) if j /∈ Sg

Ω(ϕj) = Ω(ϕi) ∪ {j}

O(ϕj) =


O(ϕi) if j /∈ Sp

O(ϕi) ∪ {j} if j ∈ So
p

O(ϕi)\{j − |P |} if j ∈ Sd
p

V (ϕj) =

{
{O(ϕj)0 + |P |} if pos(ϕj)j − pos(ϕj)O(ϕj)0

= η

So
p ∪ Sg ∪ Sd

O(ϕj)
\Ω(ϕj) else, where Sd

O(ϕj)
is the set of destinations of O(ϕj)

D(ϕj) =

{
D(ϕi)\{j} if j ∈ Sg

′

D(ϕi) if j /∈ Sg
′

κ(ϕj) = κ(ϕi) + βj

cost(ϕj) = cost(ϕi) + CV
v(ϕi),j

+ αj ∗max{0, τ(ϕj)j − Lj}

rc(ϕj) = cost(ϕj)− κ(ϕj)
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4.B Extension feasibility check
After getting the attributes of a new label ϕi (Subcase 1.1 and Subcase 2.2), we check
the feasibility of this label. There are two situations.

Situation 1. i is the returning depot. Then, the newly generated label ϕi is feasible when
the following constraints are satisfied.

gl(ϕi) ≤ CapG

O(ϕi) = ∅

τ ′′(ϕi)i ≤ Tmax

fly(ϕi) ≤ E

Situation 2. i is not the returning depot. Then, the newly generated label ϕi is feasible
when the following constraints are satisfied.

pl(ϕi) ≤ CapP

gl(ϕi) ≤ CapG

τ ′′(ϕi)i ≤
{
Tmax − ST V

i if tp(ϕi)i is common node
Tmax if tp(ϕi)i is recovery node

fly(ϕi) ≤ E

If the new label ϕi is feasible, ϕi will be added to Φi. Otherwise, ϕi will be discarded.

Similarly, when the attributes of a temporary label πi, i ∈ N\{0}( Subcase 1.2 and Sub
case 2.1) are obtained, the feasibility of this temporary label should be checked. There
are two situations as well.

Situation 1. i is the returning depot. Then, the newly generated label πi is feasible when
the following constraints are satisfied.

gl(πi) ≤ CapG

O(πi) = ∅

τ ′′(πi)i ≤ Tmax

D(πi) ̸= ∅

Situation 2. i is not the returning depot. Then, the newly generated label ϕi is feasible
when the following constraints are satisfied.

pl(πi) ≤ CapP

gl(πi) ≤ CapG

τ ′′(πi)i + ST V
i ≤ Tmax

D(πi) ̸= ∅

If the new temporary label πi is feasible, πi will be added to Πi. Otherwise, πi will be
discarded.

4.C Results of mediumsize instances
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5 Assessing the impacts of public
transportbased crowdshipping: A case
study in a central district in
Copenhagen

Cheng, R., Fessler, A., Nielsen, O. A., Larsen. A., Jiang, Y., (2023). Assessing the im
pacts of public transportbased crowdshipping: A case study in a central district in Copen
hagen. To be submitted to Frontiers of Engineering Management.

Abstract

The rapid development of Ecommerce and sharing economy has created an opportunity
for crowdshipping as a novel solution to lastmile delivery. Prior research and applications
on crowdshipping mainly focus on private vehiclebased crowdshipping, which often gen
erates rebound effects resulting in traffic congestion and emission increases due to the
dedicated trips performed for crowdsourced deliveries. To mitigate the rebound effects,
this paper proposes a public transport (PT)based crowdshipping concept as a comple
mentary solution to the traditional parcel delivery system, where public transport users
utilize their existing trips to carry out crowdsourced deliveries. We propose a methodol
ogy comprising a parcel locker location model and a vehicle routing model to analyze the
impact of PTbased crowdshipping. It is worth noting that the parcel locker location model
not only helps to plan the PTbased crowdshipping network but also helps to understand
the barriers to the development of PTbased crowdshipping. A case study in a central
district in Copenhagen using realworld data is conducted to estimate the impacts of PT
based crowdshipping. Our results indicate that PTbased crowdshipping could reduce
the total vehicle kilometers traveled, the total working time of drivers, and the number of
used vans (drivers) to perform lastmile deliveries, which would contribute to mitigating
traffic congestion and environmental pollution. However, the development of PTbased
crowdshipping might be restricted by the number of crowdshippers. Thus, our research
suggests that efforts should be made to increase the number of crowdshippers.

Keywords: Lastmile delivery; Crowdshipping; Public transportbased crowdshipping;
Integrated passenger and freight transportation; Impact assessment
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5.1 Introduction
Ecommerce has been growing exponentially in the last decade, with global Ecommerce
sales reaching 5.717 trillion dollars in 2022, compared to 1.336 trillion in 2014. The num
ber is expected to grow by 50 percent by 2025 (Statista, 2022). With the growth comes
not only business opportunities but also great challenges for both retailers and logistics
services providers. On the one hand, the increased demand will bring more revenues to
companies. On the other hand, lastmile delivery, which is the most expensive and inef
ficient part of the supply chain, becomes a pivotal factor in securing market share in the
competitive environment, as consumers are more and more sensitive to delivery speed
and flexibility. Moreover, the rising transportation demand has resulted in a surge of de
livery vans entering the urban areas, exacerbating traffic congestion and environmental
issues. Consequently, both practitioners and academics are actively seeking viable solu
tions to provide lastmile delivery in an efficient and sustainable manner.

One relatively new solution to lastmile delivery is the introduction of parcel lockers, offer
ing various benefits. Parcel lockers allow logistics companies to deliver parcels to cen
tralized facilities, capitalizing on economies of scale and reducing the cost caused by
“NotatHome” delivery. They allow recipients to collect their parcels in a flexible time
without having to wait for a delivery person or risking missing a delivery attempt. Further
more, parcel lockers offer a way to deliver parcels without physical interaction between
the delivery man and customer, which facilitates delivery in situations where contactless
interaction is preferred, e.g., during a pandemic. According to a report by the European
Regulators Group for Postal Services (ERGP) (European Regulators Group for Postal
Services, 2022), the count of parcel lockers has witnessed substantial growth across
many countries, particularly in Denmark (465 in 2017 and 1740 in 2021), Finland (487
in 2017 and 2288 in 2021), and Norway (191 in 2020 and 2800 in 2021).

In recent years, the concept of crowdshipping, inspired by successful business models
under the sharing economy (e.g., Uber and Airbnb), has presented another novel solution
to lastmile delivery. In a crowdshipping system, ordinary people utilize their free capac
ity regarding time and/or space to perform parcel delivery with monetary compensation.
Both logistics services providers and Eretailers have conducted experiments with crowd
shipping (Alnaggar et al., 2021). For example, in 2013, DHL piloted a project, “Myways”
in Stockholm, which allowed individuals to deliver parcels on the way to their destination.
In 2015, Amazon introduced a service named “Amazon Flex”, where ordinary people use
their own cars to deliver Amazon orders to final customers. This service is now active in
more than 50 cities.

Crowdshipping can be implemented in various ways. The main body of prior research and
practical applications related to crowdshipping has focused on private personal vehicle
use, where dedicated trips or detours are often unavoidable (Allahviranloo & Baghestani,
2019; Punel & Stathopoulos, 2017). These personal vehiclebased concepts often entail
rebound effects resulting in emission increases instead of decreases (Buldeo Rai et al.,
2018). Additionally, sharing economic concepts have often been criticized for undermining
the rights of workers and creating a ‘gigeconomy’ precariat (Paus, 2018).

To harness the benefits of parcel lockers and crowdshipping while mitigating the draw
backs of personal vehiclebased crowdshipping, this paper focuses on public transport
(PT)based crowdshipping. This concept is regarded as a form of integrating people and
goods transportation (Cheng et al., 2023a), which aligns with the European Commission’s
call for the integration of passenger and freight transportation (European Commission,
2007). Figure 5.1 presents a schematic overview of the PTbased crowdshipping. Before
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delving into the details of our PTbased crowdshipping, we first explain the terminologies
used in this context. Note that parcel lockers in our PTbased crowdshipping concept are
all installed in PT stations.

• Recipients: Customers who buy a PTbased crowdshipping service. They are also
the owners of the parcels.

• Pickup Parcel Lockers (PPL): Parcel lockers that crowdshippers use to pick up
parcels. In this study, they are positioned at PT stations close to the distribution
center and are predetermined.

• Delivery Parcel Lockers (DPL): Parcel lockers that crowdshippers use to drop off
parcels. These parcel lockers are also parcel lockers where the final recipients pick
up the parcels. Locations of DPL are determined by the model presented in Section
5.3.3.

Figure 5.1: An illustration of PTbased crowdshipping

In the traditional distribution mode, all parcels are delivered by vans owned and operated
by logistics companies. In PTbased crowdshipping, parcel lockers are installed in some
PT stations to store small parcels. A proportion of parcels, termed crowdshipped parcels,
are shifted from vans to crowdshippers. The journey of these crowdshipped parcels from
the distribution center to their final destinations comprises three legs. In the first leg,
crowdshipped parcels are transported by trucks from the distribution center to PPLs po
sitioned at PT stations near the distribution center. In the second leg, crowdshippers, who
are PT users, transport parcels between different PT stations. They pick up crowdshipped
parcels from PPLs at their origin PT stations, take the PT trips, and drop off parcels to
DPLs at their destination PT stations. The final leg is completed by recipients who collect
their parcels from DPLs positioned at PT stations near their homes. Note that crowdship
pers are compensated with credit for the transit system. This could ensure that only trips
that would be taken anyway are utilized, preventing crowdshipping from creating a new
precarious job market lacking workers’ right.

It is expected that PTbased crowdshipping could bring positive impacts on mitigating
traffic congestion and reducing environmental pollution by reducing the number of vans
entering the city center and the total vehicle traveled miles. Prior to implementing a PT
based crowdshipping service, operators should explore their target customers’ attitudes
and preferences, as well as assess the potential benefits of this service. By doing the for
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mer, operators could tailor the service to meet customers’ needs and enhance its adoption
rate. Fessler et al. (2022) have conducted a study in this domain. They analyzed passen
gers’ preference for PTbased crowdshipping within the Greater Copenhagen Area. This
study, on the other hand, focuses on evaluating the impacts of this service to explore its
viability.

The contributions of this paper are summarized as follows. First, we enrich the limited
studies on PTbased crowdshipping. Second, we develop an approach to estimate the
impacts of PTbased crowdshipping. This approach consists of a parcel locker location
model and a vehicle routing model. The parcel locker location model not only assists in
the strategic planning of the PTbased crowdshipping network but also provides insights
into the efforts required to achieve various development objectives for PTbased crowd
shipping. Third, we present the potential benefits of PTbased crowdshipping based on a
case study using realworld data.

The remainder of the paper is organized as follows. Section 5.2 reviews related works
on PTbased crowdshipping. Section 5.3 introduces the methodology for assessing the
impacts of PTbased crowdshipping. Section 5.4 presents the results of a case study.
Finally, Section 5.5 concludes this paper and provides future research directions.

5.2 Related works
While PTbased crowdshipping is not a completely new concept, studies on PTbased
crowdshipping are still relatively limited compared with personal vehiclebased crowd
shipping. In this section, we present an overview of related works on PTbased crowd
shipping.

As we introduced in Section 5.1, there are three legs in PTbased crowdshipping: the first
leg delivery (from the parcel’s origin to PPLs), the PT trip (from PPLs to DPLs), and
the last leg delivery (from DPLs to the parcel’s destination). We categorize three ways
of organizing PTbased crowdshipping, depending on which legs involve crowdshippers’
participation.

• Crowdshippers involved in the first and last legs (P1)

Kızıl and Yıldız (2023) proposed a system where crowdshippers are responsible for
the first and last legs, which are usually short distances. Parcels that cannot be han
dled by crowdshippers are transported by backup delivery vehicles. They presented
an optimization model to determine parcel locker locations and backup delivery ve
hicle routes. The objective is to minimize the total transportation cost of backup
delivery vehicles. The simulation result of a case study in Istanbul demonstrated
that making use of public transport as a backbone of the crowdshipping system
could alleviate the negative externalities of lastmile delivery operations.

• Crowdshippers involved in the PT trip and the last leg (P2)

Zhang and Cheah (2023) and Zhang et al. (2023) investigated a PTbased crowd
shipping system where crowdshippers are involved in the PT trip and the last leg.
Crowdshipped parcels are first transported by logistics companies from the distribu
tion center to parcel lockers at PT stations, from where crowdshippers pick up the
parcels, take PT trips, and deliver parcels to the parcels’ final destinations. They
developed approaches consisting of a parcel allocation model and a vehicle rout
ing model to assess the impacts of their proposed PTbased crowdshipping. The
results from a case study in Singapore showcased this PTbased crowdshipping
could reduce vehicle kilometers traveled and associated air emissions.

112 Innovative Lastmile Solutions:Integrating People and Goods Transportation



• Crowdshippers involved only in the PT trip (P3)

Different from the previous two PTbased crowdshipping systems where customers
wait for their parcels at home, in this system, customers should pick up their parcels
from DPLs at PT stations. Logistics companies and crowdshippers are responsi
ble for the first leg and PT trips, respectively. Several studies on this concept have
been conducted from various perspectives. Gatta et al. (2019) estimated people’s
willingness to act as a crowdshipper and to buy a PTbased crowdshipping service
based on a survey in Rome. The results highlighted the importance of flexible deliv
ery time for customers and compensation for passengers to participate in PTbased
crowdshipping. This observation aligns with Fessler et al. (2022), which analyzed
passengers’ willingness to act as crowdshippers based on a survey in Copenhagen.
Assuming that the locations of PPLs and DPLs are predetermined, Karakikes and
Nathanail (2022) estimated the impacts of PTbased crowdshipping by developing a
cityscale traffic freight microsimulation model in PTV Vissim, taking a middlesized
Greek city as an example. Simulation results demonstrated the positive impacts of
PTbased crowdshipping on reducing traffic congestion and air pollution.

Table 5.1: Different PTbased crowdshipping systems
First leg PT trip Last leg References

P1 Crowdshipper and backup delivery vans PT lines Crowdshipper and backup delivery vans Kızıl & Yıldız (2023)
P2 Logistics company Crowdshipper Crowdshipper Zhang et al. (2022); Zhang and Cheah (2023)
P3 Logistics company Crowdshipper Recipient Gatta et al. (2019); Fessler et al. (2022); Karakikes and Nathanail (2022); This study

Each PTbased crowdshipping system has its own advantages and challenges. P1 may
make the most significant impact on reducing delivery vehicles traveled miles by utilizing
PT lines, but it poses several practical challenges. For example, retrofitting passenger
vehicles (or carriages) and PT stations to facilitate and ensure the safety of the movement
of parcels. Moreover, dedicated operators might be required to handle parcels at PT
stations. P2 and P3 are easier to implement in practice compared to P1. Comparing
P2 and P3, P3 is more likely to attract more passengers to act as crowdshippers. This
is because P3 does not require crowdshippers to make the final delivery to customers,
the direction of which might be opposite to the crowdshippers’ own destinations. This
requirement in P2 reduces the passengers’ willingness to act as crowdshippers. However,
P3 may have lower crowdshipping demand because P3 requires customers to collect
parcels from DPLs at PT stations near their homes instead of receiving parcels at their
homes. Nevertheless, this drawback could be mitigated by optimizing the locations of
DPLs, as a case study in Rome (Iannaccone et al., 2021) has shown that more than 72%
of customers would like to opt for picking up parcels from parcel lockers, if parcel lockers
are characterized by a short distance (less than 500m) from home/work, 24h accessibility,
and a small incentive (€ 1); even without a small incentive, the probability of a customer
willing to collect parcels from parcel lockers exceeds 60%. Given that PT stations are 24
hour accessible and parcel lockers are costeffective, and many countries plan to expand
their parcel locker networks, we believe that P3 is a promising and sustainable solution
for lastmile delivery, provided that locations of parcel lockers are welldesigned.

5.3 Methodology
5.3.1 Overview of the methodology
Figure 5.2 presents the overview of the modeling framework to assess the impacts of
PTbased crowdshipping. Within this framework, the entire parcels are categorized into
crowdshipped parcels and van delivery parcels (Arrows 1 and 2 in Figure 5.2). The num
ber of crowdshipped parcels is influenced by various factors from both the demand and
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supply sides.

From the demand side, primary influencing factors include:

DF1) parcels’ attributes such as weight, size, and type;

DF2) customers’ willingness to collect their parcels from parcel lockers instead of home,
which is mainly influenced by distance between parcel lockers and home and accessibility
of parcels lockers.

From the supply side, primary influencing factors include:

SF1) the number of passengers traveling between specific PT stations;

SF2) passengers’ willingness to act as crowdshippers, which is mainly influenced by pas
sengers’ socialdemographic characteristics and compensation;

SF3) the deployment of parcel lockers.

It is essential to note that this study aims to assess the impacts of PTbased crowdshipping
instead of investigating customers’ and passengers’ preferences for this service. Thus,
crowdshippers and deliveries are predetermined to be “matched” based on given levels
of demand for such service and passenger volumes between specific PT stations (Arrows
1 and 3 in Figure 5.2). The compensation cost of PTbased crowdshipping is influenced
by the number of matched crowdshipped parcels (Arrow 11 in Figure 5.2). To prevent
DPLs from constraining the number of crowdshipped parcels, we develop a DPL loca
tion model (see Section 5.3.3) to determine the locations of DPLs. This model ensures
that each customer can be served by at least one DPL within a short distance of their
homes. The inputs of this model include PT stations, passenger origindestination pairs,
and crowdshipped parcels (Arrows 4, 5, and 6 in Figure 5.2). The outputs of this model
are the selected PT stations to install DPLs and the allocation of DPLs to customers
(Arrow 7 in Figure 5.2). Moreover, by conducting sensitivity analysis on certain parame
ters within this model, we can get insights into potential actions and strategies that can
be implemented to achieve the objectives of shifting varying percentages of parcels from
vans to crowdshippers (see Section 5.4.2).

For van delivery parcels, we develop a vehicle routing model (see Section 5.3.3) to de
termine the routes of vans (Arrow 8 in Figure 5.2). According to solutions provided by the
vehicle routing model, we could calculate various indicators related to vans, e.g., vehicle
kilometers traveled by vans and traveling time of vans (Arrow 9 in Figure 5.2).

Since the first journey of crowdshipper parcels (from the distribution center to PPLs) is
transported by trucks, indicators related to trucks, which are associated with the loca
tions of PPLs, are also counted when assessing the impacts of PTbased crowdshipping
(Arrow 10 in Figure 5.2).

5.3.2 Notations and assumptions

Table 5.2: Notations

Sets
K Set of homogeneous delivery vans, K = {1, 2, ..., |K|}, where |K| is the

number of vans.
So Set of PT stations to install PPLs, So = {1, 2, ..., |So|}, where |So| is the

number of candidate PT stations to install PPLs.
Sd Set of candidate PT stations to install DPLs, Sd = {1, 2, ..., |Sd|}, where

|Sd| is the number of candidate PT stations to install DPLs.
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Vcs Set of crowdshipping customers, Vcs = {1, 2, ..., |Vcs|}, where |Vcs| is the
number of crowdshipping customers.

Vh Set of van delivery customers, Vh = {1, 2, ..., |Vh|}, where |Vh| is the num
ber of home delivery customers.

N N = Vh ∪ {0, |Vh| + 1}, where 0 and |Vh| + 1 are the distribution center
nodes indicating the start and end nodes of a van route.

Parameters
Cap Capacity of a van.
Tij Travel time between nodes i ∈ N and j ∈ N .
STj Service time at node j ∈ Vh.
Tmax Maximum travel time of a van route.
Qcs

j Demand value at node j ∈ Vcs.
Qh

j Demand value at node j ∈ Vh.
Dij Distance between nodes i ∈ Sd and j ∈ Vcs.
Dmax Service range of a DPL. It also represents the maximum walking distance

that customers are willing to travel to pick up their parcels.
Lij The number of passengers traveling between i ∈ So and j ∈ Sd.
η The average number of parcels a crowdshipper takes per trip.
Prcsshipper The probability of a passenger acting as a crowdshipper.
Variables
waij Amount of crowdshipped parcels traveling from a ∈ So to i ∈ Sd and finally

picked up by customer j ∈ Vcs

yi yi = 1, if a DPL is installed at i ∈ Sd; otherwise yi = 0.
xijk xijk = 1, if van k travels from nodes i ∈ N to j ∈ N ; otherwise, xijk = 0.
tjk The arrival time of van k at node j ∈ N .

We make the following assumptions.

• All parcels are delivered on the same day.

• Only one parcel locker is installed at each selected PT station, but the capacity
of parcel lockers is infinite. In reality, the capacity of each parcel locker can be
estimated according to the results of the DPL location model.

• Given a specific compensation level, passengers’ willingness to act as crowdship
pers Prcsshipper is uniform. The value of Prcsshipper is set as the smallest value
provided in Fessler et al. (2022).

• The speed of the vans is constant.

• The distance matrix is obtained by finding the shortest path between two nodes
using a Julia Package (OpenStreetMapX.jl).

5.3.3 Delivery parcel locker location model
The DPL location model is formulated as follows:

min
∑
i∈Sd

yi (5.1)

s.t.

∑
a∈So

∑
i∈Sd

waij = Qcs
j , ∀j ∈ Vcs (5.2)
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Figure 5.2: Overview of the modeling framework

∑
j∈Vcs

waij ≤ yiLaiηPrcsshipper,∀a ∈ So, i ∈ Sd (5.3)

waij ≥ 0, ∀a ∈ So, i ∈ Sd, j ∈ Vcs (5.4)

waij = 0,∀a ∈ So, i ∈ Sd, j ∈ Vcs, if Dij > Dmax (5.5)

yi ∈ {0, 1} (5.6)

The objective function (5.1) minimizes the number of DPLs. Constraints (5.2) ensure that
the total crowdshipped parcel flow to node j ∈ Vcs satisfies all demands. Constraints (5.3)
ensure that if there is no DPL at PT station i ∈ Sd, the crowdshipped parcels flow through
i ∈ Sd is zero; otherwise, the crowdshipped parcel flow between a ∈ So and i ∈ Sd does
not exceed the product of the number of crowdshippers traveling between nodes a ∈ So

and i ∈ Sd and the average number of parcels carried per crowdshipper. Constraints
(5.4)  (5.6) define the domains of decision variables. Constraints (5.5) state that if the
distance between nodes i ∈ Sd and j ∈ Vcs is larger than Dmax, the crowdshipper parcel
flow routed between nodes i ∈ Sd and j ∈ Vcs is zero.

The model was solved by CPLEX in our case study.

5.3.4 Vehicle routing model
Similar to Zhang et al. (2023), we develop a vehicle routing model to determine the routes
of vans. The model is formulated as follows:
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min
∑

(i,j)∈N

∑
k∈K

Tijxijk (5.7)

s.t.

∑
k∈K

∑
i∈N,i ̸=j

xijk = 1,∀j ∈ Vh (5.8)

∑
j∈N\{0}

x0jk ≤ 1,∀k ∈ K (5.9)

∑
i∈N\{|Vh|+1}

xi,|Vh|+1,k ≤ 1,∀k ∈ K (5.10)

∑
i∈N\{|Vh|+1},i ̸=j

xijk −
∑

i∈N\{0},i ̸=j

xjik = 0, ∀j ∈ Vh, k ∈ K (5.11)

∑
i∈N\{|Vh|+1}

∑
j∈N\{0},i ̸=j

Qh
j xijk ≤ Cap, ∀k ∈ K (5.12)

t0k = 0, ∀k ∈ K (5.13)

tik + STi + Tij − Tmax(1− xijk) ≤ tjk,∀i ∈ N\{|Vh|+ 1}, j ∈ N\{0}, j ̸= i, k ∈ K (5.14)

t|Vh|+1,k ≤ Tmax,∀k ∈ K (5.15)

xijk ∈ {0, 1}, ∀k ∈ K, (i, j) ∈ N (5.16)

The objective function (5.7) minimizes the total travel time of vans. Note that this ob
jective function also minimizes distancebased cost because of our assumption of the
constant speed of vans. Constraints (5.8) ensure that each home delivery customer is
visited exactly once. Constraints (5.9) ensure that all vans depart from the depot at most
once. Constraints (5.10) ensure that all vans return to the depot at most once. Con
straints (5.11) ensure flow conservation. Constraints (5.12) ensure the sum of demand at
customers served by van k does not exceed the capacity of that van. Constraints (5.13)
state that all vans are ready at time 0. Constraints (5.14) calculate the arrival time of van
k at node j ∈ N\{0}. They also eliminate subtours. Constraints (5.15) ensure that all
vans should return to the depot before exceeding the maximum travel time of a route.
Constraints (5.16) define the domains of decision variables.

The vehicle routing problem is NPhard, which means that it is difficult to get the optimal
solution to large instances within an acceptable time using exact methods. In this study,
we develop an adaptive large neighborhood search (ALNS) metaheuristic to solve the
routing problem, considering that the ALNS performs very well in many variants of vehicle
routing problems (Cheng et al., 2023b; Li et al., 2016; Ropke & Pisinger, 2006). The ALNS
was coded in C++.
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5.4 Case study
5.4.1 Study area and data sources
This study used a central district located in the northwest of Copenhagen as the study
area. It has a high population density at 18,820 persons per square kilometer. The dis
trict also has good PT coverage with 3 Strain1 stations, 5 metro stations, and 56 bus
stops. The reasons for selecting this district as our study area are as follows: 1) It faces
serious traffic congestion due to its dense urban environment; 2) It has good PT cover
age, which makes it suitable for PTbased crowdshipping; 3) There is a dedicated team
in an anonymous logistics services provider in Denmark responsible for lastmile delivery
in this district and this team validated our simulation results.

The total parcel data was provided by a major logistics services provider in Denmark. The
data set includes the coordinates and demand values of each customer in the selected
central district served by lastmile delivery vans. We extracted the data between October
11th – October 17th in 2021 for our study, representing a normal operation week, without
the pandemic restrictions, Black Friday, public holidays, etc. On average, 864 parcels
with 492 delivery points are delivered per weekday and 480 parcels with 146 delivery
points are delivered on the weekend. We also extracted the smart card data (Rejsekort)
from the same timeframe from Rejsekort & Rejseplanen A/S, which runs an electronic
ticketing system for traveling by bus, train, and metro on behalf of the transport operators
in Denmark. The data includes information on public transport users’ selected trips and
routes through the public transport network in Copenhagen. It represents approximately
40% of all public transport trips, excluding many monthly travel pass holders whose spe
cific travel patterns were not known. The geospatial data, including the road map and PT
stations, is from OpenStreetMap.

The anonymous logistics services provider’s parcels distributed to the Copenhagenmetropoli
tan area are sorted in a distribution center in a southwestern suburb of Copenhagen. Vans
with smaller capacities depart from this distribution center, visit their designated areas for
lastmile delivery, and finally return to the distribution center. There are two Strain sta
tions near this distribution center. We assume PPLs are installed in the two Strain sta
tions. The locations of DPLs in the selected central district are determined by the DPL
location model.

5.4.2 Scenario development and analysis
To assess the impacts of PTbased crowdshipping, we created four scenarios. The base
scenario (S0) mirrors the current delivery mode, where all parcels are delivered by vans.
In contrast, scenarios S1, S2, and S3 entail a transition of 10%, 20%, and 30% of parcels,
respectively, from vans to crowdshippers. To mitigate the stochastic effects of randomly
selecting crowdshipped parcels, we generate 15 samples for each scenario to obtain a
comprehensive understanding of the crowdshipping scenarios. The compensation for
crowdshippers is 10 DKK per parcel, aligning with the field test conducted in Denmark
(Fessler et al., 2023).

As highlighted in Section 5.3, the volume of crowdshipped parcels is shaped by influenc
ing factors from both the demand and supply sides. While our data sets lack information
on demandside factors (DF1 and DF2), we have drawn insights from other studies. Re
garding DF1, a case study in Singapore indicates that approximately 74.9% of parcels
are suitable for crowdshipping (Zhang et al., 2023). Regarding DF2, findings from a case
study in Rome reveal that more than 60% of customers would opt to collect their parcels

1Strain serves the Copenhagen metropolitan area. It has 86 stations that connect the suburban and
urban areas. The Strain system carries more than 357,000 passengers a day.
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from parcel lockers if parcel lockers are installed within 500 m of their residences and are
accessible 24h a day. According to these studies, we believe that achieving a 30% share
of crowdshipped parcels is not insurmountable from the demand perspective, provided
that the deployment of DPLs is welldesigned.

Turning to influencing factors on the supply side (SF1, SF2, and SF3), we have access
to SF1 information through the Rejsekort data. For SF2, we set Prcsshipper = 30% in this
study. As reported by Fessler et al. (2022), when the compensation to the crowdshipper
is 10 DKK per parcel, the probability of a passenger bringing a parcel during his/her trip
is about 30%. To prevent SF3 from limiting the supply of PTbased crowdshipping, we do
not impose a maximum limit on the number of DPLs that could be installed. Inputting this
data to the DPL location model, we could acquire valuable insights into the feasibility of
achieving scenarios S1, S2, and S3, and evaluate the ease or difficulty associated with
each of them.

Ideally, the values of Dmax and η should be set to 500m and 1, respectively. However,
these ideal values could lead to infeasible solutions under some scenarios. Hence, we
conducted a sensitivity analysis on Dmax and η to explore the challenges of achieving
corresponding scenarios. We consider three values of Dmax: 500m, 600m, and 700m.
Given a value of Dmax, we initially set η = 1 and solve the DPL model. If there is no
feasible solution, we increase the value of η by 0.1 and rerun the model until there is a
feasible solution. By doing this, we ascertain the minimum number of parcels a passenger
should take under a specific value of Dmax. The corresponding objective value indicates
the minimum number of required DPLs under the combination of (Dmax, η). Table 5.3
presents a view of the minimum number of parcels per crowdshipper should take and
the corresponding number of delivery parcel lockers to achieve varying scenarios under
different values of Dmax.

Table 5.3: The minimum number of parcels per crowdshipper should take and the corresponding number of delivery parcel
lockers to achieve varying scenarios under different values of Dmax

Scenario Dmax The minimum number of parcels per crowdshipper should take Number of delivery parcel lockers

S1 500 m 1 19
S1 600 m 1 16
S1 700 m 1 13
S2 500 m 1.5 30
S2 600 m 1.3 32
S2 700 m 1 30
S3 500 m 2.2 35
S3 600 m 1.9 37
S3 700 m 1.5 30

According to Table 5.3, S1 is very easy to achieve given current passenger volumes. This
is facilitated by the acceptability of a 500meter distance to transit and the practice of a
crowdshipper carrying just one parcel per trip. WhenDmax increases, the required number
of DPLs decreases.

In contrast, the realization of S2 and S3 presents more challenges compared to S1. When
Dmax = 500m, each crowdshipper needs to carry 1.5 and 2.2 parcels per trip to achieve
S2 and S3, respectively. Although increasing Dmax leads to a reduction of the minimum
number of parcels a crowdshipper needs to carry, it may cause inconvenience for cus
tomers and consequently affect the demand for PTbased crowdshipping. Certain mea
sures should be implemented to cope with the challenges arising from higherDmax values.
One such solution is to lower prices for PTcrowdshipping customers. Alternatively, if we
keep Dmax = 500 m and look at parameters on the supply side, there are two ideas to
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address the challenges to achieve S2 and S3. First, assuming that passenger volumes re
main unchanged, efforts could be made to increase passengers’ willingness to participate
as crowdshippers or to bring more than one parcel. This could be achieved by increas
ing the compensation level. As demonstrated by Fessler et al. (2022), increasing the
compensation level results in a higher likelihood of passengers acting as crowdshippers.
Moreover, a crowdshipper would like to carry an additional parcel if the compensation is
increased by 2.67 DKK. Second, if we maintain the compensation level unchanged and
each crowdshipper continues to carry only one parcel per trip, actions could be taken to
increase the number of PT users. This is beyond the capacity of logistics companies but
is congruent with the policies employed by numerous nations that advocate for a shift from
private car utilization towards the utilization of public transport.

5.4.3 Impacts
Using the methodology introduced in Section 5.3, we simulate the delivery operation of
the anonymous carrier across various scenarios. Three key performance indicators, ve
hicles kilometers traveled per day (including the travel distance of trucks that transport
crowdshipped parcels from the distribution center to PPLs), total working time of drivers,
and the number of used vans to serve the selected central district, are used to describe
the performance of each scenario. The simulation results of the base scenario were val
idated by the anonymous carrier, which confirms that the three indicators obtained from
our simulation are very close to their actual operations on those days. The value of each
indicator for each scenario is equal to the average value of the 15 samples of the scenario.
The impacts of PTbased crowdshipping are presented below.

• Impacts on vehicle kilometers traveled

Figure 5.3 presents the percentage change of vehicle kilometers traveled during
the study period under different crowdshipping scenarios. All signs are negative,
indicating that using PTbased crowdshipping as a complementary solution to last
mile delivery could effectively reduce the vehicle kilometers traveled to deliver the
parcels, even if some distances are needed to transport the crowdshipped parcels
from the distribution center to PPLs. Moreover, there is a direct correlation between
the number of crowdshipped parcels and the percentage reduction of vehicle kilo
meters traveled. Specifically, it is shown that the average percentage reduction of
vehicle kilometers traveled is 6%, 11%, and 20% under scenarios S1, S2, and S3,
respectively. In addition, the percentage reduction of vehicle kilometers traveled on
the weekdays (8%, 14%, and 25% for scenarios S1, S2, and S3, respectively) is
more significant than that on the weekend (2%, 4%, and 6% for scenarios S1, S2,
and S3, respectively).

• Impacts on total working time of drivers

Figure 5.4 demonstrates the percentage change in drivers’ total working time under
different scenarios. On average, a substantial reduction in drivers’ total working time
is evident, with scenarios S1, S2, and S3 leading to reductions of 11%, 20%, and
30% on weekdays, and 7%, 15%, and 21% on weekends, respectively. These ob
servations underscore that PTbased crowdshipping is able to alleviate the growing
labor intensity of drivers.

• Impacts on the number of used vans

Figure 5.5 shows the change in the number of used vans to serve the selected cen
tral district across different scenarios. The simulation results are in line with our
intuition that when parcels are progressively shifted from vans to crowdshippers,
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Figure 5.3: Percentage change of vehicle kilometers traveled under different scenarios

Figure 5.4: Percentage change of total working time under different scenarios

the number of used vans should be less than or equal to that of the base scenario.
Notably, the number of used vans on weekends remains uniform under the four sce
narios. Additionally, the number of used vans remains unchanged in S1 on October
11th and October 13th. This intriguing phenomenon is attributed to the limited ca
pacity of vans. In these cases, the number of used vans is equal to the minimum
number of vans required to serve the selected central district, which is calculated by
dividing the total demands in this district by the van’s capacity. This observation in
dicates that realizing meaningful reductions in the number of required vans (drivers)
is contingent on the transition of a substantial parcel volume from vans to crowd
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shippers. Generally, if 20% of the parcels could be delivered by crowdshippers, it
facilitates the release of one van (driver). If the percentage of crowdsourced parcels
reaches 30%, two vans (drivers) are released.

Figure 5.5: Change of the number of used vans under different scenarios

• Cost analysis

Our cost analysis accounts for four distinct types of costs, i.e., driving costs of vans
and trucks, external costs of traffic (e.g., marginal costs of air pollution and traf
fic congestion), labor cost, and compensation paid to crowdshippers. This sec
tion presents the potential benefits of PTbased crowdshipping based on the trans
port economic unit prices (TEUP) of 2022 prepared by Transport DTU and COWI
for the Ministry of Transport (Denmark) (https://www.man.dtu.dk/forskningsbaseret-
raadgivning/teresa-og-transportoekonomiske-enhedspriser).

– Driving costs. The driving costs of vans and trucks encompass expenses
related to fuel, tires, repair and maintenance, and depreciation. These costs
are split into fixed and variable costs per hour and per kilometer, respectively, in
TEUP. Fixed costs for vans and trucks are 529 DKK/hour and 542 DKK/hour,
respectively. Variable costs for vans and trucks are 1.82 DKK/km and 4.19
DKK/km, respectively.

– External costs. The negative externalities of transport account for air pollution,
climate change, noise, accidents, congestion, and wear on the infrastructure.
The marginal external costs are used to estimate the cost per kilometer for
the external effects. The marginal external costs for vans and trucks are 1.46
DKK/km and 6.01 DKK/km, respectively.

– Labor cost. The average salary for a postal delivery worker is 24,274 DKK
per month (https://www.paylab.com/dk/salaries-in-country?lang=en).

– Compensation paid to crowdshippers. This stands at 10 DKK per parcel,
the same as the field test in Fessler et al. (2023).
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Table 5.4 presents the four types of costs under different crowdshipping scenarios.
The distribution of each type of cost among various scenarios is similar. Figure 5.6
illustrates the percentage distribution of each cost category. As shown in Figure 5.6,
the labor cost accounts for most of the total costs (71%), followed by the driving cost
(25%), the external cost (3%), and the compensation (1%). Since labor cost is the
predominant factor of total costs, a significant reduction in total costs occurs only
when at least one van is saved. On average, the total costs of S1, S2, and S3 are
reduced by 8%, 13%, and 24% on weekdays and 1%, 3%, and 4% on the weekend,
respectively, compared to the base scenario. Based on Table 5.4, we conclude
that PTbased crowdshipping has great potential to reduce lastmile delivery’s labor
cost and driving cost by providing small compensation. This will definitely benefit
logistics companies by reducing operational costs, while its impacts on employment
opportunities could be negative for markets oversaturated with delivery workers or
positive for markets lacking delivery workers.

Figure 5.6: Percentage of each cost type

5.5 Conclusions
In this study, we proposed a methodology consisting of a parcel locker location model and
a vehicle routing model to investigate the impact of implementing the PTbased crowd
shipping as a complementary solution to the traditional lastmile solution. We selected a
central district in Copenhagen as study area because of its high population density and
good coverage of public transport. Three crowdshipping scenarios with varying percent
ages of crowdshipped parcels were created to compare against the traditional delivery
method.

We evaluated the performance of different scenarios using three indicators, i.e., vehicle
kilometers traveled, total working time of drivers, and the number of used vans. All in
dicators obtained reductions, with larger decreases corresponding to higher proportions
of crowdshipped parcels. In the most optimistic scenario, where 30% of the parcels are
delivered by crowdshippers, we observe an average reduction of 20% and 27% in vehicle
kilometers traveled and the total working time of drivers, respectively; two vans (drivers)
were released. The cost analysis reveals that substantial savings in labor and driving
costs could be achieved by offering small compensations to crowdshippers. However, the
challenge lies in achieving the shift of 30% of parcels from vans to crowdshippers. Consid
ering customers’ high willingness to collect parcels from parcel lockers within 500m of their
homes, we believe the bottleneck that restricts the development of PTbased crowdship
ping is not from the demand side but the supply side. Efforts could be made to increase
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Table 5.4: Cost analysis of public transportbased crowdshipping under different scenarios

11Oct 12Oct 13Oct 14Oct 15Oct 16Oct 17Oct

Driving costs (DKK)

S0 16,123 17,275 17,010 16,239 15,230 2,717 7,747
S1 14,117 15,431 14,882 14,502 13,558 2,487 6,965
S2 12,569 13,648 13,228 12,887 12,034 2,256 6,228
S3 11,239 12,192 11,806 11,529 10,780 2,082 5,618

External costs (DKK)

S0 288 314 292 282 279 58 140
S1 281 289 283 255 252 57 138
S2 253 286 255 253 251 56 137
S3 225 259 228 225 223 56 137

Labor costs (DKK)

S0 42,480 48,548 42,480 42,480 42,480 6,069 18,206
S1 42,480 42,480 42,480 36,411 36,411 6,069 18,206
S2 36,411 42,480 36,411 36,411 36,411 6,069 18,206
S3 30,343 36,411 30,343 30,343 30,343 6,069 18,206

Compensation (DKK)

S0 0 0 0 0 0 0 0
S1 870 970 870 830 800 120 360
S2 1,730 1,930 1,740 1,650 1,600 240 720
S3 2,600 2,900 2,610 2,480 2,390 360 1,080

Total costs (DKK)

S0 58,890 66,137 59,782 59,000 57,989 8,843 26,092
S1 57,747 59,169 58,514 51,998 51,021 8,732 25,668
S2 50,962 58,344 51,634 51,201 50,297 8,621 25,291
S3 44,407 51,761 44,987 44,576 43,735 8,566 25,041

Percentage change in total costs
S1 2% 11% 2% 12% 12% 1% 2%
S2 13% 12% 14% 13% 13% 3% 3%
S3 25% 22% 25% 24% 25% 3% 4%

the number of crowdshippers from several angles. For example, encouraging people to
take PT instead of driving private cars; increasing the compensation level to attract more
passengers to act as crowdshippers or to motivate crowdshippers to carry more parcels
per trip.

While our study provides valuable insights into the potential benefits and impacts of PT
based crowdshipping and how to push its development, it has several limitations that can
be investigated in further studies. First, expanding the study area to encompass larger
regions. Second, developing optimization models to further optimize the deployment of
the system. For example, instead of merely choosing PT stations near the distribution
center to place PPLs, an optimization model could be developed to optimize the loca
tion of PPLs to maximize the potential benefits of PTbased crowdshipping, especially
when expanding this service to a larger area. Third, developing more accurate method
ologies and using advanced software to simulate the actual traffic in a city and using more
indicators to describe the system performance may be needed to scale the results to a
regional/city level rather than a district level only.
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6 Conclusions
Transportation plays a vital role in society and the economy. It facilitates the movement
of people and goods, enabling economic activities and providing people with access to
essential services such as education and healthcare. Over recent decades, factors such
as population growth and urbanization and the boom of Ecommerce have led to a sig
nificant increase in urban transportation demands. While this has undoubtedly boosted
the economy, it has also exacerbated traffic congestion and environmental pollution. In
response to the European Commission’s (2007) advocacy for the integration of passen
ger and freight transportation, this thesis delves into the feasibility of mitigating negative
externalities of transportation by merging the two transportation flows. Initially, we pro
vide an overview of the development of integrated transportation systems and propose
a general framework for planning such a system. Subsequently, we introduce two novel
forms of integrating passengers and goods and validate their viability. The contributions
of this thesis are not limited to advancing the comprehension of the development of in
tegrated peopleandgoods transportation but also enhancing mathematical optimization
within related fields such as VRP and crowdshipping.

This chapter concludes the thesis by responding to the research questions we proposed
in Chapter 1, summarizing the contributions, and presenting future research directions.

6.1 Research questions revisited
Research question 1 (Q1). Which framework can comprehensively represent and
guide the planning and operation of an integrated peopleandgoods transportation
system?

In Chapter 2, we present such a framework comprising three interconnected modules.
The first module encompasses physical components in the integrated transportation sys
tem, including people and goods transportation demands, transportation supply (e.g.,
public transport and private vehicles), and infrastructure underpinning the transportation
system (e.g., road and information and communications technology). The second module
relates to planning and operating the integrated transportation system, covering demand
management, supply management, and demandsupply matching. The third module in
cludes key performance indicators for evaluating the effectiveness of the integrated trans
portation system on both the demand and supply sides. There is a dynamic feedback loop
between the three modules. Module 1 serves as the input for Module 2, where the ac
tions taken by operators according to the demand and supply status in Module 1 directly
influence the system performance (Module 3). The performance of the system (Module
3), in turn, influences the demand and supply in Module 1.

Research question 2 (Q2). Are there innovative solutions that incorporate other
lastmile solutions with the concept of integrating people and goods transporta
tion?

This thesis investigates two innovative solutions that couple other prevailing lastmile so
lutions with integrated peopleandgoods transportation, presenting the concept and iden
tifying the key planning problems involved.

Chapter 3 proposes our first solution: utilizing DRBs and drones to combine passenger
and parcel transportation. A passenger request is characterized by its origin, destination,
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and associated demand value, while parcel requests share unified demand values and are
characterized solely by their destinations. All requests have specified time windows. De
lay is allowed with a penalty. DRBs can serve both passengers and parcels, while drones
are exclusively responsible for parcel delivery. To ensure passengers have a higher prior
ity than parcel requests, we impose constraints on the maximum number of intermediate
stops between one passenger service request. The central challenge within this concept
is optimizing the routes for both DRBs and drones. We term the corresponding problem
as passenger and parcel sharearide problem with drones (SARPD).

Chapter 5 introduces our second solution: public transport (PT)based crowdshipping.
This innovative approach acts as a complementary solution to traditional delivery. Within
this framework, a portion of the parcels are delivered by crowdshippers, while the rest of
the parcels are delivered by logistics companies using their vans. Crowdshippers are PT
users who utilize their planned trips to transport parcels between parcel lockers positioned
at their origin and destination PT stops. This solution represents a potential synergy be
tween urban PT and logistics systems. Two key problems are involved in this concept.
The first one is the parcel locker location problem: optimizing the locations of parcel lock
ers while considering the accessibility and efficiency for both crowdshippers and parcel
recipients. The second one is the vehicle routing problem for vans that distribute parcels
that cannot be accommodated by crowdshippers, considering constraints on the vehicle
capacity, drivers’ maximum working time, etc.

Research question 3 (Q3). What are the benefits of the proposed innovative solu
tions, and how can they be quantified?

The main key performance indicators considered in this thesis are total operations costs,
the number of used vehicles, and the total vehicle kilometers traveled. The results in
Chapters 3,4, and 5 demonstrate that both SARPD and PTbased crowdshipping con
tribute to a significant reduction in these three indicators. The reduction degree depends
on several factors, varying between the two solutions. For the SARPD, it depends on
the distribution of the requests, the maximum intermediate stops between one passenger
request, etc. For PTbased crowdshipping, it depends on the number and percentage of
parcels that are delivered by crowdshippers.

Chapters 3 and 4 provide two distinct approaches to quantify the benefits of the SARPD.
Specifically, Chapter 3 presents an arcbased mixed integer programming model solvable
by CPLEX for small instances with up to 12 nodes. Larger instances with up to 200
nodes are solved by the ALNS metaheuristic. Remarkably, our ALNS also demonstrates
exceptional performance in solving the VRPD, comparable to a metaheuristic designated
for the VRPD. In contrast, Chapter 4 reformulates the SARPD into a pathbased model,
which is solved by the CG. The CG provides a verified lower bound and an upper bound for
the SARPD. If the lower and upper bounds are the same, the problem is solved optimally.
Computation results show that the CG could solve SARPD instances with up to 50 nodes,
and 66% of SARPD instances were solved optimally. Overall, the average gap between
the upper and lower bounds for all SARPD instances is less than 0.6%. If the ratio of
passenger requests to the total requests is set to 0% and 100%, the SARPD is simplified
to VRPD and onetoone PDP, respectively. Our CG could solve the VRPD and oneto
one PDP as well. The instances used in Chapters 3 and 4 are created based on VRPD
instances presented by Sacramento et al. (2019).

In Chapter 5, we present a mixed integer programming model to optimize the locations of
parcel lockers. The model can be solved by CPLEX. We further devise an ALNS meta
heuristic to optimize the vans’ routes for delivering parcels that are not delivered by crowd
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shippers. To evaluate the impacts of PTbased crowdshipping, we create four scenarios.
The base scenario is the existing distribution mode, where all parcels are delivered by
vans. In other scenarios, we shift 10%, 20%, and 30% of parcels from vans to crowdship
pers. Initially, we seek validation from an anonymous logistics company for the vehicle
routes derived from our algorithm in the baseline scenario. Then, we apply our parcel
locker location model and vehicle routing model to calculate the total vehicle kilometers
traveled, the total working time of drivers, and the number of used vehicles in other sce
narios. The case study conducted in Chapter 5 is based on realworld data, with the parcel
data provided by a major logistics services provider in Denmark and the public transport
travel card data provided by Rejsekort & Rejseplanen A/S, which runs an electronic tick
eting system for traveling by bus, train, and metro on behalf of the transport operators in
Denmark.

6.2 Contributions
Contributions to integrated peopleandgoods transportation
This thesis’s contributions to the realm of integrated peopleandgoods transportation are
twofold.

Comprehensive review and a general framework.

We provide a comprehensive review of integrated peopleandgoods transportation
by categorizing various integration forms, exemplifying their applications, highlight
ing key issues for different forms, and introducing corresponding solutions. Further
more, we propose a general framework for describing, planning, and operating an
integrated transportation system. This review advances the understanding of inte
grated peopleandgoods transportation for the public, scholars, and practitioners in
this field.

Innovative integration forms.

We enrich studies on integrated peopleandgoods transportation by proposing two
innovative integration forms that harness opportunities presented by emerging tech
nologies and lastmile solutions: integrating passenger and parcel transportation by
DRBs and drones and PTbased crowdshipping. Meanwhile, we validate the fea
sibility of the two integration forms. In Chapter 3, we elaborate on the operation
of the first integrated transportation system, identify the key problem of the sys
tem (SARPD), provide a mathematical formulation for the SARPD, and develop
an ALNS metaheuristic for the SARPD. An alternative method for the SARPD is
presented in Chapter 4. Chapter 5 introduces the concept of PTbased crowdship
ping, provides an approach to planning such a system, and analyzes its potential
impacts by conducting a case study using realworld data.

Contributions to the VRP
Introduction of a distinctive variant of the VRP.

Fundamentally, the VRPD and onetoone PDP are established variants of the VRP
due to their distinctive features. While the SARPD bears some similarities with the
VRPD and onetoone PDP, it has special features that set it apart and could be
come a new variant of the VRP. In particular, the SARPD differs from the VRPD
because the ground vehicles in the VRPD do not serve passengers, whereas the
SARPD involves passenger service. Furthermore, the SARPD distinguishes itself
from the onetoone PDP because the SARPD necessitates coordination and syn
chronization between ground and aerial vehicles, while the onetoone PDP does
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not. More importantly, what truly sets the SARPD apart from the VRPD and one
toone PDP is that the ground vehicles in the SARPD serve requests with different
features, i.e., pickup and delivery for passenger requests and delivery tasks for par
cel requests, while the ground vehicles perform only delivery tasks in the VRPD and
only pickup and delivery tasks in the onetoone PDP. The different characteristics
of onetoone pickup and delivery tasks and only delivery tasks make the model dif
ferent because the onetoone PDP involves pairing and precedence constraints,
whereas the deliveryonly tasks do not. Overall, the hybrid tasks of onetoone
pickup and delivery and deliveryonly tasks in the SARPD make it more compli
cated than the VRPD and onetoone PDP and establish the SARPD as a new
variant of the VRP.

Solution methods and benchmark instances.

In addition to introducing a new variant of the VRP, this thesis also provides solution
methods and benchmark instances that can serve as valuable resources for future
studies on the SARPD.

Contributions to crowdshipping
Exploration of PTbased Crowdshipping.

Crowdshipping has been regarded as a complementary solution for lastmile logis
tics in recent years. It has various application ways. Most of them rely on per
sonal vehicles, where dedicated trips or subtours are unavoidable, which leads to
increases in the number of trips, vehicle kilometers traveled, etc. To avoid this, we
present the idea of PTbased crowdshipping, which utilizes passengers’ trips that will
be taken anyway to perform crowdsourced delivery. While PTbased crowdshipping
is not a completely new concept, it remains an underexplored area with limited prior
research. In this thesis, we delve deeper into the concept, drawing inspiration from
the following two works.

Optimization models for parcel locker location.

Existing studies on PTbased crowdshipping focus on analyzing passengers’ pref
erences or assessing the impacts of PTbased crowdshipping based on a given
network, i.e., the locations of parcel lockers are determined. In contrast, we de
velop an optimization model to determine the ideal PT stations for installing parcel
lockers to maximize the benefits of PTbased crowdshipping.

Realworld case study.

We conduct a case study in a central district in Copenhagen using realworld data.
The dataset includes actual parcel data provided by amajor logistics services provider
in Denmark, public transport travel card data provided by Rejsekort & Rejseplanen
A/S, and geographic data from OpenStreetMap.

6.3 Future research
For SARPD
Future research directions on SARPD could be considered frommodeling, solution meth
ods, and operation aspects.

Extended models accounting for dynamics and uncertainties.

Chapters 3 and 4 consider static and deterministic SARPD. These models can be
extended to accommodate dynamics and uncertainties. In practice, passenger and
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parcel requests might occur dynamically. In addition, there are lots of uncertainties
in real life. For example, travel time on the road may be influenced by the weather,
traffic congestion, or some unexpected events. A customer location’s suitability for
drone takingoff or landing might be influenced by the weather. Developing models
that can adapt to these realworld fluctuations will lead to more robust and adaptable
solutions.

Advanced solution methods.

Chapter 3 offers a metaheuristic, while Chapter 4 provides an alternative method
that is not exact but could yield solutions very close to optimality. Since the SARP
D is quite a new problem, there is room for developing faster solution methods,
whether exact methods or heuristics, especially for solving large instances. More
over, it would also be interesting to embed machine learning and reinforcement
learning with exact or heuristics, given that they have shown good performance in
solving some combinatorial optimization problems (KarimiMamaghan et al., 2022;
Nazari et al., 2018).

Complex drone operations.

In Chapters 3 and 4, we assume that each drone is capable of performing only one
delivery task during each flight. It is worth considering scenarios where this as
sumption is relaxed, e.g., a drone has a larger load capacity and extended battery
life. Meanwhile, integrating a function that calculates the drone energy consumption
into the SARPD model could provide valuable insights into energyefficient drone
deployment. Moreover, it would be intriguing to replace aerial drones with ground
based counterparts, i.e., autonomous delivery robots, because they are more polit
ically acceptable.

Electric vehicle integration.

With people’s growing concern about GHG emissions, numerous countries around
the world are actively striving to transition from conventional vehicles to electric ve
hicles as part of their climate action plans. Consequently, the DRBs in our SARPD
could be replaced with electric vehicles, and our SARPDmodels could be expanded
to incorporate considerations associated with electric vehicles, e.g., the charging
location and charging strategy of electric vehicles. It is also valuable to consider a
fleet of DRBs comprising both electric and conventional vehicles, recognizing that
transforming from conventional vehicles to electric vehicles takes a long time.

For PTbased crowdshipping
In Chapter 5, we explore PTbased crowdshipping from a high level. There exist several
limitations that could be studied in the future.

Extending the study area.

The study area in Chapter 5 is a district in Copenhagen. An extension of the study
area will produce a more comprehensive understanding of PTbased crowdship
ping because first, the impacts of PTbased crowdshipping in areas that have short,
medium, and long distances to the distribution center might vary significantly; sec
ond, implementing this service in larger areas may produce scale benefits by in
volving more PT passengers. Moreover, extending this service to rural areas would
enhance the economic viability of transport services in such regions.

Optimization of origin PT stations of crowdshipped parcels.
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We assume all parcels designated for delivery by crowdshippers are transported
by trucks from the distribution center to Strain stations near the depot, from where
crowdshippers pick up the parcels. However, since distribution centers are usually
located in suburban areas, it might be more advantageous to consider transporting
crowdsourced parcels to some major PT stations having more passenger volume.
This results in a research problem of selecting PT stations, where the parcels are
transferred from trucks to crowdshippers, to maximize the utilization of both PT and
crowdshippers’ capacities and ultimately maximize the benefits of PTbased crowd
shipping.

Handling unsuccessful deliveries.

We assume all crowdsourced parcels could be delivered by crowdshippers success
fully. However, in practice, there may be situations where some crowdshippers do
not complete deliveries. Future research should explore the management of unde
livered parcels to enhance the overall effectiveness of PTbased crowdshipping.
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