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A Generalized Beta Prime Distribution
as the Ratio Probability Density Function
for Change Detection Between two SAR

Intensity Images with Different
Number of Looks

Gerard Gallardo i Peres, Jørgen Dall, Member, IEEE, Philippa J Mason, Richard Ghail, and Scott
Hensley, Fellow, IEEE

Abstract—In the framework of the comparison of Syn-
thetic Aperture Radar (SAR) imagery from the Magellan
space mission and the VISAR and VenSAR radar instru-
ments which will be onboard the forthcoming VERITAS
and EnVision missions to Venus, the problem of the
disparity between the resolutions of the images arises when
attempting to define a test statistic with which to detect
changes. Reliable change detection requires equivalent
spatial resolutions which, for the two different images,
inevitably involves different equivalent number of looks
after speckle-reduction processing. This study presents a
method to address this scenario using a Generalized Beta
Prime Distribution as a probability density function (PDF)
which is fit to the histogram of the ratio between the two
intensity images. The work demonstrates and verifies the
properties of the function, highlights its most useful traits,
and elaborates on the mathematical procedure required
to achieve a meaningful change detection in line with the
classic theory of equal number of looks. The results show
that the method accurately describes the ratio histogram
of two SAR intensity images with different number of
looks. Furthermore, they demonstrate the adaptability of
the method to the presence of high pixel correlation between
the images, and validate its robustness in the presence of
textural complexity when the texture patterns of the images
are similar.

Index Terms—Change detection, resolution, probability
distribution, SAR, Venus.
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I. INTRODUCTION

CHANGE detection comprises a powerful family
of techniques that is applied to a variety of

remotely sensed datasets and applications to monitor
the surface processes of the Earth and other planets.
Considering airborne or spaceborne Synthetic Aperture
Radar (SAR) instruments, multiple observations of
the same target area can lead to the identification
of surface changes occurring in the time interval
between the measurements. The inherent coherence
of SAR imagery can be exploited by techniques such
as Differential Interferometric SAR (DInSAR) [1] or
coherent change detection (CCD) [2] to map surface
changes between observations with great accuracy.
DInSAR makes use of the change-related component of
the interferometric phase to obtain the magnitude and
direction of displacements with millimetre accuracy on
Earth [3], and it is often utilized in the monitoring and
impact assessment of events such as earthquakes [4],
landslides [5] and ice flow [6].

Localized loss of coherence between SAR
observations has also been used successfully to detect
new lava flow emplacements in volcanic eruptions [7],
[8], and other changes. However, these techniques cannot
be applied where complete decorrelation occurs, which
may happen for a variety of reasons: the rate of change
is too great compared to the temporal baseline of the
observations; inaccuracies in the image co-registration
process; the viewing geometry of the two observations
is not compatible for interferometry; or simply because
the SAR images come from different sensors, with
different carrier frequencies or polarizations.
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In these scenarios, the phase of SAR imagery does
not encode change information, and the detection of
changes can only exploit the information present in
the intensity or magnitude, usually given in the σ0

backscatter form. So-called incoherent change detection
techniques have been generally applied to SAR intensity
images before coherent techniques were available, and
in the cases where coherent change detection is not
possible; these techniques usually rely on methods of
offset-tracking [9] or otherwise on test statistics [2].
Offset - or feature - tracking provides estimates of
the magnitude and direction of changes by optimizing
intensity cross-correlation of image patches, and it has
been applied to glacier [10], land mass [11] and dune
[12] displacements. Although robust, it does not achieve
the change detection accuracy provided by coherent
techniques, and it moreover requires feature preservation
between images, which makes its application difficult
when monitoring disruptive events such as explosive
volcanism, or dynamic processes such as lava flow
emplacements.

On the other hand, test statistics, understood as the
statistical test of a hypothesis of similarity between
observed data and a known model or mathematical
distribution, have been employed as a tool for SAR
change detection analysis in a multitude of studies.
These include single-channel unsupervised approaches
[13]–[15], supervised and semi-supervised methods
based on different Machine Learning techniques [16]–
[18], changes found in polarimetric sequences of SAR
imagery [19]–[21], and recent generalization efforts on a
common change detection framework [22] for different
types of imagery. A good summary of the most used
SAR change detection techniques based on test statistics
can be found in [23], [24].

One of its most basic uses is the likelihood-ratio test
statistic, which uses two co-registered SAR images and
fits a probability density function to the histogram of the
ratio image, then identifies the pixels that fall outside
the predicted behaviour. This technique is able to map,
and classify as change or no-change, any pixel-level
changes in SAR images without the need of coherence
or feature preservation; it is able to identify areas that
have changed to a certain statistical confidence, although
it cannot infer displacement magnitudes and directions.
It is this particular technique that is the basis for the
approach developed here.

The statistical modelling of SAR intensity imagery in
different forms and of diverse clutter types has been a
widely approached problem since the early 1980s. There

are several important studies which built on the initial
forms of Gamma distributions to model homogeneous
terrain [25] and on K distributions to model textured,
distributed targets [26]; the generalized inverse Gaussian
distribution framework was proposed in [27] to model
a vast array of clutter types. A number of statistical
distributions stemming from the more general family of
G distributions have been used to model SAR clutter
[28], for classification problems with Gaussian maximum
likelihood [29], in problems of SAR edge detection
[30], and in the field of polarimetric target detection
[31]. In this study, a particular distribution named the
’generalized Beta prime distribution’ is introduced and
described in the context of SAR ratio test statistics. It is
then developed as a general case of the classical theory
of single-channel ratio test statistics that can deal with
images with very different spatial resolutions, providing
a simple but malleable analytical framework that can
work with different types of clutter. This opens the door
to tackling change detection problems using data from
different SAR sensors, acquired at different times.

In the context of exploring the surface of the planet
Venus, the most recent SAR data available is from the
Magellan mission, acquired in the early 1990s [32].
Several new planetary missions, including EnVision
[33] and VERITAS [34], will be launched in the
following decade, targeting Venus with new, upgraded
SAR sensors. They are estimated to have 90 % chance
of detecting post-Magellan volcanic activity, even if
it is at the lowest end of prediction, by imaging only
10 % of the surface and comparing those observations
with Magellan data [35]. It is estimated that at least
120 discrete eruptions may occur on Venus per Earth
year [36], while other surface changes due to tectonic,
aeolian or weathering processes are also expected in the
40-year temporal baseline between the missions [37].
Since the planned spatial resolution of the new sensors
is around an order of magnitude better than Magellan
[38], the ability to reliably detect changes on Venus
within this time period decisively depends, among other
factors, on an improved SAR test statistic framework
that can effectively deal with data of greatly differing
spatial resolutions.

A reliable, automated intermission SAR change
detection procedure, between Magellan and VERITAS
or EnVision, is therefore an important objective and
a necessity for a successful future Venus exploration.
Moreover, this procedure also has the potential to be
broadened and developed for Earth observation purposes,
where there is a much larger and more diverse range of
SAR systems available. This study presents an approach
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to deal with one of the major challenges of intermission
change detection: that of a large difference in spatial
resolution. Other challenges include differences in the
SAR carrier frequency, polarization, and thermal noise
levels, all of which play a central role in the definition
of the SAR signal and its interaction with its target.
All these factors distort the retrieved SAR intensity
images; a way to make the two datasets comparable
must therefore be devised before effective and robust
change detection can be achieved.

This paper is organised as follows. Section II describes
the ratio change statistic as applied to a classic case.
The problem that arises with the classical formulation
is presented and discussed in Section III. Section IV
elaborates the proofs, properties and suitability of the
proposed new mathematical framework. Section V as-
sesses the performance in a real-case scenario with SAR
data. Finally, Section VI summarizes the study with
conclusions, limitations and directions of future work.

II. CLASSICAL THEORY OF RATIO CHANGE
STATISTICS

The classical theory of pixel-based change detection
by means of a test statistic considers multilook SAR in-
tensity images that are co-registered, calibrated, with the
same observation geometry, and with the same number of
pixels [39]. That is often the case for observations carried
out with the same radar sensor, usually in a repeat-pass
configuration, and will hereafter be referred to as the
reference configuration. Since the images are produced
by the same instrument and with the same geometry,
their spatial resolutions are equal, and hence they usu-
ally undergo the same level of incoherent multilooking
as an image reconstruction processing step to mitigate
speckle fluctuations [40]. In its simplest form and for
homogeneous terrain, the pixel values of the histogram
of a multilook SAR intensity image are outcomes of a
Gamma random variable, distributed as:

p(x;α, θ) =
1

θαΓ(α)
xα−1e−

x
θ x > 0 α, θ > 0 (1)

where x is a measure of the SAR intensity, often the
backscattering coefficient σ0, α is the shape parameter
corresponding to the number of looks L applied to the
image, and θ is the scale parameter corresponding to
the mean intensity value of the image σ divided by
the number of looks L [39]. The Gamma model is
acceptable in the context of fully developed speckle,
which implies scatterer-independent amplitude and
phase (the phase being uniformly distributed) [25]. This
is applicable to homogeneous areas where there is the

assumption of large numbers of statistically identical
scatterers.

A SAR image usually presents a degree of pixel
correlation because the pixel spacing must be smaller
than the spatial resolution; to avoid aliasing and loss of
information, the pixel spacing is typically smaller by at
least the broadening factor, determined by the spectra
window that is applied to suppress the sidelobes of the
SAR point target response. To account for this, the L
value typically used in (1) is the Equivalent Number of
Looks, ENL = mean2

variance , which is an estimate of the
number of independent looks of the image [39].

The core idea of the test statistic is to identify and
classify pixels as ”change” and ”no-change” classes by
means of the selection of a threshold value that separates
them. This strategy suffices after identifying whether the
change increases or decreases the SAR intensity. The
threshold is a single value of a metric that compares the
images pixel-to-pixel, and since such metric is always
governed by the gamma-distributed nature of multilook
SAR images, its selection necessarily implies a certain
misclassification error, commonly referred to as false
alarm rate. A pixel-wise image subtraction approach
is not suitable for SAR images since the selection of
a threshold would yield a variable false alarm rate
depending on the σ0 values of the pixels [41]; to ensure
a single Constant False Alarm Rate (CFAR) across the
change metric, the ratio of the images, referred to as
image ratio, is to be used [39].

Consider two uncorrelated SAR σ0 images I1 and
I2 with reference configuration and the same number
of looks L. Their ratio image R is then a distributed
metric known to follow the following probability density
function [39]:

p(R) =
Γ(2L)

Γ2(L)

γLRL−1

(γ +R)2L
(2)

where γ = σ2

σ1
is the ratio of the mean values of the

images.

For established values of α = L and γ, the detection
probability Pd above a threshold T can be found by
integrating (2) with respect to the ratio value R:

Pd(T, L) = p{R > T} =

∫ ∞

T

p(R)dR =
Γ(2L)

Γ2(L)

·
L−1∑
k=0

(
L− 1

k

)
(−1)L−k−1

2L− k − 1

(
1 +

T

γ

)k−2L+1 (3)
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where
(
L−1
k

)
is a binomial coefficient and L is

an integer value to satisfy the discrete summation
of terms in (3). The typical procedure to approach
change classification is to select a maximum CFAR
or misclassification error Pe between ”change” and
”no-change” classes. This error can be calculated by
assuming “no-change”, i.e. by setting γ = 1 in (3), and
depends on the number of looks L chosen [39]. On the
other hand, the number of looks, together with the value
of γ and the choice of T, settles a detection probability
Pd. Since γ is given by the characteristics of I1 and I2,
the aim is to find the optimal values of T and L that
provide high Pd values, ideally 95-98 %, while keeping
the CFAR below 5 % (one pixel out of a 4 × 5 pixel
patch will be misclassified). The larger the number of
looks, the lower the achievable CFAR, but at the cost of
spatial resolution.

In practice, local σ0 changes between two images
produce a secondary component of values in the
histogram (encompassing both changed and unchanged
pixels), with a mean value displaced with respect to the
majority of the pixels, which are distributed around a
mean value close to unity. The histogram becomes then
a mixture of two components with a bimodal behaviour,
which can be fit using two different distributions
following (2). When this bimodal histogram scenario
occurs, the two components tend to overlap (unless
the change is very sharp), and the threshold can be
automatically chosen by means of an optimization
method such as the maximum likelihood classification
with the assumption of equal a priori probabilities [2]
or the Otsu method [42].

The number of looks L is then the only free parameter
that governs the Pd and Pe linked with the threshold
T of each distribution. Notice that, by doing so, the
optimization method is what settles the threshold value
and therefore, the misclassification error, and not vice
versa. If that happens, one strategy is that the error
associated with the optimal threshold is always below a
fixed CFAR such as 5 %. In any case, both components
in the histogram should present shapes that can be
fit with (2), and associated probabilities above the
threshold found using (3); the presented framework can
therefore be utilized in any real context that preserves
the assumptions of the equations.

As a final note in this regard, it is worth mentioning
that the applicability of this statistical framework relies
on an adequate pixel sample; the image size and the
extent of the changes within it is a limiting factor of
the method. Images too small might not provide enough

data for statistical inference, and the same applies to the
extent of the changes in relation to their size; the detected
changes should cover a sufficiently large population of
pixels for the change distribution to be discernable, as
well as have a distinct-enough mean value. On another
hand, the assumption of terrain homogeneity should hold;
too large an image would most likely bring a range
of radiometric values so wide, that change would be
undetectable. Therefore, the method presents a marked
sensibility on the image and change sizes, and further
studies about it are encouraged when attempting to apply
the method to specific cases.

Fig. 1. Examples of likely scenarios for test statistic
distribution fits according to (2), fitting the likely shape
of the ratio histogram, in a case of substantial, localized
change between two SAR images (to higher (a) or lower
(b) σ0 values). The constant probability of misclassifica-
tion (or CFAR) in these cases corresponds to the yellow
area under the curves, while the detection probability
as defined in (3) corresponds to the area in blue. The
threshold values T are found with the equal-probability
assumption (a) and the Otsu method (b).

III. PROBLEM FORMULATION

The typical scenario of SAR change detection with
tests statistics, introduced in Section II, concerns the
comparison of imagery from the same radar sensor, with
the images having comparable spatial resolution and
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pixel spacing. This is not a likely scenario, however,
if considering SAR imagery of other planetary bodies
on the solar system; considering the trend of spatial
resolution improvement of the last 2-3 decades for SAR
imaging systems on Earth, and the scarcity of planetary
SAR missions, inter-mission image comparison will
likely deal with images with very different spatial
resolution, and consequently pixel spacing.

Such is the case for future comparisons between
the SAR imagery to be generated by the VenSAR
and VISAR instruments on board EnVision [33] and
VERITAS [34], respectively, and the Magellan data
compiled in the 1990s: with an approximately 40 year
baseline between them, Magellan SAR spatial resolution
was of 120-360 m in range [32] and presented a 75 m
pixel spacing, while future VenSAR spatial resolution
is planned to be as good as 10 m in high resolution
stripmap mode and VISAR should provide a 15 m
resolution with 7 looks of around 20 % of the surface
of Venus [38]. Their pixel spacing is consequently
expected to be also finer.

To pursue the pixel-based change detection method
described in Section II, the two images considered
must necessarily have the same pixel spacing and
number of looks L. Moreover, the case of different
spatial resolutions entails that in practice, the one with
the lowest resolution constitutes the limit of the scale
of the changes that could be detected in the change
detection process. One way to address this imbalance
is to apply a different level of incoherent averaging to
each image in the speckle reduction process, and then
decimate the finer resolution image to the same pixel
spacing of the coarser resolution one. This procedure
would achieve a large pixel spacing, in line with the
image of coarser resolution, but consequently the two
images would have different number of looks, L1 and
L2, respectively. Another strategy would be to apply
an FFT-interpolation to upsample the coarser resolution
image to the same pixel spacing of the finer resolution
one. This would produce a pixel-to-pixel comparison of
images with a finer pixel spacing and potentially with the
same number of looks, depending on the characteristics
of the sensors, but with very different spatial resolutions.

Both methods could procure pixel-to-pixel matches
in the coregistration process, while the first would
be much less computationally complex. However,
since the change detection output resolution is defined
by the coarser of the two input resolutions, a pixel
spacing the size of the finer resolution image would be
unnecessarily oversampling. Moreover, increasing the

number of looks for the finer resolution image does not
have any drawbacks, while it maximizes the number
of looks, i.e. minimizes the standard deviation and
improves the ability to detect potential changes.

Therefore, consider two co-registered, calibrated SAR
intensity images, with the same pixel size after a deci-
mation process, but presenting different number of looks.
In addition, their radar carrier frequency is different, pre-
cluding any coherent correlation effects between them.
Their associated gamma probability density functions, as
defined in (1), can be written as:

p(I2, L2,
L2

σ2
) =

1

Γ(L2)

(
L2

σ2

)L2

IL2−1
2 e−

L2I2
σ2 (4)

p(I1, L1,
L1

σ1
) =

1

Γ(L1)

(
L1

σ1

)L1

IL1−1
1 e−

L1I1
σ1 (5)

The formulation of a generalized version of the theory
introduced in Section II able to account for differences
between L1 and L2 is subsequently addressed.

IV. GENERALIZED BETA PRIME DISTRIBUTION

Consider two variables Xk which are independent.
This is generally the case for two SAR intensity images
acquired with different carrier frequencies and disjoint
spectra, because full decorrelation occurs. Consider also
that they are both gamma distributed such as Xk ∼
Γ(αk, θk) with different shape and scale parameters, in
line with Section II. It has been proven [43], [44] that
the probability density function of the ratio image X2

X1

between the two follows a generalized beta prime distri-
bution, also referred to as generalized inverse beta func-
tion, generalized beta function of second kind or GB2,
of the form X2

X1
∼ β′(α2, α1, 1,

θ2
θ1
). The generalized beta

prime distribution can be theoretically described with the
following equation [44]:

p(x; a, b, p, q) =
p(xq )

ap−1
(
1 + (xq )

p
)−(a+b)

qB(a, b)
(6)

where B(a, b) is the well-known beta function. Sub-
stituting and rearranging the terms, with a = α2 = L2,
b = α1 = L1, p = 1 and q = θ2

θ1
= L1σ2

L2σ1
, the probability

density function of the ratio image R = x = I2
I1

is:

p(R) = p

(
R;L2, L1, 1,

L1σ2

L2σ1

)
=

ρL2RL2−1

B(L2, L1) (1 + ρR)
(L2+L1)

R,L2, L1, ρ > 0

(7)
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with the parameter ρ being defined as the inverse of
q; a look-normalized version of the inverse of the ratio
of the mean of the images γ:

ρ =
1

q
=

L2σ1

L1σ2
=

L2

L1

1

γ
(8)

The generalized beta prime distribution will be
defined with the parameters L2, L1 and ρ, and the
numerator image is to be referred to with the subscript
2 while the denominator one with subscript 1.

Equation (7) is initially found to be valid according to
Section II, as it can be shown to be a generalization of
(2) when L2 = L1 = L and γ = σ2

σ1
= 1

ρ , i.e. when the
two images are composed in the same way and can be
considered to have the same or similar image statistics:

p(R) =
ρLRL−1

B(L,L)(1 + ρR)2L
=

1

B(L,L)

· RL−1

γL(1 + R
γ )

2L
=

1

B(L,L)

γ2LRL−1

γL(γ +R)2L

(9)

Since B(L,L) = Γ(L)Γ(L)
Γ(L+L) = Γ2(L)

Γ(2L) :

p(R) =
Γ(2L)

Γ2(L)

γLRL−1

(γ +R)2L
(10)

The generalized beta prime distribution is an
absolutely continuous univariate distribution associated
with a random variable x, in this case the ratio intensity
R, and as such it has to be non-negative, continuous and
integrable to 1 [43]. Equation (7) states that the ratio R,
the number of looks L2 and L1 and ρ must be larger
than zero, and this is always the case in the proposed
situation. The number of looks L2 or L1 of a SAR
intensity image is always larger than zero per definition,
and R is always necessarily larger than zero since the
SAR intensity values are positive, finite values, if the
images are well calibrated.

SAR intensity values can in specific cases be
manipulated prior to multilooking, for instance in
noise subtraction steps. In other cases, the raw
pixel intensity values of the images might be log
transformed and scaled. This is the case of Magellan
SAR measurements, where the data has undergone
dynamic range compression and correction due to
latitude-varying differences in incidence angle by means
of the empirical law derived by Muhleman [45]. In
these cases, it is necessary to retrieve a corrected and
linear SAR intensity form, typically σ0, which should
ensure the real, positive pixel values necessary for the
correct application of the GB2 framework. The statistics

presented should nevertheless hold for any other form
of SAR intensity such as radar cross-section or other
normalized coefficients such as β0 and γ0, as long as
the data is in linear form and has been averaged to a
certain degree.

The non-negativity, continuity and integration of the
GB2 function is generally known; a demonstration of
the area under the curve being equal to 1 is presented
in Appendix A to address the results of Section IV-B.

A. Properties of Interest

Having corroborated the theoretical suitability of the
GB2 distribution, knowledge of the shape of the distri-
bution is important for two reasons: first, to corroborate
that its behaviour is consistent with the properties of the
classical result in (2), and second, to be able to use it to fit
the ratio-derived histogram with accuracy in a practical
case. The mean value of the GB2 distribution µ1 is the
first raw moment, which can be calculated by setting
n = 1, and considering the values of a, b, p and q as in
(7), in the following expression defined in [44]:

µn =
qnB(a+ n

p , b−
n
p )

B(a, b)
=

B(L2 + n,L1 − n)

ρnB(L2, L1)
(11)

µ1 =
B(L2 + 1, L1 − 1)

ρB(L2, L1)
=

Γ(L2+1)Γ(L1−1)
Γ(L2+L1)

ρΓ(L2)Γ(L1)
Γ(L2+L1)

=
σ2L1

σ1L2

Γ(L2 + 1)Γ(L1 − 1)

Γ(L2)Γ(L1)

(12)

Since Γ(z + 1) = zΓ(z), then Γ(L2 + 1) = L2Γ(L2).
Furthermore, using the definition of the Gamma func-
tion Γ(z) = (z − 1)!, it follows that Γ(L1−1)

Γ(L1)
=

(L1−2)·(L1−3)·...(L1−L1+1)
(L1−1)·(L1−2)·...(L1−L1+1) = 1

L1−1 . Using these results
in (12) yields:

µ1 =
σ2L1

σ1L2

L2Γ(L2)

Γ(L2)(L1 − 1)
=

σ2

σ1

L1

L1 − 1
(13)

This result is remarkable, and it shows that the mean
value of the distribution depends on the ratio of the
means of the intensity images and on the denominator
image number of looks only. The larger the number of
looks L1, the less deviation the mean suffers from the
σ2

σ1
ratio, implying that the number of looks L1 acts as

the sole modulator of the ratio mean independently of
L2. Fig. 2 illustrates this behaviour using a numerical
simulation of the ratio of two Gamma-distributed sets
of N = 104 randomly-generated samples.
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Fig. 2. GB2 mean value µ1 simulation with variable
L1 and L2 number of looks from randomly-generated
Gamma distributions of mean values σ1 = 0.025 and
σ2 = 0.03, respectively. The ratio mean values calculated
from the data and (13) match well, and they are constant
for a fixed value of L1 = 25 regardless of variations in
L2, corroborating the implications of (13).

In addition, and perhaps more critical to the fitting
process, the ”peaky” behaviour of the distribution is
corroborated, and the location and value of the peak
analytically derived. The first derivative of (7) is:

dp(R)

dR
=

ρL2

B(L2, L1)

L2 − 1

(1 + ρR)2L2+2L1

RL2−2(1 + ρR)L2+L1

(1 + ρR)2L2+2L1

·−RL2−1(L2 + L1)ρ(1 + ρR)L2+L1−1

(1 + ρR)2L2+2L1

(14)

By means of the first derivative test to find relative
extrema, dp(R)

dR = 0, it follows that:

(L2 − 1)RL2−2(1 + ρR)L2+L1

−RL2−1(L2 + L1)ρ(1 + ρR)L2+L1−1 = 0
(15)

Then, rearranging, the value of R that satisfies this
condition is:

RL2−1(1 + ρR)L1+L2

(
L2 − 1

R
− ρ(L2 + L1)

1 + ρR

)
= 0

(16)

L2 + L2ρR− 1− ρR = ρ(L2 + L1)R (17)

Rpeak =
L2 − 1

ρ(L1 + 1)
(18)

This point Rpeak is in fact a global maximum of the
function, with the corresponding image p(Rpeak):

p(Rpeak) =
ρL2

B(L2, L1)

xL2−1
m

(1 + ρxm)L2+L1

=
ρL2

B(L2, L1)

(
L2−1

ρ(L1+1)

)L2−1

(
L1+L2

L1+1

)L2+L1

=
ρL2

B(L2, L1)

(L1 + 1)L1+1(L2 − 1)L2−1

(L1 + L2)L2+L1

(19)

This point constitutes a maximum because the second
derivative evaluated in it is negative, as illustrated in
appendix B. Higher order moments provide more infor-
mation about the shape of the distribution, and can be
derived from (11) by choosing other integer values of
n > 0.

B. Associated Cumulative Distribution Function

The cumulative distribution function (CDF) associated
with a generalized beta prime distribution is [44]:

F (x; a, b, p, q) =

(
( x

q )
p

1+( x
q )

p

)a

aB(a, b)

·2F1

a, 1− b; a+ 1;

(
x
q

)p

1 +
(

x
q

)p

 (20)

where the term 2F1 refers to the Gaussian hypergeo-
metric function. Equation (20) can be described with the
particular nomenclature of the GB2 as in (7):

F (R;L2, L1, 1,
1

ρ
) =

(
ρR

1+ρR

)L2

L2B(L2, L1)

·2F1

[
L2, 1− L1, L2 + 1;

ρR

1 + ρR

] (21)

For given L2, L1, σ2 and σ1, the detection probability
can be defined for this case analogously as in the classical
theory of Section II, following (3):

Pd(T, L2, L1) = P{R > T} =

∫ ∞

T

p(R)dR

=
ρL2

B(L2, L1)
·
∫ ∞

T

RL2−1

(1 + ρR)L2+L1
dR =

F (∞;L2, L1, 1,
1

ρ
)− F (T ;L2, L1, 1,

1

ρ
)

(22)
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This result can be simplified but requires the formu-
lation of the Gaussian hypergeometric function in its
general form [46]:

2F1 [a, b; c;x] =

∞∑
n=0

(a)n(b)n
(c)n

xn

n!

(q)n =

{
1 n = 0

q(q + 1)...(q + n− 1) n > 0

(23)

where (q)n is the Pochhammer function or rising
factorial. F (∞;L2, L1, 1,

1
ρ ) = 1 is a known result, the

derivation of which can be found in Appendix A, but
F (T ;L2, L1, 1,

1
ρ ) depends on the value of T such as:

F (T ;L2, L1, 1,
1

ρ
) =

δL2

L2B(L2, L1)

·2F1 [L2, 1− L1;L2 + 1; δ] =
δL2Γ(L2 + L1)

Γ(L2)Γ(L1)L2

·
∞∑

n=0

(L2)n(1− L1)n
(L2 + 1)n

δn

n!

(24)

where δ is the threshold-dependent variable defined as:

δ =
ρT

1 + ρT
(25)

In the special cases of the 2F1 function when one of
the numerators a or b, b = 1 − L1 in this case, is a
non-positive integer, the sum is bounded. The function
is then constructed as stated in [47]:

2F1(a, b < 0; c;x) =
−b∑
n=0

(a)n(b)n
(c)n

xn

n!
(26)

Substituting this change in (24) yields:

F (T ;L2, L1, 1,
1

ρ
) =

δL2Γ(L2 + L1)

Γ(L2)Γ(L1)L2

·
L1−1∑
n=0

(L2)n(1− L1)n
(L2 + 1)n

xn

n!

(27)

Since (x)n = Γ(x+n)
Γ(x) and Γ(x+ 1) = xΓ(x), then:

(q)n
(q + 1)n

=

Γ(q+1)
Γ(q)

Γ(q+2)
Γ(q+1)

=
q

q + n
(28)

Substituting this result in (27) yields:

F (T ;L2, L1, 1,
1

ρ
) =

δL2Γ(L2 + L1)

Γ(L2)Γ(L1)L2

·
L1−1∑
n=0

L2(1− L1)n
L2 + n

δn

n!

=
δL2Γ(L2 + L1)

Γ(L2)Γ(L1)

L1−1∑
n=0

(1− L1)n
L2 + n

δn

n!

(29)

This analytical expression, presenting a finite sum of
terms, can already be computed. However, it is advisable
to come up with a computation strategy to deal with very
large numbers with a mathematical precision that suffices
to calculate F (T ;L2, L1, 1,

1
ρ ). Considering the result in

(29), the detection probability Pd above a threshold value
T is found by restating (22) as:

Pd(δ, L2, L1) = 1− δL2Γ(L2 + L1)

Γ(L2)Γ(L1)

·
L1−1∑
n=0

(1− L1)n
L2 + n

δn

n!

(30)

C. Analysis with Simulated Data

Before attempting to use the presented formulation
with real SAR data, analysis of a simple simulation
is helpful to assess the suitability of the method, and
to highlight the improvement it brings with respect
to the classic formulation with a single L value, as
introduced in Section II. The capacity of both methods
to calculate the change and error probabilities, Pd

and Pe, ultimately depends on how well they fit the
data; therefore, a basic statistical assessment of the
goodness of fit should provide a useful evaluation metric.

Two sets of 105 gamma-distributed values with unit
mean and shape values L1 = 10 and L2 = 100 were
generated and then divided, producing a simulated
ratio SAR image of an assumed homogeneous area,
imaged twice with averaging levels differing by an
order of magnitude (as expected between Magellan and
VenSAR/VISAR). The resulting histogram of the ratio
data has been fit with GB2 using (9) with the L2 and
L1 values as above. In parallel, a series of fits have
been computed using (2) and compared to GB2. Since
the data has been constructed by ratioing two simulated
SAR intensity images averaged with very different
number of looks L, there is no unique L value that is
equivalent for use in (2), since the assumption of the
same number of looks for both images/datasets does not
hold.
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All possible L values between L1 and L2 have
been considered, to generate fits of the data, and
to find a compromise value that lies between them.
For each of the fits, including GB2, basic regression
analysis statistical measures have been computed as a
preliminary estimation of the quality of fit [48]; the
general form of the coefficient of determination (R2), the
root-mean-square error (RMSE), and the mean absolute
error (MAE). The point-to-point residual between fit and
data has also been computed for the GB2 fit and for
the best fit generated with (2), to provide a graphical
comparison between them.

Fig. 3. Simulated data performance test of the GB2
framework compared to the L-ratio of the classic theory
computed with (2): (a) shows a compilation of fits,
including GB2 and several L-ratio. GB2 exhibits a perfect
fit, while the closest L-ratio fit with L = 22 is unable
to precisely define the trailing edge of the histogram.
(b.1-4) presents a compilation of several statistic metrics
to assess the goodness of the L-ratio fits, for different
values of L, with respect to GB2. A close-enough fit is
found with a compromise value L = 22, but RMSE (b.3)
and MAE (b.4) scores are worse than those of the GB2
fit. Moreover, it does not follow the data as well as GB2
throughout all the span, as evidenced by higher values
of the residual (b.2).

Fig. 3 exposes the theoretical superiority of the new
GB2 framework with respect to the classic L-ratio
using (2). The L1 and L2 values used to generate the
simulated data can be used directly to generate a GB2

fit that perfectly matches the ratio image histogram.
On the contrary, the classic L-ratio cannot be used
rigorously, as it does not consider different averaging
levels. Moreover, the best-fit approximation obtained
(L=22) yields a result with a lower performance with
respect to that of the GB2. The goodness of that fit is
similar if comparing the R2 results of Fig. 3(b.1), but it
is worse in terms of RMSE and MAE, shown in Figs.
3(b.3) and 3(b.4) respectively, as well as particularly
failing to match the trailing edge of the histogram as
shown in the residual plot in Fig. 3(b.4). These results
support the claim that even if mathematically correct
for the case, the new framework also outperforms any
adjusted version of the classic L-ratio fit, adapting
to the leading and trailing edges of the data more
independently.

V. PERFORMANCE ASSESSMENT WITH MAGELLAN
SAR DATA

Magellan SAR backscatter σ0 data is the best
resolution imagery, to date, of the surface of Venus [32].
To simulate future VISAR/VenSAR-Magellan image
comparison by means of a pixel-to-pixel test statistic,
co-registration, decimation and orthorectification prior
to the ratio operation are assumed, making the images
geometrically and radiometrically comparable, and thus
facilitating the matching of features between them.
No radiometric distortions due to differences in carrier
frequency, polarisation or thermal noise between the
images are considered.

Two tests have been conducted; one selecting a
quasi-homogeneous area, where a single terrain unit
is inferred from visual inspection and hence Gamma
fitting according to Section II should in principle
hold, and a second case using a larger, heterogeneous
area of Venus’s surface where multiple terrain units
and degrees of textural complexity are included. An
additional simulation, presenting an example of a
possible real change occurred in the area selected for the
heterogeneous case, is also included. The same Magellan
SAR image from the Full-Resolution Mosaicked Image
Data Record (F-MIDR) [49] is used as numerator (I2)
and denominator (I1) in all cases. However, to simulate
the expected differences in spatial resolution as stated in
Section III the numerator image I2, corresponding to the
future VISAR/VenSAR image, has been processed with
a 7×7 boxcar filtering operation, whilst a smaller degree
of multilooking using a 3 × 3 version has been applied
to the denominator, which plays its own Magellan role.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, XXXXX 2023 10

The choice of these sizes for the boxcar filters has been
made in relation to two points: one is the approximated
proportion between the expected spatial resolutions of
the VenSAR and VISAR instruments (in reconnais-
sance/global mode) and the finest Magellan resolution,
obtained in equatorial latitudes. These are 30 m [38] and
close to a 100 m [32], respectively (both in slant range
and azimuth). However, this yields a proportion of 9:3,
which is larger than the one between the chosen filter
sizes. After several tests, it became evident that too large
an averaging narrowed the histograms to the point where
the spread was not easily detected; in consequence,
the proportions were slightly reduced for visualization
purposes. As long as the sizes of the boxcar filters applied
to the two images differ, any other filter size combination
should work well in order to test the methodology.

A. Homogeneous Case

The area selected for this test case is a 300 × 300
pixel portion of a lava field emplaced south-west of Atla
Regio, Venus, extracted from a Muhleman-corrected σ0

image [50] derived from the f00n194 F-MIDR mosaic
[49].

Fig. 4. Simulation showing 2 SAR multilook σ0 im-
ages and their ratio image, with their corresponding
histograms and Gamma and GB2 fits. (a) f00n194 F-
MIDR mosaic. (b) Summary of the calculated ENLs and
the Total Number of Looks (TNL) applied, considering
angular ”burst” looks [51] and boxcar averaging, for each
case. (c) The Magellan multilook image case and its cor-
responding Gamma histogram and fit. (d) Analogously to
(c), the Magellan-derived VenSAR simulated case with
a larger averaging. (e) The ratio image and its GB2 fit.

Fig. 4 illustrates a relatively homogenous SAR image
scene on Venus. This area contains some brightness and
textural heterogeneities in its underlying σ0 signature,
which are visible in the multilook images in Fig. 4(c)-
4(d). These variations drive the slight mismatch between
image histograms and Gamma fit curves, producing
narrower shape and slightly broader tails but with a
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good overall fit. Moreover, and more importantly, these
divergences do not significantly propagate to the ratio
image in Fig. 4(e); the ratio histogram is excellently fit
with a GB2 distribution with L1 = 30 and L2 = 150.
These values are much larger than the nominal looks in
a Magellan F-MIDR imagery, which ranges between 5
and 17 depending on the latitude [51], but are of the
order of magnitude of the expected total number of
looks applied after boxcar filtering.

It is important to note that although the fits are
successful in describing the overall histogram shapes,
particularly for the ratio image, the values of L1 and L2

used in each case vary. They are in all cases different
from the theoretical expected values, which should
correspond with the ENLs of the images according
to Section II. At the Gamma fit level, this has been
theorized to be due to the inherent high correlation
among pixel values of the same image. The correlation
is mainly caused by two factors: first, the pixel size is
smaller than the actual spatial resolution by roughly a
factor of 2, making pixel pairs effectively equal, and
second, the presence of textural patterns introduces an
additional layer of interdependence among neighbouring
pixels. Texture, understood here as a consequence
of intensity fluctuations longer than the resolution,
directly impacts the shape of the histograms: it distorts
them away from their theoretical fits and therefore,
also from the values of L1 and L2 used to construct them.

Considering the GB2 fit, however, the discrepancy
between the chosen L1 and L2 and the ENLs does
not originate in the presence of intra-image correlation,
but rather because of high correlation between the two
images used in the ratioing operation. This occurs in
the test cases of this study since, although both images
have experienced different levels of averaging, they come
from the same Magellan SAR measurement. The fact
that the two images are therefore not independent con-
tradicts the assumption of uncorrelated channels made
in Section II, which, on the other hand, shall be true
for any future use of the GB2 framework, including for
Magellan imagery comparison with future VISAR and
VenSAR data. However, the results show that although
GB2 does not account for image correlation, there are in
fact values of L2 and L1 that can generate a very good
fit with GB2; the correlation effects can be compensated
by varying the choice of number of looks.This is seen
as an advantage and a useful trait of the framework;
deriving an expression with different number of looks
that also accounts for a certain degree of correlation
is a much more complex endeavour, and it is deemed
unnecessary for change detection between different SAR

sensors, because of their different carrier frequencies.
Therefore, a simple tuning of the L2 and L1 parameters
is enough to successfully fit any ratio histogram from
images with a level of pixel correlation.

Fig. 5. The homogeneous area ratio histogram and its
corresponding GB2 fit as in Fig. 4(e), together with the
corresponding associated detection probability above a
ratio threshold T both from the image data and from
the fit provided by (30), and a dashed vertical line
corresponding to the mean value µ1.

Fig. 5 shows a perfect match from the theory
introduced in Section IV and the behaviour of the
Magellan data. The ratio image mean value µ = 1.07
matches in 95 % the theoretical expectation given by
(13). This is very close to 1, as expected of the ratio
of the same image, albeit with different degrees of
multilooking. Actual VISAR and VenSAR images,
likely to contain real surface feature changes, are
expected to produce histogram components which drift
away from the mean value of 1. On the other hand,
the detection probability Pd derived with (30) shows
a remarkable likelihood with the data: for a given
threshold ratio value T, which generates a particular δ
value, and the L1 and L2 values used to generate the
GB2 fit in Fig. 5, the results in 30 (multiplied by 100)
are very close to the actual percentage of pixels above
the same threshold when considering the ratio image
pixel values. This consolidates the presented CDF as a
solid framework to calculate Pd in real change cases
with images with different number of looks. Please
note that the detection probability Pd = p{R > T}
corresponds to 1 − p{R ≤ T} = 1 − CDF ; thus the
decreasing character of Pd in Fig. 5.

Considering also that, according to the theory exposed
in Section II, the probability of false alarm Pe can be
calculated for any T and L values by setting γ = σ2

σ1
= 1,

and that this is exactly the case for this test (since the
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mean value of both I2 and I1 is the same), the framework
is also proven to work for calculating CFAR.

B. Heterogeneous Case
A case analogue to Section V-A, the test area is this

time a larger, 1024× 1024 pixel patch of heterogeneous
terrain units, consisting of a network of lava flows of
distinct radar brightness and inferred highly deformed
ridges, east of Idunn Mons, Imdr Regio, Venus. The
Muhleman-corrected σ0 image of the area is from the
f45s218 F-MIDR mosaic.

Fig. 6. Test case of 2 SAR multilook σ0 images and their
ratio image, with their corresponding Gamma and GB2
histograms and fits. Equivalent to Fig. 4.

The results illustrated in Fig. 6 reaffirm the behaviour
observed in Section V-A; an excellent fit of the ratio

image histogram can be found with a GB2 distribution,
in this case using L1 = 46 and L2 = 160. However,
specific differences arise: the disparity of terrains and
the larger averaging pushes the ENLs of the area closer
to the L1 and L2 values used for the Gamma fits. The
ENL values are remarkably low compared to the TNLs,
which indicates how strongly correlated the pixels are.
In turn, they do not provide a good fit around the peaks
of the histograms, probably because they are so low that
the distribution of pixels is almost exponential. The fact
that regardless of these deviations, the ratio histogram
GB2 fit works well implies that the GB2 framework is
robust even in the presence of texture, and even more so
considering the fact that it does not account for a level
of correlation between the images; the results show that
there is a combination of L2 and L1 that generates a
good fit independently of the weight of those factors, as
seen in Section V-A.

Fig. 7. Equivalent to Fig. 5, the ratio image histogram
of the case and its corresponding GB2 fit as in Fig. 6(e),
superimposed with the corresponding associated CDF
above a ratio threshold T, derived from the image data
and from the fit provided by (30). The dashed vertical
line corresponds to the theoretical mean value µ1.

The correlation effect between images is expected
to disappear in real case applications, as mentioned.
However, the minimized effect of textural variations in
the GB2 histogram might be due to the textural patterns
of the images being almost identical and cancelling out,
since they are both Magellan images. In the case of two
SAR images actually coming from different sensors, the
textural patterns might vary with wavelength and look
angle differences, and the GB2 fit might not work as well
in that regard. Fig. 7 also corroborates the robustness of
the CDF associated with a GB2 PDF to provide estimates
of detection probability and probability of false alarm.
The fit matches very well the data behaviour, as in Fig.
5, this time in a test image patch which is heterogeneous



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, XXXXX 2023 13

and has strong textural complexity across terrain units.
This reinforces the claim that this generalization of the
classic SAR test statistic theory is a good mathematical
tool to be included in the VISAR/VenSAR-Magellan
image intercomparison chain, as well as useful for any
pixel-to-pixel comparison of SAR imagery with different
spatial resolutions.

C. Simulated Change Case

Finally, to conclude the analysis on the practical uses
of the GB2 framework, one example of simulated new
lava flows on top of the volcanic area introduced in
Section V-B is shown below in Fig. 8.

Fig. 8. Simulation of new lava flows that could be
detected by VenSAR or VISAR. (a) corresponds to
the multilook Magellan SAR image, as in Fig. 6. (b)
represents the predicted VenSAR or VISAR image of
the area, including the changes, after eventual coregistra-
tion, multilooking, decimation and orthorectification, and
accounting for the system-induced changes. (c) shows
the histogram shape, the GB2 fits, and the calculated
thresholds: localized changes generate a secondary, much
smaller component of pixels. Finally, (d) shows the
change map obtained by selecting the pixels with values
above the Otsu threshold in (c).

This is a simplified, possible scenario, where either
VenSAR or VISAR would register these changes in
their SAR imagery. The changes have been added
manually by delimiting a pair of polygons in the
area point by point, and incrementing their pixels’
values homogenously, multiplying by a factor of 2.

The underlying speckle-remnant and textural patterns
are therefore not affected by this operation, and the
brightness of the “new flows” is approximately half
of what the largest contrast between bright and dark
patches in the neighbouring terrain is.

Fig. 8 depicts a scenario which shows how a real
case application of the GB2 framework might look like.
As advanced in Section II, when one of the images
involved in the test statistic presents localized changes
in brightness, this appears in the ratio histogram as
a secondary component. This component, comprising
the pixels that are affected by change, is displaced
towards the right or the left of the “main” component,
which encompasses all the pixels which do not change,
depending on whether the changed pixels are brighter
or darker than previously. Both components are fit with
GB2 distributions using the same L2 and L1 parameters,
but with different ρ values, as their ratio mean is
different.

The choice of looks significantly differs from the
theoretical expectations due to image correlation, as
in Sections V-A and V-B. In the case of Fig. 8, the
distributions are almost detached, making the use of
optimization thresholding methodologies not so critical;
regardless, only the Otsu threshold works properly. The
calculated probability of detection Pd of changed pixels
above the threshold is 98.08 %, and the probability
of misclassification Pe is 1.92 %; Fig. 8(d) results
are therefore very good according to the standards of
Section II. However, more overlapping of distributions
is expected for fainter σ0 changes, and in those cases
Pd would be lower and Pe would rise sharply. One way
to improve change detection in those cases would be to
average the images further, narrowing the spread of both
distributions, but that would in turn bring less precision,
because the spatial resolution would be worsened.

The ability to fit the ratio histogram with a pair of
GB2 distributions is the key step in real scenarios, and
depends on several factors. These include that the change
distribution has the sufficient pixels to be successfully
fit, and that its radiometric mean is sufficiently distant
from 1 for its peak not to fall under the umbrella of the
main distribution, which would make it undetectable. The
capacity to mathematically locate the peaks, as described
in Section IV-A, is consequently critical for the correct
description of the test statistic.

VI. CONCLUSIONS

A modification to the statistical framework of
pixel-by-pixel change detection based on CFAR test
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statistic has been proposed and tested with SAR data.
The theory presented is based in the well-known
generalized beta prime probability density function,
and offers a generalization of the classical theory of
the ratio of SAR intensity images, in the sense that it
permits the utilization of different shape parameters or
number of looks L to define the Gamma distributions
of the two images involved in the ratio operation.
In practice, this allows the test statistic method to
work with images coming from radar systems that
possess substantially different spatial resolutions, hence
requiring different levels of averaging/multilooking
for speckle reduction and resolution homogenization
before pixel size decimation and the subsequent ratio
operation. Therefore, the GB2 test statistic framework
allows change detection between different radar sensors,
if the images are co-registered, well calibrated, and the
differences arising from other divergent observational
parameters are accounted for.

Tests using Magellan SAR data with different
averaging levels have shown the suitability and capacity
of the method to describe the ratio PDF and obtain
detection probability estimates and CFAR. Results have
shown the success of the framework in designated
homogeneous areas and for large-enough blends of
distinct terrain units, albeit the inferred ENL of the
areas do not match the subsequent L2 and L1 applied
to construct the equations. This is attributed to the
inherent pixel correlation between the images, primarily
due to both being produced from the same Magellan
data; however, differences in the statistical fluctuations
associated to different degrees of texture throughout the
tested areas, emerging due to different averaging levels,
is theorized to be a factor as well. Finally, an example
of a possible simulated change scenario on the surface
of Venus has been presented, showing how the GB2
framework could be used together with thresholding
methodologies to delineate changes with great accuracy.

Possible change detection applications of the GB2
framework revolve around the comparison of SAR
imagery that is completely independent due to the
different sensor characteristics, both on Earth and in
other planets. In that sense, the fact that the framework
works well when incorporating a high degree of
correlation, tuning only the L2 and L1 values to achieve
a good fit, constitutes a proof of its adaptability and
robustness. On the other hand, texture fluctuations are
not assumed in the GB2 derivation, but their impact is
thought to be rather small in the results of this study
because images were acquired by the same sensor.
Different carrier frequencies and observation geometries

are likely to drive substantial differences between the
textural patterns of the images, which would distort the
shape of the histograms beyond the effects seen in this
study.

Therefore, a modification of the presented GB2
framework to account for texture fluctuations could be
a next step to be investigated; this might be necessary
if the texture patterns of the images differ greatly,
and hence the ratio operation alone is not sufficient to
cancel them out. On the other hand, further tests with
uncorrelated Earth Observation SAR data is also seen
as a potential follow-up study to expand on the results
presented here.

To conclude, in relation to a general strategy that
allows SAR intermission change detection, and in par-
ticular regarding the case of VenSAR or VISAR SAR
image comparison with Magellan, this study should be
regarded as just one of the several building blocks
necessary. Further research is needed to address the
challenges of image comparison with different carrier
frequencies, polarisations, and noise figures, and on how
to deal with geometric and radiometric mismatches due
to different observation geometries, poor geolocation and
poor topography. The authors of this study are working
towards this goal and would like to encourage others in
its pursuit.

APPENDIX A
PROOF OF F (∞;L2, L1, 1,

1
ρ ) = 1

A PDF must be continuous, non-negative and inte-
grable to 1. These are known results for the GB2 func-
tion, which has been used in many statistical applications
[43], [44]. From (21), it follows that:

F (∞;L2, L1, 1,
1

ρ
) = lim

R→∞
F (R;L2, L1, 1,

1

ρ
)

=
1

L2B(L2, L1)
2F1 [L2, 1− L1, L2 + 1; 1]

(31)

It is worth noticing that the variable of 2F1 in (31) is
one because, as defined in (21):

lim
R→∞

ρR

1 + ρR
= 1 (32)

This beautifully allows the application of the Gauss’s
summation theorem [43], which holds:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

ℜ(c− a− b) > 0; c /∈ Z0
−

(33)
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Since in this case a = L2, b = 1 − L1, c = L2 + 1,
and c − a − b = L1 follows the condition in (31), then
2F1 [L2, 1− L1, L2 + 1; 1] yields:

2F1(L2, 1− L1;L2 + 1; 1) =
Γ(L2 + 1)Γ(L1)

Γ(1)Γ(L2 + L1)
(34)

Since Γ(1) = 1 and Γ(n+ 1) = nΓ(n):

2F1(L2, 1− L1;L2 + 1; 1) =
L2Γ(L2)Γ(L1)

Γ(L2 + L1)
(35)

Then, since B(a, b) = Γ(a)Γ(b)
Γ(a+b) , the previous equality

transforms to:

2F1(L2, 1− L1; cL2 + 1; 1) = L2B(L2, L1) (36)

Substituting this result into (31) yields:

F (∞;L2, L1, 1,
1

ρ
) = lim

R→∞
F (R;L2, L1, 1,

1

ρ
)

=
1

L2B(L2, L1)
· L2B(L2, L1) = 1

(37)

APPENDIX B
PROOF OF LOCAL MAXIMA

Defining f(R) as a GB2 function, analogue to that of
(7), it follows that the second derivative with respect to
R is:

d2f(R)

dR2
=

ρL2

B(L2, L1)(1 + ρR)4ϕ
·[

(L2 − 1)(L2 − 2)RL2−3(1 + ρR)3ϕ

−RL2−1ρ2ϕ(ϕ− 1)(1 + ρR)3ϕ−2

−2ϕρ(L2 − 1)(1 + ρR)3ϕ−1

+2ϕ2ρ2RL2−1(1 + ρR)3ϕ−2
]

(38)

where ϕ = L2+L1. Extracting certain common factors
and rearranging, the expression in (38) can be simplified
as:

d2f(x)

dx2
=

ρL2RL2−1

B(L2, L1)(1 + ρR)ϕ
· p1(R)

(39)

p1(R) = (L2 − 1)(L2 − 2)R−2

−2(L2 − 1)R−1ϕρ(1 + ρR)−1

+ϕ(ϕ+ 1)ρ2(1 + ρR)−2

(40)

Since the first factor in (39) is always positive, the
accompanying polynomial factor p1(R) can be addressed
to find the sign of the complete derivative expression,
substituting R by the peak value Rpeak = L2−1

ρL1+1 :

p1(Rpeak) =
(L2 − 2)ρ2(L1 + 1)2

L2 − 1

−2ρ2(L1 + 1)2 +
(ϕ+ 1)ρ2(L1 + 1)2

ϕ

=
ρ2(L1 + 1)2(L2 − 2)ϕ− 2ρ2(L1 + 1)2

ϕ(L2 − 1)

·ϕ(L2 − 1) + ρ2(1 + ϕ)(L1 + 1)2(L2 − 1)

ϕ(L2 − 1)

(41)

Expression (41) can be further developed and simpli-
fied as follows, with the common factors being always
positive by definition:

p1(Rpeak) =
ρ2(L1 + 1)2

(L1 − 1)ϕ
p2(Rpeak) (42)

p2(Rpeak) = ϕ(L2 − 2)− 2ϕ(L2 − 1)

+(1 + ϕ)(L2 − 1)
(43)

p2(Rpeak) = ϕL2 − 2ϕ− 2ϕL2

+2ϕ+ L2 + ϕL2 − 1− ϕ = L2 − 1− ϕ

= −1− L1

(44)

Since L1 is always positive, the term p(Rpeak) =

−1−L1 in (44) is always negative, proving that d2f(R)
dR2

evaluated in Rpeak is a local maxima.
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