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Summary

Hospitals and the healthcare system play an indispensable role in society by
providing critical care to patients, often in unpredictable and challenging con-
ditions. Despite their vital function, many hospitals still rely on traditional,
non-data-oriented practices in their supply chain management. This thesis
delves into the potential of implementing data-driven Operations Manage-
ment and Operations Research (OM/OR) techniques to enhance hospital sup-
ply chains. This thesis comprises three articles, each addressing real-life use
cases that highlight specific challenges presented by the hospital context and
propose OM/OR approaches to tackle them.

The first article focuses on optimising bed flow management within a hospi-
tal, addressing the complexities of matching an unpredictable patient demand
with limited bed resources, primarily reliant on human decision-making. We
introduce a model that incorporates the impact of demand variability on the
workforce, emphasising the efficiency gained by considering this human fac-
tor. This approach helps mitigate the risk of bed shortages and enhances the
overall supply chain.

The second article centres on the sterilisation process of surgical tools, present-
ing a comprehensive model of the entire cycle, including a dedicated model
of the surgical demand. We demonstrate the necessity of such a holistic ap-
proach in accurately identifying weaknesses within the cycle and devising
effective solutions.

The third paper explores the allocation of departments within a hospital un-
der construction. It illustrates how proactive planning for resource flexibility
can harness benefits in terms of resource utilisation while addressing the chal-
lenges posed by increased transportation flows.
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This thesis demonstrates how data-driven OM/OR methods can significantly
improve hospital supply chains. However, it also highlights various challenges
associated with the hospital context, including issues related to data quality,
data availability, or the complexities of managing highly variable demand.
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Resumé (Summary inDanish)

Hospitaler og sundhedsvæsenet spiller en uundværlig rolle i samfundet
ved at yde kritisk pleje til patienter, ofte under uforudsigelige og udfor-
drende forhold. På trods af deres vitale funktion er mange hospitaler
stadig afhængige af traditionel, ikke-dataorienteret praksis i deres forsyn-
ingskædestyring. Denne afhandling dykker ned i potentialet om at im-
plementere datadreven Operations Management and Operations Research
(OM/OR) teknikker til at forbedre hospitalsforsyningskæder. Denne afhan-
dling består af tre artikler, der hver omhandler brugscases i det virkelige
liv, der fremhæver specifikke udfordringer fra hospitalskonteksten og fores-
lår OM/OR-tilgange til at tackle dem.

Den første artikel fokuserer på at optimere sengeflowstyringen på et hos-
pital, idet den adresserer kompleksiteten ved at matche en uforudsigelig
patientefterspørgsel med begrænsede sengeressourcer, primært afhængig af
menneskelig beslutningstagning. Vi introducerer en model, der inkorporerer
virkningen af efterspørgselsvariabilitet på arbejdsstyrken, og understreger ef-
fektiviteten opnået ved at tage højde for denne menneskelige faktor. Denne
tilgang hjælper med at mindske risikoen for sengemangel og forbedrer den
overordnede forsyningskæde.

Den anden artikel er centreret om steriliseringsprocessen af kirurgiske værktø-
jer, og præsenterer en omfattende model af hele cyklussen, inklusiv en dedik-
eret model af det kirurgiske behov. Vi demonstrerer nødvendigheden af en
sådan holistisk tilgang til nøjagtigt at identificere svagheder i cyklussen og
udtænke effektive løsninger.

Den tredje artikel undersøger fordelingen af afdelinger inden for et hospital
under opførelse. Det illustrerer, hvordan proaktiv planlægning for ressource-
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fleksibilitet kan udnytte fordele i form af ressourceudnyttelse, samtidig med
at de udfordringer, som øgede transportstrømme udgør.

Denne afhandling demonstrerer, hvordan datadrevne OM/OR-metoder
markant kan forbedre hospitalernes forsyningskæder. Det fremhæver dog
også forskellige udfordringer forbundet med hospitalskonteksten, herunder
spørgsmål relateret til datakvalitet, datatilgængelighed eller kompleksiteten
ved at håndtere højt varierende efterspørgsel.
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1 Introduction

In 2015, the United Nations (UN) adopted a common sustainability agenda
(UN General Assembly, 2015), aiming to enhance peace, people, planet, and
prosperity within the 2030 horizon. This agenda outlined 17 Sustainable De-
velopment Goal (SDG), including the SDG 3 that focuses on "ensuring healthy
lives and promoting well-being for all at all ages" (UN General Assembly,
2015). One of the specific targets within this goal is SDG target 3.8, which
emphasises the need for "Universal Health Coverage" (UN General Assembly,
2015).

The achievement of Universal Health Coverage points to the need for establish-
ing an efficient and accessible healthcare system for everyone. As highlighted
by the World Health Organisation (WHO) (World Health Organisation, 2020),
hospitals play a vital role in attaining this coverage. They serve as an essential
element within the healthcare network, ensuring the continuous availability
of services for acute and complex conditions (Green, 2004).

Hospitals are instrumental in providing healthcare services to individuals, act-
ing as essential hubs for care coordination and integration. Moreover, hospi-
tals serve as educational institutions for healthcare professionals and critical
bases for clinical research. Their role is fundamental in modern public health-
care systems, as defined by Acheson (1988), who describes public health as
"the art and science of preventing disease, prolonging life, and promoting
health through the organised efforts of society".

The COVID-19 pandemic highlighted the heavy reliance of modern healthcare
systems on hospitals with hospitals being the first response point. The pan-
demic has exposed significant vulnerabilities in hospital supply chains, with
90% of hospitals reporting challenges in the procurement of supplies through-
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out the pandemic as highlighted Goldschmidt and Stasko (2022). Bhaskar
et al. (2020) analyses that several components such as low initial stock, diffi-
culties for the suppliers to deliver and rigid supply circuits, could not cope
with the sudden surge of demand for healthcare.

McKone-Sweet et al. (2005); Toba et al. (2008) and Moons et al. (2019) highlight
that logistics and supply account for more than 30% of hospitals’ total expen-
ditures, which can even reach up to 45%. This substantial proportion is exac-
erbated by the rising healthcare costs attributed to an ageing population and
advanced treatments, as predicted by Knowledge Centre on Migration and
Demography (2022). The need to optimise and reduce costs while addressing
waste, as identified by OECD (2017), poses a dual challenge for hospital man-
agers and staff. They must strive to enhance cost-efficiency and affordability
without compromising the quality of care (Hall, 2012b; Van Oostveen et al.,
2014).

The pressure to maintain or improve quality of care while cutting costs is
compounded by the limited resources of healthcare systems, as emphasised
by Green (2004); Sinha and Kohnke (2009) and Litvak and Bisognano (2011).
However, this pursuit of cost-efficiency may have inadvertently compromised
the resilience of hospitals’ supply chains, making them less prepared to re-
spond to crises such as the COVID-19 pandemic (Harland et al., 2021). Ad-
ditionally, Toba et al. (2008) notes a critical distinction between healthcare
supply chains and more conventional industries, highlighting that stock-outs
in healthcare have far more severe consequences than simply financial losses.
Given the critical importance of hospital supply chains, it is essential to ad-
dress and enhance their resilience and efficiency.

Kunwar and Srivastava (2019) explains that since its establishment in 1948
after World War II, the WHO has emphasised the use of research to im-
prove healthcare systems. The WHO recognises the value of Operations Man-
agement (OM) and Operations Research (OR) in enhancing effectiveness, ef-
ficiency, and improving healthcare availability (World Health Organisation,
2008). In line with societal trends, hospitals are increasingly adopting infor-
mation systems, resulting in the availability of extensive data on patient care
and operational performance (Ferranti et al., 2010; Green, 2004). Data plays a
significant role in the healthcare industry, enabling more accurate monitoring
of products, procedures, and resource usage.
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The World Health Organization (2019) highlights the importance of digitali-
sation and data-driven techniques in achieving "Universal Health Coverage"
(SDG 3.8), while Sharon Ross and Venkatesh (2016) demonstrates their poten-
tial in improving care quality and patient satisfaction. The growing prevalence
of data offers excellent opportunities for improvement through data-driven
supply chain approaches, ultimately ensuring the provision of high-quality
care.

In light of the increasing demand for healthcare services, rising costs, and
the need for hospitals to adapt, Bartenschlager et al. (2023) has presented a
framework aimed at guiding the evolution of healthcare institutions into what
can be referred to as the "Hospital of the Future." This framework draws in-
spiration from the digitally enabled advancements witnessed across various
industries, particularly the emergence of more smart integrated facilities, and
aims to foster a similar transition within hospitals. It underscores the pivotal
role of central data-driven management for enhancing resource utilisation and
ensuring efficient collaboration and coordination throughout the hospital sup-
ply chain. Additionally, it emphasises the broader adoption and integration
of Information Technology (IT) to facilitate the monitoring, modelling, and
optimising hospital processes.

Nevertheless, Bartenschlager et al. (2023) points out that while the transfor-
mation towards smart factories has significantly enhanced operational per-
formance in other industrial contexts, the unique nature of service-oriented
hospitals, with their core mission of providing care to human patients, poses
multiple challenges requiring careful consideration when envisioning and con-
structing the "Hospital of the Future".

In alignment with these considerations, this thesis aims to explore how hos-
pitals can leverage the increasing availability of operational data to build new
data-driven approaches to enhance hospitals’ supply chains. Employing data-
driven methodologies, encompassing Business Intelligence techniques such as
data analysis, visualisation, and statistics, in conjunction with OM/OR ap-
proaches, including simulation, optimisation, and forecasting, this thesis in-
vestigates the development of tailored methods that account for the specific
hospital context and could actively contribute to improving hospital opera-
tional performance while ensuring hospital ability to deliver of high-quality
care.
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1.1 An Introduction toHospital Supply Chains andOper-
ations

In his historical work, Risse (1999) presents an extensive account of the evo-
lution of medical institutions, tracing their roots to the ancient god-healing
temples in civilisations such as Egypt, Greece, Rome, and India. These early
religious, medical groupings served as the precursors to what we now recog-
nise as hospitals.

Risse (1999) further elucidates that the genesis of hospitals can be traced back
to the medieval period. During this era, hospitals emerged as centres that
amalgamated religion-based medicine with the first therapeutical and spiri-
tual treatments and early surgical practices. Additionally, these early hospitals
offered a haven for travellers seeking rest and recuperation.

In the 16t h and 17t h centuries, hospitals transitioned from a religious-based to
a more scientific one with trained nurses and surgeons. They assumed the role
of practical teaching centres, playing a pivotal role in medical advancements.
The development of care and the subsequent rise of medical specialities pro-
pelled hospitals into hubs of medical innovation. The modern hospital, as we
recognise it today, took shape in the late 19t h century, primarily in European
cities such as Paris and Vienna (Lesky and Williams, 1976; Weiner and Sauter,
2003). This period witnessed the advent of specialised departments within
hospitals, fostering the specialisation of medical disciplines and ensuring the
delivery of high-quality care.

Modern hospitals have evolved into pivotal hubs within healthcare systems,
as emphasised by Garrick et al. (2019). They encompass diverse responsibili-
ties ranging from delivering acute patient care to pioneering medical advance-
ments and shaping the next generation of medical practitioners, as outlined by
Green (2004) and World Health Organisation (2020). Given this multifaceted
role, hospitals are integral to healthcare supply chains, underscoring the criti-
cal importance of efficient supply chain management to ensure their optimal
performance and fulfilment of their overarching mission.
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Section 1.1: An Introduction toHospital Supply Chains andOperations

1.1.1 Supply ChainManagement (SCM) inPublicHospitals

Mentzer et al. (2001), observes that numerous definitions of supply chain exist
and aggregates them into a comprehensive definition. The supply chain is
defined as "a set of three or more entities (organizations or individuals) di-
rectly involved in the upstream and downstream flows of products, services,
finances, and/or information from a source to a customer." Subsequently, the
term SCM refers to the organisation and management of the resources and
processes within this supply chain, intending to connect its various entities to
deliver superior value to the customer (Christopher, 2005).

While this definition aligns well with conventional industrial contexts such
as manufacturing, it necessitates refinement to accommodate the specificities
of healthcare systems, particularly in the context of public-sector hospitals.
Within these healthcare settings, the concepts of "value" and "customers" take
on different dimensions, and the definition should be adapted accordingly. As
highlighted by Landry and Philippe (2004), the primary mission of hospitals
is to provide high-quality care to all incoming patients, in alignment with
UN SDG 3.8. In this context, the patients themselves can be regarded as the
equivalent of Mentzer et al. (2001)’s "customers." This perspective is further re-
inforced by de Vries and Huijsman (2011), who defines the goal of healthcare
SCM and hospital SCM by extension as "enhancing clinical outcomes while
controlling costs." It is important to note that, unlike many conventional in-
dustry settings, public hospitals do not pursue profit as an objective; instead,
financial aspects in healthcare SCM are often considered as constraints. The
clinical output serves then as the "value" pursued in SCM in the public health-
care setups.

As highlighted by de Vries and Huijsman (2011), healthcare SCM encompasses
the comprehensive management of "the information, supplies, and finances
involved in the acquisition and movement of goods and services from the sup-
plier to the end user." In the context of hospitals, this entails the management
of various resources crucial to the patient’s journey throughout the hospital.
This may refer to pharmaceutical goods and devices for patients similar to a
classical manufacturing goods supply chain. It also extends to medical equip-
ment that is reused among patients and medical professionals, representing
just one step of the patient’s journey, and ultimately, hospital SCM encom-
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passes the entire patient journey itself, which has a significant impact on the
clinical outcomes, which is the ultimate objective of hospital SCM.

de Vries (2011) notes that hospital SCM is a convergence point for various
stakeholders with diverse objectives: profit-oriented suppliers, hospital man-
agement and purchasing units tasked with resource management, medical
professionals who guide patients through their care journey and assess their
needs and the resources and procedures involved, the patients themselves,
and insurance companies and lawmakers on a higher level. This multitude
of perspectives and objectives makes hospital SCM a complex and dynamic
field that requires effective coordination and collaboration among these di-
verse stakeholders to achieve the best clinical outcomes and fulfil hospitals’
goals.

1.1.2 Complexity andEvolutionofHospital Supply ChainNetworks

Drawing inspiration from the 19t h century Paris and Vienna hospitals, modern
hospitals maintain the clinic-based structure to improve their capacity to ad-
minister personalised, intricate, and advanced treatments to patients. When
looking from a classical SCM material logistics point of view, the different
medical clinics of the hospitals tend to act as silos. These departments have
their own material need and their end-storage close to the point of use. Most
hospitals have central storage common to all points of use upstream. Some
hospitals are grouped and have another shared storage ahead. Consequently,
this configuration creates what Sherbrooke (1968) described as a multi-echelon
network structure for the hospital’s inventory, as outlined by Lapierre and
Ruiz (2007), de Vries and Huijsman (2011), Volland et al. (2017) and Moons
et al. (2019).

As the quality and complexity of care continue to advance, accompanied by
growing resource requirements, Sharon Ross and Venkatesh (2016) point out
that these supply chain network structures are becoming more and more com-
plex and interconnected. Dai and Tayur (2021) highlights the evolution’s re-
flection in the expansion of hospitals’ ecosystems.

In the end, hospital logistics represents a large proportion of the hospital bud-
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get; it accounts for more than 30% of the total expenditures (see Volland et al.
(2017), Moons et al. (2019)). The material logistic observation can be extended
to the entire supply chain and management of the hospital where the fragmen-
tation, silo-oriented organisation combined with a lack of collaboration and
communication is often pinpointed as a major defect of hospital operational
performance (see Moons et al. (2019); Saha and Ray (2019); Sinha and Kohnke
(2009); Toba et al. (2008). Healthcare ecosystems involve a wide spectrum of
stakeholders. The increasing number of actors necessitates heightened collab-
oration and coordination to ensure the highest quality of care for patients.

In summary, as highlighted by Harper (2002), the "provision of healthcare ser-
vices" stands as one of the "largest and most complex industries worldwide",
underscoring the need for advanced data-driven models to ensure the quality
and delivery of care to the patient and enhance operational efficiency.

1.1.3 Thedemandvariability in hospital SCM

At the core of hospital and healthcare SCM lies the patient and their jour-
ney through the healthcare system. Patients are not just the instigators of
healthcare demand; they also constitute the ultimate recipients of care, de-
ciding clinical outcomes, which is the ultimate objective of healthcare SCM.
However, patients are inherently variable and hard to predict.

Patients’ arrival patterns exhibit variations across seasons, months, weeks,
days of the week, and even hourly intervals (Hall, 2012a; Ordu et al., 2019).
These patterns are susceptible to external influences such as sports events,
weather conditions, or unprecedented peak events that can alter both the vol-
ume and characteristics of patient arrivals. Each patient is a unique individ-
ual, characterised by distinct medical conditions requiring tailored treatments,
their own medical background and natural characteristics. Their responses to
similar treatments can vary significantly, resulting in disparate Length of Stay
(LOS) and resource requirements (Hall, 2012b).

Soyiri and Reidpath (2013) dates the earliest forms of health forecasting back
to Hippocrates in ancient Greece but notes that despite these ancient origins,
developing a modern framework for health forecasting remains an ongoing
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challenge. Health forecasting encompasses a wide spectrum of predictive
tasks, including predicting arrival patterns, modelling LOS, and anticipating
peak events. While modelling frameworks such as the one proposed by Ordu
et al. (2019) for patient arrivals in various medical departments exist, it is
crucial to recognise that there is no universally applicable model. Accurate
forecasting necessitates a highly tailored approach based on extensive opera-
tional data. Different models may be required for different medical special-
ities and time horizons to establish a hospital-wide perspective on patient
arrivals. While understanding patient arrival patterns holds the potential for
optimising scheduling as shown by Gartner and Kolisch (2014) and serves as
a preliminary step toward demand for care modelling and forecasting, it is
widely acknowledged among researchers that due to the inherent patient vari-
abilities, achieving accurate and actionable resource forecasting remains an
exceedingly challenging problem (see Haijema et al. (2007), Little and Cough-
lan (2008), Cruz and Marques (2013), Volland et al. (2017)).

Traditional industrial approaches typically employ cost penalty-based meth-
ods to strike a balance between operational costs and service levels (Guerrero
et al., 2013). However, within the context of a hospital, failing to meet patient
needs can have far more severe consequences for patient care than a mere loss
of revenue (Moons et al., 2019). Consequently, hospitals, particularly those
within public healthcare systems, require an organisational structure prioritis-
ing service and patient-centred care over profit-driven objectives.

Hospitals are confronted with the constraint of finite resources to accommo-
date highly variable and unpredictable demands. This challenge was strongly
highlighted during the COVID-19 pandemic. Health expenditure keeps on ris-
ing faster than hospital budgets. The growing demand for healthcare, driven
by an ageing population with increasing expectations of high-quality care,
places additional strain on hospital resources (Van Oostveen et al., 2014). Hos-
pitals house diverse costly and limited resources, including healthcare profes-
sionals, rooms, equipment, supplies, implantable devices, organs, and instru-
ments (Hall, 2012b). In this context, effective capacity planning and resource
management are crucial to prevent costs from skyrocketing in the cost-service
level trade-off.
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1.1.4 Hospitals: Human-Centric Environments

In contrast to the industrial sector, which has embraced digitalisation and in-
creasingly evolved towards automation and heavy reliance on IT systems, hos-
pitals have traditionally operated with a significant human presence (Moons
et al., 2019; Toba et al., 2008; Volland et al., 2017). Patients and healthcare pro-
fessionals constitute core human actors within the hospital supply chain, and
many other critical processes within the hospital rely on human operations.
For instance, lab technicians and medical professionals prepare equipment,
establish treatments, and perform procedures and tests, while operators man-
age tasks such as sterilising tools and cleaning beds. This substantial human
involvement in hospital operations has various implications for the supply
chain.

Firstly, in contrast to data-driven models and decisions, humans cannot con-
sistently make optimal choices and can be influenced by biases. Knox Lovell
et al. (2009) and Hall (2012b) point out that personal preferences can influ-
ence medical decisions. Patients often prefer doctors they are familiar with,
and healthcare professionals tend to use products and tools they are accus-
tomed to. Additionally, individual preferences and time constraints can im-
pact scheduling performance, as surgeons may prefer to schedule complex
surgeries at the beginning of their workday, for example. Notably, Toba et al.
(2008) highlights that in some US hospitals, physician-preferenced items can
account for up to 40% of total medical spending, illustrating the substantial
impact of these preferences.

Hospitals have evolved to pursue excellence in medical care, with the medical
departments serving as centres of excellence. Consequently, many organi-
sational decisions are made within these departments (Bartenschlager et al.,
2023). However, these decisions are often made by medical professionals
rather than experienced management professionals with advanced analytics
backgrounds (Hall, 2012b). Preferences, habits, and workload can introduce
biases into these decisions (Delasay et al., 2019). Research by Hopp et al. (2007)
and Becker-Peth and Thonemann (2019), in the news-vendor model, have
demonstrated that worker behaviour regarding risk plays a significant role
in ordering practices and quantities. In the high-pressure healthcare environ-
ment, where maintaining service levels and avoiding potential consequences
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of stockouts and delays is crucial, medical professionals making management
decisions may exhibit risk-averse behaviour. This inclination could lead to
solutions that appear safer but are sub-optimal. When combined with pref-
erences, such behaviour can foster a culture of creating surpluses to handle
demand variability, resulting in increased costs, waste, and inefficiency across
all hospital specialities (Hall, 2012b; Landry and Philippe, 2004; Moons et al.,
2019; Volland et al., 2017).

Human-operated processes lack the predictability and schedulability of au-
tomated, IT-based processes commonly found in the industrial sector. Hu-
mans are susceptible to making mistakes and do not maintain a constant, pre-
dictable work pace, as noted by Parkinson and Osborn (1957). However, hu-
mans possess the ability to make complex decisions independently. Therefore,
it is possible to incorporate discretionary decision-making within processes
performed by operators. Hopp et al. (2007) and Ibanez et al. (2018) explain
that such decision-making provides organisational buffers for workers and en-
ables them to prioritise tasks, potentially reducing cycle times and improving
service levels. In the hospital sector, these discretionary decisions can help
workers adjust their pace or choose alternative workarounds to ensure service
levels.

Furthermore, discretionary decisions can facilitate incorporating complex op-
erations, such as quality checks within the sterilisation process or batching
of medical tests, leading to improved operational performance. Ultimately,
while heavy reliance on human-based operations in hospitals presents chal-
lenges, it also offers flexibility that can be advantageous in dealing with the
unpredictable nature of healthcare demand.

1.1.5 Adoption and Integrationof Industry Supply Chain Standards
inHospitals

As emphasised by Landry and Philippe (2004), the integration of supply chains
and the adoption of IT have become standard practices in various indus-
tries such as manufacturing or retail, for example, since the 1980s. Subse-
quently, substantial research efforts and the implementation of diverse SCM
standards, including lean methodologies, 5S principles, and various inven-
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tory management practices, have evolved within these industries. Industry
norms have progressively shifted towards data-driven approaches, employing
management tools such as Enterprise Resource Planning (ERP), Material Re-
quirements Planning (MRP), and Collaborative Planning Forecasting and Re-
plenishment (CPFR) to coordinate production. These holistic strategies aim to
increase operational efficiency, enhance productivity, reduce costs, and elevate
both profitability and service quality (Volland et al., 2017).

However, the healthcare sector has lagged in embracing this innovative trans-
formation (Volland et al., 2017). Toba et al. (2008) outlines several factors
explaining this healthcare delay, encompassing outdated healthcare IT sys-
tems and infrastructure, insufficient executive involvement, an absence of
process improvement culture, and numerous human-organised ad-hoc pro-
cedures that could benefit from data-driven approaches. Collectively, these
factors create a gap between the healthcare sector and industry standards, re-
sulting in sub-optimal operational performance and escalated costs.

In recent years, the healthcare sector has progressively adopted digitalisation
trends. Hospital IT has experienced exponential growth since the 2000s, yield-
ing large volumes of clinical and operational data. This digitalisation trend
draws an interesting path towards the development and adoption of data-
driven methodologies and industry-standard SCM practices. While the prolif-
eration of healthcare and hospital IT raises concerns such as addressing pri-
vacy concerns, ensuring data quality, developing data standards, establishing
effective data communication, and securing skilled personnel, it also presents
substantial opportunities to reduce waste and redundancies, enhance resource
utilisation, and foster collaboration across the healthcare supply chain. Ulti-
mately, these enhancements would contribute to improved hospital SCM and
better clinical outcomes (Ferranti et al., 2010; Green, 2004; Ward et al., 2014;
Xie et al., 2021).

The transferability of standard industrial approaches to the healthcare sector
has been a longstanding topic in Hospital OM/OR (HOM). As highlighted by
Volland et al. (2017), while most researchers acknowledge the significant chal-
lenges in implementing these practices in healthcare, the prevailing consensus
in publications is that adopting industry-standard SCM principles could sub-
stantially enhance healthcare supply chains. Notably, Volland et al. (2017)
and de Souza (2009) have shown that lean principles and the chase to di-
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minish surpluses and eliminate non-value activities would drive healthcare
towards heightened operational efficiency and curtail costs, aligning with
Bartenschlager et al. (2023) recommendation for the "Hospital of the Future".
However, Volland et al. (2017) notes that these principles, along with contem-
porary SCM methodologies, necessitate a more holistic approach, which may
clash with the prevalent silo mentality in healthcare settings, impeding the
transition towards an integrated approach.

Hospital IT can play a pivotal role in facilitating this transition towards more
holistic SCM approaches. Primarily, Hospital IT enables the development of
analytics and data-based monitoring. Landry and Philippe (2004), explains
that historically, hospitals struggle with performance measurement, but the
expansion of hospital IT presents a significant opportunity to address this
challenge, opening opportunities for more data-driven approaches in hospital
SCM (Moons et al., 2019; Volland et al., 2017). While hospital SCM may still lag
behind industry standards like retail and Walmart’s CPFR approach, hospital
IT is paving the way to bridge this gap (Moons et al., 2019).

The expansion of hospital IT holds substantial promise for enhancing hospi-
tal care from a clinical standpoint, subsequently contributing to high-quality
care and improving clinical outcomes. Hospital IT provides enhanced visibil-
ity into patients’ medical records, simplifies data sharing, identifies medical
trends among various patient crowds, and facilitates medical advancements
through advanced analytical approaches (Bartenschlager et al., 2023; Ferranti
et al., 2010; Ward et al., 2014). This impact on clinical care ultimately extends
to positively influencing hospital supply chains.

Nonetheless, the exponential data growth in hospital IT poses technical and
IT infrastructure challenges. As noted by Caban and Gotz (2015), it also neces-
sitates the development of efficient analytical techniques to prevent data over-
load, which could lead to misinterpretations, incorrect diagnoses, and missed
warning signs. Developing efficient and high-quality analytics approaches in
healthcare is both a significant opportunity and an imperative to enhance hos-
pitals and healthcare delivery. Ultimately, this ensures hospitals can provide
high-quality care to their patients.
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1.2 Hospital OM/OR

The transformation of hospitals, evolving from religious temples and rest-
houses to the complex, clinic-centred network institutions we have today, as
described by Risse (1999), can be interpreted as first OM advancements. Paral-
lely, the roots of OR can be traced back to World War II when military organi-
sations began employing mathematically based decision-making (Taha, 2007).
Afterwards OR found its application and various domains, including health-
care. Bailey (1952) proposed an early review of healthcare OR development
in the early 1950s. Subsequently, the field of HOM1 experienced continuous
growth and exerted a significant influence on hospital operations, particularly
after the 1980s, as highlighted by Gupta (2022).

1.2.1 OverviewofHOMResearch Landscape

Today, HOM stands as a vast and extensively researched field, as evidenced
by the extensive literature, comprising over 10,000 papers published between
1982 and 2011, as documented by Dobrzykowski et al. (2014). For a compre-
hensive insight into the multifaceted research domains within HOM, Dai and
Tayur (2021) and Gupta (2022) offer detailed introductions, while literature
reviews by Rais and Viana (2011), Hulshof et al. (2012), Dobrzykowski et al.
(2014), or Abe et al. (2016a,b,c) delineate the diverse trends within this ex-
pansive field. Additionally, Hulshof et al. (2011) have introduced ORchestra,
a reference database tailored for HOM, facilitating comprehensive research
exploration.

The expansive scope of healthcare and hospital SCM, encompassing numer-
ous intricate tasks and processes, has translated into a substantial body of
research in the field of HOM with a high variety of approaches, methods
and problems (Carter et al., 2012; Hulshof et al., 2012). Dai and Tayur (2021)
presented a comprehensive "tool-trust" analysis of the HOM literature. This
analysis categorised approaches by their topic - the trusts - and the methods
employed - the tools. The identified tools encompass classical OR techniques

1Traditionally, the acronym HOM stands for Healthcare Operations Management. However,
in the context of this thesis centred on the hospital SCM, we will use HOM to refer to Hospital
Operations Management and Operations Research.
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such as Markov Decision Processes, Deterministic and Stochastic Program-
ming, Robust Optimisation, Queuing Theory, and Simulation. In addition, the
toolbox includes disciplines like Econometrics, Game Theory, and Data Sci-
ence. Notably, the analysis highlights the prominent roles played by Queuing
Theory and Simulation methodologies in HOM.

This prevalence can be attributed to their ability to capture the intricacies of
human-centred hospital processes and effectively address the inherent stochas-
ticity in hospital demand (Brailsford et al., 2009). The thousands of simulation-
based papers within HOM retrieved by Brailsford et al. (2009) corroborate the
widespread adoption of these methods found by Dai and Tayur (2021) and
highlight their efficiency.

Furthermore, Dai and Tayur (2021) reports that a substantial proportion of
HOM research, up to 68%, has focused on the design of care delivery (24%),
the Emergency Department (ED) (17%), stress and workload management and
their impact on worker and work (10%), inpatient care (9%), and ambulatory
care (8%). This aligns with the findings of Hulshof et al. (2012) and under-
scores the emphasis on downstream processes closely linked to patients and
the task of delivering care by the medical profession within the expansive
scope of hospital SCM.

Landry and Philippe (2004) describes the fundamental mission of hospitals
as to provide care to patients, with a particular emphasis on acute care. This
emphasis on clinical care processes, especially in areas such as EDs and Oper-
ation Theatres (OTs), can explain the extensive managerial and research focus
in these domains and consequently, the abundant literature on these specific
areas.

1.2.2 FromCare-Delivery-Focus toHolisticHospital SCM

OTs hold a preeminent position within hospitals due to their significant finan-
cial impact, accounting for nearly 70% of patient admissions (Guerrero et al.,
2013). This prominence is reflected in the extensive body of literature dedi-
cated to optimising OT operations. However, it is important to recognise that
surgery represents just one phase in a patient’s journey through the hospi-
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tal, as emphasised by He et al. (2019), and only a sub-section in the connected
ecosystem of hospital supply chains. Hospitals operate as connected networks,
facilitating the flow of patients, equipment, healthcare professionals, and in-
formation across various units.

The decisions made within the OT have consequences throughout the hospi-
tal, affecting upstream departments such as the ED and patient admissions, as
well as downstream units such as the Intensive Care Units (ICUs), Post Anaes-
thesia Care Units (PACUs), and nursing wards. Consequently, in recent years,
there has been a growing focus in HOM in connected departments and on the
operational decisions’ ripple effects on other hospital units. These comprehen-
sive analytical approaches are described as "integral capacity management" by
Schneider et al. (2020), as they are derived from a holistic vision of the hospital
and its resources.

This care delivery-centric perspective also accounts for the limited attention
directed towards support processes and activities that occur upstream in the
hospital, such as material logistics and the sharing of equipment and resources
between departments. Volland et al. (2017) echoes this observation, highlight-
ing that support processes have received less consideration in healthcare con-
texts compared to other industrial sectors, despite holding substantial poten-
tial for improvement. These support processes play a crucial role in ensuring
that resources are made available to meet the demands of care delivery, mak-
ing them indispensable components of an efficient hospital supply chain Hall
(2012b).

While material management and some aspects of scheduling are currently or-
ganised within individual departments, contemporary studies, such as those
by Meijboom et al. (2011) and Volland et al. (2017), advocate for a more holistic
and integrated approach to supply chain organisation. This approach suggests
a shift from the traditional top-down organisational model, where medical de-
partments dictate demand and organisation, to a bottom-up structure. The
pursuit of a more holistic vision in hospital SCM echoes the supply chain
standards and methodologies that have been applied in traditional industries
since the 1980s, such as lean management, effective coordination, and collabo-
ration among interconnected components.

Holistic approaches in hospital SCM rely on two critical elements: high-quality
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data for actionable HOM projects and a robust IT infrastructure to facilitate
coordination and collaboration among different sub-entities within the hospi-
tal supply chains (Landry and Philippe, 2004; Moons et al., 2019; Toba et al.,
2008). The expansion and adoption of Hospital Information Technology (HIT)
are thus imperative prerequisites for enhancing the efficiency of hospital sup-
ply chains.

1.2.3 ThePotential ofHolistic Approaches

In the context of large highly interconnected healthcare supply networks, a
holistic perspective offers dual advantages, to increase operational perfor-
mance, contribute to hospital SCM, and ultimately enhance clinical outcomes.

While a departmental and singular operational focus, also characterised as a
top-down or demand-centric approach by Meijboom et al. (2011), tends to con-
centrate solely on its internal processes, a holistic vision extends its purview
to encompass the intricate interdependencies between neighbouring depart-
ments and processes. Sinha and Kohnke (2009) attributes a considerable share
of healthcare systems’ inefficiencies to the disregard of these intricate depen-
dencies. The paradigm of "Integral Capacity Management," as introduced by
Schneider et al. (2020), aims at considering the entire ecosystem of the pro-
cess considered systematically incorporating these interdependencies. The
inclusion of such dependencies yields models that closely mirror real-world
complexities, thus yielding more pragmatic outcomes and heightened perfor-
mance for both the processes under scrutiny and their interconnected coun-
terparts. As underscored by Schneider et al. (2020), this "Integral Capacity
Management" paradigm, with its goal of capturing dependencies between
connected entities within the hospital, aligns with the patient journey that
traverses multiple departments, treatments and processes through the hospi-
tal. This alignment resonates with Meijboom et al. (2011)’s patient-centric
approach to hospital SCM.

From a bottom-up perspective, wherein the integral hospital vision perceives
its supply chain and resources as an indivisible entity, facilitates the concept
of resource sharing and pooling. This holistic outlook provides an aggregate
perspective on both available resources and the existing demand. The pooling
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principle, explained by Cattani and Schmidt (2005), enables more effective re-
source allocation to meet demand requirements. The aggregation effectively
reduces variability, a crucial element given the highly fluctuating demand for
care in hospitals. This, in turn, offers significant potential for hospital capacity
planning, diminishing the necessity for surplus resources to mitigate demand
uncertainty (Utley and Worthington, 2012). The advantages of resource pool-
ing in hospital SCM are numerous, encompassing cost reduction, reduced
waiting times, and heightened safety, as underscored by Lega and DePietro
(2005), Meijboom et al. (2011), and Vanberkel et al. (2012). While some hos-
pital capacity planning approaches have embraced the impact of pooling, as
exemplified by Ma and Demeulemeester (2013) in bed capacity planning span-
ning a 6-month to 1-year horizon, Volland et al. (2017) points out the limited
presence of quantitative holistic supply approaches in the literature, despite
their substantial potential.

Historically, traditional hospital practices have leaned towards maintaining
surplus capacity as a strategy to manage demand variability (Moons et al.,
2019). This approach extends to the management of inventories, equipment,
and healthcare professionals, often distributed across various medical depart-
ments. However, this decentralised surplus management proves costly and
results in significant storage wastage. While hospitals offer the perfect setup
to benefit from resource pooling, Cattani and Schmidt (2005) cautions that
its implementation is not a guarantee for improved operational performance.
Rather, it relies on the flexibility of resources and processes involved. Based
on that observation, Vanberkel et al. (2012) has proposed a methodology to
determine whether hospital clinics should be pooled or not, and access the
benefits that come from this pooling.

For resource pooling to be effective, hospitals should aim to increase their
flexibility. Kuntz et al. (2015) demonstrated the impact of flexibility in reduc-
ing mortality rates within the hospital context, highlighting the superiority
of small additional flexible capacities over rigid, robust capacity increases, as
they achieve better outcomes while utilising fewer resources. According to
Vos et al. (2007), flexibility can be enhanced through resource standardisa-
tion and/or versatility, allowing resources to perform various tasks effectively.
This pursuit of flexibility and resource pooling runs counter to the historical
development of hospitals, which has tended towards increasing specialisation,
ultimately leading to modern siloed structures.
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1.3 An illustrative example: Hospital Drug Inventory
Management inRigshospitalet

This section leverages a real-world case study of drug inventory management
at Rigshospitalet to provide a concrete illustration of the potential benefits
derived from advanced analytics and HOM techniques. Rigshospitalet, the
largest public hospital in Denmark, in the heart of Copenhagen, has a capac-
ity of 1200 beds, 12,000 employees, and an annual intake of 360,000 admitted
patients. Rigshospitalet has 50 different medical departments and is central-
ising numerous specialised medicine in Denmark. Our case study focuses on
the drug replenishment processes within the newly built North Wing, which
has been operational since 2020. This wing comprises 12 departments with
a combined capacity of 209 beds, encompassing surgical units equipped with
33 OTs and their associated ICUs. The data used for this analysis correspond
to the entire year 2020 operations.

Hospital inventory management in the context of public healthcare institu-
tions gives a pertinent illustration to highlight the differences that set health-
care apart from conventional industrial settings while revealing the potential
of adopting established industry supply chain procedures and data-driven
methodologies. Hospital inventory management holds the essential role of
ensuring resource availability downstream, thereby enabling the hospital to
fulfil its primary role of delivering care, as articulated by Landry and Philippe
(2004). Public hospitals, operating with a service-oriented mission rather than
a profit-driven one, bear the added weight of the severe consequences that
stockouts can exert on patient care (Moons et al., 2019).

Concurrently, material logistics constitute a substantial portion of the hospital
budget, representing more than 30% of total expenditures, as pointed out by
Volland et al. (2017) and Moons et al. (2019). This cost continues to escalate,
influenced by factors such as an ageing population, increased healthcare de-
mands, and the rising costs associated with the development of research and
advances of specialised medical items (Knowledge Centre on Migration and
Demography, 2022).

Denmark adopts what Sinha and Kohnke (2009) calls a ’socialised’ healthcare
system, characterised by extensive public financing, ensuring affordability and
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accessibility for all citizens, aligning with the UN SDG 3.8. Data from the
pre-COVID-19 era reveals that, in 2019, the Danish government allocated 194
billion DKK to healthcare, constituting 16.9% of total expenditure, with a stag-
gering 52.2% (101 billion DKK) directed towards financing public hospitals
(Statistics Denmark, 2019). Notably, as highlighted in figure 1.1, a substantial
portion, 9.2 billion DKK, was allocated to hospital drug expenditures, equiva-
lent to 0.8% of the entire government budget. Furthermore, Figure 1.2 demon-
strates a consistent upward trajectory, as exemplified by the 80.4% increase
witnessed during the 2007-2018 period. Drugs only account for a part of the
total hospital material logistics.

Figure 1.1: Danish Hospital Economy and Weight of the Drugs (source: Statistics Den-
mark (2019))

Figure 1.2: Evolution of Drug Expenses (source: Danske Regioner (2022))

The convergence of hospital inventory management’s critical importance for
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healthcare delivery and its substantial cost within a constrained hospital bud-
get underscores the imperative for the development of efficient resource man-
agement. This environment gives both a fertile ground and a need for ad-
vanced analytics techniques alongside data-driven approaches, as advocated
by Volland et al. (2017).

1.3.1 MappingRigshopitalet Supply Chain

Figure 1.3 illustrates the logistics supply chain for drugs and other medical
products at Rigshospitalet. Drugs and medical supplies are handled by two
different units but follow a similar flow throughout the hospital. Starting
downstream, from the patient side, these items are stored in numerous decen-
tralised rooms and closets distributed across medical departments, ensuring
proximity for easy access by medical professionals and nurses. The central ser-
vices units, namely the pharmacy for drugs and the Service Centre for other
medical supplies, manage the replenishment of these decentralised storage ar-
eas. These central units also oversee product arrivals at the central warehouse,
serving as the hospital’s initial point of receipt.
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Figure 1.3: Scheme of Rigshospitalet material logistic and supply chain
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Upstream, a regional pharmacy and regional warehouse for non-drugs med-
ical supplies coordinate the initial consolidation of goods for the Greater
Copenhagen Region hospitals. The arrival of drugs and medical supplies
to the decentralised storage rooms is contingent upon their specificity and
commonality. Commonly used items are catalogued, with the regional ware-
house/pharmacy ensuring continuous availability for next-day hospital deliv-
ery. More specialised products may be ordered directly from suppliers but
are routed through the regional hub, where they are cross-docked with the
other catalogue daily deliveries. Lastly, exceptional specific items can be di-
rectly ordered from suppliers by medical departments, bypassing the regional
hub and the hospital’s central service unit. This delivery type concerns the
punctual order of a small fraction of highly specific products.

This structure supplier, regional hug, central hospital arrival, decentralised
storage corresponds to the multi-echelon structure of Sherbrooke (1968) that
is highly common across hospitals (de Vries, 2011; Lapierre and Ruiz, 2007;
Moons et al., 2019; Volland et al., 2017).

1.3.2 AutomatedNon-Digital InventoryManagement at Point ofUse

In terms of information flow, the replenishment process is initiated down-
stream within the medical rooms. When ensuring replenishment in these
rooms, the hospital pharmacy or service centre evaluates the requirements
and places orders accordingly, encompassing catalogue orders, direct deliver-
ies, and cross-docking. On an annual basis, a strategic regional procurement
unit engages in supplier contracts for catalogue deliveries and a portion of
the cross-docking items based on last year’s order logs. These negotiations
encompass price and volume considerations, ensuring the availability of these
items in the regional hubs.

This pull-based inventory management, initiated by the decentralised medical
rooms, aligns with the silo-ed organisational structure of hospitals described
by Toba et al. (2008) and Moons et al. (2019). It entails the replenishment pro-
cess being managed within each individual medical department, with limited
collaboration fostered between departments.
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Rigshospitalet employs the Two-Bin Kanban system to manage its inventories
at the point of use. This system originates from World War II British army
spare part inventory management and was further developed as Kanban in
Toyota manufacturing setups and lean management theory as pointed out
by Ohno and Bodek (2019). The two-Bin Kanban system has been adapted
for hospital and healthcare use since the 1980s and is now widely adopted
(Landry and Beaulieu, 2010). The concept involves using two bins for each in-
ventory item: an "active" bin from which medical professionals retrieve items
and a "safety" bin. When the active bin is empty, the safety bin becomes active,
and a new bin is ordered to maintain a continuous supply.

The Two-Bin inventory system offers distinct advantages: It is a visual inven-
tory management method with organised storage, aligning with lean theory
principles that aim to minimise non-value-added tasks. Furthermore, its stan-
dardised approach for all items simplifies usability for medical professionals
(Landry and Beaulieu, 2010; Landry and Philippe, 2004; Ohno and Bodek,
2019). Its simplicity and evident safety stock make the Two-Bin system ex-
tremely robust and trustworthy, which is essential for medical professionals
and reduces the likelihood of them creating their own out-of-system safety
stock.

However, it is important to note that the Two-Bin Kanban system functions
without the need for data. Once the bin dimensions are set, it acts as a contin-
uous review policy, eliminating the need for stock measurements. While this
approach, as highlighted by Landry and Beaulieu (2010), reduces the risk of in-
correct counting or overstocking due to risk-averse behaviour among medical
professionals, it also results in surplus and safety stocks that must be man-
aged in multiple medical rooms. The lack of data also limits opportunities for
pooling and resource sharing between departments.

The absence of data-driven inventory management in the decentralised med-
ical rooms leads to a significant data disconnection within Rigshospitalet’s
supply chain. Upstream, ordering data are recorded by the hospital’s general
pharmacy or service centre in the hospital’s ERP system, while downstream,
the data are registered by medical professionals in patient records. However,
there are more medical rooms than medical departments, and some rooms
may be shared by multiple departments, making it unclear which specific
medical department should be attributed to an order. Furthermore, patients
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may receive treatment from different departments, complicating the attribu-
tion of prescriptions to a specific department.

Furthermore, the inventory orders consist of bins and packaged, grouped
items, from which individual products are dispensed to patients by medical
professionals. The Rigshospitalet drug catalogue for 2020 includes a total of
51,926 references. However, it employs what Meijboom et al. (2011) describe
as a demand-driven approach, where each item corresponds to a single active
substance identified by its ATC code (see WHOCC (2022)), a specific dose, one
method of administration, a single supplier, and a particular package size. For
instance, the drug Paracetamol (ATC N02BE01) is represented in the catalogue
by 152 references, including 98 variations of oral 500mg Paracetamol, among
which 23 are tablets.

To streamline the data monitoring and facilitate a more comprehensive un-
derstanding of the inventory process, adopting a patient-oriented approach,
as suggested by Meijboom et al. (2011), would reduce the catalogue to 9,095
items using the ATC code, dose, and administration method as a primary key.
This simplification would significantly enhance the ability to monitor inven-
tory processes effectively.

Moreover, despite using barcodes for product scanning before leaving the
room, the immense quantity of items and the high-pressure working environ-
ment often lead to errors during the scanning process. Consequently, achiev-
ing a clear and precise data representation of Rigshospitalet’s inventory pro-
cesses remains an exceedingly complex challenge.

Figure 1.4, constructed using 2020 data retrieved from the hospital’s ERP sys-
tem, illustrates this impossibility by highlighting the significant discrepancy
between the volume of items ordered and the volume consumed (i.e., admin-
istered to patients) in the departments of the North Wing. Notably, the Anaes-
thesiology department gives a striking example of this data disconnection.
Due to its transversal role in the care of various types of patients, the Anaesthe-
siology department generates a high number of prescriptions but a relatively
low number of orders since the products originate from all the medical rooms
and are rarely directly associated with the Anaesthesiology department.
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Figure 1.4: Comparison between the volume of drugs consumed and ordered by depart-
ments (in number of items)

1.3.3 Different strategies for improvement

As highlighted by Volland et al. (2017) and Moons et al. (2019), numerous re-
searchers have proposed more advanced point-of-use replenishment policies,
drawing inspiration from standard industry practices. Notable contributions
include the work of Little and Coughlan (2008), who optimised service levels
while considering spatial storage constraints, and Bijvank and Vis (2012), who
proposed models for both maximising service levels with fixed capacity and
minimising required capacity given a fixed service level. Guerrero et al. (2013)
focused on minimising on-hand inventory costs to ensure a specified service
level, while other researchers explored periodic or continuous systems, as seen
in the studies by Rossetti et al. (2012) and Kelle et al. (2012).

These approaches all rely on having reasonably accurate data representations
of the inventory ecosystem, including inventory levels, demand patterns, and
lead times. However, the current two-bin Kanban system used at Rigshos-
pitalet does not inherently support such data accuracy. To address this lim-
itation, Landry and Beaulieu (2010) and Rosales et al. (2015) have proposed
enhancements to the two-bin system, including the implementation of RFID
marking for items. While this would require a significant initial investment
in setup, it has the potential to transform the system into a more data-driven
approach. This, in turn, could lead to improved inventory policies, increased
service levels, and reduced waste and costs.
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Implementing a point-of-use inventory system necessitates establishing safety
stock levels at each point of use. Although they could be optimised at the
individual level, these safety stock levels must be aggregated across the en-
tire hospital to have a comprehensive understanding of surplus inventory,
on-hand quantities, and associated costs. By enhancing the data quality of
inventory management at the point of use, a more holistic approach becomes
possible, allowing for the design of centralised safety levels and safety stock.
This approach can leverage the pooling effect, as recommended by Cattani and
Schmidt (2005), to achieve improved resource utilisation and cost reduction.

Figure 1.5 provides a histogram depicting the number of different drugs used
by various departments within the hospital. For this analysis, drugs are de-
fined according to a patient-oriented view, which groups them by ATC code,
administration method, and dose. In the North Wing of Rigshospitalet, 1069
different drugs are employed, with 905 of them (84.6%) utilised by more than
one department. This presents an opportunity for a more holistic approach,
where centralised safety management can harness the benefits of demand
pooling across multiple departments, ultimately leading to more efficient in-
ventory management.

Figure 1.5: Distribution of drugs by the number of using departments

Rigshospitalet does not have a centralised inventory point that could fulfil the
role of grouping items holistically. Rigshospitalet organisational structure is
often referred to as "stockless". It is commonly employed in Just-In-Time (JIT)
inventory systems, which aim to minimise on-hand inventory and prioritise
small, downstream deliveries close to the point of demand. Rivard-Royer et al.
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(2002) analysed these approaches and concluded that they could be effective
for certain products, particularly those with consistent demand and lower
variability. However, they may not be efficient for other products that could
benefit from sharing a buffer to address large variations in demand.

Physical hospital inventory can potentially provide the pooling effect and
serve as a shared buffer between departments. Various replenishment policies
have been proposed for such departments, as exemplified by Dellaert and Van
De Poel (1996) and Vila-Parrish et al. (2012). Danas et al. (2002) highlighted
that with clear data monitoring of the different inventory points at point-of-
use locations, it becomes possible to envision a virtual inventory system. This
virtual inventory system would digitally monitor drug inventory levels in all
storage locations throughout the hospital while maintaining a digital safety
stock to ensure inventory availability.

As Rivard-Royer et al. (2002) pointed out, not all items react the same way to
inventory management policies. Two-bin Systems are efficient in managing
small, highly volatile inventory, which corresponds to the reality of medical
rooms. However, viewed from a holistic point of view, it exhibits numerous
redundancy that could be removed. Figure 1.6 is a scatter plot of the drugs
according to their total cost in the x-axis and volume in the y-axis. The color
corresponds to an 80-20 analysis derived from the Pareto Principle (Sanders,
1987). The Pareto Principle started from the observation that 80% of the wealth
was concentrated in 20% of the population. Following this, our 80/20 analysis
aims to identify the cause of 80% of the cost and of the volume of items
ordered. Figure 1.6 shows that Pareto’s observation stands in this inventory
setup with 80% of the cost being concentrated in a small number of items
(light grey and light blue). Similarly, a small number of products generate
80% of the orders (light blue and dark blue). More specifically, 37% of the
items ordered are saline water bags, with more than 200 bags ordered every
day in the North Wing and 31% of the cost is generated by a single highly
specific product. When zoomed in Figure 1.6b, it appears that the drugs highly
ordered (dark blue), expensive (light grey) or both (light blue) only represent
a small fraction of the drugs used in the hospital.

Table 1.1 depicts the drug distribution based on the 80-20 analysis, revealing
noteworthy insights. In terms of cost, the top 80% of the most expensive
drugs correspond to the drugs accounting for an annual expenditure exceed-
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(a) Correlation between Drug Cost and Usage Volume

(b) Focus on Drugs with Fewer than 10, 000 Items Ordered and Total Cost under 3M DKK

Figure 1.6: 80-20 Analysis of the drugs used in Rigshospitalet North Wing
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Table 1.1: Distribution of drugs used in Rigshospitalet’s North Wing in the 80-20 cost and
volume analysis.

20% Cheapest 80% Most Expensive

80% Most Ordered 33 Drugs (Dark Blue) 13 Drugs (Light Blue)
20% Less Ordered 1009 Drugs (Dark Gray) 10 Drugs (Light Gray)

ing 250,000 DKK, while the 80% most frequently ordered drugs each total
more than 700 items per year. Strikingly, a mere 56 drugs (5.2%) are respon-
sible for over 80% of both the drug flow and the total cost, underscoring
significant disparities in drug profiles. Notably, the concentration of drugs in
this scenario surpasses the conventional Pareto’s 80-20 rule.

However, the inventory system at Rigshospitalet uses a standardised approach
for all drugs. Tailoring specific inventory policies for these high-impact drugs
can yield substantial cost savings and operational enhancements with minimal
adjustments. Scholars such as Volland et al. (2017), Saha and Ray (2019), and
Moons et al. (2019) have explored the concept of inventory classification, em-
phasising the need to incorporate an additional dimension of criticality into
the analysis, as highly critical items could require more conservative safety
stock sizing approaches. Furthermore, Gupta et al. (2007) and Al-Qatawneh
and Hafeez (2011) have expanded upon cost analysis through ABC analysis
and introduced a VED analysis, categorising drugs as Vital, Essential, or De-
sirable following doctor’s input. Combining these classifications results in
the creation of new inventory classes, for which Gupta et al. (2007) and Al-
Qatawneh and Hafeez (2011) advocate tailored inventory practices.

1.4 ThesisOutline

This thesis is the result of a collaboration with Rigshopsitalet, driven by the
primary objective of investigating how academic OM and OR techniques can
address real-world challenges within hospital supply chains. In pursuit of
this goal, the thesis has been structured around tangible use cases presented
by Rigshopitalet and other healthcare institutions. These use cases illuminate
distinct facets of hospital operations and HOM, providing valuable insights
into how data-driven OM/OR techniques can potentially enhance their effec-
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tiveness and how such approaches should be adapted.

1.4.1 ResearchObjectives:

Our analysis primarily focuses on the context of public hospitals, with a spe-
cific emphasis on the support operations that occur upstream of the ultimate
delivery of patient care within the broader hospital supply chain. This partic-
ular aspect, as emphasized by Dai and Tayur (2021), has historically garnered
less attention within the existing literature when compared to the more promi-
nent focus on acute and direct patient care delivery processes. While HIT has
yet to fully align with conventional industrial standards, its growing adop-
tion presents significant opportunities for the implementation of data-driven
approaches and pioneering data-centric strategies within the sector of public
healthcare. Consequently, the central research question guiding this thesis can
be articulated as follows:

MainResearchQuestion:

How can data-driven OM/OR techniques be applied to enhance hospi-
tal supply chain management, considering the unique characteristics of
hospital operations?

As outlined in Sections 1.1 and 1.2, numerous challenges arise within the
context of public healthcare operations. These challenges encompass high
levels of human dependency within hospital processes, the traditional silo-
oriented organisation of hospital operations, and the interconnectivity of all
entities within the healthcare supply chain. To comprehensively address these
challenges, the primary research question can be further divided into several
subquestions.

Sub-ResearchQuestion 1:
How can the heavy reliance on human-based operation in hospital pro-
cesses be accounted for when designing and implementing OM/OR
techniques, and what are the implications for improving the efficiency
and allocation of hospital resources?
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Sub-ResearchQuestion 2:

How can traversal hospital support processes benefit from integrated,
holistic, data-driven approaches to optimise resource availability and
utilisation while mitigating costs?

Sub-ResearchQuestion 3:

How can flexibility be effectively and proactively incorporated when
designing a hospital supply chain process to benefit from the pool-
ing principle and have the drawback of the traditionally siloed and
department-centric nature of HOM?

1.4.2 ThesisOutline andContributions

The remainder of this thesis comprises three scientific papers, each presenting
an OM/OR data-driven approach applied to real-life cases provided by hos-
pitals. These papers contribute to answering the research questions and offer
insights into various facets of .

Chapter 2: A data-driven decision support tool to improve hospital bed
cleaning logistics using discrete event simulation considering operators’ be-
haviour

In Chapter 2, we delve into hospital bed cycle management, with a specific
focus on optimising bed cleaning procedures to ensure a consistent supply
of sterile beds. The continuous availability of sterile beds is paramount for
preventing Hospital-Acquired Infections (HAI) and upholding patient accom-
modation quality and care standards. Much like several other hospital pro-
cesses, the bed cleaning process is heavily reliant on human-performed tasks
and decisions. Hospital bed demand is highly unpredictable, encompassing
scheduled and unscheduled admissions across departments and specialities.
This chapter presents a real-life case study that combines the human-centred
processes, high demand variability and the management of a critical and fi-
nite resource - hospital beds - which are common aspects throughout . This
use-case addresses the sub-research questions 1 and 2.
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In this study, we introduce a Discrete Event Simulation (DES) model for the
hospital bed cleaning unit and propose a novel "tension level indicator" that
effectively captures the specificities of staff behaviour in response to demand
and stock fluctuations. This indicator serves a dual function, acting as both a
measure of perceived workload by the staff and an integral component within
the DES model, modelling discretionary decision-making of the operators.

Our proposed DES model serves as a tool to assess the bed cleaning unit’s
ability to consistently provide sterile beds in response to fluctuating demand
while evaluating the influence of operator behaviour on process performance.
Using this model, along with the tension level indicator, we have developed a
novel schedule for the operators that effectively mitigates the risk of stockouts
and reduces the workload-induced pressures on the operators.

The work of Chapter 2 has been disseminated as follows:

• A journal paper co-authored with Allan Larsen, Dario Pacino and Chris-
tian Michel Sørup submitted for a third review to Operations Research for
Health Care

• A presentation by Gaspard Hosteins at ORAHS 2020, the 46th Annual
Meeting of the EURO Working Group on Operational Research Applied to
Health Services which was supposed to be held at the University of Vienna,
Austria in July 2020 but was moved online due to the Covid-19 pandemic
and the resulting restrictions

• A presentation by Gaspard Hosteins at INFORMS Healthcare Conference
2021, which was supposed to be held at the Indianapolis in July 2021
but was moved online due to the Covid-19 pandemic and the resulting
restrictions

• A seminar presentation by Gaspard Hosteins held in April 2020 at the
Technical University of Denmark in Kgs. Lyngby, Denmark.

Chapter 3: Improving Hospital Sterilisation Processes: a Comprehensive
Simulation Model of the Integrated Reusable Medical Devices Cycle

In Chapter 3, we investigate the flow of Reusable Medical Device (RMD)
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within a Dutch hospital. Similar to the focus on beds in Chapter 2, RMD
represent a finite resource operating within a closed-loop system in the hos-
pital. These devices undergo sterilisation in a dedicated Central Sterilisation
Service (CSS) department to prevent HAI before being used in various surgical
procedures and outpatient clinics, followed by another round of sterilisation.
This use-case interconnecting multiple departments, including OTs, diverse
outpatient clinics and the sterilisation centre, addresses sub-research question
2 within the context of Hospital SCM.

We have developed a comprehensive DES model that encompasses the en-
tire RMD cycle, including medical procedures and the CSS. Our approach
includes a novel surgery generation procedure to have a holistic model of the
RMD cycle. This innovative integral approach to RMD management enables
the consideration of the impact of surgeries and surgical schedules on RMDs
sterilisation and sterile inventory. This, in turn, affects the hospital’s ability
to perform surgical procedures, aligning with the Integral Capacity Planning
paradigm in healthcare.

Moreover, our approach considers the RMDs as a resource of our model,
facilitating the integration of both CSS operations optimisation and RMDs
base stock dimensioning. This holistic strategy evaluates the RMD cycle’s
performance, taking into consideration RMDs availability and the ability to
conduct procedures with the appropriate equipment, ultimately ensuring the
highest possible standard of care and clinical outcomes. Our comprehensive
analysis uncovered a fundamental issue in our case study: an imbalance in
RMDs base stock, a factor that would have remained unnoticed through a
sole CSS-focused performance analysis. This highlights the significance of our
approach, which recognises and addresses the intricate connections among
hospital supply chain entities, such as the CSS and surgical procedures

To address this, we propose a Base Stock heuristic, which effectively reduces
RMD unavailability-induced clinic disruptions by 66.1% while simultaneously
reducing the total RMDs stock by 7.9%. This contributes to enhanced quality
of care, cost reduction, and waste reduction.

The work of Chapter 3 has been disseminated as follows:

• A journal paper co-authored with Hayo Bos and Gréanne Leeftink under
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review at OR Spectrum

• A seminar presentation by Gaspard Hosteins held in April 2023 at the
Technical University of Denmark in Kgs. Lyngby, Denmark

• A seminar presentation by Hayo Bos held in Novemeber 2022 at the
Diakonessenhuis Utrecht in Utrecht, The Netherlands

• A seminar presentation by Hayo Bos held in February 2023 at the Uni-
versity of Twente in Enschede, The Netherlands

Chapter 4: Optimising Department Allocation in Hospital Layouts: A Sim-
ulation Metaheuristic Approach

In Chapter 4, we introduce an adaptation of the Hospital Layout Problem
(HLP) within the context of a hospital under construction north of Copen-
hagen. The primary objective of the HLP is to strategically position medical
activities within the hospital’s architectural layout. Differing from the conven-
tional HLP approach, our unique problem focuses on nursing units, reducing
the emphasis on interdepartmental flows.

In the design of this hospital, the architectural team and management have
opted for standardised patient rooms that can accommodate all types of pa-
tient types. While this adaptability offers substantial opportunities for re-
source pooling and improved room utilisation, it also presents challenges, in-
cluding potential increased staff and material movements as well as avoidable
flow crossings due to the mixed allocation of rooms to patients.

The objective of our novel HLP is to propose a department positioning strat-
egy that minimises patient mixing and misallocation, thereby capitalising on
the benefits of room flexibility and resource pooling. We employ a graph-
based representation of the hospital layout, wherein medical departments are
primarily determined by their central locations. Upon patient arrival, individ-
uals are allocated as close as possible to their respective department centres.
This patient allocation method effectively recreates conventionally separated
departments within a flexible framework.

Our methodology includes a simulation that performs patient allocation, ac-
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counting for patient arrival variations and LOS uncertainties. We evaluate the
quality of the allocation based on the connectivity of the generated depart-
ments and its ability to prevent mixing patients from different departments.
To achieve efficient layouts, we introduce a novel simulation-metaheuristic
approach that employs TABU Search to determine department centres and
employ simulation to assess their performance.

This novel approach empowers proactive hospital layout design, harnessing
the full potential of resource flexibility and leveraging the pooling effect to
enhance operational efficiency. This quest for flexibility is at the core of sub-
research question 3

The work of Chapter 4 has been disseminated as follows:

• A journal paper co-authored with Allan Larsen, Dario Pacino, Lisbeth
Steinmann and Emilie Schrøder submitted to Healthcare Management Sci-
ence

• A workshop presentation by Emilie Schrøder at the Department of Digital-
isation and Analytics of the Nordsjællands Hospital in July 2022 in Hillerød,
Denmark

Other work: Hospital Drug Inventory Management in Rigshospitalet

Section 1.3 present an overview of hospital drug inventory management, em-
phasising the challenges in maintaining data continuity and the prevailing con-
servative approach. This use case not only highlights the non-data-oriented
nature of drug inventory management but also underscores the potential for
resource pooling and more customised inventory strategies. Current practices
follow a uniform rule, resulting in surpluses, avoidable costs, and wastage,
our work highlighted the large potential that enhanced HIT could have to
develop data-driven methods and increase drug availability while reducing
cost and waste. In the end, this use-case highlights some of the challenges
that OM/OR techniques have to face to efficiently enhance , and serve as a
foundation for the three sub-research questions.

The work of Section 1.3 has been disseminated as follows:
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• A presentation by Gaspard Hosteins at EURO 2022, the 32nd European
Conference on Operations Research in July 2022 at the Aalto University in
Espoo, Finland

• A presentation by Gaspard Hosteins at ORAHS 2022 in July 2022, the
48th annual meeting of the EURO Working Group on Operational Research
Applied to Health Services at the University of Bergamo in Italy

• A workshop presentation by Gaspard Hosteins at Rigshospitalet in De-
cember 2022 in Copenhagen, Denmark

1.5 ConcludingRemarks and FutureWork

As highlighted by Volland et al. (2017), the healthcare industry and would
greatly benefit from the adoption of data-oriented OM/OR approaches to en-
hance operational efficiency and fulfil its crucial role of delivering care to
patients. However, it’s essential to acknowledge that healthcare operations
have distinct characteristics that necessitate the development of tailored and
efficient OM/OR approaches.

Chapter 2 focuses on hospital bed flow, a use-case exemplifying the inher-
ent demand variability in hospital processes. Beds are a crucial and limited
resource shared across all hospital departments. Human operators are respon-
sible for cleaning beds and ensuring their availability throughout the hospital.
The chapter demonstrates that optimising bed flow in a data-driven manner
must consider the operators’ influence on the flow and their response to de-
mand pressures, addressing sub-research question 1.

Within the cleaning area, human operators perform various tasks, such as sep-
arating mattresses from frames, checking frame maintenance, and resetting
beds after cleaning. Workload significantly impacts operators’ performance,
with higher workloads leading to faster work, and potential corners being
cut. We propose introducing a tension level indicator that measures workload-
induced stress, serving as both an operator’s stress measure and a component
within the simulation model of the bed flow to replicate operators’ pace vari-
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ations and corner-cutting tendencies. This tension level indicator provides an
example answer to the sub-research question 1.

The model yields two significant outcomes: a new operator schedule that miti-
gates the risk of bed stockouts and reduces overall tension levels, subsequently
minimising stress and corner-cutting practices. Since its implementation no
stockout occurred, demonstrating the efficiency of the tension level indicator
as a response to sub-research question 1. Secondly, it reveals that the current
bed fleet is oversized, indicating potential cost-saving opportunities, thereby
demonstrating the effectiveness of the comprehensive approach for managing
transversal resources and addressing sub-research question 2.

Notably, while our method addresses the human aspect of the process and
mitigates disadvantages by reducing the need for corner-cutting, it does not
eliminate this possibility. In rare unanticipated peak situations, the corner-
cutting approach provides a buffer for operators to adapt and respond to
demand. Planning for this human buffer, making it the exception rather than
the norm, could offer significant potential for efficiency and cost reduction,
providing a promising avenue for future research. This strategic planning of
human buffers aligns with the core focus of sub-research question 3, which
centres on the planning and use of flexibility.

Chapter 3 focuses on the sterilisation process, specifically focusing on manag-
ing the flow of RMDs within the hospital. Similar to the bed flow discussed in
Chapter 2, RMDs are essential but limited resources that follow a closed-loop
supply chain, traversing numerous hospital departments. The demand for
RMDs is complex, influenced not only by patient arrivals but also by surgical
procedure requirements and surgeon preferences, leading to interdependen-
cies among different RMDs types.

Unlike previous studies that focused solely on the sterilisation departments,
our approach encompasses a surgery generation procedure that reproduces
the complex demand for RMDs, accounts for the finite nature of the RMD
stock and measures the sterilisation flow performance using its impact, down-
stream, on the surgical procedures. This comprehensive approach enables us
to acknowledge the relations between the different involved departments and
consequently to capture accurately the real nature of the RMD flow. Thus,
Chapter 3 propose a tangible example response to sub-research question 2.
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This comprehensive approach permits us to identify RMD base stock levels
as the main disruption cause, which a sterilisation service optimisation ap-
proach focusing on operational efficiency and makespan reduction would not
have revealed.

On top of this descriptive and diagnostic level of analytics (Delen and Ram,
2018), the proposed comprehensive model was used to create a novel heuristic
for setting RMD base stock, resulting in potential cost savings and risk of
stockout mitigation. The model was also used to assess the impact of increased
demand and hospital expansion reaching the predictive level of analytics and
enabling data-driven decision-support.

However, the simulation-based model does not provide prescriptive outputs
and would require to be coupled with optimisation methods to reach the
prescriptive level of analytics and provide a more complete answer to sub-
research question 2. While some prescriptive integral approaches exist within
specific fields such are in the OT and ED scheduling (Demeulemeester et al.,
2013; Samudra et al., 2016), future research on material resources could hold
substantial potential, particularly on inventory management as highlighted by
the use-case presented in Section 1.3.

The prescriptive aspect of the use of OM/OR methods within is at the heart
of the sub-research question 3 and of the department allocation problem pre-
sented in Chapter 4. Unlike the transversal resources discussed in Chapters 2
and 3, respectively beds and RMDs, which are moved throughout the hos-
pital, the rooms central to the allocation problem depicted in Chapter 4 are
shared resources that are fixed in the hospital. These rooms accommodate
patients, serving as the source and destination for various materials, equip-
ment, healthcare professionals, and visitor flows. While flexibility offers the
potential to enhance resource utilisation when applied to hospital rooms, it
can also lead to increased traffic, longer transportation routes, flows intermin-
gling and, therefore, operational inefficiencies. Chapter 4 seizes the unique
opportunity presented by a hospital under construction to propose a layout
design approach that mitigates the challenges of full flexibility.

Our approach combines simulation to evaluate layout performance and a
metaheuristic to identify efficient layouts. Rather than directly assigning rooms
to departments, as in traditional siloed HOM approaches, our method posi-
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Section 1.5: ConcludingRemarks and FutureWork

tions department centres at a strategic level and allocates patients as close as
possible to their respective centres on the operational level. This approach
aims to replicate separate ward-like patient allocation, mitigating the disad-
vantages of a fully flexible setup while preserving the flexibility needed to
accommodate patients who do not fit this ideal ward arrangement. The pro-
posed approach significantly reduces patient misplacement and the result-
ing avoidable traffic flows, serving as an efficient example response to sub-
research question 3.

The chapter highlights the downside of flexibility, introducing variability and
uncertainty into processes, which may conflict with routine, robust, and well-
optimised operations, particularly in patient, medical professionals and mate-
rial flows. A significant portion of HOM literature focuses on optimising these
flows, with a specific emphasis on patient flows. Additionally, traditional HLP
literature aims to minimise transportation flows. Chapter 4 highlights the exis-
tence of a trade-off between flexibility and resource utilisation, such as rooms,
and the optimisation of the processes relying on these resources. Analysing
this trade-off offers a promising avenue for future research and to enhance
. As observed in Chapters 2 and 3, a holistic analysis of processes and the
involved resources across the hospital is essential to achieve efficient and ac-
tionable results, underscoring the need to address sub-research question 2
effectively.

Chapters 2, 3, and 4 are founded on three distinct hospital use cases, each
offering valuable insights into addressing the main research question. Despite
the differences between these cases, two common aspects emerge, providing
answers to our primary research question.

Firstly, the diversity in hospital processes and contexts is evident, even though
they share fundamental functions. Factors such as hospital layouts, operator
behaviour, medical departments, patients, and organisational culture intro-
duce variations into these processes that would make them different from one
hospital to another. The approaches presented in this thesis were meticulously
tailored to these specific contexts, aiming to produce effective and actionable
outcomes. This quest to closely mirror the realities of each process, including
their unique demands, resource constraints, and operator behaviours, repre-
sents a crucial element in developing efficient data-driven HOM methods for
enhancing , providing a first answer item to our main research question.
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The second key aspect involves the necessity of having holistic approaches.
As advocated by Schneider et al. (2020), Integral Capacity Management em-
phasises global approaches to resource and process optimisation, encompass-
ing the entire ecosystem of the process under examination. For data-driven
OM/OR approaches to be efficient and actionable, they should be designed
with a transversal, process-oriented perspective, moving beyond hospitals’ tra-
ditionally siloed and management culture. This transversal approach con-
tributes another dimension to addressing our primary research question, help-
ing mitigate the narrow-focused vision of hospital management. It enables
data-backed decision-making, providing a more comprehensive and factual
understanding of the broader hospital processes landscape.

The complexity of addressing our main research question is complicated by
the wide variety of hospital contexts and the necessity to tailor data-driven
methods to each one. While this thesis has highlighted several challenges
and proposed methods to tackle them, such as the human behavioural aspect
in Chapter 2, the transversality of resources in Chapter 3, or the pursuit of
flexibility in Chapter 4, many dimensions remain to explore within the field
of HOM.

As demonstrated throughout this thesis, hospitals are intricate entities com-
posed of numerous interconnected sub-entities. The rhythm of hospital pro-
cesses is dictated by patient arrivals and procedures. While a significant por-
tion of these arrivals remains highly variable and unpredictable, a portion
is scheduled and thus eligible to be planned. While scheduling patients for
elective procedures, especially in OTs, is already a critical topic within the
literature, extending this approach throughout the entire hospital with better
coordination of interconnected sub-departments could help smooth demand
and reduce the potential impact of demand peaks. Improved control over
demand would lead to better resource utilisation and enhanced operational
efficiency. One example of such a demand-smoothing approach could be ap-
plied to inventory management by accurately forecasting the "schedulable"
portion of demand, reducing the need for safety stock, which would only be
necessary for the remaining unpredictable demand.

Another challenge arising from the proposed answers to our main research
question is how to combine them effectively. The holistic perspective implies
modelling more and more processes together, while the need for tailored ap-
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proaches points toward the complexity and granularity required when mod-
elling subprocesses. This could result in exceedingly large and complex mod-
els, as exemplified by the multi-echelon inventory management in hospitals,
which would be computationally demanding and require substantial amounts
of reliable data. These two aspects present numerous challenges for future re-
search within the field of HOM.
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Abstract Beds are a critical resource for hospitals, requiring effective management to ensure the
quality of care for patients. Beds operate in a closed-loop circuit and must be thoroughly cleaned
between patients’ arrivals to prevent infections. Hospitals must implement efficient logistics sys-
tems to collect, transport, store, and clean unclean beds from discharged patients. These systems
must be robust and efficient to meet the varying bed supply needs, given the available resources
such as beds, staff and machines. This study aims to develop a decision support tool to optimise
bed cleaning logistics and ensure the availability of sterile beds for incoming patients at all times.
The study is based on the bed flow and cleaning organisation of a Danish public hospital. A
discrete event simulation model (DES) of the back-end bed flow has been developed. The paper
also presents a tension level indicator to reflect the behaviour of cleaning staff when facing vari-
ations in demand and bed stock. Using the organisational set-up (staff schedules, policies, and
bed fleet size), the DES model: 1) evaluates the ability to provide sterile beds in a reasonable time,
2) measures the stress on cleaning staff, and 3) visualises resource usage. This study illustrates
how to incorporate the staff’s perceived workload and resulting behaviour into a DES model to
capture the behavioural aspect of staff’s decision-making.

Keywords: Bed Logistics, Simulation, Behavioural modelling, Analytics
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2.1 Introduction

The efficient management of healthcare systems is a requirement to ensure a
high level of service. Professionals and health-providing organisations, such
as hospitals, strive to optimise their tasks efficiency and resource utilisation
to meet this demand (see Hulshof et al. (2012)). Often, these process manage-
ment tasks are handled directly by health professionals rather than individuals
with advanced analytical backgrounds (see Hall (2012b)). Hence, operations
research (OR) and operations management (OM) techniques can provide op-
portunities for improvement. Jacobs and Chase (2014) defines OM in health-
care as "the design, management, and improvement of systems that create and
deliver healthcare services". Optimising resource usage in hospitals has been
a recurring theme with growing importance in OM and OR in healthcare (see
Hulshof et al. (2012), Cevik Onar et al. (2018)).

The demand for hospital care is evolving in the European Union and the
OECD countries. Hospital admissions have slightly increased during the last
decade (see OECD (2021)). At the same time, hospitalisations have changed
with the evolution of techniques and the development of home care. The
average length of stay of a patient has decreased, and at the same time, to op-
timise costs, the number of beds per capita also diminished (see OECD (2021);
OECD and European Union (2020)). This evolution results in higher resource
usage, increased bed turnover and intensified pressure on bed logistic supply
chains. The COVID-19 outbreak has highlighted the importance of hospital
beds and the challenges healthcare systems face (see OECD and European
Union (2020)).

Beds are indeed one of the essential resources that follow an in-patient through-
out their entire stay in the hospital. Beds are a transverse resource, common
to all departments, with strict hygiene requirements and protocols. The bed
fleet and all the bed-related processes are directly linked to the capacity of a
hospital to treat patients. Patient arrivals and their length of stay constitute
the demand for beds. However, the patients’ arrival and characteristics are
variable and uncertain. To ensure hygiene standards, beds must go through
cleaning processes before being stored appropriately and later reused. Improv-
ing or devising efficient bed flows and related procedures is a challenging but
critical task for a hospital.

52



Section 2.1: Introduction

The consequences of delays and stockouts of beds can be extremely detri-
mental to patient care, imposing a significant dependency on bed-cleaning
operators to meet the fluctuating demand. The hospital bed fleet is finite, and
the storage space for sterile is limited. The cleaning equipment and the staff
to operate it are bounded. These constraints make ensuring the sterile bed
supply of hospitals more complex and can increase the stress level on the op-
erators when demand exceeds supply. The requirement to meet the demand
in a stressful environment influences the operators’ decision process and the
overall bed flow. Such a decision process must be considered when attempting
to understand, model, and improve the bed flow of a hospital.

Simulation modelling, specifically discrete event simulation (DES), is a prac-
tical and widely used technique to model hospital processes with stochastic
behaviour and numerous interlinked sub-processes, such as bed management.
However, the operators’ behavioural aspect of the bed flow is difficult to mea-
sure and integrate into such a simulation approach. No quantitative data is
available to highlight how operators react to changes in demand and the ex-
perienced stress on the system in which they are embedded. This study aims
to build a simulation model to understand and improve the bed flow of a
hospital, taking into account the stressful nature of the work and the impact
it has on the operators involved in the bed flow. The proposed approach aims
to improve the bed cleaning operations and the technical part of the bed logis-
tic supply chain using a DES model that incorporates the operators’ decision
process and behaviour. Working jointly with a public hospital in Denmark,
we develop a system tension level indicator that measures the pressure on the
bed cleaning system. This indicator is used to anticipate the corresponding be-
haviour of the staff and adapt the DES model accordingly. The model allows
for scenario testing of proposed organisational interventions before practical
implementation.

The rest of the paper is organised as follows. Section 2.2 presents a literature
review introducing bed management and behavioural modelling. Section 2.3
presents a use case from a Danish public hospital and the scope of the problem.
Section 2.4 describes the methods and techniques used in the proposed ap-
proach. The simulation implementation and set-up are detailed in Section 2.5.
The results of the study are presented and discussed in Section 2.6. Section 2.7
concludes this paper and suggests avenues for further research.
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2.2 LiteratureReview

Bed management is the sub-field of healthcare operations (OM and OR) dedi-
cated to efficiently using bed resources. The first bed management studies are
from the 1950s with Bailey (1954) where queuing models are used to allocate
beds to patients.

Beds accommodate patients throughout their stay and need to be cleaned be-
tween patients. Hall (2012a) decompose the full bed-cycle in ten steps. Two
parts of the cycle can be distinguished. The front-end or in-patient part of the
cycle starts with the bed’s allocation to the patient and continues until the dis-
charge. The backend of the cycle corresponds to all the technical steps needed
in-between use: cleaning, storing, and transporting. Performance evaluation
in bed management is usually reflected in the bed occupancy rate (see Hall
(2012a)). Other indicators related to bed management include: waiting time
(see Bailey (1954)), cancellations, postponements or misplacement (see Hall
(2012a), Hulshof et al. (2012)).

Bed management encompasses all the organisational problems encountered
when managing bed resources, from strategic to operational planning (see
Baru et al. (2015)). The healthcare management taxonomy of Hulshof et al.
(2011) identifies capacity planning, bed reservation, and patient assignment as
the main areas of research in bed management. The goal of capacity planning
is to quantify the number of beds required to accommodate the incoming
patients (see Hulshof et al. (2011)). Patient arrivals to hospitals are only partly
scheduled, with the request for beds from the emergency department being
stochastic, making capacity planning more complex. Sizing the entire bed
fleet is the strategic level of capacity planning and the most studied one, with
around 80 papers listed in Hulshof et al. (2012). Hulshof et al. (2012) identifies
bed reallocation between departments and temporary fleet changes as tactical-
level bed management tasks. At the operational level, Hall (2012a) lists bed
and patient handling tasks such as bed-patient or room assignment.

The other large part of the bed management literature focuses on the in-
patient part of the bed cycle and the assignment of beds to patients. He
et al. (2019) identifies several patient characteristics that can influence bed
allocations, such as gender, diagnosed disease, acuity level, or isolation re-
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quirement. In most in-patient studies, bed fleet and associated staff (nurses,
porters, or technicians) are considered constraints. Various simulations and
queuing models have been proposed to evaluate the performance of different
allocation policies (see He et al. (2019), Hulshof et al. (2012), Hall (2012a)).
Reservation strategies with dedicated capacity either pre-or dynamically al-
located have also been proposed (see He et al. (2019), Hulshof et al. (2012)).
Simulation is a very common technique with literally thousands of papers
within healthcare management as detailed in Brailsford et al. (2009), and is
also the most used methodology within bed management (see Hulshof et al.
(2012), Hall (2012a), Cevik Onar et al. (2018), He et al. (2019)). Simulation, par-
ticularly Discrete Event Simulation (DES), is well suited to model bed flows,
with patient flow as a stochastic demand and numerous interlinked processes.

Most of the bed management approaches described in Hulshof et al. (2012),
Hall (2012a), He et al. (2019), Cevik Onar et al. (2018) are based upon case
studies jointly developed with application hospitals. All studies aim at im-
proving the hospital bed flow but differ due to the difference in setup and
management of the studied hospital. Bed cleaning can be managed internally
in each department or in centralised, dedicated units. Regardless of the organ-
isation, the goal of the bed logistics remains to meet patient demand in terms
of volume, quality, and hygiene.

Several studies have been proposed about the in-patient part of the bed cycle;
however, to the best of our knowledge, process optimisation of the backend of
hospitals’ bed flow has not yet been considered in the literature. The ability
to clean and store beds to make them available to patients directly impacts
the overall number of beds needed for the hospital and the capacity of the
hospital to treat patients. Therefore the backend of the bed cycle should also
be studied and improved.

Hospital processes are heavily human-based and are often influenced by the
discretionary decisions of a human operator. The behaviour of the opera-
tors could then influence the decisions and thus change the outcome of the
processes. Several econometrics studies highlighted that stress and workload
impact human operators and ultimately affect the system’s performance. Kc
and Terwiesch (2009), in a hospital context, and Shunko et al. (2018), in a bank,
showed that an increased workload tends to decrease service time as operators
would work faster to keep the rhythm. Parkinson and Osborn (1957) notes that
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human operator will use their entire work time to perform the scheduled tasks.
Hence, a lower workload will result in decreased work speed. Delasay et al.
(2019) proposed a framework to identify the mechanisms impacting operators’
behaviour and their impact on the system. To the best of our knowledge, these
operator behaviour mechanisms have rarely been considered when modelling
healthcare processes. We can cite Delasay et al. (2016) and Azriel et al. (2019)
who incorporated social loafing in queuing and markovian processes. Brails-
ford et al. (2012) proposed a breast screening model encompassing a human
component and the patient’s behaviour. It showed that the patients’ behaviour
impacted the process outcomes and suggested how to incorporate this when
modelling.

Behavioural mechanisms might be of greater importance to model accurately
processes that encompass discretionary decisions left to the operators. These
discretionary decisions can be used to adapt the throughput and service times.
Ibanez et al. (2018) showed how discretionary task ordering could reduce cycle
time, and Hopp et al. (2007) explains that discretionary task completion turns
quality into a buffer and ultimately improve service level by reducing service
time. However, Becker-Peth and Thonemann (2019) for the newsvendor model
and Goodwin et al. (2019) on forecasting decisions showed that the behaviour
of the operators influenced their decisions and, therefore, should be taken into
consideration when modelling discretionary processes. Both approaches also
highlight that the operators’ attitude towards risk accentuates their decision
bias.

In a hospital’s resource-constrained and stressed environment, there is a need
for more efficient management of the bed resource to ensure bed supply at
any time, particularly on the backend processes of the bed flow. This paper
aims to improve these backend processes through simulation. It is crucial to
enhance the simulation model to quantitatively take into consideration oper-
ators’ behaviour to capture the stressful environment of the hospital and its
impact on the bed flow, as our approach tries to do.
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2.3 UseCase andProblemDescription

Glostrup Hospital (a part of Rigshospitalet) is a large public hospital west
of Copenhagen with a capacity of 290 in-patient beds distributed across 20
different departments. A centralised bed cleaning facility in the basement
supports the need for sterile beds for the approximately 40,000 patients the
hospital admits each year.

The arrivals- and discharges of patients in the hospital set the demand and
pace of sterile beds that the cleaning unit needs to manage. The patients’
flow is only partially scheduled and highly uncertain, which shows the sig-
nificant variations in the demand for beds that happen across weekdays (see
Figure 2.1).

Figure 2.1: Weekly distribution of the patients’ arrival in the period of March 2019 through
February 2020 before the national lockdown in Denmark due to the COVID-19 pandemic.

Information about patient arrivals is not readily available to the centralised
bed cleaning unit staff. Consequently, the operators can only estimate the
actual bed demand by looking at the current stock levels and the pace at
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which sterile beds are requested. Daily work planning is thus heavily de-
pendent upon the operators’ own experience. Consequences of delays and
stockouts can be highly detrimental to patient care, making operators act with
a risk-averse behaviour. The bed cleaning unit does not use predetermined
safety levels of sterile beds and solely relies on the operators’ estimation of
the needed level of beds. Their risk-averse behaviour urges the operators to
overstock and speed up the cleaning process to cope with any demand vari-
ation. This phenomenon is amplified by the lack of information downstream
and the highly uncertain demand and makes the bed cleaning unit prone to
overreaction (following the bullwhip effect Lee et al. (2004)).

Figure 2.2: Conceptual model of the bed cleaning unit at Glostrup hospital

Figure 2.2 depicts the organisation of the bed cleaning unit at Glostrup Hos-
pital. Two parts compose the work area: the "unclean" section, where beds
are waiting to be cleaned, and the "sterile" section, storing beds before their
use. When a bed is taken from the unclean stock, it is pre-cleaned by the staff
(taking an average of two minutes) before being pushed through the steam-
ers. There are two frame steamers and one steamer for mattresses and linen.
As shown in Figure 2.2, those machines are sealed into a wall and act as a
transfer lock between the unclean and the sterile sections. The frame-steamers
are the bottleneck as only one frame can go through, whereas the steamer for
mattresses can clean ten at a time. All the frame-steamers have a six minutes
standard cleaning program. Sometimes, the operators might decide that a bed
requires deep cleaning (e.g. in case the bed was previously occupied by a pa-
tient with an infectious disease), in which case a 15 minutes intense cleaning
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program is applied. Once a frame is cleaned, a worker makes the beds using
a sterile mattress and bedsheets, as depicted on the right-hand side of Fig-
ure 2.2. This operation takes two minutes on average. Another worker wraps
plastic foil around the bed and stores it (which takes approximately 1’30). The
unclean and sterile sections have a capacity of 90 and 164 beds, respectively,
and the hospital currently has a total bed fleet of 413 beds.

From a managerial viewpoint, a waiting time exceeding 15 minutes upon re-
quest for a clean bed is deemed unacceptable. Hence, operators try to build
stock to meet future demand. In very tense situations (low stock, demand
peaks or machine breakdowns), frames can be "hotel cleaned", i.e. simply a
manual cleaning performed by the staff. The frames are then pushed to the
cleaning section through the steamers without launching any cleaning pro-
gram. This corner-cutting process takes on average 2 minutes but has a lower
sanitary quality and is only used in tense situations. Beds that require deep
cleaning are never hotel cleaned. The decision to use a hotel cleaning is made
by the operators and corresponds to their estimation of the pressure on the
cleaning unit. This decision corresponds to the discretionary task completion
described by Hopp et al. (2007). Cleaning quality acts as a buffer to ensure
that the stock will be sufficient to meet the demand. The risk-averse nature of
the operators influences their estimation of whether the stock is sufficient to
meet the demand and pushes them to use this corner-cutting mechanism to
compensate.

At the hospital, a dedicated team of 6 operators cleans the beds. They work
from Monday through Friday, from 7 AM to 3 PM, with two breaks of 15
minutes and a lunch break of 30 minutes. Cleaning hours are extended on
Fridays when three operators work the usual hours, and three operators start
and finish 1h30 later in order to build stock before the weekend. This schedule
is made according to operators’ preferences and is not explicitly designed to
meet the demand for beds.

This work setup allows for little system flexibility, defined as the system and
the operator’s ability to adapt and react to the evolving demand. The limited
storage capacity of the sterile section reduces the capacity to have safety stock
and anticipate peaks. When the capacity of the used section is exceeded, used
beds have to be stored in other areas such as corridors or even the treating part
of the hospital, which is not acceptable seen from a safety aspect. Furthermore,
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the fixed work hours limits the number of bed that can be cleaned. These
constraints make work planning more complex for the operators. Combined
with the operators’ risk-averse nature, those constraints amplify the risk of
overreacting to demand variations, stressed situations, and falling into the
bullwhip effect.

2.4 Material andMethods

In order to study the bed flow of Glostrup Hospital and how it is affected by
the behaviour of the staff under peak demand, a DES model was developed.

2.4.1 DESmodel of theuse case

The model considers three types of resources; the staff cleaning the beds, the
porters, and the frame steaming machines. During interviews with the staff
and visits to the facility, it has been established that the mattress steamer is
not a bottleneck of the system and is, therefore, disregarded in the rest of the
study. Bed operators operate on a fixed schedule set as an input to the model.
Those schedules include the working hours as well as the number of operators
at each hour. Porters are not considered a scarce resource. They transport the
sterile beds to the patient and unclean beds to the cleaning section. Outside
the bed staff’s regular working hours, porters are responsible for cleaning
beds if needed.

Figure 2.3 is a conceptual diagram of the entire bed flow at Glostrup Hospital
and is the base of our simulation model. The light grey part on the left cor-
responds to the patient flow. Starting from the top left corner of Figure 2.3,
patients arrive, get admitted, and are assigned a bed for their stay until dis-
charge. A porter brings the unclean bed to the cleaning section, which starts
the bed flow loop in dark grey in Figure 2.3. First, the unclean bed is stored
in the dedicated area, then inspected by a worker and put into an available
steamer. Another bed worker receives it at the steamer’s exit, makes sure it is
ready for use, and stores it in the sterile section where a porter will transport
it to a new patient if needed.
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Figure 2.3: Conceptual diagram of the bed flow at Glostrup Hospital

The bed flow pace depends upon the patients’ arrivals and discharges. The pa-
tients’ arrival defines the demand. The schedule for the staff and the number
of beds in the system are parameters to decide before running the model.

2.4.2 InputData: PatientArrival

The patient flow used as input for the DES model is based on two sources of
data: patients’ hospitalisation data and operational data. The patients’ hospi-
talisation data is extracted from the hospital IT system and corresponds to one
year of anonymised hospitalisation data on all the patients from March 2019
to February 2020 (before the national lockdown due to COVID-19). These
contain 1,389,528 records corresponding to 38,381 different hospitalizations.
Each row corresponds to selected events for hospitalised patients inside the
hospital. These are admission, discharge and all movements between visited
departments. The operators manually recorded the operational data, which
contains the number of beds cleaned each day and the stock of unclean and
sterile beds at shifts beginnings and ends. These operational data are mainly
used as control data to verify and validate the models made with hospitalisa-
tion data.
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The input for the model is the arrival rates and length of stay (LOS) from the
patient flow. The patient flow tends to have variation in three different levels,
which are: between hours, between days of the week, and between months
(see Figure 2.4), all of which is in alignment with Hall (2012a). Weekdays
tend to follow the same pattern with a peak during work hours and numbers
similar to the weekends outside regular working hours. Thursday’s peaks are
slightly delayed as the mornings are usually reserved for department morning
briefings. The 7 AM arrivals are staggered throughout the rest of the day. The
provided data did not allow for considering monthly variation. The arrival
rates and LOS have been computed for every hour of the week, modelling the
hourly and daily variations.

Figure 2.4: Average hospitalisation volume for each hour and each day of the week

The LOS of patients can fluctuate based on a patient’s arrival hour- and week-
day. Hence, LOS distributions are computed for every hour of the week. The
LOS of patients staying overnight and patients not staying is calculated sepa-
rately. The LOS of patients staying overnights is fitted in two parts: the num-
ber of nights they will stay on one side and their discharge hour on the other,
whereas the LOS of patients not staying overnight is directly fitted. Those
sub-distributions are then combined using the probability of a patient staying
overnight.
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Patients’ arrival rates have been modelled as Poisson processes with different
rates for every hour of the week. This approach complies with standard prac-
tice seen across the literature (see Holm et al. (2013), Andersen et al. (2017),
Gimenez-Mallor et al. (2007), Hagen et al. (2013)).

In this study, we only consider the bed flow from the cleaning unit. Note that
the departments do not always order and release a bed when a patient arrives
or is discharged. Like the Emergency Department, departments with high
throughput tend to build stock before busy periods and order/release beds in
bulks that the IT system does not adequately handle. Such practices result in
higher utilisation of sterile beds compared to the demand directly computed
from the patient movement data. Thus, daily correcting factors have been
used to match the demand with the average volume of sterile beds leaving the
bed cleaning unit. These factors have been computed using operational data.

2.4.3 Tension Level

Traditionally, DES models do not include discretionary decisions left to the
agent and does not consider how operator behaviour changes their decisions.
In our study, such a traditional DES modelling approach is not well suited
to simulate how the operators adapt their work to the current situation, how
operators choose to use hotel cleanings and the impact it has on the system.
The proposed tension level indicator aims at tackling this issue. Brailsford et al.
(2012) suggested using a quantitative measure of the human component to in-
tegrate into a DES model. Operators decide to use ’hotel beds’ depending on
the experienced stress in the bed cleaning unit. This corner-cutting choice al-
lows them to adapt their throughput. We propose to model this phenomenon
by estimating the throughput that operators believe to be required. The ten-
sion level indicator is then the ratio between the estimated and the average
throughput. This relation between the experienced stress on the system and
the throughput described by the operators corresponds to the ones studied by
Kc and Terwiesch (2009), Shunko et al. (2018), Parkinson and Osborn (1957)
and to the task reduction, workload smoothing, social speedup pressure or
social loafing mechanisms detailed by Delasay et al. (2019).

The bed cleaning unit operates isolated from the other departments of the
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hospital. Information on demand variations does not reach the bed cleaning
unit. Hence, the only way the staff can estimate whether they will meet the
demand is by visually inspecting both sterile and unclean bed stock levels
and, by experience, adapt the perceived demand. The proposed tension level
indicator aims at replicating this operators’ evaluation process. The indicator
combines the current demand and stock levels and computes the throughput
necessary to meet the demand operators expect.

According to the operators, two main components constitute the workload
and make the basis of their decision process:

• The workload: the production component; the number of beds that
needs cleaning in order to meet the demand.

• The backlog: the number of beds ready to be cleaned. Maintaining a
low unclean bed inventory is required to be able to receive new unclean
beds and for those not to stay elsewhere in the hospital.

Kc and Terwiesch (2009) and Shunko et al. (2018) showed that load directly
impacts service times, but the variation of the load also impacts operators’
perception of the load and ultimately the service times. To model this phe-
nomenon, we introduced the busyness level. The busyness level measures
how busy the time period is compared to normal, computed as the ratio be-
tween the current and average demand.

The operators do not work overnight or on weekends. Moreover, in busy
periods the demand for beds could be greater than the maximum produc-
tion. To accommodate these situations, operators use sterile stock. Visits to
the cleaning unit highlighted that several objectives and demands co-existed,
corresponding to different time frames:

• Shift Level: Having a sufficient number of beds to satisfy the demand
throughout the shift. This level is significant on Monday mornings when
the demand peaks, but the stock is at its lowest.

• Daily Level: Having a sufficient number of beds for the demand for the
day and enough stock for the night. Monday nights can sometimes be
difficult if the stock on Monday morning is low and the demand remains
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high the entire day. Then the stock at night could be an issue.

• Future Level: Having a sufficient number of beds for the following days.
This level is important on Fridays when the operators prepare sterile
beds for the entire weekend and the Monday mornings

At any time, the busyness level, the workload, and the backlog are evaluated
on the three time-horizons. The maximum value for each of the objectives
is kept. The corresponding component is then the predominant one at this
precise time. The workload and the backlog are then compared together to de-
termine whether the backlog is the main preoccupation. Then, the correspond-
ing estimated throughput can be computed. The tension level corresponds to
the ratio between the throughput operators estimate to be required and their
baseline throughput, defined as the average throughput they usually have.

2.4.3.1 Computation of the tension level

Consider D the demand for bed, A the arrival of unclean beds, C the sterile
bed inventory level and U the unclean bed inventory level. For any of these
quantities X , Xτ denote the value over time horizon τ ∈ �shift, day, future

	
,

Xτ(t ) denote the value until instant t ∈ T from the start of the corresponding
time horizon τ ∈ �shift, day, future

	
, and ÒX the expected value. The expected

value is used as the operators’ reference.

All of the quantities are computed over all the time horizons (shift, day and
future) and then compared.To simplify the notations, τ ∈ �shift, day, future

	
will be omitted: Xτ ∼ X .

The busyness level is based on the demand ratio r (t ): the ratio between the
demand and arrival that operators expect which is approximated to the aver-
age one ÒD (t ) + bA(t ), ∀t ∈ T and the real one D (t ) + A(t ), ∀t ∈ T . This ratio is
a simplified version of the "overtime" used by Kc and Terwiesch (2009). We
used the average instead of a moving average over the last periods.

r (t ) =
D (t )+A(t )ÕD (t )+ÔA(t ) , ∀t ∈ T (2.1)
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The operator’s perception of the busyness level is also influenced by the past
and how busy the last period was. To model this memory bias, the demand
ratio is smoothed with a factor α ∈ [0, 1], to compute the busyness level ρ(t )

ρ(t ) =α ·ρ(t −1)+ [1−α] · r (t ), ∀t ∈ T (2.2)

where ρ(t −1) is the ratio computed at the end of the previous time horizon.

The operators’ main priority is to ensure that the demand will be met. Hence
they tend to overshoot and thus build safety stock. Moreover, the lack of
downstream demand information makes the operators prone to the "overre-
action phenomenon", especially in situations with high demand fluctuations.
Wakker (2010) and Schmidt and Zank (2008) also describe similar overreaction
phenomena and propose to use convex transformation such as exponential
utility functions to model it. Similarly, a convexity coefficient γ ≥ 1 is used as
a power to amplify the operators’ reaction to the "busyness level" as shown in
Equations 2.3 and 2.4.

The workload ω(t )measures the amount of work to do during the time period
considered. This corresponds to the estimated demand over the period (i.e.
the product of the busyness and the demand) minus the current stock. The
workload is computed as the pace needed to produce enough beds:

ω(t ) =
ρ(t )γ ·ÕD (t )−C (t )

θ
, ∀t ∈ T (2.3)

with θ being the duration of the considered time horizon.

The backlog β (t ) is the unclean bed counterpart of the workload. It corre-
sponds to the number of unclean beds that should be cleaned to reach a base
level, allowing new unclean beds to be transported near the bed cleaning unit.
The backlog is also bounded by the capacity KC of the sterile stock. It is not
possible to clean more beds than the sterile stock can receive: KC −C (t ).

With B being the acceptable base level of unclean beds and U (t ) the current
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stock level of unclean beds.

β (t ) =M i n

¨
KC −C (t ),

ρ(t )γ ·ÔA(t ) +U (t )−B

θ

«
, ∀t ∈ T (2.4)

The perceived throughput objective ϕ(t ) is then the maximum of the workload
and the backlog:

ϕ(t ) =M a x
�
ω(t ),β (t )
	

, ∀t ∈ T (2.5)

The tension level Ψ(t ) is then the ratio between the perceived throughput ob-
jective and the baseline throughput ϕ0:

Ψ(t ) =
ϕ(t )
ϕ0

, ∀t ∈ T (2.6)

The tension level can be plotted across the entire week firstly to understand the
operators’ concerns and, secondly, to identify how to adapt the work sched-
ule to reduce tension. Figure 2.5 shows the decomposition of the estimated
throughput. The estimated throughput is defined as the maximum of the
backlog and workload across the three time horizons considered. Figure 2.5
displays all these components; first, the figure illustrates the workload (the
ability of the sterile stock to match the demand) at the shift (yellow), daily
(orange), and future (red) levels. Secondly, Figure 2.5 illustrates the backlog
(the ability of the system to receive new, used beds to clean) at the shift (blue),
daily (purple) and future (green) levels. Finally, the dotted line represents the
maximum of these components and depicts the estimated throughput. The
decomposition of the estimated throughput in Figure 2.5 shows that the back-
log at the daily level is the predominant objective on Monday mornings. This
translates to that the main concern for the operator on Monday mornings
is to ensure that there will be sufficient space in the section holding the un-
clean beds to receive more used beds before the next day. The corresponding
estimated throughput is around 28 (beds per hour), meaning that operators
estimate that they have to work almost twice at fast as their baseline pace (15
beds per hour). Here the analysis of the entire week shows that the backlog’s
daily and future levels are the operators’ main concerns.
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Figure 2.5: Decomposition of the estimated throughput into workload and backlog across
the time horizons.

2.4.3.2 Use of the tension level

The primary goal of the tension level is to model the operators’ discretionary
decision of using a "hotel bed" cleaning or not. The tension level is directly cor-
related to the operators’ estimated throughput. With the tension level indica-
tor, it is now possible to compute the probability of a bed being hotel-cleaned.
Let p (t ) designate the ratio of beds being hotel cleaned. Given that, at refer-
ence pace, beds are cleaned using the two steamers’ regular program lasting
6 minutes per bed, the following relation gives the ratio of hotel-cleaned beds
needed to match the estimated throughput:

6 ·ϕ0 = (2 ·p (t )+6 · (1−p (t ))) ·ϕt

p (t ) = 1.5 · (1−ϕ0/ϕ(t )) = 1.5 · (1− 1/Ψ(t )), ∀t ∈ T (2.7)

If the ratio is negative, no bed should be hotel cleaned. If the ratio is greater
than one, all the beds should be hotel cleaned.

On the other hand, when the estimated throughput is lower than the reference
one, operators tend -consciously or not- to slow down following Parkinson’s
law (see Parkinson and Osborn (1957)). From the estimated throughput, a
’slowdown’ factor σt , ∀t ∈ T can be computed. The time required to perform
the tasks by the bed operators will then be multiplied by this factor represent-
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ing the operators’ adapted work pace.

ψt =M i n {1, ϕ(t )/ϕ0}=M i n {1, Ψt } , ∀t ∈ T (2.8)

2.4.4 Systemevaluation throughmeasurement of keymetrics

Several indicators have been used to measure the system’s performance, in-
cluding the computed tension level itself.

Tension level indicator
The tension level measures the pressure operators experience on the system.
It is both an indicator of the quality of work as it is related to the probability
of a bed being hotel cleaned and how difficult is the work for the operators.
The lower the tension level, the more thorough the cleaning will be.

Stockout probability
The overall objective of the cleaning unit is to meet the demand for beds.
When demand exceeds supply, stockouts occur. If the stockout occurs during
the regular operator working hours, the patient is waiting for the bed to be
cleaned. Outside regular working hours, other operators have to fill in to clean
beds. The likeliness of a stockout is the indicator to measure the ability of the
system to meet the demand.

Bed waiting time
From a patient-centric perspective, hospital management aims at delivering
beds to patients in less than 15 minutes upon request. The distribution of the
waiting time for a bed is the indicator used to measure the system service level
performance.

Bed fleet size: number of beds required to meet the demand
The flow size corresponds to the number of beds the system needs to provide
patients with beds within 15 minutes at all times. Using 15 minutes as a
hard constraint, the flow size becomes an indicator of the system resource
utilization.
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2.5 Experimental Design

The proposed simulation-based approach has been developed, and continu-
ously verified and validated, with the hospital management team and the bed
operators.

The performance of the bed cleaning unit is closely tied to the bed flow situa-
tion within the hospital, including the availability of sterile beds, unclean beds
inventory, the number of beds in use and patient arrivals. However, due to
data constraints, it was not possible to obtain accurate initial conditions for the
simulation. Therefore, the simulation runs were initiated with all beds being
sterile and ready to use and no patients occupying the beds. To mitigate the
potential bias introduced by this artificial starting condition, an initial warm-
up period was established (see Subsection 2.5.1). This warm-up period is used
to calibrate the tension level indicator, quantitatively validate the model, and
determine the appropriate run length and number of replications.

2.5.1 Warm-upperiod

To determine the appropriate warm-up period for a simulation model, White
(1997) and White et al. (2000) introduced MSER (Marginal Standard Error
Rules) and MSER-m which are two heuristic approaches that find the best
truncation point to eliminate the bias of initial conditions by reducing the
marginal confidence interval around the truncated sample mean. Table 2.1
shows the results of the MSER-5 analysis of the proposed DES model with a
run of ten replications over a 400-week period and a pool of 413 beds, corre-
sponding to the hospital’s current fleet. The MSER-5 analysis indicates that a
5-week warm-up period is sufficient for most indicators, but a 25-week warm-
up period is optimal for the tension level indicator. As Table 2.1 illustrates,
using a 25-week warm-up period does not significantly change the marginal
95% confidence interval width for all indicators compared to the optimal trun-
cation point. Hence, a 25-week warm-up period is applied in all subsequent
experiments.
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Table 2.1: MSER-5 Analysis results

Indicator Mean
Optimal 25 Weeks

Truncation 95% CI 95%CI

Tension Level 1.27 25 weeks 7.22 ·10−3 0.57% 7.22 ·10−3 0.57%

Stockout Probability 2.94 ·10−4 5 weeks 5.53 ·10−5 18.79% 5.70 ·10−5 19.2%

Monday Stock 40.51 10 weeks 0.81 1.7% 0.82 1.74%

Tuesday Stock 68.99 5 weeks 1.04 1.22% 1.07 1.25%

Wednesday Stock 74.33 5 weeks 0.76 0.89% 0.78 0.92%

Thursday Stock 92.96 5 weeks 1.30 1.16% 1.33 1.19%

Friday Stock 123.84 5 weeks 0.75 0.55% 0.76 0.56%

Hotel Cleaning Proportion 0.29 5 weeks 2.94 ·10−3 1.02% 3.02 ·10−3 1.04%

2.5.2 Tension Level Calibration

The tension level is composed of three parameters: 1) the baseline throughput
ϕ0, 2) the convexity γ, and 3) the exponential smoothing α. The baseline
throughput is the average number of beds that can be cleaned per hour under
normal conditions. The baseline throughput was determined to be ϕ0 = 15

beds per hour through on-site observations. The convexity must be greater
than one and the smoothing value must be between zero and one. Various
values for both parameters were tested (γ ∈ 1, 1.5 , 2, α ∈ 0.4, 0.6, 0.8). The
bed cleaning team has qualitatively validated that the tension level accurately
reflects the system stress and that it leads to a realistic use of hotel beds.

The tension level significantly impacts the proportion of hotel-cleaned beds
and it has been calibrated to match the average quantity of hotel-cleaned beds.
For each pair of parameters (α, γ), we ran 100 replications of 12-week experi-
ments with a 25-week warmup period and current 413-bed fleet size. We then
compared the average proportions of hotel-cleaned beds for each pair with
those observed within the manually recorded data from the operators over
the 12-week period. Our operational data showed that 25.41% of beds were
cleaned. We calculated a 95% confidence interval for the difference of means
between simulation output and operational data, as shown in Table 2.2. The
results indicate that the pair γ= 1.5 and α= 0.6 offers the narrowest confidence
interval centred around 0; thus, all future experiments and validation will be
conducted using these values.
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Table 2.2: Tension Level Calibration

α γ
Simulation Result Difference of the Means

Mean Std 95% C I in % of mean

0.4 1.0 25.38 2.39 [−1.57, +2.20] [−5.17%, +8.83%]

0.4 1.5 24.83 2.10 [−1.69, +1.52] [−6.80%, +6.12%]

0.4 2.0 25.08 1.99 [−1.42, +1.73] [−5.69%, +6.94%]

0.6 1.0 26.19 2.35 [−0.46, +2.99] [−1.84%, +12.0%]

0.6 1.5 25.22 2.25 [−1.42, +1.58] [−5.59%, +6.22%]

0.6 2.0 25.12 2.50 [−1.57, +1.97] [−6.29%, +7.91%]

0.8 1.0 24.97 2.15 [−1.57, +1.68] [−6.30%, +6.72%]

0.8 1.5 26.30 2.40 [−0.37, +3.13] [−1.47%, +12.56%]

0.8 2.0 25.76 2.52 [−0.96, +2.64] [−3.86%, +10.6%]

2.5.3 Model Validation

To quantitatively validate the accuracy of our model in representing the hos-
pital’s bed flow, we conducted a comparison between the average sterile bed
stock in the morning generated by our simulation and the manually recorded
data by the operators. Using the same simulation design as for the tension
level calibration with 100-replication, 12-week experiment, Figure 2.6 displays
the morning inventory levels from the simulation in grey, contrasted with
the real manually recorded averages in red. A comprehensive comparison
is presented in Table 2.3, where, as discussed in subsection 2.5.2, confidence
intervals for means differences are computed for all weekdays. The results
demonstrate the model’s ability to accurately reproduce the morning stock
from Monday to Thursday, with 0 falling within the centre of the means dif-
ference confidence intervals.

Table 2.3: Morning sterile inventory position - Means’ Difference 95% confidence interval

Day Real Mean
Simulation Result Difference of the Means

Mean Std 95% C I in % of mean

Monday 39.33 40.50 4.53 [−2.14, +4.48] [−5.43%, +11.4%]

Tuesday 66.92 68.99 4.98 [−1.67, +5.81] [−2.49%, +8.69%]

Wednesday 77.92 74.33 6.92 [−7.85, +6.78] [−10.08%, +0.87%]

Thursday 92.42 92.96 7.11 [−4.10, +5.19] [−4.44%, +5.61%]

Friday 97.17 123.84 5.30 [+23.0, +30.4] [+23.65%, +31.26%]
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Figure 2.6: Comparison of the morning sterile inventory position from the simulation
model (grey) and operational data (red).
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However, a significant disparity exists between the simulation’s Friday morn-
ing stock and the actual figures. The simulation tends to overestimate the
Friday morning stock by 23 to 30 beds. Discussions with hospital manage-
ment attribute this inconsistency to an increased demand for sterile beds from
larger departments, such as the ED. This surge in demand is considered as
over-ordering, driven by the perceived need to establish local safety buffer
stocks mitigating the risk of stockouts. Consequently, the demand for beds no
longer aligns with patient arrivals. This phenomenon is deemed undesirable
by the management.

Unfortunately, no data is available to quantify this over-ordering phenomenon
and the difference between bed demand and patient arrivals. We acknowl-
edge that this Friday morning discrepancy hinders the quantitative accuracy
of the model, especially given that stockouts tend to occur over the weekend
or on Monday mornings. Ideally, obtaining a more precise measurement of
the difference between actual demand and patient arrivals would enhance the
model’s accuracy. Given the inability to quantify this phenomenon and its un-
desirability, we have chosen to acknowledge its presence but not incorporate
it into the simulation and to focus on mitigating stockouts, which are one of
its causes.

Due to the limited operational data, the same 12 weeks of manually recorded
data were used both for calibrating the tension level and validating the entire
model. We acknowledge that this may lead to overfitting and provide an
overly optimistic view of the model’s validity. Ideally, with a larger dataset,
calibration and validation could have been performed on separate datasets,
mitigating that risk and providing a stronger validation.

2.5.4 Estimationof the run length andnumber of replications

The proposed simulation model requires a 25-week warm-up period.Robinson
(2014) recommends to minimise the quantity of replications required, hence
we employ a run length period of 104 weeks (2 years). A trial run with 100
replications and 104 weeks was conducted. The cumulative mean and the 95%
confidence interval were computed for each indicator by gradually adding
the replications. As illustrated in Figure 2.7 for the hotel cleaning propor-
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tion example, the majority of convergence is achieved within the initial 25
replications. Table 2.4 presents the 95% confidence interval determined for all
indicators, providing an estimation of their precision.

Table 2.4: Confidence interval after 25 replications

Indicator Cumulative Mean 95% CI width

Tension Level 1.21 9.01 ·10−3 0.74%

Stockout Probability 2.92 ·10−3 6.22 ·10−4 28.32%

Monday Stock 40.82 0,66 1.62%

Tuesday Stock 69.31 0,99 1.43%

Wednesday Stock 76, 83 0,87 1.13%

Thursday Stock 93.11 0,86 0.92%

Friday Stock 122.89 0,44 0.36%

Hotel Cleanings 25, 80% 2.96 ·10−3 1.15%

From Table 2.4, the confidence interval for the stockout probability is signifi-
cantly wider than for the other indicators. This is because stockouts is an infre-
quent event. A single stockout can greatly impact the results of a replication,
leading to a high level of variability. The current study estimates that more
than 700 replications would be needed to reduce the 95% confidence interval
for the stockout probability to 5%, (see Robinson (2014)). Despite the fact that
the confidence interval for the stockout probability is notably wider, the num-
ber of replications was chosen to be 25, since it was found to be sufficiently
accurate for all other indicators being considered in the study. The authors
acknowledge that model replication precision can be deemed imprecise when
it comes to the stockout probability, it is decided to be an acceptable trade-
off given the high number of replications required to achieve a more narrow
interval.

2.6 Computational results

The proposed simulation-based approach is composed of two stages. The
first stage analyses the current situation using the suggested KPIs: stockout
probability, tension level, and hotel cleaning probability. Using the learnings
from the current situation, the second stage identifies adaptation levers and
devises alternative scenarios.
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Figure 2.7: Hotel cleaning cumulative mean and confidence interval by number of repli-
cations

2.6.1 PerformanceMeasurement and Implementation

Two experiments are conducted to measure all KPIs. The first experiment
estimates the required number of beds by preventing stockouts. The second
experiment measures the other KPIs using a fixed number of beds.

The first experiment begins with a minimal number of beds set to the hospi-
tal’s capacity (290 beds). Beds are added to the system when patients arrive;
no sterile beds are available within a 15-minute window. Although stockouts
are infrequent, they occasionally occur on Monday mornings when demand
is high. Additional beds can then be added to the system to measure the
stockout magnitude, which is highly stochastic and dependent on patient ar-
rival patterns. The final number of beds corresponds to the number needed
to avoid stockouts. This experiment may not reflect real-world conditions, but
it still gives a fair assessment of the necessary bed inventory. The hospital
faces challenges with limited storage space and high costs associated with
beds. Therefore, having the optimal number of beds to ensure smooth bed
flow operations and minimize the risk of stockouts is a crucial goal for the
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hospital.

In the second experiment, we set the number of beds to the average value de-
termined from 25 replications of the first experiment, ensuring each scenario
has an appropriate number of beds. This allows us to accurately compute the
other KPIs using the same number of replications.

The DES simulation model and the tension level indicator of the current situ-
ation have been implemented using Anylogic (University Researcher version
8.7.2). The model was run on an Intel(R) Xeon(R) CPU X5660 5.80GHz proces-
sor with 16 GB of memory under Windows 10. The model run time for the
full experiment with 25 weeks of warmup and 25 replications was 35 minutes.

2.6.2 First Stage: Analysis of thebaseline scenario

The simulation of the current situation highlighted the issues described by
the bed operators when developing the model. The sterile stock on Monday
mornings can be too low, leading to stockouts with a probability of 1.79% (90th
percentile: 3.25%). Depending on the demand on Mondays, the sterile stock
at the end of the operators’ shift might not be sufficient, inducing stockouts
Monday nights or Tuesday mornings. A complete overview of the KPIs from
the baseline scenario can be seen in Table 2.6.

Figure 2.8a shows that patient arrivals often exceed the production of beds,
particularly on Monday, Tuesday and Wednesday mornings. In 59.9% of the
Morning hours (between 7 AM and 10 AM), more patients arrive than beds
are cleaned. This imbalance indicates that the bed supply on Monday morn-
ings frequently depends on the previous week’s production and that a lack
of safety cannot be compensated by production flexibility. On the other hand,
the demand is lower in the afternoon than the production of sterile beds as
shown in Figure 2.8b. Sterile stock to cover non-working periods (nights and
weekends) is typically built in the afternoon. As a result, the sterile stock for
peak demand must be built the working day before without knowing the ex-
act demand. As seen in Figure 2.4, demand is highly variable and difficult to
predict, resulting in significant fluctuations in sterile stock levels, see Table 2.5.
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(a) Morning hours (7 - 10 AM) (b) Afternoon hours (12 AM - 5 PM)

Figure 2.8: Distribution of the hourly difference between sterile beds production (clean-
ings) and patient arrivals

Table 2.5: Comparison between morning sterile inventory position and the number of
hospitalisation

Day
Morning Stock (7AM) Hospitalisation (Peak)

Min. 10% Mean Mean 90% Max

Monday 0 27 40.43 19.41 25 47

Tuesday 0 39 67.89 18.75 23 47

Wednesday 0 49 73.97 16.24 19 48

Thursday 15 71 93.07 17.15 21 46

Friday 57 112 122.96 9.83 14 37
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The system variability can also be seen in the number of beds required to
avoid stockout, computed in the first experiment. Across the 25 replications,
the number of beds needed fluctuates from 290 to 364, with a median of 323.
The high values of the required bed fleet correspond to runs with stockouts of
significant magnitude and the need for surplus capacity.

The relatively high demand on Monday mornings often results in operators
resorting to hotel bed cleaning to keep up with demand. Over half of the beds
are hotel cleaned on Mondays (57.25%). Operators use quality as a buffer for
production, as described by Hopp et al. (2007). This need to clean beds faster
can also be seen in the tension level, which is slightly above 1 on average and
as high as 1.48 on Mondays.

The decomposition of the estimated throughput for the baseline scenario,
shown in Figure 2.5, also identifies that the main tension points are on Mon-
day mornings, when the sterile stock is loz and the unclean one peaks, and
on Fridays to leave the unit ready for the weekend. Figure 2.5 shows the, on
Monday mornings, the main objective of the operators is to empty the un-
clean stock to receive new unclean beds before the end of the day. On Fridays,
the operators want to leave the unclean section as empty as possible for the
weekend. Extra hours on those days might help reduce the induced tension,
whereas mid-weekdays are usually quiet.

2.6.3 SecondStage: Alternative scenarios

Different scenarios were proposed to improve the bed cleaning logistics using
the analysis of the current situation. The goal of the proposed scenario is
to add cleaning periods at strategic moments of the week to add production
flexibility and adequate capacity.

• EM - Early Monday: One shift of 1 hour and 45 minutes with three
operators added from 5 AM to 6:45 AM on Mondays

• LM - Late Monday: One shift of 1 hour and 45 minutes with three oper-
ators added from 3:15 PM to 5:00 PM on Mondays
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• LF - Late Friday: One shift of 1 hour and 30 minutes with three operators
added from 4:30 PM to 6:00 PM on Fridays

• WE - Weekend: One shift of 4 hours with three operators added from
10:00 AM to 2:00 PM on Saturdays

• EMLF - Early Monday Late Friday: A combination of the EM and LF
scenarios. One shift of 1 hour and 45 minutes with three operators added
from 5 AM to 6:45 AM on Mondays and another shift of 1 hour and 30
minutes with three operators added from 4:30 PM to 6:00 PM on Fridays

• HP - Intermediate scenario proposed by the hospital management team:
One morning shift of 45 minutes with three operators added from 6
AM to 6:45 AM on Mondays and a late shift from 3:15 PM to 5:00 PM
also added on Mondays alongside a short shift from 3 PM to 4 PM on
Fridays.

The results of the different scenarios are presented in Table 2.6. For any given
indicator, the average value observed in the 300 replications is given with the
10t h and 90t h percentile to compare the general behaviour and robustness of
the system.

Table 2.6 shows that the WE scenario, adding 4 hours of work for three op-
erators at the weekend, offers the greatest improvements. The stockout prob-
ability is reduced by a factor of six, the hotel cleaning probability by three,
and the probability of a patient waiting for a bed for more than 15 minutes
is less than 1/10 of the baseline scenario going, correspnding to less than one
patient per year. On top of reducing the risk of a patient not getting a bed in
time, the average tension level is reduced to 0.56, meaning that the operators
estimate their average pace to be 8.4 beds per hour. Figure 2.9 compares the
weekly-aggregated average tension level of the different scenarios. The lowest
line, corresponding to the WE scenario, returns a tension level below one for
Monday mornings and the first two hours of Tuesday. A low tension level is
a sign of the added flexibility that operators have to face demand fluctuations.
This flexibility gives stability to the system resulting in a reduced variance
for all indicators as shown by the reduced 10t h and 90t h percentiles ranges in
Table 2.6.
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Table 2.6: Comparison of the main indicators for the different scenarios

Cu. EM LM LF WE EMLF HP

Bed Waiting Time

Av. 1′01 1′03
1′00 1′57 1′57

1′57 1′01 1′02
1′01 1′00 1′01

1′59 1′57 1′57
1′57 1′57 1′57

1′57 1′57 1′58
1′57

15 min +
38.10 105.30

0.00 4.54 10.10
0.00 32.89 82.10

0.00 24.82 80.90
0.00 2.08 3.07

0.00 1.12 2.78
0.00 7.09 18.78

0.00
(Patients per year)

Stockout Probability

Monday 1.79% 3.25
0.00 0.04% 0.00

0.00 1.48% 4.17
0.00 1.56% 2.72

0.00 0.04% 0.00
0.00 0.05% 0.00

0.00 0.47% 1.00
0.00

Tuesday 0.04% 0.00
0.00 0.28% 1.08

0.00 0.00% 0.00
0.00 0.08% 0.00

0.00 0.16% 0.92
0.00 0.20% 0.92

0.00 0.08% 0.00
0.00

Wednesday 0.00% 0.00
0.00 0.04% 0.00

0.00 0.00% 0.00
0.00 0.00% 0.00

0.00 0.04% 0.00
0.00 0.04% 0.00

0.00 0.04% 0.00
0.00

Thursday 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00

Friday 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00

Saturday 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00

Sunday 0.04% 0.04
0.00 0.08% 0.00

0.00 0.00% 0.00
0.00 0.04% 0.00

0.00 0.00% 0.00
0.00 0.04% 0.00

0.00 0.12% 0.92
0.00

Av. 1.85% 3.67
0.00 0.36% 0.92

0.00 1.48% 4.17
0.00 1.60% 2.88

0.00 0.24% 0.92
0.00 0.29% 0.92

0.00 0.71% 2.05
0.00

Average Tension Level

Monday 1.48 1.51
1.43 1.02 1.05

0.95 1.18 1.24
1.16 1.29 1.33

1.27 0.90 0.90
0.88 0.94 0.98

0.94 0.92 0.95
0.91

Tuesday 0.82 0.83
0.79 0.70 0.73

0.69 0.74 0.76
0.72 0.77 0.79

0.76 0.70 0.73
0.70 0.70 0.71

0.68 0.65 0.67
0.63

Wednesday 0.69 0.72
0.67 0.60 0.62

0.57 0.64 0.65
0.60 0.63 0.65

0.62 0.59 0.61
0.57 0.56 0.59

0.55 0.53 0.54
0.49

Thursday 0.88 0.90
0.84 0.80 0.82

0.77 0.83 0.85
0.80 0.76 0.79

0.75 0.61 0.62
0.58 0.72 0.76

0.70 0.77 0.78
0.75

Friday 1.15 1.20
1.08 0.61 0.63

0.55 1.15 1.22
1.08 1.27 1.35

1.20 0.35 0.38
0.32 0.57 0.59

0.51 0.91 0.97
0.83

Saturday 0.00 0.00
0.00 0.00 0.00

0.00 0.00 0.00
0.00 0.00 0.00

0.00 0.51 0.60
0.42 0.00 0.00

0.00 0.00 0.00
0.00

Sunday 0.00 0.00
0.00 0.00 0.00

0.00 0.00 0.00
0.00 0.00 0.00

0.00 0.00 0.00
0.00 0.00 0.00

0.00 0.00 0.00
0.00

Av. 1.01 1.03
0.88 0.75 0.82

0.67 0.91 1.05
0.83 0.94 1.09

0.87 0.61 0.68
0.57 0.70 0.81

0.66 0.76 0.88
0.71

"Hotel Cleaning" proportion

Monday 57.25% 59.01
53.22 24.67% 26.12

23.01 34.96% 36.92
33.34 51.04% 53.72

49.80 21.95% 24.01
20.12 22.94% 24.54

21.25 14.52% 15.22
12.76

Tuesday 13.78% 14.54
11.76 8.56% 9.67

7.79 11.02% 11.92
9.45 12.23% 14.32

11.67 8.66% 9.87
7.57 7.99% 9.28

7.07 5.54% 6.95
4.46

Wednesday 5.22% 6.54
4.65 2.56% 3.56

1.99 4.27% 5.68
3.65 4.98% 6.06

3.88 2.72% 3.41
2.11 2.57% 3.52

1.81 1.87% 2.45
1.19

Thursday 14.34% 15.77
12.23 10.71% 12.05

9.45 13.79% 15.52
11.26 9.98% 11.36

8.45 1.88% 2.69
1.13 7.66% 9.32

6.45 9.28% 10.58
7.95

Friday 19.78% 21.60
16.89 7.56% 9.32

5.75 20.35% 23.01
18.75 11.12% 12.45

8.89 0.34% 0.88
0.00 4.17% 5.27

2.88 11.01% 13.04
9.27

Saturday 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00 0.00% 0.00

0.00 5.91% 8.33
4.22 0.00% 0.00

0.00 0.00% 0.00
0.00

Sunday 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00 0.00% 0.00

0.00 0.00% 0.00
0.00

Av. 25.80% 30.04
22.89 12.32% 14.62

10.45 18.04% 21.22
16.56 20.28% 24.42

18.82 7.81% 9.27
6.81 10.45% 12.98

9.22 8.78% 11.28
7.52

Required number of beds

322 364
298 292 294

290 324 344
303 316 335

294 292 295
290 291 294

290 293 299
290
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Figure 2.9: Comparison of the average Tension Level across the week for the different
scenarios studied
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Section 2.7: Conclusions and further research

The studied scenarios show that extra work hours building stock ahead of the
Monday rush (EM, EMLF, and WE) are the most effective means to reduce
both stockout risk and tension level throughout the week. The intermediate
scenario proposed by the hospital performs better than the current situation
but is less efficient than the EM, EMLF or WE scenarios. In the hybrid scenario,
the small amount of added hours smoothen the Monday peak and stagger
the risk and tension across the rest of the week. However, the change only
provides little flexibility.

The Late Monday Late Friday scenario does not provide significant improve-
ment. The impact of both scenarios on the Monday morning rush is limited,
as shown in the tension level (Figure 2.9). The inventory level of clean beds
on Friday night is as high as possible. Adding extra hours Friday night only
delays the last moment the stock will be full before the weekend. However,
the demand on Friday nights is relatively small (under 4 beds per hour). The
extra stock built to face the Monday peak is thus limited.

2.7 Conclusions and further research

Efficient bed logistics is a requirement for a well-performing hospital. We de-
veloped a DES model to improve the back-end of the hospital bed cycle to
ensure a stable supply of beds. Hospitals are resource-constrained, stressful
environments where human operators play a pivotal role in the back-end pro-
cesses. To model how operators’ behaviours impact the system, we developed
a tension level indicator to measure the work-induced stress on the operators.
This indicator is incorporated into the DES model to replicate the operators’
decision process and have a decision support tool corresponding to the actual
bed cleaning unit of the use case.

The proposed model highlighted the main shortcomings of the current organ-
isational setup at the case hospital. The operators’ work schedule limits the
number of beds cleaned per week and reduces the system’s surplus capacity
and flexibility. The lack of anticipation of the demand peaks adds stress to the
system, which, combined with the excessive bed fleet and flexibility deficiency,
can lead to stockouts. The proposed tool allows testing different scenarios to
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increase flexibility and improve resource usage. By reorganising the work
schedule, we showed that it is possible to reduce the stockout risk by a factor
of ten and reduce the bed fleet size by 10%. After completing this project,
the hospital implemented an adapted work schedule following the proposed
ideas. During the year and a half since implementing the new schedules, the
hospital has not experienced any stockouts.

It is well-known that the workload impacts the stress, performance, and health
of the operators (see Bakker et al. (2005), Delasay et al. (2019)). The proposed
tension level indicator suggests a quantitative measure to gauge such stress.
In addition to the direct learnings from measuring the stress experienced and
the perceived working environment conditions, we believe that it is valuable
to be able to incorporate quantitative measurements inside analytical studies
to better understand and replicate human operators’ behaviour. We believe
that the indicator proposed in this paper is an efficient way of modelling the
operators’ bias and its impact on their discretionary decisions inside a DES
model. This indicator-based approach could be used to design efficient DES
models of systems where human-based decisions play an important role. Sys-
tems, in which employees can adapt the capacity to meet the demand (e.g. by
opening additional production lines or counters), or decide to refuse or delay
customers if they believe they will not be able to serve them on time, could
use similar indicator-based approaches to model operators’ decisions.

Hospitals are often built around their care departments that tend to act as
independent silos. The information sharing between departments and the
back-end support units, such as the bed cleaning unit, is often lacking and
can be significantly improved. The bed logistics system would benefit from
more information sharing and real-time information on the demand. Opera-
tors’ decisions could then be based on actual figures and thus be more realistic.
Further research on real-time demand data may provide a basis for more effi-
cient and dynamic schedules for the operators leading to improved resource
management and better monitoring of risks. Additionally, the bed ordering
policies and practices often differ across departments and depend on the trust
the operators have in the hospital bed logistics system. Further research on
more integrated approaches to bed ordering could lead to more transparency
and more reliability which may improve the flow of beds.
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Abstract Hospitals are under increasing pressure to provide a steady and sufficient supply of
sterile medical devices to meet patient needs while minimising the risk of healthcare-associated
infections. Inefficient sterilisation processes can disrupt surgeries and hospital operations, lead-
ing to direct and indirect costs. Our study proposes a comprehensive discrete-event simulation
model that accounts for all aspects of a hospital’s Reusable Medical Device (RMD) flow, including
surgery and outpatient schedules and the Central Sterilisation Service (CSS). This approach, of
going beyond hospital department barriers and incorporating all the involved resources, is crucial
for achieving high service levels and cost efficiency, aligning with the integral capacity planning
paradigm in healthcare. The model considers RMDs as a resource of the sterilisation system and
incorporates base stock dimensioning to identify improvement areas not visible with a CSS-only
perspective. The approach enables testing of various improvements and changes in demand to
reflect potential changes in hospital surgical capacity. Applying the approach to a Dutch hospital
we revealed an RMD base stock imbalance not identified by a CSS-only analysis and proposed a
base-stock dimensioning heuristics reduced surgical and outpatient clinic disruptions by 66.1%,
using 231 fewer trays, leading to a 7.9% reduction in the total RMD fleet. Our approach provides
a valuable tool for optimising RMD flow, reducing disruptions, and minimising inventory costs.

Keywords: Integral Planning, Hospital Sterilisation, Simulation, Healthcare Management, RMD Cycle,
Base Stock Optimisation
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3.1 Introduction

Hospitals face increasing pressure to manage rising numbers of patients and
procedures (OECD, 2021; OECD and European Union, 2020). To meet this
demand, hospitals must ensure a steady and sufficient supply of sterile med-
ical devices, which can be either disposable or RMD requiring sterilisation
between uses. Sterilisation can be centralised, outsourced, or pooled (Tlahig
et al., 2013; World Health Organization, 2016), but regardless of the approach,
it must maintain high quality and efficiency to ensure an adequate supply of
devices for all procedures and prevent the spread of healthcare-associated in-
fections which affect hundreds of millions of people every year (World Health
Organization, 2016). Inefficient sterilisation processes may disrupt up to 12%
of surgeries due to the lack of supply of surgical tools (Rupnik et al., 2019).

Surgery departments consume a significant portion of a hospital’s budget,
and asset-related costs such as the usage and sterilisation of RMDs contribute
to this (Van De Klundert et al., 2008). As many countries seek to reduce
healthcare expenditures, efficient resource usage is crucial. The sterilisation
process of RMDs should ensure a high service level with optimal resource
allocation for cost efficiency.

This paper aims at understanding and improving the RMD flow in a hospi-
tal to ensure the supply of sterile instruments. We are motivated by a case
study of a medium-sized Dutch hospital. Facing future hospital expansions,
the management requested a thorough evaluation of the current sterilisation
activities, including an assessment whether or not the current sterilisation ca-
pacity is sufficient, and whether or not the current sterilisation facility could
be organised more efficiently, without losing quality. To this end, we develop
several indicators that both consider efficiency and quality of service.

The RMDs constitute a transversal resource for the hospital, and are used
throughout the hospital in a closed-loop cycle from sterile storage to Operat-
ing Rooms (ORs) or outpatient clinics, to the sterilisation facility, and back to
storage. To effectively manage this cycle, it is essential to analyse and model
all components of the system, rather than solely focusing on the sterile storage
area. This approach aligns with the Integral Capacity Management paradigm
proposed by Schneider (2020), which emphasises the need for comprehensive
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analysis of hospital resources.

Our study presents a comprehensive Discrete Event Simulation (DES) model
of a hospital’s RMD flow, which takes into account all the components of the
RMD cycle, beyond the sole analysis of the CSS alone. Building on prior work
such as Di Mascolo and Gouin (2013) and Rupnik et al. (2019), our model in-
corporates the surgical schedule and the demand for RMDs in the outpatient
clinic. This allows us to evaluate the system’s performance in terms of its im-
pact on hospital activities, with the aim of minimising disruptions to surgical
or clinical procedures. We also introduce a novel surgery generation proce-
dure to replicate the surgical schedule, which heavily influences the inflow of
RMDs to the sterilisation department (Dobson et al., 2015; Rupnik et al., 2019).
To our knowledge, this is the first time such a procedure has been included
in a DES model of the RMD cycle. Our comprehensive approach enables us
to consider RMDs as a resource of the system and incorporate base stock di-
mensioning into our analysis, which has been studied previously but never
integrated into an analysis of the RMD cycle of a hospital.

In what follows we review the existing literature in Section 3.2. In Section 3.3,
we formulate the problem and present the application hospital. Our model-
building approach is presented in Section 3.4, and the experimental results
are discussed in Section 3.5. In Section 3.6, we summarise our findings, draw
conclusions, and discuss potential future work.

3.2 Literature review

Hospital sterilisation flow refers to the series of operations that are necessary
to provide sterile surgical tools to operating theatres. Tools are categorised
as single-use tools, such as needles or catheters, and multiple-use tools, such
as surgical forceps, endoscopes, and stethoscopes. They arrive at the hospi-
tal either packaged or unpackaged, requiring pre-cleaning before use. The
multiple-use tools are further divided into processing stock with all the tools
required to support the hospital’s regular activities, and replacement stock,
which includes safety stock and stock to replace broken or worn-out tools
from the processing stock as Fineman and Kapadia (1978) explains.
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We focus on multiple-use tools, referred to as RMDs, which require sterilisa-
tion after use. The sterilisation process starts with rinsing and cleaning, which
is often done by hand. Next, the RMDs are disinfected in specialised disinfec-
tion machines. The RMDs are then inspected for any potential damage or
need for replacement before being sterilised in autoclaves. This step ensures
that all remaining microorganisms are killed, ensuring the RMDs are safe for
storage and use in the hospital (Di Mascolo and Gouin, 2013; Lin et al., 2008;
Ozturk et al., 2010; Van De Klundert et al., 2008). This sterilisation process can
be either in-housed in a CSS Di Mascolo and Gouin (2013); Lin et al. (2008),
outsourced Diamant et al. (2018), or pooled between several hospitals in a
network Di Mascolo and Gouin (2013); Tlahig et al. (2013).

The sterilisation department’s goal is to supply the demand for sterile tools,
determined by amongst others the surgical schedule. Surgery scheduling is
one of the most studied fields of healthcare Operations Research. Cardoen
et al. (2010), Demeulemeester et al. (2013), Samudra et al. (2016), and Zhu et al.
(2019) provide extensive literature reviews on this topic. Demeulemeester
et al. (2013) and Samudra et al. (2016) highlight that although numerous ap-
proaches to surgery scheduling have been proposed, only a limited share of
them considered downstream integration of other hospital departments. Fur-
thermore, the literature on upstream integration is even more scarce. Some
approaches consider the nursing wards, the Intensive Care Unit (ICU), or the
Post Anaesthesia Care Unit (PACU) when building the Master Surgical Sched-
ule (MSS). E.g., Beliën and Demeulemeester (2007), Beliën et al. (2009), Fü-
gener et al. (2014) and Schneider et al. (2020) use the bed occupancy of these
departments in their objective function. Latorre-Núñez et al. (2016) include
the ICU and PACU resources availability as a constraint for the MSS. Moosavi
and Ebrahimnejad (2018, 2020) introduces bed wards capacity as a constraint
to the MSS in both upstream and downstream departments. Calegari et al.
(2020) includes upstream surgical resource availability, such as surgical RMDs
and teams, but do not optimize the RMD flow, as the resources are assumed
to be available at the start of the shift. To the best of our knowledge, the
literature does not yet consider the impact of the sterilisation flow, through
the availability of surgical tools, on the surgical schedule. However, Rupnik
et al. (2019) showed that the insufficient supply of surgical tools could signifi-
cantly disrupt the operating theatres’ daily operations, e.g., through delays or
cancellations of surgeries.
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The literature on the sterilisation department in Operations Management (OM)
and Operations Research (OR) is broadly classified into three categories: tray
design, inventory management, and flow analysis/optimisation.

A large part of the literature dedicated to the sterilisation department focuses
on the design of trays. The RMDs are often grouped in specialised trays, to
improve the operational efficiency, system cost and quality of care Cardoen
et al. (2015). These trays contain several tools and are the base unit of the
sterilisation flow. The tools arrive in one tray and leave in the same tray.
They might temporarily disintegrate to RMDs through the process for spe-
cific cleaning procedures (hollow tools, for example), but get reassembled in
trays right after. Cardoen et al. (2015) proposed that the grouping of RMDs in
trays could be formulated as an NP-hard set-covering problem, and various
cost-optimisation-based packing strategies have been proposed Cardoen et al.
(2015); Dobson et al. (2015); Reymondon et al. (2006, 2008). Moreover, Dobson
et al. (2015) noted that the optimal setting of the trays depends on the surgical
schedule. Reymondon et al. (2007) studied the delayed differentiation of trays.
Generic trays are used but could be specialised for specific procedures dur-
ing the sterilisation process; specialisation must happen after the disinfection
but before the sterilisation, requiring a dedicated stock. These procedures,
however, do not solve the stock dimensioning problem. Dobson et al. (2015)
consider the total inventory for each instrument to be the maximum of the de-
mand for this instrument across the period considered, preventing any stock-
out, while in a similar fashion Cardoen et al. (2015); Reymondon et al. (2006,
2008) consider the instruments always available and solely focus on finding
the optimal set covering to minimise cost.

In terms of inventory management, research has focused on optimising surgi-
cal tool stock levels to minimise purchasing and holding costs, such as in the
work of Fineman and Kapadia (1978). Van De Klundert et al. (2008) optimised
the arrival of sterile trays from an inventory management perspective. Using
Markov chains, Diamant et al. (2018) developed an approach that calculates
the service level for different instrument base stocks in an outsourced sterilisa-
tion setup, where RMDs are sent for sterilisation and become available again 2
days later. Other inventory approaches, such as those by Little and Coughlan
(2008), Bijvank and Vis (2012), and Guerrero et al. (2013), considered service
levels and hospital-specific constraints but are not specifically designed for
RMDs and would need to be adapted to take into account the circular nature
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of the RMD flow. To the best of our knowledge, no previous approach has
considered the entire RMD cycle, specifically the sterilisation process, when
determining the appropriate levels of instruments and/or tray base stocks.

A third stream of research in the field of sterilisation focuses on flow analysis
and optimisation. Di Mascolo and Gouin (2013) and Lin et al. (2008) proposed
simulation modelling approaches to reduce the sterilisation time, from tray ar-
rival in the CSS to sterile storage. Rupnik et al. (2019) used simulation models
to evaluate the system’s ability to meet surgical demand in terms of tray avail-
ability and surgical schedule perturbations (delays and cancellations). Rupnik
et al. (2019) used historical data from the busiest 3-month period of the hospi-
tal’s surgery schedule as input. However, the models proposed by Lin et al.
(2008) and Rupnik et al. (2019) only measured the CSS’s performance given
a historical surgical schedule. This means that adjustments are only found
retrospectively, and a more generic model is needed to devise and validate
improvements. Di Mascolo and Gouin (2013) modelled the number of surg-
eries and the number of trays used as Poisson processes, but due to a lack of
data, the tray and surgery type could not be specified. This means that the
proposed model could not use the surgical schedule to plan and optimise the
sterilisation operation.

As up to 90% of surgeries are typically scheduled more than a day in advance
Reymondon et al. (2007), and the entire sterilisation procedure takes around 4
hours, the surgery schedule can be used when planning the sterilisation flow
to increase tray availability. Following this principle, Rossi et al. (2013) and
Ozturk et al. (2010) modelled the sterilisation flow as a job scheduling problem
reducing the makespan similarly to Di Mascolo and Gouin (2013). As the
sterilisation flow is a closed loop where surgeries set the availability of trays
to be cleaned and the demand for sterilised trays, cycle time improvements
can benefit tray availability. However, this heavily depends on the nature of
the demand and the specific trays needed. Rupnik et al. (2019) proposes to
adjust the surgery schedule to reduce CSS bottlenecks, RMD stock-outs, and
subsequently, surgery perturbations.

Our approach aims to build a generic simulation model for the sterilisation
flow. By modelling the entire flow of RMDs, our approach allows for con-
sidering trays and RMDs as resources and optimising their base stock in the
same way as one would optimise the number of machines or operators. Ad-
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ditionally, by incorporating the surgical schedule into the model, we are able
to prioritise tray cleaning and generate surgeries, taking into account the de-
pendency between tray arrivals - a novel aspect not previously addressed in
the literature. The proposed surgical generation process also allows for gen-
erating long runs and different replications, assessing the effect of demand
stochasticity and, therefore, generating more accurate insights. Building on
Rupnik et al. (2019), our goal is to improve the sterilisation process but in a
more integrated and holistic manner, including the surgeries, and the inven-
tory management to the analysis of the CSS

3.3 Problem formulation

This research is conducted at the Diakonessenhuis, a medium-sized hospital
in Utrecht, the Netherlands. This hospital has approximately 500 beds, and
an in-house CSS. The motivation underlying this research is threefold. First,
the operators of the CSS experience high working pressure at peak hours.
Second, the hospital plans to increase the number of surgeries, resulting in a
higher workload for the CSS. Third, the CSS management thinks that stock
levels are not properly aligned with the usage of trays. In this section, we
will conceptualise the RMD cycle in terms of layout and flow (Section 3.3.1),
resources (Section 3.3.2), and performance measurement (Section 3.3.3).

3.3.1 Facility layout and sterilisationflow

We focus on the layout of the CSS facility of the hospital under study. The
sterilisation process of this hospital is in-housed and resembles the layout of
in-house CSSs in general (Tlahig et al., 2013). The CSS facility consists of three
compartments: a decontamination space, a preparation and packing space,
and storage. The decontamination space and preparation space are physically
separated with trays moving from one to another via disinfection machines.
Similarly, the preparation space and storage are physically separated, with
trays moving from one to another via autoclaves. The CSS facility is designed
such that the risk of contamination is minimised as described by the World
Health Organization (2016) report on Decontamination and Reprocessing of
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Medical Devices for Health-care Facilities. The layout of the CSS is visualised
in Figure 3.1.

Surgical trays are requested from storage and used for surgery or at the out-
patient clinic, after which they are sent to the CSS to be cleaned and restocked.
The trays arrive in the decontamination space. The sterilisation process is com-
posed of several subsequent steps. First, the trays are disassembled into RMDs
and pre-cleaned, either manually or automatically, to remove coarse dirt from
the RMDs. These steps are performed in the decontamination space. Follow-
ing pre-cleaning, the RMDs are washed in disinfection machines, after which
the trays are moved to the preparation space. The RMDs are subsequently
manually assembled in their correct tray configurations. The assembly stage
includes a check of all tools for maintenance and/or replacement in case of
damage as explained by Fineman and Kapadia (1978). The trays are then man-
ually wrapped in special paper and sterilised in autoclaves. Afterwards, the
trays are restocked in the storage facility.

Although the described process is similar for most CSS facilities, there are
local differences. In the hospital under study, there are two such exceptions.
First, the hospital has a subsidiary location without a CSS. The trays from this
location are transported to the main CSS facility in batches. Second, not all
trays can be combined in one disinfection machine charge. Trays used for eye
surgery and for anaesthetic purposes are disinfected separately.

3.3.2 Resources

The resources of the RMD cycle consist of surgical trays, machines, worksta-
tions, and staff. The staff is divided into two teams: one working in the prepa-
ration space (pre-cleaning) and the other in the decontamination space (post-
cleaning). In general, all staff members are multi-skilled and can perform ev-
ery task, but transitioning between both spaces requires changing clothes for
hygienic reasons. To minimise the number of transitions between the prepa-
ration and decontamination spaces on one day, an employee should not make
many of those transitions.

Pre-cleaning is performed manually by a pre-cleaning operator at a dedicated
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Figure 3.1: Conceptual model of the sterilisation process.

workstation. The fully automated disinfection machines, located between the
decontamination and preparation spaces, only require manual interaction for
loading and unloading.

After unloading by a post-cleaning operator, all RMDs are manually checked
for damage and scanned, before being assembled into the trays on a dedi-
cated workstation. The assembled trays are then manually wrapped on an-
other dedicated workstation. Sterilisation is fully automated and performed
by autoclaves located between the preparation space and the storage.

3.3.3 Performancemeasurement

Our proposed approach focuses on evaluating the performance of the RMD
cycle within the hospital. The goal of the RMD cycle is to ensure that surgeries
proceed as planned. To measure its success, three Key Performance Indicators
(KPIs) are used that reflect the impact on the surgical schedule. These are:

• Alternative Sets: the proportion of surgeries that had to be performed
with replacement RMDs. Some surgeons have a preferred set of RMDs.
If necessary, alternative RMDs can be used as a replacement, despite the
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surgeon’s preference.

• Delays: the proportion of surgeries that are delayed due to RMDs un-
availability. A surgery is delayed if the preferred or alternative RMDs is
unavailable at the scheduled surgery time and becomes available within
2 hours after the scheduled surgery time.

• Reschedules: the proportion of surgeries that are rescheduled due to
RMD unavailability. A delay in availability of preferred or alternative
RMD sets of more than 2 hours results in a rescheduled surgery.

To gauge the impact of each component on the RMD cycle, additional KPIs
are used to monitor resource usage. These monitoring indicators enable the
assessment of potential interventions. The utilisation rate, defined as the
ratio of time in use and total working hours, is used to assess the capacity
of machines, workstations, and operators. The queue length in number of
trays ahead of all steps in the CSS indicates potential bottlenecks. A reason
for surgical schedule disruptions is the unavailability of trays. Hence, the
unavailability of each tray is tracked as the ratio of stockout time to total
time.

Preventing stockouts would be a more effective approach than simply mon-
itoring their occurrences. Therefore, we introduce a KPI based on what we
refer to as the “tray pressure". Tray pressure can be considered as the vir-
tual tray stock and is calculated per tray as the difference between the current
stock level and the expected requirement for that tray in the next 24 hours.
The turnaround time of the CSS is lower than 4 hours, hence 24 hours win-
dow give a large time to adjust the operations and prevent the stockout from
occuring. If we define t as time, I (t ) as the inventory of a tray at time t , and D̄

as the stochastic tray requirement for the next 24 hours, we can define T P (t )
as follows:

T P (t ) :=
�
I (t )−E(D̄ )�− . (3.1)

If T P (t ) is positive, it implies (in expectation) a stockout within the next 24
hours, based on the current inventory level. This metric can be utilised, for
example, to prioritise trays during the sterilisation process. To evaluate the
temporal evolution of this metric, we integrate over time as follows:
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T P (t ) :=
1

t

∫ t

0

�
I (t )−E(D̄ )�−d t . (3.2)

3.4 Model Building

To assess current performance and the impact of strategic, tactical and opera-
tional changes, we model the CSS using DES. In this section, we present our
model.

3.4.1 Data collection andpre-processing

To ensure comprehensive data for this study, an extensive analysis was con-
ducted using the hospital’s Enterprise Resource Planning (ERP) system. We
retrieved data of 2021, and after excluding data related to COVID-19 pandemic
restrictions in the Netherlands, a total of 28 weeks of data were used. To com-
plement and enhance the data, on-site observations and interviews with the
operators involved in the sterilisation and tray preparation processes were con-
ducted. This approach allowed for detailed insights into the procedures and
activities involved in the process, which may not have been captured in the
ERP data. The datasets used during the current study are not publicly avail-
able due to confidentiality reasons but are available from the corresponding
author upon reasonable request.

3.4.1.1 Resources

The CSS operators work in shifts of approximately 8 hours with several breaks.
Table 3.1 presents the capacity of the resources currently used by Diakonessen-
huis and the corresponding data source.

The hospital under study uses 1213 different types of surgical trays. To sim-
plify the analysis, we grouped the tray types into three clusters using a con-
strained K-means algorithm with feature selection, following the algorithm of
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Table 3.1: Diakonessenhuis RMD cycle resources.

Resource Quantity Source

Rinsing Workstations 2 On-site obs.

Resetting Workstations 2 On-site obs.

Wrapping Workstations 2 On-site obs.

Disinfection Machines 4 On-site obs.

Autoclaves 3 On-site obs.

Pre-Cleaning Operators
Weekdays

1 from 7.30 AM - 9:45 AM
2 from 9.45 AM - 5 PM
1 from 5 PM - 6:30 PM

Interview

Weekends 1 from 8 AM - 12:30 AM

Post-Cleaning Operators
Weekdays

6 from 7.30 AM - 9:45 AM
9 from 9.45 AM - 5 PM
3 from 5 PM - 6:30 PM

Interview

Weekends 1 from 8 AM - 1 PM

Trays 2925 1213 different types ERP

Bradley et al. (2000); Wagstaff et al. (2001). For each tray type, we calculated
the expected weekly demand, the number of surgeries and outpatient clinic
procedures requiring that tray type, and the current number of trays of that
type in the system. The algorithm generated clusters with a minimum size
of 25 tray types, ensuring that we obtained meaningful groups of trays for
analysis rather than unmanageable outliers or excessively large clusters that a
standard classification algorithm might produce.

Table 3.2: Constrained K-Means Analysis: Tray Types Clustering

Cluster
Number of
Tray types

Use
Current
Stock

Number of
Procedures

Expected
Weekly Demand

Criticality

0 32 Surgeries 9.97 59.94 13.98 1.25
1 771 Surgeries 2.15 5.50 0.78 0.6
2 410 Outpatient 2.35 1 1.88 -

Table 3.2 provides a breakdown of the tray clusters identified through the con-
strained K-means algorithm. Cluster 0 comprises the most frequently used
trays in surgeries. These trays have a high criticality and a larger base stock
(average of 9.97). The criticality of a tray type reflects its necessity in surgical
procedures. To determine the criticality of a tray type, we calculate the ex-
pected number of trays of that type required for each surgery. The criticality
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of a tray type is defined as the maximum expected number of trays needed
for any surgery. If all possible configurations of a surgery require exactly one
tool of a given tray type, its criticality is 1. If multiple trays of the same type
are required, the criticality can be greater than 1. On the contrary, if not all
surgical configurations require one tool of the tray type, the criticality can be
less than 1. More information about the criticality calculation can be found in
3.A.

Cluster 1 includes all other surgical trays that are less commonly used and
more specific to certain types of surgeries. Finally, Cluster 2 consists of all the
trays used in outpatient clinics.

3.4.1.2 Service times

Both the disinfection machines and the autoclave operate on 60-minute pro-
grams. However, the durations of manual steps within the CSS are not pre-
cisely recorded in the hospital’s ERP. To compensate for this, we empirically
collected data on these durations throughout the day. Following established
practices in the literature (see Baker and Trietsch (2009); Mohan (2007); Robb
and Silver (1993)), we assumed a lognormal distribution for these manual op-
erations and fit the distribution’s parameters to the collected data. The results
of this fitting process are presented in Table 3.3.

Table 3.3: Service times for all the processes inside the CSS.

Process Type
Duration (minutes) Lognormal Parameter

Average Std. µ σ

Disinfection Machine Deterministic 60

Autoclave Deterministic 60

Pre-Cleaning per tray Lognormal 1 1.5 −0.256 0.262

Assembly per tray Lognormal 2 1 0.253 9.39 ·10−4

Wrapping per tray Lognormal 0.5 0.2 −0.333 4.16 ·10−4

Disinfection M. Loading Lognormal 2 0.3 0.296 9.34 ·10−4

Disinfection M. Unloading Lognormal 0.5 0.2 −0.333 4.16 ·10−4

Autoclave Loading Lognormal 1 0.3 −1.87 ·10−2 1.40 ·10−4
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3.4.1.3 TrayDemand: Surgeries andOutpatient Clinic

To model the demand for the outpatient clinic, we leveraged a dataset of
log records containing tray movements within the system, which consisted
of 321761 rows extracted from the hospital’s ERP. A sample snapshot of the
dataset is presented in 3.B. We filtered the dataset to isolate trays designated
for the outpatient clinic and modelled the demand for the clinic using a Pois-
son process.

To model the inflow of surgeries at the hospital, we extracted a surgery log
data set of 50860 rows from the hospital’s ERP. A snapshot of the surgery
data set and the retrieved input for our model is available in 3.C. We assumed
that the number of surgeries of each type followed a Poisson distribution. To
model the surgical demand pattern, we assumed that the surgeries’ durations
were lognormally distributed, as is common in surgery scheduling literature
(see e.g., Zhu et al. (2019), May et al. (2000), or Schneider et al. (2020)).

We utilised the surgery log data set to map surgery types to their correspond-
ing tray configurations and assessed the probability of each configuration. In
contrast to outpatient procedures, where only a single tray is used per pro-
cedure, surgeries may require multiple trays, and varying configurations of
trays may be employed for the same surgery type. By mapping the trays to
the surgery demand, we can factor in the interdependence of tray demand
between those typically used for the same surgeries or scheduled surgeries
within the same day.

Figure 3.2 presents the results of our analysis, displaying the number of pro-
cedures occurring on each weekday as well as the corresponding volume of
tray use. While the majority of trays are used for surgeries, outpatient clinic
procedures are the most frequent, representing over 41.8% of the trays used.
Therefore, any comprehensive model of the RMD cycle must account for out-
patient demand. Similarly to Reymondon et al. (2007), Figure 3.2 also reveals
that only 10.1% of surgeries are emergencies, indicating significant opportuni-
ties for planning and prioritisation strategies in the RMD sterilisation process.
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Figure 3.2: Weekly Demand
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3.4.2 Components logic

Our model relies on surgery generation procedures to generate the demand
for trays and subsequently the pace of the RMD cycle. Therefore, this section
details the implementation of the surgery generation procedure and of the
logic behind the sterilisation process cycle with respect to queues and machine
operations.

3.4.2.1 Surgery generation

To generate tray arrivals in the CSS, the surgery schedule plays a crucial role.
However, it is challenging to obtain the exact historical surgery schedule, and
even more so to capture the intricate decision-making process of the hospi-
tal’s surgery planners for future schedules. To address this challenge, we
propose an algorithm that closely mimics the surgical schedule generation
process. We generated input data for our algorithm using the data described
in Section 3.4.1.

The surgical schedule generation algorithm is presented in Algorithm 3.1. The
algorithm requires several inputs including the simulation run length, surgery
types, tool configurations, operating rooms, surgery duration, and average
frequency per surgery per weekday, all of which are obtained from the source
data. Its output is a schedule per operating room detailing the surgeries, their
start times, and preferred tool configurations. This enables the simulation to
spread surgeries across operating rooms and parallelise them, as is typical in
a real-world hospital setting.

In Step 3, we initialise the schedule for each operating room o and day t . We
generate a schedule for each day t up to the run length. For each day, we ini-
tialise the list of surgeries to be scheduled for that day L as an empty set and
set the expected total surgery duration Eo to 0. The weekday corresponding
to t is determined in Step 7.

Subsequently, for each surgery type s ∈ S , we draw the number of surgeries
of type s to be performed on day t in Step 10, their durations in Step 11 and
preferred configurations in Step 12. All surgeries of each surgery type are
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Algorithm 3.1 Surgery generation algorithm.

1: Input:
Run length TR un L e ng t h

Set of surgery types S
Set of surgery tool configurations C
Average frequency per weekday d of surgery s λs ,d ,
Surgery duration parameters µs ,σs ,
Set of ORs O
Daily time span Ts p a n .

2: Output: Schedules Po ,t per OR o for each day t .
3: Initialize Po ,t ←;, ∀o , t

4: for t = 1, . . . , TR un L e ng t h do
5: Initialise the list of surgeries to schedule L ←;.
6: Initialise the expected total surgery duration per OR Eo ← 0.
7: Find the weekday d ← t mod 7

8: for s ∈S do
9: Draw Ns ,t surgeries of type s from P o i s s o n (λs ,d )

10: for n = 1, . . . , Ns ,t do
11: Draw duration t̄ from Lo g no r ma l (µs ,σs ).
12: Find a preferred configuration c from C for surgery s .
13: Add surgery s to L .

14: for surgeries s in L do
15: Find OR o ∗ with the lowest total expected surgery time Eo ∗ .
16: Add surgery s in OR o ∗ by adding s to Po ∗,t .
17: Eo ∗ ← Eo ∗ +µt

18: for o ∈O do
19: γ← Eo

Ts p a n

20: For each scheduled surgery s ∈Po ,t , set start time t to t/γ.
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added to L in Step 13. Next, we iterate over the list of surgeries to schedule,
in each iteration search for the OR with the smallest value Eo in Step 15. Note
that this corresponds to a worst-fit heuristic, see, e.g., Shi et al. (2016). Sub-
sequently, we update Eo in Step 17. In the last loop, we adjust the starting
times of the surgeries such that all surgeries start spread evenly over the day
in Step 20. This way, we ensure that trays arrivals are spread over the day,
which resembles the actual situation.

3.4.2.2 Queues

In front of the rinsing, assembling, and wrapping workstations, as well as the
disinfection machines and autoclaves, trays are queued for processing. All
these queues operate as First In First Out (FIFO) queues. To model the batch
arrivals from the outpatient clinic and the subsidiary locations, we use batch
queues. Between the arrival times of the batches, all trays are collected and
queued and inserted into the rinsing queue at the preset batch arrival times.

3.4.2.3 Machine Fill up

The disinfection machines and autoclaves have limited capacity. The disinfec-
tion machine loading rack consists of four layers, each with a capacity of 12
size units, where trays of different sizes are placed. Together with Subject Mat-
ter Experts (SMEs), we have assigned each tray to a size category with a fixed
size. Each disinfection machine has a total capacity of 48 size units. Trays
are picked from the queue and added to the disinfection machine until the
next tray does not fit, then the operators search for the next tray in the queue
that fits, repeating until no more trays can be added. Due to hygiene regula-
tions, certain trays, such as those used for anaesthetic purposes, are cleaned
separately.

In the autoclave, trays are placed in uniformly sized baskets and the autoclaves
are filled according to pure FIFO discipline, with each autoclave having a
capacity of 30 trays.

As observed on-site, operators do not always wait for a machine to become
completely full before starting it. To maintain a continuous flow, they com-
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mence the machines once a minimum quantity has been reached. To reflect
this behaviour, we introduce thresholds τd i s = 20% and τs t e r = 50% to ensure
that a machine is loaded if it is free and there are enough trays to fill it to
at least τ. These thresholds are calibrated to match the weekly number of
machine cycles observed on-site. The risk of tray deterioration and contami-
nation is higher before disinfection, thereby increasing the urgency to process
them through the disinfection machines. Trays are safer to store after disinfec-
tion and prior to sterilisation, explaining the difference in threshold levels for
disinfection and sterilisation.

3.4.3 Model validation andverification

To determine the simulation’s warm-up period, we use MSER-m heuristic, in-
troduced by White (1997) and White et al. (2000) to determine the optimal
truncation point for minimizing the marginal confidence interval and reduc-
ing bias. The MSER-m method uses groups of m data points to perform the
analysis, increasing its robustness in removing bias White et al. (2000). In this
analysis, the simulation output data points were already grouped by weeks to
account for daily variations, and groups of 2 data points (MSER-2) were used
instead of the more common 5 data points (MSER-5), as 5 weeks provided too
broad a granularity.

Table 3.4: Warm-up period: Results of the MSER-2 analysis

KPI
Optimal Truncation 6 weeks Truncation
d ∗ 95% CI Width in % of mean 95% CI Width in % of mean

Alternative Set Prob. 4 ±2.67 ·10−2 ±4.57% ±2.69 ·10−2 ±4.63%

Delay Prob. 6 ±6.48 ·10−4 ±58.4% ±6.48 ·10−4 ±58.4%

Rescheduling Prob. 2 ±3.56 ·10−3 ±18.3% ±3.63 ·10−3 ±18.8%

Pre Cleaning Queue 2 ±0.265 ±2.73% ±0.271 ±2.79%

Disinfection Queue 2 ±0.129 ±1.00% ±0.130 ±1.01%

Assembly Queue 2 ±9.53 ·10−2 ±1.62% ±9.76 ·10−2 ±1.65%

Wrapping 2 ±3.47 ·10−2 ±3.87% ±3.47 ·10−2 ±3.88%

Sterilisation 2 ±0.339 ±2.10% ±0.346 ±2.14%

The results of the MSER-2 analysis are presented in Table 3.4. This experiment
consisted of 10 replications and a 3-year (156-week) run length. For each KPI,
the table shows the optimal truncation point, which corresponds to the warm-
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up data that should be excluded from the output analysis to eliminate the
initial bias. The probability of a surgery being delayed had the largest trunca-
tion point, and a conservative approach was taken by using a warm-up period
of 6 weeks to remove the initial bias for all KPIs. In addition, Table 3.4 displays
the corresponding marginal 95% confidence interval for each outcome.

To minimise the computational impact of the warm-up period of 6 weeks,
a run length of 2 years (104 weeks) added to the 6 weeks of warm-up was
used, as recommended by Robinson (2014), which reduces the need for repli-
cations and therefore warm-up periods. To determine the appropriate num-
ber of replications, an experiment of 100 replications was conducted to study
the convergence and the width of the 95% confidence interval for the KPIs.
As demonstrated by Figure 3.3 using the average queue length ahead of pre-
cleaning as an example, 30 replications are sufficient to observe convergence
of the average values and the 95% confidence interval. This pattern holds true
for all KPIs, ensuring that 30 replications are adequate to eliminate any bias
caused by stochasticity and ensure a steady state.

Table 3.5: 95% confidence interval after 30 replications.

KPI Mean 95% CI Width in % of mean

Alternative Set Prob. 4.29 ·10−2 ±7.08 ·10−4 ±1.65%

Surgical Delay Prob. 1.95 ·10−4 ±5.56 ·10−5 ±28.44%

Surgery Rescheduling Prob. 1.67 ·10−3 ±1.34 ·10−4 ±8.03%

Pre Cleaning Queue 9.07 ±0.154 ±1.70%

Disinfection Queue 12.1 ±0.145 ±1.20%

Assembly Queue 5.52 ±6.25 ·10−2 ±1.13%

Wrapping 0.804 ±2.10 ·10−2 ±2.61%

Sterilisation 11.0 ±3.74 ·10−2 ±0.34%

Table 3.5 displays the 95% confidence intervals obtained from 30 replications.
For the majority of the indicators, the confidence intervals are relatively tight
and provide accurate results. However, the intervals for surgical delay prob-
ability and rescheduling probability are wider. These events are fortunately
extremely rare with an average of 35.86 and 307.12 occurrences per run (104
weeks) respectively. This rarity results in a high volatility in the results and a
single event can significantly impact the simulation outcome. It is estimated
that more than 980 replications would be required to reduce the 95% confi-
dence interval to 5% of the mean value (Robinson, 2014). Although 30 repli-
cations may be considered imprecise for these two indicators, it is a trade-off
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Figure 3.3: Pre-Cleaning queue length cumulative mean and confidence interval by num-
ber of replications.

made in consideration of the computational cost that would come with obtain-
ing narrower intervals.

3.4.4 Model validation

The proposed DES approach has undergone extensive development and vali-
dation through collaboration with the hospital management team.

The tray makespan, defined as the time elapsed between tray arrival at the
CSS and its placement in sterile storage, is computed by our model. Our
model provides a median tray makespan of 3 hours and 18 minutes and a
95t h percentile of 4 hours and 46 minutes, which have been confirmed by CSS
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operators and management to closely reflect the actual operations of the CSS.

The CSS does not have precise records of queue lengths or tray-level indica-
tors, so the only available operational data for quantitative validation are the
number of trays cleaned per week, and the number of cycles of the autoclaves
and disinfection machines. To assess the accuracy of our model, we followed
the method proposed by Robinson (1999) and calculated the 95% confidence
interval of the difference between the means of the simulated output and the
operational data extracted from the ERP. The results are presented in Table 3.6
and show that the confidence interval includes 0, indicating with 95% confi-
dence that there is no significant difference between the simulated output and
the operational values.

Table 3.6: Model Validation: Means difference analysis between operational data and
simulated output

Metric per week
Op. Data Simulated Means difference 95% CI

Mean Mean Value % of Op. Mean

Trays cleaned 1770.76 1772.66 [−46.6, +50.4] [−2.63%, +2.85%]

Disinfection cycles 172.76 172.61 [−4.40, +4.08] [−2.55%, +2.36%]

Sterilisation cycles 99.79 99.14 [−2.03, +0.72] [−2.03%, +0.72%]

3.5 Experiments and computational results

The proposed DES approach has been implemented in Python (3.10), using
SimPy (4.0.1), a process-based discrete-event simulation framework (see Mat-
loff (2008); SimPy (2002)). The simulation experiments, consisting of 30 repli-
cations, a six-week warm-up period and 104 weeks of run length, were run on
a Linux cluster with a Xeon Gold 6226R processor and 756GB of memory. The
replications were parallelised across 30 cores to reduce computational time,
and each experiment took approximately 50 minutes to run.

We initially conducted a baseline experiment that replicated the current setup
of the hospital. Based on these results, we formulated potential interventions
to enhance the system’s performance, which we subsequently tested. Ad-
ditionally, the hospital expressed a desire to increase the volume of certain
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procedures. Thus, we conducted experiments with varying demand levels
to evaluate the system’s capacity to handle such fluctuations, both with and
without the proposed interventions.

3.5.1 Baseline experiment results

Table 3.7 presents the KPIs of the simulation of the baseline scenario. Contrary
to the example hospital in Rupnik et al. (2019), only 1.18% of the surgeries are
disrupted. Tray unavailability-induced delays are extremely rare (less than
once per year). For a delay to occur, the required tray(s) need to be cleaned in
less than 2h but the entire sterilisation process requires the tray to go through
the disinfection machine and the autoclaves which together take more than
2h; the entire CSS process lasts 3h 18m on average. Hence the specific tray(s)
need to be already in the sterilisation process to be ready before the surgery
is rescheduled, leaving almost no adaptation possibility for the CSS.

Table 3.7: KPIs and corresponding standard deviations of the baseline scenario.

KPI % of surgeries Average per week Average per year

Surgeries 100.00 % 360.88 [σ: 0.63] 18765.77 [σ: 40.55]

Delays ≤ 0.01 % 0.02 [σ: 0.01] 0.85 [σ: 0.58]

Reschedules 0.04 % 0.15 [σ: 0.04] 7.55 [σ: 1.46]

Alternative Set 1.14 % 4.12 [σ: 0.21] 214.21 [σ: 9.22]

The KPIs measuring the performance of the operations within the CSS also
indicate that no clear bottleneck exists. As shown in Figure 3.4, the queue
lengths before each step of the CSS remain below 29 trays, which corresponds
to 1 hour of tray demand. Figure 3.5 illustrates that the CSS resources are
adequate to ensure the sterilisation of the trays. All resources, except for those
in pre-disinfection operators, maintain an average utilisation rate below 90%,
indicating a margin. The pre-disinfection operators’ utilisation rate reaches
100% during weekday mornings and on weekends when only one operator is
present.

Figure 3.6a reveals that stock-outs occur exclusively for tray types with low
base stock levels in Cluster 1 (surgical trays with low volume) or Cluster
2 (outpatient clinic). Notably, 91% of these stock-outs involve tray types
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Figure 3.4: Average Queue Length in the CSS

with only one unit in their base stock (99% for base stocks under 2). Mean-
while, Figure 3.6b demonstrates that the inventory position for tray types in
Cluster 0 never falls below the daily expected demand. Figure 3.6 indicates
that a discrepancy exists between the base stock levels and demand for the
RMDs, which is the primary cause of surgical disturbances. Moreover, it high-
lights that the safety level for high-usage trays (Cluster 0) is excessive, which
presents opportunities for cost savings and enhancements.

3.5.2 RMDcycle interventions

We propose two sets of interventions to improve the current hospital-wide
RMD cycle, focusing on operations changes within the CSS for the first set
and variations in the base stock level of the trays for the second set.

3.5.2.1 CSS operations interventions

In the baseline experiment, the utilisation of the pre-disinfection operator
peaks above 90% in the early mornings and on weekends, suggesting that the
resource may be under-capacitated. To address this issue, the first experiment
(OP+) proposes an adjustment to the pre-disinfection operator’s schedule, en-
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Figure 3.5: Hourly resource utilisation plot

suring that two operators are available at all times during working hours.

In section 3.4.2.2, we explained that the baseline queuing system operates on
a FIFO basis. To improve the system, we propose two alternative prioritisa-
tion policies for the pre-disinfection queue: experiment CR, which involves
continuous review, and experiment DR, which involves daily review at 2 PM.
In contrast to the traditional FIFO approach, our proposed policies prioritise
trays based on their level of tray pressure, which represents the degree of
urgency or importance of completing a given tray. Specifically, we prioritise
trays with lower sterile inventory levels compared to the forecasted demand
in the next 24 hours.

3.5.2.2 Tray base stock interventions

Dobson et al. (2015) used the maximum daily demand as the base stock level,
and we followed a similar approach by considering the demand of the busiest
day of the week in three experiments. Since the CSS can sterilise trays in less
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than 4 hours on average, it is possible to reuse some trays on the same day
and have others available the next day depending on their arrival time. In
experiment BS50, the base stock for each tray is set to the median demand
on the busiest weekday, rounded up to the next integer. Experiment BS75
corresponds to the 75t h percentile, and experiment BS95 to the 95t h percentile.
The reduction in the tray fleet required by the experiments (1617, 1890, and
2694 trays respectively instead of the current 2925) could lead to significant
cost savings, given that the total value of surgical RMDs of a mid-size 1000-
trays hospital could reach up to $3 million, as pointed out by Lin et al. (2008).

We did not consider the maximum as in Dobson et al. (2015), as it appeared
overly conservative and would have increased the total number of trays to
4432, which would have prevented any cost-savings. Additionally, we used
the baseline simulation experiment to determine the base stock level, and the
maximum value would have likely represented statistical anomalies rather
than actual values.

3.5.2.3 Scenarios Results

Table 3.8: RMD cycle simulation: improving scenarios results

Scenario
Delays Reschedules Alternative Set

Values ∆Baseline Values ∆Baseline Values ∆Baseline

Baseline 4.53 ·10−5 4.02 ·10−4 1.14 ·10−2

CSS scenarios

OP+ 5.59 ·10−5 +23.4% 4.17 ·10−4 +3.73% 1.22 ·10−2 +6.84%

CR 6.65 ·10−5 +46.8% 4.16 ·10−4 +3.40% 1.21 ·10−2 +6.14%

DR 4.97 ·10−5 +10.2% 3.99 ·10−4 −0.746% 1.22 ·10−2 +7.01%

Base stock strategies

BS50 4.28 ·10−4 +845% 1.94 ·10−3 +383% 6.32 ·10−2 +454%

BS75 2.18 ·10−4 +381% 6.25 ·10−4 +55.4% 2.26 ·10−2 +98.2%

BS95 5.16 ·10−5 +13.9% 1.08 ·10−4 −73.1% 3.84 ·10−3 −66.3%

Table 3.8 presents the outcomes of the proposed experiments. The adjustments
suggested to the CSS operation failed to produce any improvement. The con-
tinuous prioritisation (CR), discrete prioritisation (DR), and pre-disinfection
operators schedule adjustment (OP+) scenarios slightly underperformed com-
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pared to the baseline. However, the observed differences are comparable the
95% confidence interval for these indicators, as presented in Table 3.5. There-
fore, we conclude that these interventions do not provide significant improve-
ment.

As previously mentioned, stock-outs occur for trays with limited base stock,
which means that there might not be another tray ready to be prioritised to
compensate when a stock-out occurs, thus explaining the underperformance
of the prioritisation strategies.

Adjusting the schedule of the pre-disinfection operators resulted in reduced
utilisation during mornings and weekends but did not have a significant im-
pact on the overall system. This suggests that despite their occasional high
utilisation, this resource does not act as a bottleneck for the flow of the RMD.

The outcomes of experiments BS50 and BS75 are significantly inferior to the
baseline, indicating that the base stock levels are set too low. However, experi-
ment BS95 shows a considerable improvement on most KPIs, with a reduction
of over 60% in the need to reschedule procedures and use of alternative sets.
This suggests a better alignment between the base stock levels and the de-
mand, offering the potential to reduce the hospital tray fleet by more than 200
trays.

However, as illustrated in Figure 3.7, stock-outs are limited to trays with low
base stock (≤ 2), while other trays remain over-capacitated. This highlights the
limitations of setting the base stock for trays based on a percentile of the daily
demand. While this approach reduces the base stock and cost for high-use,
large-inventory trays like those in Cluster 0, despite reducing the risk of stock
out for low-inventory trays it fails to effectively increase the robustness for
all low-inventory trays. Large inventory trays benefit from a pooling effect,
where trays can be cleaned and reused more quickly than low-inventory trays,
resulting in a disparity between the two types of trays.
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3.5.3 Demand Increase

The case study hospital intends to extend its surgical capacity for certain pro-
cedures, which in turn is expected to increase the demand for these proce-
dures. In order to assess the ability of the current RMD cycle to cope with this
increased demand and the potential benefits of the proposed enhancements,
we consider two experiments: SI20 and SI40. These experiments correspond
to an increase in the demand for the selected surgeries by 20% and 40%, re-
spectively. Note that the anticipated increase in demand only represents a
marginal increase in the overall number of surgeries performed at the hospi-
tal, as well as the number of trays cleaned (less than 8%). To fully evaluate the
resilience of the system, a stress test has been proposed, which encompasses
an overall increase of 25% (experiment I25).

Table 3.9: Demand variation results

Scenario
Trays

Base Stock

Delays Reschedules Alternative Set

Values ∆Baseline Values ∆Baseline Values ∆Baseline

Normal Demand

Baseline 2925 4.53 ·10−5 4.02 ·10−4 1.14 ·10−2

BS75 1890 2.18 ·10−4 +381% 6.25 ·10−4 +55.4% 2.26 ·10−2 +98.2%

BS95 2694 5.16 ·10−5 +13.9% 1.08 ·10−4 −73.1% 3.84 ·10−3 −66.3%

Demand SI 20

Baseline 2925 5.66 ·10−5 +24.9% 4.01 ·10−4 +0.249% 1.29 ·10−2 +13.2%

BS 75 1920 2.25 ·10−4 +396% 6.17 ·10−4 +52.7% 2.39 ·10−2 +109.6%

BS 95 2713 6.24 ·10−5 +37.7% 1.03 ·10−4 −74.3% 4.51 ·10−3 −60.4%

Demand SI 40

Baseline 2925 8.34 ·10−5 +84.1% 3.79 ·10−4 +5.72% 1.47 ·10−2 +28.8%

BS75 1938 1.99 ·10−4 +339% 5.12 ·10−4 +27.4% 2.26 ·10−2 +98.2%

BS95 2761 5.57 ·10−5 +23.0% 9.93 ·10−5 −75.2% 4.29 ·10−3 −62.3%

Demand I 25

Baseline 2925 1.11 ·10−4 +145% 4.29 ·10−4 6.71 2.51 ·10−2 +120%

BS75 2049 2.74 ·10−4 +505% 6.14 ·10−4 +52.7% 3.06 ·10−2 +168%

BS95 2937 1.09 ·10−4 +141% 1.28 ·10−4 −68.2% 1.01 ·10−2 −11.4%

Table 3.9 presents the results of the baseline organisation and proposed base
stock heuristics BS75 and BS95 for all considered demand variations. Without
any adjustment to the system, the demand increase significantly deteriorates
the performance of the RMD cycle.
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However, the deterioration for the selective increase SI20 and SI40 remains
moderate. The number of surgeries performed with alternative sets of RMDs
would increase only slightly, from 4.1 out of 361.3 surgeries to 4.8 out of 378.02
surgeries and 5.9 out of 399.3 surgeries per week on average. The number of
surgeries delayed or rescheduled on average every year would increase from
8.37 to 9.02 and 9.60 surgeries, respectively. Potential improvements need to
be balanced with their cost, and management could consider these increases
acceptable.

Our findings indicate that there is no significant capacity bottleneck within
the current system. Specifically, we observed that the average number of trays
cleaned per week increased from 1770 to 2186 for scenario I25, yet the queue
lengths upstream of each operation remained below 50 trays in the worst-case
scenario, representing less than two hours of total flow. Furthermore, we
noted that the overall resource utilisation rate did not exceed 0.9, with the
exception of the morning and weekend hours for the pre-disinfection opera-
tors. The base stock level remains the main challenge, even with an increase
in demand, the CSS would be able to accommodate such an increase.

The results of base stock scenarios BS75 and BS95, outlined in Table 3.9, cor-
roborate this analysis. Adjusting the tray base stock to the 95t h percentile of
the busiest day demand outperforms the baseline situation. However, it can
be seen that the performance of such a heuristic tends to decrease with higher
demand. A finer heuristic with a more individual approach to each tray, tai-
loring the base stock to the true nature and characteristics of the demand for
each tray type, might provide a larger reduction for high-use trays and more
robustness and safety for low-use ones.

3.6 Conclusion and FutureWork

This study investigated the intricate flow of the RMD system within a hospi-
tal, which involves several departments such as CSS, surgery, and outpatient
clinics. Our study highlights the critical importance of taking an integrated
and holistic approach to the RMD system, in order to fully understand its flow
and identify areas for improvement.
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We proposed a comprehensive DES model for the entire flow of sterile surgical
trays in a hospital, which takes the closed-loop nature of the flow into account.
Our model included a novel method to generate surgeries and outpatient pro-
cedures, which was key to modelling the entire RMD flow comprehensively.
These procedures constituted both the demand for sterile trays and the source
of trays to clean, making them critical for understanding the RMD cycle. In-
corporating this surgery generation procedure allowed us to comprehensively
model the CSS operations and the base stock of the trays, enabling us to iden-
tify areas for improvement that would not have been visible from a more
limited perspective. Our model provided a more comprehensive understand-
ing of the RMD cycle and its flow, which can be used to optimise and improve
the system in the future.

We used our model to analyse the RMD flow of a Dutch hospital and mea-
sure its impact in terms of surgery and outpatient procedure disruption, to
ensure the quality of care provided. This analysis provided us with valuable
insights into the system’s behaviour and potential improvements. It enabled
us to devise different interventions to improve the CSS operations as well as
the base stock level. We found that the CSS is able to cope with an increase
in demand but that the main challenge for this hospital is to adjust its tray
fleet. We proposed and tested heuristic methods to better align the base stock
with the demand for trays. One of the key contributions of our study is that
it highlights the necessity of studying the base stock and CSS operations to-
gether. Indeed, without the integrated, comprehensive analysis of the entire
RMD flow, including the surgical schedule, we could not have identified that
the base stock was the main issue when analysing solely the performance of
the CSS.

As future work, it would be a valuable addition to the model to incorporate
tray composition, thus enabling a more comprehensive analysis of the RMD
flow. Additionally, there is potential in using the model to devise surgical
planning guidelines aimed at reducing the likelihood of tray stock-outs. We
acknowledge that the heuristics we proposed for base stock dimensioning
were based on a one-rule-fits-all approach, and that developing finer heuris-
tics tailored to the demand characteristics of each tray might provide future
researchers with a larger reduction for high-use trays and more robustness
and safety for low-use ones.
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Appendix 3.A TrayCriticality

The criticality of a tray measures the necessity of a tray for surgery to be
performed. With Surgeries(t ) defining the set of surgeries using trays of type
t , Conf(s ) the set of RMDs configuration that could be used for surgeries s , the
criticality of a tray type t γt is computed as the following.

γt = sup
s∈ Surgeries(t )

§� ∑
C ∈Conf(s )

∑
θ∈C

1θ=t

�
/|Conf(s )|
ª
∀t ∈ Tray Types (3.3)

Hence if tray type t is only used in one surgery and is used in half of the
possible configurations of this surgery, its criticality is γt = 0.5

Appendix 3.B Snapshot of the tray log dataset extracted
fromtheERP

Table 3.10: A snapshot of the usage log of RMDs in the hospital. Source: the hospitals’
ERP system

Set ID Set Name Activity Time Date Set Type ID

1 BASE TRAY Reset 10:53:05 19-2-2020 E1

2 COLOSCOPE On OR 10:54:44 19-2-2020 E2

3 SURG.DERMA Wrapping Room 10:57:04 19-2-2020 E3

4 ENDO EYE 0 Wrapping Room 10:57:17 19-2-2020 E4

4 ENDO EYE 0 Reset 10:57:22 19-2-2020 E4
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Appendix 3.C Snapshotofthesurgerylogdatasetextracted
fromtheERP

Table 3.11: A snapshot of the surgery log. Source: the hospitals’ ERP system

Surg. ID Date Surgery Type OR Tray ID Start End

1 07/04/2021 LAPAROSCOPY DIAGN. UH7 10 19:30 20:32

1 07/04/2021 LAPAROSCOPY DIAGN. UH7 11 19:30 20:32

2 21/12/2021 SECTIO CAESAREA UH6 12 19:00 19:51

3 09/07/2021 URETHROTOMY UH8 13 18:40 19:04

4 14/03/2021 ABCES TRTMNT -(+ PCH) UH8 14 17:23 18:17

5 28/07/2021 URETERORENOSCOPY UH6 15 16:48 17:42

5 28/07/2021 URETERORENOSCOPY UH6 16 16:48 17:42
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Abstract Patient arrivals in hospitals exhibit significant variability, requiring efficient position-
ing of departments to optimise room resource usage. This study proposes a novel approach
to the Hospital Layout Problem (HLP) in the context of fully flexible nursing room setups. By
strategically placing department centres and using the flexibility of nursing rooms, our method
dynamically accommodates patients close to the centres, accounting for the departments’ variabil-
ity. To achieve efficient layouts, we develop a Hybrid TABU Search and simulation methodology
that prioritises compact and connected departments, minimising cross-departmental movement.
Incorporating a graph-based formulation of the HLP and a novel quantitative assessment method,
we evaluate patient misplacement within flexible layouts. This research optimises resource usage
and addresses the complexities of modern healthcare environments. It emphasises the importance
of nursing unit layouts for enhancing operational efficiency and offers a practical methodology
for efficient layout design and performance evaluation. In a newly constructed Danish hospital,
our approach successfully reduces patient misplacement disruptions by over 45% compared to an
initial benchmark developed by the hospital management.

Keywords: Hospital Layout Problem, Hospital Logistics, Hospital Flexibility, Sim-Heuristic, TABU
Search, Simulation
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4.1 Introduction

The design of hospital layouts plays a critical role in achieving high opera-
tional performance and delivering quality care to patients in complex health-
care environments. With a wide range of medical specialities and limited
resources, hospitals face the challenge of managing highly stochastic demand
(Hall, 2012). Since the 1970s, extensive research efforts have been dedicated
to optimising hospital layouts to enhance internal flow, reduce costs, improve
productivity, and support patient recovery (Arnolds and Nickel, 2015; Drira
et al., 2007).

The variable demand for care in hospitals, however, poses challenges in ca-
pacity planning, resource management, and in predicting space requirements
during hospital construction (Hall, 2012), which makes the Hospital Layout
Problem (HLP) a complex task. Resource sharing and flexibility have emerged
as common approaches to address uncertainty in demand and resource limi-
tations (De Neufville et al., 2008).

In our study, we focus specifically on the layout of nursing units within hos-
pitals, where beds and rooms can be shared. This setting provides an oppor-
tunity to leverage flexibility and achieve high-performance hospital layouts.
Nonetheless, as highlighted by Bekker et al. (2017), uncontrolled flexibility
can introduce inefficiencies in traffic flow and increase practitioners’ work-
load, thereby undermining the intended benefits.

To address these challenges, we propose a novel version of the HLP that inte-
grates flexibility into the layout design process while mitigating its staff and
material flow increase drawbacks. Our approach incorporates a simulation-
based evaluation of layout performance, specifically quantifying flexibility is-
sues at the operational level to assess the strategic performance of a layout.
This evaluation simulation includes a bed allocation heuristic that assigns
room to patients optimising their positioning as close to their department
centres as possible. This contribution effectively transforms the department
allocation problem into a centre allocation problem and accommodates the
dynamic nature of medical department sizes. Building upon this, we develop
a hybrid TABU search and simulation heuristic framework to generate effi-
cient layouts.
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By moving beyond the traditional static allocation of pre-sized blocks and
incorporating bed allocation for improved adaptability, our research offers a
novel perspective on the HLP. It provides valuable insights into optimising
hospital layouts to enhance operational performance and resource utilisation,
ultimately improving the delivery of care to patients.

The remaining sections of this paper are organised as follows. In Section 4.2,
we present a literature review on the HLP and hospital flexibility, and posi-
tions our research contribution. Section 4.3 introduces the use case that is
the basis for our study and methodology. The details of our simulation op-
timisation approach are provided in Section 4.4, followed by a description of
the performance evaluation simulation in Section 4.5. Section 4.6 presents the
computational results obtained from our approach, and Section 4.7 concludes
the paper and discusses our findings.

4.2 LiteratureReview

The design and layout of healthcare facilities are critical aspects of Operations
Management (OM) and Operations Research (OR) within the healthcare in-
dustry. HLP, originated as a subcase of the Facility Layout Problem (FLP),
focuses on the positioning of departments and specific facilities within hos-
pitals. Earlier studies by Delon (1970); Delon and Smalley (1970); Whitehead
and Eldars (1965) approached HLP from a theoretical mathematical perspec-
tive, adapting FLPs to hospitals. However, recent years have witnessed in-
creased interest and research in HLPs, as indicated by the 81 relevant articles
identified by Benitez et al. (2019). Contemporary approaches, as highlighted
by Jamali et al. (2020), involve collaborative efforts between architects and re-
searchers, using optimisation techniques to improve the operational usability
and constructability of healthcare facility layouts.

4.2.1 Awide rangeofHLPs

The field of HLP encompasses a wide range of considerations, ranging from
positioning entire medical departments in the entire hospital to specific activ-
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ities inside specific subparts of the hospital, such as the Operation Theatre
(OT) (Assem et al., 2012), or the Emergency Department (ED) (Rismanchian
and Lee, 2017). Jamali et al. (2020) notes that the exact definition of HLP lacks
consensus, as it relies on the specific scope considered.

One frequent aspect of HLPs revolves around the interrelationships among
different elements and their positioning. The integration of related elements,
such as OTs and Intensive Care Units (ICUs), can lead to synergistic bene-
fits, which can be achieved through the use of adjacency matrices or activity
graphs (see (Chraibi et al., 2013, 2014; Cubukcuoglu et al., 2022; Delon, 1970;
Holst, 2015)). Hicks et al. (2015) identifies patients, families, staff, medications,
supplies, equipment, and information as critical flows to consider for optimis-
ing hospital layouts. Comprehensive approaches consider the quantitative
incorporation of these flows as suggested by Delon and Smalley (1970), or as
commonly practised in the broader FLP literature (Drira et al., 2007). Building
upon this Chraibi et al. (2014); Haji et al. (2006); Rismanchian and Lee (2017)
strategically plan circulation paths to optimise these flows. Additionally, re-
searchers like Bate and Robert (2006) and Becker and Parsons (2007), propose
the use of evidence-based design methods and draw insights from innovative
solutions implemented in other hospitals, offering a qualitative perspective on
enhancing hospital layouts.

The field of HLPs, inherits methods from FLP literature, particularly Quadratic
Assignment Problem (QAP). However, QAP formulations are known to be
highly complex and NP-Hard (see (Cornuéjols et al., 1983; Garey and Johnson,
1979; Heragu, 2022)), leading to heuristic-based approaches (e.g. (Elshafei,
1977)), or decomposition techniques, (e.g. (Helber et al., 2016; Holst, 2015)).
Other HLPs approaches often leverage concepts from Strategic Layout Plan-
ning (SLP) and Graph Theoretic Approach (GTA) to maximise closeness be-
tween related components. However, Jamali et al. (2020) notes that these
conventional formulations of QAP, SLP, and GTA are inadequate to capture
the dynamic nature of hospital demands. To address this limitation, Chraibi
et al. (2013, 2014); Haji et al. (2006) introduce "Floating Facilities (FF)" allows
activities to freely occupy adjustable spaces within the hospital layout, incor-
porating architectural design principles described by Michalek et al. (2002).
Boucherie et al. (2012) highlights that department positioning is frequently
undertaken within established hospital settings. Approaches such as Butler
et al. (1992) aim to optimise the placement of departments by minimising the
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need for extensive adjustments to fit within existing physical boundaries, a
technique referred to as "maximising the goodness of the fit".

For a comprehensive overview of proposed HLP approaches and their solu-
tion methodologies, refer to the detailed table in Section 4.A.

4.2.2 Includinghospital variability intoHLP

Our research focuses on nursing unit placement within a new hospital facility.
According to Rashid (2015), the predominant flows within nursing units re-
volve around the internal movement of staff, as patients typically stay within
their individual rooms with limited interdepartmental mobility. Consequently,
our focus diverges from the conventional HLP as the significance of interde-
partmental relations and flows is reduced.

Hall (2012) explains that the variability in patient arrivals exhibits hourly, daily,
weekly, and seasonal variations, while their Length of Stay (LOS) is influenced
by various factors, resulting in high variability. This combination of patient
arrivals and LOS directly impacts the demand for nursing units and, thereby,
their size. Consideration of this highly variable nature is crucial aiming for
efficient hospital layouts. Utley and Worthington (2012) discuss using queuing
methods to estimate resource demands and determine size requirements for
nursing units. Department dimensioning approaches can pursue different
objectives, such as maximising profits (e.g. (Wang et al., 2009)), balancing bed
availability probabilities (e.g. (de Bruin et al., 2010; Kao and Tung, 1981)), or
combining different objectives (e.g. Zhou et al. (2018)).

Strategic department dimensioning techniques could be incorporated within
what Drira et al. (2007) classifies as a static FLP-based approach. Such im-
plementation, however, may overlook the operational stochasticity associated
with demand variability. To address this issue, a framework proposed by
Boucherie et al. (2012) includes a simulation-based evaluation of layout per-
formance. Similar evaluations can be found in various other studies (see
(Cubukcuoglu et al., 2020; Kritchanchai and Hoeur, 2018; Sasanfar et al., 2021;
Wang et al., 2015; Wurzer, 2012)). In line with this approach, Zuo et al. (2019)
and Butler et al. (1992) propose optimisation-simulation methods, where the
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layout is iteratively improved based on simulation evaluation. Expanding this
concept, Munavalli et al. (2022) propose a genetic algorithm coupled with sim-
ulation to reduce waiting and cycle times for an eye clinic.

In nursing unit planning, strategic-level decisions involve the positioning and
dimensioning of units in terms of the number of beds or rooms, while the
operational-level evaluation focuses on patient-to-bed allocations within the
units. Extensive reviews on bed allocation strategies and management have
been provided by Hall (2012) and He et al. (2019).

Flexibility in nursing units allows for the sharing of beds, mitigating the chal-
lenges associated with strict unit dimensioning (Bekker et al., 2017). Bekker
et al. (2017) proposes various bed allocation policies ranging from fully flexi-
ble setups, where any patient can use any bed, to separate ward setups where
beds are assigned to specific departments. Additional strategies include the
use of a common buffer of flexible beds for patients exceeding department
capacity and admission rules based on department hierarchy or predefined
thresholds.

van Essen et al. (2014) combines separate ward setups with full flexibility by
strategically grouping departments, enabling flexibility, resource pooling, and
reduced demand uncertainty within clusters. The potential benefits of fully
flexible beds in increasing and optimising bed utilisation are commonly recog-
nised (see (Bekker et al., 2017; de Bruin et al., 2010; Hall, 2012)). Bekker et al.
(2017); Holm et al. (2013) points out that fully flexible setups, however, could
also result in increased staff and material movements as well as avoidable flow
crossings. In conclusion, Bekker et al. (2017) suggests that hybrid approaches,
such as overflow or threshold policies, demonstrate promising outcomes in
effectively managing demand peaks.

4.2.3 Our contribution

Our research contributes to the HLP field by addressing the challenges of
patient demand variability and incorporating the flexibility of beds into the
hospital layout of nursing units. Building upon the strategic-operational de-
composition proposed by Boucherie et al. (2012), our approach strategically
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positions the centre of the nursing unit within the hospital and allocates pa-
tients in close proximity to these centres at the operational level. Unlike tra-
ditional approaches, we leverage the flexibility of resources, particularly beds,
to strategically position the unit centres rather than pre-determining and pre-
sizing activities.

This centric approach simplifies the HLP problem, allowing us to incorporate
operational-level flexibility and achieve improved bed occupancy, in line with
studies by Bekker et al. (2017); de Bruin et al. (2010); Hall (2012). To address
concerns raised by Bekker et al. (2017); Holm et al. (2013) regarding staff travel,
our system accommodates fully flexible beds while prioritising the allocation
of patients near the centres of their respective departments, recreating depart-
mental structures.

To evaluate the performance of our approach, we adopt a simulation meta-
heuristic framework similar to Munavalli et al. (2022), employing a TABU
search algorithm and conducting a simulation-based evaluation. By adopting
this research methodology, we contribute to the development of efficient hos-
pital layouts that effectively manage patient demand variability and optimise
staff movement.

4.3 UseCase andMethodology

In 2007, Denmark initiated a comprehensive hospital reform consolidating
small hospitals into larger ones, closing 18 and planning to close 9 more, while
constructing 6 new "super" hospitals. Danish Ministry of Health (2021) reports
that the goal was to ensure large patient areas of over 300,000 inhabitants
per hospital, thereby generating sufficient demand for specialised medical ser-
vices and ultimately enhancing the quality of care and operational efficiency.
The Nyt Hospital Nordsjælland (NHN), a "super" hospital under construction
in Hillerød, approximately 40 km northwest of Copenhagen, serves as a case
study for nursing wards HLP.

The architectural design of the NHN by Herzog & De Meuron (2014) features
a three-level ground sub-structure housing key dynamic facilities like service
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spaces, OTs, ICUs, the ED, and diagnostic rooms. The nursing wards are
accommodated in a two-level four-leaf-clover structure that provides a view
of an internal garden. Figure 4.1 presents architectural visualisations of the
NHN, showcasing the integration of nature into the design and a standardised
patient room with a view of the natural environment. According to Davidovici
(2021), the incorporation of nature and individual patient rooms aims to en-
hance the healing process, aligning with previous research by Rashid (2015).
Notably, all rooms in the NHN are individual, making bed and room alloca-
tions synonymous.

(a) Aerial visualisation of the top floors of the NHN
hosting the nursing units

(b) Visualisation of one of the standardised room of
the NHN with a view on the inner courtyard

Figure 4.1: Visualisations of the NHN (source: Herzog & De Meuron (2014))

The NHN is a medium-sized hospital featuring 14 specialised departments
comprising 456 individual patient bedrooms. The hospital’s grounded struc-
ture includes an extra 114 beds allocated for the ED and ICUs. The nursing
rooms throughout the hospital have a standardised design, facilitating their
use for patients from any department, except for the paediatrics and neonatal
departments. In these areas, larger rooms have been incorporated to cater for
both patients and their parents.

Figure 4.2 depicts a floor plan of the nursing ward area within the four-leaf-
clover structure. Both floors share an identical layout. The red region repre-
sents technical areas (storage spaces, break rooms, elevators), while the green
areas indicate administrative zones. As highlighted by Davidovici (2021), the
layout features a main street with rooms on both sides. The paediatrics and
neonatal departments occupy the right petal of the four-leaf clover. This case
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study aims to optimise the arrangement of the remaining 12 medical special-
ities within the remaining 401 rooms across the two levels while avoiding
direct passage through the paediatrics and neonatal departments. These two
departments create distinct boundaries within the "circular" four-leaf-clover
structure, effectively transforming the problem into locating the departments
in two interconnected corridors facilitated by 12 elevators.

Figure 4.2: Floor-plan of one of the levels of the four-leaf-clover.

Whilst this configuration may resemble the Double-Row Layout Problem (DRLP)
described by Chung and Tanchoco (2010) or the Corridor Allocation Problem
(CAP) presented by Amaral (2012), the flow between rooms or departments
is not a concern in this particular use case and is therefore not an objective.
Additionally, these two problems are static FLPs and do not account for the
flexibility inherent in the NHN scenario.

4.3.1 Agraph representation

In the context of the NHN, conventional QAP methods aim to allocate all
rooms to corresponding departments (Drira et al., 2007). These methods, how-
ever, do not consider the flexibility of rooms or the variability in department
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sizes. SLP or GTA graph-based formulations are designed to capture the re-
lationships between activities to be positioned, which is not suitable for posi-
tioning independent nursing units within the NHN.In this context, it is impor-
tant to consider the relationships between neighbouring rooms and whether
patients are from the same department or not. Therefore, a graph-based mod-
elling approach that focuses on room relations and locations rather than activ-
ity relations, as in SLP or GTA approaches, becomes particularly relevant for
the NHN case.

Our proposed approach models the hospital layout as a weighted graph. Each
room in the hospital is a vertex of the graph and separated vertices for eleva-
tor doors on each level have been added. Using the floor plan depicted in
Figure 4.2, edges are established between adjacent rooms and rooms facing
each other across the corridor. Additionally, edges connect the elevator doors
to the nearest rooms, ensuring connectivity between the two corridors. In our
model, distances are measured based on the number of rooms, although alter-
native metrics such as metric distances or travel time could be used without
loss of generality.

Edges connecting adjacent rooms or rooms separated by the corridor are as-
signed a weight of 1. Following discussions with the NHN management,
edges crossing the administrative area carry a cost of 10, while edges rep-
resenting elevators have a cost of 50, reflecting the preference to avoid floor
changes. The sensitivity of these values will be further explored in Section 4.6.
Figure 4.3 illustrates a representative example of the constructed graph, where
elevators are depicted in red, rooms in grey and administrative areas crossings
in green.

4.3.2 KeyPerformance Indicators (KPIs) of the layout performance

The NHN management aims to strike a balance between the flexibility of the
fully flexible nursing wards and the desired resemblance to a traditional sep-
arate department setup. The flexibility addresses the limitations of a rigid
departmental arrangement to accommodate variable demand, while the tra-
ditional separate department approach aims to prevent patient mixing and
upsurging staff and material flow, which are identified as flexibility issues by
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Figure 4.3: Example of the graph representation of the hospital layout.

Holm et al. (2013) and Bekker et al. (2017). To assess the performance of the
layout, two KPIs are proposed: compactness, which measures the tightness
of departments at the operational level, and connectedness, which evaluates
patient crossing and approximates avoidable mixing flows.

4.3.2.1 Compactnessκκκ

For each daily period (morning, afternoon, evening, and night), we evaluate
the distance of each assigned patient from the centre of their respective depart-
ment. This distance is calculated as the shortest path within the graph repre-
sentation of the hospital. Our nearest patient allocation heuristic aims to max-
imise department compactness. The total distance is theoretically bounded by
the patient allocation within the hospital without any collisions with patients
from other departments.

The discrepancy between each patient’s distance to their department centre
and the optimal distance in the collision-free hospital is summed across all
simulation periods and patients. This sum is then compared to the number of
accommodated patients and their LOS to determine the compactness κκκ. This
value represents the average distance between the actual patient placement
and the theoretical best placement unaffected by other departments.

Let T denote the set of time periods in the simulation, P (t ) represent the set
of patients in the hospital at period t ∈ T , xp indicate the position of patient
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p ∈ P (t )within the hospital, x ∗p denote the theoretical optimal allocation, λp its
LOS, and cp represent the position of the centre of the department to which
patient p ∈ P (t ) belongs. The compactness κ can be expressed using Equa-
tion (4.1).

κ=
1

|P | ·
∑
t ∈T

∑
p∈P (t )

dist(xp , cp )−dist(x ∗p , cp )

λp
(4.1)

4.3.2.2 Connectednessγγγ

Using graph theory terminology, for each department and time period, we
define the central connected component as the connected component that in-
cludes the department’s centre in the department subgraph of the entire lay-
out’s graph. This subgraph comprises all the rooms that are either available or
occupied by patients belonging to the same department, including the centre
of the department. The central connected component can be viewed as the
core of the department.

The distances between each patient’s room and their respective central con-
nected component are computed for all time periods and averaged across all
patients based on their LOS. These distances are calculated using the shortest
path within the graph representation to any vertex within the central con-
nected component. The connectedness metric favours traditional ward setup
with connected departments and penalises isolated patients. The connected-
ness γγγ value represents the average number of rooms occupied by another
department between a patient and their connected component.

Using the same notations as in Equation (4.1), with Ct (p ) representing the
central connected component of the department to which patient p ∈ P (t )
belongs at period t ∈ T , the connectedness γ can be expressed as shown in
Equation (4.2).

γ=
1

|P | ·
∑
t ∈T

∑
p∈P (t )

dist(xp , Ct (p ))

λp
(4.2)
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4.3.3 AveragePatientMisplacement (APM)

The hospital places equal importance on two KPIs. The objective of the ap-
proach is to minimise the combined value of both compactness and connected-
ness, which corresponds to the average total misplacement of a patient (APM)
and is expressed in a number of rooms distance.

4.4 Strategic optimisation-simulationpositioningof
departments

Our approach combines a tabu search as proposed by Glover (1986) with a
simulation-based evaluation of the objective function. The search procedure
generates layouts at the strategic level and their performance is evaluated at
the operational level by the simulation. The hospital layout of the NHN con-
sists of two corridors interconnected by 12 elevators. As all beds within the
hospital are flexible, the departments are defined, on the operational level, by
the rooms occupied by their patients. Although this flexible definition allows
departments to vary in shape and position, to be mixed and disconnected, the
objective is to create a layout that emulates a more traditional setup with sepa-
rate departments. To achieve this, we anchor the flexible departments around
fixed centres at a strategic level and a nearest allocation heuristic is employed
to allocate rooms at the operational level, thereby limiting the movement of
these flexible departments. By arranging the departments in a sequential or-
der between the two floors and appropriately distributing their centres, we
effectively allocate the available corridor space to meet the demands of each
department. This process results in a layout closely resembling a series of
distinct departments occupying consecutive sections of the corridors. The pro-
posed tabu search algorithm is designed to explore and find efficient depart-
ment orders that minimise APM.
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Figure 4.4: Scheme of department centres generation procedure

4.4.1 TransformingDepartmentsOrder intoDepartments Centres

Figure 4.4 illustrates the process of converting an ordered list of departments
into their respective department centres, which serve as input for the opera-
tional simulation model. The transformation involves three key steps.

In Step 1, a Monte Carlo simulation estimates the patients’ arrival per period
for each department over a year, determining the proportion of NHN rooms
that should be allocated to each department. This simulation is conducted
prior to the tabu search algorithm, as it is independent of the departments’
order.

In Step 2, rooms are preallocated based on the hospital’s structure in a tra-
ditional separated wards approach. Initially, all the first departments of the
order that can be accommodated on Floor 2 are positioned, same for the last
departments on Floor 3. Two scenarios are built with the "middle" department,
which would be split across floors. The first scenario assigns the middle de-
partment to Floor 2, the second assigns it to Floor 3. Within each floor, rooms
are redistributed again based on departments’ demand, ensuring equitable
spacing.
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In Step 3, for each department in each scenario, a centre is determined by
identifying the room that minimises the distance to other rooms.

This process generates two lists of department centres. The operational sim-
ulation evaluation is then used for both scenarios, to solely keep the one pro-
viding the most favourable outcome.

4.4.2 Sim-heuristic framework

In line with Munavalli et al. (2022), our approach adopts a metaheuristic
framework that integrates our simulation-based performance evaluation. This
framework, known as "sim heuristics" and discussed by Juan et al. (2015), has
demonstrated its effectiveness in exploring a wide range of solutions while
considering real-life stochasticity. However, sim-heuristic methods are highly
computationally demanding due to the need for running multiple replications
to ensure credibility in the simulation. To address this challenge, Juan et al.
(2015) propose a deterministic pre-evaluation step to assess the potential for
improvement of a solution before engaging in full stochastic evaluation and
its associated replications. This strategy uses the notion that a solution yield-
ing favourable outcomes in the stochastic problem will likely perform well in
a deterministic instance of the problem.

Our tabu-search algorithm, depicted in Algorithm 4.1, integrates this de-
terministic pre-evaluation technique namely Evaluate_Det in Algorithm 4.1.
Evaluate_Stoch corresponds to the full stochastic evaluation. Both evaluations
are detailed in Section 4.5.

The proposed Algorithm 4.1 is built around a classical tabu-search structure,
encompassing diversification and intensification procedures as suggested by
Gendreau and Potvin (2014), and uses a time-limit stop criterion.

Initialisation: Line 1

The Construct_Initial() function implements a department assignment algo-
rithm based on the departments’ expected size requirement and standard
deviations. Its goal is to distribute departments evenly across floors, with
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Algorithm 4.1 Tabu Search
Input:

Time limit tl i m

Stall limit stalll i m

Output:
Best Solution best

1: Initialise
sol←Construct_Initial() ▷ Construct an initial solution
Evaluate_Det(sol), Evaluate_Stoch(sol) ▷ Evaluate the solution
best,currentBest,current← s o l ▷ Initiate the best and current solutions
tabu← [ s o l ] ▷ Initiate the tabu list
tl a s t ← 0 ▷ Initiate the time since last improvement

2: while t < tl i m do
3: neighbours←Generate_Neighbourhood(current)
4: new← null
5: for sol ∈ neighbours do
6: if sol /∈ tabu then
7: Evaluate_Det(sol)
8: if Accept_Det(currentBest, sol) then
9: Evaluate_Stoch(sol)

10: if (new is null)∨ (sol better than new) then
11: new← sol
12: Insert(sol, tabu) ▷ Update the tabu list

13: if new is null then ▷ If all the neighbours were in the tabu list
14: current, currentBest←Diversify(current)
15: tl a s t ← 0
16: else
17: current← new
18: if current better than currentBest then
19: currentBest← current
20: tl a s t ← 0
21: if current better than best then
22: best← current
23: else if tl a s t > stalll i m then
24: current, currentBest←Diversify/Intensify(current,best)
25: tl a s t ← 0
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lower standard deviation departments closer to the corridor ends. This ap-
proach ensures that departments with higher size variations are not confined
to the less flexible end-sections where space constraints may be challenging to
accommodate their needs.

Departments are ranked by ascending standard deviation, and the algorithm
assigns the first department to the second floor, adjacent to one end of the
corridor, followed by the second department on the third floor. The third de-
partment serves as the "middle" department of Section 4.4.1 procedure. Subse-
quently, the remaining departments are iteratively assigned to the floor with
the largest remaining available space. This iterative assignment strategy, re-
ferred to as a "worst-fit heuristic" in the context of bin-packing (Johnson, 1974),
aims to balance the expected demand among the available spaces. The result-
ing department order is the concatenation of the second-floor departments,
the "middle" department and the third-floor departments.

The initial solution undergoes both deterministic and stochastic evaluations,
establishing benchmarks for the best, current best, and current solutions. It
also serves as the foundation for initialising the tabu list. Concurrently, the
counter for iterations without observed improvements, denoted as tl a s t , is set
to zero.

Iteration: Lines 3 - 12

A neighbourhood of solutions is generated by swapping every pair of adjacent
departments within the current solution. These new solutions are evaluated
deterministically in parallel for improved performance, excluding tabu solu-
tions (solutions visited previously).

Deterministic solutions are accepted based on the comparison of their objec-
tive values with the current best solution using a threshold τd e t . Accepted
solutions undergo stochastic evaluation. The solution with the best stochas-
tic evaluation becomes the new current solution. If no solutions meet the
deterministic acceptance criterion, the best deterministic solution is chosen,
stochastically evaluated, and adopted as the new current solution.

The stochastic evaluation in our approach involves conducting multiple repli-
cations to reach a steady state and obtain reliable simulation outputs, there-
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fore being computationally expensive. The deterministic acceptance criterion
serves to reduce the number of layouts that need to undergo stochastic evalua-
tion. It focuses on evaluating layouts that have the potential for improvement,
thereby accelerating the overall search process.

State Update: Lines 13 - 25

If all generated neighbour solutions are in the tabu list, a diversification proce-
dure is employed. Otherwise, the best and current best solutions are updated
if an improvement is found.

When no improvement is observed for a period exceeding the stall limit ts t a l l ,
diversification and intensification procedures are alternately applied. Diversi-
fication generates a new current solution by randomly selecting and perform-
ing a certain number nd i v of swaps between any departments from the current
best solution. The intensification first comes back to the best solution and per-
forms a small number ni n t of random swaps between any departments. The
current best solution aims to identify the local optimum, while the best solu-
tion aims for the global optimum.

Parameter values of our approach are presented in Table 4.1. The values have
been determined through preliminary tests, as thorough parameter tuning
would be computationally intensive. The tabu-search framework efficiently
explores a vast solution space and provides satisfactory solutions within a
reasonable time.

Table 4.1: Tabu-Search Sim-heuristic Parameters

Parameter Value Range of tested values

Tabu list length 100 [50, 100, 250, 1000]

Deterministic acceptance threshold τd e t 0.3 [0.05, . . . , 0.45]

Number of swaps for the diversification nd i v 3 [1, 3, 5, 8]

Number of swaps for the intensification ni n t 1 [1, 2, 3]

Stall limit ts t a l l 100 [50, 100, 250, 1000]
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Section 4.5: Operational-level simulation performance evaluation

4.5 Operational-level simulationperformance evalua-
tion

The operational level of our approach uses a simulation to model patient ar-
rivals and their individual LOS for each department. This simulation includes
the allocation of patients to nursing wards and the evaluation of the KPIs of
compactness and connectedness. The key inputs for this operational process
are the patient demand and the precise locations of the department centres
within the hospital.

4.5.1 Patients’ arrival and LOS

As part of the pooling strategy outlined by Danish Ministry of Health (2021),
the NHN is designed to replace the former Northern Zealand hospitals, which
encompassed Frederikssund, Hillerød, and Helsingør hospitals, while also
undertaking a reorganisation of medical operations to enhance efficiency and
overall performance. The NHN management kindly shared the data used for
the research. Although the NHN is not yet operational, the data consists of
two subsets: 1) data that describes the physical infrastructure of the future
hospital and 2) historical anonymous data on admissions and LOS of patients
during the years 2018-2021. None of the data used are related to any ethics
issues. To avoid COVID-19-related fluctuations, the analysis only uses patient
data from 2018 and 2019.

In the considered departments, it is estimated by the NHN that more than 90%
of admitted patients arrive from the ED without prior scheduling. To simu-
late the stochastic admission pattern, Poisson distributions with time-varying
intensity are used, aligning with established practices in the literature (e.g.,
Bekker et al. (2017); Cubukcuoglu et al. (2020); Holm et al. (2013)). Addi-
tionally, to model the LOSs, log-normal distributions are employed, follow-
ing common approaches (e.g., Cubukcuoglu et al. (2020); Harini et al. (2018);
Marazzi et al. (1998)).

To address the inherent variabilities in patient arrival patterns and LOS, the
daily time frame is divided into four periods: night (0AM-6AM), morning
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(6AM-12AM), afternoon (12AM-6PM), and evening (6PM-12PM). For each de-
partment, season, day of the week, and time period, Poisson coefficients, along
with log-normal α and β coefficients, are determined. This comprehensive ap-
proach yields a total of 1344 coefficients, capturing the complexities associated
with patients’ arrival patterns and LOS variabilities highlighted by Hall (2012).

Danish Ministry of Health (2021) emphasises a notable shift towards reduced
hospitalisation, shorter LOS, and increased utilisation of telemedicine and
home care. Reorganising its medical operations following these trends, the
NHN is already experiencing the anticipated decrease in room demand. How-
ever, the absence of precise data or estimates regarding this phenomenon
presents challenges in accurately modelling the future demand of the NHN.

Optimal bed occupancy, as discussed by Hall (2012) and He et al. (2019), de-
pends on specific hospital characteristics but typically ranges from 60% to 80%
for inpatient departments, with a safety upper bound of 85%. To evaluate the
effectiveness of our hospital layout, we have designed three occupancy scenar-
ios targeting rates of 60%, 80%, and 90%, respectively.

Using patient arrival and LOS data provided by the NHN, we conducted a
Monte-Carlo simulation to estimate the bed requirements for accommodating
the demand from the original hospitals in Frederikssund and Hillerød, based
on data from the 2018-2019 period (Helsingør Hospital does not have nursing
wards and thus, no demand for beds).

To align the expected occupancy with the target rates of 60%, 80%, and 90%,
we computed adjusting factors by modifying the arrival Poisson coefficients
while maintaining the patient distribution across departments. However, ad-
justing LOSs globally is impractical, as they are influenced by various treat-
ment practices and patient progress. Therefore, our approach focuses on
achieving the desired target occupancy rates primarily through adjustments
to patient arrivals.
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4.5.2 The simulationmodel

The simulation procedure, as outlined in Algorithm 4.2, uses the occupancy
coefficients of the selected occupancy scenario (e.g. 60%, 80%, or 90% target
occupancy) along with the department centres cd as inputs.

Initialisation: Lines 1 - 1

A matrix AAA represents the patient allocation with rooms as rows and time
periods as columns. In Step 1, the matrix AAA is initialised with zeros for all
rooms and time periods, indicating that all rooms are initially available. A
separate matrix A∗A∗A∗ with an extra dimension for the departments, represents
the theoretical collision-free allocation used to compute the compactness as
described in Section 4.3.2.1. Additionally, the KPIs, and the patient dropout
counters are initialised to 0.

Patients Generation: Lines 3 - 7

For each time period considered, for each department, the arrival of patients
is simulated using a Poisson distribution, and their LOS is created using a
Log-normal distribution.

Patient Allocation: Lines 8 - 17

The time period of the simulations corresponds to 6 hours windows, hence
to reflect the random emergency-like arrival patient observed in the NHN,
the generated patients are randomly shuffled. Patients are then successively
allocated using the nearest-allocation heuristic, assigning patients to the clos-
est available rooms near their department centre. Patients without available
rooms are "dropped" from the simulation, emulating the patient being redi-
rected to another hospital.

The allocation matrices AAA and A∗A∗A∗ are populated by assigning the department
number to the respective room and time periods.

Patient Allocation: Lines 18 - 21

For all the time periods in the runtime, the KPIs are computed based on Equa-
tions (4.1) and (4.2)
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Algorithm 4.2 Bed Allocation Simulation Algorithm.
Input:

Set of departments D
Set of rooms R
Set of runtime time periods T
Set of warm-up time periods W
Set of time periods ÒT =W ∪T
Poisson arrival coefficients λd ,t , ∀(d , t ) ∈D × ÒT
LOS log-normal coefficients (µd ,t ,σd ,t ), ∀(d , t ) ∈D × ÒT
Departments centres cd ∈R , ∀d ∈D

Output:
Bed allocation matrix AAA =

�
ar,t

�
(r,t )∈R× ÒT

Compactness κ
Connectedness γ
Dropouts nd r o p

1: Initialize
Initialise the bed allocation matrix AAA← [0](r,t )∈R× ÒT
Initialise the theoretic collision-free bed allocation matrix A∗A∗A∗← [0](r,d ,t )∈R×D× ÒT
Initialise the compactness and connectedness (κ,γ)← (0, 0)
Initialise the number of dropouts nd r o p ← 0

2: for t ∈ ÒT do
3: Initialise the list of patients to allocate ΠΠΠ←;
4: for d ∈D do
5: Draw nd patients from Poisson(λd ,t )
6: Draw nd LOSs

�
lp

�
p∈[[0,nd −1]] from LogNormal(µd ,t ,σd ,t )

7: Add the patient to ΠΠΠ=ΠΠΠ∪ �⋃p∈[[0,nd −1]](d , lp )
�

8: Shuffle the arrivals Shuffle(ΠΠΠ)
9: for (d , l ) ∈ΠΠΠ do

10: Find the closest free allocation x =BestAllocation(cd ,AAA)
11: if an allocation is possible (x 6= ;) then
12: Find the closest theoretic allocation x ∗ =BestTheoAllocation(cd , d ,A∗A∗A∗)
13: for θ ∈ [[0, l −1]] do
14: Allocate the patient in AAA, ax ,t+θ = d
15: Allocate the patient in A∗A∗A∗, a ∗x ∗ ,d ,t+θ = 1

16: else
17: Increment dropouts nd r o p = nd r o p +1

18: if t ∈T then
19: Increment the KPIs
20: κ= κ+Compactness(AAA,A∗A∗A∗, t )
21: γ= γ+Connectedness(AAA, t )
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Algorithm 4.2 returns the computed KPIs evaluating the layout and the allo-
cation matrix for visualisation and analysis purposes.

4.5.3 Deterministic Evaluation

The stochastic evaluation, Evaluate_Stoch() , and the deterministic evaluation,
Evaluate_Det(), employed in the tabu-search sim-heuristic Algorithm 4.1, fol-
low the shared structure outlined in Algorithm 4.2. In the deterministic eval-
uation, the LOS for each patient is determined by taking the maximum be-
tween the expected LOS calculated using the lognormal coefficients µ and σ,
and 1, as stated in Equation (4.3). This ensures that no patient has a null LOS.
The arrival rates are set close to the expected value λs t o c h , as indicated in
Equation (4.4). The Poisson arrival coefficient, corresponding to the expected
arrival rate, is rounded up or down with a probability corresponding to the
fractional value of the coefficient. To maintain consistency, a fixed seed is
used for both the random rounding process and the random shuffling of ar-
riving patients. These strategies ensure that deterministic runs resemble the
"average" demand behaviour and can be compared.

LOSd e t =max
n

e µ+
σ2

2 , 1
o

(4.3)

λd e t = bλs t o c h c+
 1 if rand()>λs t o c h − bλs t o c h c

0 otherwise
(4.4)

4.6 Computational Experiments

The proposed approach was implemented using Julia 1.8.5. The simulation
runs of 32 replications, were parallelised on a Linux cluster with 32 cores, and
a Xeon Gold 6226R processor with 256GB of memory. With this configuration,
an experiment for an 80% target occupancy scenario takes approximately 1
minute to execute.
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4.6.1 Experimental Design,Model Validation andVerificationof the
Stochastic Evaluation

The objective of the proposed simulation is twofold: to account for the stochas-
tic nature of patient arrivals and LOS patterns, and to allocate beds within the
hospital. Although the model’s behaviour has been verified, the simulated
hospital has not yet been constructed, and the corresponding patient alloca-
tion procedure has not yet been implemented, making the notion of validation
not applicable in this context. Here, the simulation serves as a means to handle
stochasticity and evaluate performance within a broader strategic department
allocation framework.

To accurately capture hourly, daily, and seasonal variations in patient arrivals
and LOS (Hall, 2012), it is essential to use as runtime a duration that is a
multiple of 1 year. Since our simulation begins with an empty hospital, a
warm-up period is necessary to mitigate the resulting starting bias.

4.6.1.1 Warm-upperiod

In our analysis, the simulation begins in the Spring season. The warm-up
period is established by focusing on the LOS of winter patients. Figure 4.5b
presents a Monte Carlo simulation of the LOS for all winter patients, with
Subfigure 4.5a specifically highlighting the palliative care patients arriving on
Friday afternoon, who have the longest LOS among the winter patients. The
results demonstrate that a 6-week duration ensures a 99.92% probability (95%
CI: ś0.011%) that all winter patients have sufficient time for full hospitalisation.
Hence, a 6-week warm-up period guarantees that the hospital has been pop-
ulated at least once with a 99.92% probability. Therefore, a 6-week warm-up
period is adopted for the analysis.

4.6.1.2 Run length andReplications

Our approach uses a fixed run length of 1 year, which corresponds to 4 seasons
of 13 weeks each, and relies on replications to achieve a steady state. To
determine the required number of replications, we generated 100 layouts for
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(a) LOS distribution of the winter patients from Pal-
liative care arriving on Friday afternoon

(b) LOS distribution of all the winter patients

Figure 4.5: Winter patients’ LOS distribution. The histogram represents the density of
LOS values, The dashed lines denote weekly thresholds of 6 weeks, and the corresponding
probability of exceeding these thresholds

testing. For each layout, an experiment consisting of 512 replications with
a 1-year run length and a 6-week warm-up period has been run. Following
the recommendations of Robinson (2014), we then focused on the Confidence
Interval (CI) to determine the appropriate number of replications.

For each potential number of replications, we computed the 95% CI for the
KPIs values. Table 4.2 presents the results of this CI analysis where CIs are ex-
pressed as percentages of the average value. It can be observed that scenarios
with a lower target occupancy exhibit higher variability in the KPIs. This could
be attributed to the fact that lower occupancy allows for more diverse room
allocations, while higher occupancy scenarios are more constrained. Lower
occupancy also reduces issues related to departments collisions and patient
misplacements.

The KPIs values for the 60% target occupancy scenario are significantly lower
compared to the other scenarios and slight changes between replications have
a substantial impact. The observed APM remain under 0.3 rooms in the 60%
target occupancy scenario but can reach up to 8 for the 90% one.

Table 4.2 demonstrates that 32 replications are sufficient to maintain the 95%
CIs around 2% for the 80% and 90% occupancy scenarios. Although the result-
ing 95 % CI is larger on the 60 % occupancy scenario, the difference in terms
of APM is very small (ie ∼ 0.015 rooms) which is considered acceptable.
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Table 4.2: 95% CI analysis of the number of replications

Occupancy
Scenario

KPI
Repl. for CI< 2% Repl. for CI< 1% CI after 32 repl.

median 95t h perc. median 95t h perc. median 95t h perc.

60%

Compactness 34 56 76 141 2.02% 3.45%

Connectedness 37 63 82 151 2.32% 3.67%

APM 35 61 80 135 2.12% 3.47%

80%

Compactness 19 34 65 122 1.49% 2.08%

Connectedness 22 37 74 129 1.58% 2.19%

APM 20 34 70 124 1.54% 2.08%

90%

Compactness 9 17 30 53 0.96% 1.33%

Connectedness 10 18 32 58 1.00% 1.40%

APM 10 17 32 55 0.98% 1.36%

4.6.2 Baseline Layout and centre positioning impact

NHN management, in consultation with doctors and nurses, proposed a lay-
out which follows a separated wards structure, with each bed allocated to a
specific department. In order to evaluate this arrangement, we conducted an
assessment using three occupancy target scenarios.

Firstly, the classical structure has been transformed by calculating the centres
of the departments in the NHN layout. These centres were then used as input
for our simulation model. Additionally, we proposed a hybrid layout, main-
taining the proposed order of departments while computing the centres based
on the demand, as described in Section 4.5.1.

Table 4.3: Performance evaluation of the layout proposed by the NHN management and
of the hybrid layout with the same order but computed centres

Occupancy
Scenario

Compactness Connectness APM Improvement
Patients

/year

Dropouts
/year

NHN
layout

60% 0.11 0.11 0.22 31,088.2 0
80% 1.06 1.16 2.22 41,420.2 2.09
90% 3.41 3.99 7.40 46,658.8 303.12

Hybrid
layout

60% 0.03 0.03 0.06 -72.7% 31,090.1 0
80% 0.87 1.11 1.98 -11.7% 41,483.2 1.19
90% 3.02 3.91 6.93 -6.4% 46,554.8 297.59

The evaluation results, presented in Table 4.3, highlight the effectiveness of
the centre allocation procedure. For lower-occupancy scenarios, the allocation
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shows a substantial reduction in APM, reaching 72.7%. However, in the 90%
target occupancy scenario, the reduction is only 6.4%. This disparity can be
attributed to the higher flexibility and potential for adjustments in lower oc-
cupancy setups compared to more constrained higher occupancy scenarios.
Additionally, considering individual patients, the misplacements caused by
the allocation in the 60% occupancy scenario remain minimal.

It is important to highlight that the total corridor length spans 1.4 km, result-
ing in an average separation of 6.1 meters between two adjacent rooms. By
utilising the patient arrival and LOS data for each occupancy scenario, we can
translate the practical implications of an APM difference of 0.01 as a daily in-
crease in walking distance for a hypothetical medical practitioner who needs
to visit all patients once each day. In the 60%, 80%, and 90% target occupancy
scenarios, such a difference translates to an additional daily walk of 32 m, 43
m, and 48 m, respectively. Consequently, the hybrid layout offers substantial
advantages, resulting in a respective daily reduction of 512 m, 1,032 m, and
2,256 m in walking distance for the hypothetical practitioner in the 60%, 80%,
and 90% occupancy scenarios. This reduction in daily distance translates to
significant improvements in operational efficiency and convenience.

Figure 4.6 illustrates the average room occupancy by department for the 80%
target occupancy scenario, comparing the NHN and hybrid layouts. The hy-
brid scenario shows a more spacious allocation for larger departments like Pul-
monary and Infections, Cardiology, Orthopaedics and Surgery, while smaller
departments are more compact, resulting in reduced misplacements overall.
The occupancy of rooms on the 3r d floor is significantly higher than the
2nd floor in both scenarios, indicating potential improvements by relocating
smaller departments such as Gynaecology, Gastroenterology or Palliative Care
to the lower floor.

4.6.3 TabuSearchResults

The tabu-search procedure was executed for all occupancy scenarios over a
one-week period (168 hours). Figure 4.7 presents the progression of the search,
showing the gap between the current best solution and the best-observed solu-
tion. The results indicate that the tabu search rapidly converges to satisfactory
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(a) NHN layout

(b) Hybrid layout with computed centres

(c) Legend

Figure 4.6: Average simulated occupancy by department of the rooms in the 80% target
occupancy scenario
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solutions, reaching a gap of less than 10% from the best-observed solution
within the initial 1000 iterations, after which the diversification and intensifi-
cation methods explore other solutions and further enhance the outcomes.

Figure 4.7: Tabu Search performance evolution for the 80% target occupancy scenario

Table 4.4 provides an overview of the iterations and solution exploration num-
bers across all target occupancy scenarios. The table shows a decrease in
the number of iterations as the target occupancy increases. This can be at-
tributed to two factors. Firstly, higher occupancies require accommodating
more patients, resulting in increased computational time. Secondly, solutions
for higher occupancy scenarios exhibit less variability in objective values, lead-
ing to a higher proportion of deterministically accepted solutions that are then
stochastically evaluated, thus slowing down the search process.

Table 4.4: Tabu Search Execution Summary

Occupancy
Scenario

Iterations
# solutions
stoch. evaluated

# solutions
det. evaluated

Diversifications Intensifications

60% 35,134 10,330 163,790 185 153
80% 13,375 15,756 45,063 59 56
90% 5,345 19,092 22,115 19 15

Table 4.5 demonstrates the substantial improvements achieved by the tabu
search algorithm compared to the baseline layout proposed by the NHN man-
agement. Notably, in the 60% target occupancy scenario, the tabu search re-
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(a) Best Observed Layout for the 60% target occupancy scenario

(b) Best Observed Layout for the 80% target occupancy scenario

(c) Best Observed Layout for the 90% target occupancy scenario

Figure 4.8: Average simulated occupancy by department of the rooms for the best layouts
obtained for each scenario

Table 4.5: Performance evaluation of the best layouts found with the tabu search for the 3
occupancy target scenarios and comparisons with the best-observed and baseline layouts

Occupancy
Scenario

Compactness Connectness APM ∆Baseline
Hypothetical Daily
Walk Reduction

60% < 0.01 < 0.01 < 0.01 −98.9% 0.7 km
80% 0.22 0.27 0.49 −78.1% 7, 4 km
90% 1.76 2.19 3.96 −46.5% 16, 5 km
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sults in neglectable APM, with less than 1 patient misplaced by 1 room. The
reductions in APM are significant in the 90% and 80% target occupancy sce-
nario, respectively 46.5% and 78.1% which translate into a significant daily
walk reduction of 7.439 km and 16.512 km for a hypothetical practitioner
who has to visit all patients once per day. These findings are in line with
our earlier observation that higher occupancy scenarios offer limited flexibil-
ity for adjustments, resulting in lower variability in APM and consequently
smaller improvements compared to lower occupancy scenarios. However, it is
important to note that as the occupancy decreases, the level of disruption ex-
perienced also diminishes, reducing the importance of advanced optimisation
techniques.

The pronounced disparity between the proposed layouts and the baseline sce-
nario underscores the large impact of a poorly designed layout, leading to
patient misplacements and disruptions. Thus, the importance of selecting an
appropriate layout based on the actual patient demand is evident.

The outcomes, as well as the explored solutions during the tabu search (de-
picted in Figure 4.7), reveal a narrow range of department orders that yield
similar outcomes, with a disparity of less than 20% in APM. This implies that
the tabu search can effectively identify layouts within this range, thereby as-
sisting management in making informed decisions regarding the best layout
choice.

4.6.4 TabuSearchProcedurePerformance

Figure 4.7 demonstrates the rapid convergence of the tabu search algorithm,
achieving favorable solutions within the first 1000 iterations. Subsequently,
the diversification and intensification procedures become crucial in exploring
the solution space further and potentially identifying superior solutions. To
assess the reliability and overall performance of the tabu search, ten experi-
ments were conducted for each target occupancy scenario, allowing for the
evaluation of result consistency and quality. Figure 4.9 depicts the evolution
of the best solutions observed in the 10 Tabu Searches for the 80% target occu-
pancy scenario. Improvements continue to emerge even after 144 hours, but
the variation between the best solutions from the 10 searches tends to dimin-
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ish.

Figure 4.9: Evolution of Best Solutions in 10 Tabu Searches for the 80% Target Occupancy
Scenario

Table 4.6 presents the average APM and standard deviation found across the
10 searches for all target occupancy levels. For the 60% occupancy scenario,
the APM values are negligible, while for the 80% and 90% occupancy targets,
the standard deviation is less than 2%. This level of variability is comparable
to the 95% confidence interval of the simulation results, indicating that the
solutions derived from the search procedures exhibit equivalent performance,
and that, the search procedure produces reliable consistent results.

Table 4.6: Average APM and Standard Deviation of 10 Tabu Search Experiments for All
Target Occupancy Scenarios

Occupancy Target Av. Best APM StD. StD. in % Simulation 95% CI

60% < 0.01 < 0.01 - 2.12%

80% 0.50 0.01 1.99% 1.54%

90% 4.04 0.07 1.66% 0.98%
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4.6.5 Sensitivity analysis

The cost of changing floors was determined in consultation with the NHN
management and was estimated at 50 rooms (equivalent to half the corridor
length or approximately 700 meters), while crossing the administrative area
incurred a cost of 10 rooms. Tabu searches were conducted with varying
cost parameters (10 and 200 for elevators, and 1 and 50 for administration
crossings) to assess their impact on the optimisation process and resulting lay-
outs. These variations allowed for an investigation into the sensitivity of the
algorithm and its role in determining the department arrangement. The anal-
ysis of different cost settings provided valuable insights for decision-making
in real-world implementations, considering the trade-offs involved in depart-
ment allocation.

Table 4.7: Sensitivity Analysis of the Elevator and Administration Crossing Costs on the
80% target occupancy scenario

Elevator
Cost

Administration
Crossing Cost

Compactness Connectedness

10 1 0.11 0.15
10 10 0.21 0.36
10 50 0.54 1.33

50 1 0.20 0.23
50 10 0.27 0.33
50 50 0.70 1.26

200 1 0.25 0.29
200 10 0.35 0.39
200 50 0.52 0.56

Table 4.7 presents the sensitivity analysis results for the 80% target occupancy
scenario. As expected, the KPIs demonstrate a positive correlation with in-
creasing cost parameters, particularly for administration crossing.

When examining the average room occupancy for scenarios with low and high
costs for elevators and administration crossings, we observe that regardless of
the elevator cost, the occupancy of departments across floors is neglectable.
Such crossings are infrequent and represent extreme cases. While these cases
may have a marginal impact on the overall KPIs values, they do not result in
departments being allocated across different floors.
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Conversely, the cost associated with administrative crossings has a significant
impact on the layout. Certain departments, such as Cardiology and Pul-
monary Infection, are inherently too large and require administrative cross-
ings. In contexts where administration crossing costs are high, other depart-
ments are positioned to avoid or limit such crossings. This highlights the
substantial impact of administrative crossing costs on the overall layout de-
sign.

4.7 Conclusions and further research

This study investigates a novel version of the HLP that specifically focuses on
positioning nursing departments within a flexible setup. Unlike traditional
approaches, strategically positioning fixed-size units, our key innovation lies
in strategically placing department centres and using the inherent flexibility of
nursing rooms to dynamically accommodate patients at an operational level.
This adaptable approach allows accounting for medical departments’ variabil-
ity and dynamically adjusts their spatial requirements to match their actual
size.

We have developed a TABU Search and simulation methodology that strate-
gically positions department centres and employs simulation techniques to
allocate patients and evaluate the performance of the proposed layout. Our
methodology addresses the challenges associated with fully flexible setups,
emphasising the importance of compactness and connectedness of depart-
ments to minimise cross-departmental movement. We introduce a graph-
based formulation of the HLP and a novel quantitative assessment method
for evaluating patient misplacements within flexible layouts.

By adopting this innovative approach, our research aims to tackle the complex-
ities and challenges of modern healthcare environments, leveraging flexibility
to optimise resource utilisation. The findings of this study underscore the sig-
nificance of nursing unit layouts in enhancing operational efficiency, offering a
methodology for achieving efficient layouts and evaluating their performance.
Our methodology manages to reduce APM by more than 45% compared to
the initial baseline layout provided by the hospital management.
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(a) Low Elevator Cost (10)

(b) High Elevator Cost (200)

(c) Low Administration Crossing Cost (1)

(d) High Administration Crossing Cost (50)

Figure 4.10: Average simulated occupancy by department of the rooms for the best layouts
obtained for each of the elevator and administration crossing costs
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Further research in this area holds potential for exploring alternative meta-
heuristic algorithms, such as genetic algorithms, as well as more thorough pa-
rameter tuning to accelerate solution exploration and address the simulation-
induced computational challenges encountered in our study. Additionally, an
improved allocation heuristic could be devised to alleviate issues related to
room occupancy near the edges. Indeed as edges are further from the centres
their occupancy is lower but could be used to reduce patient misplacements
in the middle of corridors. An additional simulation analysis could be for-
mulated to achieve a more precise evaluation of the travel distance and time
saved by workers and equipment due to the enhanced layouts. Such an anal-
ysis would offer a more accurate estimate than the hypothetical scenario of a
worker visiting all patients daily. Lastly, investigating how our methodology
could be adapted to enhance flexibility in highly active departments such as
EDs or ICUs, which exhibit a higher number of equipment and cross-flows,
would be worthwhile. Exploring these avenues would contribute to advanc-
ing the understanding and application of flexible layout design methodologies,
not only in healthcare settings but also in other industries that share standard
resources, such as coworking spaces.
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Appendix4.A Classificationof recentHLPapproaches

Table 4.8: Classification of recent HLP approaches

Objective Base Solving

Theoretical layout of imaginary hospital

Whitehead and
Eldars (1965)

Minimise ’Travel Cost’ SLP Best insertion heuristic allocation
of the units with simulation
evaluation

Delon (1970) Minimise Construction Cost SLP CORELAP software for iteratively
inserting department, CRAFT
software for performing swaps

Hahn and
Krarup (2001)

Minimise Transportation Cost QAP Exact

Positioning departments in a hospital

Elshafei (1977) Minimise Transportation Cost QAP Construction heuristic, iterative
improvement procedure

Butler et al.
(1992)

Minimise Transportation Cost &
goodness of the positioning

QAP Two phases with simulation
performance measurement

Nickel and Ten-
felde (2000)

Minimise Transportation Cost QAP Multi-criteria with branch and
bound, and stochastic

Haji et al. (2006) Minimise Transportation Cost FF MIP simplification and solver

Motaghi et al.
(2011)

Maximise Closeness SLP

Feng and Su
(2015)

Minimise Transportation Cost QAP MIP simplification and solver

Abbasi et al.
(2017)

Minimise Transportation Cost and
Maximise Closeness

FF MIP simplification and solver

Positioning departments in a hospital with several levels

Yeh (2006) Maximise Closeness QAP Annealed neural network

Liang and Chao
(2008)

Minimise Transportation Cost QAP TABU Search

Ibrahim (2012) Minimise Transportation Cost - Genetic Algorithm

Silva et al. (2013) Minimise Transportation Cost QAP GRASP with path-relinking

Arnolds and
Nickel (2015)

Maximise Closeness GTA Also presented an iterative
simulation-Optimisation solving of
a QAP

El Kady et al.
(2017)

Minimise Transportation Cost and
Maximise Closeness

SLP

Tongur et al.
(2020)

Minimise Transportation Cost and
Maximise Closeness

QAP Migrating Bird Optimization, Tabu
search, Simulated annealing

Cubukcuoglu
et al. (2021)

Minimise Transportation Cost QAP Iterative Local Search

Huo et al. (2021) Minimise Transportation Cost and
Maximise Closeness

DRLP NSGA-II Algorithm with Adaptive
Local Search

Cubukcuoglu
et al. (2022)

Maximise Closeness SLP Hierarchical 3 Stages
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Positioning activities in OT

Assem et al.
(2012)

Maximise Closeness GTA Heuristic

Chraibi et al.
(2013)

Minimise Transportation Cost and
Maximise Closeness

FF MIP simplification and solver

Lin et al. (2015) Maximise Closeness SLP

Chraibi et al.
(2016)

Minimise Transportation Cost and
Maximise Closeness

FF Particle swarm algorithm

Positioning activities in a ED

Ma et al. (2016) Minimise Transportation Cost QAP Construction heuristic, iterative
improvement procedure

Rismanchian
and Lee (2017)

Goal Programming: 5 Goals - Process Mining

Lee and Risman-
chian (2018)

Maximise Closeness QAP Process Mining

Zuo et al. (2019) Minimise Transportation Cost and
Maximise Closeness

SLP Multi-objective Tabu Search

Positioning departments in a hospital with several buildings

Holst (2015) Maximise Closeness QAP Genetic Algorithm

Helber et al.
(2016)

Minimise Transportation and
Adaptation Cost and Maximise
Closeness

QAP Multi-objective Evolutionary
Algorithm Based on
Decomposition

Rizk-Allah et al.
(2021)

Minimise Transportation Cost QAP Firefly Algorithm - Mutually
Orthogonal Latin Squares

Positioning wards with variable demands

Arnolds and
Nickel (2013)

Minimise construction and operation
cost, maximise demand satisfaction

- 5 models to handle demand
variation in a robust or flexible way

Chraibi et al.
(2015)

Minimise Transportation Cost QAP Multi-Agent Architecture
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