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Summary
In type 2 diabetes (T2D), injections with long-acting insulin can become nec-
essary to normalize blood glucose and avoid long-term complications. How-
ever, finding a safe and effective insulin dose, a process known as titration,
is both challenging and time demanding. In this thesis, we propose a new
titration method for swift and safe identification of a personalized insulin
dose with long-acting insulin through short-term use of rapid-acting insulin
in an artificial pancreas (AP).

We augment a published T2D model to simulate an AP driving the blood
glucose into the clinical target range followed by a switch to injections with
long-acting insulin. In simulation, the new titration method can reduce the
titration period to a single week, compared to five weeks on standard-of-
care titration. To explore how to best switch between rapid- and long-acting
insulin, we use clinical trial data to assess the correlation between the insulin
response to rapid- and long-acting insulin injections in the same individual.
In an in silico cohort of a hundred people with T2D, we investigate how
differences in bioavailability may influence the conversion from rapid-acting
insulin delivered in a pump to an equivalent injection dose of long-acting
insulin. The cohort simulation reveals that many individuals need more
than one week of AP treatment to reach the clinical target range.

As an alternative to letting an AP drive the blood glucose into the tar-
get range, we explore how to predict a safe and effective long-acting insulin
dose from 24 to 48 hours of AP data. With simulated AP data, we estimate
parameters in dose-response models using maximum likelihood estimation
(MLE). We apply the continuous-discrete extended Kalman filter (CDEKF)
to approximate the likelihood function which is maximized in MLE. To im-
prove the model-based dose predictions, we apply model-based design of ex-
periment (MBDoE) and determine how to best run an AP system to collect
data for parameter estimation. Finally, we obtain personalized dose-response
models from the experimental data and evaluate their ability to predict a
safe and effective insulin dose for each simulated individual.

In simulation, the proposed method is feasible. However, the efficacy
and safety of the dose estimates heavily depend on the level of system exci-
tation. The results indicate that MBDoE holds a potential to improve the
performance of model-based dose-guidance solutions. Still, without clinical
data, it is not possible to conclude on the clinical feasibility of a translating
between pump- and pen-based treatment in T2D. In the future, commercial
AP systems may enable clinical evaluation of the new titration method.
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Summary (Danish)
Mange mennesker med type 2 diabetes (T2D) vil med tiden få behov for
insulininjektioner for at normalisere deres blodsukker og undgå sendiabetiske
komplikationer. Desværre kan det være en udfordring for den enkelte at
finde en sikker og effektiv daglig dosis langtidsvirkende insulin, en proces
kaldet titrering. I denne afhandling præsenterer vi en ny titringsmetode.
Gennem kortvarig brug af hurtigvirkende insulin i en kunstig bugspytkirtel,
vil vi idenficere den enkeltes insulinbehov og oversætte det til en daglig dosis
langtidsvirkende insulin.

Vi udvider en publiceret T2D-model for at simulere behandling med en
kunstig bugspytkirtel, samt injektioner med langtidsvirkende insulin. I sim-
ulation lader vi den kunstige bugspytkirtel styre blodsukkeret ned i det
kliniske normalområde, hvorefter vi oversætter pumpens insulin infusion
til en daglig dosis langtidsvikende insulin. Sammenlignet med standard-
behandling, kan den nye titreringsmetode nedbringe titreringstiden fra fem
uger til en enkelt uge. For at identificere den bedste omregning mellem
pumpe- og penbehandling, bruger vi kliniske data til at vurdere korrelatio-
nen mellem insulinresponset på hurtigvirkende og langtidsvirkende insulin
hos det samme individ. I en virtuel kohorte af hundrede mennesker med T2D
undersøger vi, hvordan forskelle i insuliners biotilgængelighed kan påvirke
oversættelsen fra hurtigvirkende insulininfusion til en tilsvarende injektions-
dosis af langtidsvirkende insulin. Kohorte-simulationen viser at mange indi-
vider behøver mere end en uges kunstig bugspytkirtelbehandling for at nå
det glykæmiske normalområde.

Som et alternativ til at lade den kunstige bugspytskirtel guide blod-
sukkeret helt ned i normalområdet, udforsker vi, hvordan vi kan forudsige en
sikker og effektiv dosis af langtidsvirkende insulin ud fra 24 til 48 timers be-
handling. Vi estimerer parametre i dosisresponsmodeller ved hjælp af maxi-
mum likelihood-estimering (MLE). Vi anvender det kontinuerte-diskrete ud-
videde Kalman-filter (CDEKF) til at approksimere likelihood-funktionen,
som maksimeres i MLE. For at forbedre dosisforudsigelserne anvender vi
modelbaseret design af eksperimenter (MBDoE) til at bestemme, hvordan
vi bedst doserer og skalerer insulin og måltider for at indsamle data til do-
sisforudsigelse. Til slut opnår vi personlige dosisresponsmodeller ud fra de
eksperimentelle data. Vi evaluerer modellernes evne til at forudsige en sikker
og effektiv insulindosis for hver simuleret person.

I simulation virker den foreslåede titreringsmetode, dog afhænger dosises-
timaternes kvalitet og sikkerhed kraftigt af niveauet af systemeksitation. Re-
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sultaterne indikerer at MBDoE har potentiale til at forbedre modelbaserede
doserådgivningsløsninger. Desværre betyder manglen på kliniske data, at
det ikke er muligt at konkludere om den simulerede løsning kan virke i prak-
sis. I fremtiden, kan kommercielle kunstig bugspytkirtel systemer muliggøre
kliniske tests af denne nye titreringsmetode.
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CHAPTER 1
Introduction

1.1 Context and motivation
Type 2 diabetes (T2D) is a growing pandemic with severe consequences for
the individual and society [1]. In the long run, poor treatment outcomes
lead to complications and a significant socio-economic burden [1, 2]. Several
treatment options, tablets, non-insulin injections and insulin exist, but still
few people with T2D reach glycemic control [3, 4]. This project aims to help
people with T2D reach recommended glycemic targets when using insulin.

1.1.1 Diabetes in numbers
In 2021, 537 million people were living with diabetes worldwide [1]. Of
these cases, T2D accounts for approximately 90%. Over the next 25 years,
the International Diabetes Foundation estimates that prevalence of diabetes
will increase by almost 50% [1]. This adds a substantial cost to national
healthcare budgets. Today, the direct cost of diagnosed diabetes accounts for
11.5% of the total global health expenditure [1]. This covers physician visits,
hospitalizations, prescription of anti-diabetic drugs, devices, and diabetes
supplies. However, the socioeconomic burden of diabetes is even larger [2, 5].
A significant amount of indirect costs stem from lost ability to work, reduced
productivity at work and lost productivity due to premature mortality. To
reduce the societal and personal costs, the growing numbers call for efficient
treatment solutions for people with diabetes.

1.1.2 Glucose-Insulin dynamics
Glycemic control is a key goal in diabetes treatment. In healthy individuals,
the body regulates the concentration of glucose in the bloodstream within
a relatively narrow range. This regulation involves a complex interaction of
various organs, hormones and processes [6].

When glucose levels in the blood increase, e.g. after carbohydrate intake,
beta cells in the pancreas secrete insulin, a hormone that facilitates the
uptake of glucose from the bloodstream into the cells. The absorbed glucose
can supply various cells with energy or be stored in the liver as glycogen or
in fat cells as triglycerides [6].

When glucose levels drop, alpha cells in the pancreas release the hormone
glucagon, which signals the liver to convert stored glycogen into glucose, rais-
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Figure 1.1: The glucoregulatory system in a healthy individual. Illustra-
tion adapted from [7].

ing the blood glucose levels [6]. When needed, the liver may produce glucose
to cover the basic metabolic requirements, using non-carbohydrate sources.
However, this process is not sustainable in the long run as it produces waste
products that are toxic in large concentrations.

Managing glucose levels is crucial for overall health as glucose is the
primary source of energy for cells, in particular in the brain. If glucose levels
drop below 3.9 mmol/L, a condition known as hypoglycemia, it can lead to
dizziness, confusion, and, in severe cases, loss of consciousness or even death
[6]. Fear of hypoglycemia is common among people with diabetes using
insulin, as an overdose induces low blood glucose [8].

High blood glucose levels, known as hyperglycemia, can also cause com-
plications in the long run. Hyperglycemia is characterized as a fasting blood
glucose above 7.0 mmol/L, or a glucose level greater than 10.0 mmol/L two
hours after the latest food intake [3]. Over time, uncontrolled hyperglycemia
can lead to complications such as cardiovascular disease, nerve and kidney
damage, blindness and amputations [6, 8]. Long-term complications signif-
icantly reduce the quality of life for people living with diabetes, and are a
burden on national healthcare budgets [1, 8].

Despite the risk of persistent hyperglycemia, a quick transition into nor-
moglycemia can also cause complications. From a state of chronic hyper-
glycemia, starting an aggressive treatment regimen may lower glucose levels
faster than the body can adapt. In some cases, the treatment itself induces
nerve and eye damage [9].

As all forms of diabetes are characterized by elevated plasma glucose
concentrations, the treatment goal is to reach and maintain normoglycemia
whilst avoiding hypoglycemia. The clinical guidelines recommend to stay
within the 3.9 mmol/L to 10.0 mmol/L target range [3, 10].
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1.1.3 Diabetes treatment
Different types of diabetes exist and the treatment requirements depend on
the underlying pathophysiology. In type 1 diabetes (T1D), an autoimmune
response eliminates the beta cells in the pancreas, leaving the body unable
to produce insulin and control glycemic levels. To survive, people with T1D
need life-long insulin therapy [3].

In T2D, elevated glucose levels occur, initially, when the body’s cells
fail to respond adequately to insulin [1]. This condition is referred to as in-
sulin resistance or reduced insulin sensitivity. Over time, insulin resistance
prompts an increase in insulin production. However, the insulin production
is insufficient to meet metabolic requirements. At the onset of T2D, life-style
changes, oral treatment, and non-insulin injections can improve insulin sensi-
tivity and lower glycemic levels into the clinical target range [3]. In late-stage
T2D, insulin production may drop as the excessive demand on the pancre-
atic beta cells leads to cell failure. Gradually, insulin injections can become
necessary to sufficiently lower glycemic levels if non-insulin medications fail
to achieve glycemic control [3, 8].

Typically, a daily dose of long-acting insulin is the first step when initi-
ating insulin treatment [3]. Long-acting insulin, also known as basal insulin,
lowers the fasting glucose level. If necessary, injections of rapid-acting insulin
can be added later to cover glucose excursions after meals [3]. The initiation
of basal insulin treatment, a process known as titration, is complex and time-
consuming. As insulin is a potent drug and the insulin dose-response varies
greatly between individuals, the initial dose is often conservative. When ini-
tiating basal insulin treatment, the American Diabetes Association (ADA)
recommends 10 units per day or 0.1-0.2 units/kg per day [3]. After treat-
ment initiation, the individual with T2D monitors their fasting blood glu-
cose (FBG) values through pre-breakfast finger-prick measurements. Based
on the FBG measurements, simple paper-based algorithms guide the insulin
dose adjustments until the clinically recommended fasting blood glucose tar-
get is met. Table 1.1 shows an example of a titration algorithm.

Insulin titration primarily takes place at home without monitoring from
a health care provider (HCP). Short clinic visits occur every few months,
but the time available for dosage consulting is usually only a fraction of the

Table 1.1: The 2-0-2 titration algorithm for long-acting insulin. Dose ad-
justments happen once- or twice-weekly. Adjustments are based on the low-
est FBG value below target, or an average of the FBG values from the past
three days.

FBG [mmol/L] Dose Adjustment [U]
> 7.2 +2

4.4 − 7.2 No change
< 4.4 −2
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visit time. This setup places a significant responsibility and burden on the
individual with diabetes. Lack of confidence in the treatment, a demanding
titration task, and the fear of hypoglycemia may lead to omitted injections
and limited dose escalations [4]. Consequently, less than 40% of people with
T2D on insulin treatment reach glycemic targets [4, 11]. Failure to meet
glycemic targets within the first three months of titration is linked to an
increased risk of failed insulin titration two years after treatment initiation
[4]. For this reason, dose guidance support in the initial phases of titration
holds a potential to improve treatment outcomes in the long run. Research
indicates that people with T2D prefer simple and easy-to-use titration solu-
tions and fewer in-person visits [12]. Thus, adoptable solutions must cater
to these needs, whilst supporting the titration process.

1.1.4 Diabetes technology and digital health
Technology is playing a growing part in the management of diabetes [13, 14,
15]. In the past two decades, sensors, wearables, connected devices, apps,
dose guidance algorithms and artificial pancreases have become commercially
available, enabling a more personalized care. Given the many options, the
use of technology can be individualized based on a person’s needs, desires,
skill level, and availability of devices.

The use of continuous glucose monitors (CGMs) is increasing in the T2D
population [16]. CGMs measure the interstitial glucose levels continuously
through a small sensor inserted into the tissue just below the skin [14]. The
measurements are transmitted every five minutes to a receiver or a smart-
phone, where the user can see a graphical representation of their data. Sensor
use leads to improved glucose control as it enables real-time diabetes man-
agement decisions. In addition, the data stream facilitates more detailed
discussions with the HCP compared to self-logged FBG values. In recent
years, the CGM-based metric Time in Range (TIR) has become part of
the glycemic control assessment [3, 10]. TIR quantifies the proportion of
time spent within the clinical target glucose range, usually 3.9-10 mmol/L,
and studies show a correlation between increased TIR and a reduction in
long-term complications [17, 18]. If a consensus on CGM and long-term
cost-effectiveness is reached, it may lead to a more widespread CGM-use
despite the high sensor cost compared to traditional finger-pricking [13].

Similar to CGM data, the introduction of connected insulin pens can cre-
ate a detailed overview of diabetes management. Inadequate record-keeping
of insulin doses represents a significant obstacle to optimizing glycemic con-
trol for individuals using insulin pens [13]. Connected insulin pens log the
dose size and timing of insulin injections. The data can be displayed together
with CGM curves to better understand how dosing decisions affect glycemic
control.

The artificial pancreas (AP) offers another way of administering insulin.
An AP is a closed-loop system that consists of 1) a CGM to measure the
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glucose concentration every five minutes, 2) a control algorithm that based
on the CGM measurements computes a dose of rapid-acting insulin to reach
glycemic targets, and 3) an insulin pump that infuses the computed insulin
dose. In recent years, automated insulin delivery with an AP system has
become commercially available to people with T1D [19], and clinical studies
indicate the potential of extending AP treatment to people with late stage
T2D [20, 21]. Today, a notable minority of people with T2D are using patch
pumps as they are simple and easy to use [22]. In coming years, patch pumps
with a closed-loop algorithm may offer an automated alternative to daily
insulin injections in T2D. Insulet is running trials in a T2D population with
a system of this type [20]. Once on the market, the adoption and distribution
of such systems will depend heavily on their long-term cost-effectiveness and
ease of use [21].

The technology development in recent years has fueled a strong interest
in integrating new data sources into health apps designed for diabetes care
[15]. A meta-analysis on mobile apps for diabetes found a statistically sig-
nificant improvement in glycemic control among participants using mobile
apps compared to those in the control group [23]. Some of these apps offer
dose guidance. For insulin titration, dose-guidance algorithms have been
tested in simulation [24, 25], in clinical trials [26, 27], and under free-living
conditions [28]. To provide decision support, these algorithms incorporate
FBG measurements or CGM data in combination with manual or automatic
dose logs of insulin injections. Inspired by this approach, we explore how to
leverage new data sources, i.e. data from AP systems, to provide titration
guidance to people with T2D and their caregivers.

1.2 Thesis objective
Today, AP systems are an expensive treatment option, and distributing these
devices to a growing T2D population may not be economically viable. Com-
pared to AP systems, injection pen-based treatment is a cheaper solution.
However, the emergence of AP technology may enable new titration concepts
for pen-based insulin treatment. To leverage AP technology at a limited cost
increase, we propose short-term use of an AP system to automate insulin
titration, improving injection-based treatment outcomes.

In this work, we assess the feasibility of the Dose Finder titration concept,
a dose guidance tool for insulin titration in T2D. The Dose Finder consists
of an AP system and a conversion algorithm to translate rapid-acting insulin
infused by an insulin pump to a daily injection of long-acting insulin. Figure
1.2 visualizes the Dose Finder concept. In a limited period, the insulin pump
infuses rapid-acting insulin based on measurements from a CGM. Over time,
the control algorithm drives the fasting blood glucose into the clinical target
range. Once in target, we convert the infusion rate of rapid-acting insulin
to a daily injection of long-acting insulin.



6 1 Introduction

FBG
CGM

Days

Fasting Blood Glucose

0 7 14

Insulin
Rapid-acting Insulin
Long-acting Insulin

Days
CGM & Pump Injection-based treatment

0 7 14

Dose Conversion

Figure 1.2: The Dose Finder titration concept.

1.2.1 Research questions
To assess the technical feasibility of the Dose Finder, we aim to answer the
following research questions:

Research Question 1: To what extent can we use dose-response
models to predict outcomes of changed drug and/or regimen?

We test the Dose Finder concept in a mathematical simulation. We aug-
ment a published T2D model to enable the simulation of virtual people with
T2D who undergo artificial pancreas treatment and subsequently receive in-
jections of long-acting insulin. A clinical trial was planned to assess the
validity of the simulation results.

Research Question 2: What is the correlation between a profile of
rapid-acting insulin delivered in closed-loop treatment, and the
amount of long-acting insulin needed with an injection pen?

As closed-loop data is not readily available for a T2D population, we investi-
gate different factors that may influence the translation from rapid- to long-
acting insulin injections. We use clinical data from a dose-response study
in 25 people with T1D to assess the correlation between the dose-response
to rapid- and long-acting insulin. Additionally, in a simulation study, we
explore how differences in drug bioavailability can influence the conversion
from rapid- to long-acting insulin.
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Research Question 3: Can we predict a suitable dose for
injection-based therapy from fully closed-loop data?

Based on 24 to 48 hours of simulated closed-loop data, we examine whether
we can predict an individualized, safe and effective dose of long-acting insulin.
To improve dose-estimates, we apply model-based experimental design (MB-
DoE) to determine the optimal meal intake and the insulin infusion profile
during closed-loop treatment. Finally, we explore how to improve experi-
mental safety within the MBDoE-framework.

1.3 Thesis structure
In the following chapters, we aim to answer the three research questions
through a summary of the publications in Appendix A to G:

Chapter 2:
We explore how mathematical models can guide new ways of dosing insulin
and present a simulation model from Appendix A. We address Research
Question 1 and show how the Dose Finder concept works in the simulation
model. From Appendix F, we present a clinical trial protocol to outline
the data which could have facilitated a clinical feasibility assessment.

Chapter 3:
To address Research Question 2, we investigate whether a correlation
exists between rapid- and long-acting insulin injections in a T1D data set
(Appendix B). To further assess how a change in insulin analogue may
affect the dose-response, we simulate how differences in bioavailability can
influence the treatment efficacy after a pump-to-pen switch (Appendix G).
Finally, to address Research Question 3, we look into how fully-closed
loop data may be used to predict a safe and effective dose of long-acting
insulin for people with T2D (Appendix C).

Chapter 4:
We address Research Question 3 and investigate how experimental design
can improve dose predictions for injection-based insulin therapy. We use a
Model-Based Design of Experiment (MBDoE) framework to design experi-
mental protocols and collect informative data during short-term closed-loop
treatment (Appendix E). As safety is critical in clinical applications, we
explore how to improve the safety of the MBDoE approach (Appendix D).

Chapter 5:
We summarize the results of the project and present future perspectives of
the findings in this work.
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CHAPTER 2
Insulin Dose Response

In this chapter, we include work from Appendix A and F. We explore how
mathematical models can guide new ways of dosing insulin. In a review of
physiological models of people with T2D, we select a simulation model and
extend it to simulate titration with an AP. We address the first research
question and present how a Dose Finder solution could work in simulation.
Finally, we present a clinical trial protocol to outline the clinical data which
could have facilitated an assessment of the simulated results.

2.1 Physiological models
Physiological models are powerful tools for advancing diabetes treatment.
Simulation studies, known as in silico or virtual trials, can help drive drug de-
velopment and support treatment optimization in a time- and cost-effective
manner [29]. A virtual trial population consists of a mathematical model
with which we express a cohort of in silico subjects spanning the variability
of a population. Simulation studies can test a large variety of scenarios which
may be difficult, unsafe or unethical to conduct in a real trial population.
Such virtual trials can for specific insulin treatments, including closed-loop
algorithms, serve as a substitute for pre-clinical trials. In 2008, the U.S.
Food and Drug Administration (FDA) accepted a T1D simulator for this
purpose [30].

Physiological models are more than just simulation tools. Part of the
diabetes modeling efforts aims to create and parameterize prediction mod-
els for model-based control algorithms in AP systems [31, 32]. As the AP
community in particular has catered to people with T1D, many simulation
and prediction models describe this population. However, as T2D accounts
for 90% of the global population with diabetes, published models have over
the years been extended to cover T2D populations as well [33, 34].

2.1.1 T2D model overview
In this work, we test insulin dose guidance algorithms for people with T2D in
simulation studies. To select a suitable T2D simulator and a dose-response
model for predictions, we review published models and their T2D adapta-
tions and extensions.
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Since the 1960s, mathematical models have described the glucose–insulin
dynamics in man [35]. One of the early models, Bergman’s minimal model, is
the foundation of many physiological models in use today. In three compart-
ments, Bergman et al. describe the metabolic effects of insulin on glucose in
healthy and obese individuals [36]. The model provides a framework to quan-
tify insulin sensitivity, a physiological parameter which cannot be assessed
directly, from data. The original model compartments describe the glucose
concentration in plasma, the insulin effect, and the insulin secretion. T1D
adaptations of the model exclude the insulin secretion. Bergman’s minimal
model is highly simplified to enable parameter identification. However, the
excessive minimalism has also led to criticism. One major point of concern
is that negative (or zero) estimates of the insulin sensitivity index are not
uncommon when fitting data to the model [29]. The model has been used
to assess insulin sensitivity in clinics, but is not an ideal simulator due to its
simplicity.

The glucose-insulin kinetics of the minimal model serve as the core of the
Medtronic Virtual Patient (MVP) model [31]. Originally, the MVP model
was designed for individuals with T1D using rapid-acting insulin in pump
therapy. Its structure includes meal and insulin absorption compartments.
The model has undergone augmentation by Aradóttir et al. to incorpo-
rate endogenous insulin secretion and long-acting insulin, thereby enabling
simulations of T2D populations undergoing basal insulin therapy [33, 37].
Aradóttir et al. validate their model on fasting glucose measurements. As a
result, the model is not fit for simulations involving meals, but may still be
well-suited as a dose-response model for prediction of basal insulin need.

In 1985, Sørensen presented a simulation model to describe the glucose-
insulin dynamics in healthy individuals [38]. Vahidi et al. adapted the
Sørensen model to reflect a T2D population by including a relative deficiency
in insulin production, an impaired hepatic regulation of glucose, and a low
peripheral glucose uptake [34]. Later, the model came to include the incretin
effect in connection with meals [39]. Subsequently, the model extensions by
Eftekhari et al. [40] and Al Ahdab et al. [41] added several anti-diabetic
drug-responses, as well as the gluco-regulatory response to physical activity
and stress. Although the T2D extensions of the Sørensen model offer a
framework for many different treatment simulations, only the mean set of
model parameters is available. This limits the use of the model as a simulator
as the distributions to span a full trial cohort are not published.

In diabetes research, the UVA-Padova simulator offers a test-bed for in-
sulin dosing algorithms [30]. The foundation of the FDA-approved T1D sim-
ulator derives from a T2D model structure developed by Dalla Man et al.[42].
In its latest model extension, the T2D model consists of 15 differential equa-
tions and 39 parameters, complete with their associated distributions, to
reproduce the main glucose fluxes in a T2D population [43]. The model is
limited to simulate single-meal scenarios as it does not include intrapatient
variations over time.
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Another model that offers parameter distributions is the integrated glucose-
insulin (IGI) model [44]. In all extensions, population parameter estimation
methods quantify inter-individual variability in the model parameters. The
IGI model therefore offers a potential basis for realistic simulations of clinical
studies. The original glucose homeostasis model by Jauslin et al. describes
people with T2D and healthy individuals. The model has multiple exten-
sions to cover circadian rhythms [45], glucagon kinetics [46], the effect of
various anti-diabetic drugs [47, 48], and gastric emptying [49].

A model’s level of complexity should align with its application. The
simpler models enable the identification of parameters for personalized dose
predictions, whilst more extensive models can support simulations of virtual
clinical trials in a cohort. In this work, we utilize Bergman’s Minimal Model
for estimating insulin sensitivity, Aradóttir’s MVP model for predicting dose-
response, and the IGI model for simulating a T2D population.

2.1.2 Integrated Glucose-Insulin model
We use the Integrated Glucose-Insulin (IGI) model for simulation as it covers
different elements of T2D pathophysiology. In addition to compartments to
represent glucose-insulin kinetics and oral glucose absorption, the model in-
cludes delays in glucose and insulin signals to affect the glucose clearance and

Table 2.1: Type 2 Diabetes models

Base Model Type T2D Extensions

Sørensen (1985) [38] Healthy Relative deficiency in insulin production,
impaired hepatic gluco-regulatory effect,
and low peripheral glucose uptake [34]
Meal absorption and incretin effect [39]

Metformin and vildagliptin drug response [40]

Multiple meal model, insulin injections,
multiple metformin doses, and the effect
of physical activity and stress [41]

Dalla Man (2007) [42] T2D &
healthy

Full population parameter set [43]

Jauslin (2007) [44] T2D &
healthy

Circadian rhythms [45]

Glucagon-insulin-glucose kinetics [46]

Biphasic insulin injections [47]

GLP-1 agonist dose-response [50]

Gastric emptying and glucose absorption [49]

Kanderian (2009) [31] T1D Endogenous insulin production from
Ruan (2015), and basal insulin injections [33]
Model reduction to improve identifiability [37]
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production. Simple mechanisms describe insulin secretion and its increase
after meal intake, known as the incretin effect. To simulate AP treatment
and injections with long-acting insulin, we augment the model with insulin
absorption models for rapid- and long-acting insulin and a compartment for
subcutaneous glucose concentration. Figure 2.1 shows the updated model
structure.

2.1.2.1 Extensions to the IGI model

An extension from Røge et al. includes the dose-response to biphasic in-
sulin injections, an insulin analogue combining the dynamics of rapid- and
long-acting insulin [47]. However, we wish to simulate the response to both
rapid-acting insulin infusion and long-acting insulin injections. To enable
this, we augment the IGI model structure with an insulin absorption model
from Hovorka et al. [32]. For each of the insulin analogues, we include two
absorption compartments to describe how insulin moves from the subcuta-
neous tissue to plasma,

Ṡ1,ia(t) = uia(t) − 1
τia

S1,ia(t), (2.1a)

Ṡ2,ia(t) = 1
τia

S1,ia(t) − 1
τia

S2,ia(t), (2.1b)

where a time constant, τia, determines the speed with which each insulin
analogue, uia(t), enters the body. To describe the distribution of exogenous
insulin in the body after absorption, we include a compartment with first-
order elimination from Hovorka et al.,

İexo(t) =
(

1
τR
S2,R(t) + 1

τL
S2,L(t)

)
− kexoIexo(t), (2.2)

where kexo is the clearance of the exogenous insulin. We add the exogenous
insulin to the the insulin effect equation in the IGI model,

İE(t) = kIE

VI
(I(t) + cf · Iexo(t)) − kIEIE(t), (2.3)

where cf is a conversion factor to change the units of insulin amount from
unit to pmol [52]. To simulate CGM measurements, we include a subcuta-
neous glucose compartment from [53],

Ġsc(t) = 1
τsc

(
Gc(t)
VG

−Gsc(t)
)
. (2.4)

The time constant τsc is the time it takes before a rise in the plasma glucose
can be detected in the interstitial fluid. The IGI definition of the plasma
glucose concentration is the amount of glucose in the central compartment
divided by the glucose distribution volume VG.
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Figure 2.1: Model structure for the augmented IGI model adapted from
[51]. The original model compartments have been augmented with absorp-
tion models for rapid- and long-acting insulin (blue) and a compartment for
subcutaneous glucose concentration (red).

With the augmentations, we obtain a 13-compartment simulation model
with the following compartments,

x =



GA

GT

Gc

Gp

GE2
I
IE

S1,R

S2,R

S1,L

S2,L

Iexo

Gsc



mg Meal intake - Glucose absorption
mg Meal intake - Glucose transport
mmol Glucose in plasma
mmol Glucose in peripheral compartment
mmol/L Glucose effect on insulin secretion
pmol Insulin in plasma
pmol/L Insulin effect
U Rapid-acting insulin absorption
U Rapid-acting insulin absorption
U Long-acting insulin absorption
U Long-acting insulin absorption
U Exogenous insulin
mmol/L Subcutaneous glucose concentration

The model inputs are the infusion of rapid-acting insulin, uR(t) [U/min],
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the injection of long-acting insulin, uL(t) [U/min], and the carbohydrate
uptake through meals, d(t) [mg/min].

2.2 The Dose Finder in simulation
With the augmented IGI model, we simulate an individual with T2D using
a Dose Finder titration concept to identify a safe and effective daily dose of
long-acting insulin [51]. To compare the new titration method to standard
of care titration, we simulate the outcomes when the same individual titrates
long-acting insulin with a simple 2-0-2 algorithm.

2.2.1 Simulation setup and controller
To simulate an individual with T2D, we apply the parameters from Table
2.2. We simulate three daily meals. Details regarding the simulation setup
are listed in [51]. The purpose of the simulation study is not to showcase
an advanced control algorithm, but rather to demonstrate how an AP may
replace traditional titration. Therefore, we employ a simple integrator to
determine the rapid-acting insulin infusion, uR, in the fasting state based on
CGM measurements, ycgm,

v(k) = v(k − 1) +Ki · (yref − ycgm(k)) · Ts, (2.5a)
uR(k) = max(v(k), 0), (2.5b)

where yref = 5.8 mmol/L is the desired glucose concentration. Ki is the
controller gain, k is the sample number, and Ts is the sample time. We
initialize the integrator with v(0) = 0. To ensure physiologically feasible
insulin amounts, we constrain uR to non-negative values. The controller
receives meal announcements to avoid changes in the insulin infusion rate
after meals. When a meal is announced at sample km, the controller switches
off for 5.5 hours and the infusion rate is fixed to the value uR(km).

2.2.2 Dose conversion
To get a daily dose, we calculate the total insulin delivered over 24 hours,

uL[U/day] = 24[h/day] · 60[min/h] · uR[U/sample]
Ts[min/sample] . (2.6)

2.2.3 The Dose Finder vs. standard of care
The virtual individual spends one week on AP treatment, where a control
algorithm slowly increases the insulin infusion rate and drives the glucose
into the target range. After one week, we convert the insulin infusion rate of
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Table 2.2: Model parameters for the augmented IGI model.
MwG 180.1559 [g/mol] Molar weight of glucose
cf 6000 [pmol/U] Insulin unit conversion factor
AG 0.8 unitless CHO bioavailability
ka 0.0214 [1/min] CHO absorption constant
VG 9.33 [L] Distribution volume for central glucose compartment
Vp 8.56 [L] Distribution volume for peripheral glucose
Q 0.442 [L/min] Intercompartmental clearance of glucose

CLG 0.0287 [L/min] Insulin-independent glucose clearance
CLGI 0.000355 [L/min/(pmol/L)] Insulin-dependent glucose clearance
Gss 5.93 [mmol/L] Baseline glucose concentration
IPRG 1.42 unitless Control parameter for glucose effect on insulin secretion
Emax 0.590 unitless Maximal effect of GT on the insulin secretion
ED50 38.2 [mg] Glucose amount in GT resulting in half of Emax

Iss 24.2 [pmol/L] Insulin concentration at steady state
CLI 1.22 [L/min] Endogenous insulin clearance
VI 6.09 [L] Distribution volume for insulin
kGE2 0.0289 [1/min] Rate constant of glucose effect compartment
kIE 0.0213 [1/min] Rate constant of insulin effect compartment
EGP 8.2 · 10−3·BW [mmol/min] Endogenous glucose production
BW 70 [kg] Body weight
τsc 10 [min] Time delay to subcutaneous glucose
kI,R 55 [min] Rate constant for rapid-acting insulin absorption
kI,L 720 [min] Rate constant for long-acting insulin absorption
kexo 0.138 [1/min] Exogenous insulin clearance

the pump, unit-to-unit, to a daily injection of long-acting insulin. To limit
a rise in glycemia in the transition phase, we keep the AP running for two
hours after the first injection of long-acting insulin. Figure 2.2 shows the
results.

During AP treatment, the fasting blood glucose drops safely from 12
mmol/L to 6 mmol/L. In this period, all measured glucose concentrations
are above or within the target range. In the transition from pump- to pen-
based treatment, the fasting blood glucose rises above 7.2 mmol/L but later
settles back into the target range after three days of pen-based treatment.
The results show how a AP system may simplify titration. However, the
transition-phase between pump and pen-based treatment can be optimized
to reduce the loss of glycemic control on the first day of injection-based
treatment.

In Figure 2.3, we compare the outcomes for the Dose Finder (DF) method
to standard of care titration with the 2-0-2 algorithm, and to continued AP
treatment. With the 2-0-2 algorithm, the dose converges after five weeks.
Using a Dose Finder solution reduces the titration period to a single week.
Continued AP treatment drives the fasting blood glucose to a lower value
within the target range. This simulation represents an ideal scenario where
the individual with T2D is adherent and the measurements are not corrupted
by noise. In the real world, titration periods may extend significantly due
to physiological variation, missed injections and misunderstood guidelines.
Hence, the potential to improve titration speed may be even greater than
shown in the simulation. In this simple AP system, unannounced meals and
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Figure 2.2: The top-to-bottom panels display the glucose concentration,
meal intake, infusion rapid-acting insulin, and injections of long-acting in-
sulin. Throughout the initial week, the artificial pancreas dynamically ad-
justs the insulin infusion rate during fasting periods to reach yref = 5.8
mmol/L. At the start of the second week, we convert the infusion rate, unit-
to-unit, into a daily, long-acting insulin dose administered before breakfast.
To smooth the transition from pump to pen-based treatment, insulin infu-
sion persists for two hours after the initial pen-injection. The green area
marks the clinical target range of 4.4-7.2 mmol/L. Figure adapted from [51].

sensor noise may affect safety. However, the simulation is purely meant to
serve as a conceptual visualization. In the following chapters, we shed light
on different aspects and challenges to consider in the development of a Dose
Finder solution.

2.3 The clinical trial
A clinical trial was part of the original project scope to support the Dose
Finder feasibility assessment with clinical data [54]. We present the pre-
liminary trial protocol to outline the data set meant to facilitate a clinical
feasibility assessment.

The aim of the study was to investigate whether short-term usage of
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Figure 2.3: Titration with the Dose Finder (DF), the 2-0-2 algorithm and
the implemented artificial pancreas (AP). The top panel depicts daily FBG
values for the DF and the 2-0-2 titration. For the AP, the plot displays a
pre-breakfast CGM measurement. The lower panel shows the daily dose of
long-acting insulin for the DF and the 2-0-2 titratation. For the AP, the plot
shows a weekly unit-to-unit conversion of the rapid-acting insulin delivered
by the AP. Figure adapted from [51].

an AP system could improve optimization of insulin doses under free liv-
ing conditions. The proposed design was a randomized, parallel-arm study
with 32 basal-only or multiple-daily-injections-treated patients with T2D.
Figure 2.4 illustrates the preliminary trial design. To have a measurement

Days -14 0 30 60

Screening Randomization End of study

14-day 30-day period 30-day period
run-in

CGM + Standard of Care insulin therapy

CGM + SoCArtificial Pancreas

Figure 2.4: Schematic diagram depicting the Dose Finder trial design.
Illustration adapted from [54].
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for time-in-range at baseline, the participants would have a 2-week run-in
period continuing their current insulin therapy whilst wearing a CGM. After
two weeks, the participants would then be randomized 1:1 into an AP or a
standard insulin therapy arm. In the AP arm, participants would use an
AP system for 30 days. Afterwards, the participants would transition to
standard insulin therapy for 30 days whilst wearing a CGM. In this period,
insulin doses would be optimized every 5–7 days. In the standard insulin
therapy arm, participants would continue their current therapy while wear-
ing a CGM for 60 days. Here as well, insulin doses would be optimized every
5–7 days. The primary outcome of the study was to assess the efficacy of an
AP system in maintaining CGM glucose levels within the target range from
3.9 to 10.0 mmol/L compared to standard insulin therapy. The secondary
outcome was to develop a translation algorithm between rapid-acting insulin
delivered in an insulin pump and long-acting insulin injections.

Through this study, we aimed to determine whether a closed-loop system
could lead to improved glycemic control and provide insights for tailoring
insulin dose selection for individuals. In T2D, the use of closed-loop systems
is still novel and at the initiation of this project, no systems were available
on the market for this population. As a result, it was a challenge to run the
study under free living conditions. No other existing data sets could directly
support the assessment of a Dose Finder solution. In the future, data sets
with both pen-based treatment, CGM and closed-loop data may appear
when AP systems become commercially available to people with T2D.

2.4 Summary
Mathematical models are valuable tools when assessing physiological re-
sponses in diabetes. To simulate the Dose Finder, a novel way of titrat-
ing long-acting insulin with an AP, we extend an existing simulation model
with compartments for exogenous insulin absorption and subcutaneous glu-
cose concentration. In simulation, one week of AP treatment can drive the
fasting glucose concentration into the glycemic target range with continuous
infusion of rapid-acting insulin. After one week, unit-to-unit conversion of
the AP’s insulin infusion rate results in a safe and effective daily injection
of long-acting insulin. In simulation, the Dose Finder solution can reduce
the time-to-target to a single week, compared to five titration weeks with
the current standard of care. The extent to which these simulations rep-
resent clinical reality remains unknown. A clinical feasibility assessment is
currently not possible with existing data sources. In the future, access to
commercial AP systems may enable testing the titration solution in clinics.



CHAPTER 3
Correlation and Dose

Prediction
In this chapter, we present work from Appendix B, C and G, addressing
the second and third research question. To assess the feasibility of a switch
between AP- and pen-based insulin therapy, we investigate whether a cor-
relation exists between rapid- and long-acting insulin. To further explore
the feasibility of a unit-to-unit dose conversion, we simulate how differences
in bioavailability can influence the treatment efficacy after a pump-to-pen
switch. Finally, we look into how fully-closed loop data from an AP may
be used to predict a safe and effective dose of long-acting insulin for people
with T2D.

3.1 Parameter estimation
In this work, we use estimates of model parameters to assess correlation in
dose-response [55] and predict personalized insulin doses [56, 57, 58]. We ap-
ply maximum likelihood estimation (MLE) to estimate parameters in phys-
iological models. In the following section, we briefly present how we ap-
ply continuous-discrete system models and the continuous-discrete extended
Kalman filter (CDEKF) to express and maximize the likelihood function.

3.1.1 Continuous-discrete models
We describe the glucoregulatory system as a continuous, stochastic process
with noise-corrupted discrete sensor measurements,

dx(t) = f(t, x(t), u(t), d(t), θ)dt+ σdω(t), (3.1a)
yk = h(tk, x(tk)) + vk, (3.1b)

where f(·) is a drift function and h(·) is a discrete measurement function. x(t)
represents the state vector, u(t) is the input vector for insulin, d(t) is the meal
input, and θ denotes the model parameters.The process noise, {ω(t), t ≥ 0},
is a standard Wiener process and its increment has covariance Idt. ω(t)
is scaled using a time-invariant diagonal matrix, σ, which introduces noise
to the system. We assume that the measurement noise associated with yk

follows a normal distribution, represented as vk ∼ Niid(0, Rk).
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3.1.2 Maximum Likelihood Estimation
From a discrete series of measurements,

YN = {y0, y1, ..., yN }, (3.2)

we estimate the parameter set, θ, that maximizes the conditional probability,

p(YN |θ) = p(yN , yN−1, ..., y0|θ), (3.3)

i.e. the probability that the measurements arise from a model parameter-
ized by θ. This is equivalent to minimizing the negative log-likelihood as a
function of the parameter set, i.e.

θ̂ = arg min
θ

V (θ), (3.4)

where
V (θ) = − ln(p(YN |θ)),

= 1
2

(N + 1)ny ln(2π)

+ 1
2

N∑
k=0

ln[det(Re,k)] + eT
kR

−1
e,kek.

(3.5)

Here, ny denotes the number of measurement sources. ek and Re,k are
CDEKF outputs for the parameter set θ.

3.1.3 Continuous-Discrete Extended Kalman Filter
For the N measurements, we compute ek and Re,k in the iterative framework
of the CDEKF. At every incoming measurement, yk, we update the estimate
of the system states, x̂k|k−1, and the state covariance matrix, Pk|k−1. For
this update, we compute the innovation,

ek = yk − ŷk|k−1, (3.6)

as the difference between the measured value, yk, and the model predicted
output, ŷk|k−1 = Ckx̂k|k−1. The matrix Ck is a linearization of the measure-
ment equation, h(tk, x̂k|k−1), at the current state estimate, x̂k|k−1,

Ck = ∂h

∂x
(tk, x̂k|k−1). (3.7)

Using the variance of the measurement noise, Rk, we can obtain the co-
variance of the innovation signal, Re,k, and compute the Kalman gain, Kk,

Re,k = CkPk|k−1C
T
k +Rk, (3.8a)

Kk = Pk|k−1C
T
k R

−1
e,k. (3.8b)
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Finally, we update the estimate of the states and their covariance using the
Joseph stabilized form,

x̂k|k = x̂k|k−1 +Kkek,

Pk|k = (I −KkCk)Pk|k−1(I −KkCk)T

+KkRkK
T
k .

(3.9a)

To obtain the one-step prediction of the states and their covariance, we solve
a system of differential equations between times tk and tk+1,

dx̂k(t)
dt

= f(t, x̂k(t), uk, dk, θ), (3.10a)

dPk(t)
dt

= Ak(t)Pk(t) + Pk(t)Ak(t)T + σσT , (3.10b)

with the initial conditions

x̂k(tk) = x̂k|k, (3.11a)
Pk(tk) = Pk|k, (3.11b)

and where

Ak(t) = A(t, x̂k(t), uk, dk, θ)

= ∂f

∂x
(t, x̂k(t), uk, dk, θ),

(3.12)

is a linearization of the drift function f evaluated at x̂k(t) with input uk,
disturbance dk, and parameters θ.

3.2 Correlation between rapid- and long-acting
insulin

In order to standardize the switch between AP treatment and injection-based
therapy, it is key that a correlation exists between the glucose-lowering effi-
cacy of rapid- and long-acting insulin, and in particular, that this correlation
does not differ significantly between individuals. In a T1D data set, we esti-
mate and compare the glucose-lowering effect when equal doses of two insulin
analogues are administered to the same individual on separate dosing days.

3.2.1 The clinical data set
We use data from the clinical Phase I trial NCT01173926 [59]. In this dose-
response trial, subjects with T1D receive single-dose, subcutaneous injections
of rapid-acting insulin (insulin Aspart, iAsp) and long-acting insulin (insulin
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Degludec, iDeg) over two separate dosing visits. Following an insulin injec-
tion, the dose-response is evaluated over a 24-hour euglycemic clamp.

For the analysis, we select data subsets where the glucose infusion rate
(GIR) is actively compensating for the effect of insulin, and where observa-
tions are available for plasma glucose and insulin concentration. Figure 3.1
shows a conceptual example of the selected data for the insulin analogues.
Out of 27 subjects in the trial, we include 25 subjects that meet the selection
criteria. For more details on the data set and pre-procssing, we refer to [59]
and [55].

3.2.2 Estimating insulin sensitivity
To quantify the insulin effect, we estimate the insulin sensitivity in a T1D
adaption of Bergman’s minimal model [36, 60],

Ġ(t) = −SGG(t) − X(t)G(t)
csf

+ SGGb + 1
VG

Ra(t), (3.13a)

Ẋ(t) = −p2X(t) + csf (p2SI(I(t) − Ib)). (3.13b)

G [mg/dL] is the plasma glucose concentration and X [min−1] is the insulin
effect. Ra(t) [mg/kg/min] is the rate of appearance of glucose input, and
I(t) [U/L] is the insulin input. To reduce the risk of numerical errors in the
Kalman filter, we employ a constant scaling factor, csf , to align the orders of
magnitude of the two states. We apply the parameter values from Table 3.1.
We use MLE and apply the CDEKF to approximate the likelihood function
which is maximized. For details on the tuning of the Kalman filter, we refer
to Appendix B. From the data set, we use the glucose infusion rate (GIR)

(a) Insulin Aspart (b) Insulin Degludec

Figure 3.1: Data example from the clinical Phase I trial NCT01173926. For
analysis, we apply the data subset marked in green, where G is the plasma
glucose concentration, I is the plasma insulin concentration and GIR is the
intravenous glucose infusion rate. Figure adapted from [55].
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as the model input Ra(t), insulin concentration in plasma as the input I(t),
and plasma glucose concentration, G(t), as the output.

We constrain the parameter estimates for the insulin sensitivity to non-
negative values and initialize the estimation with SI = 0.15 L/(U·min). For
the estimated insulin sensitivities in Figure 3.2, the Kalman filtered insulin
effects may be negative. Although not physiologically feasible, we contribute
this feature to the Bergman minimal model, which has been criticized for
causing non-physiological estimates. We choose to see the model as a purely
mathematical fitting function and apply it in the analysis.

3.2.3 Correlation
Figure 3.2 shows the fit along with the corresponding 95% confidence interval
for the estimated rapid- and long-acting insulin sensitivities. The Pearson
correlation coefficient is r = 0.5077 with the p-value p = 0.0096. Although
the correlation is statistically significant, it may be hard to translate into an
in-clinic insulin analogue conversion algorithm.

The insulin sensitivity estimates for iDeg are significantly lower than
for iAsp. This difference aligns with the drug dynamics of iDeg. In the
clinical trial, both iAsp and iDeg’s total insulin concentrations are measured
in plasma. However, a large fraction of iDeg in plasma is bound to albumin
leaving it unavailable to interact with the insulin receptor, in contrast to
the measured concentration of iAsp. Consequently, the insulin sensitivity of
iDeg will appear significantly lower.

Interday variations in insulin sensitivity may influence the analysis. Even
in a carefully controlled experimental setup, the PK/PD response of two
identical injections of insulin preparations can differ in the same individual
[62]. Standard-of-care translation algorithms typically employ a unit-to-unit
conversion from pump- to pen-based treatment, and vice versa [63, 64, 65].
From this, we expect to see a clear correlation across individuals in the dose-
response to rapid- and long-acting insulin. Nonetheless, the results on this
limited data set do not strongly support the assumption that insulin dose
conversion between analogues can be standardized for all individuals.

Table 3.1: Model parameters for the Minimal Model

SG 1.4 · 10−2 [min−] Glucose effectiveness [61]

Vg 1.7 [dL/kg] Distribution volume of glucose [61]

p2 3.0 · 10−2 [min−] Rate constant of insulin action [61]

Gb 36 [mg/dL] Basal glucose concentration [60]

Ib 0 [pmol/L] Basal insulin concentration [60]

csf 1000 no unit Constant scaling factor
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Figure 3.2: Correlation in insulin sensitivity (SI) between rapid-acting
insulin (iAsp) and long-acting insulin (iDeg). Figure adapted from [55].

3.3 The role of bioavailability
In section 2.2, we show how short-term AP treatment can safely identify
an efficient daily dose of long-acting insulin for injection-based treatment.
Here, we revisit the initial simulations and assess the treatment efficacy of
the new titration method in a cohort of people with T2D. We investigate
how differences in bioavailability may affect the translation from pump to
pen, as pump studies in T2D populations have shown a 20% reduction in
insulin need compared to injection-based treatment [66]. In the simulator, we
incorporate differences in the bioavailability between rapid- and long-acting
insulin and simulate a cohort using a Dose Finder solution [67].

3.3.1 Incorporating bioavailability in the IGI model
We augment the IGI model from section 2.1.2 to include differences in insulin
analogue bioavailability. To have independent clearance rates for the two
insulin analogues, we split the exogenous insulin compartment, Iexo, into
two analogue-specific compartments, Iexo,R and Iexo,L with the clearance
rates kexo,R and kexo,L. Figure 3.5 shows the new model structure.

3.3.2 Simulating a cohort of people with T2D
We vary a subset of the model parameters to simulate a cohort of a hundred
virtual patients. T2D is a heterogeneous disease and in particular the in-
sulin resistance and insulin production differ between individuals. To reflect
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Figure 3.3: Model structure for the augmented IGI model. The original
model compartments have been augmented with absorption models for rapid-
and long-acting insulin (blue) and a compartment for subcutaneous glucose
concentration (red). Different clearance rates, kexo,R and kexo,L, determine
the bioavailability of rapid- and long-acting insulin, respectively.

this, we sample individual values for the insulin-dependent glucose clear-
ance, CLGI , and insulin concentration at steady state, Iss. Table 3.2 lists
the published parameter distributions. In the cohort simulation, we limit
the standard deviation of Iss and CLGI to 50%. To ensure non-negative
values, we apply a lognormal transformation of the Iss and CLGI parameter
distributions. We sample body weights from the normal distribution in [68]
and scale the weight-dependent parameters (EGP , VG, and VI). Table 3.3
lists the weight-dependent parameters.

Table 3.2: Parameter distributions

BW ∼ N (89.4, 17.72) [kg] Body weight [68]

CLGI ∼ N (0.000355, (0.000355 · 77%)2) [L/min/(pmol/L)] Insulin-dependent glucose clearance [47]

Iss ∼ N (24.2, (24.2 · 96%)2) [pmol/L] Steady state endogenous insulin concentration [47]
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Table 3.3: Parameters scaled by sampled body weight

VI 0.087 [L/kg] Endogenous insulin distribution volume [47]

VG 0.133 [L/kg] Distribution volume for central glucose compartment [47]

EGP 8.2 · 10−3 [mmol/min/kg] Endogenous glucose production [47]

After parameter sampling, we screen the cohort to ensure that all the
insulin responses are feasible for a T2D population. Before insulin treatment,
95% of the individuals in a titration study by Zinman et al. have a fasting
blood glucose level below 15 mmol/L [68]. As the cohort in the clinical
study represents only a segment of the insulin-requiring T2D population in
real-world settings, we permit higher fasting blood glucose values within the
simulated cohort. We define the following constraints:

• When no insulin is administered, the fasting blood glucose must lie
within a 7.5-20 mmol/L range.

• The insulin dose required to reach a glucose level of 5.8 mmol/L must
not surpass 150 U.

If the constraints are violated, we re-sample the model parameters until the
constraints are met.

3.3.3 The effect of bioavailability
With the new model structure, we simulate a virtual clinic of insulin-naïve
people with T2D on AP treatment. For the control algorithm, we apply
(2.5). After three weeks of AP treatment, we translate the insulin infusion
rate, unit-to-unit, into a daily injection of long-acting insulin. Figure 3.4 is
a conceptual illustration of the simulation setup.

In three scenarios, we assess how differences in the insulin analogue clear-
ance rate affects the translation between pump and pen-based treatment.
We fix kexo,R to the nominal insulin clearance rate from [32] and scale the
nominal rate by a factor of 0.8, 1 or 1.2 for kexo,L. Figure 3.5 and Table 3.4
show the simulation results.

Before the switch to injection-based treatment, the average pre-breakfast
glucose level is 7.7 ± 1.3 mmol/L. Despite the extended AP period, only a
fragment of the cohort has reached the target glucose range after three weeks.

Table 3.4: Average pre-breakfast glucose concentration (standard devia-
tion) for the 100 simulated patients.

Baseline Before Switch After Switch [mmol/L]
[mmol/L] [mmol/L] 1:0.8 1:1 1:1.2
12.8 (2.7) 7.7 (1.3) 7.3 (1.2) 8.0 (1.3) 8.6 (1.4)
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Figure 3.4: In the first three weeks, the AP drives the fasting glucose levels
towards the green target range through a continuous and increasing infusion
of rapid-acting insulin. In week four, we convert the infusion rate, unit-to-
unit, to a daily injection of long-acting insulin. FPG denotes the fasting
plasma glucose measured via finger-pricking.

For the 100 individuals, we translate the personalized insulin infusion rate,
unit-to-unit, to a daily injection dose of long-acting insulin. After stabilizing
on the injection-based treatment, the kexo,R : kexo,L ratios of 1:0.8, 1:1, and
1:1.2 result in an average pre-breakfast glucose level of 7.3 ± 1.2 mmol/L,
8.0 ± 1.3 mmol/L, and 8.6 ± 1.4 mmol/L, respectively.

In simulation, a higher clearance rate of the long-acting insulin could
mimic a reduction in insulin need compared to injection-based treatment.
For the investigated bioavailability ratios, the results indicate no hypoglycemia
risk associated with a unit-to-unit translation from pump to pen. However,
to achieve comparable glycemic control, the bioavailability ratio is key to
successful dose conversion from pump to pen.

3.3.4 A need for dose predictions?
Figure 3.5 reveals that the majority of the simulated cohort does not reach
the target range within a few weeks of AP treatment. A direct conver-
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Figure 3.5: The average pre-breakfast glucose levels (± standard deviation)
for the rapid- to long-acting insulin clearance ratios ( kexo,R : kexo,L ) of 1:0.8,
1:1, and 1:1.2. The 4.4-7.2 mmol/L target range is marked in green.

sion from pump to pen may therefore not be possible after short-term AP
treatment. Nevertheless, a longer duration of the AP treatment would sig-
nificantly increase the price of the treatment solution. As an alternative,
we revisit the Dose Finder titration concept to see if short-term AP data
can support prediction of a safe and effective insulin dose for pen-based
treatment. Figure 3.6 visualizes the new concept. In the following section,
we investigate the technical feasibility of using short-term AP treatment to
predict a suitable dose of long-acting insulin.

3.4 Estimating pen-based insulin treatment from
closed-loop data

In the cohort of virtual people with T2D from Section 3.3.2, we simulate
24 to 48 hours of AP treatment. During the short closed-loop period, the
cohort is fasting. In pump-based treatment for people with diabetes, it is not
unseen to use fasting periods of up to 24 hours to identify a suitable insulin
infusion rate [69]. With the 24 to 48 hours of AP data, we estimate three
parameters in a four-compartment insulin dose-response model by Aradóttir
et al. [37].
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Figure 3.6: The Dose Finder concept revisited. An AP drives the glucose
levels towards the green target range through a continuous and increasing
infusion of rapid-acting insulin, uR. After one day, we use the AP data
to identify parameters in a dose-response model. The model is used to
predict an insulin dose to reach target glucose concentrations. After dose-
prediction, a daily dose of long-acting insulin (uL) is injected before breakfast
and fasting blood glucose (FBG) measurements are used for daily monitoring.
The illustration has been adapted from [57].

3.4.1 Prediction model

To personalize the dose prediction for each individual in the cohort, we
estimate the parameter set θ = [p4, p6, p7] in the dose-response model,

ẋ1(t) = 1
p1
u(t) − 1

p1
x1(t), (3.14a)

ẋ2(t) = 1
p1
x1(t) − 1

p1
x2(t), (3.14b)

ẋ3(t) = p3(x2(t) + p7x4(t)) − p3x3(t), (3.14c)
ẋ4(t) = −(p5 + p4x3(t)) · x4(t) + p6. (3.14d)

The compartments x1 and x2 describe the absorption of the insulin input,
u(t), from subcutaneous tissue to plasma. x3 is the insulin effect, and x4 is
the glucose concentration. Table 3.5 lists the parameter descriptions and val-
ues. To estimate θ, we apply MLE and approximate the likelihood function
using the CDEKF as described in Section 3.1.
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Table 3.5: Population parameters for the prediction model

p1 60 [min] Time constant for rapid-acting insulin absorption [31]

p3 0.011 [1/min] Delay in insulin action [37]

p4 0.44 [1/U] Insulin sensitivity [37]

p5 0.0023 [1/min] Insulin-independent glucose clearance [37]

p6 0.0672 [mmol/L·min] Endogenous glucose production [37]

p7 0.0018 [U·L/mmol·min] Endogenous insulin production [37]

3.4.2 Dose predictions
For each individual in the cohort, we estimate a personalized set of param-
eters to describe the dose-response. We apply the parameter values to com-
pute an insulin infusion rate, utarget, to reach target glucose concentration,
yref ,

utarget = p6 − yref · p5

yref · p4
− p7 · yref . (3.15)

For the parameter p5, we use the population parameter value and we fix the
target glucose value to yref = 5.8 mmol/L. We convert the individual insulin
infusion rate to a daily injection dose of long-acting insulin,

uL[U/day] = utarget [U/min] · 60 [min/h] · 24 [h/day]. (3.16)

3.4.3 Outcomes of the dose predictions
Figure 3.7 shows the new Dose Finder solution. When we predict the daily
insulin dose from 48 hours of closed-loop data, the majority of the simulated
individuals reach glucose levels within the 4.4-7.2 mmol/L target range fol-
lowing the transition to injection-based treatment. However, for three virtual
people, we overestimate the insulin dose and the glucose levels drop below
3.9 mmol/L. This can be dangerous and is considered unsuitable for clinical
implementation. Note that the dose estimates for the three individuals do
not coincide with the outliers in the boxplot of long-acting insulin doses. The
three virtual individuals with suboptimal insulin dose estimates display only
a marginal reduction in glucose values during the closed-loop period. We an-
ticipate that introducing higher system excitation, such as a more aggressive
controller, may enhance dose estimates for these individuals.

Across the simulated cohort, overall performance is good when using
48 hours of data to estimate a personalized daily insulin dose in a fasting
scenario. We wish to determine whether we can achieve comparable per-
formance with less data. Figure 3.7b shows the outcomes when we only
collect 24 hours of closed-loop data. Unfortunately, we overestimate 78% of
the daily insulin doses when less data is available. For the majority of the
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cohort, the glucose levels drop far below the 3.9 mmol/L threshold. The lim-
ited system excitation does not appear to be sufficient to capture essential
system dynamics. In Figure 3.7c, we triple the controller gain in an attempt
to increase system excitation and improve performance. Compared to the
nominal gain, a tripled controller gain improves the prediction quality after
24 hours of closed-loop data. Only seven individuals in the cohort experience
hypoglycemia. The remaining people achieve target glucose levels with the
predicted insulin doses. As in Figure 3.7a, the red curves, representing the
unfortunate individuals, have a smaller gradient in the closed-loop period
compared to the population mean. The small gradient can indicate a lower
degree of system excitation in these individuals.

In conclusion, we reach the best performance when the AP collects data
over 48 hours, suggesting that sufficient system excitation is crucial if this
method is to be applicable in clinical practice.

3.5 Summary
In this chapter, we explore factors that may influence the translation from
rapid-acting insulin delivered in a pump to long-acting insulin injected with
a pen. In the analysis, we estimate parameters in physiological models using
MLE and express the likelihood function with the CDEKF. In a T1D data
set, we estimate insulin sensitivity and show a statistically significant cor-
relation between the sensitivity to rapid- and long-acting insulin injections
in the same individual. Although significant, the correlation offers limited
value as a translation factor between insulin analogues. To describe how
insulin need may change when transitioning between pump and pen-based
treatment, we augment the physiological model from Section 2.1.2. With
the new model, we can simulate differences in bioavailability. We generate a
hundred virtual people with T2D and simulate three weeks of AP treatment
followed by a unit-to-unit switch to pen-based treatment. The results show
that the bioavailability ratio between insulin analogues is key to achieve a
successful dose conversion from pump to pen. The cohort simulation shows
many individuals who do not reach the clinical target range within a few
weeks of AP treatment. As a result, we redefine the Dose Finder titration
concept and test whether 24 to 48 hours of AP data can facilitate prediction
of a safe and effective dose of long-acting insulin. From short-term AP data,
we estimate three individual parameters in a dose-response model and pre-
dict a personalized dose for each individual in the cohort. We see the best
performance when we use 48 hours of AP data, indicating that sufficient
system excitation is essential for this method to succeed.
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(b) 24 hours of AP treatment.
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(c) 24 hours with tripled gain.

Figure 3.7: During the 24- or 48-hour closed-loop period, glucose levels in
the cohort are driven towards the target range (4.4-7.2 mmol/L) by rapid-
acting insulin infusion, uR. Based on the closed-loop data, we predict a
target insulin dose and administer it as a daily injection of long-acting in-
sulin, uL, in the five last simulation days. With 48 hours of AP data, dose
predictions lead to three individuals with glucose levels below 3.9 mmol/L.
With only 24 hours of data, 78 people experience hypoglycemia. With a
tripled controller gain and 24 hours of data, seven individuals experience
blood glucose concentrations below 3.9 mmol/L. Figure adapted from [56].



CHAPTER 4
Experimental Design

In this chapter, we present work from Appendix A and E. We address the
third research question and investigate how experimental design of the AP
period can improve dose predictions for injection-based insulin therapy. We
use a Model-Based Design of Experiment (MBDoE) approach to collect in-
formative data during short-term closed-loop treatment. As safety is critical
in clinical applications, we explore how to improve the safety of the MBDoE
approach.

4.1 Model-Based Design of Experiments
The aim of MBDoE is to determine an optimal set of experimental pre-
conditions, e.g. system inputs or sampling times, that enhance parameter
estimation under a number of fixed input and output constraints [70]. The
optimization is based on a preliminary system model known as the design
model.

4.1.1 Design model
To characterize the system, we use a model of ordinary differential equations
given by

ẋ(t) = f(t, x(t), u(t), d(t), θ),
ŷk = h(tk, x(tk)) + vk,

where x ∈ Rnx is the state vector, u ∈ Rnu is a vector of controlled inputs to
the system, and d ∈ Rnd is a vector of known system disturbances. θ ∈ Rnp

is the vector of parameters we wish to estimate from the experimental data.
The vector ŷ ∈ Rny contains the model-predicted discrete system outputs
contaminated by measurement noise vk ∼ Niid(0, Cy).

4.1.2 Experimental design as an optimization problem
Based on the design model, we define an optimization problem to identify
an experimental design variable, ϕ, that enhances the estimation of the pa-
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rameter set θ,

min
ϕ

ψ(ϕ, θ), (4.1a)

s.t. x(0) = x0, (4.1b)
ẋ(t) = f(t, x(t), u(t), d(t), θ), (4.1c)
ŷk = h(tk, x(tk)) + vk, (4.1d)
0 ≥ c(t, x(t), u(t), d(t), θ). (4.1e)

x(0) are the initial states and c denotes the constraints. The cost function of
the optimization problem is the design criterion, ψ, an assigned measurement
function of the parameter variance-covariance matrix Cθ. As Cθ quantifies
the parametric uncertainty, minimizing its value is equivalent to improving
the parameter estimates. As an approximation of Cθ, we apply the inverse
of Fisher’s information matrix, I(θ, ϕ). Hence, we wish to determine

ϕ = arg min{ψ[Cθ(θ, ϕ)]} ≈ arg min{ψ[I(θ, ϕ)−1]}. (4.2)

4.1.3 Computing Fisher’s information matrix
We compute Fisher’s Information matrix, I,

I(θ, ϕ) =
nt∑

k=1

Sy(tk)TC−1
y Sy(tk), (4.3)

where Cy is the covariance of the measurements ŷ, and Sy is the output
sensitivity to changes in the parameter set θ̂,

Sy(tk) =


∂ŷ1(tk)

∂θ̂1
. . . ∂ŷ1(tk)

∂θ̂nθ... . . . ...
∂ŷny (tk)

∂θ̂1
. . .

∂ŷny (tk)
∂θ̂nθ

 . (4.4)

Given that the measurement noise is independent and normally distributed,
the covariance of Fisher’s information matrix is lower bounded by the Cramér-
Rao bound,

Cθ ≥ I−1(θ, ϕ). (4.5)

As the Cramér-Rao bound asymptotically (i.e. nt → ∞) becomes equality,
we can apply the inverse of Fisher’s Information matrix as an approximation
of the parameter variance-covariance matrix [70]. In this work, we apply
central differentiation to numerically approximate Sy(k), and we assume
that Cy is known.
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4.1.4 Design criteria
Based on Fisher’s information matrix, a series of scalar criteria may assess
the optimality of the experimental design. A-, D- and E-optimality are com-
mon measures from literature [70].

A-optimality. The A-criterion minimizes the trace of the inverse of
Fisher’s information matrix. Geometrically, this minimizes the hyper box
that bounds the variance ellipsoid and is equivalent to minimizing the arith-
metic mean of all the parameters’ errors.

ψA(ϕ, θ) = tr
(
I(θ, ϕ)−1)

(4.6)

D-optimality. The D-criterion minimizes the determinant of Fisher’s
information matrix which corresponds to minimizing the volume of the joint
confidence interval for the parameters.

ψD(ϕ, θ) = −det (I(θ, ϕ)) (4.7)

E-optimality. The E-criterion minimizes the largest axis of the vari-
ance ellipsoid which is expressed through the smallest eigenvalue of Fisher’s
information matrix. This is equivalent to minimizing the largest parameter
correlation or error.

ψE(ϕ, θ) = λmin(I(θ, ϕ)) (4.8)
Figure 4.1 illustrates the geometrical interpretation of the three criteria.

4.1.5 MBDoE in diabetes research
In diabetes research, MBDoE publications focus on the identification of phys-
iological models and improving control algorithms for artificial pancreas sys-
tems [71, 72, 73, 74, 75, 76, 77]. Most work in this field dates ten years back,
where the aim was to determine the timing of blood samples to obtain the
most information about an individual’s physiological response to insulin and
meals. Today, advancements in sensor technology have excluded the need for
identifying blood sampling times, as CGMs provide reliable measurements
every five minutes. Still, only a few studies on optimal experimental design
have exploited this technological development [76, 74]. We believe there is
a potential to improve model-based insulin dosing algorithms in T2D using
MBDoE and CGM signals.

4.2 Improving dose estimation through
optimized meals and insulin infusion

Compared to Chapter 3, we aim to improve the individual dose predictions
through an optimization of the data collection protocol. We define a set of
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θ̂1

θ̂2
A-criteria

D-criteria

E-criteria

Figure 4.1: Illustration of three common design criteria for optimal exper-
imental design. We can minimize the variance ellipsoid based on the hyper
box bounding the ellipsoid (A-optimality), the volume of the ellipsoid (D-
optimality), or the largest axis of the ellipsoid (E-optimality). Illustration
adapted from [70].

input and output constraints and compute a decision variable to maximize
the information in the experimental data set [58].

4.2.1 Decision variable
As we wish to compare to the experimental design in Section 3.4, we fix the
length of the experiment to 24 hours. We describe the inputs of the design
vector, ϕ, in the following way,

ϕ = [u(t), d(t)] = [u1, u2, . . . , u24, dB , dL, dD]. (4.9)

To make the optimization problem tractable, we apply a zero-order hold
parametrization on u(t), and fix the start time and duration of the meal
input, d(t). The three meals are consumed over five minute intervals starting
at 07:00, 12:30 and 18:00. We determine the optimal size of each meal. For
the insulin input, we determine the optimal insulin infusion over 24 one-hour
blocks of piece-wise constant input.

4.2.2 Design constraints
To improve safety and ensure physiologically feasible inputs, we compute the
optimal experiment under a number of input and output constraints.
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Output constraints

Before initiating insulin treatment, people with T2D have often experienced
elevated glucose levels over a significant length of time. Although the hy-
perglycemic condition is unhealthy to remain in, a swift drop towards nor-
moglycemia can cause nerve and eye damage as the body requires time to
adapt to new glycemic levels. To design a protocol that graduates the drop in
glycemia, we introduce output constraints. In simulation, we determine the
maximal glucose drop rate. We simulate a cohort of 100 insulin-naïve people
with T2D who receive rapid-acting insulin at the rate 0.07 mU/kg/min for 24
hours. Over 24 hours, the total insulin delivered is equivalent to the lowest
initial dose recommended in standard of care guidelines, i.e. 0.1U/kg/day
[3]. Figure 4.2 shows the simulation results.

We note that the fasting glucose on average decreases by 1.8 mmol/L
after a 0.1U/kg/day insulin infusion and we define a glucose drop rate, rd,
based on the results. We allow the glucose to fluctuate within the constraints

yk ≥ y0 − rd · tk − δ,

yk ≤ y0 − rd · tk + δ +Mk,
(4.10)

where y0 [mmol/L] is the initial fasting glucose, rd = 0.001 [mmol/L/min] is
the drop rate, tk [min] is the time, yk [mmol/L] is the output at time tk, and
δ [mmol/L] is half of the width of the target range. Mk is the meal buffer at
time tk. The buffer raises the upper constraint in the postprandial period,

M =

{
bG if tk ≥ tm and tk ≤ tm + bt,
0 otherwise,

(4.11)

where tm is the meal start time, bt is the duration of the buffer after the
beginning of the meal, and bG is the magnitude of the added buffer.

Input constraints

We include three daily meals in the experimental design. To guarantee that
the optimal protocol includes all three meals, we select a minimal meal size
of 20 g of carbohydrates (CHO) for each meal. The maximal meal size is
100 g of CHO.

To be physically feasible, the insulin input must be non-negative. We
include an upper bound on the insulin input to add an additional safety
measure against overdosing. If the preliminary design model underestimates
the insulin response in the subject, the output constraints alone cannot en-
sure safety. We select the maximal insulin infusion rate to be 15 mU/min.
If the person receives insulin at this rate for the full duration of the exper-
iment, the total insulin dosage is 21.6 U/day. For many individuals, this
dose exceeds the highest initial dose recommended in standard of care guide-
lines, 0.2 U/kg/day. However, if the protocol does not have maximal insulin
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Figure 4.2: To determine a safe drop rate in glucose levels, we simulate
how much the fasting blood glucose decreases in an insulin-naïve T2D cohort
after an insulin infusion of 0.1U/kg/day. Over 24 hours, the mean glucose
concentration drops from 13.6 mmol/L to 11.8 mmol/L, approximately -
0.001 mmol/L/min.

infusion for the full duration of the experiment, the daily input can comply
with clinical guidelines. Prior to implementation of the computed protocol,
we assess the compliance of the total insulin dose.

4.2.3 Design model
To include meal input in the experimental design, we add meal absorption
compartments from Aradóttir et al. [33] to the prediction model in (3.14),

Ḋ1(t) = d(t)1000 ·AG

MwG
− 1
τm

D1(t), (4.12a)

Ḋ2(t) = 1
τm

D1(t) − 1
τm

D2(t), (4.12b)

ẋ1(t) = 1
p1
u(t) − 1

p1
x1(t), (4.12c)

ẋ2(t) = 1
p1
x1(t) − 1

p1
x2(t), (4.12d)

ẋ3(t) = p3(x2(t) + p7x4(t)) − p3x3(t), (4.12e)
ẋ4(t) = −(p5 + p4x3(t)) · x4(t) + p6 +RA(t). (4.12f)
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Figure 4.3: Output constraints for the optimal experimental design. Over
the course of the experiment, the glucose concentration must drop slowly
towards the target range. Once the target range is reached, it defines the
output constraints. After meals, the output constraint is raised by bG = 5.0
mmol/L for the next bt = 5.5 hours. Adapted from [58].

D1 [mmol/min] and D2 [mmol/min] are meal compartments representing
absorption of carbohydrate intake, d(t) [g/min]. The time constant τm de-
scribes the meal absorption speed, AG is the bioavailability of the carbohy-
drates, and MwG is the molecular weight of glucose to convert the input
into mmol. RA(t) = D2(t)

VGτm
[mmol/L/min] is the rate of appearance of glu-

cose from consumed meals, where VG [L] is the glucose distribution volume.
Appendix E lists the parameter values. For the measurement function, h(·),
we apply,

yk = x4(tk) + vk. (4.13)

We assume the measurement noise is normally distributed, vk ∼ Niid(0, R),
and apply R = 0.1872 mmol2/L2 [78].

4.2.4 Dose estimates from a new experimental design
Given the design model and the design constraints, we solve (4.1) with the
A-optimality criteria to determine the meal and insulin input during the
experiment. Figure 4.4a presents the optimized experimental design and
Figure 4.4b shows the output sensitivities of the three estimated parameters
during the experiment. In the experimental design, breakfast and lunch
drive the glucose level to the upper bound, maximizing the effect of p7. The
dinner has fewer grams of carbohydrate and allows the insulin input to push
the glucose level towards the lower bound, emphasizing the influence of p4.
The insulin infusion resembles a step function, where the input increases
from 0 mU/min to 15 mU/min at 10AM and remains at maximal infusion
until the end of the experiment. The sensitivities appear to be somewhat
correlated and all three sensitivities are of similar absolute magnitude. We
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Figure 4.4: The optimal meal and insulin intake for parameter estimation
given the design assumptions. The three meal sizes are 57g, 67g, and 31g
of carbohydrates. Three hours after the first meal, insulin infusion starts
and remains at the maximal infusion rate, 15mU/min, throughout the rest
of the experiment. The output sensitivities show that the input strategy
separates different model dynamics to the extent the correlation between
the parameters allows. Figure adapted from [58].

run the experiment on the cohort of 100 people with T2D to test if the new
design improves the dose predictions. Figure 4.5 shows the results.

The response of cohort differs from the design in Figure 4.4a. For the
majority of the experiment, the mean glucose curve does not violate the
output constraints. However, the breakfast and dinner lead to glucose levels
slightly above the constraints. In the last few hours of the experiment, the
insulin input pushes the glucose levels lower than the design model prediction.
Compared to the performance in Figure 3.7, the new experimental protocol
improves the quality and safety of the dose predictions. With the MBDoE
protocol, the whole cohort safely reaches the 4.4-7.2 mmol/L target range
on injection-based treatment.

Due to the tight constraints in the optimization problem, the over and
undershoot is minimal. Still, serious constraint violations may happen due to
a mismatch between the design model and the physical system. It is essential
to consider this limitation of the MBDoE framework when designing clinical
protocols.
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Figure 4.5: Test of the MBDoE on 100 virtual people with T2D. In the
first 24 hours, the MBDoE protocol dictates the meal input, d(t), and rapid-
acting insulin infusion, uR(t). During the experiment, the mean glucose
curve marginally surpasses the output constraints after the first and sec-
ond meal. After the experiment, we estimate parameters in a dose-response
model for each individual and predict a daily insulin dose, uL(t), to reach
the glucose target range. In the following days, all subjects receive a daily
injection with the estimated daily insulin dose at 7AM. To test if the pre-
dicted insulin dose can control the fasting glucose levels, the last five days
of the simulation study are without meals and oscillations in glucose are the
result of insulin dynamics. All insulin dose estimates are safe and effective.
Figure adapted from [58].

4.3 MBDoE and safety
The MBDoE framework can incorporate safety constraints. However, we can-
not guarantee a safe response in the real system as the experimental design
is based on a model that approximates the underlying system. The mis-
match between design model and system can have undesired consequences
[79]. In the less severe case, a presumed optimal design leads to uninfor-
mative experiments. In the worst case, the inputs cause violations of the
safety constraints. Different approaches can reduce the risk of violating con-
straints. With back-off strategies, tightened design constraints on the output
increase the likelihood to remain within the system’s safety constraints [79,
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80]. However, restricting the output space makes the experimental design
conservative and can lead to limited system excitation and uninformative
data sets [79].

An alternative is online re-design, where the design model is continuously
re-parameterized to identify a new optimal experimental protocol to replace
the previous one [79, 81]. In this way, the optimal design is always based
on the newest information about the system and can reduce the parametric
mismatch between the design model and the system. Still, the mismatch is
rarely only parametric and discrepancies in model structure can still lead
to unexpected outcomes. Although a back-off strategy and online re-design
can improve safety, both methods cannot remove the risk completely.

In controller design, optimal control methods can offer insights into how
to best regulate system outputs. An advanced control strategy, e.g. model
predictive control, may be mimicked in a simpler design, e.g. a PID con-
troller, once the patterns of optimal behaviour are known [82]. We propose
a similar approach to experimental design. To improve safety, we mimick
the optimal experimental design in a closed-loop setup [57].

4.4 Learning from optimal excitation behaviors
In this section, we present an alternative method to enhance system identifi-
cation by mimicking model-based optimal experimental design. To avoid the
risk of open-loop implementation, we approximate the output curve from a
MBDoE and apply it as a reference for the physical system. With a reference-
tracking controller, we follow the output trace to collect experimental data
in a closed-loop setup.

4.4.1 Decision variable and design model
As in the previous experimental design, we fix the length of the experiment
to 24 hours. To determine the dynamic input profile, u(t), we define the
design vector, ϕ, with a piece-wise constant insulin infusion rate per hour of
the experiment,

ϕ = u(t) = [u1, u2, . . . , u24]. (4.14)
To achieve a simpler design, we disregard meals in this case-study. We apply
the prediction model from (3.14) as the design model.

4.4.2 Design constraints
To ensure physiologically feasible inputs, we constrain the insulin infusion
to non-negative values. As in Section 4.2.2, we confine the glucose levels to

yk ≥ y0 − rd · tk − δ,

yk ≤ y0 − rd · tk + δ,
(4.15)



4.4 Learning from optimal excitation behaviors 43

where y0 [mmol/L] is initial fasting glucose level, rd = 0.001 [mmol/L/min]
is the drop rate, tk [min] is the time, yk [mmol/L] is the glucose measurement
at time tk, and δ [mmol/L] is half of the width of the target range. Figure
4.6 illustrates the constraints.

4.4.3 The optimal design
Using the design model and the constraints, we solve (4.1) with the A-
optimality criteria and identify the optimal insulin infusion throughout the
experiment. Figure 4.7 depicts the new design. Throughout the experi-
ment, the insulin infusion fluctuates and moves the glucose concentration
between the upper and lower output constraint. We test the design in the
cohort of 100 people with T2D. Figure 4.8 shows the outcomes. For all in
the simulated cohort, the experimental data enables effective and safe dose
predictions. However, for three individuals, the new protocol results in hy-
poglycemia. Furthermore, the mean glucose curve for the cohort violates the
output constraints. Although the open-loop implementation of the design is
unsafe, the solution to (4.1) offers some insights into how to best excite the
system to identify θ.

4.4.4 A mimicked experiment
From visual inspection of the glucose curve in Figure 4.7, we hypothesize
that system identification improves when the glucose concentration oscillates
between the upper and lower constraint. To avoid open-loop implementation,
we define an oscillating reference for the system and use a reference-tracking
controller to follow it in closed-loop. To mimick the glucose trace from
the MBDoE, we select a phase-shifted cosine curve as the reference. We

Time

Glucose
[mmol/L]

[min]

y0 + δ

y0

y0 − δ

4.4

7.2

-0.001 [mmol/L]/min

Figure 4.6: Output constraints for the optimal experimental design. To
avoid treatment-induced complications, the glucose concentration must drop
slowly towards the target range. Once the target range is reached, it defines
the output constraints. Figure adapted from [57].
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Figure 4.7: Optimized experimental design. The insulin input drives the
glucose concentration between the upper and lower constraint in a sinusoidal
manner. Figure adapted from [57].

individualize the reference, yref , by starting the cosine curve at the initial
fasting glucose measurement, y0 [mmol/L], for each simulated individual,

yref (t) = δ cos
(

3π · t
60 · 24

+ π

2

)
+ y0 − 0.001t. (4.16)

t is time in minutes and 60 · 24 is the number of minutes per 24 hours. As
in the constraint definition, δ [mmol/L] is half of the width of the 4.4-7.2
mmol/L target range. We let the glucose concentration drop gradually over
time by 0.001 (mmol/L)/min.

To track the glucose reference yref , we manually tune a proportional
controller. We mimick the MBDoE from Figure 4.7 and collect closed-loop
data for 24 hours using the controller and yref . With the closed-loop data, we
estimate parameters in (3.14) and predict a daily dose of long-acting insulin
for each individual in the cohort. To test the predicted doses, all individuals
in the cohort receive a daily, personalized injection of long-acting insulin at
7AM in the following days. Figure 4.9 depicts the closed-loop experiment
and the outcomes of the individual dose predictions. Based on the mimicked
MBDoE protocol, all members of the cohort receive a safe and effective long-
acting insulin dose prediction. Compared to the baseline in Figure 3.7, the
closed-loop data set improves system identification, whilst minimizing the
risks of implementing a MBDoE in open-loop.
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Figure 4.8: Open-loop implementation of the MBDoE from Figure 4.7.
Three participants experience hypoglycemia due to the experimental design.
On average, the output exceeds the constraints, marking the design as po-
tentially unsafe. Disregarding the risk, the data from the experiment can
support effective and safe dose predictions for the entire cohort. Figure
adapted from [57].

4.5 Summary
Model-Based Design of Experiment (MBDoE) has a potential to improve the
performance of model-based dose-guidance solutions. With MBDoE proto-
cols, we collect data during short-term pump-based treatment in a simulated
cohort of 100 people with T2D. We optimize meal and insulin inputs in a
24-hour data-collection period to parameterize a dose-response model. In
simulation, we test the safety and efficacy of the model-based dose predic-
tions. Compared to the results in Section 3.4, we can run a safer and more
informative experiment by exploiting MBDoE to optimize the experimental
protocol. With the new experimental design, all of the dose predictions are
safe and effective in the simulation. Still, mismatches between the design
model and the simulated cohort lead to potentially unsafe constraint viola-
tions during the experiment. As safety is critical in clinical applications, we
explore how to improve the safety of the MBDoE approach. To avoid the
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Figure 4.9: A mimicked MBDoE experiment where a reference-tracking
controller follows a cosine-shaped glucose reference. Throughout the ex-
periment, the average glucose curve remains within the output constraints.
Following the transition to pen-based treatment with long-acting insulin, uL,
all dose estimations are safe and effective. Figure adapted from [57].

risk associated with an open-loop experiment, we approximate the output
curve from the MBDoE and use it as a reference for the glucose concen-
tration. With a reference-tracking controller, we follow the output trace to
collect experimental data in closed-loop. The proposed design method pro-
vides informative experimental data to predict safe and effective doses for
all individuals in the cohort.

Despite promising results in simulation, implementation of an untested
experimental design may have limited uptake in clinics. Instead, a qualita-
tive assessment of the MBDoE design, rather than a direct implementation,
can act as a guidance tool in the design of clinical trial protocols. In a
real-world implementation, HCPs may adjust the design to match existing
treatment guidelines, e.g. by selecting a maximal insulin infusion rate for
each individual. Closed-loop control could provide an additional safety mea-
sure.



CHAPTER 5
Conclusion

In this work, we explore the technical feasibility of a new dose-guidance so-
lution for people with T2D initiating pen-based insulin therapy. To identify
a personalized, daily injection-dose of long-acting insulin, we leverage data
from short-term AP treatment.

To simulate the switch from AP- to pen-based treatment in people with
T2D, we present a physiological model including rapid- and long-acting
insulin treatment and CGM measurements. In the simulation model, we
demonstrate how the insulin infusion rate from an AP can be converted into
a personalized dose of long-acting insulin delivered with an injection pen.
For a virtual individual initiating insulin treatment, we show that one initial
week of AP treatment can reduce the titration period from five weeks to a
single week compared to the standard of care 2-0-2 algorithm.

The use of APs in T2D treatment is still novel. As a result, no AP
data paired with logged insulin injections was available to assess the clinical
validity of the simulated dose-guidance solution. Instead, we investigate if a
correlation in dose-response exists between different insulin analogues. In a
T1D data set, we identify a statistically significant correlation between the
sensitivity to rapid- and long-acting insulin injections in the same individual.
Although significant, the correlation offers limited value as a translation
factor.

The insulin need may change when transitioning between pump and pen-
based treatment. We adjust the simulation model to show how differences in
bioavailability may affect a switch from rapid- to long-acting insulin. In the
new model, we simulate a cohort of a hundred people with T2D. After three
weeks of AP treatment, the bioavailability ratio proves important to achieve
a successful dose conversion from pump to pen in the cohort. However, many
individuals do not reach the clinical target range within a few weeks of AP
treatment, indicating that the results from the first simulated individual
cannot be generalized.

Instead of letting the AP drive the fasting glucose level all the way into
the target range, we explore the technical feasibility of predicting a safe and
effective insulin dose from short-term AP data. From 24 to 48 hours of AP
data, we estimate three individual parameters in a dose-response model and
predict a personalized dose for each individual in the cohort. We achieve
the best performance with 48 hours of AP data, indicating that sufficient
system excitation is essential for this method to succeed.

To improve dose predictions, we investigate how model-based experimen-
tal design can guide the AP data collection period. In a 24-hour experiment,
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we use MBDoE to select the meal and insulin input and maximize the out-
put sensitivity to the three parameters in the dose-response model. With the
new experimental protocol, all dose predictions in the cohort are safe and
effective. However, when running the experiment, the cohort experiences mi-
nor constraint violations. The safety limitations of implementing a MBDoE
protocol in open-loop are important to consider in clinical applications.

In a closed-loop setup, we let the MBDoE framework provide insights
on how to sufficiently excite a system. We approximate the output curve
from an insulin-only MBDoE and adjust it to each individual in the co-
hort to achieve a personalized glucose reference. With a reference-tracking
controller, we follow the personalized glucose trace to collect experimental
data in closed-loop. The proposed design method does not violate output
constraints and provides informative experimental data to predict safe and
effective doses for all individuals in the cohort.

In this work, we have explored the technical feasibility of using short-term
artificial pancreas treatment as an insulin titration tool for people with T2D.
In simple simulations, the proposed solution holds potential. Larger simu-
lation cohorts, tests in different simulation models and more stochasticity
in the simulated scenarios can help further cement the technical feasibility.
However, without clinical data, it is a challenge to conclude on the feasibility
of successfully translating infusion of rapid-acting insulin in a pump to injec-
tions of long-acting insulin with a pen. In the future, access to commercial
AP systems may enable clinical feasibility assessments.

5.1 Future perspectives and opportunities
In the pharmaceutical industry, experts predict that package solutions, which
combine drugs, sensors, apps, and services, will be a major driving force in
the future [83]. Given the growing prevalence of T2D, it is critical that
new treatment solutions ease the workload for HCPs rather than adding
more tasks. With a Dose Finder titration concept, the initiation of insulin
treatment may be simplified to the journey presented in Figure 5.1.

Today, common limitations of dose guidance apps include their complex-
ity, poor user engagement, and limited documentation of clinical effect. For
a Dose Finder titration concept to gain traction in diabetes clinics, it must
easily integrate with existing workflows and be intuitive to use for people
with diabetes and their health care professionals. Over time, the Dose Finder
concept could provide data for a long-term cost-effectiveness analysis, reveal-
ing whether the solution enables better titration outcomes and improved
long-term health.

In this work, we disregard postprandial glucose excursions and only con-
sider the titration of long-acting insulin to control fasting glucose levels.
Compared to current finger-prick measurements, the combined data streams
from CGMs and insulin pumps provide detailed insights on the meal re-
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(a) (b) (c) (d)

Figure 5.1: A Dose Finder titration journey. a) Clinical visit: The individ-
ual with T2D is not reaching desired outcomes on the current treatment. b)
Collect closed-loop data: The individual is sent home with a kit for collecting
CL data. c) Selecting the optimal treatment from CL data: The algorithm
supports the HCP in selection of an optimal drug and dose. d) Initiate treat-
ment: The individual with T2D initiates the selected treatment.

sponse. In future work, an analysis of CGM alone or in combination with
insulin infusion changes around meals could help identify individuals with
T2D who may benefit from adding mealtime insulin.

Although AP systems will soon be available to a T2D population, the
impending launch of once-weekly insulins is predicted to reduce the need
for AP systems in a T2D population [21]. This new generation of drugs
will require titration. For drugs where the dose escalation can only happen
weekly, the potential to increase titration speed with a Dose Finder solution
may be even greater than shown in this work, given that a translation from
rapid-acting to weekly insulin is clinically feasible.

In general, translation algorithms between different insulin analogues and
treatment forms can benefit many people, not only in the T2D population.
With the growing distribution of AP systems and the launch of new gen-
eration insulins, the need for safe and effective dose conversion will grow.
Personalized translation algorithms, leveraging new data streams, hold a po-
tential to improve glycemic control in the transition phase and to ease the
life of people using insulin.
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Abstract: In type 2 diabetes (T2D), injections with long-acting insulin can become necessary to
regulate blood glucose and avoid long-term complications. However, finding a safe and effective
insulin dose, a process known as titration, is both challenging and time demanding. In this paper,
we propose a new method for safe and rapid identification of a personalized insulin dose with
long-acting insulin through short-term use of fast-acting insulin in an artificial pancreas (AP). To
illustrate this novel concept, we simulate our method by modelling the glucose response to fast-
and long-acting insulin in people with T2D. We apply a simple control-algorithm for the AP to
adjust the insulin infusion rate during fasting periods. In this case-study, we simulate an insulin
näıve T2D patient on AP treatment for one week, gradually adjusting the insulin infusion rate.
After one week, we convert the insulin infusion rate, unit-to-unit, to a daily injection of long-
acting insulin. We compare our method to titration with the standard of care 2-0-2 algorithm.
Our simulations indicate that we can reduce the titration period from five weeks to a single
week, whilst easing the burden on the patient.
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1. INTRODUCTION

Diabetes is a chronic disease where the body is unable to
lower blood glucose levels sufficiently with the secretion
of insulin. In type 2 diabetes (T2D), this regulatory defi-
ciency is caused by an imbalance between insulin secretion
and insulin sensitivity in the body. Left untreated, elevated
glucose levels can lead to blindness, kidney failure and
amputations, resulting in a high cost for both the individ-
ual and society. In late-stage T2D, insulin injections may
become necessary to successfully regulate glucose levels.
When initiating insulin treatment in T2D, daily injections
of long-acting insulin can be used to lower glucose levels.
If needed, fast-acting insulin can be added at meal times.
The insulin dose must be selected carefully as too much
insulin can result in life-threatening low blood glucose con-
centrations. To avoid overdoses, a lengthy iterative process
called titration is used to gradually increase the amount of
injected long-acting insulin such that the fasting glucose
concentration reaches the normal range. Based on fasting
self-measured blood glucose (SMBG) values, the patient
adjusts the daily insulin dose until the desired glucose
concentration is reached. This can take several months.
Unfortunately, many patients never reach treatment goals
as the burdensome titration task and a lack of confidence
in the treatment can lead to adherence problems (Arnolds
et al., 2013; Khunti et al., 2020).

� This project is funded by Innovation Fund Denmark through the
Industrial PhD project 0153-00049B and by Novo Nordisk A/S.

The burden on the patient may be eased through auto-
mated insulin delivery. In recent years, several studies have
shown promising results with automated insulin delivery,
also known as an artificial pancreas (AP), for people with
T2D (Bally et al., 2018; Taleb et al., 2019). An AP consists
of three components; (i) a continuous glucose monitor
(CGM), (ii) a control algorithm, and (iii) an insulin pump
with fast-acting insulin. The components automatically
measure glucose, adjust the insulin dose accordingly and
deliver the dose to the user at a frequent interval, typically
every five minutes. Multiple AP systems are available on
the market for people with type 1 diabetes, however com-
mercial AP systems for T2D have not yet been launched.
Even though APs may become available as a treatment
solution for T2D in the near future, AP-usage will re-
quire high levels of self-engagement and a specific skill-
set from the user, such as learning to change the infusion
set and learning to carb-count (Tanenbaum et al., 2017).
Widespread usage of APs in the T2D population, may be
hampered by high cost, the burden of device wear, and
the individual’s wish to conceal their condition to avoid
being labelled as sick. In the light of this, the greater
patient population’s treatment needs may be met with
simpler, less visible and cheaper treatment forms, such as
injection-based insulin treatment. For successful injection-
based treatment, a swift, safe and simple identification of
the individual’s insulin-need is critical.

Methods for quickly achieving target glucose levels have
been used for decades in critical care (Rohrbach et al.,
2017). Here, a gradual increase in intravenous insulin in-
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Henrik Bengtsson ∗∗ Magnus Ekelund ∗∗

John Bagterp Jørgensen ∗

∗ Technical University of Denmark, Department of Applied
Mathematics and Computer Science, DK-2800 Kgs Lyngby, Denmark

∗∗ Novo Nordisk A/S, DK-2880 Bagsværd, Denmark

Abstract: In type 2 diabetes (T2D), injections with long-acting insulin can become necessary to
regulate blood glucose and avoid long-term complications. However, finding a safe and effective
insulin dose, a process known as titration, is both challenging and time demanding. In this paper,
we propose a new method for safe and rapid identification of a personalized insulin dose with
long-acting insulin through short-term use of fast-acting insulin in an artificial pancreas (AP). To
illustrate this novel concept, we simulate our method by modelling the glucose response to fast-
and long-acting insulin in people with T2D. We apply a simple control-algorithm for the AP to
adjust the insulin infusion rate during fasting periods. In this case-study, we simulate an insulin
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Fig. 1. The Dose Finder Concept. Short-term use of an
artificial pancreas regulates the fasting blood glucose
into the target range. The identified infusion rate is
converted to a pen-based injection with long-acting
insulin. Final dose-adjustments are made based on
SMBG measurements and a standard of care algo-
rithm.

fusion over two to three days is used to steer very high
glucose concentrations into the target range. Upon reach-
ing the target range, the infusion rate may be converted to
an injection-based insulin dose (Kelly, 2014). The method
is efficient, however, it is invasive and would not be consid-
ered applicable outside of critical care, where patients do
not already have a intravenous catheter inserted. Similar
to insulin delivered intravenously, literature suggests that
a correlation exists between fast-acting insulin delivered in
a pump and long-acting insulin injected from a pen (Aron-
son et al., 2016; Meneghini and Sparrow-Bodenmiller,
2010). We hypothesize, that the methods used in critical
care can be mimicked through short-term usage of an AP.
In this way, the AP system may enable a less burdensome
initiation of injection-based insulin treatment.

In this paper, Section 2 presents The Dose Finder, a new
method for rapid insulin titration using an artificial pan-
creas. To demonstrate The Dose Finder, we in Section 3
introduce a physiological model for simulating the glucose
response to fast- and long-acting insulin in people with
T2D. Section 4 describes a simple control algorithm for
the AP. Section 5 presents the method we use to switch
from AP to pen-based treatment. Our simulation setup
is documented in Section 6. We present and discuss our
results in Section 7 and 8, respectively, before concluding
the paper in Section 9.

2. THE DOSE FINDER CONCEPT

We propose a new method, The Dose Finder, where we use
an AP as a tool to find the insulin-need with fast-acting
insulin. Figure 1 shows the Dose Finder concept.

The AP is used for a short time period, e.g. a week,
and lowers fasting glucose levels into the target range
by adjusting the insulin infusion rate. A short wear-time
will allow the doctor to set up the AP for the patient,
and the patient may connect and forget until the next
doctor appointment. We only adjust insulin infusion rates
during fasting periods, as the goal of the insulin treatment
is to regulate fasting glucose rather than post-prandial
glucose. After the AP period, we translate the identified
insulin infusion rate from the pump into an injection-based

Table 1. The 2-0-2 Titration Algorithm for
Long-Acting Insulin. Dose adjustments are
based on the lowest SMBG value below target,
or an average of the SMBG values from the
past three days. (American Diabetes Associa-

tion, 2021)

SMBG [mmol/L] Dose Adjustment [U]

> 7.2 +2
4.4− 7.2 No change
< 4.4 −2

Initial dose is 10 U

treatment with long-acting insulin. In the case where the
optimal dose of long-acting insulin has not been identified
after the AP period, we follow the dose translation with
dose adjustments based on SMBG values and a standard of
care (SoC) algorithm, such as the 2-0-2 titration algorithm
shown in Table 1.

3. MATHEMATICAL MODELS

To simulate subjects with T2D treated with both fast- and
long-acting insulin, we augment the integrated glucose-
insulin (IGI) model (Jauslin et al., 2011; Røge et al., 2014)
with an extended version of the exogenous insulin model
from Hovorka et al. (2004). We include a subcutaneous glu-
cose concentration compartment from Biagi et al. (2017)
for simulating sensor measurements as input to the artifi-
cial pancreas. The resulting model consists of a submodel
for carbohydrate (CHO) absorption, a pharmacodynamic
(PD) model describing the interaction between glucose
and insulin concentration, and two pharmacokinetic (PK)
models to simulate the absorption dynamics of fast- and
long-acting insulin. Figure 2 shows the model structure.
We present the model equations in the following subsec-
tions and Table 2 lists selected parameter values.

3.1 Glucose Sub-Model

In the IGI model, glucose is split between the central Gc(t)
[mmol] and the peripheral compartment Gp(t) [mmol],

Ġc(t) = EGP +RA(t) +
Q

Vp
Gp(t)

− 1

VG
(CLG + CLGIIE(t) +Q)Gc(t) (1a)

Ġp(t) =
Q

VG
Gc(t)−

Q

Vp
Gp(t) (1b)

where the plasma concentration is the glucose in the
central compartment divided by the distribution volume,
VG [L]. Glucose enters the central compartment through
the endogenous glucose production, EGP [mmol/min],
the absorbed meals, RA(t) [mmol/min], and from the pe-
ripheral glucose compartment via the inter-compartmental
clearance, Q [L/min]. Vp [L] is the distribution volume
in the peripheral compartment. Both glucose-dependent
clearance, CLG [L/min], and insulin-dependent clearance,
CLGI [L/min/(pmol/L)], remove glucose from the central
compartment. IE [pmol/L] is the insulin effect compart-
ment.
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Fig. 2. Model structure for the augmented IGI model. The
original model compartments have been augmented
with absorption models for fast- and long-acting in-
sulin (blue) and a compartment for subcutaneous
glucose concentration (red).

3.2 Carbohydrate Absorption Model

The IGI model describes oral meal ingestion with a two-
compartment model,

ĠA(t) = d(t)AG − kaGA(t) (2a)

ĠT (t) = kaGA(t)− kaGT (t) (2b)

RA =
ka

MwG
GT (t) (2c)

where d(t) [mg/min] is the amount of ingested carbo-
hydrates (CHO). GA [mg] and GT [mg] represent the
amounts of CHO in the absorption and the transit phase,
respectively. AG [unitless] describes the bio-availability of
the CHO. ka [1/min] is a rate constant for the absorption
of CHO. The absorbed meals, RA [mmol/min] enter the
central glucose compartment. To match units of RA and
Gc, we convert GT to [mmol/min] by dividing with the
molecular weight of glucose MwG = 180.1559 mg/mmol.

3.3 Endogenous Insulin Sub-Model

Endogenous insulin is described through the compartment,
I [pmol], with the secretion and elimination of insulin
produced in the pancreas,

İ(t) = Isec(t)−
CLI

VI
I(t) (3a)

Isec(t) = Isec,0 ·GCM2 · INC(t) (3b)

Isec,0 = CLI · Iss (3c)

where the insulin secretion, Isec [pmol/min], is regulated
by the ability of glucose to stimulate secretion, GCM2

[unitless], and the incretin effect, INC [unitless]. The basal
insulin secretion, Isec,0 [pmol/min], is given by the product
of the endogenous insulin clearance, CLI [L/min], and the
insulin concentration at steady state, Iss [pmol/L].

3.4 Glucose Effect on Insulin Secretion

The effect compartment, GE2 [mmol/L], links the plasma
glucose concentration to insulin secretion,

ĠE2(t) = kGE2
Gc(t)

VG
− kGE2GE2(t) (4a)

GCM2(t) =

(
GE2(t)

Gss

)IPRG

(4b)

where kGE2 [1/min] is a rate constant. The glucose effect
on insulin secretion, GCM2, is determined through the
baseline glucose concentration, Gss [mmol/L], and the
control parameter IPRG [unitless].

3.5 Incretin Effect

Ingested meals can boost the insulin secretion through the
incretin effect. In the IGI model, the effect is described as
a saturable function,

INC(t) = 1 +
Emax ·GT (t)

ED50 +GT (t)
(5)

where Emax [unitless] is the maximal effect with which
glucose in the transit compartment can affect insulin
secretion, and ED50 [mg] is the amount of glucose needed
to obtain half of the Emax-effect.

3.6 PK model

We augment the IGI model with the exogenous insulin
model from Hovorka et al. (2004) to describe the absorp-
tion dynamics of fast- and long-acting insulin analogues.
The absorption of exogenous insulin is described as a third-
order system,

Ṡ1,ia(t) = uia(t)−
1

τia
S1,ia(t) (6a)

Ṡ2,ia(t) =
1

τia
S1,ia(t)−

1

τia
S2,ia(t) (6b)

UI,ia(t) =
1

τia
S2,ia(t) (6c)

where uia(t) [U/min] is the amount of subcutaneously in-
jected insulin analogue. The time constant, τia [min], is the
time to maximum insulin absorption for the specific ana-
logue. S1,ia [U] and S2,ia [U] are absorption compartments
and UI,ia [U/min] is the absorption rate. The absorption
rates of fast- and long-acting insulin, UI,F and UI,L, en-
ter the exogenous insulin concentration compartment Iexo
[U/L],

İexo(t) =
UI,F (t) + UI,L(t)

VI,exo
− kexoIexo(t) (7)

VI,exo is the distribution volume for exogenous insulin and
kexo [1/min] is the clearance rate.

3.7 Insulin Effect

The insulin effect compartment describes the delay in glu-
cose utilization caused by both endogenous and exogenous
insulin,

İE(t) =
kIE
VI

(I(t) + cf · Iexo(t))− kIEIE(t) (8)

where kIE [1/min] is the rate constant describing the effect
delay, and VI [L] is the insulin distribution volume. To
align units, we multiply Iexo [U/L] by the conversion factor
cf [pmol/U] from Knopp et al. (2019).

3.8 Continuous Glucose Monitor Model

CGMs measure glucose levels in the interstitial tissue. We
use a model relating plasma glucose and interstitial glucose
from Biagi et al. (2017),

Ġsc(t) =

Gc(t)
VG

−Gsc(t)

τsc
(9)

where the time constant τsc [min] describes the lag between
glucose concentrations in plasma, Gc(t)/VG, and the glu-
cose concentration in the interstitial tissue, Gsc [mmol/L].

3.9 Parameters

We use parameter values from Røge et al. (2014) and
Hovorka et al. (2004) for the IGI model and the exogenous
insulin dynamics, respectively. To simulate long-acting
insulin, we introduce τL = 12 h as in Aradóttir et al.
(2017). The endogenous glucose production (EGP ) is
taken from Røge et al. (2014) and is normalized to a
body weight of 70 kg in order to match the distribution
volumes (VG, Vp, VI) that are stated to be proportional
body weight and are normalized to 70 kg. For the lag to
the subcutaneous glucose compartment, we select a time
constant from the distribution in Biagi et al. (2017). To
convert from pmol to U, we use the conversion from Knopp
et al. (2019).

Table 2. Model Parameters

Parameter Value Source

τsc [min] 10 Biagi et al. (2017)
τF [min] 55 Hovorka et al. (2004)
τL [min] 720 Aradóttir et al. (2017)
kexo [1/min] 0.138 Hovorka et al. (2004)
EGP [mmol/min] 0.574 Røge et al. (2014)
cf [pmol/U] 6000 Knopp et al. (2019)

4. AP CONTROL ALGORITHM

We implement a simple control algorithm to simulate
closed-loop control with the AP. Inspired by the integral
component in PID-controllers, we adjust the insulin infu-
sion rate uF at every sample based on the integrated error,

v(k) = v(k − 1) +Ki · (yref − ycgm(k)) · Ts (10a)

uF (k) = max(v(k), 0) (10b)

where k is the sample number, Ki

[
U ·L

min2·mmol

]
is the

integral gain, and Ts [min] is the sample time. The error
term is the difference between the reference value, yref =
5.8 mmol/L, and the glucose concentration measured by
the CGM sensor, ycgm(k). We set v(0) = 0. As negative
insulin infusion rates are not physiologically possible, we
constrain the infusion rate to uF (k) ≤ 0 U/min.

Sudden drops in blood glucose values can be uncomfort-
able for patients. We select Ki = −3 · 10−6 U ·L

min2·mmol
to ensure a balance between rapid convergence towards
the reference value and a smooth transition for patient
comfort. We wish to regulate the the insulin infusion rate
such that the fasting glucose is lowered into the target
range. To avoid adjusting uF during post-prandial peaks,
meals are announced to the controller. Following a meal
announcement, the controller is switched off for 5.5 hours
and the insulin infusion rate is fixed to the latest uF value.

5. SWITCH FROM PUMP TO PEN

For this simplified case simulation, we assume that the
bio-availability of fast-acting insulin delivered in a pump is
identical to that of long-acting insulin injected in a pen. We
calculate the long-acting insulin dose as the total amount
of insulin delivered with the pump during 24 hours using
the identified insulin infusion rate,

uL[U/day] =
24[h/day] · 60[min/h] · uF [U/sample]

Ts[min/sample]
(11)

The calculated dose, uL, is injected daily prior to break-
fast. As fast-acting and long-acting insulin have different
dynamics, a direct switch from pump to pen will result in
a rise in blood glucose. This happens because the effect
of the fast-acting insulin disappears before the long-acting
insulin becomes effective. In critical care, the transition
from intravenous to subcutaneous insulin treatment is
often overlapped to avoid a rise in blood glucose (Kelly,
2014). Likewise, we compensate for the difference in dy-
namics by continued infusion of fast-acting insulin for 2
hours after the first injection with long-acting insulin.
Starting one week after the transition from pump to pen,
we apply a standard of care titration algorithm for final
dose adjustments until dose convergence.

6. SIMULATION SETUP

We simulate three different ways to initiate insulin for
the same virtual patient with; (i) The 2-0-2 Titration
Algorithm twice-weekly with titration on day 1 and 4,
(ii) AP treatment until the translated insulin infusion rate
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İexo(t) =
UI,F (t) + UI,L(t)

VI,exo
− kexoIexo(t) (7)

VI,exo is the distribution volume for exogenous insulin and
kexo [1/min] is the clearance rate.

3.7 Insulin Effect

The insulin effect compartment describes the delay in glu-
cose utilization caused by both endogenous and exogenous
insulin,

İE(t) =
kIE
VI

(I(t) + cf · Iexo(t))− kIEIE(t) (8)

where kIE [1/min] is the rate constant describing the effect
delay, and VI [L] is the insulin distribution volume. To
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cf [pmol/U] from Knopp et al. (2019).

3.8 Continuous Glucose Monitor Model

CGMs measure glucose levels in the interstitial tissue. We
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from Biagi et al. (2017),

Ġsc(t) =

Gc(t)
VG

−Gsc(t)

τsc
(9)

where the time constant τsc [min] describes the lag between
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3.9 Parameters
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Table 2. Model Parameters

Parameter Value Source
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τF [min] 55 Hovorka et al. (2004)
τL [min] 720 Aradóttir et al. (2017)
kexo [1/min] 0.138 Hovorka et al. (2004)
EGP [mmol/min] 0.574 Røge et al. (2014)
cf [pmol/U] 6000 Knopp et al. (2019)
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uF (k) = max(v(k), 0) (10b)

where k is the sample number, Ki

[
U ·L

min2·mmol

]
is the
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min2·mmol
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identical to that of long-acting insulin injected in a pen. We
calculate the long-acting insulin dose as the total amount
of insulin delivered with the pump during 24 hours using
the identified insulin infusion rate,

uL[U/day] =
24[h/day] · 60[min/h] · uF [U/sample]

Ts[min/sample]
(11)

The calculated dose, uL, is injected daily prior to break-
fast. As fast-acting and long-acting insulin have different
dynamics, a direct switch from pump to pen will result in
a rise in blood glucose. This happens because the effect
of the fast-acting insulin disappears before the long-acting
insulin becomes effective. In critical care, the transition
from intravenous to subcutaneous insulin treatment is
often overlapped to avoid a rise in blood glucose (Kelly,
2014). Likewise, we compensate for the difference in dy-
namics by continued infusion of fast-acting insulin for 2
hours after the first injection with long-acting insulin.
Starting one week after the transition from pump to pen,
we apply a standard of care titration algorithm for final
dose adjustments until dose convergence.

6. SIMULATION SETUP

We simulate three different ways to initiate insulin for
the same virtual patient with; (i) The 2-0-2 Titration
Algorithm twice-weekly with titration on day 1 and 4,
(ii) AP treatment until the translated insulin infusion rate
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Table 3. Titration Results

Titration Dose at end of Final Titration
Method Week 1 Week 2 Week 4 Dose Length

2-0-2 12 U 16 U 24 U 28 U 5 weeks
AP 35 U 43 U 45 U 46 U 5 weeks
DF 35 U 35 U 35 U 35 U 1 week

converges to a fixed pen-dose, and (iii) The Dose Finder:
One week of AP followed by dose-conversion to long-
acting insulin, and weekly dose-adjustments with the 2-
0-2 algorithm, if needed. In all simulations, we assume full
adherence. We start the study at midnight. We simulate
three daily meals of 40 g, 55 g, and 60 g of carbohydrates
with meal times at 7:00 AM, 1:00 PM and 7:00 PM,
respectively. The duration of each meal is 15 minutes.
SMBG values are recorded at 7:00 AM, and the three latest
SMBG values are used as input to the 2-0-2 algorithm.
We use a sample time of Ts = 5 min, and simulate insulin
injections as a fixed rate over a five minute sample.

7. SIMULATION RESULTS

With our extension to the IGI model, we are able to
simulate treatment with both fast- and long-acting insulin.
Figure 3 illustrates the first 12 days of the Dose Finder
scenario, where an AP is used for 7 days before switching
to pen-based treatment. We see that the fasting glucose
levels are reduced as the insulin infusion rate is gradually
increased. The controller is mainly active overnight where
the patient is fasting. After one week of AP treatment, the
fasting blood glucose has been lowered from 12 mmol/L
to 6 mmol/L and is within the target range. During AP
treatment, all measured glucose concentrations are above
or within the target range, and the treatment is considered
safe. When transitioning from AP to injection-pen, a small
rise is seen in the glucose values until they stabilize after
3-4 days of pen-treatment. After 3 days, all the fasting
blood glucose values are within the target range, and no
adjustments are needed with the 2-0-2 algorithm.

We compare the outcomes for the Dose Finder (DF)
method to two other titration approaches in Table 3 and
Figure 4. With the 2-0-2 algorithm, the dose converges
after five weeks. We see that our method can reduce the
titration period to a single week. If the AP period is
extended, we can complete the titration period after five
weeks and reach a lower fasting blood glucose value within
the target range.

8. DISCUSSION

With one week of AP treatment, we can identify a dose
of long-acting insulin that can bring the patient’s blood
glucose into the target range. We identify a dose of 35 U,
however, our simulations show that several dose sizes will
allow the patient to reach target. Some patients may desire
a tighter target range, e.g. 4.0− 6.0 mmol/L. In this case,
the patient will need additional dose-adjustments to reach
target after the switch from AP to pen-based treatment.
As another option, we can extend the AP period to reach a
lower fasting blood-glucose before switching to pen-based
treatment. When we run the AP, the dose converges to
46 U after five weeks. Due to integrator wind-up, the AP
stabilizes the fasting blood glucose at 5 mmol/L. Although

Fig. 3. Simulation of the Dose Finder. The panels from
top to bottom show the glucose concentration, the
consumed carbohydrates, the infused fast-acting in-
sulin and the injected long-acting insulin, respectively.
Over the first week, the AP adjusts the insulin infu-
sion rate during fasting periods. At the start of week 2,
the infusion rate is converted, unit-to-unit, to a daily,
long-acting insulin dose administered pre-breakfast.
Insulin infusion is continued for 2 hours after the
first pen-injection to reduce the rise in glucose levels
during transition. The green area shows the target
range of 4.4− 7.2 mmol/L

Fig. 4. Titration with The Dose Finder (DF), the 2-0-
2 algorithm and the implemented artificial pancreas
(AP). The upper panel shows the daily SMBG val-
ues for DF and 2-0-2, and the pre-breakfast CGM
measurement for the AP. The lower panel shows the
daily dose of long-acting insulin for DF and 2-0-2, and
the unit-to-unit conversion of the fast-acting insulin
delivered by the AP on the last day of each week.

the prolonged AP wear-time can quickly steer the blood
glucose to a lower target, it comes at a cost. The patient
would need frequent clinic visits to change the cartridge,
infusion set, and sensor. Alternatively, the patient would
have to learn to manage the AP themselves. Both scenarios
complicate the procedure and may reduce the benefits
compared to regular titration.

We simulate an ideal scenario where the patient is adher-
ent and the measurements are without noise. In practice,
titration periods may be extended greatly due to physi-
ological variation, forgotten injections and misunderstood
guidelines. Additionally, the safety of the control algorithm
for the AP may be affected by unannounced meals and
sensor noise. The control algorithm in this paper serves
the purpose of visualizing the the Dose Finder concept
and would need additional safety measures and extensive
testing to be applicable in a clinical setup.

In our exogenous insulin compartment, the clearance of
fast-acting insulin delivered in a pump and long-acting
insulin delivered in a pen are identical. Aronson et al.
(2016) showed that on average subjects with T2D who
switch from pen-based treatment to insulin pumps will
need 20% less insulin. If less insulin is needed in pumps,
the unit-to-unit conversion we use to transition from AP
to pen-based treatment can be considered safe as it sys-
tematically underestimates the insulin-need. As a result,
the subject may need additional dose-adjustments in order
to reach the final titration target after the switch to pen-
based treatment. In future work, the difference between
insulin delivery methods may be included in our model
as an analogue-dependent clearance by implementing an
Iexo-compartment for each analogue.

9. CONCLUSION

This work presents a model to simulate fast- and long-
acting insulin in people with type 2 diabetes. With our
model, we simulate how the insulin infusion rate from an
artificial pancreas can be converted into a personalized
dose of long-acting insulin delivered with an insulin pen.
For a virtual patient initiating insulin treatment, we show
that one initial week of AP treatment can reduce the
titration period from five weeks to a single week compared
to the standard of care 2-0-2 algorithm.
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Correlation in Dose-Response to Rapid- and Long-Acting Insulin
for People with Type 1 Diabetes

Sarah Ellinor Engell1,2, Tinna Björk Aradóttir1, Henrik Bengtsson1, John Bagterp Jørgensen2

Abstract— In diabetes, it can become necessary to switch
between pump- and pen-based insulin treatment. This switch
involves a translation between rapid- and long-acting insulin
analogues. In standard-of-care translation algorithms, a
unit-to-unit conversion is applied. However, this simplification
may not fit all individuals. In this paper, we investigate the
correlation between dose-response to rapid- and long-acting
insulin in the same individual, and compare the correlation
across individuals. As a measure of dose-response, we estimate
the insulin sensitivity in clinical data from 25 subjects with
type 1 diabetes. For parameter estimation, we use maximum
likelihood with a continuous-discrete extended Kalman filter
and Bergman’s minimal model. The results show a weak
correlation between insulin sensitivity to rapid- and long-acting
insulin across individuals. On this sparse data set, the analysis
suggests that the standardized unit-to-unit translation between
insulin analogues may not benefit all subjects.

I. INTRODUCTION

In recent years, insulin treatment with artificial pancreas
(AP) systems has become a viable solution for people living
with diabetes [1]. However, pump malfunctions, infusion
set complications or allergic reactions to adhesives may
force AP-users to switch to injection pen-based treatment for
shorter or longer periods [2], [3]. In this switch, continuous
rapid-acting insulin infusion from the pump is replaced by
multiple daily injections of rapid- and long-acting insulin
analogues to cover the post-prandial glucose excursions and
the basal insulin need, respectively. Several methods exist
for the conversion between pump and pen [4]–[6]. Generally,
these conversion algorithms build upon the assumption that
one unit of insulin lowers the blood glucose equally, no
matter the analogue or delivery form. Nonetheless, several
studies on the switch from pen- to pump-based treatment
report that a reduced total daily dose of insulin is required
for the same individual to stay in glycemic control on pump-
based treatment [5], [7]. In order to standardize the switch
between pump and pen, it is key that a correlation exists
between the glucose-lowering efficacy of rapid- and long-
acting insulin, and in particular, that this correlation does
not differ significantly between individuals.

A common way to quantify the insulin effect is by esti-
mating the insulin sensitivity. In personalized dose-guidance
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algorithms, insulin sensitivity is estimated with a Kalman
filter and an estimator model of insulin-glucose dynamics [8],
[9]. We apply this approach to examine the glucose-lowering
efficacy of rapid- and long-acting insulin. The purpose of this
work is to determine the correlation between dose-response
to single-dose injections of rapid- and long-acting insulin
in the same individual. We compare the glucose-lowering
efficacy when an equal dose of two insulin analogues are
administered on separate dosing days.

This paper is organized as follows. In Section II, we
present a simple physiological model in which the insulin
sensitivity parameter can be estimated from clinical data,
and we briefly describe the parameter estimation technique.
In Section III, we describe the applied clinical data set, and
in Section IV, we document how we select and pre-process
data. Section V presents the results of the analysis. In Section
VI, we present the conclusions.

II. METHODS

In this paper, we estimate the insulin sensitivity in a non-
linear model of the insulin-glucose dynamics in people with
diabetes. We use maximum likelihood with a continuous-
discrete extended Kalman filter (CDEKF).

A. Bergman’s Minimal Model

As our estimator model, we employ a scaled version of
the non-linear model from Bergman et al. [10]:

dG
dt

=−SGG(t)− X(t)G(t)
cs f

+SGGb +
1

VG
Ra(t), (1a)

dX
dt

=−p2X(t)+ cs f (p2SI(I(t)− Ib)). (1b)

The two states describe the glucose concentration in
plasma, G [mg/dL], and the insulin action, X [min−1].
Inputs to the system are the rate of appearance of glucose
in plasma, Ra(t) [mg/kg/min], and the insulin concentration
in plasma, I(t) [U/L]. The glucose concentration, G(t), is
measured, i.e. y(t) = G(t). To reduce the risk of numerical
errors in our Kalman filter, we apply a constant scale factor,
cs f , to get similar orders of magnitude for the two states.
We estimate the parameter SI [L/U/min], which describes
the insulin sensitivity. For the remaining model parameters,
we use the published population parameters. Table I lists
the parameters applied.



B. Parameter Estimation with Maximum Likelihood

Given a set of measurements

YN = {y0,y1, ...,yN}, (2)

we want to maximize the joint probability density

p(YN |θ) = p(yN ,yN−1, ...,y0|θ) (3)

i.e. the maximum likelihood function. By maximizing (3), or
equivalently minimizing the negative log-likelihood function
(4), we can obtain an estimate of unknown parameters, θ̂ , in
our model.

V (θ) =− ln(p(YN |θ))

=
1
2
(N +1)ny ln(2π)

+
1
2

N

∑
k=0

ln[det(Re,k)]+ eT
k R−1

e,k ek,

(4)

where N is the number of measurements, ny is the number
of system outputs, ek is the innovation from the CDEKF, and
Re,k is the corresponding covariance. From this, we estimate
the unknown parameters, θ̂ (the insulin sensitivity, SI).

θ̂ = argmin
θ

V (θ) (5)

C. The Continuous-Discrete Extended Kalman Filter

To obtain the innovation, ek, and its covariance, Re,k, we
must estimate the states of the system. The CDEKF estimates
the states based on a stochastic continuous-time model and
discrete-time measurements from the underlying system, i.e.

dx(t) = f (t,x(t),u(t),θ)dt +σdω(t) (6a)
yk = h(tk,x(tk))+ vk (6b)

where x(t) is the state vector, u(t) is the input vector,
and θ represents the model parameters. For u(t), we
assume a zero-order hold parametrization, i.e. u(t) = uk for
tk ≤ t < tk+1. The process noise, {ω(t), t ≥ 0}, is a standard
Wiener process with covariance Idt. ω(t) is scaled by a
time-invariant diagonal matrix, σ . The measurement noise
is assumed normally distributed, vk ∼ Niid(0,Rk).

The CDEKF consists of a measurement update and a time
update. In the measurement update, we use a new measure-
ment, yk, to correct the current state estimate, x̂k|k−1, and
its covariance, Pk|k−1. To obtain the updated state estimate,
x̂k|k, and covariance, Pk|k, we compute the innovation as the

TABLE I: Parameter Values used in the estimator model.

Parameter Description
SG 1.4 ·10−2 min−1 [11] Glucose effectiveness
p2 3.0 ·10−2 min−1 [11] Rate constant of insulin action
VG 1.7 dL/kg [11] Distribution volume of glucose
Gb 36 mg/dL [12] Basal glucose concentration
Ib 0 U/L [12] Basal insulin concentration
cs f 1000 Scale factor

difference between the incoming measurement, yk, and the
one-step prediction of the output, ŷk|k−1 =Ckx̂k|k−1,

ek = yk −Ckx̂k|k−1, (7)

where
Ck =

∂h
∂x

(tk, x̂k|k−1) (8)

is a linearization of the output function h evaluated at x̂k|k−1.
Through the covariance of the innovation, Re,k, we compute
the Kalman gain, Kk,

Re,k =CkPk|k−1CT
k +Rk, (9a)

Kk = Pk|k−1CT
k R−1

e,k . (9b)

We conclude the measurement update with an update of the
state and its covariance

x̂k|k = x̂k|k−1 +Kkek, (10a)

Pk|k = (I −KkCk)Pk|k−1(I −KkCk)
T +KkRkKT

k . (10b)

The measurement update is followed by a time update,
where we compute the mean and variance of the one-
step predictions. The one-step predictions, x̂k+1|k = x̂k(tk+1)
and Pk+1|k = Pk(tk+1), are the solutions to the system of
differential equations,

dx̂k(t)
dt

= f (t, x̂k(t),uk), (11a)

dPk(t)
dt

= Ak(t)Pk(t)+Pk(t)Ak(t)T +σσ
T , (11b)

given the initial conditions

x̂k(tk) = x̂k|k, (12a)

Pk(tk) = Pk|k. (12b)

and where

Ak(t) = A(t, x̂k(t),uk) =
∂ f
∂x

(t, x̂k(t),uk), (13)

is a linearization of the drift function f evaluated at x̂k(t)
with input uk.

D. Tuning of the Kalman Filter

We use a sampling time of 1 minute as this aligns with
the measurement frequency. In our CDEKF time-update, we
use 10 sub-samples and the Euler method to compute the
one-step predictions. The initial state is defined as x̂1|0 =
[G,X ]T = [y0,2]T with an initial covariance P0 = I, where I
here denotes the identity matrix. We select the measurement
covariance as Rk = 100 and use σ = diag(10,10) to scale
the process noise.

III. CLINICAL DATA

We use data from the clinical Phase I trial NCT01173926
[13]. In this dose-response trial, 27 subjects with type 1
diabetes receive single-dose, subcutaneous injections of three
different insulin analogues over three separate dosing visits.
The trial compares pharmacokinetics and pharmacodynamics
(PK/PD) of insulin aspart (iAsp), insulin degludec (iDeg)
and insulin degludec/insulin aspart (iDegAsp). Following an



insulin injection, the PD response is evaluated over a 24-
hour euglycemic clamp. The PK profile is evaluated over
120 hours for iDeg and 12 hours for iAsp.

IV. DATA SELECTION AND PRE-PROCESSING

In the analysis, we include the available subset of PK/PD
data from the first 12 hours following iAsp and iDeg in-
jection. Although the action of iDeg stretches over more
hours, the data subset includes its peak action. From the
data set, we use the glucose infusion rate (GIR) as the model
input Ra(t), insulin concentration in plasma as the input I(t),
and plasma glucose concentration, G(t), as the output. We
select subsets where the GIR is actively compensating for
the effect of insulin, and where observations are available
for plasma glucose and insulin concentration. Fig. 1 shows a
conceptual example of the selected data for iAsp and iDeg.
The subset marked in green is used for analysis. Out of 27
subjects in the trial, we included 25 subjects that fulfilled
our criteria of a complete data set for the analysis. For
pre-processing, we cap the plasma glucose measurements at
250 mg/dL to remove outliers that can disturb our filter.
In the plasma glucose measurements, we fill in missing
values with the latest observation. The GIR and plasma
glucose concentration are measured every minute, however
the plasma insulin concentration is only measured every
10-60 minutes with reduced frequency over the course of
the trial. To obtain a value for insulin concentration every
minute, we extrapolate linearly between the measurements.

V. RESULTS

We estimate the rapid- and long-acting insulin sensitivities
for each of the 25 subjects. We present insulin sensitivity
estimates for the cases when the insulin effect, X(t), is
unconstrained and constrained to be positive. We correlate
the insulin sensitivity estimates for the rapid- and long-
acting insulin. We do a steady state model analysis to explain
negative insulin effects.

A. Unconstrained CDEKF

Fig. 2 shows the fit along with the corresponding 95%
confidence interval for the estimated rapid- and long-acting
insulin sensitivities. The Pearson correlation coefficient is
r = 0.5077 with the p-value p = 0.0096. Linear regression
and the plotted estimates show that the SI for iDeg is
significantly lower that for iAsp. This difference mirrors the
drug dynamics of iDeg. In the clinical trial, the total insulin
concentration in plasma is measured for both iAsp and iDeg.
However, a large proportion of iDeg in plasma is bound to
albumin and not free to interact with the insulin receptor
unlike the measured concentration of iAsp. As a result, the
insulin sensitivity of iDeg will appear significantly lower.

B. Constrained CDEKF

For the estimated insulin sensitivities in Fig. 2, the filtered
insulin effects may be negative. To ensure positive filtered
insulin effects, we scale the filter gain, Kk, by the factor
α in an iterative back-tracking procedure until x̂k|k is non-
negative. Consequently, while xk|k < 0, Kk = αKk and x̂k|k =

Fig. 1: A conceptual example of a data subsets for iAsp and
iDeg. The sets include glucose concentration in plasma, G
[mg/dL], glucose infusion rate, GIR [mg/kg/min], and insulin
concentration in plasma, I [U/L]. In our analysis, we use the
subsets highlighted in green.
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Fig. 2: Unconstrained CDEKF insulin sensitivity estimation.
The estimated insulin sensitivity, SI [L/(U·min)], when x̂k|k
obtains negative states. SI of iDeg is shown as a function of
iAsp for the 25 subjects. The linear fit between the estimated
values is displayed together with the 95% confidence inter-
val. SI,iDeg = 0.0314 ·SI,iAsp +0.0223.
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Fig. 3: Constrained CDEKF insulin sensitivity estimation.
The estimated insulin sensitivity, SI [L/(U·min)] of iDeg
shown as a function of iAsp for the 25 subjects. The linear fit
between the estimated values is displayed together with the
95% confidence interval. SI,iDeg = 0.0276 ·SI,iAsp +0.0626.

x̂k|k−1 + Kkek. We use α = 0.8 and maximally iterate 30
times. The filter equations (10) use this scaled gain, Kk. Fig.
3 shows the estimated insulin sensitivities (SI) in each of
the 25 subjects for iDeg as a function of iAsp when the
filtered states are constrained to be positive. The correlation
coefficient between SI-estimates, r = 0.1650, is weaker than
when estimated using an unconstrained CDEKF (Fig. 2) as
can also be seen from the high p-value, p = 0.4306.

C. Model-Based Steady State Target Values

Consider (1) in a fasting situation, i.e. Ra = 0. Given a
steady state target value for the insulin concentration, Ī, the
corresponding target values for the insulin effect, X̄ , and the
glucose concentration, Ḡ, are

X̄ = cs f SI (Ī − Ib) , (14a)

Ḡ =
SG

SG + X̄/cs f
Gb =

SG

SG +SI(Ī − Ib)
Gb. (14b)

Reversely, given a steady state target fasting glucose con-
centration, Ḡ, the corresponding target values for the insulin
effect, X̄ , and the insulin concentration, Ī, are

X̄ = cs f SG

(
Gb

Ḡ
−1

)
, (15a)

Ī =
1

cs f SI
X̄ + Ib =

SG

SI

(
Gb

Ḡ
−1

)
+ Ib. (15b)

This analysis reveals that the target insulin effect may be
positive or negative depending on the parameters and in
particular the pair (Gb, Ib). Accordingly, as fitting functions,
negative insulin effects can be accepted.

VI. CONCLUSIONS

In standard-of-care translation algorithms, a unit-to-unit
switch is applied when switching from pump- to pen-based
treatment, and vice versa. From this, we expect to see a

clear correlation across individuals in the dose-response to
rapid- and long-acting insulin. Nonetheless, our results do not
strongly support the assumption that insulin dose-conversion
between analogues can be standardized for all individuals.

Using the Bergman model (1) and a CDEKF for the
stochastic extension (6), we estimated the insulin sensitivity
for rapid- and long-acting insulin, i.e. aspart and degludec.
In the unconstrained estimation, a correlation between these
insulin sensitivities exists. However, the uncertainties in the
insulin sensitivities (PD) as well as the insulin absorption
uncertainties (PK) may make clinical utilization of the cor-
relation for dosing in the switch from pump to pen difficult.
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Closed-Loop Data in Type 2 Diabetes
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Abstract— In type 2 diabetes (T2D) treatment, finding a
safe and effective basal insulin dose is a challenge. The dose-
response is highly individual and to ensure safety, people with
T2D “titrate” by slowly increasing the daily insulin dose to
meet treatment targets. This titration can take months. To
ease and accelerate the process, we use short-term artificial
pancreas (AP) treatment tailored for initial titration and apply
it as a diagnostic tool. Specifically, we present a method to
automatically estimate a personalized daily dose of basal insulin
from closed-loop data collected with an AP. Based on AP-data
from a stochastic simulation model, we employ the continuous-
discrete extended Kalman filter and a maximum likelihood
approach to estimate parameters in a simple dose-response
model for 100 virtual people. With the identified model, we
compute a daily dose of basal insulin to meet treatment targets
for each individual. We test the personalized dose and evaluate
the treatment outcomes against clinical reference values. In
the tested simulation setup, the proposed method is feasible.
However, more extensive tests will reveal whether it can be
deemed safe for clinical implementation.

I. INTRODUCTION

Worldwide, one in eleven people live with diabetes,
whereof approximately 90% have type 2 diabetes (T2D). Left
untreated, people with T2D suffer from persistent high blood
glucose levels that eventually lead to complications in many
parts of the body. Fortunately, numerous treatment options
exist. As T2D progresses, daily injections of basal insulin
become necessary to lower the elevated blood glucose levels
[1]. However, basal insulin initiation, a process known as
titration, is challenging as the insulin response in the body
varies greatly between individuals. It is crucial to avoid over-
dosing as too much insulin can quickly cause life-threatening
low glucose levels. To obtain a safe and effective dose, the
amount of injected insulin is gradually increased in size, until
the desired fasting blood glucose level is reached. The insulin
dose is adjusted manually based on pre-breakfast finger-
prick blood glucose measurements. Typically, this titration is
performed at home and can take several months. For more
than half of the individuals initiating insulin treatment, the
task is so demanding that it leads to non-adherence and failed
insulin titration [2]. In the future, the burden of self-titration
may be overcome with automated titration solutions.

*This project is funded by Innovation Fund Denmark through the
Industrial PhD project 0153-00049B
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Several automated solutions have been proposed in the
literature, ranging from model-free extremum seeking control
[3], to model predictive control [4], and iterative learning [5].
In simulation, these methods have shown to speed up the
titration process, improve safety and reduce the workload
compared to standard-of-care methods. A few methods have
been tested in clinical trials with promising results [6]–
[8]. Still, simple self-titration remains the standard-of-care
solution in clinics today [1].

Another way to automate insulin treatment is through
closed-loop control with an artificial pancreas (AP) system.
In recent years, this has become a viable treatment option
for people with type 1 diabetes [9]. In the coming years,
commercial AP systems are expected to become available
to people with T2D as well [10]. An AP system con-
sists of a control algorithm that, based on frequent sensor
measurements from a continuous glucose monitor (CGM),
automatically adjusts and infuses fast-acting insulin via an
insulin pump to achieve target glucose values. Although these
systems automate insulin dose selection and delivery, their
technical complexity may limit the uptake in an older T2D
population [11]. In light of this, the greater population’s
treatment needs may be met with simpler injection-based
solutions. However, the emergence of closed-loop treatment
for T2D can enable new forms of automated titration through
short-term AP-use [12]. We propose that pump-induced
system excitation can determine what basal insulin dose
will bring each individual to treatment targets on once-daily
injection-based treatment.

In this work, we present a method to estimate a per-
sonalized basal insulin dose from short-term closed-loop
data. Based on data from a stochastic simulation model,
we use maximum likelihood estimation (MLE) to identify
parameters in a simpler prediction model for 100 virtual
people. For a given set of parameters, we use the continuous-
discrete extended Kalman filter (CDEKF) to approximate the
likelihood function which is maximized in MLE. With the
identified model, we compute a personalized insulin dose to
meet treatment targets. Finally, we test the computed daily
dose of insulin in our simulation model and evaluate the
treatment outcomes.

This paper is organized as follows. In Section II, we
present the two physiological models for data generation
and parameter estimation. We briefly describe the parameter
estimation technique. Section III presents the results with the
proposed method for three different data-collection scenarios.
In Section IV, we evaluate and discuss the performance of
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Fig. 1. Model Structure for the Simulation Model. Meals, d(t), fast-acting
insulin, uF (t), and long-acting insulin, uL(t), are the inputs. The continu-
ous glucose monitor (CGM) outputs the subcutaneous glucose concentration,
ycgm(t). The compartments denote the glucose absorption, GA, glucose
transport, GT , peripheral glucose, Gp, central glucose, GC , subcutaneous
glucose, Gsc, glucose effect on insulin secretion, GE2, plasma insulin, I ,
insulin effect, IE , and the exogenous insulin, IEXO . Exogenous fast-acting
insulin is absorbed via the compartments S1,F and S2,F , and exogenous
long-acting insulin is absorbed through S1,L and S2,L. The shown inputs
and outputs from compartments are endogenous glucose production, EGP ,
glucose-dependent clearance, CLG, insulin-dependent clearance, CLGI ,
endogenous insulin clearance, CLI , exogenous insulin clearance rate, kexo,
and the rate constants for effect delay, kIE and kGE2.

the tested control strategy. Section V concludes the paper
and presents ideas for future work.

II. METHODS

In this section, we introduce the simulation model used to
generate data for 100 virtual people on closed-loop treatment.
We use the data for parameter estimation in a simpler
prediction model, presented in Section II-B. We use the
CDEKF and MLE to identify model parameters. Section
II-D and II-E briefly describe the estimation technique. To
conclude, we present how an optimal basal insulin dose is
calculated from the estimated parameters.

A. Simulation Model

To simulate a cohort of 100 virtual people with T2D,
we employ a stochastic version of the integrated glucose-
insulin (IGI) model [12], [13]. The model consists of 14
differential equations that together describe how glucose and
insulin interact in the human body. We apply an extended
version where exogenous fast- and long-acting insulin can
be added as inputs and the subcutaneous blood glucose can
be measured. Fig. 1 shows the model structure and the model
equations are listed in [12].

The glucose-insulin dynamics are a continuous process

observed through discrete measurements,

dx(t) = f(t, x(t), u(t), d(t), θ)dt+ σdω(t) (1a)
yk = h(tk, x(tk)) + vk (1b)

where x(t) is the state vector, u(t) is the input vector
containing both uF and uL, d(t) is the meal disturbance, and
θ constitutes the model parameters. The drift function, f , is
given by the IGI model. For the input, we assume a zero-
order hold parametrization, i.e. u(t) = uk for tk ≤ t < tk+1.
The process noise, {ω(t), t ≥ 0}, is a standard Wiener
process and its increment has covariance Idt. ω(t) is scaled
by a time-invariant diagonal matrix, σ, adding noise to the
central glucose compartment, Gc. The measurement noise on
ycgm is assumed normally distributed, vk ∼ Niid(0, Rk).

B. Prediction Model

We use the fasting blood glucose model by Aradóttir et al.
[14] to obtain a personalized dose-response model for each
virtual person. The authors designed the model such that
it allows for identification of glucose-insulin dynamics with
one input (insulin) and one output (fasting glucose) [14]. The
model consists of four differential equations,

dx1(t)

dt
=

1

p1
u(t)− 1

p1
x1(t) (2a)

dx2(t)

dt
=

1

p1
x1(t)−

1

p1
x2(t) (2b)

dx3(t)

dt
= p3(x2(t) + p7x4(t))− p3x3(t) (2c)

dx4(t)

dt
= −(p5 + p4x3(t)) · x4(t) + p6, (2d)

that represent the glucose-insulin dynamics in a human body.
The states x1 [U/min] and x2 [U/min] describe the body’s
absorption of insulin input, u [U/min]. The effect of the
insulin is represented by x3 [U/min] and the blood glucose
concentration is x4 [mmol/L]. The system outputs discrete
sensor measurements,

yk = x4(tk) + vk. (3)

As in the simulation model, the measurement noise is as-
sumed normally distributed, vk ∼ Niid(0, Rk).

We estimate the parameters, θ = [p4; p6; p7], as these are
known to be identifiable from sparse data [14] and therefore
may also be identified from our intense data capture. We
apply published population parameters for p1, p3 and p5. We
use the published population parameters as the initial guess
for p4, p6, and p7 in the parameter estimation. Parameter
descriptions and published values are found in Table I.

C. Data Generation

To simulate a cohort of a hundred virtual patients, we
draw parameters from the published distribution for the
insulin sensitivity and insulin production [13]. We select
body weights from the distribution in [16] and scale the
weight-dependent parameters accordingly. After parameter
selection, we screen the virtual people to ensure that their
insulin response is feasible for a T2D population. Before



TABLE I
POPULATION PARAMETERS FOR THE PREDICTION MODEL

Parameter Value Unit Description Reference
p1 60 [min] Time constant for fast-acting insulin absorption [15]
p3 0.011 [1/min] Delay in insulin action [14]
p4 0.44 [1/U] Insulin sensitivity [14]
p5 0.0023 [1/min] Insulin-independent glucose clearance [14]
p6 0.0672 [mmol/L·min] Endogenous glucose production [14]
p7 0.0018 [U·L/mmol·min] Endogenous insulin production [14]

insulin treatment, 95% of the individuals in [16] have a
fasting blood glucose level below 15 mmol/L. As the cohort
in [16] is a subset of the insulin-requiring T2D population
in the real world, we allow for higher fasting blood glucose
values in our simulated cohort. When no insulin is given,
the fasting blood glucose must lie within a 7.5-20 mmol/L
range. Additionally, the insulin dose required to reach a
glucose level of 5.8 mmol/L must not surpass 150 U. If the
constraints are violated, we re-sample the model parameters
until the constraints are met.

As a simplified AP system, we employ an integrator-based
control algorithm [12] that drives the blood glucose towards
the 5.8 mmol/L reference value. We simulate closed-loop
treatment in a fasting state with no meals, d(t) = 0, for
24 and 48 hours. The selected scenario does not represent
a realistic setup to apply in clinic. However, it facilitates an
undisturbed assessment of how the controller gain and the
duration of excitation influences the quality of a target dose
estimate for basal insulin.

To mimic the continuous-discrete nature of sensor mea-
surements from a physiological system, we simulate the IGI
model using an Euler-Maruyama scheme with a time step
size of one minute. Every five minutes, the CGM outputs
a noise-corrupted measurement, yk, of the subcutaneous
glucose concentration. When estimating parameters in the
prediction model, we use the CGM measurements from this
simulation as input to the CDEKF.

The simulation and parameter estimation was implemented
in Matlab R2020b.

D. Continuous-Discrete Extended Kalman Filter

We use the iterative framework of the CDEKF for pa-
rameter estimation. At every sample point, k, we update
the estimate of our system states, x̂k|k−1, and the state
covariance matrix, Pk|k−1, using the incoming measurement,
yk. For this update, we compute the innovation,

ek = yk − ŷk|k−1 (4)

as the difference between the measured value, yk, and the
model predicted output, ŷk|k−1 = Ckx̂k|k−1. The matrix Ck

is a linearization of the measurement equation, h(tk, x̂k|k−1),
at the current state estimate, x̂k|k−1,

Ck =
∂h

∂x
(tk, x̂k|k−1). (5)

Using the variance of the measurement noise, Rk, we can
obtain the covariance of the innovation signal, Re,k, and

compute the Kalman gain, Kk,

Re,k = CkPk|k−1C
T
k +Rk, (6a)

Kk = Pk|k−1C
T
k R

−1
e,k. (6b)

Finally, we update the estimate of the states and their
covariance,

x̂k|k = x̂k|k−1 +Kkek,

Pk|k = (I −KkCk)Pk|k−1(I −KkCk)
T

+KkRkK
T
k .

(7a)

To obtain the one-step prediction of the states and their
covariance, we solve a system of differential equations,

dx̂k(t)

dt
= f(t, x̂k(t), uk, dk, θ), (8a)

dPk(t)

dt
= Ak(t)Pk(t) + Pk(t)Ak(t)

T + σσT , (8b)

with the initial conditions

x̂k(tk) = x̂k|k, (9a)
Pk(tk) = Pk|k, (9b)

and where

Ak(t) = A(t, x̂k(t), uk, dk, θ)

=
∂f

∂x
(t, x̂k(t), uk, dk, θ)

(10)

is a linearization of the drift function f evaluated at x̂k(t)
with input uk, disturbance dk, and parameters θ.

E. Maximum Likelihood Estimation

From a discrete series of measurements,

YN = {y0, y1, ..., yN}, (11)

obtained from the simulation model, we estimate the param-
eter set, θ, that maximizes the conditional probability,

p(YN |θ) = p(yN , yN−1, ..., y0|θ). (12)

This is equivalent to minimizing the negative log-
likelihood as a function of θ, i.e.

θ̂ = argmin
θ

V (θ) (13)



where
V (θ) = − ln(p(YN |θ))

=
1

2
(N + 1)ny ln(2π)

+
1

2

N∑
k=0

ln[det(Re,k)] + eTkR
−1
e,kek.

(14)

Here, ek and Re,k are CDEKF outputs for a selected param-
eter set θ. ny denotes the number of system outputs.

F. Computing the Target Insulin Dose

Once we identify a set of parameters for a personalized
dose-response model, we calculate a daily insulin dose. With
the estimated parameter set, we solve for the insulin infusion
rate in (2),

utarget =
p6 − yref · p5

yref · p4
− p7 · yref (15)

that will bring the blood glucose concentration to the desired
reference value, yref = 5.8 mmol/L. The infusion rate,
utarget, is given in U/min. To get a daily dose, we calculate
the total insulin delivered over 24 hours,

ubasal = utarget [U/min] · 60 [min/h] · 24 [h/day] (16)

In our simulation model, we inject the daily dose of basal
insulin, ubasal, at 7:00 AM on the five consecutive days after
closed-loop treatment.

III. RESULTS

In the first simulation scenario, we collect closed-loop data
for 48 hours as shown in Fig. 2. Throughout the closed-
loop period, the controller gradually increases the infused
insulin and the glucose levels are steered towards the green
target area for the 100 virtual people. Based on the collected
data, we compute a basal insulin dose at the end of day 2
and implement it on day 3. After the switch to injection-
based treatment on day 3, the majority of the simulated
people have glucose levels within the 4.4-7.2 mmol/L target
area. For three virtual people, the calculated insulin dose
is too high and the glucose levels drop below 3.9 mmol/L.
This is dangerously low, and would not be accepted in a
clinical implementation. Note that the poor dose estimates
do not coincide with the outliers in the boxplot of basal
insulin doses. The three virtual people with poor insulin
dose estimates show a minimal reduction in glucose values
during the closed-loop period. We expect that a higher
system excitation for these individuals, e.g. a more aggressive
controller, can improve dose estimates.

Across the simulated cohort, the general performance is
good when 48 hours of data is used to estimate a personalized
basal insulin dose in a fasting scenario. We wish to determine
whether an equivalent performance can be reached with less
data. In Fig. 3, we see the outcomes for only 24 hours of
closed-loop data collection.

With 24 hours of data, 78% of the basal insulin doses
are overestimated, driving blood glucose concentrations far
below the 3.9 mmol/L threshold. In conclusion, the system

Fig. 2. 48 Hours of Closed-Loop Data for 100 Virtual People. In the closed-
loop period, glucose levels, G, are driven towards the 4.4 − 7.2 mmol/L
target range by fast-acting insulin infusion, uF . Based on the recorded
closed-loop data, a target insulin dose is computed and administered as a
daily injection of long-acting insulin, uL, in the five last simulation days.
In red, we plot the individual curves where the glucose level drops below
3.9 mmol/L.

excitation does not appear to be sufficient to capture essential
system dynamics. In an attempt to increase system excitation
and improve performance, we increase the controller gain by
a factor of three. The result is shown in Fig. 4.

With a tripled controller gain over a 24-hour period, we see
an improved performance compared to the nominal gain. Of
the 100 virtual people, only seven have overestimated doses.
As in the 48 hour simulation, the people with poor dose
estimates have a smaller gradient compared to the population
mean. This could indicate a lower degree of system excitation
with the chosen controller gain. The majority of simulated
people achieve target glucose values when treated with the
computed basal insulin dose. Still, the best performance is
seen in the scenario where closed-loop data is collected over
48 hours, suggesting that both data quantity and system
excitation are crucial if this method is to be applicable in
clinical practice.

IV. DISCUSSION

In this work, we investigate the feasibility of an automated
titration solution for people with T2D. We show how a
closed-loop system may be used for system excitation and
enable target dose estimation. Both the the magnitude of the
controller gain and the length of the closed-loop treatment
affect the efficacy and safety of the proposed method.



Fig. 3. 24 Hours of Closed-Loop Data for 100 Virtual People. For 24
hours, the control algorithm gradually increases fast-acting insulin, uF , to
steer the blood glucose, G, into the 4.4 − 7.2 mmol/L target range. After
the closed-loop data collection, we estimate a personalized, daily insulin
dose. We simulate the outcomes when the dose is administered as a daily
injection of long-acting insulin, uL. With the short data-collection period,
we overestimate the required daily dose of insulin for 78 people.

The controller gain applied in Fig. 2 and 3, results in a
total daily dose of less than 0.2 U/kg body weight after 24
hours. This is in accordance with standard-of-care titration
guidelines for basal insulin that recommend an initial daily
dose of 0.1-0.2 U/kg body weight. We have seen in Fig. 4 that
an increased controller gain excites the underlying system to
a greater extent, and consequently, the parameter estimates
improve. In a real-world setting, an increased controller
gain may not cause a direct risk of low blood glucose
levels, however, a sudden drop in glucose concentration
driven by the AP can be highly uncomfortable for the user.
Additionally, people with sustained high blood glucose levels
over long periods are at risk of nerve and eye damage when
blood glucose decreases rapidly [17].

Ideally, the AP system should be worn for several days
with a moderate gain to estimate a safe and effective basal
insulin dose. Modern patch pumps, i.e. tubeless insulin
pumps that are fixed to the skin with adhesives, have a wear-
time of 72 hours. These pumps could provide a user with a
convenient way to collect multiple days of data for system
identification. However, if the user is expected to refrain
from eating in the whole closed-loop period, the parameter
estimation must be made feasible within a shorter time frame,
e.g. 12 hours. This may not be possible. In simulation, we
can choose to disregard multiple disturbances from meals

Fig. 4. Tripled Controller Gain and 24 Hours of Closed-Loop Data. To
improve the system excitation, we triple the controller gain compared to
Fig. 3. As a result, the blood glucose, G, drops quicker towards the 4.4−7.2
mmol/L target range, and the pump infuses more fast-acting insulin, uF .
We see that the daily dose estimate of long-acting insulin, uL, is safer. Only
seven people experience blood glucose concentrations below 3.9 mmol/L.
In red, we show the seven individual curves with poor dose estimates.

and interday variations in insulin response. In reality, the
identification is more complicated. In an uncontrolled real-
world setting, the complexity of the model identification
process will increase as glucose excursions after, e.g. un-
documented meals interfere with the administered insulin
infusion rate. A way to circumvent this could be to introduce
controlled meal tests, i.e. known quantities of carbohydrates
consumed at fixed hours. The meal tests can be used for
additional system excitation and will additionally make the
identification process more comfortable for the user. To
improve system identification, the controller input and meal
tests could be tuned in an optimal design of experiment.

In a real-world setting, we may experience the unfortunate
situation that the model parameters cannot be estimated from
the collected data. If no more closed-loop data collection is
possible, we propose a unit-to-unit conversion from the pump
infusion rate to an injection-based dose of basal insulin,
followed by manual titration. In this way, the titration already
performed by the AP would not be lost.

In the case where dose estimates are found, clinicians can
be hesitant to deem them safe. To increase the safety margin
in a clinical implementation, a fraction of the predicted
dose may be used instead of the full dose, e.g. 75% of the
predicted dose. Alternatively, the daily injection size can be
increased in controlled steps until the predicted target dose is



reached. Compared to standard-of-care titration, these steps
would be larger and would allow us to reach treatment targets
faster. A step-wise increase in dose size may be safer and less
unpleasant for the user, as it will result in a more controlled
decrease in blood glucose. Another way to test the predicted
dose would be to continue the pump treatment and increase
the infusion rate. In this way, it remains possible to quickly
shut off insulin infusion if the predicted dose brings the blood
glucose into dangerously low values.

In this paper, we test the proposed method on a simple
simulated scenario. As a result, the implementation is, in the
current state, not ready for clinical use. However, this work
presents a new approach to insulin titration in T2D that may
hold clinical potential. For future work, a higher complexity
in the simulation scenario will allow evaluation in a setup
that closer resembles real-world cases.

V. CONCLUSION

In this work, we employ closed-loop data for system
identification in people with T2D. Based on 24-48 hours of
glucose-insulin data, we identify a personalized basal insulin
dose using the CDEKF and maximum likelihood estimation.
The proposed method is feasible in the chosen simulation
setup, however, the efficacy and safety of the dose estimates
heavily depend on the system excitation. We can affect
the system excitation by increasing the controller gain and
extending the data collection period. In future work, we aim
to instigate how meal tests can be included in using optimal
experiment design to make the implementation viable in a
real-world setting allowing people to eat.
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Jorgensen, “A Model-Free Approach to Automatic Dose Guidance in
Long Acting Insulin Treatment of Type 2 Diabetes,” IEEE Control
Systems Letters, vol. 5, no. 6, pp. 2030–2035, 2021.
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Abstract: Model-based design of experiment (MBDoE) provides a framework to collect
informative data for system identification. However, a parametric and structural mismatch
between the design model and the underlying physical system can lead to hazardous experiments
in safety critical systems. In this work, we present a method to safely improve system
identification based on insights from a model-based optimal experimental design. From a visual
inspection of a MBDoE, we select an approximated output curve fulfilling system constraints as
a reference for the physical system. To avoid open-loop implementation of the MBDoE, we use
our approximated reference together with a reference-tracking controller to collect experimental
data in closed-loop. In this type 2 diabetes (T2D) case study, the proposed design method is
safe and provides informative experimental data for system identification.
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1. INTRODUCTION

At the time of formulation, most models contain unknown
parameters to identify. However, experimental data for
parameter estimation can be tedious and costly to obtain.
In many systems, it is a challenge to collect sufficiently
informative data as the modelled system must operate
within fixed safety constraints. Hence, it is of economic
interest to optimize the experimental design to collect
informative data in a safe way. Model-based design of
experiment (MBDoE) offers a systematic approach to im-
prove experimental design (Galvanin and Bezzo, 2018).
Based on a preliminary system model, the aim of MBDoE
is to determine the experimental preconditions, e.g. control
inputs or sampling times, that provide the optimal data for
parameter estimation under input and output constraints.
As the experimental design is based on the preliminary
model, the initial assumptions influence the quality and
safety of the optimal solution. When the physical system
and its model have significant parametric and structural
mismatches, the computed optimal experiment is far from
optimal. At best, the model assumptions lead to scarcely
informative experiments. Under the least favorable con-
ditions, the optimized design is unsafe for the physical
system.

Parametric and structural mismatch is a known issue that
various MBDoE approaches address (Galvanin and Bezzo,
2018; Petsagkourakis and Galvanin, 2020; Pankajakshan
et al., 2021). One approach is online model-based redesign
of experiments (OMBRE). This method exploits incoming

⋆ This project is funded by Innovation Fund Denmark through the
Industrial PhD project 0153-00049B and by Novo Nordisk A/S.

information to improve the design whilst the experiment
is running. Prior to redesign, the preliminary model pa-
rameters are updated and the new model is used for
design optimization. In this way, the uncertainty on the
initial parameter values may be reduced such that the new
optimization model corresponds closer to the underlying
physical system. Another approach is to use a back-off
strategy. Here, the model uncertainty is incorporated into
the design constraints resulting in a more conservative,
and commonly less informative, experimental design. By
design, a back-off strategy improves the likelihood that the
executed experiment will remain within the constraints.
However, neither a back-off strategy nor an online redesign
approach can guarantee safety.

Due to the safety risks, direct implementation of MBDoE
may not be feasible in all systems. Still, we hypothesize
that it is possible to safely improve an experimental design
by incorporating the knowledge gained through MBDoE.
In controller design, optimal control methods can be used
to learn how to best regulate system outputs. An advanced
control strategy, e.g. model predictive control, may be
mimicked in a simpler design, e.g. a PID controller, once
the patterns in optimal behaviour are known (Stoustrup,
2013). We propose a similar approach to experimental
design. We compute an optimal system output with MB-
DoE and use its characteristics, e.g. sinusoidal behaviour,
to design a reference for our system output. To mimic
the optimal experiment, we employ a reference-tracking
controller to steer the system along the selected output
trace. We hypothesize that the resulting set of inputs and
outputs will improve parameter estimation compared to
the baseline experiment, whilst avoiding the risks of a



direct MBDoE implementation. In this work, we present
our method with an example from type 2 diabetes (T2D)
treatment.

This paper is structured as follows. In Section 2, we
introduce the challenges in insulin treatment for people
with T2D and how these challenges may be met with
a model-based dose-guidance algorithm. To refine this
algorithm, Section 3 presents how to apply learnings from
MBDoE to improve system identification. In Section 4, we
show results from a baseline case, a direct implementation
of a MBDoE and an implementation of the proposed
method. We discuss and evaluate the performance of the
three approaches in Section 5. Section 6 summarizes the
key contributions of this paper.

2. INSULIN TREATMENT IN T2D

In T2D, an imbalance between insulin secretion and insulin
sensitivity leads to elevated blood glucose concentrations.
Daily insulin injections may be used to lower the blood glu-
cose into a healthy range (American Diabetes Association
Professional Practice Committee et al., 2022). However,
the response to insulin therapy varies greatly between
individuals and overdosing is dangerous. To reach target
glycemia safely, people with T2D gradually increase the
daily injected insulin dose through an iterative process
known as titration. Titration is performed at home with
minimal guidance from health care professionals. This
places a significant workload on the individual. Based on
daily measurements of fasting blood glucose, people with
T2D adjust the insulin dose in small increments until the
desired glucose concentration is reached. This process can
take several months. Unfortunately, less than half of the
people initiating treatment reach glycemic targets. The
high workload is one of the main reasons for failed titration
(Khunti et al., 2020).

To reduce the burden of titration, the process may be auto-
mated. In previous work, we propose a model-based dose-
guidance algorithm to automate insulin titration (Engell
et al., 2022). To predict a safe and effective dose, we use
a closed-loop system to collect data for 24-48 hours. With
this data, we identify parameters in a personalized dose-
response model and predict a daily dose of injected insulin
to reach glucose targets. We test the predicted target
dose in our simulation model and evaluate the clinical
outcomes. Figure 1 illustrates the dose-guidance solution.
In this paper, we apply optimal design of experiment to
improve parameter estimates in the personalized dose-
response models. Compared to the base case in Engell et al.
(2022), we evaluate whether a MBDoE-based method leads
to safer and more efficient dose predictions.

3. METHOD

In this section, we briefly introduce the two models used
in design and simulation. We describe the MBDoE opti-
mization problem. For the optimization problem, we define
the decision variable and the system constraints. From
the MBDoE solution, we learn optimal behaviours of the
output and run a new 24-hour experiment with reference
tracking of the glucose trace.

FBG
CGM

Days

Glucose

0 1 2 3 4

Insulin
uF
uL

Days
AP Insulin Pen

0 1 2 3 4

Dose Prediction

Fig. 1. A visualization of the dose-guidance solution from
Engell et al. (2022). An artificial pancreas (AP) may
be used to predict a safe and effective insulin dose
for injection-based therapy with long-acting insulin.
In the AP period, fast-acting insulin (uF ) is infused
based on glucose measurements from a continuous
glucose monitor (CGM). We use the AP data to
identify parameters in a dose-response model. The
model is used to predict an insulin dose to reach
target glucose concentrations. After dose-prediction,
a daily dose of long-acting insulin (uL) is injected
before breakfast and fasting blood glucose (FBG)
measurements are used for daily monitoring.

3.1 Models for Experimental Design and Simulation

We employ a simple model for MBDoE and test the design
on a model with higher complexity. For our design model,
we use a fasting glucose model from Aradóttir et al. (2018).
The model consists of four differential equations,

dx1(t)

dt
=

1

p1
u(t)− 1

p1
x1(t) (1a)

dx2(t)

dt
=

1

p1
x1(t)−

1

p1
x2(t) (1b)

dx3(t)

dt
= p3(x2(t) + p7x4(t))− p3x3(t) (1c)

dx4(t)

dt
= −(p5 + p4x3(t)) · x4(t) + p6, (1d)

to represent the glucose-insulin dynamics in a person with
T2D. The states x1 [U/min] and x2 [U/min] describe the
absorption of insulin input, u [U/min]. x3 [U/min] is the
effect of insulin and x4 [mmol/L] is the blood glucose
concentration. A sensor outputs discrete measurements
from the system,

yk = x4(tk) + vk. (2)

We assume the measurement noise is normally distributed,
vk ∼ Niid(0, R). We apply R = 0.1872 mmol2/L2 (Mah-
moudi et al., 2018). For the design model, we use the
published population parameters listed in Table 1.

To simulate a virtual cohort with diabetes, we use an
augmented version of the integrated glucose-insulin (IGI)
model from Engell et al. (2021). The model has 14 com-
partments and incorporates more physiological mecha-
nisms than the simpler model by Aradóttir et al. To
generate 100 virtual people, we apply the simulation setup
from Engell et al. (2022).



Table 1. Design Model Parameters

θ Value Unit Reference

p1 60 [min] Kanderian et al. (2009)
p3 0.011 [1/min] Aradóttir et al. (2018)
p4 0.44 [1/U] Aradóttir et al. (2018)
p5 0.0023 [1/min] Aradóttir et al. (2018)
p6 0.0672 [mmol/L·min] Aradóttir et al. (2018)
p7 0.0018 [U·L/mmol·min] Aradóttir et al. (2018)

3.2 Optimal Experimental Design

MBDoE aims to design an experiment that increases the
accuracy of parameter estimates by reducing the value
of the parameter variance-covariance matrix. To do this,
we determine the decision variable, ϕ, which can dictate
one or more of the experimental preconditions, e.g. the
inputs, the sampling times, or the initial states. In this
work, we determine the dynamic input profile, u(t, ϕ). To
ensure the MBDoE is tractable, we assume a zero-order
hold parametrization on u(t, ϕ). The input to the system
is piece-wise constant. We wish to optimise the selection
of ϕ to gain maximal information through the statistical
criterion V (ϕ, θ),

min
ϕ

V (ϕ, θ) (3a)

s.t. x(0) = x0 (3b)

ẋ(t) = f(t, x(t), u(t, ϕ), θ) (3c)

yk = h(tk, x(tk)) + vk (3d)

0 ≥ c(t, x(t), u(t, ϕ), θ) (3e)

where f(·) is the design model with the assumed pa-
rameter values, θ, states, x(t), and inputs, u(t, ϕ). The
model predicts discrete system outputs, yk, through the
measurement function, h(·). The output is corrupted by
measurement noise, vk ∼ Niid(0, R). Constraints on the
states and inputs are given by 3e.

Different statistical criteria, V (ϕ, θ), for MBDoE exist
(Bhonsale et al., 2022). To minimize the arithmetic mean
of all the parameters’ errors, we apply A-optimality, i.e.
minimizing the trace of the inverse Fisher Information
matrix, F ,

V (ϕ, θ) = tr
(
F−1

)
, (4)

where

F =

N∑
k=1

Sy(k)
TR−1Sy(k). (5)

R is the covariance matrix of the measurements, and Sy is
the output sensitivity matrix. We compute the sensitivity
matrix at each time step, k,

Sy(k) =
∂y

∂θ̂
(tk) (6)

where Sy(k) is a measure of the change in the output for
each of the m estimated parameters. We apply central
differentiation to numerically approximate Sy(k), and we
assume that R is known.

3.3 Decision Variable

We fix the length of the experiment to 24 hours. In diabetes
treatment, it is not unseen to use fasting periods of up to
24 hours to identify the right insulin dose (Nauck et al.,
2021). In this work, we let the decision variable, ϕ, consist
of 24 one-hour blocks of piece-wise constant insulin input.

Time

Glucose
[mmol/L]

[min]

y0 + δ

y0

y0 − δ

4.4

7.2

Slope: -0.001 [mmol/L]/min

Fig. 2. Output constraints for the experimental design.
Over the course of the experiment, the glucose concen-
tration must drop slowly towards the target range. We
allow the glucose to fluctuate within the constraints
y0 − 0.001 · tk − δ ≤ yk ≤ y0 − 0.001 · tk + δ. Where y0
is initial fasting glucose, tk is the time in minutes, yk
is the output at time tk, and δ is half of the width of
the target range. Once the target range is reached, it
defines the output constraints.

We optimize how much fast-acting insulin [mU/min] must
be infused through an insulin pump at every time point
in order to best identify three parameters in the design
model. The parameters θ = [p4, p6, p7] describe insulin
sensitivity, endogenous glucose production, and endoge-
nous insulin production, respectively. They are identical
to the parameters estimated in Engell et al. (2022).

3.4 Design Constraints

We select input and output constraints for our design. The
input, infused insulin, must be non-negative to be physio-
logically feasible. To ensure safety, we incorporate output
constraints on the glucose concentration. We apply the
4.4-7.2 mmol/L target glucose range from clinical guide-
lines (American Diabetes Association Professional Prac-
tice Committee et al., 2022). Despite the desire to quickly
reach the target range, we aim to avoid rapid decreases in
blood glucose concentration as this can cause nerve- and
eye-damage (Gibbons, 2020). We simulate how low the
fasting glucose drops when an insulin naive cohort is given
a standardized first dose of 0.1U/kg insulin (American Di-
abetes Association Professional Practice Committee et al.,
2022). From the simulation, we select a rate of change of
−0.001 (mmol/L)/min for the output constraints.

Given the initial fasting blood glucose measurement, y0,
and the 4.4-7.2 mmol/L target range, we define constraints
that describe how much the fasting glucose concentration
may drop over time. Figure 2 shows the output constraints.

3.5 Reference-Tracking based on MBDoE Output

We cannot be sure that the physical system aligns with
the design model assumptions. However, the solution to
(3) offers some insights into what kind of data is optimal
for identification of θ. We solve the optimization problem
in (3) with the selected constraints and design model
assumptions. Figure 3 shows the optimal experimental
design.

In Figure 3, the insulin infusion causes the glucose con-
centration to fluctuate between the upper and lower con-
straint in a sinusoidal manner. Based on this observation,
we hypothesize that system identification will improve if
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Fig. 3. The MBDoE for the given constraints and pre-
liminary model assumptions. The optimized input
profile of fast-acting insulin, uF , causes fluctuations
of the glucose concentration over the course of the
experiment.

we apply a phase-shifted cosine curve as a reference for the
system output in the first 24 hours.

To individualize the reference, we let the cosine curve start
at the initial fasting glucose measurement, y0 [mmol/L],
for each person. We define the reference by

yref (t) = δ cos

(
3π · t
60 · 24

+
π

2

)
+ y0 − 0.001t (7)

where t is time in minutes and 60 · 24 is the number of
minutes per 24 hours. As in the constraint definition, δ
[mmol/L] is half of the width of the 4.4-7.2 mmol/L target
range. We let the glucose concentration drop gradually
over time by 0.001 (mmol/L)/min.

We manually tune a proportional controller to track the
glucose reference, yref . We collect closed-loop data for 24
hours and use the data to estimate parameters in (1). We
apply maximum likelihood estimation (MLE) and use the
continuous-discrete extended Kalman filter (CDEKF) to
approximate the likelihood function. For a more detailed
description of the parameter estimation, we refer to Engell
et al. (2022).

The simulation, MBDoE and parameter estimation was
implemented in Matlab R2020b.

4. RESULTS

In this work, we use optimal experimental design to im-
prove parameter estimation in a dose-guidance algorithm
for T2D treatment. In Figure 4, we show the baseline case
from Engell et al. (2022). Here, limited system excitation
leads to poor system identification and unsafe dose es-
timates. A simple controller runs for the first 24 hours
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Fig. 4. The baseline scenario for 100 virtual people, where
a simple controller is used to gradually increase the
infusion of fast-acting insulin, uF , over the first 24
hours. The resulting system excitation leads to only
22 safe dose estimates of long-acting insulin, uL.

gradually increasing the insulin infusion and steering the
fasting glucose towards the target range. After 24 hours,
Engell et al. (2022) estimate a personalized model and
predict a target insulin dose for daily injection therapy. In
only 22 cases, the predicted dose is safe for the individual,
i.e. the glucose concentration stays above the low glucose
threshold, 3.9 mmol/L.

We test the MBDoE from Figure 3 with the same 100
virtual people. During the first 24 hours, we use the com-
puted optimal insulin infusion as input to the simulator.
Figure 5 shows the outcomes. The optimized insulin input
leads to improved system identification. The dose-guidance
algorithm suggests safe injection-based treatment for all
the simulated people. However, in 24-hour open-loop pe-
riod, three individuals experience dangerously low glucose
values. Moreover, in the first 24 hours, the mean curve
shows a faster drop towards the target range than the
set constraints allow. This occurs because of a mismatch
between the design model and the simulation model.

Instead, we use a MBDoE-inspired approach. In Figure
6, we mimic the optimal experiment by following a si-
nusoidal glucose trace with a simple, reference-tracking
controller. The resulting set of inputs and outputs lead
to an improved system identification compared to the
baseline (Figure 4), whilst minimizing the risks of open-
loop implementation of a MBDoE (Figure 5). All of the
100 people have safe dose predictions after 24 hours of
closed-loop data collection.

5. DISCUSSION

In diabetes treatment, it is highly unlikely that an untested
experimental design will be implemented in open-loop as



0

5

10

15

20

Target Range

95% Confidence Interval

Mean

Low Glucose Threshold

Mean Constraints

Unsafe Response

0 1 2 3 4 5
0

0.05

0.1

1 2 3 4 5
0

100

200

Fig. 5. Outcomes for 100 virtual people when the optimal
insulin input from MBDoE is applied in open-loop for
the first 24 hours. For three individuals, the experi-
mental design drives their glucose levels dangerously
low. In the mean case, the output constraints are
violated and the design can also be considered unsafe.
Although unsafe, the experimental data from the first
24 hours enables effective and safe dose predictions for
all in the simulated cohort.

demonstrated in Figure 5. Safety is crucial and in open-
loop there are no guarantees that the input does not cause
dangerously low glucose concentrations. Still, insights from
MBDOE can enhance clinical trial protocols. In this work,
we present a method to safely improve system identifica-
tion in closed-loop with an approximation of a MBDoE.
Figure 3, indicates that the MBDoE output resembles a
phase-shifted cosine curve and we define a glucose trace
with these characteristics. With a proportional controller,
we track the cosine-shaped glucose reference in closed-
loop for 24 hours and collect experimental data. In Figure
6, the excitation of the glucose-insulin system over 24
hours leads to effective dose predictions. Despite being an
approximation of the MBDoE system excitation, the dose
predictions in Figure 6 are comparable to the predictions in
the optimal experimental design in Figure 5. This indicates
that learnings from a MBDoE can be used to obtain good
results in a safer setup than implementing the MBDoE in
open-loop.

An alternative to approximating the MBDoE output with
a sinusoidal curve is to use the output from the MBDoE
directly as a reference to the system. In this case, the initial
fasting glucose measurement of each person dictates the
starting point for the reference curve from the MBDoE. In
a system with input-output delay, as this one, the output
trace may prove hard to follow with simpler control strate-
gies. The MBDoE output in Figure 3 has swift changes in
glucose concentrations and to reference-track the output
trace requires more advanced control strategies, e.g. model
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Fig. 6. Outcomes for 100 people when using cosine-shaped
glucose reference for the closed-loop system during
the first 24 hours. During the experiment, the mean
glucose curve stays within the set output constraints.
After the switch to pen-based treatment with long-
acting insulin, uL, all the dose estimates are safe.

predictive control (MPC). As the name suggests, the MPC
methodology relies on a predictive model of the physical
system, which is exactly the model we try to estimate with
MBDoE. Hence, the predictions of the controller may not
be safer than the designed experiment.

Another approach is to look at the computed optimal in-
sulin infusion. Instead of implementing the optimal insulin
infusion in open-loop, a controller could re-evaluate the
dose every five minutes and adjust the insulin infusion. In
this way, the controller may alter the insulin input every
time the output constraints are violated. An implementa-
tion like this is only applicable in cases where the insulin
doses are slightly off as no insulin-dosing controller is able
to ensure safety after a large overdose. An insulin overdose
can be corrected with the hormone glucagon in a dual
hormone artificial pancreas. However, this work indicates
that safe system identification can be reached with simpler
means.

The quality of system identification depends greatly on
the level of system excitation. Table 2 shows the insulin
input given to the cohort of people with T2D in the
baseline case, the direct implementation of the MBDoE
and the MBDoE approximation. The insulin input in
the MBDoE approximation is the lowest. Still, the input
ensures that all the dose predictions in Figure 6 are
safe. Compared to the direct MBDoE implementation,
the MBDoE approximation has a reduced input over 24
hours. In spite of this, the system identification leads to the
same number of safe and effective dose predictions. This
hints that an approximation of the MBDoE can provide
sufficient system excitation.



Table 2. Insulin input

Excitation Type Input [U/24h]

Baseline (mean) 4.6670
MBDoE 2.9904
MBDoE approx. (mean) 1.4797

In a clinical implementation, the predicted target dose
cannot not be injected on the first day after ended closed-
loop treatment. In Figure 4, 5 and 6, the sudden drops in
glucose concentration on day two can cause irreversible
damage in the body. All three figures serve to show
whether the predicted insulin doses bring the cohort into
the target range. They are not suggestions for a clinical im-
plementation. Instead, the person with T2D may gradually
increase the daily dose over a number of weeks, similar to
traditional insulin titration. Compared to standard of care,
this titration could have greater step-wise increases and
reduce the length of the titration period. The predicted
target dose can provide people with T2D and their health
care professionals with insights that enable a meaningful
titration communication. The predicted target dose can
be used to set goals, balance expectations and evalu-
ate progress of the insulin titration process. Additionally,
knowing the target dose size may reduce the individual’s
fear of overdosing, when increasing the dose size gradually
to reach target. However, to be ready for in clinic tests,
the method we present in this paper must undergo stress-
tests in a more complex simulation scenario to account
real-world system disturbances and variations.

6. CONCLUSION

In this work, we present a method to improve system iden-
tification by mimicking model-based optimal experimental
design. To avoid the risk of an open-loop experiment,
we approximate the output curve from the MBDoE and
use it as a reference for the physical system. With a
reference-tracking controller, we follow the output trace to
collect experimental data in closed-loop. In this T2D case
study, the proposed design method provides informative
experimental data for system identification. In other safety
critical systems, the method may offer a safer alternative
to implementing a MBDoE in open-loop.
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Estimate Insulin Response in Type 2 Diabetes
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Anders Lyngvi Fougner3, John Bagterp Jørgensen2

Abstract— In late-stage type 2 diabetes, automated titration
algorithms provide a promising alternative to the current
standard-of-care. Many published methods rely on personalized
dose-response models to predict a safe and effective insulin
dose. In this case study, we address the challenge of how to
collect an informative data set to ensure practical identifiability
of such models. We apply optimal experimental design to
enhance the performance of a published titration algorithm.
For a 24-hour experiment, we solve an optimization problem
to select the size of three meals and the hourly fast-acting insulin
infusion rate. In simulation, we demonstrate how the optimized
protocol improves the safety of the algorithm’s dose-predictions.
The results indicate that optimal experimental design has the
potential to improve model-based algorithms and may be used
as a qualitative tool when planning clinical experiments.

I. INTRODUCTION

Worldwide, one in eleven people lives with diabetes and
the prevalence continues to rise. Of all diabetes cases, type
2 diabetes (T2D) accounts for 90%. In T2D, persistent high
blood glucose levels occur due to an imbalance between the
secretion of the regulatory hormone insulin and the insulin
sensitivity in the body. Left untreated, elevated glucose
levels can have serious consequences, e.g., vision loss or
amputations. Numerous medications exist to enhance insulin
secretion or improve the insulin sensitivity. However, as
T2D progresses over time, daily basal insulin injections can
become necessary to sufficiently lower the glucose levels [1].

Initiating basal insulin treatment is a challenge. The re-
sponse to insulin is highly individual and overdoses can be
both uncomfortable and dangerous. To safely reach the target
glucose range, people with T2D titrate to find a personalized
daily injection dose. Based on daily pre-breakfast finger-
prick measurements, the individual adjusts the insulin dose
in small steps to reach clinical targets. This process can take
several months, and for some even years. Despite a high drug
efficacy in clinical trials, up to 60% of the people initiating
basal insulin treatment never reach clinical targets. The daily
workload is one of many reasons for failed insulin titration
[2].
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To improve clinical outcomes, the titration burden can
be reduced through automation. Published algorithms for
automated titration use combinations of data from insulin in-
jection pens, finger-prick measurements, continuous glucose
monitors (CGM) and/or insulin pumps to identify a person-
alized target insulin dose [3]–[7]. Many of these methods
rely on identifying a dose-response model for the individual
[5]–[7]. The quality of the dose prediction therefore critically
depends on successful model identification.

Model-based design of experiments (MBDoE) has been
applied in diabetes research to enhance the identification
of physiological models and improve control algorithms
for artificial pancreas (AP) systems [8]–[13]. Most work
in this field dates ten years back, where the aim was to
identify when to draw blood samples to obtain the most
information about an individual’s physiological response to
insulin and meals. Today, improvements in sensor technology
have excluded the need for selecting blood sampling times,
as CGMs present reliable measurements every five minutes.
Still, only a few studies on optimal experimental design have
exploited this technological development [12]–[14]. To the
best of our knowledge, no studies have used MBDoE to guide
insulin and meal inputs for identification of dose-response
models in T2D. We believe there is a potential to improve
model-based insulin dosing algorithms in T2D using MBDoE
to select these inputs.

In this case study, we apply optimal experimental design to
improve model identification in a personalized dose-guidance
algorithm from [7]. We design a 24-hour experiment with
three meals and insulin infusion to estimate parameters in
a dose-response model. To evaluate the safety of the new
design, we test the protocol in 100 virtual subjects. From the
experimental data, we identify parameters in a personalized
dose-response model for each subject. With the identified
models, we predict a daily insulin dose to reach clinical
targets. In simulation, we evaluate the safety and efficacy
of the dose prediction and compare the results to [7].

This paper is organized as follows. In Section II, we
introduce the model-based dose-guidance algorithm that we
aim to improve through optimal experimental design. Section
III describes the optimization problem and briefly presents
the two models employed for experimental design and simu-
lation. In Section IV, we present the new experimental design
and show the performance of the dose-guidance algorithm
with the optimal data collection protocol. Section V discusses
the design and results in comparison to [7]. In Section VI,
we conclude on the main findings from this case study.
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Fig. 1. A visualization of the titration solution from [7]. Data from
an artificial pancreas (AP) enables the prediction of an insulin dose for
injection-based therapy with long-acting insulin. In the AP period, fast-
acting insulin (uF ) infusion is based on glucose measurements from
a continuous glucose monitor (CGM). We use the AP data to identify
parameters in a dose-response model. The model predicts an insulin dose
to reach target glucose concentrations. After dose-prediction, a daily dose
of long-acting insulin (uL) is injected before breakfast and fasting blood
glucose (FBG) measurements are used for daily monitoring.

II. THE TEST CASE

In previous work, we present a model-based titration algo-
rithm to predict a personalized daily insulin dose [7]. With 24
hours of data from an AP, we identify a dose-response model.
For parameter estimation, we use a one step prediction error
method (PEM) using maximum likelihood estimation (MLE).
We apply the continuous-discrete extended Kalman filter
(CDEKF) to approximate the likelihood function. We refer
to [7] for technical details on the titration algorithm. Fig. 1
shows the conceptual setup of the original titration solution.
In this paper, we revisit this algorithm and apply optimal
experimental design to maximize the information collected
with the AP. The former design does not include meals and
requires fasting for the 24 hour long AP period. In this work,
we solve an optimization problem to find a protocol for both
meal and insulin inputs. Fig. 2 (adapted from [7]) shows
that several dose predictions are unsafe when we use the
original data collection protocol. We aim to decrease the
amount of unsafe dose estimates, whilst meeting clinical
safety requirements during experimental data collection.

III. METHODS

In this section, we introduce the two models we use for
experimental design, prediction, and simulation. We define
the optimization problem, the decision variable and the
constraints.

A. Design model

To optimize the experimental design, we employ a phys-
iological T2D model from [15]. We include the adaptations
from [5] to ensure structural identifiability. The design model
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Fig. 2. Simulation results for 100 virtual people using the titration solution
in [7]. During the first 24 hours, a closed-loop system gradually increases
fast-acting insulin infusion and the plasma glucose drops. After 24 hours, the
collected data enables parametrization of a dose-response model. The model
predicts a daily insulin dose to reach glucose targets. For the remaining days,
the predicted dose is injected prior to breakfast. Seven people have unsafe
dose-estimates.

describes the impact of meals and insulin on plasma glucose
levels and consists of six differential equations,

Ḋ1(t) = d(t)
1000 ·AG

MwG
− 1

τm
D1(t) (1a)

Ḋ2(t) =
1

τm
D1(t)−

1

τm
D2(t) (1b)

İsc(t) =
1

τI
u(t)− 1

τI
Isc(t) (1c)

İp(t) =
1

τI
Isc(t)−

1

τI
Ip(t) (1d)

İeff (t) = p3[Ip(t) + βG(t)]− p3Ieff (t) (1e)

Ġ(t) = −[pGEZI + SIIeff (t)] ·G(t)
+ pEGP +RA(t). (1f)

D1 [mmol/min] and D2 [mmol/min] are meal compartments
representing absorption of carbohydrate intake, d(t) [g/min].
The exogenous insulin input, u(t) [U/min], is absorbed
subcutaneously in Isc [U/min] before reaching plasma, Ip
[U/min]. Ieff [U/min] describes the combined insulin ef-
fect of exogenous insulin input and the endogenous insulin
production, β [U·L/mmol·min]. G [mmol/L] is the plasma
glucose level. RA(t) = D2(t)

VGτm
[mmol/L/min] is the rate of

appearance of glucose from consumed meals. Table I lists
parameter descriptions and provides a reference for each
parameter value.

The system outputs discrete sensor measurements,

yk = G(tk) + vk. (2)



affected by independent and identically distributed noise,
vk ∼ Niid(0, R). Through these measurements, we aim to
determine the parameter set θ = [SI , pEGP , β]. The selected
parameters are known to be identifiable from sparse data [16]
and therefore may also be identified from this experimental
data set. To provide dose-guidance, we utilize a personalized
version of the model (1) with the individual estimates of
θ, and for the rest of the model parameters we adopt the
published values listed in Table I.

B. Optimal Experimental Design

The aim of optimal experimental design is to maximize
the information collected in an experimental data set [19]. To
enhance the estimation of the parameter set, θ, we solve an
optimization problem to find an experimental design vector,
ϕ, that best excites the system,

min
ϕ

ψ(ϕ, θ) (3a)

s.t. ϕ = [u(t), d(t)] (3b)
x(0) = x0 (3c)
ẋ(t) = f(t, x(t), u(t), d(t), θ) (3d)
ŷk = h(tk, x(tk)) + vk (3e)
0 ≥ c(t, x(t), u(t), d(t), θ). (3f)

The dynamics of the system we wish to identify are ap-
proximated by the model, f(·), a discrete measurement
function, h(·), and measurement noise, vk ∼ Niid(0, R).
The system states, x(t), are a Nx-dimensional vector and
x0 contains the initial state values. The exogenous insulin,
u(t), and the meals, d(t), are the system inputs. ŷ denotes
a vector of discrete measurements estimated by the model.
The constraints on the inputs and output are given by (3f).

The cost function of the optimization problem acts on the
parameter variance-covariance matrix, Cθ, which quantifies
the parametric uncertainty. Reducing the value of Cθ is
equivalent to improving the parameter estimates. Hence, we
wish to determine,

ϕ = argmin{ψ[Cθ(θ, ϕ)]} ≈ argmin{ψ[I(θ, ϕ)−1]} (4)

where ψ is the design criterion, an assigned measurement
function of Cθ. As an approximation of Cθ, we apply the
inverse of Fisher’s information matrix, I(θ, ϕ).

Several design criteria exist [19]. To minimize the volume
of the hyper box which bounds the variance ellipsoid, we
apply A-optimality, i.e. minimizing the trace of the inverse
Fisher Information matrix,

ψA(ϕ, θ) = tr
(
I(θ, ϕ)−1

)
, (5)

where Fisher’s Information matrix is defined as

I(θ, ϕ) =

N∑
k=1

Sy(tk)
TR−1Sy(tk). (6)

R is the covariance matrix of the measurements, N is
the total number of measurements over the length of the
experiment, and Sy is the output sensitivity matrix. Sy(tk)

is a measure of the change in the output, y, for each of the
nθ estimated parameters at sampling point k,

Sy(tk) =
[
∂y(tk)

∂θ̂1
. . . ∂y(tk)

∂θ̂nθ

]
(7)

We compute Sy using central differentiation. To avoid nu-
merical issues during the optimization, we normalize the
parameters with respect to the (supposed) true values for the
subject shown in Table I. We adjust the value for insulin
sensitivity, SI , to ensure that the design and simulation
models reach the same fasting glucose, y0, at zero insulin
infusion,

SI =

pEGP

y0
− pGEZI

β · y0
. (8)

To reduce the risk of numerical errors, we scale the state
Ieff by a factor cf = 1000 and obtain similar orders of
magnitude for all states. The equations (1e) and (1f) become,

İeff (t) = cf · p3[Ip(t) + βG(t)]− p3Ieff (t) (9a)

Ġ(t) = −[pGEZI + SIIeff (t)/cf ] ·G(t)
+ pEGP +RA(t). (9b)

C. Decision Variable

We fix the length of the experiment to 24 hours. To ensure
that the optimization problem is tractable, we describe the
inputs of the design vector, ϕ, in the following way.

ϕ = [u(t), d(t)] = [u1, u2, . . . , u24, dB , dL, dD] (10)

We apply a zero-order hold parametrization on u(t), and
fix the duration and mealtimes for the meal input, d(t). For
the insulin input, we determine the optimal insulin infusion
over 24 one-hour blocks of piece-wise constant input. The
three meals are consumed over five minute intervals at 07:00,
12:30 and 18:00. We determine the optimal size of each meal.

D. Design Constraints

To design a physically feasible and safe experiment, we
select a set of input and output constraints. The insulin input
must be non-negative and may not exceed an infusion rate of
15 mU/min. All three meals must be within a minimum 20 g
and maximum 100 g of carbohydrates. We select a minimal
meal size to ensure that the optimal solution contains all
three meals.

In current clinical guidelines, the target range for fasting
glucose levels is 4.4-7.2 mmol/L [1]. We strive to achieve
glucose levels within the range, however a swift drop in
glucose concentration can lead to complications, e.g., vision-
loss and nerve-damage [20]. To avoid complications, we
enforce a maximal drop rate for the glucose concentration.
We simulate how much the fasting glucose decreases in an
insulin naive cohort after a standardized first dose of 0.1U/kg
insulin [1]. Based on the simulation results, we fix the drop
rate to −0.001 (mmol/L)/min.

From the initial fasting blood glucose measurement, y0,
and the 4.4-7.2 mmol/L target glucose range, we select



TABLE I
POPULATION PARAMETERS FOR THE DESIGN MODEL

Parameter Value Unit Description Reference
τI 60 [min] Time constant for fast-acting insulin absorption [17]
τm 40 [min] Time constant for meal absorption [18]
VG 25 [L] Glucose distribution volume [17]
AG 0.8 [unitless] Bioavailability of consumed carbohydrates [18]

MwG 180.1559 [g/mol] Molecular weight of glucose [15]
p3 0.011 [1/min] Delay in insulin action [16]
SI 0.44 [L/U·min] Insulin sensitivity [16]

pGEZI 0.0023 [1/min] Insulin-independent glucose clearance [16]
pEGP 0.0672 [mmol/L·min] Endogenous glucose production [16]

β 0.0018 [U/mmol] Endogenous insulin production [16]

bt

bG

MEAL

Time

Glucose
[mmol/L]

[min]

y0 + δ

y0

y0 − δ

4.4

7.2

-0.001 [mmol/L]/min

Fig. 3. Output constraints for the optimal experimental design. Over
the course of the experiment, the glucose concentration must drop slowly
towards the target range. We allow the glucose to fluctuate within the
constraints y0 − 0.001 · tk − δ ≤ yk ≤ y0 − 0.001 · tk + δ. Where
y0 is initial fasting glucose, tk is the time in minutes, yk is the output
at time tk , and δ is half of the width of the target range. Once the target
range is reached, it defines the output constraints. After meals, the output
constraint is raised by bG = 5.0 mmol/L for the next bt = 5.5 hours.

constraints that define how quick the fasting glucose concen-
tration may drop. Following meals, we increase the upper
glucose constraint by 5 mmol/L for 5.5 hours to ensure
that the optimized insulin input is selected to excite the
system, rather than compensating for postprandial peaks. Fig.
3 shows the output constraints.

E. Simulation model and implementation

We test the MBDoE protocol in simulation on a model
with higher complexity. In [7], Engell et al. employ an
augmented version of the integrated glucose-insulin (IGI)
model from [21]. We use the same model together with the
simulation setup from [7] to generate a virtual cohort of 100
people with T2D. We implement the simulation, MBDoE
and parameter estimation in Matlab R2020b, and solve
the optimization problem using sqp.

IV. RESULTS

In this work, we investigate how optimal experimental
design may improve the performance of an insulin titration
algorithm for people with T2D. We solve the optimization
problem in (3) to design a 24 hour long experiment to
capture data for parameter identification. Fig. 4 shows the
resulting experimental protocol where all design constraints
are met. The first two meals (57g and 67g of carbohydrate,
respectively) drive the glucose concentration to the upper
bound and maximize the effect of β. The last meal is smaller,
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Fig. 4. The optimal experimental design for parameter estimation given the
input and output constraints. Meal consumption happens over a five minute
interval, hence the three meal sizes are 57g, 67g, and 31g of carbohydrates.
The insulin infusion starts three hours after the first meal and remains on the
maximal infusion rate, 15mU/min, throughout the rest of the experiment.

31g of carbohydrate, and lets the insulin input drive the
glucose concentration closer to the lower bound emphasizing
the influence of SI . The insulin infusion resembles a step
function. At 10AM, the infusion increases from 0 mU/min to
15 mU/min and remains at maximal infusion until the end of
the experiment. The optimal input strategy separates different
model dynamics as the insulin input increases three hours
after the first meal. Fig. 5 presents the output sensitivity of
each of the three estimated parameters during the experiment.
The sensitivities appear to be somewhat correlated and all
three are of similar absolute magnitude.

We test the design protocol in a simulation model which
has a higher complexity than the design model. Fig. 6
shows how the structural mismatch leads to a different
glucose response. Over the majority of the experiment, the
mean glucose curve remains within the output constraints.
However, the first two meals cause a slightly higher rise in
glucose than the design model prediction in Fig. 4. Towards
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Fig. 5. The output sensitivities for the three estimated parameters over the
course of the experiment. The parameters show some correlation.

the end of the experiment, the insulin infusion drives the
glucose concentration lower than the design model predicts.
Still, due to the tight constraints in the optimization problem,
the over and undershoot is minimal and the experiment
appears to be safe for all the people in the simulated cohort.
Compared to the original algorithm performance in Fig. 2,
the new protocol improves the quality and safety of the dose
predictions. In Fig. 6, all 100 dose predictions for injection-
based treatment drive the glucose concentration into the 4.4-
7.2 mmol/L target range.

V. DISCUSSION

Safety is critical in diabetes treatment. An open-loop im-
plementation of an untested experimental design poses a sig-
nificant risk and may have limited uptake in clinics. Instead, a
qualitative assessment of the new design, rather than a direct
implementation, may still improve dose predictions. Fig. 6
shows that the system identification improves when insulin
infusion starts three hours after the first meal. This split
between insulin and meal response could be incorporated
when collecting data for parameter estimation. In a real-
world implementation, health care professionals may select
the maximal insulin infusion rate for each individual or adjust
it to match existing treatment guidelines. Closed-loop control
could provide an additional safety measure as an AP would
reduce the insulin infusion in case of too low glucose values.

Compared to the original design, the new protocol has an
equivalent amount of insulin input. The mean fast-acting in-
sulin infusion in Fig. 2 is 13 U/day. In the new experimental
protocol, each individual receives 12.6 U/day. The combined
excitation from meals and insulin appears to benefit system
identification. However, fixed meal sizes and times can be
hard to enforce in a real-world setting. Based on the optimal
design, the evening meal needs to have a low carbohydrate
content, but the exact number of carbs in each meal may be
less important. Still, the timing of and carbohydrate content
of meals must be recorded accurately to provide data for
system identification. Compared to the original design, meal
logging will place a larger work load on the individual. Still,
one day of logging carbs may pose an appealing alternative
to 24 hours of fasting or several months of manual titration.
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Fig. 6. Test of the experimental design on 100 virtual patients. Over
the first 24 hours, we administer the optimized meal, d(t), and fast-acting
insulin, uF (t), inputs. Meals are consumed over 5 minute intervals. In the
experiment, the mean glucose curve mildly exceeds the output constraints
after the first and second meal. After 24 hours of data collection, we
parameterize a dose-response model for each individual and predict a basal
insulin dose, uL(t), to reach the glucose target range. Each subject receives
a daily injection with the estimated basal insulin dose at 7AM. To test if the
basal insulin dose can control the fasting glucose levels we do not administer
meals during the last five days of the simulation. All basal dose estimates
are safe and effective.

In manual titration, the slow iterative journey to the
clinical target minimizes the risk of nerve- and eye-damage
caused by swift drops in glucose concentration. Although
the simulation results in this work show that it is possible
to find a personalized insulin dose in 24 hours, it can be
unsafe to deliver the full dose in an injection of long-acting
insulin on the next day. In Fig. 2 and 6, the glucose levels
drop drastically on the second simulation day when the first
long-acting insulin injection is administered. The figures are
not meant as implementation proposals to use in clinics. The
plots serve to evaluate whether the predicted dose is safe and
effective, i.e. that it does not cause low glucose levels and
can drive the fasting glucose levels into the target range. To
only evaluate the control of fasting blood glucose, we do not
consider meals in the last four days. Here, the oscillations in
glucose stem from the dynamics of the long-acting insulin.
In a real-world implementation, the individuals would eat as
usual during these days of injection-based treatment.

For a clinical implementation, the person with T2D may
step-wise increase the daily dose over a number of weeks,
similar to standard-of-care insulin titration. Knowing the
target insulin dose, would allow greater step-wise increases
and reduce the length of the titration period. The predicted
target dose can help people with T2D and their health care
professionals to set goals, balance expectations and evaluate



progress of the insulin titration process. Additionally, know-
ing the target dose size may reduce the fear of overdosing.

In this case study, 24 hours of experimental data is enough
to parameterize a dose-response model. In a real-world set-
ting, inter and intraday variations in insulin response may call
for longer data collection periods and a different approach to
computing the output sensitivities. Due to interday variations,
a model identified today may not be representative tomorrow.
Hence, data collection over several days, and potentially even
weeks, could very well be required to fully understand the
dose-response. Additionally, intraday parameter variations
can lead to sub-optimal experimental designs, since we base
the optimization on output sensitivities we compute from a
fixed parameter value.

In this work, we evaluate the output sensitivities locally
based on the published population parameters. The local
sensitivities provide information about the relevance of θ in
the proximity of the reference point. Ideally, the reference
point should be the true parameter set for the population as a
wrong assumption can lead to sub-optimal design protocols.
We test our design in a simulation model with structural
and parametric differences. Despite model mismatch, the new
experimental protocol improves dose predictions hinting that
the parameter assumptions are sufficiently representative to
design an informative experiment. For future work, testing
alternative computation methods for global sensitivities could
be a relevant step before clinical implementation of an
experimental design in a nonlinear physiological system.

VI. CONCLUSION

In this case study, we use MBDoE to improve the per-
formance of a model-based insulin titration algorithm. In
the framework of a published algorithm, we optimize meal
and insulin inputs in a 24-hour data collection period to
parameterize a dose-response model. In simulation, we test
the safety and efficacy of the model-based dose predictions.
The previously published algorithm provides 93% safe and
effective insulin doses. By exploiting MBDoE to optimize the
titration experiment, the safety and effectiveness is improved
and all of the dose predictions are safe in the simulations.
We conclude that MBDoE has a potential to improve the
performance of model-based dose-guidance solutions. How-
ever, it is essential to consider the variations in real-world
data before implementing an optimal protocol in clinics.
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APPENDIX F
Conference Abstract

Short-term usage of a closed-loop insulin delivery
system for improving optimization of insulin doses:
a trial protocol



score. 140 patients who met eligibility criteria were selected in
study using probability sampling-technique. Data analysing
SPSS.

Results: Among patients (52 males and 88 females) who have
mean age around 58.6 years-old, mostly married, from various
education level, have EQ-5D-3L scores with no problem: Mo-
bility (77.1 %), self-care (97.1 %), usual activities (90.7 %),
pain/discomfort (45.0 %) and anxiety/depression (46.4 %). VAS
Score in male is much better than female, 66.3 vs. 62.4 respec-
tively with significant p-value 0.044. Otherwise duration of di-
abetes and type of medication significantly decrease quality of
life showed by VAS score.

Conclusions: Quality-of-Life for patients with T2DM is af-
fected by numerous factors such as sex, BMI, occupation, du-
ration of diabetes and type of treatment.
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TRANSITION FROM INSULIN PUMP TO MULTIPLE
DAILY INJECTIONS USING INSULIN DEGLUDEC:
INTERIM RESULTS FROM A RANDOMIZED
CONTROLLED TRIAL

V. Shah, T. Vigers, J. Snell-Bergeon

University of Colorado, Barbara Davis Center For Diabetes,
Aurora, United States of America

Background and Aims: We evaluated the efficacy and safety
of an ‘overlap’ strategy (OLS) compared to standard of care
(SOC) for insulin pump (CSII) to multiple daily injections (MDI)
transition using an ultralong acting insulin degludec (IDeg) in
adults with type 1 diabetes (T1D).

Methods: In this single center randomized clinical trial, adults
with T1D > 1 year, using CSII for >3 months, and A1c between
6.5% and 8.5% were randomized to OLS or SOC after 1 week of
run-in-phase. Participants wore blinded Dexcom G6 and insulin
dose was not changed during the trial. Participants stopped CSII
and started IDeg in 1:1 dose (same as total basal insulin) at
randomization in SOC. In OLS, IDeg in 1:1 dose and CSII basal
insulin were overlapped (50% basal reduction for 24 hours and
75% basal reduction between 24–48 hours) for first 48 hours
from randomization. CGM time-in-range (TIR- 70–180 mg/dL)
and time below range (TBR, <70 mg/dL) were compared after
randomization.

Results: Nine adults with T1D (age 33.8 – 7.9 years, A1c
7.5 – 0.3%, diabetes duration 21.8 – 3.8 years, 62% females)
were randomized to SOC, and seven adults with T1D (age
36.7 – 10.2, A1c 7.2 – 6.5%, diabetes duration 23.0 – 15.1, 57%
females) were randomized to OLS. Percent differences for TIR

was significantly higher and no differences in TBR in OLS
compared to SOC (Figure).

Conclusions: Overlap of IDeg and insulin pump for first 48
hours results in better glycemic control without increasing hy-
poglycemia during transition to MDI using IDeg in adults with
T1D.
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CAN AN ADVANCED LANCING DEVICE ALLEVIATE
PAIN AND IMPROVE HBA1C?

J. Kesavadev1, A. Shankar1, G. Krishnan1, B. Chandran2,
A. Basanth1, G. Sanal2, V. Krishna2, S. Jothydev2

1Jothydev’s Diabetes Research Center, Diabetes, Trivandrum,
India, 2Jothydev’s Diabetes Research Center, Diabetes,
Trivandrum, India

Background and Aims: Pain has been perceived as a major
impediment to SMBG. We assessed benefits of using Genteel,
vacuum based lancing device in improving HbA1c and pain of
pricking.NCT04214704

Methods: This is the interim result of an ongoing, open-label,
24-week cross over trial where diabetes patients were matched
using propensity score and allocated to GC or CG arm (G-
Genteel; C- Conventional). GC arm exclusively used Genteel for
12 weeks, and then switched to conventional method of SMBG
for additional 12 weeks, and vice versa for CG arm. A total of
110 patients were recruited with 55 in each arm. Both arms were
provided with same glucometer. CG arm used the lancet and
lancing device which they were using prior to randomization and
GC used BT Lancets during first 3 months. Primary outcomes
were reduction in HbA1c and %SMBG adherence over 24-
weeks. Subjective assessment of pain in both arms was assessed.

Results: Data from 22 patients(13 TIDM, age: 25 – 8.29,
duration of diabetes 10 – 7.12y and 9 T2DM, age: 43 – 13.40,
duration of diabetes: 11 – 6.75y) showed a significant reduction
in A1c in both arms while using Genteel(9.05 – 0.93% at baseline
to 7.76 – 0.84% at week 12 in GC arm and 7.52 – 1.22% at 12 to
7.21 – 0.90% in CG arm at 24 weeks; p < 0.001*).This was re-
inforced by increased SMBG adherence to genteel due to alter-
nate testing sites and contact tips.

Conclusions: This study demonstrates Genteel superior in
terms of A1c reduction and pain of pricking.
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SHORT-TERM USAGE OF A CLOSED-LOOP INSULIN
DELIVERY SYSTEM FOR IMPROVING
OPTIMIZATION OF INSULIN DOSES: A TRIAL
PROTOCOL

T. Kronborg1,2, S. Hangaard1,2, S.E. Engell3,4, T. Aradóttir3,
H. Bengtsson3, P. Vestergaard1,5,6, M.H. Jensen1,2

1Aalborg University Hospital, Steno Diabetes Center North
Denmark, Aalborg, Denmark, 2Aalborg University, Health
Science And Technology, Aalborg Ø, Denmark, 3Novo Nordisk,
Device Research & Development, Bagsværd, Denmark,
4Technical University of Denmark, Department Of Applied
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Mathematics And Computer Science, Kgs. Lyngby, Denmark,
5Aalborg University Hospital, Department Of Clinical
Medicine, Aalborg, Denmark, 6Aalborg University Hospital,
Department Of Endocrinology, Aalborg, Denmark

Background and Aims: Closed-loop insulin delivery systems
may be viable for treating type 2 diabetes. However, this is not
always feasible, and the price is a barrier for long-term usage in a
large proportion of patients. The novel objective of the present
study is to investigate whether short-term usage of a closed-loop
system can improve optimization of insulin doses under free
living conditions.

Methods: The design is a randomized, parallel-arm study with
32 basal-only or MDI treated patients with type 2 diabetes.
Participants will have a 2-week run-in period continuing their
current insulin therapy while wearing a CGM. Participants will
then be randomized 1:1 into a closed-loop arm or a standard
insulin therapy arm. In the closed-loop arm, participants will use
a closed-loop system for 30 days. Afterwards, participants will
transition to standard insulin therapy for 30 days wearing a CGM,
where insulin doses are optimized every 5–7 days. In the standard
insulin therapy arm, participants will continue standard insulin
therapy wearing a CGM for 60 days, where insulin doses are
optimized every 5–7 days. The primary outcome of the study is to
assess the efficacy of a closed-loop system in maintaining CGM
glucose levels within the target range from 3.9 to 10.0 mmol/L
compared to standard insulin therapy.

Results: The study is expected to begin in the summer of
2021, and the results published from the spring of 2022.

Conclusions: The study will reveal whether a closed-loop
system can lead to better glycemic control and provide insights
on patient-tailored optimization of insulin doses.

P312 / #268

Topic: AS15-Trials is progress

ASSOCIATION OF DIABETIC NEPHROPATHY WITH
INSTRUMENTS FOR PREDICTION OF
CARDIOVASCULAR RISK IN PATIENTS WITH TYPE 1
DIABETES

A. Goldshmid, V. Fadeyev, I. Poluboyarinova, R. Karamullina,
E. Chechikova

Federal State Autonomous Educational Institution of Higher
Education I.M. Sechenov First Moscow State Medical
University of the Ministry of Health of the Russian Federation
(Sechenov University), Department Of Endocrinology, Moscow,
Russian Federation

Background and Aims: Cardiovascular diseases (CVD) were
the cause of death in 31.9% patients with type 1 diabetes (T1D).
Patients with diabetic nephropathy (DN) have higher rates of
CVD and mortality than patients without DN. Prevention and
treatment of CVD have been extrapolated from type 2 diabetes
experience. There are two T1D specific scales for predicting
CVD risk. To evaluate association of DN with T1D specific
scales predicting CVD risk.

Methods: Screening of 176 T1D patients was performed: age
32 years [25.5–42.5]; T1D duration 15 years [9–20]; HbA1c 8.2%
[7.2–9.6]. 68.2% had normal albuminuria, 27% microalbuminuria,
4.5% macroalbuminuria, median 25.5 mg/day [15.0–36.5].
Mean eGFR (CKD-EPI) 80.55 – 18.13 ml/min/1.73m2: C1
30.1%, C2 58.5%, C3a 8.5% and C3b 2.9%. Steno T1
Risk Engine scale 5-year risk 3.7% [2.1-8.0], 10-year risk
7.1% [4.2-8.15]. Swedish T1D risk score 5-year risk 0.93%
[0.50-1.79]. The median CVD risk was rated as low for both
scales.

Results: There were significant direct correlation of albu-
minuria stage and inverse correlation of eGFR with 5-year risk
(r = 0.388 and r = -0.506; p < 0,0001), 10-year risk (r = 0.393 and
r = -0.500; p < 0.0001) in Steno scale and risk in Swedish scale
(r = 0.189; p = 0.012 and r = -0.497; p < 0.0001). There is high
density positive correlation between Steno and Swedish risk
score (r = 0.893; p < 0.0001).

Conclusions: Steno and Swedish T1D risk scales correlate
with DN stage and are equivalent to each other for assessing
cardiovascular risk in T1D patients. Swedish T1D risk score
doesn’t require quantitative albumin loss assessment and more
convenient in real clinical practice.

P313 / #325

Topic: AS15-Trials is progress

INDUCING BETA CELL REST WITH
INSULIN – A PART OF THE AZITHROMYCIN
INSULIN DIET INTERVENTION IN TYPE 1
DIABETES (AIDIT) STUDY

G. Forsander1, F. Sundberg1, A. Lyckå1,
O. Skog2, O. Korsgren2

1The Queen Silvia Childrens Hospital, Sahlgrenska University
Hospital, Dept Of Pediatrics, Gothenburgh, Sweden, 2Uppsala
university, Dept Of Immunology, Genetics And Pathology,
Uppsala, Sweden

Background and Aims: Repeated induction of beta-cell rest,
by episodes of intensified insulin treatment, is part of the ongo-
ing, RCT AIDIT study protocol aiming at preservation of beta-
cell function in children recently diagnosed with type 1 diabetes.
All children are treated with SAP from diagnosis and normally
aiming for a blood glucose value 4.0-8.0 mmol/l. In this report,
beta-cell rest induced by insulin given intravenously and sub-
cutaneously is evaluated.

Methods: Insulin lispro is given as an intravenous (iv ) in-
fusion (1U/ml) for 72 hours within one week after diagnosis and
by sc subcutaneous (sc), intensified infusion with a Tandem
T:slim insulin pump (100 U/ml) 6–8 hours during one day in
study week 5, 9, 13, 17, 25, 34, 43. The treatments target a
glucose level of 4.0 – 0.5 mmol/l . Dexcom G6 and p-glucose
(Stat-Strip) are used for glucose monitoring. Extra insulin diluted
to 10 U/ml can be given iv when needed during sc treatment. The
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APPENDIX G
Conference Abstract

Translation from pump to pen in type 2 diabetes:
the effect of bioavailability



Conclusions: Hypoglycemia risk reduction depends on pa-
tient education and self-empowerment. If the patient‘s hypo-
glycemic episode is not severe, utilizing simple glucose intake
orally is often done without any need to use the emergency kit.
Thus, the emergency kit may expire in shelf life, get lost, or not
be properly utilized when needed due to lack of experience of the
patient or care-givers in using it.

EP090 / #472

Topic: AS04-Clinical Decision Support Systems/Advisors

THE MY FRIEND DIABETES CARBOHYDRATE
BOLUS CALCULATOR: USER EXPERIENCES

K. Karakusx1, T. Gokce2, E. Can2, S. Muradoglu2,
D. Mersinlioğlu1, E. Eviz2, G. Yesiltepe Mutlu2, S. Hatun2

1Koç University, School Of Medicine, istanbul, Turkey, 2Koc
University Hospital, Pediatric Endocrinology And Diabetes,
Istanbul, Turkey

Background and Aims: Meal management in T1D has barriers
such as not knowing the carbohydrate values of foods, miscalculated
doses, not fully understanding the mathematics of T1D. ‘‘My Friend
Diabetes Carbohydrate Bolus Calculator’’ mobile app was devel-
oped as a hybrid version of nutrition apps and insulin titration apps to
calculate meal’s carbohydrates and the matching bolus dose(fi-
gure1). A nutrition database was created based on weights and
equivalent carbohydrate ingredients of foods, which served with
practical units such as a tablespoon, pieces, glasses. The app calcu-
lates the bolus dose according to glucose value, carbohy-
drates(grams), insulin sensitivity, and Carbs/insulin ratio.We
investigated the possible benefits of the app through an online survey.

Methods: In an online survey, the effects of the app on car-
bohydrate counting, diabetes management, and the usability of the
app were examined with a 5-point Likert scale of 17 questions.

Figure2: 5-point Likert questions about the app.
Results: Of 165 people who fully participated in the survey,

58 had T1D (35.2%), 107 had relatives with T1D (64.8%), 87
participants (52.7%) were female, and the mean duration of di-
abetes was 4.72 years. 130 participants used the app. Participants
showed agreement that the app improved the users’ meal man-
agement, diabetes management, carbohydrate and dose calcula-
tions(N = 130,Mean = 4.38,SD = 0.57). They are more confident
in the dose calculation, freer in the food choices, and more
confident in diabetes care because of the app(N = 130,Mean 4.46,
SD = 0.57)(figure2).

Conclusions: People with T1D benefit from the ‘‘My Friend
Diabetes Carbohydrate-Bolus Calculator’’ mobile app. Diabetes
teams can reach more people through mobile apps and improve
their clinical outcomes.

EP091 / #541

Topic: AS04-Clinical Decision Support Systems/Advisors

TRANSLATION FROM PUMP TO PEN IN TYPE 2
DIABETES: THE EFFECT OF BIOAVAILABILITY

S.E. Engell1,2, T. Aradóttir2, H. Bengtsson2, J.B. Jørgensen1

1Technical University of Denmark, Department Of Applied
Mathematics And Computer Science, Kgs. Lyngby, Denmark,
2Novo Nordisk A/S, Dtx & Design Controls, Søborg, Denmark

Background and Aims: Artificial pancreas (AP) systems
may offer an alternative to standard of care titration in type 2
diabetes (T2D). Preliminary simulations show that short-term
AP treatment can safely identify an efficient daily dose of long-
acting insulin for pen-based treatment. However, these initial
simulations do not incorporate the difference in bioavailability
between rapid- and long-acting insulin. Pump studies in T2D
populations have shown a 20% reduction in insulin need com-
pared to pen-based treatment. In simulation, we investigate how
the bioavailability of insulin analogues affect the translation
from pump to pen.

Methods: We simulate a virtual clinic of 100 insulin-naı̈ve
people with T2D using an extended, stochastic version of the
integrated glucose insulin (IGI) model. After three weeks of AP
treatment, we translate the insulin infusion rate, unit-to-unit, into
a daily injection of long-acting insulin. In a series of simulations,
we scale the bioavailability of long-acting insulin with a factor
between 0.8 and 1.2 compared to rapid-acting insulin.

Results: Before the switch to pen-based treatment, the aver-
age pre-breakfast glucose level is 7.7 – 1.3 mmol/L. After stabi-
lizing on pen-based treatment, the rapid- to fast-acting insulin
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bioavailability ratios of 1:1.2, 1:1, and 1:0.8 result in an average
pre-breakfast glucose level of 7.3 – 1.2 mmol/L, 8.0 – 1.3 mmol/L,
and 8.6 – 1.4 mmol/L, respectively.

Conclusions: For the investigated bioavailability ratios, our
results indicate no hypoglycemia risk associated with a unit-to-
unit translation from pump to pen. However, to achieve com-
parable treatment outcomes after the pump to pen switch, the
bioavailability ratio is key to successful dose conversion.

EP092 / #561

Topic: AS04-Clinical Decision Support Systems/Advisors

DEAPP (DIABETESEDUCATIONAPPLICATION)
CHILDREN’S TYPE 1 DIABETES STRUCTURED
EDUCATION PROGRAM POST PILOT OUTCOME
DATA 2018-20

J. Greening1, S. Lockwood-Lee2, L. Paxman-Clarke3

1universities hospitals of leicester nhs trust, Paediatric
Department Of Diabetes And Endocrinology, leicester, United
Kingdom, 2University Hospitals Leicester NHS Trust, Children
Research And Innovation, leicester, United Kingdom, 3De
Montfort University, The Design Unit, leicester, United
Kingdom

Background and Aims: Diagnosis of type 1 diabetes is the
critical period to embed knowledge and understanding of dia-
betes. Deapp overcomes this, Triangulating: quality assured
structured education, interactive education and learning re-
sources using flipped learning. We tested the Deapp program
promoted self-learning , engagement and management of dia-
betes.

Methods: 5 units and subgroup analysis deapp vs control,
were compared.Hypoglycaemia awareness (Clarke) ; fear of
hypoglycaemia; problems associated in diabetes 20 (PAID-20) &
kaufmann competency. HbA1c trajectory,user surveys and
length of inpatient stay

Results: N = 237 (55 excluded (no baseline Hba1c) analysed
N = 193 (77%) showing reduced HbA1c baseline to 3 months:
98.9 - 57.3 mmol/l (M difference = 46.02, p < .001) and no sig-
nificant change from 3-12 months. Qualitative questionnaires
(n = 59 (24.9%) low scores (all 4 questionnaires and survey.

Subgroup-deapp vs control: n = 32 (n = 17 control, n = 15 deapp)
control mean hba1c : 52% (109mmol/l -53mmol )fall in hbA1c
(18 months) control vs 48% deapp( 101mmol/l- 52mmol/l).
Clarke scores 0.3 (control) -1.4 (deapp). Fear of hypoglycaemia 8
(control)- 10 (deapp). PAID-20 16 (control) -22 (deapp). Kauf-
mann 35 (control) -39 (67% post-deapp). Bed stay = 3
days(control)vs 2 days (Deapp):

Conclusions: Deapp is able deliver structured education using
flipped learning Deapp achieved at least parity of glycaemic
control to existing education programs HbA1c trajectory
acheived target hba1c of <58 mmol/l by 3 months and remained
unchanged up-to 12 months. Subgroup showed similar hba1c
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