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Summary (English)
There are more than 3,000 skin diseases, and more than a third of the world’s popu-
lation will suffer from at least one skin disease throughout their lives. With general
practitioners obtaining only a 61% dermatological diagnosis accuracy, automation is
an intuitive next step to lower the burden on medical professionals and decrease the
time to diagnosis and treatment for patients. Despite automated diagnosis methods
achieving expert-level performance, adoption is hindered by their limited ability to
explain their reasoning. Additionally, people have been shown to prefer clear, concise
explanations tailored to their understanding of a field.

Multiple explainability methods have been proposed, but their results were primarily
tested qualitatively by machine learning researchers. Quantitative analyses are rarely
performed due to their reliance on domain experts, which have low availability and
are expensive to hire as consultants.

In this thesis, we propose a novel method for intrinsically explainable convolutional
neural networks (ConvNets) that achieves expert-level explainability at no cost to the
classification performance.

First, we investigate what explainability means to experts through an explainability
dataset for diagnosing six skin diseases, consisting of diagnoses and explanations from
eight board-certified dermatologists. The dataset shows dermatologists may explain
their decision differently even when agreeing on the diagnosis.

Using this data, we benchmark a representative set of state-of-the-art ConvNet ar-
chitectures used for skin lesion diagnosis. We find that despite the ability of current
explainability methods to produce explanations, more research is required to achieve
specialist-level performance.

To move closer to this goal, we introduce two intrinsically explainable ConvNet ar-
chitectures trained to emulate a dermatologist’s decision process. The two ConvNets
achieve almost expert-level explainability at no cost to the diagnosis performance.

Finally, we prove that our method can be applied in other domains by developing an
image quality assessment network within a teledermatological context. We obtained
similar results to the skin disease diagnosis networks and reduced the number of
low-quality images sent to the dermatologists by 70%.
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Resume (Dansk)
Der findes mere end 3000 hudsygdomme, og over en tredjedel af verdens befolkning vil
lide af mindst én hudsygdom i løbet af deres liv. Eftersom alment praktiserende læger
kun har en diagnostisk nøjagtighed på 61% inden for dermatologi, er automatisering
ved hjælp af neurale netværk det næste nærliggende skridt for at understøtte læger og
andet sundhedspersonale i deres arbejde og hjælpe patienter til hurtigere at opnå den
korrekte diagnose og behandling. På trods af at automatiserede diagnosemetoder kan
præstere en nøjagtighed på samme niveau som specialister, er udbredelse og anven-
delse af disse værktøjer begrænset af deres manglende evne til at forklare de processer,
der fører til en bestemt klassificering - såsom hvorfor en diagnose er valgt frem for
en anden. Derudover fremgår det af studier, at mennesker generelt foretrækker klare,
kortfattede forklaringer tilpasset deres forståelsesramme inden for et givent felt.
En række forklaringsmodeller er blevet undersøgt for at adressere denne udfordring,
men de er primært blevet testet kvalitativt af forskere inden for maskinlæring. Kvan-
titative analyser er kun sjældent blevet udført, da de er afhængige af eksperter inden
for det givne domæne, og disse er ofte svært tilgængelige og dyre at hyre som kon-
sulenter.
I denne specialeafhandling fremlægger vi en ny metode til at opnå konvolutionelle
neurale netværk (ConvNets), som kan forklare deres beslutningsprocesser på samme
niveau som specialister, uden at der sker på bekostning af klassificeringernes nø-
jagtighed.
Først undersøgte vi, hvordan specialister begrunder deres beslutninger ved hjælp af
forklarlige dataset bestående af diagnoser af seks hudsygdomme samt begrundelser
for disse diagnoser, som er foretaget af otte autoriserede dermatologer. Af disse data
fremgår det, at dermatologernes begrundelse for en diagnose kan være forskellig - også
i tilfælde hvor de er enige om diagnosen.
På baggrund af disse data kunne vi benchmarke et repræsentativt udsnit af andre
ConvNet-arkitekturer for diagnose af hudlæsioner. På trods af at disse netværk også
kunne forklare den valgte diagnose, kunne de ikke gøre det på samme niveau som den
menneskelige pendant. Derfor introducerer vi to forklarlige ConvNet-arkitekturer,
som er trænet til at efterligne dermatologers beslutningsprocesser. De to ConvNets
kunne forklare deres beslutningsproces på næsten samme niveau som specialister, og
uden at det skete på bekostning af den diagnostiske nøjagtighed.



iv Resume (Dansk)

Slutteligt kan vi påvise, at vores metode kan benyttes inden for andre områder inden
for teledermatologi ved at skabe et netværk for evaluering af billedkvalitet. Her
opnåede vi lignende resultater som med netværket for huddiagnose, hvor vi reducerede
antallet af billeder i dårlig kvalitet, som blev sendt til dermatologerne, med 70%.
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CHAPTER1
Introduction

More than 30% of the world’s population will at some point in their lives experience
at least one skin disease [Hay et al., 2014] out of the approximately 3,000 skin dis-
eases that have been identified so far [Lewin Group, 2005]. Yet, the average general
practitioner diagnoses a skin condition with an accuracy of around 60% [Federman
et al., 1999], leading to inadequate triaging, treatment plans, and patient outcomes.
Thus, there is a pressing need for reliable automated tools to improve the disease
management process for patients suffering from dermatological conditions.
Deep learning has been successfully applied in a wide range of medical applications
for different modalities and tasks [Shehab et al., 2022], with convolutional neural
networks (ConvNets) [LeCun et al., 1998] currently being the preferred approach in
medical imaging [Castiglioni et al., 2021]. Within dermatology, Esteva et al. [2017] ig-
nited the exploration of deep learning methods with their seminal work on skin cancer
diagnosis which achieved expert-level performance. Since then, skin lesion diagnosis
has become one of the primary research areas in medical image analysis [Thomsen
et al., 2020]. However, despite the consistent advances and proof of expert-level per-
formance [Tschandl et al., 2018, 2020, Roy et al., 2022], such automated methods have
not yet been widely adopted by healthcare systems. One of the main hurdles detract-
ing from adoption is the limited explainability of a ConvNet’s decision process [Kelly
et al., 2019].
Multiple explainability approaches that can offer insights into the ConvNet decision
mechanisms have been investigated [Molnar, 2020, Jin et al., 2022]. In particular,
backpropagation-based methods stand out as a staple of medical imaging due to
their ease of implementation and low computational requirements [Van der Velden
et al., 2022]. One downside of these explanations is the researchers’ limited capability
for performing quantitative evaluations.
Thorough, quantitative evaluations require domain expert involvement, which is an
expensive and time-consuming endeavor. Because of the high costs, limited effort has
gone into quantitatively evaluating explanations despite the possibility of generating
novel insights into ConvNet decision mechanisms [Tschandl et al., 2020]. Rajpurkar
et al. [2018] show that explanations can improve the clinicians’ performance when us-
ing an automated method as a second opinion, while González-Gonzalo et al. [2022]
underline the importance of explanations in creating trustworthy automated meth-
ods. Explainability is thus a core component to ensuring that automation will be
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incorporated into the healthcare system.

To enable the healthcare system’s much-needed adoption of automated methods, we
need to create explainable diagnosis ConvNets whose explainability can be objectively
compared to that of dermatologists.

1.1 Thesis structure

In this thesis, we explore skin disease diagnosis explainability from a dermatologist’s
perspective and propose two intrinsically explainable architectures for dermatological
diagnosis. Then, we objectively benchmark the explainability of ConvNet architec-
tures commonly used for this task. Finally, we prove that this methodology can be
applied with similar results in image quality assessment for teledermatology.

Chapter 2 introduces the key concepts used in the rest of the thesis. First, we present
dermatological concepts fundamental to our research, and afterward we explore ex-
planations from a social sciences perspective. Second, we describe state-of-the-art
explainability methods for ConvNets and compare their approaches to explanations.
Finally, we summarize the main trends in ConvNets for dermatological applications.

Chapter 3 summarizes the end-to-end methodology for creating explainable derma-
tological diagnosis ConvNets described in Jalaboi et al. [2023a]. We first introduce
DermXDB, a skin disease explainability dataset which serves as a reference standard
for further research into explainability. Then, we introduce DermX and DermX+,
two intrinsically explainable ConvNet architectures for skin lesion diagnosis.

Chapter 4 presents a ConvNet architecture explainability benchmark that compares
ConvNet explainability maps created using gradient class activation maps with ex-
planations maps derived from the dataset introduced in the previous chapter. This
chapter is based on Jalaboi et al. [2023b].

Chapter 5 illustrates the versatility of the DermX methodology by applying it to
image quality assessments within a teledermatological environment. This work was
presented in Jalaboi et al. [2023c].

Finally, Chapter 6 summarizes the contributions of this thesis, highlights their impact,
and suggests some directions for future work.



CHAPTER2
Background

This chapter introduces the key concepts used in this thesis. First, we introduce fun-
damental dermatological concepts for skin lesion diagnosis in Section 2.1. Section 2.2
discusses explainability from a social sciences perspective, focusing on how people
expect and interpret explanations. Afterward, we discuss the main explanation meth-
ods proposed for ConvNets in Section 2.3 and compare them in Section 2.4. Finally,
Section 2.5 creates an overview of ConvNets in dermatological applications.

2.1 A short introduction to dermatological diagnosis

Dermatological diagnosis is a difficult field, with more than 3,000 different diseases
having been identified [Lewin Group, 2005], and up to a third of the world’s population
reporting at least one skin condition during their lives [Hay et al., 2014]. The large
number of potential patients, the limited number of dermatologists, the ease with
which symptoms can be observed, and the ubiquitousness of smartphone cameras
promote dermatological diagnosis as a prime candidate for automation.
Diagnosing skin conditions is a complex task that generally requires both a thorough
skin examination, as well as knowledge about the patient’s history (referred to as
anamnesis), the lesion’s history, and the patient’s non-visual symptoms. The anam-
nesis focuses on the patient’s history of disease and recent events or experiences that
may have triggered a skin reaction, e.g. travel to tropical countries or exposure to
poisonous plants. The lesion history provides information on the disease progression
or malignancy. The skin examination focuses on the lesion morphology, palpation
and texture, color, and configuration and distribution [Fitzpatrick and High, 2017].
Although all four components are necessary in many cases to arrive at a diagnosis,
some diseases have a distinctive appearance that enables healthcare professionals to
diagnose them from morphological traits alone [Oakley, 2017].
Morphological attributes are often grouped into basic and additional terms [Nast et al.,
2016], as illustrated in Figure 2.1 and Figure 2.2, respectively. Additional descriptive
terms are often used alongside basic terms to describe the lesion more comprehensively,
which may help differentiate between diseases. For example, the color of the scales
present in lesions can help with differentiating between seborrheic dermatitis and
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psoriasis: greasy, yellow scales are characteristic of seborrheic dermatitis, while silvery-
white scales are a hallmark of psoriasis [Oakley, 2017]. Other additional descriptive
terms include texture, shape, or how well-defined the edges of a lesion are.

Figure 2.1. Illustration and description of a subset of basic terms for describing skin lesions,
as defined by Fitzpatrick and High [2017] and Nast et al. [2016].

Figure 2.2. Illustration and description of a subset of additional terms for describing skin
lesions, as defined by Fitzpatrick and High [2017] and Nast et al. [2016].

General information about a patient can often also help a healthcare professional
identify the correct diagnosis. A patient’s age, sex, or skin tone can influence a
decision due to knowledge about the disease prevalence in specific subpopulations. For
example, actinic keratosis is more prevalent in elderly patients, seborrheic dermatitis
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affects men more often than women, and malignant melanoma is more common in
patients with lighter skin tones [Oakley, 2017]. The distribution of lesions over a
patient’s body can also narrow down the space of possible diagnoses. Chronic plaque
psoriasis lesions often appear on extensor sites (elbows, knees), while vitiligo and
actinic keratosis lesions are more common in areas exposed to the environment (face,
hands).
While a complicated endeavor, diagnosing skin conditions, particularly the ones with
specific appearances, can be automated using skin lesion images and ConvNets. In
order to take advantage of the recent developments in medical image analysis and the
accessibility of smartphones, this thesis focuses on six diseases that can be diagnosed
solely from visual markers: acne, actinic keratosis, psoriasis, seborrheic dermatitis,
viral warts, and vitiligo [Oakley, 2017].

2.2 Explainability from a human perspective

Since the dawn of time, people have required explanations to satisfy curiosity, ex-
amine someone’s understanding of a subject, or understand the cause and effect of
various phenomena [Miller, 2019]. Explanations are generally given to share knowl-
edge, persuade, or assign blame [Lombrozo, 2006]. Aristotle was the first philosopher
to investigate the explanation mechanisms, producing the Four Causes model [Han-
kinson, 1998] that defines four principal causes that can answer any why question.
Since then, many philosophers and researchers have been working on defining when
explanations are given, how they are constructed, and how they are communicated.
Although different explanation models have been proposed, the maxims introduced
by Grice [1975] lie at the foundation of creating good visual explanations [Miller,
2019]:

• quality: the explanation must be true and well documented;

• quantity: the explanation must include all necessary arguments without includ-
ing any unnecessary information;

• relation: the explanation must be relevant to the question asked;

• manner: the explanation must be unambiguous, brief, orderly, and only use
concepts easily understood by the target of the explanation.

In other words, good explanations must include only clear, high-quality arguments
that are relevant to the question, using concepts familiar to the receiver of the ex-
planation. However, it is worth noting that humans are not always able or willing
to explain their decisions [Holzinger et al., 2017], which often leads to inconsistent
explanations and explanation evaluations by observers.
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Given an automated dermatological diagnosis method, we consider its explanation
valid if it correctly uses basic and additional terms for describing skin lesions, includes
only the relevant descriptors for the chosen diagnosis, and accurately represents the
decision mechanism behind the diagnosis. Although mechanisms for producing expla-
nations for an automated method’s decision process exist, explanations validated by
engineers are often not considered relevant by the target users [Miller, 2019]: domain
experts and laypeople tend to expect automated methods to explain their behavior
in a way similar to other humans, rather than produce a mathematical description
of how the decision process was performed [De Graaf and Malle, 2017]. Figure 2.3
illustrates an explanation for a psoriasis case that fulfills all maxims introduced by
Grice when targeted at a healthcare professional.

Figure 2.3. Illustration of a psoriasis lesion. A valid explanation for the psoriasis diagnosis
would consider the thickened red plaque with well-defined edges, the three thickened red
papules with well-defined edges, and the silvery-white scales. The macule at the top right is
not indicative of psoriasis and should not be included as an explanation for the diagnosis. A
sufficient explanation would only focus on the plaque and the scales, as the two are necessary
and sufficient for the diagnosis.

A quantitative evaluation of explanations requires metrics that measure how good an
explanation is. In this thesis, we use the metrics introduced by DeYoung et al. [2019]
that measure how well an explanation given by an automated method fulfills Grice’s
maxims:

• plausibility: how similar the given explanation is to that of a human agent;

• faithfulness: how well the explanation represents the inner workings of the
automated method.

DeYoung et al. [2019] propose a third metric, sufficiency, that measures whether or not
the selected explanation is sufficient for explaining the outcome. We do not include
this metric in our work due to how image-level characteristics, such as demographics
and body location, can further guide the diagnosis.
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As this thesis is concerned with the automated dermatological diagnosis for images
of skin diseases, we focus on defining, creating, and evaluating plausible and faithful
explanations from the point of view of a dermatologist.

2.3 Explainability approaches in medical imaging

Explainability is an essential factor in the adoption of automated methods in the
industry, and this holds even more true within the healthcare system [Kelly et al.,
2019]. In the European Union, the General Data Protection Regulation (GDPR) in-
troduced the ”right to an explanation” requirement: any automated system that has
an impact on people’s lives must be able to provide high-quality explanations for its
behaviour [Goodman and Flaxman, 2017]. This requirement aims to detect and avoid
the widespread usage of Clever Hans detectors [Lapuschkin et al., 2019], namely pre-
dictors that draw conclusions based on wrong or biased reasoning. One of the most
famous examples of a Clever Hans detector is the COMPAS crime recidivism predic-
tion software which was shown to base its decisions on the defendant’s race instead of
other, more relevant features [Dressel and Farid, 2018]. Within healthcare, such a de-
tector might learn that cancerous moles are often photographed alongside a ruler and
with different pen markings that help with the excision, while non-cancerous moles
do not include these elements in their photographs [Winkler et al., 2019]. Instead of
focusing on the color and edges of a lesion to assess its risk of malignancy, Clever
Hans detectors would focus on whether or not a ruler or any pen markings are present
in the image.

While explainability is not an issue in simpler machine learning methods such as
linear regression or decision trees, ConvNets are notoriously difficult to explain. This
has led to the common adage that there is a trade-off between the machine learning
methods’ performance and their explainability: simpler, less performant methods are
easily explainable, while larger, more complex methods are more opaque in their
decision mechanisms.

Different explanation mechanisms for image analysis deep learning methods have
been proposed, offering explanations in visual form, textual form, or through exam-
ples [Van der Velden et al., 2022]. Visual explanations are most commonly produced
using backpropagation or perturbation. Textual explanations such as image caption-
ing [Vinyals et al., 2015] and example-based explanations such as prototypes [Chen
et al., 2019] are used less often in medical research and will not be discussed in this
thesis.

Backpropagation-based methods rely on a ConvNet’s backpropagation step to detect
the regions in an image with the highest predictive value by computing the gradient
in relation to the prediction for all areas of an image. Saliency maps [Simonyan et al.,
2013] is a backpropagation-based method that measures how important a pixel is to
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the prediction by calculating the loss function’s gradient for the relevant class with
respect to each pixel in the input image. In other words, given an image I of size
m × n and a target class c, we define the saliency map Ec ∈ Rm×n for class c as:

Ec(I) = ∂Nc(I)
∂I

, (2.1)

where Nc(I) is the prediction score for class c of a ConvNet N for the input I.
Gradient class activated maps (Grad-CAM) [Selvaraju et al., 2017] is the most com-
mon explainability method in medical imaging [Singh et al., 2020]. It uses the forward
propagation step to extract the image features, sets the prediction class to a given
value and then backpropagates the signal to the last convolutional layer. The fea-
tures directly contributing to the predicted class are part of the resulting explanation.
More specifically, a Grad-CAM explanation Ec ∈ Ru×v for an image I and a given
class c is calculated as

Ec(I) = ReLU

∑
k

1
uv

u∑
i=1

v∑
j=1

∂Nc(A)
∂Ak

ij

Ak

 , (2.2)

where Nc(A) is the class prediction score for c, and A ∈ Ru×v×k is the set of activa-
tions for the final convolutional layer in the ConvNet of size u × v with k filters.
Integrated gradients [Sundararajan et al., 2017] employs a similar mechanism to Grad-
CAM. The main difference is that instead of fully calculating the gradient for assigning
an importance score to each feature given a convolution layer, the gradient is approx-
imated through a Riemann approximation. Mathematically, an integrated gradients
explanation E ∈ Ru×v for a set of activations A of size u×v extracted from an image
I using a ConvNet’s softmax output N(I) for the input I is expressed as

E(I) = 1
m

(A − A′)
m∑

k=1

∂N(I ′ + k
m (I − I ′))

∂A
, (2.3)

where I ′ and I ′ represent the empty image baseline and its final convolutional layer
activations, respectively, k is the scaled feature perturbation constant, and m is the
number of steps performed during the Riemann approximation of the integral.
As both Grad-CAM and integrated gradients use features extracted from the last
convolution layer, their explanations will have a resolution equal to the size of the
last layer’s features. For example, in an EfficientNet-B2 the resolution of a Grad-
CAM explanation is 9 × 9, while for a VGG the resolution will be 14 × 14. This
results in much less specific explanations than saliency maps, which are computed at
the input pixel level.
Perturbation-based methods modify the original image and evaluate the changes in
the ConvNet’s output with regard to the modifications. The modifications often con-
sist of replacing specific pixels in the image with a constant value. Occlusion [Zeiler
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and Fergus, 2014] is a straightforward perturbation method that determines which ar-
eas of the input image are most relevant for the prediction by systematically deleting
sections of the image and computing the impact this alteration has on the prediction
confidence. The lower the confidence in the original predicted class, the more impor-
tant an area is considered to be. Formally, given an image I, a ConvNet N , a class
prediction c, and a region R, we define the importance attributed to the region IR as

ER
c (I) = Nc(I) − Nc(I − IR), (2.4)

where I − IR is the image I where all pixels in the region IR have been blocked out,
and Nc(I) is the confidence of N when predicting class c for the input I.
Local interpretable model-agnostic explanations (LIME) [Ribeiro et al., 2016] is an-
other popular perturbation method. LIME uses a superpixel algorithm to split the
image into areas and then randomly selects a subset of superpixels to occlude. The
ConvNet then evaluates the occluded image, and the magnitude of change in its pre-
dicted class represents how important the occluded areas are to the prediction. An
interpretable model is then trained on a group of perturbed samples and their magni-
tude of change, resulting in a simplified, explainable model that can be used to better
understand the initial ConvNet. Mathematically, LIME generates an explanation E
for the ConvNet function N and image I using the explainable model g as

E(I) = arg min
g∈G

L(N, g, πI) + Ω(g), (2.5)

where L is the loss function minimized by g, Ω(g) is the complexity of g, and πI

defines how many perturbations will be explored when training g.
However, in order to obtain stable results, perturbation methods require a large
number of inference steps to be performed and thus have high computational require-
ments. These methods have also been criticized as unsuitable for medical imaging, as
the modifications introduce unnatural elements into the image [Uzunova et al., 2019].
Rather than relying on external explainability methods, several groups proposed in-
trinsically explainable ConvNet architectures, primarily focusing on integrating do-
main knowledge into the architecture itself. While less transferable than more general
techniques, intrinsically explainable ConvNets tend to provide more domain-relevant
explanations, often using a vocabulary easily understood by domain experts. Barata
et al. [2021] propose an architecture that takes advantage of spatial attention layers
and the hierarchical structure of dermatological diagnosis taxonomies to produce more
explainable diagnoses. Lin et al. [2022] use hierarchical concept bottleneck models to
predict the quality of fetal ultrasound scans by imitating the decision processes steps
of radiologists. Gautam et al. [2022] introduce ProtoVAE, a ConvNet architecture
that proposes class-specific prototypes and integrates them into the decision process.
Despite the large number of proposed explainability methods, there has been lim-
ited research into quantitatively evaluating their explanations. Qualitative analy-
ses rely on visual inspection, often performed by engineers rather than domain ex-
perts, while quantitative analyses often use lesion segmentations as the reference
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standard [Tschandl et al., 2020]. However, such segmentations do not always consti-
tute an adequate explanation. Tschandl et al. [2020] highlight the importance of using
the correct reference standard in quantitative analyses through their actinic keratosis
example: a Grad-CAM explanation of an actinic keratosis diagnosis highlighted the
area surrounding the lesion rather than the lesion itself. While from an engineer’s
perspective, this behavior suggested that there were issues with the model, dermatol-
ogists understood it as the ConvNet focusing on the sun-damaged skin surrounding
the lesion, one of the primary characteristics of actinic keratosis, and thus confirmed
its correctness.

(a) Original image (b) Plausible explanation (c) Faithfulness counterfactual

Figure 2.4. Illustrations of plausible, faithful, and sufficient explanations. (a) Original
psoriasis image. (b) Ideal plausible explanation. Identical to how a dermatologist would
argue for their psoriasis diagnosis, a model offering this explanation uses plaque (purple),
scales (yellow), and papules (green) as the reasons for the diagnosis. (c) Counterfactual
image for testing the faithfulness of the ideal plausible explanation, created by occluding
all characteristics selected by the plausible explanation. The faithfulness test consists of
predicting the diagnosis of the counterfactual image and measuring the magnitude of change
in the predicted class. If the confidence in psoriasis drops, the explanation is a faithful
representation of the ConvNet’s decision process.

To evaluate the performance of our explanations, we employ two metrics introduced
by DeYoung et al. [2020]: plausibility and faithfulness. We disregard sufficiency due
to its limited applicability in dermatology. For quantifying plausibility, we use the
fuzzy definitions of sensitivity, specificity, and F1-score (Dice-Sørensen coefficient):

F1-score =
2

∑
p∈P min(Ep, Dp)∑

p∈P (Ep) +
∑

p∈P (Dp)
, (2.6)

Sensitivity =
∑

p∈P min(Ep, Dp)∑
p∈P (Dp)

, (2.7)

Specificity =
∑

p∈P min(1 − Ep, 1 − Dp)∑
p∈P (1 − Dp)

, (2.8)
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where P represents the set of pixels in the image, E defines the set of values for each
pixel as given by the explainability method, and D represents the fuzzy dermatologist
attention maps calculated as the fraction of dermatologists that included the pixels in
their explanation. Similar to occlusion methods, faithfulness can be computed as the
magnitude of the change between the predicted class confidence for the original image
versus the same class confidence for the image with the explanation areas occluded.
Figure 2.4 illustrates the two metrics in a psoriasis case.

Due to differing approaches to generating explanations, methods may produce differ-
ent explanations for the same ConvNet classification task. In the next section, we
compare five explainability methods to evaluate the impact that choosing a certain
method would have on the outcome.

2.4 Explainability methods comparison

Different explainability methods take different approaches to explaining a ConvNet’s
classification. In this section, we explore the differences between a selection of
backpropagation-based methods and perturbation-based methods for a six-class di-
agnosis ConvNet trained on a skin disease dataset achieving 73% test accuracy. We
evaluate the explanations by comparing them to explanation maps created by board-
certified dermatologists, using the metrics introduced in Section 2.3.

Figure 2.5 illustrates how five common explainability methods approach the explana-
tion of psoriasis diagnosis. In this example, Grad-CAM produces the closest expla-
nations to the dermatologist attention map, closely followed by integrated gradients.
Saliency maps and LIME severely underperform. The explanations produced by in-
tegrated gradients and Grad-CAM cover large areas of the image due to the low
resolution of the last convolutional layer – only 9 × 9. Saliency focuses on a few
highly indicative regions while disregarding other lesions. Both occlusion and LIME
tend to focus on irrelevant areas more often, mainly due to the large number of lesions
covering a wide area: occluding one lesion is unlikely to impact the diagnosis, as the
ConvNet can use the remaining lesions to diagnose the image as psoriasis.

To quantify the overall performance of each explainability method, we produce expla-
nations for 41 correctly classified test images. The average fuzzy sensitivity, speci-
ficity, and F1-score obtained by each method are presented in Table 2.1, while the
ROC curves for each method and individual dermatologists are illustrated in Fig-
ure 2.6. Overall, the same trends emerge: Grad-CAM displays the overall highest
sensitivity, F1-score, and ROC AUC, reaching expert-level sensitivity and F1-score.
Integrated gradients performs similarly to Grad-CAM. Despite their overall low per-
formance, the high variance allows occlusion and LIME to reach expert-level sensitiv-
ity scores. Saliency is the only method that reaches expert-level specificity.
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Figure 2.5. Comparison of five explainability methods for the correct psoriasis prediction
in a six-class diagnosis ConvNet. Backpropagation-based methods (top row) either pick out
single, highly indicative lesions or highlight most plaques, papules, and scales in the image.
Occlusion selects both healthy skin and lesions as important for the diagnosis. For occlusion,
the large number of lesions and the wide affected area makes it difficult for a single occluded
area to impact the diagnosis. LIME focuses mostly on healthy skin, possibly due to its
reliance on superpixel algorithms which underperform in images with lower contrast and
softer edges.

Table 2.1. Fuzzy sensitivity, specificity, and F1-score for five explainability methods over
41 correctly classified test images. We use the fuzzy dermatologist attention map as a
reference standard. The pairwise inter-rater dermatologist agreement is calculated as the
average between each dermatologist’s explanation with regard to the fuzzy dermatologist
explanation map of each other dermatologist. Grad-CAM and integrated gradients reach
expert-level sensitivity, although neither can achieve the same results for F1-score due to
their low specificity. Saliency obtains a dermatologist-level specificity score. The somewhat
low dermatologist sensitivity and F1-score highlight the difficulty of this task.

Method Sensitivity Specificity F1-score
Saliency 0.12 ± 0.05 0.97 ± 0.02 0.17 ± 0.06
Integrated gradients 0.76 ± 0.20 0.69 ± 0.11 0.49 ± 0.19
Grad-CAM 0.81 ± 0.14 0.64 ± 0.12 0.50 ± 0.19
Occlusion 0.69 ± 0.18 0.64 ± 0.10 0.44 ± 0.19
LIME 0.53 ± 0.26 0.45 ± 0.24 0.29 ± 0.17
Dermatologists 0.72 ± 0.04 0.92 ± 0.02 0.67 ± 0.03

These experiments suggest that backpropagation-based methods are more similar
to how humans explain their reasoning – either by selecting a few highly indicative
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Figure 2.6. ROC curves for five explainability methods over 41 correctly classified test
images, and the individual dermatologist pairwise performance with regard to each other
dermatologist. Grad-CAM and integrated gradients display the highest performance, while
LIME severely underperforms. Dermatologist shows a much higher specificity than all ex-
plainability methods, as well as an overall high sensitivity.

regions or by highlighting most of the affected area. Grad-CAM’s ease of computation
and high performance reinforce the general preference for it in the medical literature.
On the other hand, perturbation-based methods seem to not be a good fit for medical
applications where a large number of indicative regions may appear in an image.

Another interesting finding was that dermatologists themselves tend to disagree on
what a good explanation for a diagnosis is, even when agreeing on the diagnosis.
This can be explained by their training, seniority, personality, and even levels of
energy when constructing the explanation. Training can influence the vocabulary
doctors use in explanations, e.g. some European countries use the term placard
(an elevated lesion between 1 and 5cm with well-defined edges) although the term is
absent in most North American textbooks. Seniority may enable some dermatologists
to easily identify more obscure disease characteristics, while their personality may
also influence the explanation: some dermatologists choose to focus on a few, highly
indicative lesions, while others tend to select all relevant characteristics present in an
image. Finally, as observed in other domains as well, a labeler’s ability to focus at
the time of performing the task influences the accuracy of their performance – tired,
pressured labelers are more likely to make mistakes [Rädsch et al., 2023]. Thus, the
creation of a thorough, unified labeling protocol is paramount when attempting to
build explainability datasets.

Based on the experiments performed in this section, its low computation require-
ments [Van der Velden et al., 2022], and its popularity within the field of medical
imaging [Singh et al., 2020], we use Grad-CAM as the main explainability method in
this thesis.
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2.5 Convolutional neural networks in dermatology

Given the large proportion of people experiencing skin diseases, the low number of
dermatologists per capita, and the availability of imaging devices, skin lesion diag-
nosis is one of the prime targets for automation within healthcare. In 2017, Esteva
et al. [2017] proved that a ConvNet could achieve a diagnosis performance similar to
that of dermatologists, thus paving the way toward the current explosion in ConvNets
applied to dermatological tasks. This development is in part supported by the release
of large skin disease imaging datasets such as SD-260 [Sun et al., 2016], the Interna-
tional Skin Imaging Collaboration (ISIC) challenge dataset [Codella et al., 2018], and
DermNetNZ [DermNetNZ, 2021].

Esteva et al. [2017] triggered an explosion in the study of automated methods within
dermatology. A large variety of modalities, tasks, and architectures have been tack-
led by researchers in machine learning applications for dermatology [Thomsen et al.,
2020]. Dermoscopic images were one of the first modalities to be investigated by the
machine learning community. They are images taken with a dermoscope by a health-
care professional, often in a clinical setting. Dermoscopic images are primarily used
in diagnosing different types of skin cancer and their mimickers, e.g. actinic keratosis,
seborrheic keratosis, benign naevi [Esteva et al., 2017, Tschandl et al., 2020, Reshma
et al., 2022]. With the release of SD-260 and DermNetNZ, photographic images taken
with professional cameras in a clinical environment have also become a staple of der-
matological automation research. Taken in standardized poses and controlled lighting
and background settings, they have wider use cases than dermoscopy imaging, often
focusing on the diagnosis of chronic skin diseases, severity assessments, or progression
analyses [Zhang et al., 2019, Han et al., 2020, Wu et al., 2021, Aggarwal and Papay,
2022, Ba et al., 2022]. As smartphones became more ubiquitous, photographic im-
ages taken by patients themselves using a smartphone made their entrance into the
research community [Jensen et al., 2019, Chin et al., 2020, Hossain et al., 2022]. How-
ever, the differences in smartphone camera quality, the lack of standardized poses,
and the diverse lighting settings make their use more challenging.

Tasks tackled by ConvNets cover a large variety of dermatological applications. Dis-
ease diagnosis either focuses on binary disease classification or distinguishing between
different skin diseases [Tschandl et al., 2020, Reshma et al., 2022, Han et al., 2020,
Aggarwal and Papay, 2022, Hossain et al., 2022]. In diseases such as acne, lesion
count [Min et al., 2013] is a common task, while lesion segmentation [Yuan et al.,
2017, Baig et al., 2020, Wu et al., 2022] is relevant in cases such as skin cancer where
the lesion size and its edges may further inform the diagnosis. Disease severity as-
sessment [Seité et al., 2019, Munthuli et al., 2022, Zhang and Ma, 2022] is often used
for triaging patients or to establish the right treatment. Within teledermatology,
ConvNets have been used in image quality assessment [Kim and Lee, 2017, Bianco
et al., 2018].
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Most solutions use standard ConvNet architectures pre-trained on the ImageNet
dataset [Deng et al., 2009], such as VGG [Han et al., 2020, Chin et al., 2020],
ResNet50 [Hossain et al., 2022, Burlina et al., 2019], MobileNet [Hossain et al., 2022,
Sahin et al., 2022], or EfficientNet [Ba et al., 2022, Hossain et al., 2022, Sahin et al.,
2022]. The preference towards pre-training can be explained by the small size of
public datasets: a ConvNet would have difficulties being trained from scratch on a
dataset with fewer than 30,000 images, and thus pre-training is necessary to ensure
stability and performance.

This exploration of dermatological modalities and tasks using ConvNets is not lim-
ited to academia – different industrial entities are also investigating ConvNets for
dermatology. La Roche Possay [Seité et al., 2019], LEO Pharma [Jensen et al., 2019],
Google [Jain et al., 2021], Nurithm Labs [Shah et al., 2021], and L’Oréal [Flament
et al., 2022] have all proposed ConvNets for industrial applications. Their work
covers topics such as disease severity, diagnosis confidence calibration, diagnosis per-
formance, and skin aging evaluation. However, none of their proposed methods have
as of yet been certified as a medical device for public-facing applications.

To further understand the inner working of their proposed ConvNets, some groups in-
clude an explainability method to provide additional insight into their proposal’s
decision mechanism. The most common explainability approaches are based on
backpropagation, such as saliency maps [Fink et al., 2020, Liu et al., 2020], Grad-
CAM [Tschandl et al., 2020, Zunair and Hamza, 2020, Xie et al., 2020, Tanaka et al.,
2021], and trainable attention [Barata et al., 2021, Yan et al., 2019].

In this thesis, we explore the explainability of pre-trained ConvNet architectures
and employ custom-built architectures to obtain highly performant, explainable skin
lesion diagnosis methods.
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CHAPTER3
An end-to-end

methodology for
explainable

convolutional neural
networks

Based on work done by Raluca Jalaboi, Frederik Faye, Mauricio Orbes-Arteaga, Dan
Jørgensen, Ole Winther, and Alfiia Galimzianova. Published in the Medical Image
Analysis Journal, 2023. See Appendix A.
As highlighted in Chapter 2, explainability is one of the main obstacles towards the
adoption of automated methods in the healthcare system. In this chapter, we explore
explainability from the point of view of a dermatologist by creating a skin disease
diagnosis explainability dataset (Section 3.1) and afterward use this dataset to train
two intrinsically explainable ConvNet architectures (Section 3.2).

3.1 Explainability dataset for skin disease diagnosis

Despite the large variety of explainability methods proposed to demystify the inner
workings of ConvNets, little focus has been given to understanding how experts ex-
plain their diagnoses and how their explanations relate to those of automated methods.
To this end, we created DermXDB: a dermatological diagnosis explainability dataset
annotated by eight board-certified dermatologists. After several steps of onboarding
to ensure that we achieve the highest possible label quality, dermatologists were asked
to diagnose 554 images sourced from public skin disease datasets [Sun et al., 2016,
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DermNetNZ, 2021] and annotate them with explanations in the form of skin lesion
characteristics [Nast et al., 2016]. 65% of the images depict patients with light skin,
32% depict patients with a medium skin tone, and dark skin patients represent 3%
of the dataset. 19% of the patients were young, 55% adults, and 26% elderly.

The dataset includes six disease classes: acne, actinic keratosis, psoriasis, seborrheic
dermatitis, viral warts, and vitiligo. Skin lesion characteristics were selected from
the literature [Oakley, 2017] and were reviewed by two board-certified dermatologists
with more than ten years of experience. This step ensured that the resulting ex-
planations used a common vocabulary with domain experts. Figure 3.1 shows the
explanation taxonomy for localizable characteristics, while Figure 3.2 and Figure 3.3
show image-level characteristics and additional descriptive terms for the localizable
characteristics taxonomies, respectively. The dense annotation protocol allowed us to
create a thorough, structured database of explanations for the six selected diseases.

Figure 3.1. Localizable characteristics taxonomy.

Figure 3.2. Image-level characteristics taxonomy.

Figure 3.3. Taxonomy for the additional descriptive terms associated with the localizable
characteristics.

The difficulties surrounding the generation of explanations described in Chapter 2
were observed when comparing the explanations given by dermatologists for the same
image: dermatologists tend to disagree on how to explain a diagnosis, even when they
agree on the diagnosis itself. This suggests that in order to accurately evaluate an
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explainability method’s performance, we need to consider the opinions of multiple
domain experts.

Figure 3.4. Characteristics labeled by a dermatologist for an acne case. Following the
instructions, no characteristic was segmented, but rather the region where they were present
was identified without necessarily following the lesion boundaries. For more difficult char-
acteristics to locate, e.g. scars, dermatologists were instructed to brush over entire areas
containing the characteristic. The labeling interface was provided by V7-Labs [2021].

All explanations created as part of this dataset are complete rather than just sufficient
due to differences in explanation needs for users from different backgrounds [Van der
Velden et al., 2022]. A dermatologist might prefer a sufficient explanation for a
psoriasis diagnosis (e.g. the presence of a red, indurated plaque with well-defined
edges and thick, silvery-white scales), while a general practitioner or a patient might
prefer a complete explanation (e.g. the presence of multiple red, indurated plaques
and papules with well-defined edges, thick, silvery-white scales, and hypopigmented
patches). Having a dataset that consists of complete explanations enables us to pick
the correct explanation for the target audience of our diagnosis ConvNets. Figure 3.4
illustrates one dermatologist’s explanation process for an acne case. Note the adher-
ence to Grice’s maxims:

• quality: the explanation is created by a board-certified dermatologist for the
reference standard diagnosis of acne;
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• quantity: all necessary characteristics for this diagnosis were marked, while
irrelevant characteristics (e.g. freckles) were disregarded;

• relation: the explanation only concerns the acne diagnosis;

• manner: the explanation uses dermatological concepts derived from the medical
literature.

With DermXDB, we introduced the first publicly available dermatological diagno-
sis explainability dataset, created in collaboration with domain experts. Its release
enabled the creation of intrinsically explainable ConvNet architectures, as shown in
Appendix A, and the benchmarking of classical explainability methods, as presented
in Appendix B.

3.2 DermX: an intrinsically explainable architecture

With the help of the explainability dataset introduced in Section 3.1, we developed
DermX, an intrinsically explainable skin lesion diagnosis architecture. DermX+ ex-
panded upon DermX by adding a guided attention component to enhance the char-
acteristic localization.

Figure 3.5. Clinically-inspired convolutional neural network architecture for image diagno-
sis with explanations in the form of skin lesion characteristics. Given an image, the model is
trained to predict the diagnosis together with the supporting characteristics. The diagnosis
is predicted using the characteristics identified by the model (similar to how dermatologists
diagnose cases) and the extracted image features. Using the extracted features alongside
the predicted characteristics ensures no relevant information is lost, e.g. the age or the skin
tone.

Figure 3.5 and Figure 3.6 illustrate the DermX and DermX+ architectures, respec-
tively, and highlight the explanation module of each ConvNet. Our clinically-inspired
ConvNets take advantage of the explainability labels introduced by DermXDB (Sec-
tion 3.1) and enable emulating the explanation mechanisms of a dermatologist. We
evaluated both architectures for diagnosis performance, explanation plausibility, and
explanation faithfulness, as described in Chapter 2.
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Figure 3.6. Explainable convolutional neural networks architecture for skin disease diagno-
sis. DermX+ expands upon the DermX architecture presented in Figure 3.5 by introducing
a guided attention components: the network now learns where each relevant characteristic
is located in addition to the diagnosis and its supporting characteristics.

Our results showed that both DermX and DermX+ obtained an almost expert-level
explainability performance without sacrificing their diagnosis performance. Figure 3.7
illustrates the differences between DermX and DermX+ on characteristic localization:
DermX included slightly more irrelevant information, while DermX+ closely followed
the dermatologist outlines. The faithfulness analysis proved that both DermX and
DermX+ used the predicted characteristics to decide on the diagnosis and thus that
the characteristics and their localizations were accurate explanations for the decisions
taken.
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Figure 3.7. Characteristic attention maps for a correctly classified psoriasis case for the
two identified characteristics: plaque (first row) and scale (second row). The first column
shows the dermatologist-derived fuzzy attention map, the second one illustrates the Grad-
CAM for each characteristic generated by DermX, while the last column shows the DermX+
Grad-CAM maps. DermX+ displays much closer results to the reference standard, while
DermX maps include more irrelevant information, such as finger knuckles.

The two proposed architectures, particularly DermX+, follow Grice’s maxims by
providing faithful explanations that include most arguments deemed relevant by a
dermatologist. All concepts used in the explanations are intrinsically understandable
to dermatologists through how the dataset was created.
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With DermX and DermX+, we proved that we can develop intrinsically explainable
ConvNets that reach expert-level explanation performance without sacrificing the
classification performance.



CHAPTER4
Explainability
benchmark

Based on work done by Raluca Jalaboi, Ole Winther, and Alfiia Galimzianova. See
Appendix B.

With the release of DermXDB (described in Chapter 3.1), a quantitative analysis
of disease diagnosis ConvNet explainability became possible. To evaluate how ex-
plainable ConvNet architectures are, we identified the open-access architectures used
in the literature for skin disease diagnosis on natural photography, and generated
explanations for their diagnoses using Grad-CAM.

We selected the benchmarked architectures through a systematic literature review, fol-
lowing the methodology introduced by Thomsen et al. [2020]. 22 articles were included
in the analysis, covering 11 ConvNet architectures. Our literature review revealed the
impact of Esteva et al. [2017] in medical imaging: the number of manuscripts focusing
on dermatological applications skyrocketed after 2017. Additionally, we noticed an
increase in industrial involvement in research starting in 2019 and an exploration of
different modalities and tasks beginning in the same year (see Figure 4.1). Despite
these developments, no automated methods for dermatological tasks are currently
available to the public. These findings reinforce the importance and value of automa-
tion in the healthcare system and its slow acceptance within the field.

To create the benchmark, all 11 architectures were pre-trained on a proprietary clin-
ical skin disease dataset and fine-tuned on a subset of DermXDB, which allowed for
higher performance in all ConvNets by reducing the domain shift. We evaluated each
ConvNet’s explainability by extracting Grad-CAM attention maps and comparing
them to the DermXDB dermatologist attention maps. In other words, we evaluated
the plausibility of the Grad-CAM explanations by comparing them with a domain
expert’s explanations. No ConvNet achieved expert-level diagnosis performance on
the overall dataset, although most did achieve expert-level performance when diagnos-
ing actinic keratosis and seborrheic dermatitis. The explainability results are similar,
although some ConvNets outperformed dermatologists at a characteristic level. Fig-
ure 4.2 illustrates the relationship between the ConvNet diagnosis performance and
their explainability F1-scores.



24 4 Explainability benchmark

Figure 4.1. Distribution of retrieved article topics per publication year (search query ran
on the 20th of February 2023). 2018 marks an explosion in the number of deep learning
applications in dermatology, a fact highlighted by the large increase in articles in the sub-
sequent years and an increase in review articles. In 2019, the industrial involvement in
this field first became apparent with an increase in proprietary ConvNets. 2019 also marks
the first emergence of dermatological applications using photographic imaging. Finally, al-
though classification is still the most common application, other applications are becoming
increasingly more researched.

The differences between what different ConvNets focus on are illustrated in Figure 4.3:
more modern architectures focused on the entire affected area, while older architec-
tures focused on single, highly indicative lesions. In some cases, we observe a tendency
to follow a Clever Hans detector approach to classification: some ConvNets focus on
the lips when diagnosing acne (as acne is most often encountered on a patient’s face) or
the watermark for vitiligo (where most samples were extracted from the DermNetNZ
dataset). This evaluation of explanations lends further weight to GDPR’s right to an
explanation by highlighting the situations where a ConvNet might produce a diag-
nosis using irrelevant arguments. Additionally, our results reinforce the importance
of using explainability methods such as Grad-CAM to better understand the inner
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NASNetMobile (5,3M)
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Figure 4.2. ConvNet explainability as a function of ConvNet performance and the number
of parameters. Xception displays both the highest performance and image-level explainabil-
ity, while ResNet50 performs poorly in both criteria.

workings of a ConvNet’s decision mechanisms.

Our findings confirm the observations described in Chapter 3.1 surrounding the dif-
ficulty in proposing explanations: both dermatologists and ConvNets take different
approaches to their explanations, and thorough quantitative assessments are neces-
sary to accurately evaluate how well their explanations fulfill Grice’s maxims. These
results highlight that even though ConvNets can produce plausible explanations, more
work is needed to achieve expert-level performance. Additionally, more focus should
be given to developing intrinsically explainable ConvNet architectures rather than
relying on post hoc explainability methods. When comparing the benchmarked archi-
tectures to the two ConvNets proposed in Chapter 3.2, we find that DermX obtains
a slightly higher sensitivity for characteristic localization than the best-performing
benchmarked architecture, while DermX+ shows a much lower sensitivity. This can
be explained through the high specificity of DermX+, which tends to follow the
dermatologist-derived attention maps more closely than other architectures.

Overall, this work accentuates the need for further research into the field of explain-
ability: similar datasets in different domains are needed to allow researchers and
engineers to pick the right architecture for the tasks at hand.
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Figure 4.3. Example of Grad-CAM outputs for six images correctly diagnosed by all
ConvNets. Older ConvNets, such as VGG16, ResNet50, ResNet50V2, and InceptionRes-
NetV2, tend to focus on a single, highly indicative lesion rather than the whole affected
region. More modern ConvNets, such as NASNetMobile, Xception, and EfficientNet, focus
on the entire affected area. Some ConvNets overfitted during training and focus on the
watermark when diagnosing vitiligo.



CHAPTER5
Applying DermX in
teledermatology

Based on work done by Raluca Jalaboi, Ole Winther, and Alfiia Galimzianova. Pub-
lished in the Telemedicine and e-Health Journal, 2023. See Appendix C.

Within teledermatology, the need for high-quality images is paramount. However,
up to 30% of the images sent by patients are low-quality, requiring retaking before
dermatologists can diagnose them [Pasquali et al., 2020]. One way to achieve better
image quality is by deploying on-device explainable image quality assessment methods.
To this end, we applied the methodology described in Chapter 3 to create a ConvNet
architecture for explainable image quality assessment.

We used a dataset of smartphone images taken by patients and labeled by up to 12
board-certified dermatologists with either a diagnosis, a rejection class (no skin visible,
no lesion visible), or at least one image quality issue (bad framing, bad light, blurry,
low resolution, too far away). Figure 5.1 illustrates the five image quality issues
included in the dataset. The data collection protocol followed the one introduced in
Chapter 3.1. With this dataset, we trained ImageQX, an explainable image-quality
ConvNet architecture inspired by DermX.

Figure 5.1. Illustration of poor image quality explanations that ImageQX can detect. (a)
Bad framing: the image was not centered on the lesion. (b) Bad light: the lighting conditions
in which the image was taken were too dark. (c) Blurry: the image is not focused on the
lesion, masking out its details. (d) Low resolution: the image was taken with a low-resolution
camera, and few details can be discerned. (e) Too far away: few lesion details could be seen
due to the distance from the camera. Images courtesy of the authors.

Our results were similar to the ones described in Chapter 3.2: we obtain expert-level
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explainability performance at no cost to the classification performance. Using Grad-
CAM, we were also able to locate the area of an image that influenced the prediction
of a quality issue. Figure 5.2 illustrates this localization process on a blurry image.

The high classification performance allowed around 70% of low-quality images to be
identified before reaching the dermatologists. With a size of only 15MB, ImageQX is
easily deployable directly on mobile devices, enabling instant feedback regarding the
image quality. Access to additional information about what image quality issues were
identified in the image and their location could offer patients guidance on improving
their image quality and thus reduce the time to diagnosis and treatment.

Figure 5.2. Grad-CAM attention maps for the blurry test image introduced in Figure 5.1.
The image was correctly classified as poor quality. (a) the original blurry image. (b) Grad-
CAM attention map for bad light. (c) Grad-CAM attention map for blurry. (d) Grad-CAM
attention map for low resolution. When predicting bad light, ImageQX focuses on a slightly
shaded part of the arm, while for blurry it highlights the lesion and its surrounding area.
The low resolution prediction is based on the edges of the arm and the background. Image
courtesy of the authors.

Through this work, we demonstrated that the methodology introduced by DermX
can be applied to other domains with similar performance. Implementing ImageQX
in the teledermatology flow could reduce the burden on dermatologists by removing
the majority of low-quality images from their flow while at the same time reducing
the time to a patient being diagnosed and treated.



CHAPTER6
Conclusion

In this chapter, we summarize the contributions presented in this thesis, discuss the
results and their impact on society, and suggest possible avenues for future work.

6.1 Contributions

The goal of this thesis was to investigate explainable ConvNets for skin lesions diagno-
sis. To this end, we developed an end-to-end methodology for explainable ConvNets
(Chapter 3). We started by building DermXDB, a skin lesion diagnosis explainabil-
ity dataset (Chapter 3.1). DermXDB uses terminology derived from the medical
literature and was annotated by eight board-certified dermatologists, enabling us
to measure the expert-level agreement on diagnosis explanations. We found that
even when dermatologists agree on a diagnosis, their explanations might differ, which
suggests that a thorough evaluation of an explainability method must consider the
opinions of multiple domain experts. Afterward, we proposed DermX and DermX+,
two intrinsically explainable ConvNet architectures trained on the DermXDB dataset
(Chapter 3.2). DermX learned to diagnose images and explain its decision in a way
similar to that of dermatologists. DermX+ expanded upon DermX by introducing
a guided attention component that also learns the location of the identified charac-
teristics. Our results contradict the common adage that explainability must come at
the cost of performance: the two methods achieved similar performance to a classical
diagnosis model while providing plausible and faithful explanations.

Using DermXDB, we benchmarked the explainability of ConvNet architectures com-
monly used in skin lesion diagnosis for photographic images (Chapter 4). We com-
pared Grad-CAM attention maps for each ConvNet to the fused explanation maps cre-
ated by dermatologists in DermXDB. Despite approaching expert-level performance,
no network fully achieves it. This finding highlights the importance of building in-
trinsically explainable ConvNet architectures rather than solely relying on general
explainability techniques.

Finally, we proved the generalizability of the DermX methodology by applying it to
a different application – teledermatological image quality assessment (Chapter 5). In
this work, we collected smartphone images taken by patients and asked up to 12
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board-certified dermatologists to diagnose them in a teledermatology setting or label
them with quality issue tags if they were too low quality to diagnose. ImageQX,
a ConvNet architecture inspired by DermX, was able to filter more than 70% of
the images tagged as low-quality while also achieving expert-level performance in
detecting the quality issues present in the image. With a size of only 15MB, ImageQX
can easily be deployed on mobile devices and thus be seamlessly integrated within
the teledermatology flow, reducing the burden on dermatologists and the time to
diagnosis and treatment for patients.

6.2 Discussion

Throughout this thesis, we took a slightly different approach to explainability than
other works within the domain. Rather than focusing on creating a new explainabil-
ity method, we investigated what explainability means to domain experts and how
we can produce explanations that are acceptable to them. Our findings show that
training the ConvNets to produce plausible explanations can achieve near-expert-level
performance in both diagnosis and explanations. While this procedure incurs no di-
agnosis performance penalty, there is still a cost to be paid: creating explainability
datasets is expensive and time-consuming, as it requires input from both machine
learning researchers on how to structure the data and from domain experts to define
the terminology and annotate the data.

Our work has several industrial applications. Within diagnosis, DermX and DermX+
can serve as trusted second opinions for healthcare professionals due to their high di-
agnostic performance and plausible explanations. With additional validation and the
appropriate certifications, DermX and DermX+ could be candidates for deployment
in a patient-facing diagnosis application. ImageQX may be used to improve the image
quality in a teledermatology flow by deploying it directly on patient mobile devices
and guiding them to take high-quality pictures through personalized feedback.

In future work, we will expand DermXDB by introducing more disease classes and
exploring more application domains, e.g. breast cancer scans, Alzheimer’s detection
in brain scans. Additionally, we would like to use image-level explanations and addi-
tional descriptive terms to build ConvNets capable of producing more comprehensive
and accurate explanations.

Our research emphasizes the need for more publicly available explainability datasets:
they enable the thorough benchmarking of explainability methods and the training
of explainable architectures displaying expert-level performance. Such datasets are
especially valuable in domains where explainability is required for adoption, such as
medicine, justice, or finance. We believe that the methodology we introduced can
both serve as a basis for future developments in these areas, as well as enrich the field
of explainability in medical imaging.
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A B S T R A C T

Dermatological diagnosis automation is essential in addressing the high prevalence of skin diseases and
critical shortage of dermatologists. Despite approaching expert-level diagnosis performance, convolutional
neural network (ConvNet) adoption in clinical practice is impeded by their limited explainability, and by
subjective, expensive explainability validations. We introduce DermX, an end-to-end framework for explainable
automated dermatological diagnosis. DermX is a clinically-inspired explainable dermatological diagnosis
ConvNet, trained using DermXDB, a 554 image dataset annotated by eight dermatologists with diagnoses,
supporting explanations, and explanation attention maps. DermX+ extends DermX with guided attention
training for explanation attention maps. Both methods achieve near-expert diagnosis performance, with DermX,
DermX+, and dermatologist F1 scores of 0.79, 0.79, and 0.87, respectively. We assess the explanation
performance in terms of identification and localization by comparing model-selected with dermatologist-
selected explanations, and gradient-weighted class-activation maps with dermatologist explanation maps,
respectively. DermX obtained an identification F1 score of 0.77, while DermX+ obtained 0.79. The localization
F1 score is 0.39 for DermX and 0.35 for DermX+. These results show that explainability does not necessarily
come at the expense of predictive power, as our high-performance models provide expert-inspired explanations
for their diagnoses without lowering their diagnosis performance.

1. Introduction

Skin diseases affect a third of the global population (Hay et al.,
2014) and are the fourth leading cause of disability worldwide
(Karimkhani et al., 2017). The increasing demand for dermatological
care is exacerbated by the low performance of general practitioners
when diagnosing skin conditions (Federman et al., 1999), and by the
global scarcity of expert dermatologists (Feng et al., 2018; Kringos
et al., 2015).

Automation may help alleviate this problem. Convolutional neural
networks (ConvNets) have been shown to achieve near expert-level
performance in diagnosing dermatological conditions from images of
skin lesions (Thomsen et al., 2020; Esteva et al., 2017), and that they
are able to assist general practitioners as well as less experienced
dermatologists in improving their diagnostic performance (Tschandl
et al., 2020; Jain et al., 2021). However, the lack of a good explanation

∗ Corresponding author at: Department of Applied Mathematics and Computer Science at the Technical University of Denmark, Richard Petersens Plads, Building
324, DK-2800 Kongens Lyngby, Denmark.

E-mail address: rjal@dtu.dk (R. Jalaboi).

mechanism (Kelly et al., 2019) for ConvNet decisions is one of the main
obstacles to their adoption as automated diagnosis systems (Goodman
and Flaxman, 2017; Kelly et al., 2019; Topol, 2019). A good expla-
nation is expected to be both plausible, i.e. as similar as possible to a
human explanation, and faithful, i.e. to accurately represent the inner
workings of the network (Jacovi and Goldberg, 2020).

Different mechanisms for explaining ConvNet decisions have been
proposed (Simonyan et al., 2014; Selvaraju et al., 2017; Ribeiro et al.,
2016). Within the medical imaging literature, the most common ex-
plainability methods are saliency-based methods, such as raw saliency
maps (Simonyan et al., 2014) and gradient-weighted class-activation
attention maps (Grad-CAM) (Singh et al., 2020). While other methods
were criticized due to their lack of faithfulness, Grad-CAMs have been
shown to perform well (Adebayo et al., 2018). However, there remains
a lack of standard metrics for plausibility validation, as the explanations
they provide are often incomplete and difficult to quantify (Tschandl

https://doi.org/10.1016/j.media.2022.102647
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Fig. 1. Clinically-inspired convolutional neural network architecture for image diagnosis with explanations in the form of skin lesion characteristics. Given an image, the model
is trained to predict the diagnosis together with the supporting characteristics, and to focus its attention on image sections that contain relevant characteristics. The diagnosis
is predicted using both the characteristics identified by the model (similar to how dermatologists diagnose cases), and the extracted image features. Using the extracted features
alongside the predicted characteristics ensures that no relevant information is lost, e.g. the age or the skin tone. The explanation module offers plausible, faithful explanations to
the diagnosis predicted by the model, while also localizing the explanations in the image.

Fig. 2. Sample from the DermXDB dataset. A seborrheic dermatitis image from the
SD-260 dataset was evaluated by eight dermatologists. Three evaluations are depicted
in this figure. One dermatologist correctly diagnosed it as seborrheic dermatitis due
to the presence of plaque. Another dermatologist incorrectly diagnosed it as acne due
to the presence of open comedones, papules, and pustules, while a third dermatologist
diagnosed it as acne due to the presence of pustules.

et al., 2020). More specifically, common ConvNet explainability meth-
ods provide no semantic information alongside the explanation, but
rather focus on the image section where the network pays attention.
In complex domains such as dermatology, this information is not
enough to explain the decision mechanisms: knowing that the network
focuses on the skin lesion does not explain why it diagnosed a case
as acne and not rosacea. Moreover, such complex tasks require that
thorough explanation validation be done by domain experts, which
is a time consuming and expensive process. Current dermatological
datasets focus either solely on disease diagnosis, or on lesion segmen-
tation (DermNetNZ, 2021; Sun et al., 2016; Tschandl et al., 2018).
Having access to expert-annotated dermatological diagnosis explana-
tions would improve the validation of explainability methods and allow
the training of intrinsically explainable models. However, to the best of
our knowledge, no such dataset exists.

Our contributions are twofold. First, to enable a quantitative as-
sessment of the explainability of dermatological diagnosis models, we
introduce DermXDB, a dermatological explainability dataset with gold
standard diagnostic explanations provided by eight board-certified der-
matologists. DermXDB consists of 554 images from DermNetNZ (2021)
and SD-260 (Sun et al., 2016) associated with one of six diagnoses and
their explanations in the form of skin lesion characteristics, as defined
by Nast et al. (2016). This labeling procedure mimics clinical practice,
where dermatologists assess the characteristics of skin lesions to de-
rive and support a tentative diagnosis (Oakley, 2017). An annotation
example can be seen in Fig. 2.

Second, we introduce DermX – a novel, clinically-inspired ConvNet
architecture for skin disease diagnosis and explanations. This archi-
tecture is illustrated in Fig. 1. Following the clinical approach of
explaining dermatological diagnoses through skin lesion characteristics,

DermX first identifies relevant characteristics in the image (which
can also be interpreted as diagnosis explanations), and then relies
on them, alongside the image features, to diagnose the case. Using
Grad-CAM (Selvaraju et al., 2017), we then localize the predicted
characteristics in the image. We validate the plausibility and faith-
fulness of our explanations using DermXDB as the gold standard for
explanations.1

1.1. Related work

Machine learning-based dermatological diagnosis systems have been
widely investigated, achieving results on par with human experts (Es-
teva et al., 2017; Tschandl et al., 2020; Jain et al., 2021). These
advances in the automated diagnosis of skin lesions were made possible
in part by the emergence of various dermatological datasets, which
contain images diagnosed by medical experts (Tschandl et al., 2018;
DermNetNZ, 2021; Sun et al., 2016). The widely used ISIC dataset
(Tschandl et al., 2018) also includes lesion segmentations that can
partially serve as a basis for objective explanation measurement. How-
ever, these segmentations were not collected to explain the diagnosis,
but rather to localize the lesions. This shortcoming becomes critical in
diseases such as actinic keratosis, where the area surrounding the lesion
is just as important for the diagnosis as the lesion itself (Tschandl et al.,
2020).

Explainability is an important topic in machine learning in general
and in medical imaging in particular. Saliency-based explainability
methods, e.g. Grad-CAM (Selvaraju et al., 2017), are often used as a
way to investigate if the models learn relevant features (Tschandl et al.,
2020; Zhang et al., 2019; Barata et al., 2021). Other explainability
methods, such as LIME (Ribeiro et al., 2016), Kernel-SHAP (Lund-
berg and Lee, 2017), and Sharp-LIME (Graziani et al., 2021) are less
commonly used in the medical imaging literature.

Two works, one in natural language processing and the other in
dermatological imaging, have a similar approach to explainability as
ours. Within natural language processing, Mathew et al. (2021) propose
a framework that explains hateful speech identification. Human readers
were asked to identify the most important tokens in a sentence for
the prediction of hateful speech. Then, the explanation plausibility and
faithfulness of the model-generated explanations were quantified by
comparing to the human annotations. Within dermatological image
analysis, Barata et al. (2021) investigate how hierarchical taxonomies
for skin lesion classification can be used to improve ConvNet skin
cancer diagnosis capabilities. They train networks to follow the hier-
archical classification of diseases in their prediction, and to focus on
relevant parts of the image.

1 The DermXDB dataset and the implementation of DermX and DermX+ are
available at https://github.com/ralucaj/dermx.
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Table 1
Distribution of images over DermNetNZ and SD-260, and over the six possible diagnoses.

Acne Actinic
keratosis

Psoriasis Seborrheic
dermatitis

Viral warts Vitiligo Total

DermNetNZ 58 48 47 15 46 77 291
SD-260 61 43 51 79 20 9 263

Total 119 91 98 94 66 86 554

Fig. 3. Localizable characteristics taxonomy. All characteristics were tailored to the six DermXDB diseases using medical resources (Nast et al., 2016; Oakley, 2017), and with the
help of two senior dermatologists.

In this work, we combine the two approaches by detecting diagnosis-
explaining characteristics, each with its own localization, and train
two ConvNets to focus on the relevant part of the image for each
characteristic. Both networks are evaluated for the plausibility and
faithfulness of their explanations.

2. Material and methods

2.1. Explainability dataset

To enable explainable modeling, we identified the clinically relevant
explanation taxonomy, designed an appropriate annotation protocol,
and collected expert-labeled data. This resulted in DermXDB: a novel
dermatological explainability dataset designed to enable the train-
ing of the proposed end-to-end explainable models and quantitative
explainability evaluation. The dataset consists of 554 images that be-
long to one of the following classes: acne, actinic keratosis, psoriasis,
seborrheic dermatitis, viral warts, or vitiligo. Images were sourced
from DermNetNZ (2021) and SD-260 (Sun et al., 2016) with writ-
ten permission from the owners. The distribution over datasets and
diseases is described in Table 1. All images were evaluated by eight
board-certified dermatologists, with between four and twelve years
of clinical experience. Each evaluation consists of a diagnosis and
supporting explanations in the form of global tags, localizable charac-
teristics, their segmentations, and additional descriptive terms for basic
characteristics.

The development of this dataset included several steps. First, we
performed multiple experiments to define the target diseases and the
nature of the explanations. Second, we selected the six diagnoses and
defined the explanation taxonomy illustrated in Fig. 3. Third, the
labelers were allowed a short period of time to get accustomed to the
annotation protocol and the labeling tool by evaluating images from
an internal dataset. Finally, DermXDB images were selected and sent
to the dermatologists for labeling.

Preliminary investigation. Nine diseases were initially investigated: pso-
riasis, rosacea, vitiligo, seborrheic dermatitis, pityriasis rosea, viral
warts, actinic keratosis, acne, and impetigo. These diseases were chosen
based on prevalence (Lim et al., 2017) and by the expectation that
they could be diagnosed using images as the only source of patient
information (Oakley, 2017). Dermatologists were asked to diagnose
and explain their decision in free-text for over 100 images. During this
step, dermatologists could see the original diagnosis of the image, but
had the option to disagree with it. This step led to the exclusion of
rosacea, impetigo, and pityriasis rosea from future experiments due to

the difficulty in diagnosing them in the absence of the patient medical
history. It also led to the introduction of a structured ontology for
the diagnosis explanations to avoid manual processing of typos and
synonyms.

Diagnosis and explanation ontology. Preliminary investigations also high-
lighted the importance of having a consistent explanation ontology.
After analyzing free-text explanations, they were formalized as an
extended list of skin lesion characteristics (Nast et al., 2016). The
characteristics set was selected to sufficiently explain the six target
diseases (Oakley, 2017). With the help of two senior dermatologists,
several other relevant characteristics were added.

The resulting set of characteristics was split into non-localizable
characteristics (e.g. age or sex), localizable characteristics (e.g. plaque
or open comedo), and additional descriptive terms (e.g. red or well-
circumscribed), according to the International League of Dermatolog-
ical Societies’ classification (Nast et al., 2016). Fig. 3 illustrates the
final DermXDB explanation taxonomy, while more information about
the other two types of labels is available in Appendix Figs. A.11 and
A.12.

Annotation protocol. Dermatologists were first asked to diagnose the
image, and then tag it with characteristics that explain their diagno-
sis. No information about the gold standard diagnosis or the disease
distribution was made available. If the dermatologists were unable to
evaluate the image due to poor quality, or if the image depicted a
different disease than the target conditions, they had the option to
discard it.

Dermatologists could then select diagnosis-supporting non-localiz-
able characteristics as global image tags. Afterwards, they could se-
lect and outline localizable characteristics. Dermatologists were in-
structed to highlight all relevant areas for each characteristic, and were
only allowed to include irrelevant areas if separating them from the
characteristic was too time consuming or difficult. In other words,
they were instructed to favor sensitivity over specificity. Finally, basic
terms (as defined in Fig. 3) could be enriched with additional de-
scriptive terms when required for the diagnosis explanation. Once all
tags and characteristics were added, the image could be marked as
complete.

After the taxonomy and annotation protocol were defined, all
dermatologists underwent two rounds of on-boarding in Darwin, a
browser-based labeling tool (V7-Labs, 2021). A screenshot of the la-
beling interface is shown in Appendix Fig. A.13. Following this, they
were asked to annotate a set of 630 images from the DermNetNZ and
SD-260 datasets.
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Fig. 4. DermX architecture for image diagnosis with explanations in the form of skin
lesion characteristics. The model is trained to predict both diagnoses and characteristics.
Image features go through a dimensionality reduction linear layer to ensure that the
characteristics are not overshadowed by the image features. The explainability module
identifies diagnosis explanations in the form of characteristics, and their localization
on the image can be detected through Grad-CAMs.

Data cleaning. Once annotations were performed, the dataset went
through two cleanup steps. First, to avoid ambiguities in the dataset, an-
notations with diagnoses outside the target conditions were discarded.
This resulted in 33 images being removed from the dataset because all
eight dermatologists tagged these as ‘other disease’, e.g. acne keloidalis
nuchae. The second step was to manually group images from the
same patients. For all patients with more than one image, only the
first image based on alphabetical order was kept. After cleanup, 554
images were left. Out of all evaluations performed on these images,
150 were discarded due to reports of low image quality, resulting in
4202 individual evaluations.

2.2. Explainable models

We propose two inherently explainable models for joint prediction
of diagnosis and explanations. First, we design DermX: an end-to-end
clinically-inspired architecture for explainable diagnosis, and train it
on the reference diagnosis and expert-identified explanation labels.
Next, we build an enhanced model that also includes learning of the
explanation localization – DermX+. In the following, we provide a
detailed description of each of the models.

DermX model. We propose a clinically-inspired model trained using the
data described above. Following the multi-task learning paradigm, the
model learns how to predict a diagnosis and its supporting character-
istics at the same time. Using a ConvNet as an image feature extractor,
we flatten and pass these features into the two prediction modules.
The explainability module passes the features through a dense block,
composed of a dropout layer, a linear layer with ReLU activations, and
another dropout layer. This output is then passed into a linear layer
with ten neurons and a logistic function is applied to each to give
the probabilistic multi-label predictions, i.e. multiple characteristics
can be predicted at the same time. The diagnosis module processes
the image features using a similar dense block, after which they are
concatenated to the characteristic logits. For this module, the dense
block also doubles as a dimensionality reduction component, allowing
the image features and the characteristics to have the same order of
magnitude. The concatenated features are then passed through a linear
layer with six neurons, followed by a softmax function to give our
single-label prediction head for diagnoses. Fig. 4 illustrates the DermX
architecture.

Fig. 5. DermX+ architecture used to generate explanations using guided attention. In
addition to the DermX architecture described in Fig. 4, we introduce an additional
loss term for the characteristics attention map. The Grad-CAM attention is computed
for each predicted characteristic using the features extracted by the last convolutional
layer in the backbone network. Characteristic Grad-CAMs are then compared to the
downsized fuzzy fusion maps for each characteristic.

DermX optimizes the loss defined as follows. Let 𝑦𝑖,𝑑 ∈ {0, 1} and
𝑧𝑖,𝑐 ∈ {0, 1} be the target diagnosis and target characteristics for image
𝑖 ∈ {1,… , 𝑁} in a batch of size 𝑁 , where 𝑑 ∈ {1,… , 𝐷} and 𝑐 ∈
{1,… , 𝐶} denote the diagnosis and characteristic class, and let �̂�𝑖,𝑑 ∈
(0, 1) and �̂�𝑖,𝑐 ∈ (0, 1) be the diagnosis and characteristics predictions,
respectively. The loss can then be written as

𝐿 = 𝜆𝐷𝐿𝐷 + 𝜆𝐶𝐿𝐶 , (1)

where 𝐿𝐷 is the categorical cross-entropy diagnosis loss defined as

𝐿𝐷 = − 1
𝑁𝐷

𝑁
∑

𝑖=1

𝐷
∑

𝑑=1
𝑦𝑖,𝑑 log �̂�𝑖,𝑑 , (2)

𝐿𝐶 is the binary cross-entropy characteristics loss defined as

𝐿𝐶 = − 1
𝑁𝐶

𝑁
∑

𝑖=1

𝐶
∑

𝑐=1

(

𝑧𝑖,𝑐 log(�̂�𝑖,𝑐 ) + (1 − 𝑧𝑖,𝑐 ) log (1 − �̂�𝑖,𝑐 )
)

, (3)

and 𝜆𝐷 and 𝜆𝐶 are hyper-parameters for weighing the relative loss
contributions.

DermX+ model. We build on top of the DermX architecture by intro-
ducing a guided attention element (Li et al., 2018). Fig. 5 highlights
the difference between DermX and DermX+, namely the addition of a
characteristic attention component.

In addition to the two losses optimized by DermX and described
in Eq. (1), the DermX+ model also optimizes the attention loss term
𝐿𝐴:

𝐿 = 𝜆𝐷𝐿𝐷 + 𝜆𝐶𝐿𝐶 + 𝜆𝐴𝐿𝐴, (4)

where 𝐿𝐴 is the Dice loss for attention

𝐿𝐴 = 1
𝑁𝐶

𝑁
∑

𝑖=1

𝐶
∑

𝑐=1

(

1 −
2𝐴𝑖,𝑐𝑀𝑖,𝑐

𝐴𝑖,𝑐 +𝑀𝑖,𝑐

)

, (5)

with 𝐴𝑖,𝑐 being the attention map, and 𝑀𝑖,𝑐 being the fuzzy localization
label, both for image 𝑖 and characteristic 𝑐.

2.3. Model training and validation

Data. Given the limited size of the dataset, we create a stratified
ten-fold cross-validation setup to train explainable models, leading
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Fig. 6. Differences between dermatologist-labeled attention maps, distributed over the
six diseases: acne, actinic keratosis (AK), psoriasis, seborrheic dermatitis (SD), viral
warts, and vitiligo. The maps were computed as the union of all characteristics labeled
by each of the first three dermatologists. Each color represents a different supporting
characteristic.

to approximately 500 training images and 50 test images for each
fold. Results presented in this paper are aggregated over all ten folds.
For diagnosis prediction we use the gold standard diagnosis label, as
defined in the source datasets. A characteristic was marked as relevant
for a diagnosis if at least one dermatologist included the characteristic
in their decision explanation. Characteristic labels for localization were
created as aggregated fuzzy maps, i.e. each pixel value in a mask
was generated as a fraction of how many dermatologists included it
in their characteristic localization. Only characteristics selected for
the correct diagnosis with regard to the gold standard were included
both in defining the presence of a characteristic and in the fuzzy map
aggregation. This way, we avoid introducing noise due to a mismatch
between the diagnosis a dermatologist was explaining and the diagnosis
label used to train the network. Additionally, we exclude characteristics
that appear in fewer than 30 samples throughout the dataset and
characteristics with an inter-rater F1 score below 0.30. We thus focus
on closed comedo, dermatoglyph disruption, open comedo, papule,
patch, plaque, pustule, scale, scar, and sun damage.

Implementation details. In all experiments, we use an EfficientNet-
B2 (Tan and Le, 2019) ConvNet pre-trained on the ImageNet image
recognition dataset (Deng et al., 2009) for feature extraction, with all
layers fine-tuned on the DermXDB data. Both models were trained
for 93 epochs using the AdamW optimizer (Loshchilov and Hutter,
2018), the cosine annealing with warm restarts learning rate sched-
uler (Loshchilov and Hutter, 2016), and a starting learning rate of
0.0005. Within the dense block we use linear layers with 64 neurons,
dropout layers with 0.2 probability, and ReLU activations. DermX is
trained with 𝜆𝐷 = 1, 𝜆𝐶 = 1, while DermX+ uses 𝜆𝐷 = 1, 𝜆𝐶 = 1,
and 𝜆𝐴 = 10. Further information about the hyper-parameters used for
training and other implementation details can be found in Appendix
Table B.12.

2.4. Explainability evaluation

We measure the performance with regard to the image diagnosis
of both our dermatologists and our trained models using the F1 score,

Fig. 7. Characteristics labeled by a dermatologist for an acne case. Following the
instructions, no characteristic was segmented but rather the region where they were
present was identified without necessarily following the lesion boundaries. For more
difficult characteristics to locate, e.g. scars, dermatologists were instructed to brush
over entire areas containing the characteristic.

Table 2
Dermatologist inter-rater agreement for the presence or absence of characteris-
tics (mean±std). This analysis shows significant variation in the selection and agreement
rates. Characteristics commonly considered important for diagnosing one of the diseases
(e.g. comedones, plaques) have higher agreement rates, while uncommon characteristics
(e.g. dermatoglyph disruption) display low selection and agreement rates.

F1 score Average selection

Dermatoglyph disruption 0.36 ± 0.35 21.50 ± 14.34
Closed comedo 0.54 ± 0.14 41.5 ± 22.20
Open comedo 0.65 ± 0.10 50.88 ± 23.28
Papule 0.67 ± 0.07 138.25 ± 33.44
Patch 0.76 ± 0.11 114.00 ± 43.10
Plaque 0.78 ± 0.06 205.12 ± 35.98
Pustule 0.76 ± 0.06 58.62 ± 13.52
Scale 0.89 ± 0.03 188.50 ± 31.16
Scar 0.46 ± 0.14 41.75 ± 26.84
Sun damage 0.46 ± 0.26 31.62 ± 14.91

Mean 0.63 ± 0.16 86.42 ± 67.05

Table 3
Dermatologist inter-rater localization agreement for localizable characteris-
tics (mean±std). Overlap measures show a significant variation between raters
in outlining characteristics. Sensitivity values are high for characteristics that occupy
larger areas and that often display well-circumscribed borders (e.g. plaque, scale), but
tend to be lower in smaller characteristics (e.g. comedones, pustules).

F1 score Sensitivity Specificity

Dermatoglyph 0.68 ± 0.17 0.82 ± 0.16 0.98 ± 0.03
disruption
Closed comedo 0.20 ± 0.21 0.46 ± 0.36 0.89 ± 0.17
Open comedo 0.20 ± 0.18 0.44 ± 0.33 0.91 ± 0.15
Papule 0.27 ± 0.25 0.49 ± 0.34 0.94 ± 0.12
Patch 0.65 ± 0.18 0.80 ± 0.19 0.93 ± 0.11
Plaque 0.64 ± 0.21 0.79 ± 0.21 0.93 ± 0.10
Pustule 0.26 ± 0.17 0.50 ± 0.30 0.98 ± 0.08
Scale 0.51 ± 0.23 0.70 ± 0.25 0.93 ± 0.10
Scar 0.30 ± 0.23 0.56 ± 0.34 0.89 ± 0.14
Sun damage 0.71 ± 0.21 0.84 ± 0.19 0.76 ± 0.22

Mean 0.42 ± 0.20 0.62 ± 0.16 0.91 ± 0.06

sensitivity, and specificity. The same metrics are used to quantify the
inter-rater agreement on image diagnosis and characteristics selection
between dermatologists. The model performance on characteristics is
measured with regard to the fuzzy fusion label for characteristics using
the same three metrics. F1 score (also known as the Dice-Sørensen
coefficient for pixel-level segmentation), sensitivity, and specificity are
also used to measure the inter-rater agreement for the localizable
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Table 4
Comparison of model diagnosis performance with regard to the gold standard, presented
as the mean F1 score ± std. The models compared are the diagnosis-only model (Dx),
the clinically-inspired diagnosis and characteristics model (DermX), and the DermX
model trained with guided attention (DermX+). Dermatologist scores are summarized
as mean ± std across the experts. The gold standard is the original image diagnosis as
defined by the source dataset.

Dx DermX DermX+ Expert

Acne 0.87 ± 0.05 0.87 ± 0.05 0.86 ± 0.06 0.94 ± 0.02
Actinic keratosis 0.80 ± 0.06 0.79 ± 0.14 0.73 ± 0.10 0.79 ± 0.12
Psoriasis 0.77 ± 0.07 0.73 ± 0.11 0.80 ± 0.09 0.87 ± 0.04
Seborrheic dermatitis 0.77 ± 0.07 0.74 ± 0.09 0.74 ± 0.10 0.75 ± 0.08
Viral warts 0.76 ± 0.18 0.76 ± 0.11 0.76 ± 0.15 0.92 ± 0.05
Vitiligo 0.78 ± 0.10 0.83 ± 0.10 0.86 ± 0.08 0.95 ± 0.02

Mean 0.79 ± 0.05 0.79 ± 0.04 0.79 ± 0.04 0.87 ± 0.08

Table 5
Performance comparison for characteristics identification with regard to dermatologist-
generated labels, reported as mean F1 scores. We compare the clinical diagnosis
and characteristics model (DermX), the DermX model trained with guided attention
(DermX+), and the inter-rater agreement among dermatologists. A characteristic was
tagged as present if at least one dermatologist marked it in an image. The F1 score for
dermatologists is based on the pairwise inter-rater agreement on characteristics (mean
± std).

DermX DermX+ Expert Samples

Closed comedo 0.76 ± 0.08 0.81 ± 0.12 0.55 ± 0.15 96
Dermatoglyph disruption 0.74 ± 0.20 0.70 ± 0.20 0.37 ± 0.35 54
Open comedo 0.80 ± 0.06 0.80 ± 0.08 0.66 ± 0.10 110
Papule 0.79 ± 0.07 0.80 ± 0.07 0.68 ± 0.07 278
Patch 0.76 ± 0.06 0.79 ± 0.06 0.78 ± 0.11 249
Plaque 0.88 ± 0.03 0.90 ± 0.03 0.79 ± 0.06 352
Pustule 0.79 ± 0.10 0.81 ± 0.06 0.77 ± 0.06 106
Scale 0.79 ± 0.04 0.82 ± 0.05 0.91 ± 0.02 275
Scar 0.78 ± 0.10 0.80 ± 0.08 0.47 ± 0.14 115
Sun damage 0.66 ± 0.11 0.64 ± 0.15 0.46 ± 0.27 78

Mean 0.77 ± 0.03 0.79 ± 0.03 0.64 ± 0.16 171.30

Table 6
DermX performance for characteristics localization with regard to the fuzzy derma-
tologist localization maps, reported as mean soft sensitivity, specificity, and F1 score.
DermX performance metrics are computed only on samples where both the model and
the dermatologists agree on the relevance of a characteristic, in order to decouple
localization performance from the identification performance.

Sensitivity Specificity F1 score Samples

Closed comedo 0.69 ± 0.09 0.69 ± 0.05 0.40 ± 0.04 75
Dermatoglyph disruption 0.69 ± 0.09 0.69 ± 0.05 0.28 ± 0.06 36
Open comedo 0.69 ± 0.06 0.68 ± 0.04 0.36 ± 0.05 90
Papule 0.63 ± 0.08 0.72 ± 0.05 0.34 ± 0.04 219
Patch 0.57 ± 0.07 0.78 ± 0.04 0.43 ± 0.05 188
Plaque 0.65 ± 0.06 0.75 ± 0.04 0.43 ± 0.03 314
Pustule 0.69 ± 0.07 0.69 ± 0.05 0.24 ± 0.05 88
Scale 0.65 ± 0.07 0.76 ± 0.04 0.41 ± 0.03 222
Scar 0.64 ± 0.06 0.72 ± 0.05 0.46 ± 0.05 90
Sun damage 0.44 ± 0.08 0.87 ± 0.04 0.56 ± 0.06 50

Mean 0.64 ± 0.02 0.74 ± 0.01 0.39 ± 0.02 137.20

characteristics region outlining overlap. All values are reported as the
mean and the standard deviation (std) over the 10 folds.

We define the explainability of our models as having two com-
ponents: plausibility and faithfulness. For plausibility, we focus on
both the identification and the localization of characteristics. First, we
measure the F1 score, sensitivity, and specificity per characteristic to
measure the models’ ability to correctly identify the right explanations.
Similar to Mathew et al. (2021), we compare the Grad-CAM activations
per characteristic with the fuzzy attention maps for each characteris-
tic, and measure their similarity using the F1 score, sensitivity, and
specificity. All pixel-based metrics are implemented using fuzzy logic,
as follows:

F1 =
2
∑

𝑝∈𝑃 min(𝐴𝑝,𝑀𝑝)
∑

𝑝∈𝑃 (𝐴𝑝) +
∑

𝑝∈𝑃 (𝑀𝑝)
, (6)

Table 7
DermX+ performance for characteristics localization with regard to the fuzzy der-
matologist localization maps, reported as mean soft sensitivity, specificity, and F1
score. DermX+ values are computed only on samples where both the model and
the dermatologists agree on the relevance of a characteristic, in order to decouple
localization performance from the identification performance.

Sensitivity Specificity F1 score Samples

Closed comedo 0.11 ± 0.08 0.96 ± 0.02 0.10 ± 0.09 63
Dermatoglyph disruption 0.60 ± 0.15 0.97 ± 0.02 0.60 ± 0.12 34
Open comedo 0.06 ± 0.05 0.97 ± 0.02 0.06 ± 0.05 93
Papule 0.19 ± 0.06 0.97 ± 0.02 0.18 ± 0.04 232
Patch 0.56 ± 0.06 0.89 ± 0.03 0.53 ± 0.05 191
Plaque 0.65 ± 0.06 0.91 ± 0.01 0.61 ± 0.05 312
Pustule 0.04 ± 0.05 0.98 ± 0.01 0.03 ± 0.03 91
Scale 0.58 ± 0.11 0.89 ± 0.03 0.49 ± 0.07 224
Scar 0.35 ± 0.15 0.92 ± 0.04 0.35 ± 0.12 93
Sun damage 0.53 ± 0.19 0.90 ± 0.10 0.58 ± 0.20 47

Mean 0.37 ± 0.01 0.94 ± 0.00 0.36 ± 0.01 138.00

Sensitivity =
∑

𝑝∈𝑃 min(𝐴𝑝,𝑀𝑝)
∑

𝑝∈𝑃 (𝑀𝑝)
, (7)

Specificity =
∑

𝑝∈𝑃 min(1 − 𝐴𝑝, 1 −𝑀𝑝)
∑

𝑝∈𝑃 (1 −𝑀𝑝)
, (8)

where 𝑃 represents the pixels included in the analysis, 𝐴 defines the
class activations, and 𝑀 represents the fuzzy label maps.

Following the comprehensiveness evaluation described by DeYoung
et al. (2020), we measure the faithfulness of our models through the use
of contrastive examples. Given a model 𝑚, an input image 𝑥, a set of
explanation outlines 𝑒, a contrastive image 𝑥𝑒 where all areas marked as
an explanation for the image 𝑥 were occluded, and the class probability
output 𝑚(𝑥) for the predicted class on the original input 𝑥 we measure
the faithfulness 𝐹 as

𝐹 = 𝑚(𝑥) − 𝑚(𝑥𝑒). (9)

In other words, the faithfulness describes what impact removing the
explanations 𝑒 from the image would have on the decision of model 𝑚.
We decided not to include the sufficiency metric as it would lead to
out-of-distribution images, such as a blank background with a plaque
or a couple of pustules.

Finally, given the intrinsic disagreement between experts within
medical fields, we postulate that explainable models should be able
to properly argue their decisions, regardless of whether it matches the
gold standard or not. Similar to how dermatologists may debate the
correct diagnosis for a case by highlighting different explanations that
support their decision, we expect an explainable model to do the same.
However, as we do not always have the gold standard explanation for a
wrong diagnosis, we need to define a basic set of explanations for any
disease. To this end, we define the expected explanation as the preva-
lence of each characteristic within the dermatologists explanations for
a diagnosis (Appendix Table A.11). Then, for the wrongly predicted
diagnoses we compare the set of characteristics associated with that
prediction with the expected explanation for the predicted diagnosis.
For example, a case incorrectly classified as psoriasis is expected to be
explained using one or several of papule, plaque, and scale, which are
commonly used by dermatologists in their explanations of psoriasis. We
evaluate how the model explanation for wrong diagnoses by computing
the precision of the model’s explanations with regard to the expected
explanation for a diagnosis.

3. Results

3.1. DermXDB analysis

We first analyzed the data focusing on dermatologist performance
with regard to the gold standard diagnosis and their inter-rater agree-
ment on both diagnoses and supporting characteristics. A total of 554
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Fig. 8. Characteristic attention maps for a correctly classified psoriasis case, for the two
identified characteristics: plaque (first row) and scale (second row). The first column
shows the dermatologist-derived fuzzy attention map, the second one illustrates the
Grad-CAM for each characteristic generated by DermX, while the last column shows the
DermX+ Grad-CAM maps. DermX+ displays much closer results to the gold standard,
while DermX maps include more irrelevant information, such as the finger knuckles.

Fig. 9. Characteristic attention maps for a psoriasis case wrongly classified as sebor-
rheic dermatitis by both DermX and DermX+. While both models detect plaque and
scale in the image, their detection of patch, a characteristic indicative of seborrheic
dermatitis, leads them to misdiagnose the image.

Fig. 10. Contrastive samples on a DermXDB psoriasis image for DermX and DermX+.
DermX, a more sensitive and less specific model, occludes large parts of the image,
while DermX+, a more specific and less sensitive model, occludes only the lesion. When
evaluating the contrastive sample for DermX+, the model has the possibility to use other
diagnosis hints in the image (defined in DermXDB as non-localizable characteristics)
that are occluded in the DermX sample.

images were included in this analysis, each with eight evaluations per-
formed by board-certified dermatologists. The dermatologist diagnostic

performance in terms of mean F1 score with regard to the gold standard
varies between 0.75 for seborrheic dermatitis and 0.95 for vitiligo.
Aggregated F1 scores can be seen in Table 4. A full description of the
dermatologist performance with regard to the gold standard is available
in Appendix Table A.8.

Inter-rater agreement on characteristics, as described in Table 2,
varies significantly more, partially due to the lower number of selec-
tions per class. Most basic terms display high levels of agreement, with
F1 scores between 0.67 and 0.89. The exceptions are macule with an F1
score of 0.12 and nodule with an F1 score of 0.17, both also displaying
low selection rates. Several additional terms, such as open and closed
comedones, display levels of agreement similar to the basic terms. Fig. 6
illustrates an example of disagreement between three dermatologists
on the location of supporting characteristics on one random case for
each disease, while Fig. 7 highlights how the protocol was followed by
a dermatologist in an acne case. Additional metrics for the full set of
characteristics are described in Appendix Table A.9.

Outlining characteristics is a more difficult task, as confirmed by
the low inter-rater F1 scores reported in Table 3. The lower F1 val-
ues can also be explained by how difficult outlining small or poorly
circumscribed characteristics is. In terms of sensitivity, we notice the
same trend as in binary agreement: dermatologists tend to agree more
on the basic terms. Metrics for the full set of localizable characteristics
are presented in Appendix Table A.10.

3.2. Explainable model

We trained a clinically-inspired model from Fig. 1 (DermX), and
the same model architecture trained with guided attention (DermX+)
for characteristics localization. We also train a diagnosis-only model
(Dx) to check whether adding explanations impacts the diagnosis per-
formance of DermX and DermX+.

Table 4 compares the diagnostic performance between all three
models and the dermatologists with regard to the gold standard diagno-
sis. More information about their diagnostic performance is presented
in Appendix B. For comparison, we trained a diagnosis-only model with
a ResNet50 (He et al., 2016) base to validate the choice of architecture,
and a diagnosis-only model trained with proportional class weights.
The ResNet-based model achieved a macro F1-score of 0.79 ± 0.06,
while the weighted class model showed a similar macro F1-score of
0.78±0.05. More information about these two models is available in Ap-
pendix Table B.13. Additionally, we trained four interpretable models
on the characteristics data for diagnosis prediction: a logistic regression
model, a decision tree, a k-nearest neighbor with five neighbors, and a
categorical naive Bayes models. These models obtained macro F1 scores
of 0.86 ± 0.04, 0.85 ± 0.05, 0.80 ± 0.05, and 0.86 ± 0.05, respectively.

All models display similar F1 scores on all six diseases. The best
results are obtained for vitiligo and acne, two disease classes where
dermatologists also display high F1 score values. Seborrheic dermatitis
on the other hand seems to be a difficult disease class for both derma-
tologists and models. For the rest of the results section we will focus
on DermX and DermX+.

In terms of explanation plausibility, we look at both the iden-
tification of explanations, defined as the ability to detect the same
characteristics as a dermatologist, and at their localization in the image.
A comparison of F1 scores is described in Table 5. The two models
perform well for explanation identification, with DermX+ obtaining
slightly better results on most characteristics. Compared to dermatol-
ogists, the models perform within standard deviation bounds of the
inter-rater agreement. Additional metrics are reported in Appendix Ta-
bles B.16 and B.17.

The localization plausibility of the models’ explanation is quantified
in Tables 6 and 7, with more statistics being presented in Appendix Ta-
bles B.18, B.19, B.20, and B.21. DermX performs adequately well on
all characteristics. DermX+ is better at localizing large characteris-
tics, e.g. patches or scales, but performs poorly on smaller characteris-
tics, e.g. open and closed comedones. Dermatologists F1 scores indicate
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Fig. A.11. Non-localizable characteristics taxonomy. These characteristics were added to the International League of Dermatological Societies’ classification as global image tags
after being flagged as relevant by our senior dermatologists.

Fig. A.12. Additional descriptive terms for localizable characteristics. All terms were tailored for the six diseases from medical resources (Nast et al., 2016; Oakley, 2017), and
with the help of two senior dermatologists.

Fig. A.13. Labeling tool interface, exemplified for a psoriasis case from the SD-260 dataset. In the global tag search box (area 1, bottom right), dermatologists can select the
disease, relevant demographics information, and lesion distribution. The brush selection menu (area 2, top left) allows them to select and mark localizable characteristics on the
image. The full annotation menu (area 3, top right) is used to select of additional descriptive terms for the localized basic terms.

Table A.8
Dermatologist diagnosis performance with regard to the gold standard (mean±std).

F1 score Sensitivity Specificity Average selection

Acne 0.94 ± 0.02 0.90 ± 0.04 0.99 ± 0.00 102.75 ± 10.00
Actinic keratosis 0.79 ± 0.12 0.68 ± 0.16 1.00 ± 0.00 57.62 ± 16.54
Psoriasis 0.87 ± 0.04 0.88 ± 0.04 0.97 ± 0.02 98.00 ± 8.09
Seborrheic dermatitis 0.75 ± 0.08 0.64 ± 0.11 0.99 ± 0.01 60.38 ± 9.23
Viral warts 0.92 ± 0.05 0.85 ± 0.08 1.00 ± 0.00 55.38 ± 5.05
Vitiligo 0.95 ± 0.02 0.90 ± 0.05 1.00 ± 0.00 76.25 ± 4.82

Mean 0.87 ± 0.08 0.81 ± 0.11 0.99 ± 0.01 75.06 ± 19.15

that the two models are, in some characteristics, within standard de-
viation of the inter-rater agreement. For other characteristics, such as
dermatoglyph disruption for DermX and pustule for DermX+, the model
performance is below the expert inter-rater agreement. Fig. 8 illustrates
the explanations given for a correctly predicted psoriasis case by DermX
and DermX+, respectively, while Fig. 9 shows the explanations given
by the two ConvNets for a misclassified psoriasis case.

Explanation precision scores for the correct diagnosis prediction
were computed with regard to the dermatologist labels. The resulting
values are 0.88 ± 0.03 for DermX and 0.90 ± 0.03 for DermX+. On
the wrong diagnosis prediction, DermX precision is 0.85 ± 0.06, while
DermX+ precision is 0.86±0.04. Mean faithfulness results are 0.42±0.06
for DermX and 0.27 ± 0.06 for DermX+.
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Table A.9
Dermatologist inter-rater agreement for the presence or absence of characteristics (mean±std). This analysis shows significant variation in the
selection and agreement rates. Characteristics commonly considered important for diagnosing one of the diseases (e.g. comedones, plaques)
have higher agreement rates, while uncommon characteristics (e.g. leukotrichia, telangiectasia) display low selection and agreement rates.

F1 score Sensitivity Specificity Cohen’s kappa Average selection

Basic terms

Macule 0.12 ± 0.15 0.18 ± 0.23 0.95 ± 0.07 0.09 ± 0.15 25.25 ± 30.37
Nodule 0.17 ± 0.16 0.26 ± 0.27 0.97 ± 0.04 0.16 ± 0.15 17.88 ± 17.42
Papule 0.67 ± 0.07 0.69 ± 0.13 0.86 ± 0.08 0.52 ± 0.09 138.25 ± 33.44
Patch 0.76 ± 0.11 0.79 ± 0.18 0.92 ± 0.08 0.68 ± 0.15 114.00 ± 43.10
Plaque 0.78 ± 0.06 0.80 ± 0.11 0.84 ± 0.08 0.62 ± 0.09 205.12 ± 35.98
Pustule 0.76 ± 0.06 0.78 ± 0.11 0.96 ± 0.02 0.73 ± 0.06 58.62 ± 13.52
Scale 0.89 ± 0.03 0.90 ± 0.06 0.93 ± 0.04 0.82 ± 0.04 188.50 ± 31.16

Additional terms

Closed comedo 0.54 ± 0.14 0.64 ± 0.25 0.96 ± 0.04 0.51 ± 0.14 41.5 ± 22.20
Cyst 0.20 ± 0.16 0.31 ± 0.34 0.99 ± 0.01 0.19 ± 0.16 6.25 ± 6.70
Dermatoglyph disruption 0.36 ± 0.35 0.39 ± 0.38 0.97 ± 0.03 0.37 ± 0.34 21.50 ± 14.34
Leukotrichia 0.43 ± 0.41 0.45 ± 0.43 1.00 ± 0.01 0.45 ± 0.41 4.62 ± 2.69
Open comedo 0.65 ± 0.10 0.71 ± 0.21 0.96 ± 0.04 0.61 ± 0.11 50.88 ± 23.28
Scar 0.46 ± 0.14 0.57 ± 0.26 0.95 ± 0.05 0.42 ± 0.14 41.75 ± 26.84
Sun damage 0.46 ± 0.26 0.53 ± 0.29 0.97 ± 0.02 0.43 ± 0.25 31.62 ± 14.91
Telangiectasia 0.17 ± 0.25 0.19 ± 0.28 0.99 ± 0.01 0.19 ± 0.25 6.12 ± 5.60
Thrombosed capillaries 0.36 ± 0.27 0.45 ± 0.37 0.98 ± 0.02 0.35 ± 0.26 15.88 ± 11.78

Mean 0.49 ± 0.24 0.54 ± 0.22 0.95 ± 0.04 0.45 ± 0.21 60.48 ± 62.97

Table A.10
Dermatologist inter-rater localization agreement for localizable characteris-
tics (mean±std). Overlap measures show a significant variation between raters
in outlining characteristics. Sensitivity values are high for characteristics that occupy
larger areas and that often display well-circumscribed borders (e.g. plaque, scale), but
tend to be lower in smaller characteristics (e.g. comedones, pustules).

F1 score Sensitivity Specificity

Basic terms

Macule 0.21 ± 0.16 0.44 ± 0.3 0.95 ± 0.11
Nodule 0.31 ± 0.24 0.55 ± 0.33 0.96 ± 0.09
Papule 0.27 ± 0.25 0.49 ± 0.34 0.94 ± 0.12
Patch 0.65 ± 0.18 0.80 ± 0.19 0.93 ± 0.11
Plaque 0.64 ± 0.21 0.79 ± 0.21 0.93 ± 0.10
Pustule 0.26 ± 0.17 0.50 ± 0.30 0.98 ± 0.08
Scale 0.51 ± 0.23 0.70 ± 0.25 0.93 ± 0.10

Additional terms

Closed comedo 0.20 ± 0.21 0.46 ± 0.36 0.89 ± 0.17
Cyst 0.39 ± 0.27 0.59 ± 0.31 0.98 ± 0.07
Dermatoglyph disruption 0.68 ± 0.17 0.82 ± 0.16 0.98 ± 0.03
Leukotrichia 0.50 ± 0.14 0.70 ± 0.21 0.96 ± 0.07
Open comedo 0.20 ± 0.18 0.44 ± 0.33 0.91 ± 0.15
Scar 0.30 ± 0.23 0.56 ± 0.34 0.89 ± 0.14
Sun damage 0.71 ± 0.21 0.84 ± 0.19 0.76 ± 0.22
Telangiectasia 0.29 ± 0.14 0.53 ± 0.28 0.93 ± 0.12
Thrombosed capillaries 0.42 ± 0.22 0.65 ± 0.28 0.99 ± 0.02

Mean 0.41 ± 0.18 0.62 ± 0.14 0.93 ± 0.05

4. Discussion

To the best of our knowledge, DermX is the first end-to-end frame-
work created for the purpose of explaining automated dermatologi-
cal diagnoses. The two ConvNets we introduce, DermX and DermX+,
mimic the dermatological approach to diagnosing skin conditions: first
they recognize supporting characteristics, then they use these charac-
teristics as well as other high level information to arrive at a diagnosis.
In addition to identifying supporting characteristics as explanations to
a diagnosis, DermX+ also learns the localization of the explanations via
the guided attention loss. The decision to use an attention mechanism
for localization rather than a semantic segmentation approach was
guided by the design of the annotation protocol. Because dermatologists
were instructed to highlight explanation regions in an image with a
focus on sensitivity instead of specificity, the resulting outlines are not
well suited as segmentation masks. For this work to be possible, we
collected diagnoses and supporting characteristics for 554 images from
eight board-certified dermatologists.

During the process of collecting the DermXDB data, we found that
dermatologists often focus on different characteristics when diagnosing
a case. While most explanations for diseases display a set of common
characteristics, such as scales, plaques, and papules for psoriasis, there
is also a long tail of relevant characteristics that are not always se-
lected. In addition, we found that inter-rater agreement was low for
characteristics localization. This may be caused by the difficulty in
outlining characteristics with poorly defined boundaries, such as patch,
but also by dermatologists differing in their approach to outlining
smaller characteristics, such as open and closed comedones.

The contrast between high agreement on diagnoses and low agree-
ment on supporting characteristics illustrates how different experts
perceive explanations in different ways. Although they generally agree
on the diagnosis, dermatologists focus on different characteristics to
explain their decision. To properly evaluate a model’s explanations, we
must therefore consider the opinions of multiple experts. Moreover, this
intrinsic variability in how experts approach explanations lends more
urgency to the need for quantifiable explanation methods.

From a modeling perspective, our results contradict the common
adage that there must be a trade-off between predictive power and
explainability. DermX and DermX+ both report the same diagnosis
performance as a standard diagnosis-only ConvNet, while also offering
plausible explanations for their decisions. Even in cases where they
predict the wrong diagnosis, both models provide arguments that make
sense for their prediction. Most explanations given by both models are
within standard deviation of the inter-rater agreement on character-
istics, suggesting that either model may function as a second opinion
with realistic decision explanations.

When compared to interpretable models trained on the character-
istics data, both DermX and DermX+ obtain a diagnosis performance
within standard deviation of the models using manually labeled fea-
tures. None of the models we trained obtains a diagnosis performance
as high as that of experts. We postulate that this is due to the difficulty
of the dataset, as shown by the inter-rater agreement in Table 4, and
due to the limited amount of training data. On the other hand, our
results are on par with the diagnosis accuracy reported by other re-
search groups using dermatological clinical photography, which varies
between 56.7% on 134 classes (Han et al., 2020) and 86.53% on four
classes (Burlina et al., 2019).

Our localization results for both models are lower than the inter-
rater agreement on expert-derived maps for most characteristics. This
may in part be due to the low inter-rater agreement on the localization
data, and in part due to the small scale at which the maps were
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Table A.11
Characteristics prevalence per disease.

Acne Actinic keratosis Psoriasis Seborrheic dermatitis Viral warts Vitiligo

Closed comedo 0.40 0.00 0.00 0.00 0.00 0.00
Dermatoglyph disruption 0.00 0.00 0.00 0.00 0.38 0.00
Open comedo 0.49 0.00 0.00 0.01 0.00 0.00
Papule 0.70 0.13 0.18 0.04 0.65 0.00
Patch 0.02 0.32 0.02 0.24 0.00 0.97
Plaque 0.04 0.59 0.96 0.71 0.46 0.01
Pustule 0.56 0.00 0.01 0.00 0.00 0.00
Scale 0.01 0.81 0.89 0.78 0.05 0.00
Scar 0.38 0.03 0.00 0.00 0.00 0.00
Sun damage 0.00 0.47 0.01 0.01 0.00 0.01

Table B.12
Training hyper-parameters common to all
trained models.

Hyperparameter Value

Batch size 32
Rotation 10
Zoom 0.15
Brightness 0.35
Contrast 0.20
Saturation 0.20
Scale (0.85, 1.15)
Translate (0.15, 0.15)
Hue 0.15
Dropout 0.20

computed (nine by nine pixels for the EfficientNet-B2 architecture).
However, the high sensitivity values show that these maps are often
good enough to give a visual hint as to the location of the characteristic
in an image. Such a hint would be useful in cases where an expert
using DermX or DermX+ as a second opinion did not notice that char-
acteristic. Comparing the two models, DermX+ displays lower overall
F1 scores than DermX, while showcasing higher overall specificity and
high sensitivity on large characteristics. This may be explained by
its training target: dermatologist attention maps were linearly scaled
down to the size of the feature maps, which may have reduced the
target attention map of small characteristics to an almost empty mask.
Another possible explanation is DermX’s reliance on the sometimes
noisy localization data. In particular, for characteristics smaller than
1 cm (closed comedo, open comedo, papule, and pustule), DermX+ is
clearly outperformed by DermX due to the lower specificity and higher
sensitivity of DermX. In the future, we plan on investigating different
ways of downscaling the masks, and to increase the feature map size
to take advantage of the high resolution gold standard attention maps.

Mean faithfulness scores above zero for both models prove that the
characteristic localizations are indeed explanations about the diagnosis
decision mechanisms of the models. DermX+, a more specific model in
terms of characteristic localization, has lower faithfulness scores than
DermX, which tends to include adjacent regions in its localizations.
Fig. 10 showcases the impact a model’s specificity and sensitivity
have on the contrastive samples, and therefore on the faithfulness
metric. In this example, the contrastive sample created by DermX+ still
displays image-level non-localizable characteristics, information which
is occluded in the DermX contrastive sample. This further confirms the
importance of image-level tags in skin lesion diagnosis, e.g. by noticing
that acne is predominantly located on the face or upper trunk, or that
actinic keratosis most commonly affects elderly people.

This work opens many new research avenues in the domain of
medical image diagnosis explainability. From a dermatological data
perspective, we plan on adding more diseases and supporting charac-
teristics to DermXDB. The annotation protocol developed as part of
DermXDB can serve as an inspiration not only for explaining other
dermatological diseases, but also for different radiology and pathology
investigations. In radiology, imaging findings are routinely recorded,
including the supporting characteristics for the diagnosis. For example,

the malignancy of a lesion seen on a mammogram could be supported
by localized characteristics such as calcifications and dense tissue (Sick-
les et al., 2013). The network architectures we proposed could also be
applied to learning the supporting radiological findings as explanations
to diagnoses provided appropriately labeled datasets. From a modeling
perspective, we will focus on leveraging the full potential of DermXDB
by adding image-level explanations to the diagnosis models, and by in-
corporating the additional descriptive terms into the explanation setup.
More work can be done in improving the characteristic localization.
We will be focusing in particular on introducing the adversarial loss
described in Li et al. (2018) for semi-supervised attention guidance.
Another approach we will be to train object detection networks (Tan
et al., 2020; Redmon and Farhadi, 2018) to detect the supporting
characteristics alongside the diagnosis. Once the localization reaches
a higher performance, a true test of the DermX architecture would be
to set up a clinical trial where its predictions would be used as a second
opinion for health care professionals of various levels of expertise.

5. Conclusions

In this work, we introduce DermX – a novel, clinically-inspired
explainable ConvNet architecture for skin lesion diagnosis. We also
introduce a variation named DermX+ that adds a guided attention
loss such that the localization of lesion characteristics becomes a part
of the supervised training. We quantify the explanation quality by
comparing it with explanations given by board-certified dermatologists
with different levels of clinical experience. To facilitate future work,
we release this explainability dataset to the public, and describe the
annotation protocol used for its creation.
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Table B.13
Comparison of model diagnosis performance with regard to the gold standard, presented as the mean F1 score ±std. The models compared are
the diagnosis-only model (Dx), diagnosis-only with a ResNet50 base (DxRN), a diagnosis-only model trained with class weights, the clinically-
inspired diagnosis and characteristics model (DermX), and the DermX model trained with guided attention (DermX+). Dermatologist scores are
summarized as mean ±std across the experts. The gold standard is the original image diagnosis as defined by the source dataset.

Dx DxRN DxW DermX DermX+ Expert

Acne 0.87 ± 0.05 0.90 ± 0.06 0.85 ± 0.05 0.87 ± 0.05 0.86 ± 0.06 0.94 ± 0.02
Actinic keratosis 0.80 ± 0.06 0.74 ± 0.16 0.77 ± 0.15 0.79 ± 0.14 0.73 ± 0.10 0.79 ± 0.12
Psoriasis 0.77 ± 0.07 0.76 ± 0.07 0.77 ± 0.06 0.73 ± 0.11 0.80 ± 0.09 0.87 ± 0.04
Seborrheic dermatitis 0.77 ± 0.07 0.72 ± 0.11 0.75 ± 0.14 0.74 ± 0.09 0.74 ± 0.10 0.75 ± 0.08
Viral warts 0.76 ± 0.18 0.74 ± 0.16 0.73 ± 0.20 0.76 ± 0.11 0.76 ± 0.15 0.92 ± 0.05
Vitiligo 0.78 ± 0.10 0.85 ± 0.06 0.82 ± 0.07 0.83 ± 0.10 0.86 ± 0.08 0.95 ± 0.02

Mean 0.79 ± 0.05 0.79 ± 0.06 0.78 ± 0.05 0.79 ± 0.04 0.79 ± 0.04 0.87 ± 0.08

Table B.14
DermX diagnostic performance with regard to the gold standard.

F1 score Sensitivity Specificity

Acne 0.87 ± 0.05 0.89 ± 0.07 0.96 ± 0.01
Actinic keratosis 0.79 ± 0.14 0.74 ± 0.14 0.97 ± 0.03
Psoriasis 0.73 ± 0.11 0.77 ± 0.11 0.92 ± 0.05
Seborrheic dermatitis 0.74 ± 0.09 0.76 ± 0.10 0.93 ± 0.04
Viral warts 0.76 ± 0.11 0.68 ± 0.15 0.99 ± 0.01
Vitiligo 0.83 ± 0.10 0.82 ± 0.13 0.97 ± 0.03

Mean 0.79 ± 0.04 0.78 ± 0.04 0.96 ± 0.01

Table B.15
DermX+ diagnosis performance with regard to the gold standard.

F1 score Sensitivity Specificity

Acne 0.86 ± 0.06 0.92 ± 0.06 0.94 ± 0.04
Actinic keratosis 0.73 ± 0.10 0.69 ± 0.15 0.96 ± 0.02
Psoriasis 0.80 ± 0.09 0.83 ± 0.08 0.95 ± 0.04
Seborrheic dermatitis 0.74 ± 0.10 0.76 ± 0.11 0.94 ± 0.03
Viral warts 0.76 ± 0.15 0.70 ± 0.18 0.98 ± 0.01
Vitiligo 0.86 ± 0.08 0.83 ± 0.11 0.98 ± 0.02

Mean 0.79 ± 0.04 0.79 ± 0.04 0.96 ± 0.01

Table B.16
DermX performance on the presence or absence of characteristics with regard to the
dermatologist-generated labels.

F1 score Sensitivity Specificity Samples

Closed comedo 0.76 ± 0.08 0.79 ± 0.01 0.95 ± 0.03 96
Dermatoglyph disruption 0.74 ± 0.20 0.68 ± 0.21 0.99 ± 0.02 54
Open comedo 0.80 ± 0.06 0.82 ± 0.09 0.95 ± 0.02 110
Papule 0.79 ± 0.07 0.79 ± 0.10 0.80 ± 0.08 278
Patch 0.76 ± 0.06 0.76 ± 0.11 0.82 ± 0.06 249
Plaque 0.88 ± 0.03 0.89 ± 0.03 0.74 ± 0.11 352
Pustule 0.79 ± 0.10 0.83 ± 0.14 0.94 ± 0.02 106
Scale 0.79 ± 0.04 0.81 ± 0.07 0.77 ± 0.07 275
Scar 0.78 ± 0.10 0.80 ± 0.14 0.94 ± 0.04 115
Sun damage 0.66 ± 0.11 0.64 ± 0.15 0.96 ± 0.03 78

Mean 0.77 ± 0.03 0.78 ± 0.04 0.88 ± 0.02 171.30

Table B.17
DermX+ performance on the presence or absence of characteristics with regard to the
dermatologist-generated labels.

F1 score Sensitivity Specificity Samples

Closed comedo 0.81 ± 0.12 0.87 ± 0.13 0.94 ± 0.04 96
Dermatoglyph disruption 0.70 ± 0.2 0.64 ± 0.23 0.99 ± 0.01 54
Open comedo 0.80 ± 0.08 0.85 ± 0.09 0.93 ± 0.05 110
Papule 0.80 ± 0.07 0.83 ± 0.07 0.76 ± 0.11 278
Patch 0.79 ± 0.06 0.77 ± 0.11 0.87 ± 0.08 249
Plaque 0.90 ± 0.03 0.89 ± 0.05 0.85 ± 0.06 352
Pustule 0.81 ± 0.06 0.86 ± 0.08 0.94 ± 0.03 106
Scale 0.82 ± 0.05 0.82 ± 0.07 0.83 ± 0.07 275
Scar 0.80 ± 0.08 0.82 ± 0.14 0.94 ± 0.03 115
Sun damage 0.64 ± 0.15 0.60 ± 0.17 0.96 ± 0.03 78

Mean 0.79 ± 0.03 0.80 ± 0.04 0.90 ± 0.02 171.30

Table B.18
DermX localization performance for localizable characteristics (mean±std) with regard
to the fuzzy dermatologist attention maps.

F1 score Sensitivity Specificity Samples

Closed comedo 0.40 ± 0.04 0.69 ± 0.09 0.69 ± 0.05 75
Dermatoglyph disruption 0.28 ± 0.06 0.69 ± 0.09 0.69 ± 0.05 36
Open comedo 0.36 ± 0.05 0.69 ± 0.06 0.68 ± 0.04 90
Papule 0.34 ± 0.04 0.63 ± 0.08 0.72 ± 0.05 219
Patch 0.43 ± 0.05 0.57 ± 0.07 0.78 ± 0.04 188
Plaque 0.43 ± 0.03 0.65 ± 0.06 0.75 ± 0.04 314
Pustule 0.24 ± 0.05 0.69 ± 0.07 0.69 ± 0.05 88
Scale 0.41 ± 0.03 0.65 ± 0.07 0.76 ± 0.04 222
Scar 0.46 ± 0.05 0.64 ± 0.06 0.72 ± 0.05 90
Sun damage 0.56 ± 0.06 0.44 ± 0.08 0.87 ± 0.04 50

Mean 0.39 ± 0.02 0.64 ± 0.02 0.74 ± 0.01 137.20

Table B.19
DermX characteristics localization performance with regard to fuzzy dermatologist
attention maps. The results include the localization performance of characteristics
identified by the dermatologists but not by the model.

F1 score Sensitivity Specificity Samples

Closed comedo 0.31 ± 0.04 0.55 ± 0.11 0.76 ± 0.05 96
Dermatoglyph disruption 0.19 ± 0.06 0.48 ± 0.17 0.79 ± 0.07 54
Open comedo 0.30 ± 0.05 0.57 ± 0.08 0.73 ± 0.05 110
Papule 0.27 ± 0.05 0.50 ± 0.08 0.78 ± 0.05 278
Patch 0.33 ± 0.05 0.44 ± 0.08 0.83 ± 0.04 249
Plaque 0.38 ± 0.02 0.58 ± 0.05 0.77 ± 0.04 352
Pustule 0.20 ± 0.05 0.58 ± 0.14 0.74 ± 0.07 106
Scale 0.33 ± 0.03 0.53 ± 0.08 0.81 ± 0.04 275
Scar 0.36 ± 0.06 0.50 ± 0.08 0.77 ± 0.06 115
Sun damage 0.36 ± 0.09 0.28 ± 0.07 0.92 ± 0.03 78

Mean 0.30 ± 0.01 0.50 ± 0.01 0.79 ± 0.00 171.30

Table B.20
DermX+ localization performance for localizable characteristics (mean±std) with regard
to the fuzzy dermatologist attention maps.

F1 score Sensitivity Specificity Samples

Closed comedo 0.10 ± 0.09 0.11 ± 0.08 0.96 ± 0.02 83
Dermatoglyph disruption 0.60 ± 0.12 0.60 ± 0.15 0.97 ± 0.02 34
Open comedo 0.06 ± 0.05 0.06 ± 0.05 0.97 ± 0.02 93
Papule 0.18 ± 0.04 0.19 ± 0.06 0.97 ± 0.02 232
Patch 0.53 ± 0.05 0.56 ± 0.06 0.89 ± 0.03 191
Plaque 0.61 ± 0.05 0.65 ± 0.06 0.91 ± 0.01 312
Pustule 0.03 ± 0.03 0.04 ± 0.05 0.98 ± 0.01 91
Scale 0.49 ± 0.07 0.58 ± 0.11 0.89 ± 0.03 224
Scar 0.35 ± 0.12 0.35 ± 0.15 0.92 ± 0.04 93
Sun damage 0.58 ± 0.20 0.53 ± 0.19 0.90 ± 0.10 47

Mean 0.36 ± 0.01 0.37 ± 0.01 0.94 ± 0.00 138.00

Appendix A. Additional dataset information

See Figs. A.11–A.13 and Tables A.8–A.11.

Appendix B. Model training and extended performance

See Tables B.12–B.21.
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Table B.21
DermX+ characteristics localization performance with regard to fuzzy dermatologist
attention maps. The results include the localization performance of characteristics
identified by the dermatologists but not by the model.

F1 score Sensitivity Specificity Samples

Closed comedo 0.09 ± 0.08 0.09 ± 0.07 0.97 ± 0.02 96
Dermatoglyph disruption 0.39 ± 0.17 0.4 ± 0.21 0.98 ± 0.02 54
Open comedo 0.05 ± 0.04 0.05 ± 0.04 0.98 ± 0.02 110
Papule 0.15 ± 0.04 0.16 ± 0.06 0.97 ± 0.02 278
Patch 0.41 ± 0.07 0.43 ± 0.07 0.92 ± 0.02 249
Plaque 0.54 ± 0.06 0.58 ± 0.07 0.92 ± 0.01 352
Pustule 0.03 ± 0.03 0.03 ± 0.04 0.98 ± 0.01 106
Scale 0.41 ± 0.07 0.48 ± 0.09 0.91 ± 0.02 275
Scar 0.29 ± 0.1 0.29 ± 0.13 0.93 ± 0.04 115
Sun damage 0.34 ± 0.14 0.31 ± 0.15 0.94 ± 0.08 78

Mean 0.27 ± 0.01 0.28 ± 0.01 0.95 ± 0.00 171.30
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ABSTRACT

In recent years, large strides have been taken in developing machine learning methods for various
dermatological applications, supported in part by the widespread success of deep learning. To
date, diagnosing diseases from images is one of the most explored applications of deep learning
within dermatology. Convolutional neural networks (ConvNets) are the most commonly used deep
learning method in medical imaging due to their training efficiency and accuracy, although they are
often described as black boxes because of their limited explainability. One popular way to obtain
insight into a ConvNet’s decision mechanism is gradient class activation maps (Grad-CAM). A
quantitative evaluation of the Grad-CAM explainability has been recently made possible by the
release of DermXDB, a skin disease diagnosis explainability dataset which enables benchmarking
the explainability performance of ConvNet architectures. In this paper, we perform a literature review
to identify the most common ConvNet architectures used for this task, and compare their Grad-
CAM explainability performance with the explanation maps provided by DermXDB. We identified
11 architectures: DenseNet121, EfficientNet-B0, InceptionV3, InceptionResNetV2, MobileNet,
MobileNetV2, NASNetMobile, ResNet50, ResNet50V2, VGG16, and Xception. We pre-trained all
architectures on an clinical skin disease dataset, and then fine-tuned them on a subset of DermXDB.
Validation results on the DermXDB holdout subset show an explainability F1 score of between 0.35-
0.46, with Xception the highest explainability performance, while InceptionResNetV2, ResNet50, and
VGG16 displaying the lowest. NASNetMobile reports the highest characteristic-level explainability
sensitivity, despite it’s mediocre diagnosis performance. These results highlight the importance
of choosing the right architecture for the desired application and target market, underline need for
additional explainability datasets, and further confirm the need for explainability benchmarking that
relies on quantitative analyses rather than qualitative assessments.

Keywords deep learning, dermatologys, explainability, benchmark, review

1 Introduction

With an expected shortage of approximately ten million healthcare professionals by 2030 [World Health Organization,
2016], the world is facing a massive healthcare crisis. Automation has been proposed as a solution to the scarcity of
medical professionals, with the Food and Drugs Administration in the United States approving medical devices based
on artificial intelligence for marketing to the public [U.S. Food and Drug Administration, 2018].

This development is due in part to the advancement in machine learning using unstructured data. Ever since Krizhevsky
et al. [2017] won the ImageNet Large Scale Visual Recognition Challenge [Russakovsky et al., 2015] using a convolu-
tional neural network (ConvNet), ConvNets have been at the forefront of machine learning based automation. Employed
primarily in healthcare for imaging applications, ConvNets have been used for disease diagnosis [Gao et al., 2019], cell
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counting [Falk et al., 2019], disease severity assessment [Gulshan et al., 2016], disease progression estimation [Kijowski
et al., 2020], lesion or anatomical region segmentation [Hesamian et al., 2019, Ramesh et al., 2021], etc. Esteva et al.
[2017] were the first to demonstrate that ConvNets can achieve expert-level performance in dermatological diagnosis
using dermoscopy images. Since then, dermatology has embraced ConvNets as a solution to various diagnosis and
segmentation tasks [Esteva et al., 2017, Zhang et al., 2019, Jinnai et al., 2020, Haenssle et al., 2020, Roy et al., 2022].

Despite these considerable advancements in medical imaging, there has not yet been a widespread adoption of machine
learning based automation in the clinical workflow. One of the main hurdles that detract from adoption is the lack of
ConvNet explainability [Kelly et al., 2019], this issue being enhanced by the recently implemented legislation aimed at
ensuring that automated methods can offer an explanation into their decision mechanisms [Goodman and Flaxman,
2017]. Different post-hoc explainability methods have been proposed as a way to explain a ConvNet’s decisions [Bai
et al., 2021, Selvaraju et al., 2017, Lundberg and Lee, 2017, Ribeiro et al., 2016]. Gradient class activation maps
(Grad-CAM) is currently the most commonly used explainability method within medical imaging, due to its intrinsic
ease of interpretation and its low computational requirements. However, validating the resulting explanations is an
expensive, time consuming process that requires domain expert intervention, and thus most explainability validations
are performed as small, qualitative analyses. With the release of DermXDB [Jalaboi et al., 2022], it became possible
to quantitatively analyse the explainability of ConvNets trained for diagnosing six skin conditions: acne, psoriasis,
seborrheic dermatitis, viral warts, and vitiligo.

The purpose of this benchmark is to provide the means to quantitatively compare the explainability of the state-of-the-art
approaches to dermatological diagnosis using photographic imaging. Our contributions are twofold:

1. We perform a comprehensive systematic review to reveal the usage of the ConvNets for the task of dermato-
logical diagnosis using photographic images,

2. We benchmark the identified ConvNets for diagnostic and explainability performance and compare them with
eight expert dermatologists.

2 Background

2.1 Machine learning methods in dermatological diagnosis

After the renewed interest in artificial intelligence and machine learning that started in 2012, practitioners from both
academia and the industry began investigating automated methods for dermatological applications [Thomsen et al.,
2020, Jeong et al., 2022]. Until 2017, the vast majority of articles applying machine learning methods on dermatological
problems were using classical models such as support vector machines [Liu et al., 2012, Sabouri et al., 2014], and linear
or logistic regression [Kaur et al., 2015, Kefel et al., 2016]. These models were trained using hand-crafted features or
features extracted using classical computer vision methods such as gray-level co-occurrence matrices [Shimizu et al.,
2014], Sobel and Hessian filters [Arroyo and Zapirain, 2014], or HOS texture extraction [Shrivastava et al., 2016].
However, the main drawback of classical computer vision approaches is that hand-crafting features is an expensive,
time-consuming process, while their automated extraction is too sensitive to the environmental factors of the image
acquisition (e.g. lighting, zoom).

Esteva et al. [2017] were the first to propose a ConvNet for diagnosing skin conditions from dermoscopy images. Their
ConvNet reached expert-level performance without requiring any hand-crafted features or classical computer vision
models, thus paving the way towards the current popularity of ConvNets in dermatological applications.

One key component to the rise of ConvNets was the introduction of large scale dermatological datasets. The International
Skin Imaging Collaboration (ISIC) challenge dataset [Codella et al., 2018] is one of the best known open access
dermoscopy datasets, containing 25,331 images distributed over nine diagnostic categories. Large clinical image
datasets are also available for research purposes, such as SD-260 [Sun et al., 2016] which consists of 20,600 clinical
images of 260 different skin diseases, and DermNetNZ [DermNetNZ, 2021] which contains more than 25,000 clinical
images.

Aided by the release of increasingly more performant architectures, their publicly available pre-trained weights on
the ImageNet [Deng et al., 2009] dataset, and the recently published public dermatological datasets, the vast majority
of research contributions in machine learning applications for dermatology rely on ConvNet architectures. ConvNets
have been extensively used in lesion diagnosis [Tschandl et al., 2017, Han et al., 2018, Reshma et al., 2022] and lesion
segmentation [Yuan et al., 2017, Wu et al., 2022, Baig et al., 2020] on different modalities relevant for the domain.
Attempts at explaining the decisions taken by ConvNets were made by several groups [Tschandl et al., 2020, Tanaka
et al., 2021], but no quantitative analysis was performed.
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Table 1: Search query used on PubMed to identify the list of relevant articles. We searched for articles focused on
dermatology, using deep learning methods, written in English. The query was last performed on the 20th of February
2023.

Search term Search term Search term

(((dermatology[MeSH Terms]) OR AND ((neural network[MeSH Terms]) OR AND (English[Language])
(skin disease[MeSH Terms]) OR (machine learning[MeSH Terms]) OR
(skin lesion[MeSH Terms])) (artificial intelligence[MeSH Terms]) OR

(deep learning) OR
(deep neural network) OR
(convolutional neural network))

2.2 Explainability in convolutional neural networks

ConvNets have, from their very beginning, been notoriously difficult to interpret and explain. Interpretability is
generally considered the ability to understand the internal structure and properties of a ConvNet architecture, while
explainability is defined as a ConvNet’s capacity to offer plausible arguments in favour of its decision [Roscher et al.,
2020]. Within healthcare, explainability is especially important due to its intrinsic ability to interact with domain experts
in a common vocabulary [Kelly et al., 2019]. Although some architecture or domain-specific explainability methods
exist, most medical imaging research articles employ attribution-based methods due to their ease of use and open source
access [Singh et al., 2020, Bai et al., 2021].

There are two main ways of implementing attribution-based methods: through perturbation and by using the ConvNet’s
gradients. Perturbation-based methods, such as Shapley values [Lipovetsky and Conklin, 2001], LIME [Ribeiro et al.,
2016], or SharpLIME [Graziani et al., 2021], rely on modifying the original image and then evaluating the changes in
the ConvNet’s prediction. For example, LIME uses a superpixel algorithm to split the image into sections, and randomly
selects a subset of superpixels to occlude. The target ConvNet then performs an inference step on the perturbed image.
This procedure is run multiple times to identify the superpixels that lead to the most drastic change in the ConvNet’s
prediction. SharpLIME uses hand-crafted segmentations to split the image into relevant sections, and then proceeds
with the perturbation process defined in LIME. The main drawback of perturbation based methods is the need to run the
prediction algorithm multiple times, which leads to high computational costs and long running times.

Gradient-based methods, such as saliency maps [Simonyan and Zisserman, 2015], guided backpropagation [Sprin-
genberg et al., 2014], gradient class-activation maps (Grad-CAM) [Selvaraju et al., 2017], or layer-wise relevance
propagation [Bach et al., 2015], use a ConvNet’s backpropagation step to identify the areas in an image that contribute
the most to the prediction. In general, gradient-based methods compute the gradient of a given input in relation to
the prediction, and apply different post-processing methods to the output. In the case of Grad-CAM, image features
are extracted by forward propagating the image until the last convolutional layer. Then, the gradient is set to 0 for all
classes except the target class, and the signal is backpropagated to the last convolutional layer. The extracted image
features that directly contribute to the backpropagated signal constitute the Grad-CAM for the given class. Since the
analysis can be performed at the same time as the inference itself and only requires one iteration, Grad-CAM is often
used in research and industrial applications [Pereira et al., 2018, Young et al., 2019, Tschandl et al., 2020, Hepp et al.,
2021, Jalaboi et al., 2023]. Due to its popularity, in this paper we will use Grad-CAM to benchmark the explainability
of commonly used ConvNet architectures.

3 Material and methods

3.1 Literature review

We performed a systematic literature review on PubMed, following the methodology introduced by Thomsen et al.
[2020]. The query, described in Table 1, focused on dermatological applications of deep learning. A total of 3,650
articles were retrieved. We excluded articles that focused on domains other than dermatology, articles that did not
include an original contribution in disease classification, articles using modalities other than photographic images,
articles using methods other than ConvNets, and articles using proprietary ConvNets.
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3.2 Explainability benchmark

3.2.1 Explainability dataset

For explainability benchmarking, we use DermXDB, a skin disease diagnosis explainability dataset published by Jalaboi
et al. [2022]. The dataset consists of 524 images sourced from DermNetNZ [DermNetNZ, 2021] and SD-260 [Sun
et al., 2016], and labeled with diagnoses and explanations in the form of visual skin lesion characteristics by eight
board-certified dermatologists. To match the Grad-CAM output, we focus on the characteristic localization task.

3.2.2 Diagnosis evaluation

For establishing the expert-level diagnosis performance, we compare each dermatologist with the reference standard
diagnosis. We follow the same approach for benchmarking the diagnosis performance of the ConvNets. We evaluate the
performance using the categorical F1 score, sensitivity, and specificity, defined as:

F1 score =
2TP

2TP + FP + FN
, (1)

Sensitivity =
TP

TP + FN
, (2)

Specificity =
TN

TN + FP
, (3)

where the true positives TP represent correctly classified samples, the false positives FP represent samples incorrectly
classified as part of the target class, the false negatives FN represent samples of the target class incorrectly classified as
being part of a different class, and the true negatives TN represent samples correctly identified as not being part of the
target class.

3.2.3 Explainability evaluation

For establishing expert-level explainability performance, we compare the attention masks of each dermatologist
with the aggregated fuzzy union of attention masks created by the other seven dermatologists (explanation maps).
More specifically, we define the image-level explanation maps as the union of all characteristics segmented by all
dermatologists for an image, and the characteristic-level explanation maps as the union of all segmentations for each
characteristic for an image. Figure 1 illustrates the mask creation process for a psoriasis case. The ConvNet Grad-CAM
attention maps are compared with explanations maps derived from all eight dermatologist evaluations.

These two types of explanation maps offer a way to check whether the ConvNets take into account the entire area
selected by dermatologists as important to their decision, and whether they focus on specific characteristics when
making their decisions. To quantify the similarity between the Grad-CAMs and the explanation maps, we compute the
F1 score, sensitivity and specificity following their fuzzy implementation defined in [Crum et al., 2006], described as:

F1 score =
2
∑

p∈pixels min(Gp, Ep)∑
p∈pixels(Gp) +

∑
p∈pixels(Ep)

, (4)

Sensitivity =

∑
p∈pixels min(Gp, Ep)∑

p∈pixels(Sp)
, (5)

Specificity =

∑
p∈pixels min(1− Gp, 1− Ep)∑

p∈pixels(1− Ep)
, (6)

where G is the ConvNet-generated Grad-CAM, and E is the explanation map for a given image.

For characteristics, we report the Grad-CAM sensitivity with regard to the characteristic-level explanation maps.
Specificity and F1 score were considered too stringent, as multiple characteristics can be present and essential for a
diagnosis, and an explainable ConvNet must detect all of them to plausibly explain the diagnosis.
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Figure 1: Explanation maps creation example for a psoriasis case evaluated by two dermatologists. Both dermatologists
identified plaque and scale as the two characteristics associated with the psoriasis diagnosis, and localized them. By
combining the localization maps for each characteristic, we obtain the characteristic-level explanation maps. By
combining the localization maps created by each dermatologist, we obtain the individual dermatologist explanation
maps. By combining all localization maps, we obtain the image-level explanation map.

3.2.4 Experimental setup

From the 22 articles that fulfilled all inclusion criteria, we selected the set of ConvNets to benchmark based on their
reproducibility: we required that all benchmarked ConvNets had been pre-trained on ImageNet due to the limited
amount of training data available. Thus, we exclude architectures that do not have publicly available pre-trained
ImageNet weights compatible with the deep learning Keras framework [Chollet, 2015], i.e. GoogLeNet [Szegedy et al.,
2015], InceptionV4 [Babenko and Lempitsky, 2015], MobileNetV3 [Howard et al., 2019], SENet [Hu et al., 2018],
SE-ResNet [Hu et al., 2018], SEResNeXT [Hu et al., 2018], and ShuffleNet [Zhang et al., 2018]. Furthermore, as
several articles compare different versions of the same architecture (e.g. EfficientNet-B0 through EfficientNet-B7, see
Table 2), we select the smallest version of each architecture for our benchmark to avoid overfitting to the DermXDB
dataset.

In the rest of this work, we will focus on the following ConvNets: DenseNet121 [Huang et al., 2017],
EfficientNet-B0 [Tan and Le, 2019], InceptionResNetV2 [Szegedy et al., 2017], InceptionV3 [Szegedy et al., 2016],
MobileNet [Howard et al., 2017], MobileNetV2 [Sandler et al., 2018], NASNetMobile [Zoph et al., 2018], ResNet50 [He
et al., 2016a], ResNet50V2 [He et al., 2016b], VGG16 [Simonyan and Zisserman, 2015], and Xception [Chollet, 2017].

We used the pre-trained weights offered by Keras to initialize the networks in our experiments. Next, all ConvNets were
pre-trained on a proprietary clinical photography skin disease dataset collected by a dermatologist between 2004-2018.
All images included in the dataset were anonymized, and the patients consented to their data being used for research
purposes. More information about the dataset is available in Appendix Table A1. We performed a hyper-parameter
search for each ConvNet, with the values used for experimentation and the validation performance being reported in
Appendix Table A2 and Appendix Table A3, respectively. We further fine-tuned all ConvNets for 50 epochs with
261 randomly chosen images from the DermXDB dataset. The remaining 263 images were used as the test set. Each
ConvNet was trained and tested five times. All results presented in this paper are aggregated over the five test runs. All
code used for running the experiments is available at https://github.com/ralucaj/dermx-benchmark.
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Figure 2: The Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) statement flowchart of
the performed review process for identifying the benchmarked ConvNet architectures. First, we screened articles to
ensure that they were using dermatological data and deep learning methods. Afterwards, we excluded review articles
and contributions focused on tasks other than classification, and articles that that used non-photographic image data, e.g.
dermoscopy, whole slides. Finally, we excluded articles that used proprietary ConvNets, leading to 22 articles serving
as the benchmark basis.

4 Results

4.1 Literature review

Figure 2 displays the Preferred Reporting Items for Systematic Review and Meta-Analyses statement flowchart of the
performed review, while Figure 3 illustrates the evolution of articles topics over the years. Out of the original 3,650
articles, only 22 fulfilled all the inclusion criteria. Table 2 summarizes the ConvNet architectures, their implementation,
and reported performance employed in the final 22 articles selected for benchmarking.
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Table 2: Overview of the 22 articles fulfilling all inclusion criteria. All articles use ConvNets for a dermatological
classification task using photographic images. Tasks vary between binary or multi-disease diagnosis, disease risk
assessment, lesion type classification, and severity assessment.

Publication ConvNets employed Task Data Performance

Aggarwal [2019] InceptionV3 Disease diagnosis on five
classes

Open source images
and images scraped
from Google

0.66 F1 score, 0.65 sensitivity, 0.91 speci-
ficity, 0.67 precision, 0.91 NPV, 0.57 MCC

Burlina et al. [2019] ResNet50 Disease diagnosis on four
classes

Internet-scraped im-
ages

82.79% accuracy, 0.76 kappa score

Zhao et al. [2019] Xception Skin cancer risk assessment
with three classes

Clinical images 72% accuracy, 0.92-0.96 ROC AUC, 0.85-
0.93 sensitivity, 0.85-0.91 specificity

Burlina et al. [2020] ResNet50, ResNet152, InceptionV3,
InceptionResNetV2, DenseNet

Disease diagnosis on eight
classes

Clinical and other
photographic images
scraped using Google
and Bing

71.58% accuracy, 0.70 sensitivity, 0.96
specificity, 0.72 precision, 0.96 NPV, 0.67
kappa, 0.72 F1 score, 0.80 average preci-
sion, 0.94 AUC

Chin et al. [2020] DenseNet121, VGG16, ResNet50 Binary skin cancer risk as-
sessment

Smartphone images 0.83-0.86 AUC, 0.72-0.77 sensitivity, 0.85-
0.86 specificity

Han et al. [2020] SENet, SE-ResNet50, VGG19 Disease classification on 134
classes

Clinical images 44.8-56.7% accuracy, 0.94-0.98 AUC

Liu et al. [2020] InceptionV4 Disease diagnosis on 26
classes

Clinical images 66% accuracy, 0.56 sensitivity

Zhao et al. [2020] DenseNet121, Xception, InceptionV3,
InceptionResNetV2

Binary psoriasis classifica-
tion

Clinical images 96% accuracy, 0.95-0.98 AUC, 0.96-0.97
specificity, 0.83-0.95 sensitivity

Wu et al. [2021] SEResNeXt, SE-ResNet, InceptionV3 Disease diagnosis on five
classes

Clinical images 0.96-0.97 AUC, 90-91% accuracy, 0.90-
0.93 sensitivity, 0.90 specificity

Aggarwal and Papay
[2022]

InceptionResNetV2 Disease diagnosis on four
classes

Clinical images 0.60-0.82 sensitivity, 0.60-0.82 specificity,
0.33-0.93 precision, 0.33-0.93 NPV, 0.43-
0.84 F1 score

Ba et al. [2022] EfficientNet-B3 Disease diagnosis on 10
classes

Clinical images 78.45% accuracy, 0.73 kappa

Hossain et al. [2022] VGG16, VGG19, ResNet50,
ResNet101, ResNet50V2,
ResNet101V2, InceptionV3,
InceptionV4, InceptionResNetV2,
Xception, DenseNet121,
DenseNet169, DenseNet201, Mo-
bileNetV2, MobileNetV3Small,
MobileNetV3Large, NASNetMobile,
EfficientNet-B0 through EfficientNet-
B5

Binary Lyme disease classifi-
cation

Smartphone images 61.42-84.42% accuracy, 0.72-0.90 sensitiv-
ity, 0.50-0.81 specificity, 0.61-0.83 preci-
sion, 0.63-0.87 NPV, 0.23-0.69 MCC, 0.22-
0.69 Cohen’s kappa, 1.46-4.70 positive like-
lihood ratio, 0.14-0.55 negative likelihood
ratio, 0.66-0.0.85 F1 score, 0.65-0.92 AUC
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Hüsers et al. [2022] MobileNet Binary wound maceration
classification

Clinical images 69% accuracy, 0.69 sensitivity, 0.67 preci-
sion

Liu et al. [2022] InceptionResNetV2 Ulcer characteristic diagno-
sis on two and three classes

Clinical images 71.2-99.4% accuracy, 0.68-0.99 sensitivity,
0.71-1.00 precision, 0.70-0.94 F1 score

Malihi et al. [2022] Xception Binary wound type classifi-
cation

Clinical images 67-83% accuracy, 0.65-0.94 sensitivity,
0.70-0.75 specificity, 0.65-0.75 precision,
0.70-0.85 F1 score

Munthuli et al. [2022] DenseNet121 Skin lesion severity classifi-
cation with five classes

Smartphone images 0.43-0.91 sensitivity, 0.80-0.98 specificity,
0.50-0.87 F1 score

Ni et al. [2022] DenseNet121, ResNet50 Radiation dermatitis severity
classification on four classes

Clinical images 83% accuracy, 0.74-1.00 F1 score

Roy et al. [2022] ResNet101 Disease diagnosis on 26
classes

Clinical images 62.6% - 75.6% accuracy, 69.3-81.8 AUPR

Sahin et al. [2022] ResNet18, GoogleNet, EfficientNet-
B0, NASNetMobile, ShuffleNet,
MobileNetV2

Binary monkeypox classifi-
cation

Smartphone images 73.33-91.11% accuracy

Xia et al. [2022] ResNet50 Binary skin cancer classifica-
tion

Smartphone images 0.77-0.82 AUC, 0.76-0.79 AP

Zhou et al. [2022] ResNet50 Disease diagnosis on three
classes

Clinical images 0.32 error rate, 0.68 sensitivity, 0.69 preci-
sion, 0.68 F1 score

Zhang and Ma [2022] ResNet50 Acne severity classification
with three classes

Clinical images 74% accuracy8
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Figure 3: Distribution of retrieved article topics per publication year, based on the search query defined in Table 1 (ran
on the 20th of February 2023). 2017 marks an explosion in the number of deep learning applications in dermatology, a
fact highlighted by the large increase in articles in the subsequent years, and an increase in review articles. Starting
2019, the industrial involvement in this field became apparent due to the increase in proprietary ConvNets. 2019 also
marks the first emergence of dermatological applications using photographic imaging. Finally, although classification is
still the most common application, other applications are becoming increasingly more researched.

4.2 Diagnosis results

Table 3 provides an overview of the diagnostic performance of the networks and that of the dermatologists on average
in terms of F1 score. As can be seen from the table, although several ConvNets achieve expert-level performance
when diagnosing actinic keratosis, seborrheic dermatitis, and viral warts, none of them achieve overall expert-level
performance. ConvNets follow the trend also seen in dermatologists of having difficulties correctly diagnosing
actinic keratosis and seborrheic dermatitis, while the diagnosis of acne and viral warts displays higher performance.
Similar trends can be observed for the sensitivity and specificity performance, as seen in Appendix Table A4 and
Appendix Table A5, respectively.

4.3 Explainability results

Table 4 shows the image-level explainability results for each of the benchmarked ConvNets, while Figure 4 shows the
relationship between ConvNet diagnosis performance, image-level explainability, and number of parameters. Xception
scores the highest on the image-level Grad-CAM F1 score, while InceptionResNetV2, ResNet50, and VGG16 have
the lowest performance. DenseNet121 and NASNetMobile report expert-level sensitivity scores, while ResNet50V2
achieves expert-level performance in specificity.

Looking at the characteristic-level sensitivity depicted in Figure 5, NASNetMobile and DenseNet121 achieve the highest
overall performance. InceptionResNetV2, ResNet50, ResNet50V2, and VGG16 report the lowest scores. All ConvNets
outperform dermatologists in closed comedo, open comedo, and pustule. The opposite is true for dermatoglyph
disruption, leukotrichia, patch, plaque, scale, sun damage, and telangiectasia – no ConvNet reaches expert-level.

Figure 6 illustrates the differences in Grad-CAMs between the benchmarked ConvNets. Older ConvNet architectures,
such as VGG16, InceptionResNetV2, ResNet50, and ResNet50V2, tend to focus on small areas that contain charac-
teristics relevant for the diagnosis, e.g. focusing on a single plaque in the psoriasis diagnosis example, while more
modern ConvNets pay attention to the entire area covered by diagnosis-relevant lesions. Several ConvNets, namely

9



Dermatological Diagnosis Explainability Benchmark for Convolutional Neural Networks A PREPRINT

Table 3: Diagnostic performance of the ConvNets (average ± standard deviation across five runs) and dermatolo-
gists (average ± standard deviation across eight experts) using F1-score, split by diagnosis. Several ConvNets achieve
expert-level per-disease diagnosis performance, in actinic keratosis, seborrheic dermatitis, and viral warts (in bold),
although none reach the same performance for acne, psoriasis, and vitiligo.

Acne Actinic
keratosis

Psoriasis Seborrheic
dermatitis

Viral
warts

Vitiligo

ConvNets

DenseNet121 0.80± 0.02 0.63± 0.08 0.66± 0.01 0.69± 0.03 0.88± 0.03 0.74± 0.03

EfficientNet-B0 0.72± 0.03 0.53± 0.10 0.60± 0.06 0.57± 0.08 0.80± 0.07 0.66± 0.02

InceptionV3 0.77± 0.02 0.57± 0.11 0.60± 0.02 0.54± 0.03 0.77± 0.04 0.73± 0.05

InceptionResNetV2 0.73± 0.02 0.52± 0.10 0.53± 0.05 0.56± 0.05 0.69± 0.03 0.53± 0.12

MobileNet 0.72± 0.06 0.55± 0.19 0.51± 0.14 0.57± 0.06 0.68± 0.06 0.56± 0.10

MobileNetV2 0.56± 0.07 0.23± 0.09 0.31± 0.08 0.46± 0.05 0.63± 0.07 0.48± 0.14

NASNetMobile 0.50± 0.05 0.33± 0.12 0.42± 0.07 0.43± 0.05 0.55± 0.11 0.51± 0.05

ResNet50 0.77± 0.04 0.53± 0.17 0.61± 0.03 0.61± 0.19 0.79± 0.02 0.61± 0.07

ResNet50V2 0.76± 0.04 0.62± 0.07 0.59± 0.01 0.57± 0.01 0.76± 0.01 0.75± 0.05

VGG16 0.70± 0.05 0.62± 0.03 0.59± 0.03 0.49± 0.15 0.71± 0.03 0.62± 0.07

Xception 0.80± 0.04 0.64± 0.07 0.70± 0.02 0.60± 0.03 0.81± 0.04 0.81± 0.05

Dermatologists

Average 0.95± 0.02 0.79± 0.14 0.85± 0.06 0.72± 0.09 0.93± 0.05 0.96± 0.03

EfficientNet-B0, MobileNet, MobileNetV2, and VGG16 seem to have overfit on the training set, focusing on the
watermark rather than the image itself when diagnosing the vitiligo case.

5 Discussion

5.1 Literature review

ConvNets have become a default approach when it comes to automated diagnosis using images, aligned with the rise of
the deep learning methodology for vision recognition. The continuous breakthroughs in diagnostic performance across
a wide variety of medical imaging modalities and disorders have made automated diagnosis as close to integration with
practice as ever. In dermatology, the diagnosis performance has achieved that of the expert raters as early as 2017 with
a seminal work of Esteva et al. [2017] that disrupted the research field and set the trend that still persists, as can be
seen through the trends of the continuous growth outlined in Figure 3. The increased interest of industrial entities that
started in 2019, illustrated in Figure 3 by the increase in proprietary methods, is further highlighted by the large number
of dermatology-oriented med-tech companies relying on machine learning for their products. Year 2019 also marks
the year when research groups began investigating photographic images as a primary modality for diagnosing skin
conditions, meaning the rise of machine learning solutions to assist teledermatology.

The potential of using ConvNets to streamline dermatological tasks is underlined by the diversity of tasks being
solved in the retrieved articles. Classification was the first methodology to be approached, with applications in disease
diagnosis, risk assessment, lesion type classification, lesion characteristics identification, and disease severity assessment.
Segmentation and natural language processing applications are also gaining more traction, as shown by the constant
increase in non-classification tasks in Figure 3.

However, this potential has not yet translated into the much-needed transformation of the clinical practice. In part, this
is due to regulatory challenges which are often faced due to the limited generalizability and lack of explainability of the
methods [Kelly et al., 2019]. By benchmarking the diagnosis and explainability performance of ConvNets, we both
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NASNetMobile (5,3M)

Xception (22,9M)

InceptionV3 (23,9M)

DenseNet121 (8,1M)

EfficientNet-B0 (5,3M)

MobileNetV2 (3,5M)

MobileNet (4,3M)

ResNet50V2 (25,6M)

VGG16 (138,4M)
InceptionResNetV2 (55,9M)

ResNet50 (25,6M)

Figure 4: ConvNet explainability as a function of ConvNet performance and their number of parameters. Xception
displays both the highest performance and image-level explainability, while ResNet50 performs poorly in both criteria.

enable a comparison among the methods, as well as help the identification gaps between the current state-of-the-art and
the clinical practice.

5.2 Diagnosis benchmark

The direct comparison of the diagnostic performance is not possible using reported values from the literature not only
due to variability in the choice of the metrics, but more importantly due to the variance in the number of classes and the
differences in the datasets used for training and validation (Table 2). By reformulating the task to the diagnosis of six
disease classes, utilizing the same initialization, pre-training, and hyperparameter optimization search strategy, and
training and validating on the common database, this benchmark minimizes the performance variability related to such
implementation details.

We found considerable variability among the diagnostic performance values, with the average F1 scores ranging from
0.50 to 0.80 for acne, from 0.23 to 0.64 for actinic keratosis, from 0.31 to 0.70 for psoriasis, from 0.43 to 0.69 for
seborrheic dermatitis, from 0.55 to 0.88 for viral warts, and from 0.51 to 0.81 for vitiligo. These values were aligned
with the diagnostic complexity of the diseases as expressed by the performance of the dermatologists, averaging 0.95
for acne, 0.79 for actinic keratosis, 0.85 for psoriasis, 0.72 for seborrheic dermatitis, 0.93 for viral warts, and 0.96
for vitiligo. As such, none of the ConvNets achieved the average dermatologist performance, although there were
multiple instances of ConvNets reaching the range of the expert performance for a specific disease (see Table 3). The
majority of the benchmarked ConvNets achieved expert level for diagnosis of actinic keratosis and seborrheic dermatitis:
seven and six out of 11, respectively. This further confirms the similarity of ConvNet performance with respect to the
dermatologists: most ConvNets display a similar difficulty in diagnosing actinic keratosis and seborrheic dermatitis as
the eight dermatologists, and a similar ease of diagnosing acne and viral warts.

5.3 Explainability benchmark

While diagnostic performance is recognized as critical for the generalizability of ConvNets, the explainability perfor-
mance validation has been generally approached as an optional, qualitative, post-hoc analysis. One of the key challenges
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Table 4: Explainability performance in terms of the image-level Grad-CAM evaluation for the ConvNets (average ±
standard deviation across five runs), and an explanation map evaluation dermatologists (average ± standard deviation
across eight experts). Older ConvNets, such as ResNet50, ResNet50V2, and VGG16, have lower performance than
most other modern ConvNets. Two networks achieve expert-level sensitivity scores, and one achieves expert-level
specificity (in bold).

F1 score Sensitivity Specificity

ConvNets

DenseNet121 0.43± 0.01 0.61± 0.01 0.78± 0.00

EfficientNet-B0 0.39± 0.01 0.52± 0.00 0.82± 0.00

InceptionV3 0.42± 0.01 0.56± 0.01 0.82± 0.01

InceptionResNetV2 0.35± 0.01 0.40± 0.01 0.87± 0.01

MobileNet 0.37± 0.02 0.50± 0.01 0.85± 0.01

MobileNetV2 0.38± 0.02 0.49± 0.02 0.87± 0.01

NASNetMobile 0.44± 0.00 0.62± 0.00 0.81± 0.00

ResNet50 0.35± 0.01 0.42± 0.03 0.84± 0.01

ResNet50V2 0.37± 0.01 0.38± 0.01 0.91± 0.00

VGG16 0.35± 0.01 0.40± 0.01 0.86± 0.01

Xception 0.46± 0.01 0.56± 0.00 0.88± 0.01

Dermatologists

Average 0.66± 0.03 0.67± 0.07 0.93± 0.03

faced by researchers trying to implement a more objective validation of explainability is linking the human-approachable
explanations with those feasible for ConvNets. With the use of the labels for dermatological diagnosis explainability
available from the recently released DermXDB dataset, our benchmark is quantitative as well as predefined. Thus, we
avoid potential biases and limitations stemming from machine learning experts with little domain knowledge performing
a visual, qualitative evaluation of Grad-CAMs [Tschandl et al., 2020].

The image-level explainability analysis shows that no ConvNet reaches the same F1 score as the dermatologists,
although several ConvNets achieve expert-level sensitivity or specificity. Different ConvNets show different patterns of
explanation behaviour (Figure 6): some tend to focus on smaller areas that are highly indicative of the target diagnosis,
while others tend to focus on the entire affected area. Extensive user tests with both experts and patients would enable
us to learn which of the two options is preferred as an explanation: a single, classical lesion descriptive of the diagnosis,
or highlighting the entire affected area.

From a characteristic-level sensitivity perspective, most ConvNets outperform the average dermatologist performance in
characteristics smaller than 1cm in diameter [Nast et al., 2016]. For larger characteristics, although NASNetMobile and
Xception approach expert-level, no ConvNet exceeds it. The relationship between diseases and their characteristics is
visible in the characteristic-level ConvNet explainability: most ConvNets report high sensitivity on characteristics often
associated with acne and viral warts (e.g. closed and open comedones, papules, and thrombosed capillaries), while
reporting a lower performance on characteristics associated with actinic keratosis and seborrheic dermatitis (e.g. plaque,
sun damage, and patch). Characteristic-level explainability may be more relevant for use cases where identifying the
differentiating factor between different diseases is the most important component for garnering trust.

These result suggests that while ConvNets have the potential to produce human-approachable explanations, more
work is necessary to fully achieve expert-level performance. Part of the necessary work is the creation of additional
user-derived explainability datasets that enable quantitative analyses on a ConvNet’s explainability within a domain. A
component of this is performing extensive user tests to identify the explainability expectations of an application’s end
users. From a machine learning perspective, more research must be devoted to the creation of instrinsically explainable
ConvNets, rather than relying solely on post-hoc explanation methods. Such a ConvNet must be aligned with the
explainability requirements of its task and its users: a psoriasis diagnosis ConvNet aimed at dermatologists might
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Figure 5: Explainability performance in terms of characteristic-level Grad-CAM sensitivity for the ConvNets (averaged
across five runs) and dermatologists (averaged across eight experts). NASNetMobile and Xception outperform expert
level in seven characteristics, while no ConvNet achieves expert-level performance in eight characteristics.

require high characteristic-level explainability to offer a constrative explanation against a possible differential diagnosis
of atopic dermatitis, while the same ConvNet aimed at patients might require high image-level explainability to reassure
the patient that all aspects of their condition are taken into consideration.

5.4 Limitations and future work

Our work has a few limitations. First, the original DermXDB dataset contains little information about the gender, age,
and ethnicity of the subjects, leading to difficulties in performing an in-depth bias analysis of our benchmark. Second,
the small size of the dataset limits the training capabilities of our benchmark, which may underestimate the performance
of the larger ConvNets.

In future work, we plan on expanding this benchmark by using more explainability methods, such as saliency maps and
LIME, to also create a benchmark of explainability methods and their performance compared to that of dermatologists.
Additionally, with the increased popularity of visual transformers [Khan et al., 2022], an analysis of their Grad-CAM
explainability would be of interest to the research world.
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Figure 6: Example of Grad-CAM outputs for six images that were correctly diagnosed by all ConvNets. Older ConvNets,
such as VGG16, ResNet50, ResNet50V2, and InceptionResNetV2, tend to focus on a single, highly indicative lesion
rather than the whole affected region. More modern ConvNets, such as NASNetMobile, Xception, and EfficientNet,
focus on the entire affected area. Some ConvNets overfitted during training, and focus on the watermark when
diagnosing vitiligo.
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6 Conclusions

In this paper, we performed a systematic literature review to identify the most used ConvNet architectures for the
diagnosis of skin diseases from photographic images. We benchmarked the 11 identified ConvNets on DermXDB, a
skin disease explainability dataset. Xception stands out as a highly explainable ConvNet, although NASNetMobile
outperforms it on characteristic-level sensitivity. Our findings highlight the importance of explainability benchmarking,
and will hopefully motivate additional studies within the field of quantitative evaluations for explainability.
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Appendix

Table A1 presents statistics for the proprietary clinical dataset used in the hyper-parameter search and the pre-training
step. Table A2 shows the best performing list of parameters identified for each ConvNet. The search space consisted of
the following values for each hyperparameter:

• Rotation: 10, 20
• Shear: 0.00, 0.25, 0.50
• Zoom: 0.25, 0.5
• Brightness ranges: 0.00-0.50, 0.00-0.25, 0.50-1.00, 0.50-1.50, 0.75-1.25
• Learning rate: 0.01, 0.001, 0.0001
• Last fixed layer: last convolutional layer, second to last convolutional block
• Epochs: 10, 25, 50, 75

Table A1: Dataset statistics for the proprietary pre-training clinical dataset.

Diagnosis Training Validation

Acne 832 245

Actinic keratosis 132 33

Psoriasis 771 204

Seborrheic dermatitis 88 25

Viral warts 509 97

Vitiligo 141 37

Table A2: Optimal list of hyperparameters for each ConvNet, as identified after a hyper-parameter search.

ConvNet Rotation Shear Zoom Brightness Learning rate Last fixed layer Epochs

DenseNet121 20 0.50 0.50 [0.50, 1.50] 0.0001 conv5_block14_concat 75

EfficientNet-B0 20 0.25 0.50 [0.50, 1.50] 0.0001 block6d_add 50

InceptionV3 20 0.50 0.50 [0.50, 1.50] 0.001 activation288 50

InceptionResNetv2 20 0.25 0.50 [0.75, 1.25] 0.0001 block8_9_ac 50

MobileNet 10 0.50 0.50 [0.50, 1.50] 0.0001 conv_pw_12_relu 50

MobileNetV2 10 0.25 0.50 [0.50, 1.50] 0.0001 block_15_add 75

NASNetMobile 20 0.25 0.50 [0.50, 1.00] 0.0001 normal_concat_11 75

ResNet50 20 0.50 0.50 [0.50, 1.50] 0.0001 conv5_block3_out 50

ResNet50V2 20 0.25 0.25 [0.50, 1.00] 0.001 post_relu 75

VGG16 10 0.00 0.25 [0.50, 1.00] 0.01 block5_pool 75

Xception 10 0.25 0.50 [0.50, 1.50] 0.001 block14_sepconv2_act 50
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Table A3: Diagnostic performance of ConvNets in terms macro F1-score, sensitivity, and specificity on the validation
subset of the proprietary clinical dataset (average ± standard deviation across five runs).

ConvNet F1-score Sensitivity Specificity

DenseNet121 0.80± 0.01 0.79± 0.01 0.98± 0.00

EfficientNet-B0 0.77± 0.01 0.78± 0.01 0.97± 0.00

InceptionV3 0.76± 0.02 0.74± 0.02 0.96± 0.00

InceptionResNetV2 0.73± 0.02 0.73± 0.02 0.97± 0.00

MobileNet 0.72± 0.02 0.71± 0.02 0.96± 0.00

MobileNetV2 0.72± 0.03 0.73± 0.02 0.96± 0.00

NASNetMobile 0.67± 0.04 0.64± 0.02 0.95± 0.01

ResNet50 0.70± 0.01 0.68± 0.02 0.96± 0.00

ResNet50V2 0.76± 0.01 0.75± 0.02 0.96± 0.00

VGG16 0.66± 0.03 0.67± 0.01 0.95± 0.00

Xception 0.82± 0.03 0.82± 0.02 0.97± 0.00

Table A4: Diagnostic performance of ConvNets (average ± standard deviation across five runs) and dermatologists (av-
erage ± standard deviation across eight dermatologists) in terms of sensitivity on the DermXDB holdout set, split by
diagnosis. Several ConvNets achieve expert-level sensitivity on multiple classes (in bold).

Acne Actinic
keratosis

Psoriasis Seborrheic
dermatitis

Viral
warts

Vitiligo

ConvNets

DenseNet121 0.85± 0.03 0.52± 0.10 0.71± 0.03 0.76± 0.05 0.91± 0.03 0.66± 0.03

EfficientNet-B0 0.71± 0.08 0.43± 0.09 0.63± 0.07 0.64± 0.13 0.66± 0.05 0.84± 0.13

InceptionV3 0.83± 0.06 0.55± 0.15 0.62± 0.08 0.54± 0.13 0.70± 0.10 0.73± 0.12

InceptionResNetV2 0.70± 0.06 0.41± 0.12 0.62± 0.06 0.67± 0.11 0.43± 0.12 0.74± 0.07

MobileNet 0.76± 0.07 0.48± 0.22 0.60± 0.26 0.66± 0.08 0.47± 0.17 0.68± 0.07

MobileNetV2 0.88± 0.08 0.14± 0.06 0.21± 0.10 0.63± 0.22 0.33± 0.14 0.61± 0.23

NASNetMobile 0.79± 0.07 0.24± 0.11 0.33± 0.09 0.48± 0.09 0.42± 0.03 0.48± 0.13

ResNet50 0.79± 0.05 0.40± 0.16 0.69± 0.10 0.74± 0.07 0.54± 0.13 0.80± 0.04

ResNet50V2 0.85± 0.10 0.55± 0.13 0.58± 0.04 0.61± 0.08 0.74± 0.07 0.71± 0.02

VGG16 0.74± 0.10 0.62± 0.09 0.65± 0.06 0.44± 0.18 0.54± 0.11 0.76± 0.07

Xception 0.89± 0.05 0.52± 0.08 0.72± 0.06 0.61± 0.11 0.81± 0.05 0.82± 0.04

Dermatologists

Average 0.95± 0.03 0.67± 0.18 0.88± 0.06 0.59± 0.11 0.88± 0.09 0.92± 0.05
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Table A5: Diagnostic performance of ConvNets (average ± standard deviation across five runs) and dermatologists (av-
erage ± standard deviation across eight dermatologists) in terms of specificity on the DermXDB holdout set, split by
diagnosis. Several ConvNets achieve expert-level specificity (in bold).

Acne Actinic
keratosis

Psoriasis Seborrheic
dermatitis

Viral
warts

Vitiligo

ConvNets

DenseNet121 0.93± 0.01 0.97± 0.01 0.92± 0.01 0.91± 0.02 0.97± 0.01 0.98± 0.01

EfficientNet-B0 0.93± 0.06 0.96± 0.02 0.91± 0.01 0.89± 0.03 0.95± 0.01 0.95± 0.01

InceptionV3 0.92± 0.03 0.92± 0.02 0.92± 0.03 0.91± 0.06 0.96± 0.02 0.97± 0.03

InceptionResNetV2 0.94± 0.02 0.97± 0.01 0.86± 0.03 0.86± 0.02 0.97± 0.01 0.92± 0.04

MobileNet 0.91± 0.05 0.96± 0.02 0.88± 0.07 0.87± 0.08 0.97± 0.02 0.94± 0.02

MobileNetV2 0.66± 0.15 0.99± 0.01 0.98± 0.03 0.79± 0.11 1.00± 0.00 0.94± 0.07

NASNetMobile 0.65± 0.04 0.97± 0.01 0.96± 0.01 0.86± 0.02 0.96± 0.03 0.96± 0.03

ResNet50 0.93± 0.02 0.99± 0.01 0.89± 0.04 0.86± 0.04 0.97± 0.02 0.96± 0.01

ResNet50V2 0.90± 0.06 0.95± 0.03 0.92± 0.01 0.90± 0.04 0.96± 0.02 0.97± 0.01

VGG16 0.90± 0.07 0.92± 0.03 0.90± 0.05 0.95± 0.04 0.97± 0.02 0.92± 0.03

Xception 0.91± 0.04 0.98± 0.01 0.93± 0.02 0.92± 0.02 0.97± 0.02 0.96± 0.03

Dermatologists

Average 0.99± 0.01 1.00± 0.00 0.96± 0.02 0.99± 0.01 1.00± 0.00 1.00± 0.00
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Abstract
Background and Objectives: Image quality is a crucial factor

in the effectiveness and efficiency of teledermatological

consultations. However, up to 50% of images sent by pa-

tients have quality issues, thus increasing the time to di-

agnosis and treatment. An automated, easily deployable,

explainable method for assessing image quality is necessary

to improve the current teledermatological consultation flow.

We introduce ImageQX, a convolutional neural network for

image quality assessment with a learning mechanism for

identifying the most common poor image quality explana-

tions: bad framing, bad lighting, blur, low resolution, and

distance issues.

Methods: ImageQX was trained on 26,635 photographs and

validated on 9,874 photographs, each annotated with image

quality labels and poor image quality explanations by up to

12 board-certified dermatologists. The photographic images

were taken between 2017 and 2019 using a mobile skin

disease tracking application accessible worldwide.

Results: Our method achieves expert-level performance for

both image quality assessment and poor image quality ex-

planation. For image quality assessment, ImageQX obtains a

macro F1-score of 0.73 – 0.01, which places it within stan-

dard deviation of the pairwise inter-rater F1-score of

0.77 – 0.07. For poor image quality explanations, our method

obtains F1-scores of between 0.37 – 0.01 and 0.70 – 0.01,

similar to the inter-rater pairwise F1-score of between

0.24 – 0.15 and 0.83 – 0.06. Moreover, with a size of only 15

MB, ImageQX is easily deployable on mobile devices.

Conclusion: With an image quality detection performance

similar to that of dermatologists, incorporating ImageQX into

the teledermatology flow can enable a better, faster flow for

remote consultations.

Keywords: teledermatology, image quality, artificial intelli-

gence, deep learning, explainability, telemedicine

Introduction

W
ithin the past 2 years, consumers facing tele-

dermatological consultations have become

much more common owing to the SARS CoV-2

(COVID-19) pandemic and associated world-

wide isolation measures.1 Teledermatological consultations

are carried out increasingly more often via teledermatology

mobile applications that require patients to photograph their

skin lesions using their mobile devices, such as smartphones

and tablets, and send them to dermatologists who will then

diagnose the depicted skin condition remotely.2,3 To achieve

similar quality of care to an in-person consultation, high-

quality images are paramount.2,3 However, this is rarely the
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case: up to 50% of patients send images taken under poor

lighting conditions, that are not centered on the lesion, or that

are blurry.4,5

When dealing with low-quality images, two main ap-

proaches exist: image denoising and image quality detection.

Image denoising processes and reconstructs noisy images

such that the noise is either reduced or entirely removed.

Many denoising methods introduce new artifacts into the

images or obfuscate characteristics critical for diagnosis.6

Therefore, in this article we focus on image quality detection.

By detecting low-quality images directly on the patient’s

mobile device, we can instruct them to retake the picture in a

way that improves the quality to an acceptable level. We can

thus reduce the evaluation burden on dermatologists while at

the same time reducing the time to diagnosis and treatment.

Several methods for image quality detection have been pro-

posed in the literature. Kim and Lee introduce DeepIQ,7 a deep

neural network that can identify noisy sections in an image, and

compare the resulting noise maps with human assessments.

Bianco et al propose DeepBIQ,8 a convolutional neural network

for identifying low-quality images, and report near human-

level results on smartphone photos from the LIVE In the Wild

challenge dataset.9 Madhusudana et al develop CONTRIQUE,10 a

contrastive deep learning system for creating generalizable

representations using unlabeled image quality datasets. One

common issue for all methods is the lack of a reference standard

label, which limits both their training and validation rigor.

Because of this reason, they often use unsupervised training

methods and limit validation to qualitative assessment.

Within teledermatology, Vodrahalli et al proposed a clas-

sical machine learning image quality classifier.5 Their method

provides patients with explanations for the quality assess-

ments through automated classical computer vision methods

for detecting blur, lighting, and zoom issues in an image.

However, this method has several limitations: it cannot handle

cases where only the background is blurry or with poor

lighting, it cannot detect lesion framing issues, and it cannot

discard images containing no skin.

The lack of explainability is regarded as one of the biggest

obstacles toward the adoption of automated methods in

medical practice.11–13 Gradient-based class activation maps

(Grad-CAM)14 is the most common explainability method in

medical computer vision owing to its ease of use, intuitive

output, and low computational requirements. Grad-CAM

creates CAMs on a given convolutional layer using the

backpropagation gradients—the higher the gradient, the more

important the region is to the final classification.

In this study, we introduce ImageQX, a convolutional

neural network-based method for detecting image quality.

Our novel approach uses image quality evaluations obtained

from dermatologists in a teledermatology setting to learn the

image quality required for a successful remote consultation.

Figure 1illustrates the ImageQX architecture, which learns the

image quality and its explanations in an end-to-end manner.

ImageQX was trained and validated on 36,509 images col-

lected using a skin lesion progression tracking mobile appli-

cation. Images were labeled by up to 12 board-certified

dermatologists. We evaluate the network performance with

regard to the reference standard, and we obtain a macro F1-

score of 0.73 for image quality assessment, with the per-

explanation performance between 0.37 and 0.71. Moreover,

ImageQX occupies only 15 MB, making it ideal for deploying

on mobile devices as a prefiltering step during data collection.

Methods
A total of 36,509 images were collected between 2017 and

2019, using Imagine,15 a skin disease tracking mobile appli-

cation available worldwide. Self-reported user ages range

between 18 and 80 years, and self-reported sex showing a

distribution of 49% men, 47% women, and 4% other. Users

span 146 countries, with images from Ukraine, United King-

dom, United States, Georgia, Russia, Albania, Kazakhstan,

India, Denmark, South Africa, Bulgaria, and Israel making up

45% of the dataset. Images cover a wide variety of body parts.

Self-reported body part tags show that faces, arms, elbows,

legs, and groin comprise the majority of images. All data was

anonymized a priori and did not involve human subjects. 45

CFR part 46 does not apply, and thus an independent ethics

committee approval was not applicable for this research.

Fig. 1. ImageQX network architecture. To facilitate deployment on
mobile devices, we use the lightweight EfficientNet-B0 architecture
as a feature extractor. A linear block, composed of a linear layer,
batch normalization, and a dropout layer, is used to parse these
features before predicting poor image quality explanations, that is,
bad framing, bad light, blurry, low resolution, and too far away.
Another similar linear block parses the image features and then
concatenates them with the poor image quality explanations to
predict the image quality label.
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Each image was evaluated by up to 12 board-certified

dermatologists using an in-house labeling tool. Dermatolo-

gists diagnosed each image with an International Classifica-

tion of Diseases, 10th Revision (ICD-10) code16 whenever a

lesion was present in the image and was depicted with a suf-

ficient quality, or alternatively with one of three nonlesion

labels: poor quality when the image quality detracted from

their ability to diagnose, healthy skin whenever no lesions

were visible, or no skin for images that had no dermatological

relevance. Poor quality images were additionally tagged with

Fig. 2. Labeling protocol for the ImageQX training and validation dataset. Dermatologists start by assessing whether or not the image can
be diagnosed. If the image can be assessed, they diagnose it using an ICD-10 code. Otherwise, if there is no visible skin or if there are no
visible lesions in the picture, the dermatologists discard the image as no skin or healthy skin, respectively. Finally, if the image cannot be
evaluated because of poor quality, they select one of the five investigated poor image quality explanations.

Fig. 3. Illustration of poor image quality explanations that can be detected by ImageQX. (a) Bad framing: the image was not centered on the
lesion. (b) Bad light: the lighting conditions in which the image was taken were too dark or too bright. (c) Blurry: the image is not focused
on the lesion, masking out its details. (d) Low resolution: the image was taken with a low-resolution camera and few details can be
discerned. (e) Too far away: few lesion details could be seen owing to the distance from the camera. Images courtesy of the authors.
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poor quality explanations: bad framing for images not cen-

tered on the lesion, bad light for images that are too bright or

too dark, blurry for images suffering from motion blur or

inadequate focus, low resolution for images taken with a low-

resolution camera, or too far away for images where the pic-

ture was taken from afar and no details could be discerned.

Figure 2 outlines the protocol dermatologists followed when

labeling the data, whereas Figure 3 illustrates each poor image

quality explanation included in the dataset.

We evaluate the performance of the raters and the network

using sensitivity:

Se =
TP

TP + FN
,

specificity:

Sp =
TN

TN + FP
,

and F1-score:

F1 =
2TP

2TP + FP + FN
,

where TP, FP, and FN denote the true positives, false positives,

and false negatives, respectively. The inter-rater pairwise F1-

score is calculated as the average of all dermatologist pairs,

where one dermatologist is considered the reference standard

whereas the other is considered the prediction. For evaluating

the network performance, we calculate the macro F1-score,

that is, we average the F1-scores for each class.

During training, we parsed the dermatologist evaluations

into four classes by merging all ICD-10 evaluations into the

lesion class. We used plurality label fusion, that is, the class

selected by most dermatologists, for defining the image

quality class for each image. Alongside assessing whether

the image can be evaluated, our proposed method also offers

explanations to the poor quality images. To obtain the ref-

erence standard for poor image quality explanations, we

chose to mark explanations as relevant if at least one der-

matologist discarded an image with that explanation.

Table 1 provides the distribution of labels within the dataset,

whereas Table 2 details the distribution of poor image

quality explanations. Higher agreement is achieved on le-

sion and no skin, whereas low agreement between raters can

be seen for healthy skin and poor quality. Poor image quality

explanations display low inter-rater agreements, with blurry

being the only one achieving an inter-rater pairwise F1-

score of >0.80.

The ImageQX architecture is inspired by the DermX archi-

tecture introduced by Jalaboi et al to intrinsically learn the

expert explanations, as illustrated in Figure 1.17 EfficientNet-B0

was used as the feature extractor to increase the image pro-

cessing speed and reduce the network size.18 To increase the

convergence speed, we used weights pretrained on the ImageNet

dataset,19 made available by the Pytorch framework.20 Our

network optimizes Equation (1) from Jalaboi et al17:

L = kDLD + kCLC ,

where LD is the categorical cross-entropy loss for the image

quality label

LD = -
1

ND
+
N

i = 1

+
D

j = 1

yi, dlog ŷi, d,

and LC is the binary cross-entropy loss for poor image quality

explanations

LC = -
1

ND
+
N

i = 1

+
D

j = 1

log ẑi, z + 1 - zi, cð Þlog 1 - zi, cð Þ½ �:

Table 1. Distribution of Image Quality Labels Over the
Training and Test Sets, Including the Pairwise Inter-Rater
Agreement Calculated as the Pairwise F1-Score

CLASS

TRAIN
IMAGE
COUNT

TEST
IMAGE
COUNT

PAIRWISE
TRAIN F1

PAIRWISE
TEST F1

Lesion 17,534 4,803 0.86 – 0.03 0.84 – 0.08

No skin 461 265 0.93 – 0.03 0.92 – 0.04

Healthy skin 3,903 2,421 0.62 – 0.10 0.65 – 0.10

Poor quality 4,737 2,385 0.63 – 0.08 0.67 – 0.07

Mean 6658.75 2468.5 0.76 – 0.06 0.77 – 0.07

Table 2. Distribution of Poor Image Quality Explanations
over the Training and Test Sets, Alongside the Pairwise
Inter-Rater Agreement for Each Explanation, Calculated
as the Pairwise F1-Score

REASON

TRAIN
IMAGE
COUNT

TEST
IMAGE
COUNT

PAIRWISE
TRAIN F1

PAIRWISE
TEST F1

Bad framing 1,947 982 0.26 – 0.18 0.24 – 0.15

Bad light 5,144 2,481 0.63 – 0.07 0.65 – 0.08

Blurry 5,499 2,640 0.81 – 0.05 0.83 – 0.06

Low resolution 3,965 1,907 0.33 – 0.14 0.32 – 0.14

Too far away 936 497 0.48 – 0.16 0.51 – 0.30

Mean 4372.75 2126.75 0.63 – 0.15 0.64 – 0.18
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We set kD = 1.0 and kC = 5.0. To address the imbalance in

image quality labels, we used class weighted training. Weights

were set inversely proportional to frequency in training set, as

follows:

wc = min
nmax

nc
, 10:0

� �
,

wherewc is theweight associatedwith each sample in class c,nc is

the number of samples in class c, and nmax is the number of

samples in the most common class. Class weights were clipped to

10.0 toavoid overfitting on small classes. This process resulted in

1.0, 10.0, 4.49, and 3.70 as weights for lesion, no skin, healthy

skin, and poor quality, respectively. The network was trained for

39 epochs with the AdamW optimizer,21 cosine annealing with

warm restarts,22 64 U in each linear block, and 0.2 dropout. Five

runs with identical hyperparameters were performed to estimate

the standard deviation between training runs.

Results
Table 3 provides the image quality assessment performance,

whereas Table 4 provides the performance on each poor image

quality explanation. The F1-scores for healthy skin and poor

quality are within standard deviation of the inter-rater agree-

ment, whereas for lesion and no skin the performance is slightly

lower. The lower performance on no skin may be explained by

the limited training data available. For poor image quality ex-

planations, all F1-scores except for blurry are within standard

deviation of the mean inter-rater agreement. The high speci-

ficity visible in both image quality assessment and in poor

image quality explanation suggests that deploying this network

on patient phones would not negatively impact the patient

experience by rejecting high-quality images.

Figure 4 provides the Grad-CAM attention maps for each

poor image quality explanation detected in a blurry image.

ImageQX correctly detected blurry as one of the poor image

quality explanations, focusing almost entirely on the skin area

and paying more attention to the lesion. Two other explana-

tions were also marked as present: bad light with a focus on a

slightly shaded part of the arm, and low resolution that

highlights the edges of the hand and a part of the background.

Discussion
Our data-labeling process confirms the previously reported

findings that poor image quality is a significant issue in

teledermatology—around 20% of the images collected

through the mobile application were labeled as poor quality

by dermatologists. Dermatologists have low levels of agree-

ment on which images are poor quality, with inter-rater F1-

scores of 0.62 – 0.08. Explaining what makes an image poor

quality is a difficult task, with inter-rater F1-scores varying

between 0.26 and 0.81. Part of the disagreement can be as-

cribed to personal preference and level of experience with

teledermatology, as some dermatologists tend to reject a lar-

ger proportion of images than others.

ImageQX reaches dermatologist-level performance on as-

sessing the image quality on all quality assessment classes

except for no skin. One reason for this lapse may be the low

amount of training data for images with no skin. For poor

image quality explanations, ImageQX obtains F1-scores

within a standard deviation of the inter-rater agreement for all

explanations except blurry.

Within a real world use case, the high specificity on both the

image quality assessment and poor image quality explanation

suggests that the image retake burden placed on the users

would be low—only truly low-quality or irrelevant images

would be flagged for retake. A low percentage of poor quality,

no skin, or healthy skin images are likely to be seen by

Table 3. ImageQX Performance on Image Quality
Assessment over Five Training Runs (Mean – Standard
Deviation)

CLASS SENSITIVITY SPECIFICITY F1-SCORE

Lesion 0.84 – 0.03 0.78 – 0.04 0.82 – 0.00

No skin 0.76 – 0.05 0.99 – 0.00 0.74 – 0.02

Healthy skin 0.61 – 0.09 0.90 – 0.02 0.63 – 0.04

Poor quality 0.71 – 0.02 0.93 – 0.00 0.74 – 0.01

Mean 0.73 – 0.01 0.90 – 0.01 0.73 – 0.01

F1-scores in bold show the assessments where ImageQX reaches expert-level

performance.

Table 4. ImageQX Performance on Poor Image Quality
Explanation Performance over Five Training Runs
(Mean – Standard Deviation)

REASON SENSITIVITY SPECIFICITY F1-SCORE

Bad framing 0.31 – 0.01 0.96 – 0.00 0.37 – 0.01

Bad light 0.58 – 0.02 0.90 – 0.01 0.61 – 0.00

Blurry 0.60 – 0.02 0.95 – 0.00 0.70 – 0.01

Low resolution 0.47 – 0.02 0.92 – 0.01 0.52 – 0.01

Too far away 0.35 – 0.02 0.98 – 0.00 0.42 – 0.02

Mean 0.39 – 0.01 0.95 – 0.00 0.45 – 0.01

F1-scores in bold show the explanations where ImageQX reaches expert-level

performance.
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dermatologists. Poor image quality explanations also show

high specificity, indicating that, if given proper guidance on

how to fix each issue, users would find them useful in their

retake attempt. By changing the threshold for poor quality

image detection or for the image quality explanations we can

further reduce the poor quality images sent to the dermatol-

ogists. Such an intervention should be carried out after

thorough testing with both patients and dermatologists to

ensure that we identify the ideal balance between asking pa-

tients to retake the images without being too disruptive.

A Grad-CAM analysis of the poor image quality explana-

tions on an example image shows that ImageQX mostly bases

its decisions on relevant areas. The blurry attention map is

focused on the blurry lesion, whereas bad light concentrates

on a slightly shaded area to the left of the lesion. Low reso-

lution illustrates the debugging capabilities of Grad-CAMs:

ImageQX bases its assessment primarily on the background

rather than the original image. If these attention maps were to

be presented to users alongside the explanations, they could

help focus the users’ attention to which sections of the image

require improvement. For example, the Grad-CAM map for

blurry suggests that the users should focus on the lesion in-

stead of ensuring that the background is not blurred.

These findings open up several exploration avenues. First, by

adding more nonskin images from publicly available datasets

we could improve the no skin performance. This dataset addition

requires the data to be from the same distribution, that is,

smartphone images, to avoid in-class domain shift. Second, to

more accurately model the uncertainty inherent in the image

quality assessment task, we could train ImageQX using soft

labels. Third, we believe that by introducing a skin segmentation

network as preprocessing we would avoid misclassifications

because of ImageQX focusing on the background. One draw-

back of this approach is the failure case of the segmentation

network: if the segmentation removes the areas containing skin,

the image quality assessment classifier is bound to fail. Finally,

we would like to perform a usability study to quantify the im-

pact an on-device image quality assessment network would

have on the time to diagnosis and treatment in a tele-

dermatology setting. Such a study would require an in-depth

analysis of how to best communicate the image quality as-

sessments and explanations to the patients.

Conclusions
Our work on ImageQX introduced several elements of

novelty. First, we quantified the dermatologist levels of

agreement on what constitutes a high-quality image for a

teledermatological consultation and their reasoning when

tagging images as low quality. Second, we introduced Im-

ageQX, an expert-level image quality assessor that explains its

reasoning for marking an image as poor quality. The added

explainability component aims to facilitate the patient un-

derstanding on how to improve images. Moreover, with a size

of only 15 MB, ImageQX can be easily packaged and deployed

in a teledermatology mobile application, and thus incorpo-

rated as a step between users taking photos and sending them.

Having such a network integrated in the application during

the data collection step of this study would have prevented

1,819 poor quality or no skin images from being sent for as-

sessment to the dermatologists. In the future, we will perform

a validation study to quantify the impact of introducing such a

method within a consumer facing teledermatology setting.

Our solution offers an improvement to the current con-

sumer facing teledermatology flow by increasing the likeli-

hood that patients send better photos, decreasing the time

spent by dermatologists on diagnosing a single patient, and

reducing the time needed to arrive at a diagnosis and a

treatment for patients.

Fig. 4. Grad-CAM attention maps for the blurry test image introduced in Figure 3. The image was correctly classified as poor quality. (a)
Original blurry image. (b) Grad-CAM attention map for bad light. (c) Grad-CAM attention map for blurry. (d) Grad-CAM attention map for low
resolution. When predicting bad light, ImageQX focuses on a slightly shaded part of the arm, whereas for blurry it highlights the lesion and
its surrounding area. The low-resolution prediction is based on the edges of the arm and the background. Image courtesy of the authors.
Grad-CAM, gradient-based class activation map.
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