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Preface
This Ph.D. thesis is the culmination of three years and one month of research, super-
vised by Ole Winther and Tejs Vegge, carried out in the Section for Cognitive Systems
at the Department of Applied Mathematics and Computer Science at the Technical
University of Denmark. The research was conducted to fulfill the requirements for
obtaining a Ph.D. degree in Computer Science.

Additionally, a two-month visit was made to the Artificial Intelligence and Machine
Learning in the Natural Sciences (AIMLeNS) group, led by Simon Olsson, at the
Data Science and AI Division at the Computer Science and Engineering Department
at Chalmers University of Technology in Gothenburg, Sweden.

The thesis includes 7 chapters. Chapters 1-4 provide a foundational overview of
relevant topics in physics and machine learning. Chapters 5-7 introduce and con-
clude my research. The appendix contains all of my published papers, as well as an
attempt to explain to my mom, in Danish, what my thesis is about.

Kongens Lyngby, October 7, 2023

Mathias Schreiner
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Summary
Methods from Machine Learning (ML) and in particular Neural Network (NN) models
have in recent years proved to be capable emulators of expensive ab inito methods for
electronic-structure calculations, while operating several orders of magnitude faster.
These models are slowly transforming the field of computational quantum chemistry
as accurate predictions of molecular properties can be obtained at unprecedented
speeds, opening up for an exciting array of new possibilities.

In this thesis, I explore how NNs can be used to accelerate Transition State (TS)-
search and multi time-scale simulation of molecular systems. It covers fundamental
topics in physics for stochastic processes and quantum mechanics, methods and chal-
lenges related to calculating electronic structure in molecules, and an introduction to
the NNs architectures used in this work.

My work has resulted in three notable scientific contributions which are presented in
the thesis. The first of these contributions is the Transition1x dataset. This consists
of Density Functional Theory (DFT) calculations for 10M molecular configurations,
sampled with Nudged Elastic Band (NEB), around reaction pathways for 10K dif-
ferent reactions involving H, C, N, and O. This dataset provides valuable data for
training NN models for tasks related to chemical reactions.

In the next contribution, NeuralNEB, NNs are trained on various datasets and eval-
uated on their ability to act as Potential Energy Surfaces (PESs) for NEB. Here it
is shown that models trained on Transition1x outperform models trained on other
datasets, underlining the importance of specific data relevant for the task.

Finally, the Implicit Transfer Operator Learning framework is presented. Here con-
ditional Denoising Diffusion Probabilistic Models (DDPMs) are trained using a new
data-augmentation scheme where training data in the form of trajectories from Molec-
ular Dynamics (MD) simulations are augmented by sampling different lag-times dur-
ing training. With this scheme, our models demonstrate the ability to capture dy-
namics at a range of timescales, providing a crucial step forward in multiple time-
resolution MD.
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Resumé
Metoder fra Machine Learning (ML), og især Neural Network (NN) modeller, har vist
sig at være i stand til at approximere tunge ab initio beregninger af elektronstruktur
mange gange hurtigere end klassiske metoder. Disse modeller er langsomt ved at
revolutionere feltet for beregningskemi, da nøjagtige beregninger af molekylære egen-
skaber kan udføres med hidtil usete hastigheder. Dette åbner op for en lang række
spændende, nye muligheder.

I denne afhandling udforsker jeg, hvordan NNs kan bruges til at accelerere Tran-
sition State (TS)-søgning og simulering af molekylære systemer på flere tidsskalaer.
Afhandlingen dækker grundlæggende emner i fysik for stokastiske processer og kvan-
temekanik, metoder og udfordringer i forbindelse med beregning af elektronstruktur
i molekyler, samt en introduktion til de NNs modeller, der er blevet brugt undervejs.

Mit Ph.D. arbejde har resulteret i tre nævneværdige videnskabelige bidrag. Det
første af disse er datasættet Transition1x. Dette datasæt består af Density Functional
Theory (DFT) beregninger for 10 millioner molekylære konfigurationer omkring reak-
tionsveje for 10 tusind forskellige reaktioner, der involverer elementerne Hydrogen,
Carbon, Nitrogen og Oxygen. Disse konfigurationer er fundet ved brug af Nudged
Elastic Band (NEB) metoden. Dette datasæt er en værdifuld ressource til træning af
NN modeller der skal bruges i relation til kemiske reaktioner.

Mit næste videnskabelige bidrag er NeuralNEB algoritmen. I paperet hvor denne
bliver præsenteret bliver NNs trænet på forskellige datasæt og evalueret på deres
evne til at agere Potential Energy Surfaces (PESs) for NEB. Her ser vi, at modeller
trænet på Transition1x opnår bedre resultater end tilsvarende modeller trænet på
andre datasæt. Dette understreger vigtigheden af datasæt med data, der er specifikt
relevant for opgaven der skal løses.

Endeligt præsenteres Implicit Transfer Operator Learning metoden. Her trænes
betingede Denoising Diffusion Probabilistic Models (DDPMs) ved hjælp af et nyt
data augmenterings system, hvor træningsdata i form af trajektorier fra Molecular
Dynamics (MD) simuleringen augmenteres ved at sample forskellige tidsskridt under
træningen. Med denne metode demonstrerer vores modeller evnen til at indfange
dynamikker på en række tidsskalaer.
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CHAPTER1
Introduction

All matter encountered in the natural world is composed of a variety of elements,
with atoms as their fundamental units. The term atom derives from its Greek roots
meaning uncuttable or indivisible. This concept, which dates back to ancient Greece,
originated as a philosophical idea rather than a scientifically reasoned one. It sug-
gests that if one continues to divide an element into smaller portions, eventually, one
would end up with the smallest possible amount - a single atom. Today, we know that
atoms can indeed be decomposed further into more fundamental subatomic particles,
electrons, neutrons, and protons, which themselves are composed of quarks. Our
current model of atomic structure is based on the atomic model proposed by Ernest
Rutherford in 1911 [2]. He suggested that an atom’s positive charge and the majority
of its mass is confined within a tiny nucleus at its center, with electrons occupying
a relatively larger spatial volume around this nucleus. It is the number of protons
within the nucleus that decides the number of electrons and chemical properties of an
element. Rutherford’s early atomic model proposed that electrons orbit the nucleus
as planets around the sun, however, a more accurate description of the electron is
rather as a vibrating cloud or standing wave in 3-dimensions. These waves can take
many forms which are referred to as orbitals, and each electron occupies a uniquely
shaped orbital within an energy shell which are filled in order of increasing energy.
Electrons in the outer shells are called valence electrons and the shape of the outer
shell, referred to as the electron cloud, is what determines how it can interact with
other atoms. Electron clouds around different nuclei can form bonds, linking atoms
together resulting in the formation of larger structures called molecules. Atoms on
their own have many properties such as electron affinities, ionization energies etc.,
however, combining atoms into molecules yield properties that are certainly greater
than the sum of its parts. For instance the remarkable heat capacity of water or its
ability to dissolve many substances, or the extremely complex functions expressed by
some proteins are results of properties emerging when atoms form molecules. Our
world is built of molecules and governed by their properties. Understanding them
lets us predict and manipulate the behavior of matter, leading to the development
of new materials, drugs, energy sources, etc. However, capturing the full complex-
ity of molecular behavior, is extremely challenging. While the universe ’simulates’
molecular systems effortlessly at an unfathomable scale, both in terms of speed and
incomprehensible number of particles and interactions, our human-made computer
models rely on formidable calculations to replicate even the smallest systems of sin-
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gle molecules.

In quantum mechanics, all matter exhibits a certain particle-wave duality. This
means that anything from electrons and protons to molecules and footballs behave
like 3-dimensional vibrating waves and are not just confined to exact locations in
space. Perhaps one of the most famous equations of all time, the Schrödinger equa-
tion, describes how these waves evolve in the presence of a potential. This potential
can arise, for example, as the result of electrostatic interaction between charged par-
ticles. The Schrödinger equation is extremely difficult to work with, and any attempt
at solving it for molecular systems relies on a range of approximations. The most
important of these arises from the fortunate fact that nuclei are much more massive
than electrons. This means that their wave-like nature is less pronounced, allowing
us to approximate them as extremely slow moving particles and solely focus on the
electronic structure. Most interesting properties of these systems, such as internal
forces, energy stored in bonds, etc., as a function of nuclear positions can be derived
from electronic structure calculations. This has led to a variety of approaches for solv-
ing these systems including Density Functional Theory (DFT) [3, 4] methods which
deals with an overall electron-density, or wave function methods [5, 6] that attempt
to solve for molecular orbitals of individual electrons [7, 8]. Each method comes with
its own set of trade-offs, and generally, increased accuracy comes at the expense of
computational resources. This trade-off is a bottleneck preventing accurate large scale
simulation or application of algorithms requiring evaluation of many configurations.

In recent years the Machine Learning (ML) field has seen a renaissance of the Neural
Network (NN) model. These models are incredibly versatile and easy to fit to large
datasets, and they have been showing promising results as surrogates for traditional
computational quantum chemistry methods [9–15]. Though expensive to train, they
are quick to evaluate on new data. For example, they can predict energies of molecu-
lar configurations, forces acting atoms, or more complex properties like polarizability
with a computational cost which is a fraction of traditional methods, while retaining
high accuracy. This acceleration opens up various new avenues for exploring chemical
space, optimizing molecular structures for desired properties, or simulate systems on
timescales or of sizes that were previously infeasible.

In this thesis we explore some of the possibilities and challenges associated with
applying NN models in various molecular contexts. During the first two years of
my Ph.D. I focused on training NNs to accurately predict Potential Energy Surfaces
(PESs) of molecules such that these could be applied in Transition State (TS)-search,
specifically in the Nudged Elastic Band (NEB) [16, 17] algorithm. TSs are important
when studying chemical reactions. They represent turning points at which atoms
involved in the reaction are more likely to proceed to the product rather than revert
to the reactant configuration. Moreover, the barrier height - or energy difference be-
tween reactant and TS configurations plays an important role in describing the rate
of a reaction [18]. The electronic structure at the TS is particularly challenging to
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describe quantum mechanically, as at this point, some chemical bonds are partially
formed, while others are partially broken. The TS is a saddle-point on the PES and it
represents the highest point on the Minimal Energy Path (MEP), or, the minimum of
energy required for the reaction to take place. However, the PES is a 3N dimensional
surface, describing potential energy as a function of x, y, z coordinates of N atoms.
Locating saddle points on such high dimensional, complex surfaces requires rather
sophisticated methods evaluating many intermediate configurations [16, 19–21]. Car-
rying out these calculations at large scale becomes prohibitively expensive due to
the computational cost of evaluation of the PES using classical quantum mechanical
computational methods. This research explored the potential for accelerating such
methods through the use of ML models which led to two published papers. The first
paper introduces the Transition1x [22] dataset consisting of molecular configurations
along reaction pathways for 10,000 reactions, which provides NNs with relevant train-
ing data for this type of application. The second paper presents the NeuralNEB [23]
method, which employs NN-potentials to guide NEB-algorithm in finding TSs.

During the last part of my Ph.D. I shifted my focus from identifying TSs with NNs
to study the dynamics and time-dependent behavior of complex systems. In the first
project we studied reaction pathways from a rather idealized point of view, identify-
ing exact energies and TSs associated with specific reactions. We did this without
considering interactions with the surrounding medium and the effects of thermal fluc-
tuations. But molecules are seldom alone, they interacting with its surroundings in
a complex manner with energy constantly, erratically, and randomly transferred be-
tween various degrees of freedom such as kinetic, vibrational, and rotational energies,
which makes their behavior difficult to predict. A practical approximation for simulat-
ing such systems is through Langevin dynamics [24]. Here the internal forces within
the molecule are treated separately from the random forces arising from its interac-
tion with the environment, simplifying the complexity of simulation. However, due
to their stochastic nature, such systems can evolve in a variety of ways, and the chal-
lenge becomes modeling the evolution of the probability distribution of the systems’
state-space, rather than simulating specific trajectories. In the context of Langevin
dynamics, this evolution is described by the Fokker-Planck [25] equation, and tra-
jectories simulated using this Langevin dynamics can be understood as realizations
of the integrated Fokker-Planck equation. Owing to its linearity, the Fokker-Planck
equation can, in theory, be integrated in closed form corresponding to the action of
the Transfer Operator [26]. Frames at various time-intervals on the trajectory can be
viewed as samples from the conditional probability distribution, conditioned on the
first frame and integration time. We train models on various systems to implicitly
learn the transfer operator with Denoising Diffusion Probabilistic Models (DDPMs)
in the Implicit Transfer Operator Learning approach [27]. These models are trained
to simulate various systems including Langevin dynamics in the simple 2-D Müller
Brown potential and Molecular Dynamics (MD) simulations of Alanine-dipeptide
[28] and of a set of fast folding proteins. We use these models to simulate trajectories
and validate them by comparing transition-densities, equilibrium distributions, and
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various observables such as free energy differences and mean-first passage times for
protein folding.



CHAPTER2
Statistical Physics

The first law of thermodynamics states that energy cannot be created or destroyed,
it can only change form. Energy in a closed system of molecules causes the molecules
to move and interact in a chaotic and unpredictable way. The kinetic energy of one
molecule might, in an instance, change into rotational energy of another upon colli-
sion, just to turn into vibrational energy in a chemical bond a split-second later. In
that way, energy travels randomly between the degrees of freedom in the system, but
the total energy always stays the same.

While the chaotic nature of molecules in a system makes it impossible to predict
how they will behave individually, the sheer number of molecules allows for robust
statistical predictions about the system as a whole. This is the essence of statistical
physics, which is foundational for our understanding of a wide range of physical pro-
cesses such as chemical reactions. In this chapter, we will first explore the Boltzmann
distribution and its role as equilibrium distribution in relation to the second law of
thermodynamics. Next we will describe Langevin Dynamics, a framework for model-
ing the complex interaction between a molecule and its surroundings without having
to explicitly model the surrounding medium. Then we will cover the Fokker-Planck
equation which describes the statistical evolution of systems simulated with Langevin
dynamics.

2.1 Boltzmann Distribution
Each fully specified ’arrangement’ of energy in the system is referred to as a mi-
crostate, and as the system evolves it randomly, and without preference, transitions
between microstates. A macrostate, on the other hand, offers a macroscopic descrip-
tion of the system. It can be a statement about pressure or temperature or a general
distribution of energy. The log-multiplicity of a macrostate in terms of microstates
is called entropy, and as the system evolves, randomly traveling between microstates,
it will statistically tend towards macrostates with higher entropy. The second law
of thermodynamics captures this by stating that, for an isolated system, the entropy
tends to increase over time, eventually reaching a maximum value at equilibrium.
The equilibrium state is described by the Boltzmann distribution. To find the Boltz-
mann distribution, let us consider the problem of arranging N molecules in a closed
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system over m possible states, finding the distribution with the highest multiplicity
[29]. Here, a macrostate is described by the number of molecules ni in each state i,
with N =

∑m
i=1 ni. This is a combinatorics problem, and the multiplicity of a given

macrostate is
C = N !∏m

i=1 ni!
, (2.1)

or its log-multiplicity

lnC = lnN !−
m∑

i=1
lnn!. (2.2)

lnN ! can be approximated with the integral

lnN ! =
N∑

n=0
lnn ≃

∫ N

0
lnndn = [n lnn− n]N0 = N lnN −N, (2.3)

which converges towards the true value for large N . Using this approximation (2.2)
is rewritten as

lnC = N lnN −
m∑

i=1
ni lnni (2.4)

= N lnN −N
m∑

i=1
pi ln pi −N lnN

m∑
i=1

pi (2.5)

= −N
m∑

i=1
pi ln pi, (2.6)

where pi is the probability that a given molecule is in the i-th state. Here, between
the first and second line, we have used the fact that ni = piN , and in the third line
we arrive at the log-multiplicity of the system which we recognize as the entropy of
the entire system. To find the equilibrium configuration of our entire system, we
maximize the entropy of the probability distribution of a single molecule

S = −
m∑

i=1
pi ln pi, (2.7)

Under the constraint that
m∑

i=1
pi = 1 and

m∑
i=1

piEi = E, (2.8)

where Ei is the energy of a molecule in the i-th state and E is the average energy per
molecule in the system. These constraints ensure that the distribution is normalized,
and that the system is has the correct total energy. We use the method of Lagrangian
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multipliers to minimize the negative entropy along the contour lines where these
constraints are fulfilled;

F =
m∑

i=1
pi ln pi + β

[
m∑

i=1
piEi − E

]
+ α

[
m∑

i=1
pi − 1

]
. (2.9)

We differentiate with respect to pi and find the maximum

∂F

∂pi
= ln pi + 1 + βEi + α = 0. (2.10)

Solving for pi yields
pi = e−βEie−α−1, (2.11)

where β is inverse temperature, and

eα+1 = Z (2.12)

is the partition function which normalizes the distribution. Thus we arrive at the
well known, omnipresent Boltzmann distribution

pi = e−βEi

Z
. (2.13)

Or in terms of an energy function E(x)

p(x) = e−βE(x)

Z
(2.14)

This is an extremely important result in statistical mechanics with a wide range of
applications in various scientific disciplines. It describes the equilibrium distribution
that a system will tend towards, and provides a direct link between probabilities and
energies of states.

2.2 Langevin Dynamics
The Langevin equation was formulated by French physicist Paul Langevin [24] in
the early 20th century to describe the random motion of particles suspended in wa-
ter. However, its applicability extends far beyond this original context and has been
used to model a wide range of stochastic processes [30–34]. The Langevin equation
is a Stochastic Differential Equation (SDE) that incorporates a stochastic term, a
deterministic drift term, and a damping term,

mẍ = R(t)− ηẋ+ F (x). (2.15)

Here, m is the mass of the particle, x is its position, η is the drag coefficient, and
dots represent time derivatives ẋ = dx

dt . F (x) is the force induced by the gradient of
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the Potential Energy Surface (PES), U(x), on which the particle is located, denoted
as F (x) = −∇U(x). We call it free Brownian motion when F (x) = 0, or the PES
is constant. The stochastic term R(t) represents thermal fluctuations e.g. random
forces due the bombardment of water molecules in the surrounding medium. R(t) is
Gaussian distributed noise with

⟨R(t)R(t′)⟩ = 2Dδ(t− t′) (2.16)

meaning that R(t) at time t is independent from past and future random forces, and
that the force at time t has a variance of 2D, with D being the diffusion coefficient
describing the magnitude of the fluctuations. If the particle is moving, the bombard-
ment from the medium will tend to come from the direction opposite to the particle’s
movement resulting in a drag force. This effect is captured in the Langevin equation
as the damping term, −ηẋ. Since the drag and the diffusion coefficients originate from
the same bombarding effect they are related. This is called the Einstein-Smoluchowski
[35, 36] relation D = kBT/η, where kB is the Boltzmann constant and T is the tem-
perature of the system. It is important because it relates the microscopic movement
of a single particle to macroscopic properties of the system such as friction and tem-
perature. By ignoring the drift term the expectation value of the Langevin equation
reduces, to an Ordinary Differential Equation (ODE)

m⟨ẍ⟩ = −η⟨ẋ⟩ (2.17)

since ⟨R(t)⟩ = 0. This is easy to solve equation is easy to solve:

⟨ẋ⟩ = ẋ0e
−ηt/m. (2.18)

This equation describes how the expected velocity of the particle, ⟨ẋ⟩, changes over
time. In the absence of an external force, the velocity decays exponentially with a
characteristic timescale of m/η. If our timescale of interest is much longer than this,
the inertia of the particle, mẍ, can be ignored leading to the overdamped Langevin
equation;

ηẋ = F (x) +R(t). (2.19)

This equation effectively describes the motion of a particle that experiences a strong
damping due to its interaction with the surrounding medium and is influenced by a
deterministic force F (x) and stochastic forces R(t). It provides a simplification that
can help study stochastic systems more efficiently, without the need to simulate high-
frequency motions that do not contribute significantly to the properties of interest.
We absorb 1/η into F (x) and R(x) to obtain an expression for the dynamics, which
can be integrated to evolve the system in time. The Euler-Maruyama [37] method is
one of the simplest methods for approximating such integrals;

∆x =
∫ t0+∆t

t0

[F (x) +R(t)] dt ≃ ∆tF (x) + ∆w, (2.20)
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where ∆tF (x) is the contribution from the deterministic part of the integral, equiv-
alent to Euler integration, and ∆w is the stochastic part of the integral with the
properties;

∆w =
∫ t0+∆t

t0

R(t)dt (2.21)

⟨∆w⟩ = 0 (2.22)

And, given (2.16)

⟨∆w2⟩ =
∫ t0+∆t

t0

∫ t0+∆t

t0

⟨R(t)R(t′)⟩dtdt′ = 2D
∫ t0+∆t

t0

∫ t0+∆t

t0

δ(t− t′)dtdt′ = 2D∆t

(2.23)
The Central Limit Theorem (CLT) [38] states, that the sum of a large number of
independent and identically distributed random variables converges towards a nor-
mal distribution, so ∆w is normally distributed given that it is an infinite sum of
infinitesimal noise

∆w = ϵ
√

2D∆t and ϵ ∼ N (0, I) (2.24)

where ϵ is a standard normal distributed random variable and we can simulate

∆x = ∆tF (x) + ∆w (2.25)

This provides an easy framework for integrating dynamics of systems that are influ-
enced by deterministic and stochastic forces.

2.3 Fokker Planck Equation
While the Langevin equation provides a framework for understanding the stochastic
motion of individual particles, its perspective is too narrow to draw general conclu-
sions about the system at large. Ensembles offer a more meaningful description of the
system’s behavior, and often we are more interested in the time-evolution of the distri-
bution p(x, t) of x at time t governed by Langevin dynamics than particular trajecto-
ries. This is described by the Fokker Planck equation [25]. Our strategy for deriving
it is to compare two expressions for the time derivative of the expectation value of an
arbitrary, time-independent function ⟨f(x)⟩, and extract the Fokker-Planck equation
from this [39]. Since f(x) is time-independent, we can express its time-derivative as

d⟨f(x)⟩
dt

=
∫ ∞

−∞
f(x) ∂

∂t
p(x, t)dx, (2.26)

moving the time-derivative inside the integral acting on p(x, t).
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An alternative expression for the same quantity can be derived by instead consid-
ering the time propagation of the system. We have

d⟨f(x)⟩
dt

= lim
∆t→0

⟨f(x+ ∆x)⟩ − ⟨f(x)⟩
∆t

, (2.27)

where ∆x is caused by propagating the system ∆t forward in time. To relate these
two equations we start by expanding ⟨f(x)⟩ around x;

⟨f(x+ ∆x)⟩ = ⟨f(x)⟩+
〈
df(x)
dx

∆x
〉

+
〈
d2f(x)
dx2

∆x2

2

〉
+O(∆x3), (2.28)

and by substituting (2.25), the Langevin description of ∆x, we get

⟨f(x+∆x)⟩ = ⟨f(x)⟩+
〈
df(x)
dx

(F (x)∆t+ ∆w)
〉

+
〈
d2f(x)
dx2

(F (x)∆t+ ∆w)2

2

〉
+O(∆t∆w).

(2.29)
Since the expectation value for any function g(x) involving

⟨g(x)∆w⟩ = 0 ⟨g(x)∆w2⟩ = ⟨g(x)⟩2D ⟨g(x)∆t⟩ = ⟨g(x)⟩∆t, (2.30)
We can simplify (2.29) to

⟨f(x+ ∆x)⟩ = ⟨f(x)⟩+
〈
df(x)
dx

F (x)
〉

∆t+D

〈
d2f(x)
dx2

〉
∆t+O(∆t2), (2.31)

and by plugging into eq. 2.27 we get an expression for the time derivative:
d⟨f(x)⟩
dt

=
〈
df(x)
dx

F (x)
〉

+D

〈
d2f(x)
dx2

〉
. (2.32)

Our goal now is to rewrite this in terms of p(x, t), so that we can compare it with
(2.26) and extract the Fokker-Planck equation. We can rewrite both terms on RHS
through partial integration. We have〈

df(x)
dx

F (x)
〉

=
∫ ∞

−∞

df(x)
dx

F (x)p(x, t)dx (2.33)

= f(x)p(x, t)F (x)
∣∣∣∞

−∞
−

∫ ∞

−∞
f(x) ∂

∂x
[F (x)p(x, t)] dx (2.34)

where the first term vanishes because the probability density function, p(x, t) → 0
when x→ ±∞. We can evaluate the second term on RHS of (2.32) as well, this time
using partial integration twice and noticing that ∂x

∂p (x, t)→ 0 when x→ ±∞

〈
d2f(x)
dx2

〉
=

∫ ∞

−∞

df(x)2

dx
p(x, t)dx (2.35)

= df(x)
dx

p(x, t)
∣∣∣∞

−∞
−

∫ ∞

−∞

df(x)
dx

∂p(x, t)
∂x

dx (2.36)

= −f(x)∂p(x, t)
∂x

∣∣∣∞

−∞
+

∫ ∞

−∞
f(x)∂

2p(x, t)
∂x2 dx (2.37)
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If we plug eq. 2.34 and eq. 2.37 into eq 2.32 we get:∫ ∞

−∞
f(x) ∂

∂t
p(x, t)dx =

∫ ∞

−∞
f(x) ∂

∂x

[
D
∂p(x, t)
∂x

− F (x)p(x, t)
]
dx (2.38)

Since this is true for any function f(x), we extract the time evolution of p(x, t)

∂

∂t
p(x, t) = ∂

∂x

[
D
∂p(x, t)
∂x

− F (x)p(x, t)
]
. (2.39)

This is the Fokker Planck equation, a fundamental tool for understanding stochastic
systems. Remarkably it connects the microscopic behavior of single trajectories gov-
erned by deterministic and random forces with macroscopic statistical properties of
the system captured by p(x, t). We shall see it multiple times in various contexts in
the following chapters.
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CHAPTER3
Quantum Mechanics

Quantum Mechanics deals with the behavior of particles at atomic and subatomic
scales. At these scales, our natural intuition of physics breaks down as particles ex-
hibit fundamentally different properties, acting simultaneously as waves and particles.
Quantum effects govern molecules and their electrons, and any attempt at describing
molecules faithfully must start with an understanding of the underlying quantum
mechanics.

The Schrödinger equation dictates the temporal evolution of quantum systems such
as molecules and it is intimately connected with their energetics. Therefore, it is one
of the key equations to solve in computational quantum chemistry. However, it is no-
toriously hard to work with, and much research has been focusing on approximating
its solutions for molecular systems. In this chapter we will briefly describe fundamen-
tal quantum mechanics and explore some of the methods that have been developed
over the years for dealing with the quantum mechanics governing molecular systems.

3.1 Schrödinger Equation
The nature of light has been a topic of scientific and philosophical debate since the an-
cient Greeks. At the beginning of the 20th century, the wave-like nature of light was
both rigorously described by Maxwell’s equations [40, 41] and a well-founded experi-
mental fact. However, an unexpected observation in a simple experiment showcased
the photoelectric effect. This challenged the wave-like picture of light, indicating that
light could also exhibit particle-like properties. Essentially, it was observed that upon
shining light on a cathode in a vacuum, electrons would be emitted, and they would
all, regardless of the intensity of the light, carry kinetic energy given by;

EK = hν − ϕ, (3.1)

where h is the Planck constant, the conversion factor between wave frequency and
energy, ν is the frequency of the light and ϕ is the required energy to kick off an
electron from the cathode. Crucially, this equation does not depend on the intensity
of the light, only its wavelength. It was found that increasing the light intensity
would increase the number of electrons emitted, but not affect the kinetic energy of
each. This suggested that each electron was emitted because of a collision with a
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single photon posing a conflicting view with the well established notion of the wave-
like nature of light. This gave rise to Einstein’s revolutionising idea of particle-wave
duality [42]. The question then arose: If light could exhibit this duality, could the
same be true for electrons and matter? This question was posed by Louis de Broglie in
his Ph.D. thesis [43] in 1924, where he hypothesized that particles like electrons could
also exhibit wave-like properties. Erwin Schrödinger then took it upon himself to find
a wave equation of matter, culminating in the formulation of the famous Schrödinger
equation[44]. A tentative derivation of the Schrödinger equation for the free particle,
may be obtained by considering its classical energy and substituting the expressions
for momentum and energy by their wave analogs. These are expressed through the
de Broglie and Einstein postulates, p = ℏk and E = ℏω, respectively, where k is the
wave-number, ω is angular frequency and ℏ = h/2π. The classical energy of a particle
is the sum of its kinetic and potential energy

E = p2

2m
+ V. (3.2)

Or, if we substitute in the de Broglie and Einstein postulates,

ℏω = ℏ2k2

2m
+ V. (3.3)

There is no force acting on the free particle since it is in a constant potential, so its
momentum, and hence wavelength is constant. Generally, a wave can be represented
by the equation

Ψ(x, t) = A cos(kx− ωt) +B sin(kx− ωt), (3.4)

with Ψ(x, t) denoting the wave-function in terms of x and t. This suggests that,
in order to get the k and ω from equation (3.3), we should differentiate twice with
respect to position on LHS and once with respect to time on the RHS,

α
∂2

∂x2 Ψ(x, t) + VΨ(x, t) = β
∂

∂t
Ψ(x, t) (3.5)

(−αk2 + V ) [A cos(kx− ωt) +B sin(kx− ωt)] = −βω
B

[
B2 cos(kx− ωt)−AB sin(kx− ωt)

]
,

(3.6)

where α and β provides flexibility to the solution. By setting A = 1 and B = i, the
equation simplifies to

(αk2 + V ) = −iβω. (3.7)

Comparing this with equation (3.3), relating the total energy of the wave to its
classical counterpart it is clear that α = − ℏ2

2m and β = iℏ. Plotting these values into
eq. (3.6) yields Schrödinger’s famous equation:

− ℏ2

2m
∂2

∂x2 Ψ(x, t) + VΨ(x, t) = iℏ
∂

∂t
Ψ(x, t). (3.8)
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Once a potential V (x, t) is specified, the Schrödinger equation allows us to determine
wave-function Ψ(x, t) that governs the quantum system and how it will evolve. The
exact meaning of the wave-function has been a topic of debate ever since. Max Born
proposed the practical statistical interpretation that the squared magnitude of the
wave-function, |Ψ(x, t)|2, represents the probability density of finding the particle
at position x at time t[45]. The equation has only been solved analytically for a
precious few theoretical potentials, where the only real-world problem is a single
electron around a positive point-charge. This is a central force problem, where the
force acting on the electron arises from the Coloumb interaction between the point-
charge and the negatively charged electron. If more electrons are introduced, the
problem becomes more complex as here, while a central force approximation can still
be used, the electrostatic repulsion between the electron clouds must be taken into
account. When dealing with molecules, the complexity escalates even further, as
tools associated with central force problems, such as spherical symmetry and angular
momentum, are no longer applicable.

3.2 Born-Oppenheimer approximation
The motion of nuclei and electrons is inherently connected in molecular systems.
However, because nuclei are much heavier than electrons, their motion is so slow that
they effectively can be considered fixed in relation to the motion of electrons. This is
the Born-Oppenheimer approximation[46]. The nuclei in a molecule vibrate due to
the spring-like nature of molecular bonds. The total energy of this vibration can be
represented as the sum of kinetic and potential energy associated with the vibration:

En = p2
n

2mn
+ 1

2
knx

2
n, (3.9)

where xn, pn,mn and En are position, momentum, mass and total energy of a nucleus
associated with the vibration. kn is the spring constant, and the restoring force arises
from the gradient of energy stored in the electron clouds and Coulomb forces between
the nuclei. Consider a small molecule characterized by the length scale s, the energy
in its electron cloud is on the scale of

Ee = p2
e

2me
= ℏ2

2mes2 . (3.10)

The spring constant has units of energy per length squared. Approximating kn in
terms of the relevant length scale and kinetic energy of the electron cloud yields

kn ≃
ℏ2

2mes4 . (3.11)

We can plug into this expression into the formula for angular frequency allowing for
a comparison between the timescale of the oscillations in the electron cloud with that
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of the oscillations of nuclei

ωn =
√
kn
mn

=

√
me
mn

√
ℏ2

2m2
es

4 =

√
me
mn

Ee
ℏ

=

√
me
mn

ωe, (3.12)

Where ωn and ωe are the angular frequencies associated with the oscillations of the
nuclei and the kinetic energy in the electron cloud, respectively. This rough calcu-
lation shows that the oscillations of the nuclei are extremely slow compared to the
oscillations in the electron cloud[47]. This result motivates the Born-Oppenheimer
approximation, in which the external potential caused by the nuclei in a molecule is
treated as time-independent. In a way it is lucky that there is such significant dif-
ference in the mass of these fundamental particles as the disparity allows the crucial
approximation that the nuclei in molecules are static. Without it, it would be very
difficult to do computational quantum chemistry.

3.2.1 Time-Independent Schrödinger equation
Building on the Born-Oppenheimer approximation, we are motivated to reformulate
the Schrödinger equation with a time-independent potential. Since we consider the
potential, which is caused by the nuclei in the molecule fixed, we expect that the
solutions should also be time-independent stationary states. We can simplify the
Schrodinger equation using separation of variables[44], expressing the wave-function
as a product of spatial and temporal components Ψ(x, t) = ψ(x)ϕ(t) and substitute
them into the Schrödinger equation:

− ℏ2

2m
∂2ψ(x)
∂x2 ϕ(t) + V ψ(x)ϕ(t) = iℏ

∂ϕ(t)
∂t

ψ(x), (3.13)

which can be rewritten as

− 1
ψ(x)

ℏ2

2m
∂2ψ(x)
∂x2 + V = 1

ϕ(t)
iℏ
∂ϕ(t)
∂t

. (3.14)

Since this holds true for all x and t, both sides must be constant. This constant is,
as hinted by the potential energy term on the LHS, the total energy of the system.
Thus we can express the Schrödinger equation in a time-independent potential as;

− ℏ2

2m
∂2ψ(x)
∂x2 + V ψ(x) = Eψ(x). (3.15)

This is the time-independent Schrödinger equation and it plays a central role in com-
putational quantum chemistry, serving as the principal tool for studying electronic
structure in molecules. The time-independent Schrödinger equation hinges on the
Born-Oppenheimer approximation and it is extremely important in quantum chem-
istry, as it allows us to simplify the study of molecules since we do not need to take
the changing potential induced by moving nuclei into account.
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3.2.1.1 Identical particles and Pauli’s Exclusion principle

In systems with multiple particles, the wave-function must be extended to account
for each particle as well as interactions between them. Let us briefly step aside and
examine Pauli’s exclusion principle[48] - a phenomenon that arises when modelling the
multi-particle wave-function with identical particles. Pauli’s exclusion principle has
no analogy in classical physics, and it arises due to the fact that fundamental particles
are completely identical and indistinguishable in every way. Let us investigate a
system with two identical particles described by the wave-function Ψ(r1, r2), where
r1 and r2 are the positions of the first and second particle. Because the particles
are indistinguishable, no physical measurement can tell them apart or detect the
interchange of the two particles. This implies that the probabilistic structure of the
wave-function must be invariant under permutation. Mathematically, this is expressed
as

|Ψ(r1, r2)|2 = |Ψ(r2, r1)|2 (3.16)
The wave-function Ψ(r1, r2) can fulfill this requirement in one of two ways, depending
on the nature of the particles involved:

1. Symmetric wave-function: Ψ(r1, r2) = Ψ(r2, r1). In this case, the wave-
function remains unchanged when the particles are exchanged. This property
is characteristic of the family of particles called bosons such as photons.

2. Antisymmetric wave-function: Ψ(r1, r2) = −Ψ(r2, r1). In this case, the
wave-function changes sign when the particles are exchanged. This property is
characteristic of the family of particles called fermions such as protons, neutrons
and electrons.

Since the particles are indistinguishable from one another, the wave-functions are
indistinguishable too, and it is meaningless to treat them as separate functions. We
must therefore write the wave-function as a normalized linear combination of the two:

Ψ = 1√
2

[Ψ(r1, r2)±Ψ(r2, r1)] . (3.17)

Where the ± sign depends on whether the wave-function is symmetric (+) or anti-
symmetric (−). Let us now consider the special case where the wave-function is the
product of two identical states Ψid(r1, r2) = ψ(r1)ψ(r2). By plugging this into the
anti-symmetric wave-equation, we find:

Ψasym = 1√
2

[ψ(r1)ψ(r2)− ψ(r2)ψ(r1)] = 0. (3.18)

which implies that |Ψ(r1, r2)|2 = 0, or, that the probability of finding two fermions in
the same state is zero. This is Pauli’s exclusion principle. Pauli’s exclusion principle is
a quantum mechanical effect, and it is as important as the Coulomb interaction when
treating quantum systems. Any attempt at constructing wave-function solutions for
quantum systems must take these fundamental constraints dictating the electronic
structure into account.
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3.3 Ab-inito methods
In ab initio methods the goal is to solve the Schrödinger equation from first principles.
In this section we will dive deeper into some of these methods. It is an extremely
difficult problem with most of its complexity arising from the intricacies of multiple
interacting electrons, and the methods shown here have been developed over many
years. Let us start by writing the Hamiltonian of the Schrödinger equation in a
suggestive way for how we are going to approach this:

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂ne, (3.19)

where T̂e and T̂n are the kinetic energy operators of electrons and nuclei, respectively,
and V̂ee, V̂nn and V̂ne are the potential energy terms corresponding to electron-electron,
nucleus-nucleus, and electron-nucleus interactions. Because of the Born-Oppenheimer
approximation, we can treat the potential caused by the nuclei as time-independent,
and we are primarily interested in solving the terms that include the electronic struc-
ture leading to the electronic Hamiltonian:

Ĥe = T̂e + V̂ee + V̂ne, (3.20)

Now, the task becomes to solve the time-independent Schrödinger equation for the
many-electron wave-function.

Ĥe|ψe⟩ = Ee|ψe⟩, (3.21)

where |ψe⟩ is the state vector in Hilbert space describing the multi-electron wave-
function. While we can set up the equation for any molecular system, solving it
reaches far beyond what can be achieved by scratching the good old Schrödinger
equation on a blackboard and algebraic finesse. The primary difficulty lies in the
electron-electron interaction. Solving the Schrödinger equation for multiple electrons
is a many body problem. This has not even been solved analytically in classical
mechanics, where particles have well-defined positions. In quantum mechanics we face
a significantly more complex variant of the problem since particles are not localized
at single points but are instead described by their wave-functions spanning all of 3D
space. Interactions between particles have to be integrated accordingly, and as such
the problem scales with O(d3N ) as each new particle added to the system introduces
an additional three dimensions to the state space. Even if we naively discretized
each dimensions with 10 grid points for a numerical solution, it would require an
astronomical 103·24 = 1072 grid points to represent electrons of the state space for a
single Iron atom, which has 24 electrons. For reference, there are about 1056 atoms
in the solar system. The biggest challenges in tackling any quantum mechanical
system is dealing with the extremely high-dimensional spaces required to describe
the system, sometimes referred to as the quantum nightmare. Any attempt to solve
the Schrödinger equation must first address this issue.
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3.4 Hartree-Fock Method
One of the first approaches to approximate solutions to the Schrödinger equation for
molecules was the Hartree-Fock Method [5–7].

3.4.1 Hartree-Approximation
The many-electron wave-function contains such vast amounts of information that it
is futile to solve it for any but the simplest systems. The complexity arises from
the pairwise interactions between electrons over all space. One way to simplify the
problem of the many-electron wave-function is the Hartree approximation [8]. This
approach approximates the many-body wave-function as a simple product of inde-
pendent single-electron wave-functions. We call these single-electron wave-functions
molecular orbitals, denoted ϕi(r), as they represent the available orbitals for electrons,
possibly spanning the entire molecule.

Ψ(r1, . . . , rn) =
n∏

i=1
ϕi(ri) (3.22)

The idea is to solve the Schrödinger equation using this somewhat naive wave-function.
In this case, interactions between electrons are reduced to interactions with an average
electron-field. However, the Hartree approximation does not capture the antisymmet-
ric nature of the electron wave-function, which is essential since any solution must
adhere to Pauli’s exclusion principle.

3.4.2 Slater determinants
The rules governing the behavior of identical particles go beyond simple two-particle
systems as described in section 3.2.1.1. When dealing with systems of multiple elec-
trons, any exchange of particles must result in a change of sign: Ψ(.., ri, .., rj , ..) =
−Ψ(.., rj , .., ri, ..). The full anti-symmetric n-electron wave-function for a system with
n electrons is a linear combination of all possible permutations of all particle indices,
and their corresponding sign. In practice, Slater determinants [49] provide a useful
mathematical shorthand;

ΨSlater(r1, r2, . . . , rn) = 1√
n!

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ1(r2) . . . ϕ1(rn)
ϕ2(r1) ϕ2(r2) . . . ϕ2(rn)

...
... . . . ...

ϕn(r1) ϕn(r2) . . . ϕn(rn)

∣∣∣∣∣∣∣∣∣ . (3.23)

If there are identical states in the system, i.e., ϕi(r) = ϕj(r), rows i and j will also
be identical, and the determinant becomes zero. Therefore, the Slater-determinant
wave-functions respects Pauli’s exclusion principle by construction. The factor of
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1√
n! , where n! is the number of possible permutations of n electrons, normalizes the

wave-function .
So by extending the idea of the Hartree approximation with the Slater determinant,

we obtain a simplified wave-function that by construction respects the anti-symmetric
property dictated by Pauli’s exclusion principle.

3.4.3 Basis sets
We have seen how to construct wave-functions out of molecular orbitals and how wave-
function solutions can be designed to satisfy Pauli’s exclusion principle, but not how
to approximate the molecular orbitals themselves. Basis sets serve as the building
blocks that bridge the gap between the abstract formulation of quantum problems
and practical computational solutions. Molecular orbitals are approximated as linear
combinations of simpler basis functions. Mathematically, this is represented as

|ϕi⟩ =
∑

µ

Ciµ|χµ⟩. (3.24)

This turns the problem of finding the complex continuous-space wave-functions |ϕi⟩
to solve the Schrödinger equation into a simpler one of determining the coefficients
Ciµ for the basis functions. These basis functions are approximations of the or-
bitals that solve the one-electron Schrödinger equation and are called atomic orbitals.
These atomic orbitals are decomposed into radial and angular components, where
the angular components are represented by spherical harmonics [50], and the radial
components are approximated in various ways, including Gaussian-type [51] orbitals
or Slater-type [52] orbitals. The most popular basis sets are the Gaussian type be-
cause their integrals can be solved in closed form, making them easy to handle in the
optimisation process. The radial components in Gaussian-type basis sets are often
constructed as sums of contracted Gaussian functions.

In a minimal basis set, a single atomic orbital is included for each electron. This is
generally sufficient for electrons in the inner shells as they are not involved in chemical
interactions, but it is often insufficient for accurate modeling of valence electrons, since
these require additional flexibility to account for multiple bonds, resonance structures
and other complex behaviors. Basis sets with multiple available atomic-orbitals for
valence electrons are called single-, double-, and triple-zeta, denoting the multiplicity
of valence orbital shells. Polarized basis sets include higher order atomic orbitals
to the heavy atoms for increased flexibility. In the papers, NeuralNEB [23] and
Transition1x [22], presented in this thesis, we have used the 6-31G(d) [53], which is a
double-zeta polarized basis set. Basis sets turn the task of finding complex continuous-
space functions into a much more tractable problem of finding a set of coefficients.
The choice of basis set is a trade-off between computational efficiency and accuracy.
Generally, more basis functions allows to express more complex molecular orbitals, but
demands more calculations. The ability to choose an appropriate basis set depending
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on the specific problem is an important part of successful application of methods in
computational quantum chemistry.

3.4.4 Variational Principle in Quantum mechanics
The variational principle [8, 44] of quantum mechanics is an important concept that
offers a practical guideline for how to find approximate solutions to the Schrödinger
equation. It states that the energy Eϕ of any trial wave-function ϕ is higher or equal
to the ground-state energy E0 of the Hamiltonian;

E0 ≤ Eϕ = ⟨ϕ|Ĥ|ϕ⟩. (3.25)

The eigenfunctions ψi(r) of the Hamiltonian is a complete orthonormal basis set
with eigenvalues Ei ≥ E0. Any trial wave-function ϕ(r) can be written as a linear
combination of these eigenfunctions;

ϕ(r) =
∑

i

ciψi(r). (3.26)

Inserting the expression for the trial wave-function into equation (3.25) we get

Eϕ =
∑

i

|ci|2⟨ψi|Ĥ|ψi⟩ (3.27)

=
∑

i

|ci|2Ei (3.28)

≥ E0, (3.29)

where we have used the fact that the wave-functions are orthonormal eigenfunctions
to the Hamiltonian, so that only wave-functions with matching index contributes to
the sum. The variational principle offers a framework for systematic minimisation of
an approximate ground-state wave-function that minimizes the ground-state energy
of the system.

3.4.5 Hartree-Fock
By representing molecular orbitals as Linear Combination of Atomic Orbitalss (LCAOs)
we reduce the problem of solving the Schrödinger equation to a question of determin-
ing coefficients of the basis functions in the basis set. An early attempt at this problem
was the Hartree-Fock method. Here the variational principle of quantum mechanics
is applied and the ground-state is sought by iteratively updating the multiple-electron
wave-function, represented by a Slater determinant. Minimising the energy, following
the variational principle in quantum mechanics, with the constraint that the molec-
ular orbitals should be orthonormal can be expressed as a Lagrangian multipliers
problem:

E = ⟨Ψ|Ĥ|Ψ⟩ −
∑

ij

ϵij(⟨ϕi|ϕj⟩ − δij) (3.30)
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Where The functional derivative is

δE

δϕ∗
i

= F̂ |ϕi⟩ − ϵi|ϕi⟩ = 0 (3.31)

This turns into an eigenvalue problem;

F̂ |ϕi⟩ = ϵi|ϕi⟩. (3.32)

where F̂ is the Fock operator which acts on a single molecular orbital and extracts
its energy contribution

F̂ = ĥ+ Ĵ − K̂. (3.33)

Here ĥ is the operator for the kinetic energy of the electron and the potential energy
associated with the electron’s electrostatic interaction with the nuclei. Ĵ and K̂ are
the energies associated with the Coloumb and exchange potential from the electron
density and they both depend on the set of molecular orbitals. We can expand our
molecular orbitals in terms of the basis set;

|ϕi⟩ =
∑

µ

Cµi|χµ⟩ (3.34)

And inserting in (3.32) yields

F̂
∑

µ

Cµi|χµ⟩ = ϵi
∑

µ

Cµi|χµ⟩. (3.35)

Projecting this onto the basis set ⟨χν | we get∑
µ

Cµi⟨χν |F̂ |χµ⟩ = ϵi
∑

µ

Cµi⟨χν |χµ⟩ (3.36)

which can be cast in matrix form;

FC = ϵSC. (3.37)

Here S is called the overlap matrix with elements Sµν = ⟨χν |χµ⟩. F is the Fock
matrix with elements Fµν = ⟨χν |F̂ |χµ⟩, and ϵ is a diagonal matrix with the energy-
eigenvalues on the diagonal. After updating the molecular orbitals, the Coulomb Ĵ
and exchange K̂ operators change, as they are integrals over the molecular orbitals.
This means that the problem that we have solved is finding a new wave-function that
minimizes the energy in the field caused by the old wave-function. Of course if the
system is to represent a stationary state, the two wave-functions must be equal, and
the molecular orbitals has be minimized with the Self Consistent Field (SCF) method.
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3.4.5.1 Self Consistent Field

The SCF method [7, 8] is used to find stationary and self-consistent solutions for the
wave-function of a given system. The approach is to initiate the algorithm with a
guess for the wave-function and then iteratively improve on it. This guess, together
with the positions and types of nuclei, is used to calculate an effective potential.
We can then solve the Schrödinger equation for this potential, yielding a new wave-
function. The process is then repeated with the new wave-function and the process
iterates until convergence is reached and the wave-function becomes self-consistent
with the effective potential that it generates.

The Hartree-Fock method allows for the wave-function to be calculated with arbi-
trary numerical precision, subject to the limitations of the algorithm and computa-
tional resources. However, the method is based on a mean-field approximation that
neglects electron-electron correlation, and the quality of the results is constrained by
the choice of basis set.

3.5 Density Functional Theory
Density Functional Theory (DFT) [3, 4] provides an alternative approach of solving
the many-body problem in quantum mechanics. Unlike wave-function-based methods
such as Hartree-Fock, DFT focuses on the electron density as its fundamental variable,
offering a more computationally efficient way of studying systems with many electrons.
The electron density ρ(r) is given by

ρ(r) =
n∑

i=1
|ψn(r)|2, (3.38)

where n is the number of electrons in the system, and ψn(r) is the orbital occupied
by the n-th electron. Since |ψn(r)|2 is the probability density of finding electron n
at r, we can interpret the sum over |ψn(r)|2 as an electron density at r. The total
energy of the system is

E =
∫
Vne(r)ρ(r)dr + F [ρ(r)], (3.39)

where F is a functional of ρ(r) which extracts all energy contributions from the
electron density, including kinetic energy, exchange energy and electron-electron cor-
relation energy. Given a functional F we can minimize the energy of the electron
density using the SCF method until we find a ground-state. The formulation of DFT
is straight forward, but it relies on a pair of important theorems proved by Hohenberg
and Kohn that such a functional exists and that it is a variational minimum of the
energy.
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3.5.1 Hohenberg-Kohn Theorems
The Hohenberg-Kohn theorems are the cornerstones of DFT. They prove that the
ground-state electron density is as sufficient a variable to describe the properties
of a many-electron system as the wave-function, and that the ground-state electron
density is a variational minimum of the energy.

3.5.1.1 HK I

The first Hohenberg-Kohn theorem shows that the ground-state electron density
uniquely determines the external potential. Since the ground-state wave-function is
uniquely determined by the external potential, and it contains all information about
the system, if the ground-state electron density can uniquely determine the external
potential, the same amount of information must be contained within the ground-state
electron density.

The proof of this theorem goes via reductio ad absurdum. Suppose that we have
two different, external potentials, V1(r) and V2(r) that are both consistent with a
ground-state electron density ρ(r). These potentials yield different Hamiltonians Ĥ1
and Ĥ2 with corresponding ground-state wave-functions Ψ1 and Ψ2 with eigenvalues
E1 and E2. Following the variational principle of quantum mechanics, since Ψ2 is the
ground-state for Ĥ2;

E1 < ⟨Ψ2|Ĥ1|Ψ2⟩ (3.40)

Or writing the Hamiltonian in terms of its components, Ĥ = T̂e + V̂ee + V̂

E1 < ⟨Ψ2|T̂e + V̂ee|Ψ2⟩+
∫
ρ(r)V1(r)dr. (3.41)

Now, add and subtract the Hamiltonian for the second system, and rewrite RHS of
the inequality;

E1 < ⟨Ψ2|Ĥ1 − Ĥ2 + Ĥ2|Ψ2⟩ (3.42)
= ⟨Ψ2|T̂ − T̂ + V̂ee − V̂ee + V̂1 − V̂2|Ψ2⟩+ E2 (3.43)
= ⟨Ψ2|V̂1 − V̂2|Ψ2⟩+ E2 (3.44)

=
∫
ρ(r)[V1(r)− V2(r)]dr + E2. (3.45)

Equivalently, by swapping the first and second system we would arrive at

E2 <

∫
ρ(r)[V2(r)− V1(r)]dr + E1. (3.46)

But adding equations (3.45) and (3.46) we get

E2 + E1 < E2 + E1, (3.47)
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which is an absurd result. This means that the assumption that there is a single
density associated with both V1 and V2 must be wrong, and thus each potential must
uniquely determine an electron density. Therefore, the information contained within
the wave-function must also be contained within the electron density, and it can be
accessed via a functional of the electron density F [ρ(r)]. However, this theorem only
proves the existence of such a functional but does not offer any suggestions as to what
it might be.

3.5.1.2 HK II

The second Hohenberg-Kohn theorem extends the variational principle from quantum
mechanics, stating that the ground-state electron density minimizes the total energy
functional. If there is a one-to-one correspondence between the ground-state wave-
function and the ground-state electron density, as stated by the first theorem, then
any variational principle that applies to the wave-function must similarly apply to
the electron density. Thus it is possible to variationally determine the ground-state
electron density, provided one knows the correct functional F [ρ(r)]. Finding the
correct functional is the main challenge in any practical application of DFT.

3.5.2 Kohn Sham equations
The Hohenberg-Kohn theorems provide theoretical foundation for DFT, but they do
not suggest a method for finding the correct functional F [ρ(r)]. The Kohn-Sham
equations [3] map the many-body problem of interacting electrons onto a set of non-
interacting particles that can reproduce the correct ground-state. In this approach,
the total energy of the system is expressed as a sum of energy contributions

E[ρ(r)] = Tni[ρ(r)] +
∫
V (r)ρ(r) dr + 1

2

∫∫
ρ(r)ρ(r′)
|r − r′|

dr dr′ + Exc[ρ(r)], (3.48)

where Tni[ρ(r)] is the kinetic energy of the non-interacting electrons and Exc[ρ(r)]
is the exchange-correlation energy which includes corrections for the non-interacting
kinetic energy and self-interaction, as well as accounting for quantum mechanical
exchange and correlation effects. The first three terms are ’easy’ to calculate, the
challenge lies in finding the proper exchange correlation functional.

3.5.2.1 Exchange-Correlation functionals

There are various approaches to approximate exchange-correlation functional Exc[ρ(r)].
Perhaps the simplest is the Local Density Approximation (LDA) [4]. In LDA
approaches, the exchange-correlation at r is computed solely by the electron density
at r. Typically this is chosen as the exchange-correlation energy density of a uniform
electron gas of the same density. The functional form is:

ELDA
xc [ρ(r)] =

∫
ρ(r)ϵunif

xc (ρ(r)) dr (3.49)
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LDA yields accurate geometries but is inaccurate when it comes to energies. Of course
LDA does not tell the full story as the electron cloud around a molecule is not a
uniform electron gas. The Generalized Gradient Approximation (GGA) [54] includes
the gradient of the electron density similar to a first order Taylor approximation to
encompass the fact that the electron density is changing. The functional form is:

EGGA
xc [ρ] =

∫
ρ(r)f(ρ(r),∇ρ(r)) dr (3.50)

Finally, there are the Hybrid functionals [55] that combine GGA or LDA, or higher
order functionals, with the exact Hartree-Fock exchange energy:

EHybrid
xc = aEHF

x + (1− a)EDFT
xc . (3.51)

The way of combining these terms vary depending on the functional. The choice of
functional is again a compromise between computational cost and accuracy, and the
choice of functional significantly influences the quality of the results.

3.5.2.2 Solving the Kohn-Sham Equations

The Kohn-Sham equations are solved using the SCF method, similar to Hartree-Fock
theory. The SCF procedure in DFT aims to find the ground-state electron density
by solving the Kohn-Sham equations iteratively until convergence is achieved.

3.5.3 Machine Learning in Computational Quantum Chemistry
The variational principle in quantum mechanics and its counterpart in HK II com-
bined with the SCF provides a clear and systematic framework for computing ground-
state wave-functions and electron densities. Solving electronic structure problems for
molecular systems provides valuable insights into energetics and forces essential for
simulation and further investigation of molecular properties. However, these meth-
ods are prohibitively expensive due to the iterative nature of the SCF methods that
drives solutions to self-consistency through repeated calculations of multiple electron-
electron integrals. These calculations typically scales in complexity as O(N3) or
worse, where N is the number of electrons in the system. The computational cost of
these methods poses a fundamental bottleneck preventing large scale exploration of
chemical space.

In recent years, the field of Machine Learning (ML) has seen the rise of the pow-
erful Neural Network (NN) models. These models are capable of fitting extremely
complex functions while operating several orders of magnitude faster than traditional
methods described in this section. When trained on datasets of high-quality electronic
structure calculations, these NNs have shown promising results as emulators of ab
initio methods, potentially opening up new avenues of research that were previously
computationally infeasible. In the next section we will explore the inner workings
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of NNs and methods from ML, investigating how they can be applied to molecular
systems.



28



CHAPTER4
Neural Networks

4.1 Neural Networks 101

Neural Networks (NNs), also known as Artificial Neural Networks, are mathematical
models inspired by the web of interconnected neurons in the human brain. They are
incredibly versatile and flexible function approximators that can be used to analyze,
generate, control, and predict features in a wide range of domains, from images and
molecules to the stock market and games, and many more. Whether we know it or
not, we all use neural networks every single day. They hide behind the scenes of
various applications such as search engines [56], music and movie recommendations
on various platforms [57–59], targeted advertisements on social media [60, 61], and
they even empower seemingly intelligent entities like ChatGPT [62] and other large
language models. They are arguably one of the most important algorithms in the
modern world.

The NN concept is not new; research has been ongoing for many years. The sim-
plest version of a NN, called the perceptron, is essentially just a linear combination
of inputs fed through a nonlinearity, representing a single ’layer’, and it was pro-
posed as early as the late fifties [63]. The idea of training larger models was there,
but the necessary mathematical framework, which allowed for training much more
complex models, called the back-propagation algorithm [64], was not invented until
the eighties. However, training and using neural networks requires vast computa-
tional resources, and only at the beginning of the 2010s, with the advent of powerful
GPUs, it became feasible to train large NN models.

The ”vanilla” NN is the feedforward NN. It consists of multiple layers of neurons
that feed a signal forward by sequentially activating each layer of neurons, simulating
a cascade of firing neurons in the brain. The input to this type of model is a vector
of features. Each neuron in the first layer has a certain sensitivity, called a weight,
to each of the input features. The activation of a neuron is calculated as a weighted
sum of the inputs, determined by these weights. Then, by adding a bias and applying
an activation function, the final activation of the layer is obtained. This process is
repeated for each neuron in the layer until the layer’s full activation is calculated.
The activation of the next layer can be computed in an equivalent fashion, but using
the activation of the first layer as its input. This process is repeated for each layer in
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order to propagate a signal forward in the network. Mathematically, the activation
of the i-th data point x(l)

i in the l-th layer can be written using matrix notation as;

x
(l)
i = σ(W (l)x

(l−1)
i + b(l)), (4.1)

where W (l) is called the weight matrix, and it allows for a compact description of all
weights connecting neurons from the l-th layer to activations in the (l − 1)-th layer.
The W (l)

ji index is the i-th neuron in the l-th layer’s sensitivity to the j-th activation
in the (l − 1)-th layer. b(l) is a bias vector that allows the network to learn biases in
the data, and σ is a nonlinear activation function. By propagating the signal forward
through the network, the model builds increasingly abstract representations of the
data, which can be transformed into features of interest, and read off of the final layer.

The term deep NN refers to networks with multiple layers making them more com-
plex - a single layer perceptron is only able to model linearly separable patterns. The
primary challenge in fitting the model to data lies in finding the model’s parameters
θ = {W (l), b(l) | l = 1, . . . , L}, where L is the number of layers. This is done through
the process of training the network. To train a feedforward NN, we need a labeled
dataset, {(xi, yi) | i = 1, . . . , N}, where N is the number of samples, xi represents
the features of each data point, and yi is called the ground truth of the dataset. A
classic example is the MNIST dataset [65]. Within this dataset, there are 60,000
training images and 10,000 testing images of handwritten digits, each depicted as a
28x28 pixel grayscale image. The neural network’s task is to recognize these digits.
Here, the features, xi, are pixel values, and the ground truth, yi, corresponds to the
digit label, represented as 10-dimensional one-hot encoded vectors [66]. The train-
ing process starts with a random initial guess for the parameters. In order to guide
the training process, a loss function L(pθ, D) is defined that quantifies how well the
model aligns with the dataset. Training the network amounts to minimising the loss
by repeatedly updating its parameters. A simple update scheme can be expressed as

θt+1 ← θt − α∇θL(pθt
, D) (4.2)

Where α is called the learning rate. This process is called gradient descent, because
the minimum is sought by always taking steps in the direction opposite to the gradient.
We seek to find the lowest possible loss given the model;

ptrained
θ (D) = argmin

θ
L(pθ, D). (4.3)

The loss surface is extremely rugged and often the gradient descent algorithm gets
caught in a local minimum. There is plethora of methods for training neural networks
and alleviate this problem, for example by including a notion of momentum in the
updates [67], or alternating between learning rates [68], to enable the model to escape
local minima.
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A general strategy for designing loss functions is to define a probability distribu-
tion that is thought to reflect the structure of D, and then minimize the difference
between this and an approximated distribution, parameterized by the model. In the
case of supervised models, this distribution is a conditional probability distribution,
p(y | x). The quality of this approximation is measured by the Kullback-Leibler (KL)
divergence [69];

DKL [p̂θ(y | x) || p(y | x)] = −
∫∫

p(y | x) ln p(y | x)dxdy+
∫∫

p(y | x) ln p̂θ(y | x)dxdy.

(4.4)
Here, the first term on RHS is the entropy of the data distribution - it is the expected
information of a sample from p(y | x). The second term is the negative crossentropy,
or the expected information of a sample from p(y | x) if probabilities are evaluated
with pθ(y | x). The difference between the two terms is a measure of how wrong the
model assigns probabilities. The entropy of the data distribution is constant, and
minimising the KL-divergence comes down to minimising the second term in (4.4).
However, the true data distribution is not available, only samples from it, so effectively
the training procedure is minimising a Monte Carlo estimate of the cross-entropy;

L(D, p̂θ) =
∫∫

p(y | x) ln p̂θ(y | x)dxdy ≃ 1
M

M∑
i

ln p̂θ(yi | xi), (4.5)

which is the negative log-likelihood of the dataset under the model. Or equivalently
by directly optimizing the log-likelihood you’ll find out when you reach the top, you’re
on the bottom of the loss function. It is costly to evaluate the entire dataset at each
iteration, so it is instead approximated as an average of a mini-batches of M samples.
For classification tasks the distribution p(y | x) is simply a multiclass-bernoulli dis-
tribution. For regression tasks the data is assumed to be normally distributed such
that the negative log likelihood of batch becomes the mean squared error.

4.2 Latent Variable Models
The architecture discussed in the previous section, had a particular focus on learning
conditional probability distributions, p(y | x), or relating the features y to the features
x, without taking the distribution of x into account. This type of learning is called
discriminative learning, a natural term in the context of classification. In this section,
we discuss a different framework, known as generative modeling, particularly in the
context of latent variable models. It is important to recognize, that any dataset is
merely a sample drawn from an underlying distribution, p(x). In generative modeling
the task is, given the dataset, to infer the underlying patterns of the distribution and
approximate it with a probabilistic model pθ(x), parameterized by θ. One popular
class of models are latent variable models, here the true distribution is described by
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a much simpler underlying distribution of latent variables;

pθ(x) =
∫
pθ(x | z)pθ(z)dz (4.6)

This type of model provides an insight into the generation process, and once trained,
we have a probabilistic decoder pθ(x | z), that can decode latent samples from pθ(z)
into a distribution over data. When pθ(z) is Gaussian, the sampling procedure is
straightforward, the target distribution can be obtained easily by decoding samples
from the prior pθ(z). As discussed in the previous section, our best bet for optimising
the model is to optimize the log-likelihood of the data under our model. Theoretically,
a valid training strategy would be to sample multiple values of z and approximate
(4.6) with a Monte Carlo estimate.

pθ(x) ≃ 1
M

M∑
i=1

pθ(xi | zi) where zi ∼ pθ(z). (4.7)

However, the vast majority of samples will contribute negligibly to this integral, and
consequently an infeasible amount of samples would have to be taken for a clear
training signal. A better approach is to use importance weighted samples from a dis-
tribution qϕ(z), that overlap with the posterior pθ(z | x). In Variational Autoencoders
(VAEs) [70, 71], qϕ(z) is conditioned on x yielding an encoding network. Variational
Inference (VI) [72–74] is an approach for approximating such complex posteriors. As
discussed in previous sections, the training strategy is to maximize the log likelihood
of the dataset under the model pθ. This is usually infeasible, and in VI a tractable,
lower bound for ln pθ(x), called the Evidence Lower Bound (ELBO), is optimized in-
stead. We can arrive at this bound by analyzing the KL-divergence between qϕ(z)and
the posterior pθ(z | x). The KL divergence is given by

DKL [qϕ(z) || pθ(z | x)] = Eqϕ(z)

[
ln qϕ(z)
pθ(z | x)

]
. (4.8)

Expanding this with Bayes rule pθ(z | x) = pθ(x|z)pθ(z)
pθ(x) and logarithm rules ln ab =

ln a+ ln b yields an expression for the log-likelihood
DKL [qϕ(z) || pθ(z|x)] = Eqϕ(z) [ln qϕ(z)]−Eqϕ(z) [ln pθ(x | z)]−Eqϕ(z) [ln pθ(z)]+ln pθ(x).

(4.9)
By noticing that DKL [qϕ(z) || pθ(z | x)] ≥ 0, this can be rearranged into an inequal-
ity;

ln pθ(x) ≥ Eqϕ(z) [ln pθ(x | z)]−DKL [qϕ(z) || pθ(z)] . (4.10)
This lower bound is the ELBO. The first term is a regularisation term ensuring that
the qϕ(z) does not deviate too much from the prior, and the second term is the
reconstruction term that ensures that the model can faithfully reproduce the data
distribution given the latent variables. This lower bound can be optimized as a proxy
for the log-likelihood. Generative modeling provides a framework for understanding
and generating samples from the underlying distribution from which our observed
samples are drawn.
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4.3 Denoising Diffusion Probabilistic Models
One class of generative model that has seen a lot of success in recent years is the
Denoising Diffusion Probabilistic Model (DDPM). DDPMs offer a compelling ap-
proach for modeling complex data distributions, rooted in statistical physics and
non-equilibrium thermodynamics [75–77]. Unlike traditional generative models that
sample data directly, these models gradually transform data from a simple noise dis-
tribution into a complex target distribution by learning an inverse diffusion process.
These models have shown remarkable capabilities for realistic and creative image
synthesis [78–81], resulting in a range of tools [82–84] that have attracted a lot of
attention, even outside the confines of the Machine Learning (ML) community. Ad-
ditionally DDPMs have shown promising results in generating 3D structures such
as molecular configurations [85–87] or proteins [88, 89]. There are two important
processes in DDPMs; the forward and the reverse diffusion process. The forward
diffusion process provides a simple way to encode latent variables for data samples by
slowly corrupting them towards a standard Gaussian target distribution. The learned
part of the model is the reverse diffusion process. Here the model is trained to pre-
dict the inverse step taken by the forward diffusion process at each time step. At
generation time, a latent variable can be sampled from the target distribution of the
forward diffusion process and the DDPM can iteratively remove noise from samples
to reconstruct data following the original data distribution.

4.3.1 Forward Diffusion
DDPMs encode latent variables by slowly corrupting data through Langevin Dynam-
ics in a harmonic oscillator potential. The change ∆xt in the latent variable xt at
the t-th step can be expressed as

∆xt = −ktxt +
√
βtϵ, (4.11)

where −ktxt is a drift term resembling a spring force. The second term
√
βtϵ is

Gaussian noise, where ϵ is sampled from a standard Gaussian distribution. The
updated latent variable at step t+ 1 is

xt+1 = xt + ∆xt = (1− kt)xt +
√
βtϵ. (4.12)

The latent variable should converge towards a standard Gaussian such that an xT

can be easily sampled for the generation process. This is ensured by choosing an
appropriate spring constant, which can be found by inspecting the variance of the
latent variable at each step and its behavior at equilibrium. The variance of xt+1 is

⟨x2
t+1⟩ = ⟨(1− kt)2x2

t + βtϵ
2 + (1− kt)xt

√
βtϵ⟩ (4.13)

= (1− kt)2⟨x2
t ⟩+ βt, (4.14)



34 4 Neural Networks

where we have used that ⟨ϵ⟩ = 0, and ⟨ϵ2⟩ = 1. At equilibrium the variance is constant,
⟨x2

t ⟩ = ⟨x2
t+1⟩, and since xt should follow a standard Gaussian with ⟨x2

t ⟩ = 1, we can
plug this into the equation above to get

1 = (1− kt)2 + βt, (4.15)

so with a spring constant kt = 1 −
√

1− βt, the forward diffusion process will tend
towards a standard Gaussian. Plugging this into (4.12) we get

xt+1 =
√

1− βtxt +
√
βtϵt, (4.16)

which can be packed neatly in a normal distribution

q(xt+1 | xt) = N (xt+1 |
√

1− βtxt, βtI), (4.17)

where I is the identity matrix. We denote the trajectory of the entire diffusion
process with x0:T = (x0, . . . , xT ). Each state xt only depends on the previous step
xt−1 allowing for an expression for the probability of the entire trajectory, given x0
as

q(x1:T | x0) =
T∏

t=1
q(xt | xt−1). (4.18)

However, repeatedly calculating this at training time is extremely costly, especially
when T is large. Here, the reparameterization trick [70, 71] comes to our rescue - the
forward process is a Markov chain governed by a series of Gaussian transition-kernels
and due to this structure we can directly sample xt from q(xt | x0) at any time step
t, given the initial x0, instead of having to repeatedly apply q(xt | xt−1). By defining
αt = 1− βt, allows xt−1 to be expressed as:

xt−1 =
√
αt−1xt−2 +

√
1− αt−1ϵt−2. (4.19)

By plugging this into (4.16) and expanding we get

xt =
√
αtαt−1xt−2 +

√
αt(1− αt−1)ϵt−2 +

√
1− αtϵt−1. (4.20)

The sum of two normally distributed random variables, X+Y = Z is itself a normally
distributed random variable with mean and variance µZ = µX +µY and σ2

Z = σ2
X +σ2

Y .
With this (4.20) can be rewritten as:

xt =
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ. (4.21)

By applying this repeatedly, and defining ᾱt =
∏t

s=1 αs we obtain an expression for
xt given x0

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (4.22)

or
q(xt | x0) = N (xt |

√
ᾱtx0, (1− ᾱt)I). (4.23)

This drastically reduces computational complexity for calculating losses as we do not
have to sample the full Markov chain to evaluate samples of the forward diffusion at
time t.
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4.3.2 Reverse Diffusion
As T →∞, the latent variable xT tends towards a standard Gaussian. Samples can
be generated from the original distribution by first sampling xT from N (xT | 0, I) and
then gradually denoise through the reverse diffusion process, q(xt−1 | xt). However,
we do not have access to q(xt−1 | xt) as its computation requires knowledge of the true
data distribution. The essential task in training diffusion models is to approximate
q(xt−1 | xt) with a parameterized model pθ(xt−1 | xt), e.g. a NN. In the limit of
small values of βt the forward and reverse diffusion process has the same functional
form [90], and it suffices to parameterize pθ(xt−1 | xt) with mean and variance of a
normal distribution. With this setup, we can calculate the probability of the reverse
trajectory

pθ(x0:T ) = pθ(xT )
T∏

t=1
pθ(xt−1 | xt), (4.24)

and training the model amounts to learning the mean µθ(xt, t) and covariance Σθ(xt, t)
of the distribution

pθ(xt−1 | xt) = N (xt−1|µθ(xt, t),Σθ(xt, t)), (4.25)

This yields a powerful model for approximating the true data distribution with a
conceptually straightforward mechanism for sampling.

4.3.3 Training DPPMs
As usual, our best bet to train the model is to optimize the log-likelihood of the
dataset.

ln pθ(x0) = ln
[∫

pθ(x0|x1, . . . , xT )dx1:T

]
= ln

[∫
pθ(xT )

T∏
t=1

pθ(xt−1 | xt)dx1:T

]
(4.26)

Again, this problem is tackled by importance sampling, using the forward diffusion
process as the encoding distribution.

ln pθ(x0) = ln

[∫
pθ(xT )

T∏
t=1

q(xt | xt−1)pθ(xt−1 | xt)
q(xt | xt−1)

dx1:T

]
(4.27)

The ELBO, denoted L, is obtained by using Jensen’s inequality [91]

L = Eq(x1:T |x0)

[
ln pθ(xT )

T∏
t=1

pθ(xt−1 | xt)
q(xt | xt−1)

]
. (4.28)

Since xt is Markov, q(xt | xt−1) = q(xt | xt−1, x0), and rewriting with Bayes rule
yields

q(xt | xt−1, x0) = q(xt−1 | xt, x0)q(xt | x0)
q(xt−1 | x0)

. (4.29)
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Which is plugged into the ELBO

L = Eq(x1:T |x0)

[
ln pθ(xT )

T∏
t=1

pθ(xt−1 | xt)q(xt−1 | x0)
q(xt−1 | xt, x0)q(xt | x0)

]
. (4.30)

Using logarithm rules and canceling out terms of q(xt | x0), this can be rewritten as

L = Eq(x1:T |x0)

[
ln pθ(x0 | x1) +

T∑
t=2

ln pθ(xt−1 | xt)
q(xt−1 | xt, x0)

+ ln pθ(xT )
q(xT | x0)

]
. (4.31)

Here, the first term in the expectation is simply a reconstruction error, quantifying
how well the model can reconstruct data x0 from the latent variable x1. The sec-
ond term is the KL-divergence between the approximated and true reverse diffusion
process, and the final term measures how close xT is to a standard Gaussian. The
last term does not have trainable parameters and is ignored during training. The
denoising step is normally distributed

q(xt−1|xt, x0) = N (xt−1 | µ̃, β̃I). (4.32)

Obtaining expressions for µ̃ and β̃ is cumbersome but straightforward. It involves
writing up the full expression for the normal distributions in (4.29), expanding expo-
nents and extracting mean and variance.

µ̃t(xt, x0) =
√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0 and β̃t = 1− ᾱt−1

1− ᾱt
βt. (4.33)

This can be simplified further by inserting the expression for x0 isolated from (4.22).

µ̃t = 1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
. (4.34)

Approximating µ̃t with the model comes down to predicting ϵt given xt. Given that
pθ(xt−1|xt) and q(xt−1|xt, x0) are normal distributions, the t-th term (4.31).

Lt = Ep(x0),N (ϵt;0,I)

[
|µ̃t − µθ(xt, t)|2

2σ2
t

]
(4.35)

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ. In this case the variance σt follows a fixed schedule.

However, it has been shown that learning σt leads to better likelihoods and faster
sampling [92]. (4.34) reveals that µθ(xt, t) can be approximated simply by predicting
ϵt with a model ϵθ(xt, t). By isolating ϵt and ϵθ(xt, t) from (4.35) we arrive at an
expression that can be used to calculate the t-th term in the loss (4.31):

Lt = Ep(x0),N (ϵt;0,I)

[
βt

2σ2
tαt(1− ᾱt)

∣∣ϵt − ϵθ (√
ᾱtx0 +

√
1− ᾱtϵ, t

)∣∣2
]
. (4.36)
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The t-dependent weighting puts extra weight on steps that correspond to small t. Ho
et al. [76] demonstrated discarding this weighting and using the simplified loss

Lt = Ep(x0),N (ϵt;0,I)

[∣∣ϵt − ϵθ (√
ᾱtx0 +

√
1− ᾱtϵt, t

)∣∣2
]
, (4.37)

leads to a better sample quality.

4.4 Accelerating Sampling with Probability Flow ODEs
Although DDPMs produce high-quality samples, their sampling process is slow when
compared to many other types of generative models. Typically it takes hundreds or
thousands of sequential evaluations of a NN estimating scores to produce a single
sample from the model. Whereas for many other models the generation is done in a
single pass. This inefficiency poses a significant bottleneck for using DDPMs for down-
stream tasks. DDPMs as formulated in the previous chapter can be seen as discrete
realisations of an underlying stochastic process described by a Stochastic Differential
Equation (SDE). In its continuous form, the forward diffusion is described by

dx = f(x, t)dt+ g(t)dw, (4.38)

where dw is the Wiener process. Interestingly, it can be shown [93] that the inverse
process has the same functional form;

dx =
[
f(x, t)− g(t)2∇ ln pθ(x, t)

]
dt+ g(t)dw. (4.39)

Samples can be obtained by integrating standard Gaussian noise backwards in time
using (4.39). Here the score is related to the noise by ∇ ln pθ(x, t) = ϵθ(x, t)/σ(t).
When integrating SDEs with numerical methods, a large number of short integration
steps, have to be taken relative to Ordinary Differential Equations (ODEs) for conver-
gence [94], due to the randomness of the Wiener process. This motivates finding an
ODE that has the same marginal distribution as (4.39). The Fokker Planck equation
governing (4.39) can be shown to be [95]

∂pθ(x, t)
∂t

= −∇ · [f̃(x, t)pθ(x, t)] (4.40)

where
f̃(x, t) = f(x, t)− 1

2
g(t)2∇ ln pθ(x, t). (4.41)

But (4.40) is the Fokker Planck equation governing

dx = f̃(x, t)dt+ g̃(t)dw, (4.42)

when setting g̃(t) = 0, so

dx =
[
f(x, t)− 1

2
g(t)2∇ ln pθ(x, t)

]
dt (4.43)
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describes an ODE with the same marginal distribution as (4.39). This provides a
compelling approach for efficient sampling of DDPMs models. As the ODE described
by (4.43) and the SDE described by (4.39) are governed by the same Fokker Planck
equation, we can potentially accelerate the sampling procedure by adopting the ODE
formulation in place of the SDE. This allows for larger step sizes and therefore faster
numerical integration. The ODE is composed of a linear and non-linear term - with
the NN model being responsible for the nonlinearity. The linear term can be solved
analytically leaving only the non-linear term to be handled by black-box ODE solver.
This approach offers a way to obtain high-quality samples at a significantly reduced
computational cost. In fact, when applied for down-stream tasks, high quality samples
can be obtained with as few as 10–20 evaluations of the score model [96]. Moreover,
this approach is agnostic to the training procedure of the score model and does not
require any modification of the training procedure outlined in the previous section.
Other methods such as score matching can be used as well [97, 98]. As a result,
models trained using various strategies can be integrated directly into this efficient
sampling framework.

4.5 Message Passing Neural Networks

4.5.1 Molecules and Proteins as graphs

Graphs are mathematical structures consisting of nodes and edges. They can effi-
ciently encode entities and their spatial and relational characteristics. A graph is
defined as G = (V,E), where V is the set of nodes and E is the set of edges. Each
edge e = (u, v) represents a connection between node u and v. Graphs offer a natural
way of encoding molecules [99] and proteins with atoms or amino acids represented by
nodes, and bonds and interactions between them represented as edges, allowing for
a rich featurization while retaining 3D structure. When working with molecules and
proteins, the spatial arrangement of nodes in the graph is referred to as the geometry
or sometimes configuration. However, the meaning of configurational changes refers
to changes in chemical bonds. Even when bonds are fixed, there’s still some flexibility
coming from rotation around or stretching of them, which can allow the configura-
tion to adopt different shapes or spatial arrangements. These different shapes that a
configuration can take are referred to as conformers or conformations.

Typically, geometries are encoded as lists of (x, y, z) coordinates with correspond-
ing atom or amino acid types. Sometimes, more detailed features such as specific
bonds, partial charges, or associations with particular molecular groups or residues
are also encoded in the data. The input, of course, depends on the task at hand. For
the work presented in this thesis, all inputs to the models have been pure geometries
with no information about bonds.
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4.5.2 Message Passing Neural Networks
Message Passing Neural Networks (MPNNs) [100–102] is a class of NNs designed
specifically for handling graphs, which is why they have been widely adopted in the
field of ML for molecules and proteins [100, 103–106]. MPNNs operate by iteratively
updating node and edge features through interactions along the edges of the graph
until a prediction is made based on the final features. This process is similar to, or
in fact a generalisation of, how traditional Convolutional Neural Networks (CNNs)
[107] work. In the context of CNNs, kernels iteratively generate higher order feature
maps, ultimately leading to predictions based on these feature maps. These maps
can be viewed as graphs, where pixels are connected with their neighboring pixels.
If all nodes are to interact in each iteration, the computational complexity scales
with the number of nodes, n, as O(n2). Since, in molecules, the most significant
interactions are typically between nodes that are spatially close, it can be computa-
tionally advantageous to define a smaller neighborhood for each node, u, denoted as
N (u) = {v ∈ V | (u, v) ∈ E}. This approach reduces the complexity scaling to O(n)
at the cost of long range interactions. The neighborhood can be defined in various
ways, for example through a radius cutoff, where nodes are connected if the distance
between them is less than a predefined radius r. Note that the neighborhood and
chemical bonds are different; the neighborhood defines which nodes are allowed to
interact regardless of whether are connected by a chemical bond. MPNNs consist
of four fundamental blocks: the embedding block, the message passing block, the
update block, and the readout block.

The Embedding block is responsible for embedding the input to the model. Of-
ten, the model input consists of just the coordinates and node types. In the case
of molecules, the embedding block could contain a lookup table of trainable element
embeddings, allowing the model to build an internal representation of properties such
as valence, electronegativity, or other useful attributes of each element. Usually, the
graph and its neighborhood are also defined in this block.

The Message Passing Blocks are responsible for propagating information between
nodes and their neighbors. They do so by combining node and edge attributes with
spatial information to compute messages, that are exchanged between nodes. The
information exchange through the graph comes from these messages. The message
received by node u at the l-th iteration is given by

ml
u = ϕl

(
{M l(hl

u, h
l
v, e

l
uv, ruv) | v ∈ N (u)}

)
, (4.44)

where M l(hl
u, h

l
v, e

l
uv, ruv) computes the message sent from v to u, given the features

of the nodes, hl
u, hl

v, the edge connecting them, el
uv, and their separation vector ruv.

ϕl denotes an aggregation function that aggregates incoming messages. This can be
a simple sum or more sophisticated functions.
The Update Blocks are responsible for updating the internal representation of nodes
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and edges based on the incoming messages. The updates are given by:

hl+1
u = U l

h(hl
u,m

l
u), (4.45)

and
el+1

uv = U l
e(hl

u, h
l
v, e

l
uv, ruv), (4.46)

where ruv is the separation vector between the u and v. During the message passing
phase of the MPNN, the internal representation of the graph is iteratively updated
by alternating between message passing and update blocks. The main challenge in
designing a MPNN often lies in defining these blocks.

Finally, once the message passing phase is over, the Readout Block calculates global
features on all nodes of the graph:

y = ϕL
(
hL

u | u ∈ V
)
, (4.47)

such as the total energy of a molecule. Here, L represent the last iteration of the
message passing steps, and ϕL is an aggregation function that aggregates the final
features, which could be, for example, atomic energy or other relevant characteristics.

4.5.3 Equivariance
A function f is said to be equivariant under a group G if

f(g(x)) = g(f(x)) (4.48)

for any transformation g ∈ G. Molecules are embedded in 3D space and are governed
by translational and rotational symmetries. If for example a molecule is rotated, we
expect the forces on atoms to rotate equivariantly. These symmetries are referred to
as the Euclidian E(3) group and models have to be designed carefully to inherently
respect them. Incorporating these symmetries into models provides an important in-
ductive bias enhancing interpretability and generalization [108–110] Recent advances
has seen the development of multiple E(3)-equivariant architectures [110–113]. The
work presented in this thesis has all been applying the Polarizable atom interaction
Neural Network (PaiNN) [111] architecture.

4.5.4 Comparison with the electrostatic potential
MPNNs are analogous to the electrostatic potential [113, 114], providing some justi-
fication for them as an inductive bias for physical interactions in molecules, protein,
and other many body systems. Coulomb’s law states that the force acting on a
particle i under the influence of another particle, j, is

F es
i = −ke

qiqj

r2
ij

r̂ij , (4.49)



4.6 Wrap-up 41

where qi and qj are the charges of i and j, ke = 1/4πϵ0 is Coulomb’s constant and ϵ0
is the vacuum permittivity. By integrating over r̂ijdrij and summing over all particles
in an N -particle system, we get the total electrostatic energy

Ees = 1
2

N∑
i=1

qiV
es

i (xi) (4.50)

where V e
i is the electrostatic potential due to all charged particles except for i,

V es
i (xi) = ke

∑
j ̸=i

qj

rij
(4.51)

The analogy between electrostatic potential and message passing neural networks can
be broken down into the following components:

• Charge as Node Features: The charge qi of a particle corresponds to the
features hi of node i.

• Electrostatic potential as Message function: The electrostatic potential
V es

i (xi) at xi, caused by all other particles except i, corresponds to the incoming
message to the node i, where the message and aggregation function is

M(qj , rij) = qj

rij
and ϕ = ke

∑
j ̸=i

·, (4.52)

• Energy Calculation and Update Rule: The calculation of electrostatic
energy of the particle at xi corresponds to the update function of node i,

U(qi, V
es

i (xi)) = 1
2
qiV

es
i (xi) (4.53)

• Energy and Readout Function: The sum of the electrostatic energy contri-
butions from each particle corresponds to the readout function in an MPNN,
aggregating individual contributions to yield a global feature of the graph or
system.

While motivating MPNNs for physical systems, this analogy also highlights an
important potential issue concerning the errors that a cutoff function might introduce.

4.6 Wrap-up
In summary, the ML field offers a rich array of methods that can be used in various
contexts related to computational quantum chemistry. MPNNs are especially well-
suited for working on molecular structures because of their graph-like nature and they
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can be employed for various complex tasks such as predicting molecular properties,
estimating distributions or generating structures. Having previously explored some
of the challenges in computational chemistry and the bottlenecks posed by computa-
tionally intensive algorithms, we will now turn our focus towards how to incorporate
techniques from the field of ML for various tasks.



CHAPTER5
ML Accelerated

Transition State Search
Based on the papers ”NeuralNEB - Neural Networks can find Reaction Paths Fast”,
published in IOP Science, 2022, ”Transition1x - a dataset for building generalizable
reactive machine learning potentials”, published in Scientific Data, 2022, and work
done by Mathias Schreiner, Arghya Bhowmik, Peter Bjørn Jørgensen, Jonas Busk,
Tejs Vegge, and Ole Winther published in Scientific Data, 2022 and IOP Science,
2022

5.1 Transition States
The Born-Oppenheimer approximation provides a conceptual framework in which
chemical reactions can be viewed as the motion of nuclear configurations on a Poten-
tial Energy Surface (PES). From this perspective minima represent stable configura-
tions where, if perturbed the configuration will experience a restoring force, pulling
it back to its initial state. Chemical reactions can be viewed as configurations tran-
sitioning between these energy minima, by traversing energetic barriers separating
them. The height and shape of the barriers play a crucial role in determining reac-
tion rates and mechanisms. Within the Born-Oppenheimer approximation, electrons
are assumed to adjust instantaneously, or adiabatically, to the positions of the moving
nuclei, allowing us to focus solely on the nuclei when analyzing reaction mechanisms.
The nuclei, are treated classically and therefore, Transition State Theory (TST) is a
classical theory - even if forces and energies etc. are calculated using sophisticated
methods from computational quantum chemistry. The Boltzmann distribution de-
scribes how energy is distributed among the possible states, x, of a system. The
probability that a system is in a configuration with energy E is given by

p(x) = e−βE(x)

Z
, (5.1)

where Z is the partition function that normalizes the distribution by accounting for all
possible microstates, and β is the inverse temperature β = 1/kBT , with kB being the
Boltzmann constant and T the temperature. Increasing the temperature effectively
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reduces the exponent −βE(x), thereby making higher-energy states more probable.
At high temperatures configurations can move more freely on the PES as there is
more energy available in the system. Regardless of the specific way in which energy
is stored or used to break or form bonds or in other ways modify the geometry, the
requirement for a certain amount of energy to be present creates a substantial bot-
tleneck for a reaction to take place. Regardless of form of the energy, whether for
breaking or forming bonds, or for altering molecular geometry, the necessity for a
minimal energy for the reaction to take place represents a significant bottleneck for
any reaction to occur.

The term transition state formally refers to any configuration on the hyperplane
where the force acting on the configuration does not point towards either the reac-
tant or the product. A small perturbation of a configuration out of this hyperplane
would cause the configuration to fall into the corresponding minimum. However, most
commonly when a Transition State (TS) is mentioned in the literature, it is referring
to the specific TS on the hyperplane with the lowest energy. To calculate the true
reaction rate of a reaction, one would have to integrate over the entire hyperplane
separating the product and reactant and weigh all possible TSs with their probability
dictated by Boltzmann distribution. However, since the Boltzmann distribution is
dominated exponentially by the energy, most of the contribution to this integral will
come from the lowest energy configuration TS, which makes it particularly interesting.
The Minimal Energy Path (MEP) for a reaction is the trajectory on the PES that
follows the minimum energy valley connecting the reactant state to the product state,
passing through the TS, and gradient perpendicular to the MEP is 0 along its entire
length. The MEP provides crucial insights into the reaction pathways and allows for
understanding the energetics and reaction mechanisms of the reaction process. Con-
sider a chemical reaction A + B → C. The rate of this reaction can be described
as

−d[A]
dt

= −d[B]
dt

= d[C]
dt

= κ[A][B], (5.2)

where κ is the rate constant and [X] denotes the concentration of species X. The
rate depends on the concentration of the reactants since these have to collide in the
medium to react. The rate constant κ is described by the Arrhenius equation:

κ = Ae−βEa , (5.3)

where Ea is called the activation energy of the reaction, representing the energy differ-
ence or the barrier height between the reactant and the transition state. It describes
how much energy must be added to the reactant configuration to overcome the en-
ergy barrier. The Arrhenius equation essentially recasts the Boltzmann distribution
in terms of the activation energy, offering insights into how temperature and energy
barriers affect the speed of reactions. A is a scales the rate taking specific by con-
sidering various mechanistic details. Transition states are of particular interest, not
just because they offer insights into the reaction mechanism when studied alongside
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the MEP, but most importantly because they define the energy barrier that must be
overcome for the reaction to occur.

5.1.1 Transition State Search
The PES is a an extremely complex and high-dimensional landscape with 3N dimen-
sions, describing the x, y, z coordinates of each of N nuclei. Local minima on the
PES are ’easy’ to find if we can calculate its gradient - then we can simply relax
configurations, applying any gradient descent algorithms. Transition states on the
other hand are extremely hard to locate as the gradients on the PES does not point
towards them. There is largely two methods for finding TSs, local methods which
search for TSs based on an initial guess and interpolation methods that starts from
the product and/or reactant.

5.1.2 Local Methods
Local methods are typically used to find a TS starting from an initial guess and then
refining it within a local region of the PES. An important property that is used for
most local method is, that the TS is a first-order saddle point. This means that the
curvature is positive in all but one direction and that the gradient is zero. Perhaps the
most notable methods is the Newton-Raphson method [115]. This method is known to
converge quickly [7] if the initial guess is in a region where the Hessian matrix of the
PES has only one negative eigenvalue. The Hessian matrix describes the curvature
in different directions and positive eigenvalues correspond to directions with positive
curvature. Perturbing a configuration along an eigenvector with a positive eigenvalue
will result in a restoring force on the configuration. The eigenvalues correspond to
angular frequencies along the direction of the eigenvectors, and negative eigenvalues
correspond to imaginary angular frequencies or repulsive forces along those eigen-
vectors. The Hessian, or equivalently, the negative Jacobian J of the force field,
quantifies how a small perturbation of a configuration x results in a small change
in the force F (x). Given a desired change in the force ∆F , the inverse Jacobian
computes the required change in the input ∆x to produce it:

∆F (x) = J(x)∆x (5.4)
∆x = J−1(x)∆F (x). (5.5)

Since the force acting on a saddle point is 0, if there are any forces F (x) ̸= 0 on the
configuration, the desired change in output is ∆F = F (x). Assume that the Jacobian
is constant, ∆x is calculated simply by

∆x = −J−1(x)F (x). (5.6)

And thus we can update our guess for x

xnew = xguess − J−1(x)F (xguess). (5.7)
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There is going to be numerical errors as it is unlikely that the Jacobian is constant,
but the closer our xguess is to the TS the better the approximation becomes. By
iteratively updating this guess we can quickly converge towards the correct TS. To
prevent too large jumps, a trust radius is sometimes defined so xnew is restricted to
some range. At each step it is checked whether the Hessian still only has a single
negative eigenvalue. Computing the Hessian is computationally expensive and this
method is best used as a refinement to TSs found by other methods.

5.1.3 Interpolation and Growing String methods
These methods instead start from the product and reactant configurations. Perhaps
the simplest is the Linear Synchronous Transit (LST)[7] method where all nuclei are
assumed to move linearly between the reactant and product throughout the reaction.
Configuration energies are then calculated along this path and the maximal energy
configuration is reported as the TS. An improvement to the LST is the Quadratic
Synchronous Transit (QST) algorithm which improves on the guess of TS and MEP
from LST by relaxing the TS perpendicularly to the LST path. This yields a product,
reactant, and TS between which a second order polynomial is fitted.

5.1.3.1 Growing String Methods

A more sophisticated family of TS search algorithms are the Growing String Methods
(GSMs) algorithms. These algorithms can be categorized into single-ended[116, 117]
and double-ended[118, 119] methods. In single ended methods a MEP is grown from
the reactant alone, and in double ended methods a MEP is grown simultaneously
from the product and reactant. There are several methods for growing the strings in
GSM. One approach is searching for energetic minima on segments of the hypersphere
pointing in the general direction of the reaction. Another is the ”step-and-slide”
method, where the step is taken either in the direction of the product of the reaction,
or the end of the opposite string. After taking this step, the configuration is relaxed
under the constraint that the distance to the previous point is kept fixed. GSMs can
also be employed to explore the PES without having any specific target, but simply
starting from a given minima and finding possible TSs in its vicinity.

5.1.3.2 Nudged Elastic Band

Another algorithm is the Nudged Elastic Band (NEB)[16, 17]. NEB uses a series
of configurations referred to as images to represent the path between product and
reactant states. These images are connected by virtual elastic bands, pulling adjacent
images toward each other. Initially a guess MEP is proposed by a cheap algorithm
such as LST or similar. Then, at each step, the gradient of the PES is calculated
at each image, and the images are nudged in the direction of the component of the
gradient perpendicular to the path MEP. This causes the path to relax along a valley
such that all perpendicular forces acting on it is 0. The springs make sure that the
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images stay evenly spaced. At convergence the true TS may lie between two images
causing NEB to systematically underestimate the energy of the TS. Climbing Image
Nudged Elastic Band (CINEB)[120] adds a slight modification to the algorithm that
addresses this problem. In CINEB an extra phase is added between path optimization
steps. In this phase, the highest energy image along the path is nominated as a
candidate for the TS. This image climbs to the highest point on the path, freed from
all spring forces, by following the component of the gradient that is parallel to the
current iteration of the MEP. CINEB then alternates between the climbing step and
the path optimization step in order to predict the final TS.

5.2 Transition State Search with Machine Learning

Accurate calculations of PESs for molecular systems are important for understand-
ing a wide range of phenomena such as molecular interactions, reaction mechanisms,
transition states and many more. The PES is essentially a function that maps molec-
ular systems with N atoms, each described by 3 spatial coordinates (x, y, z), to a
to a potential energy: E : R3N → R. Here, R3N represents the 3N -dimensional
configuration space, and R represents energy. Given a configuration x ∈ R3N , E(x)
yields the potential energy of that configuration. In general, the force, F (x) on any
generalized coordinate, x, can be calculated by the gradient of the PES with respect
to that coordinate F (x) = −∇E(x). This can be used to find minima, or stable con-
figurations on the PES or perform simulations, e.g. with Langevin Dymamics. There
exists a wealth of methods for calculating the PES. These range from wave-function
methods and Density Functional Theory (DFT) which deal seriously with the quan-
tum mechanical nature of molecules, to force-field methods that abstracts quantum
mechanical nature of electrons away and essentially treat the entire molecule classi-
cally by approximating all nuclei as charged particles connected with springs. The
plethora of methods for approximating energetics of molecular configurations reflects
the importance of the PES. In recent years a new player has entered the field - Ma-
chine Learning (ML) potentials, and specifically Neural Networks (NNs) trained to
accurately emulate expensive methods from computational quantum chemistry. NNs
are extremely flexible function approximators ideal for the task. The most important
algorithm in the context of NNs is the back propagation-algorithm to which the field
of NNs at large owes its success. The back propagation algorithm lets us calculate the
gradient of any output of the model with respect to the model parameters or model
inputs. In the context of NNs emulating PESs the back-propagation algorithm plays
double duty as it provides a framework to obtain the gradient of the potential energy
with respect to the nuclear coordinates, which are the forces acting on the nuclei.
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5.3 NeuralNEB and Transition1x
The initial focus of my PhD research was to develop an approach for accelerating
transition-state search in molecular systems by combining fast and accurate ML meth-
ods for approximating PESs with the well-established NEB algorithm. This method
was dubbed NeuralNEB[23] The NEB method, though robust when operating on
smooth PESs, is computationally intensive to run. This is because it requires ex-
pensive calculations of energy and force along entire reaction paths at each iteration.
This becomes particularly heavy for complex systems. Moreover, the MEP of these
complex systems tend to converge slowly, resulting in further iterations of the algo-
rithm, exacerbating the computational cost. The success of any TS-search method
ultimately relies on the quality of the PES that it is operating on. TS search methods
are agnostic to the physical significance of the TSs - they are simply algorithms for
locating first order saddle points in high-dimensional scalar fields. If the model for
the PES does not capture the physics of the system adequately, saddle points on the
PES will not reflect the true TSs, and derived barrier heights and reaction mecha-
nism will be irrelevant or misleading. The NEB method is particularly sensitive to
the behavior of the PESs over large regions. NEB is not just an algorithm for finding
TSs but entire MEPs, and doing so it essentially ”sweeps” the entire surface. Any
regions encountered during the search with high fluctuations or unphysical gradients
can throw the algorithm severely off track resulting in convergence to wrong TSs or
an inability to converge all together.

Unfortunately, this particular requirement of the NEB method aligns with one the
inherent weaknesses of NNs. NNs are extremely flexible function approximators ow-
ing to their numerous parameters, which makes them well-suited for approximating
complex PESs over a known data distribution. However, NNs are notoriously bad
at Out Of Distribution (OOD)[121, 122] tasks owing to the fact that their interplay
many parameters can not necessarily be extrapolated, and consequently, in order to
train NN-models to work with NEB large regions of the PES has to be available dur-
ing training.

Initially we decided to use the QM9[123] dataset for training our models. QM9 is a
popular benchmarking dataset in the field of computational chemistry and it is often
used as a starting point for developing new models and methods in the field, especially
in the context of ML based methods. It contains 135k equilibrium configurations for
small organic molecules consisting of up to 9 heavy atoms, including N, O, C, and
F and associated properties such as energies, polarizability, dipole moments, etc., all
optimized with the B3LYP [124] functional and 6-31G(2df,p) basis set. QM9 is based
on GDB-17 [125] - a vast database of molecular configuration based on a combinato-
rial exploration of chemical space. A problem with the QM9 dataset in the context
of learning general PESs with NNs is that we can only reasonably expect the models
to accurately predict energies of equilibrium-configurations. As outlined above, NN
models trained on QM9 are ill-suited to act as PES-approximators for NEB as they
have a limited understanding of the PES in the relevant regions between equilibrium
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configurations. The results when applying these models, trained on QM9, as PESs
for the NEB algorithm were poor. The algorithm would only converge around 35%
of the time, and when it did, it would underestimate barrier heights, and find MEPs
with irregular energy profiles displaying sudden spikes or dips that were not physically
meaningful.

Following the shortcomings of our initial approach, we shifted to another, more suit-
able dataset for the task. ANI1x [126] is part of a series of datasets designed for
training and validating ML models for tasks in quantum chemistry. The focus of
these datasets is to provide a diverse range of molecular configurations including
off-equilibrium geometries spanning a wider range of the PES. The ANI1x dataset
contains 5M geometries of up to 8 heavy atoms, consisting of C, N, and O and includes
energies and forces calculated with the wb97x [127] functional and 6-31G(d) [128] ba-
sis set. The configurations in ANI1x are proposed through various methods such as
pseudo-molecular dynamics and perturbations of existing configurations. Candidate
configurations are evaluated through the query by committee algorithm, where new
data is included or rejected based on the variance of an ensemble of models trained
on the dataset. The assumption is that if the ensemble prediction has a high variance,
the data is not represented well enough in the dataset and it should be included. Only
then is it necessary to perform expensive DFT calculations. This approach allows for
a systematic way of expanding the dataset to extend the representational capability
of the NN-models. This makes it suitable for models that require a more complete
sampling of configuration space such as the PES-models in NeuralNEB. We trained
a new batch of models on the ANI1x dataset and they yielded significantly better
results than our initial efforts using QM9. The models would converge on 70% of
reactions and predict physically plausible MEPs.

At this point we used a third dataset of chemical reactions for validating Neural-
NEBs TSs-search capabilities. This dataset consists of reactants, products and TSs
for 12k organic reactions of up to 7 heavy atoms including C, N, and O, all generated
with the GSM. By initiating NeuralNEB in the endpoints of these reactions we could
find TSs and compare them with TSs found by traditional methods. This assessment
had an inherent systematic error that could not be accounted for, due to an inconsis-
tency in the level of DFT used for the reaction dataset and the ANI1x configurations,
on which the NeuralNEB models were trained.

To properly assess the quality of barrier heights and TSs predicted by NeuralNEB,
we had to recalibrate the reaction dataset to align with the level of DFT from ANI1x.
We did this using NEB as search algorithm. We soon realized that recalibrating the
entire dataset was an immense computational task, estimated to require in the order
of 25 years of wall-clock CPU-time. However, it was clear that the millions of DFT
calculations for configurations generated while running NEB would be the ideal train-
ing data for NeuralNEB models. NEB excessively samples the particular regions of
the PESs interesting for studying reaction mechanisms, thus making it an excellent
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Figure 5.1: Distribution of data in the QM9, ANI-1x, and Transition1x datasets,
illustrated on the Muller-Brown potential energy surface. Transition1x
dataset includes data along reaction pathways and at transition states,
providing valuable data for reaction barrier calculations. The ANI-1x
dataset samples the energy minima thoroughly but provides sparse data
around transition states. The QM9 dataset only provides a single data
point the bottom of each minimum..

data proposal mechanism for our application. This naturally led to the creation of the
Transition1x [22] dataset, owing its postfix 1x to the ANI1x dataset. This amounted
to the first publication during my Ph.D. ”Transition1x - a dataset for building gen-
eralizable reactive machine learning potentials”, published in Scientific Data in 2022,
which is appended in appendix A. The publication also includes a recalibration of the
QM9 dataset dubbed QM9x, allowing for various comparisons of the datasets. Note
that transitions are rare events and are therefore only sparsely represented in datasets
such as ANI1x, that relies on proposal methods imitating the dynamics of the system.
Figure 5.3 is an illustration of the characteristics of QM9, ANI1x and Transition1x,
demonstrated on the Müller-Brown dataset, which is a theoretical 2-D toy potential,
often used for showcasing and testing methods in computational chemistry.

The Transition1x dataset is useful in a wide range of ML-based methods concerned
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with chemical reactions and it is a tailor-made fit for training NeuralNEB models.
Building on Transition1x the NeuralNEB project progressed to its third iteration
which resulted in the paper ”NeuralNEB - Neural Networks can find Reaction Paths
Fast”, published in IOP Science, 2022, which is appended in appendix B. Here, the
Transition1x dataset was split into ten subsets, each consisting of a unique set of
isomers participating in various elementary reactions. We employed 10-fold cross
validation on these splits. However, we did not simply evaluate the models on the
test-sets, as is normally done in cross-validation. Instead the models were applied as
PES-approximators within the NeuralNEB framework and evaluated based on their
ability to guide NEB to the correct TSs of the reactions in the test set. These models
would converge on 80% of the reactions examined, along with a Mean Absolute Er-
ror (MAE) of 0.23 eV and Root Mean Squared Error (RMSE) of 0.52 eV for barrier
heights. Although these results did not achieve chemical accuracy, the models signif-
icantly accelerated the computations. The average wall-clock time for convergence
using NeuralNEB was only 33 seconds, compared to 12 hours and 15 minutes required
for Density Functional Theory (DFT) calculations.

These results are, encouraging nonetheless as they open up for various avenues for
improvement. Particularly in the choice of NN architecture. In our early experi-
ments we used the SchNet [129, 130] architecture, and were rarely able to converge
on MEPs. It was upon replacing the architecture with Polarizable atom interaction
Neural Network (PaiNN) [111] that we saw signs of a functional framework, indicating
that the architecture plays a huge role and there are many architectures to try [108,
112, 113]. The results found in the work with Transition1x and NeuralNEB was sent
summarized in the extended abstract ”Machine Learning for Chemical Reactions”
and poster presented at the Machine Learning and the Physical Sciences Workshop
at NeurIPS 2022, appended in C.

NNs run on GPUs as opposed to CPUs as classical methods in computational chem-
istry. This allows for calculations of hundreds of configurations at a time at only
little extra computational cost. Traditionally, the images used to represent the MEP
is a a compromise as computational cost scales linearly with the number of images.
However, this is not the case for NNs, so MEPs could potentially by modeled with
high resolutions, potentially leading to much higher convergence rates.
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CHAPTER6
Implicit Transfer

Operator Learning
Based on the paper ”Implicit Transfer Operator Learning: Multiple Time-Resolution
Surrogates for Molecular Dynamics”, work done by Mathias Schreiner, Ole Winter,
and Simon Olsson, in proceedings for NeurIPS 2023. The focus of the Transition1x
and NeuralNEB papers was to generate relevant data and employ Machine Learn-
ing (ML) models to accelerate Transition State (TS) search. TSs represent specific
configurations on the Potential Energy Surface (PES) and serve as critical points
for understanding reaction kinetics. By identifying the TSs we can unravel reaction
mechanisms and calculate barrier heights, which, through the Arrhenius equation,
can be used to estimate reaction rates.

An alternative approach for studying properties such as reaction rates involves di-
rectly simulating the system’s evolution over time. Langevin dynamics is an impor-
tant tool for such simulations. Here it is often assumed that the systems momentum
experiences a rapid decay due to frequent interactions with the surrounding medium,
operating on a time scale much faster than the sampling rate of frames in the simu-
lated trajectory. This leads to dynamics, where the system is acted upon by a drift
term, arising from the gradient of the PES and random forces that, through the
central limit theorem, converges towards Gaussian noise between frames. This strat-
egy enables realistic simulations of complex systems allowing us to study a variety
of properties, some of which were previously revealed by the TSs. Such stochastic
systems can evolve in a multitude of different ways, necessitating either numerous or
extremely long trajectories to draw statistically significant conclusions. In reality, we
are interested in a model that describes the evolution of the time dependent proba-
bility distribution of the system, p(x, t), over configuration states, representing the
behavior of the ensemble of the trajectories. As previously discussed, in the context
of Langevin Dynamics, this is precisely the Fokker Planck equation, which we will
write in terms of the Fokker-Planck operator L

d

dt
p(x, t) = Lp(x, t). (6.1)
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We can study the system at a later time by integrating the Fokker Planck operators
action on the system:

p(x, t0 + τ) = p(x, t0) +
∫ t0+τ

t0

Lp(x, t)dt, (6.2)

and since the Fokker-Planck operator is a linear operator, it allows for a closed solution
of the integral:

p(x, t0 + τ) = Tτp(x, t0), (6.3)
where Tτ is called the transfer operator. This can be rewritten in its spectral form

Tτ =
∞∑

i=1
eτλi |ψi⟩⟨ϕi| (6.4)

where ϕi and ψi are left and right eigenfunctions of L. This formulation reveals a
rather straight-forward dependency on the integration time τ motivating the use of
multiple time-resolutions as a potential powerful data augmentation for a conditional
generative model of the form

p(xτ |x0, τ) =
∞∑

i=0
eκiτ ⟨δxτ

|ψi⟩⟨ϕi|δx0⟩, (6.5)

that implicitly learns the transfer-operator. Here, δx denotes the dirac-delta distribu-
tion. Apart from serving as a useful inductive bias, this method of data augmentation
is easy to implement; it simply involves sampling a lag τ and a state from a trajectory
xt, and then train the model to predict xt+τ from the same trajectory. This is exactly
the motivation for and strategy in the paper introducing the Implicit Transfer Opera-
tor (ITO) framework”Implicit Transfer Operator Learning: Multiple Time-Resolution
Surrogates for Molecular Dynamics” [27].

In the paper we train conditional Denoising Diffusion Probabilistic Models (DDPMs)
models for learning transfer operators for various systems. In our first experiments we
trained models on trajectories of Langevin Dynamics simulated on the Müller Brown
potential. This is a theoretical 2-D potential commonly used as toy-potential for
testing various methods related to the behavior of physical systems on PESs.

In order to test our hypothesis, that augmenting the training data with multiple
time-scales would enhance the robustness of the models we designed two experiments
and compared their results. In the first we trained a set of models using a fixed
lag, meaning that each model was trained to propagate the system forward on a
specific timescale. In the second experiment we trained models to learn multiple
time-scales at once, by sampling various lag times at training. We simulated trajec-
tories with the fixed-lag and stochastic-lag models and evaluated their performance
using VAMP2-scores, comparing these scores with those from the original Langevin
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Dynamics simulations. The stochastic-lag models outperformed the fixed-lag models
across all timescales. Remarkably, a single model employing the data augmentation
strategy would outperform multiple fixed-lag models on domains on which they were
specialized.

In the next experiment we set out to evaluate the self-consistency of our stochastic-
lag models according to the Chapman-Kolmogorov equations. Specifically whether
p(xNτ | x0) =

∏N
i=1 p(xiτ | x(i−1)τ ), or, in other words, we wanted to verify that

the final state in a trajectory xanc
Nτ , obtained by ancestrally sampling a sequence of

N intermediate states at time intervals τ is identical to the distribution of xdir
Nτ ob-

tained by direct sampling from the same model with the longer time-step Nτ . In this
experiment we train models on molecular dynamics simulations of alanine-dipeptide
with a 1ps resolution. We plot transition densities projected on to the torsion angles
ϕ and ψ on the backbone and show a strong consistency between samples at various
intervals, whether sampling up to 512ps directly or ancestrally sampling increments
of 1ps at a time. 512 ps of dynamics correspond to 106 integration steps in the Molec-
ular Dynamics (MD) simulations that generated the data. We obtained our samples
with 50 model evaluations by applying the improved sampling techniques of DDPMs
involving probability flow ODE framework described earlier.

In our last experiment we evaluate the capabilities of our models to realistically sim-
ulate various systems of fast-folding proteins. These proteins are originally simulated
using all-atom molecular dynamics in explicit solvent. However, we train our model
using a coarse-grained representation based on the positions of the Cα atoms. We
calculate free energies of folding as well as mean first passage times of both folding
and unfolding, based on trajectories simulated by our models. We then compare these
values with values derived from the original simulations and show good agreement
between models and simulation.

An interesting avenue for continued research is generalising ITO models across chem-
ical space. Currently, we can simulate training the data, but if ITO models could
generalize from high-quality dynamics simulation dataset that includes various chem-
ical systems, they could potentially provide a powerful for studying dynamics of
unseen systems - essentially serving as a virtual chemical laboratory.
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CHAPTER7
Conclusion

In this thesis I provide a brief overview of central methods and concepts in the field
of Machine Learning (ML) for Molecular Science and present my contributions to the
field as a result of three years of Ph.D. studies at the Technical University of Denmark.

Accurate modeling of electronic-structure offers an invaluable insight into the micro-
scopic behavior of molecules, paving the way for in-silico design of drugs and materials
and the study of phenomena in chemistry, physics, and biology. While classical elec-
tronic structure methods are capable of accurate prediction of molecular properties,
they are prohibitively expensive for large-scale exploration. Neural Networks (NNs)
have turned out to be excellent emulators of such methods while operating orders of
magnitude faster. ML methods open up for fascinating possibilities in computational
chemistry, some of which I explore in my publications listed here:

Transition1x - a dataset for building generalizable reactive machine learn-
ing potentials. Though powerful function approximators, NNs has poor extrapo-
lation capabilities, and they require vast amounts of relevant training data to per-
form well at a given task. At a microscopic scale, chemical reactions are rare events
and datasets that rely on dynamical simulation or perturbation methods for their
data-generation procedure often lack sufficient examples of reactive configurations.
Transition1x uses Nudged Elastic Band (NEB) as an efficient sampling algorithm for
relevant data for training NN models to work on reactive systems. Transition1x can
hopefully serve as a resource facilitating exploration of reactive systems and reaction
networks with NNs. The data generation procedure for Transition1x is straightfor-
ward and has been made publicly available to encourage further iterations of the
dataset with larger systems or reactions involving different elements.

NeuralNEB – Neural Networks can find Reaction Paths Fast. This paper
introduces the NeuralNEB algorithm which significantly accelerates Transition State
(TS)-search by replacing expensive Density Functional Theory (DFT) calculations
with cheap NN-based potentials. We trained models on various popular electronic
structure datasets, and those trained on Transition1x significantly outperformed the
others, both in terms of accuracy and convergence rates. This illustrates the im-
portance of specialized datasets such as Transition1x in the literature. NeuralNEB
would on average locate TSs 1350 times faster with a Mean Absolute Error (MAE)
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of 0.23 eV and Root Mean Squared Error (RMSE) of 0.52 eV on barrier heights,
when compared to NEB using traditional DFT. We also compared the NeuralNEB
against Density-Functional Tight-Binding (DFTB)-based NEB. DFTB [131] is a pop-
ular ”fast” potential for quick screening of large amounts of molecules, and it was
equivalently outperformed by NeuralNEB in terms of speed, accuracy and conver-
gence rates.

Implicit Transfer Operator Learning: Multiple Time-Resolution Surro-
gates for Molecular Dynamics. In this paper we introduce the Implicit Transfer
Operator (ITO) framework which employs conditional Denoising Diffusion Probabilis-
tic Models (DDPMs) along with a data augmentation scheme that allows models to
learn dynamics at multiple time-scales. We train and test ITO models on a variety
of dynamical systems, including Molecular Dynamics (MD) simulations, and demon-
strate these models’ ability to faithfully capture both fast and slow dynamics. By
augmenting training data with samples at multiple time scales we provide an inductive
bias, encouraging the model to implicitly learn the eigenfunctions and eigenvalues of
the dynamics. We find that, using our data augmentation strategy, ITO models can,
across timescales, outperform equivalently trained fixed-lag models on their specific
domains. The ITO framework provides a virtual a microscopic laboratory that allows
us to study and simulate dynamics of molecular systems. Avenues of further research
includes generalising over temperatures, chemical space, and explicitly learning the
eigenfunctions and eigenvalues of the transfer operator.

In summary, this thesis has been exploring some of the possibilities that is open-
ing up as we integrate ML methods into computational quantum chemistry. The
effort of merging these fields is an exciting ride, and it may slowly be revolutioniz-
ing quantum chemistry, leading to novel methods with far-reaching applications in
industry, technology and scientific research.
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ABSTRACT8

Machine Learning (ML) models have, in contrast to their usefulness in molecular dynamics studies, had limited success
as surrogate potentials for reaction barrier search. This is primarily because available datasets for training ML models
on small molecular systems almost exclusively contain configurations at or near equilibrium. In this work, we present the
dataset Transition1x containing 9.6 million Density Functional Theory (DFT) calculations of forces and energies of molecular
configurations on and around reaction pathways at the ωB97x/6-31G(d) level of theory. The data was generated by running
Nudged Elastic Band (NEB) with DFT on 10k organic reactions of various types while saving intermediate calculations. We
train equivariant graph message-passing neural network models on Transition1x and cross-validate on the popular ANI1x and
QM9 datasets. We show that ML models cannot learn features in transition state regions solely by training on hitherto popular
benchmark datasets. Transition1x is a new challenging benchmark that will provide an important step towards developing
next-generation ML force fields that also work far away from equilibrium configurations and reactive systems.

9

Background & Summary10

ML models for molecular systems have accuracy comparable to quantum mechanical (QM) methods but the computational cost11

of classical interatomic potentials1–5. The development of such data-driven models has ushered in a new age in computational12

chemistry over the last few years6–9. ML potentials have been used for a variety of tasks such as structural optimization10 or13

the study of finite-temperature dynamical properties through molecular dynamics11. ML potentials are especially suited for14

screening through large numbers of molecules or simulating systems that are too large for traditional QM methods due to a15

complexity scaling that is orders of magnitudes lower. The applicability of these models depends on the sampling of training16

data of chemical and structural space12. Fitting ML models to the entire potential energy surface (PES) requires lots of carefully17

selected data as the underlying electronic interaction between atoms is of a complex, quantum mechanical nature. Thus the18

focus remains on an efficient sampling strategy of the useful parts of the PES that are relevant to the application at hand. For19

example, models for optimization tasks should be trained on datasets including small perturbations to equilibrium geometries,20

and models for molecular dynamics (MD) simulations and reactive systems should be trained on datasets with high energy21

geometries and states that represent the making and breaking of bonds.22

23

ML potentials that allow accurate modeling of general reaction barriers are challenging to train and only limited demon-24

strations have been shown to date. Acceptable accuracy has been achieved by focusing on single or few types of reactions25

involving small molecules with tractable dataset size13–16 or by studying simple molecular dissociation17. ML models that26

can accurately predict PESs for unseen chemical reactions must be incredibly expressive and have access to training data that27

extensively samples structures from reactive and high-energy regions (compared to near-equilibrium geometries) of chemical28

space. Recently, the development of Neural Network (NN) architectures that learn representation and energy/force mapping6
29

has tackled the problem of expressive models, but creating datasets with millions of data points sampled around reactions of30

various types allowing such models to generalize across a large number of reactions has remained an open challenge. Thus, ML31

potentials have not yet proved capable of accurate and general prediction of reaction barriers and transition states.32

33

Sampling of rare transition events is efficiently done with the NEB method18. Here we propose a new dataset for building34

ML models capable of generalizing across a large variety of reaction PESs. We base our work on a dataset of reaction-product35

pairs from Grambow et al. 202019. The original dataset contains a wide range of organic reactions representing bond changes36

between all possible combinations of H, C, N, and O atoms. We leverage NEB-based PES exploration as an efficient data37
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collection tool and prove its superiority compared to MD-based dataset preparation on reactive molecular configurations by38

testing the accuracy of ML models built from both types of data. Moreover, Transition1x is compatible with ANI1x in the level39

of DFT such that ML models can be trained on the two in conjunction to leverage both of their strengths.40

41

Ultra-fast prediction of chemical reaction kinetics, especially for computational modeling of complex reaction networks, is42

groundbreaking for the entire field of chemical and molecular sciences. We believe that the Transition1x dataset will expedite43

the development and testing of universal reactive ML potentials that help the community achieve that goal.44

Methods45

Starting from a set of 11961 reactions19 with reactants, transition states, and products, NEB is used to explore millions of46

molecular configurations in transition state regions, using DFT to evaluate forces and energies. The resulting DFT calculations47

are available in the Transition1x dataset. Figure 1 presents an overview of the workflow. Reactant and product are relaxed for any48

particular reaction before generating an initial path using Image Dependent Pair Potential (IDPP)20. Next, the minimal energy49

path (MEP) is optimized with NEB18 and consecutively Climbing Image Nudged Elastic Band (CINEB)21 until convergence. If50

the path converges, we save the DFT calculations from the iterations for which the current reaction path moved significantly.51

Relax reaction endpoints
until F < 0.01 eV/Å

Run NEB with
IDPP

Run NEB with
DFT until  

Fmax < 0.5 eV/Å

Run CINEB with
DFT until 

Fmax < 0.05 eV/Å

Include current iteration of reaction path if
the cumulative sum of Fmax from previous
iterations since last inclusion is > 0.1 eV/Å

Throw away entire reaction
if CINEB has not converged

within 500 iterations

Save DFT calculations 
 for current iteration of

reaction path in HDF5 file

Figure 1. Overview of the data generation workflow. First, reactant and product are relaxed before generating an initial MEP
guess with IDPP20. Next NEB18 and CINEB21 is run on the initial path until convergence. If the MEP does not converge within
500 iterations we discard the reaction, as unphysical configurations may have been encountered. If the reaction converges, all
intermediate paths are saved in the dataset, as long as they are sufficiently different from previously saved paths.

Initial Data52

The data generating procedure starts by taking an exhaustive database19 of product-reactant pairs based on the GDB7 dataset22.53

Each reaction consists of up to seven heavy atoms including C, N, and O. The authors of this data used the Growing String54

Method (GSM)23 with the ωB97X-D324/def2-TZVP level of theory to generate reactants, products, and transition states for55

11961 reactions using Qchem25.56

Density Functional Theory57

For compatibility with ANI1x26, the ωB97x24 and 6-31G(d)27 basis set is applied to perform all calculations in ORCA 5.0.228.58

Optimizer59

The BFGS optimizer29 implemented in Atomic Simulation Environment (ASE)30 with α = 70 and a maximal step size of 0.0360

Å is used for all optimization tasks, including relaxing endpoints and running both NEB and CINEB.61

Initial Path Generation62

Product and reactant geometries are relaxed in the potential before running NEB. The configuration is considered relaxed once63

the norm of the forces in configurational space is less than a threshold of 0.01 eVÅ−1. After relaxing the endpoints an initial64

path is proposed, built from two segments – one interpolated from the reactant to the transition state from the original data,65

and another interpolated from the transition state to the product. Next, the initial path is minimised with NEB using IDPP20, a66

potential specifically designed to generate physically realistic reaction paths for NEB at a low computational cost. Finally, the67

path is proposed as the initial MEP in the DFT potential.68

Nudged Elastic Band69

NEB18 is a double ended search method for finding MEPs connecting reactant and product states. It works by iteratively70

improving an initial guess for the MEP by using information about the PES as calculated by some potential. NEB represents the71

path as a series of configurations called images connected with an artificial spring force. The energy of the path is minimized72

by iteratively nudging it in the direction of the force perpendicular to it until convergence. After the path has converged, there73

is no guarantee that the maximal energy image represents the correct transition state as the maximal energy image may not74

A Transition1x - a dataset for building generalizable reactive machine learning potentials 73



correspond with the true maximum along the path. CINEB21 is an improvement to the NEB algorithm as it imposes, as an75

additional condition to the convergence, that the maximal energy image has to lie at a maximum. It does so by, in each iteration,76

letting the image with the maximal energy climb freely along the reaction path. Running CINEB from the beginning, however,77

can interfere with the optimizer and result in slow (or wrong) convergence of the MEP as the climbing image can pull the78

current path off the target MEP if the paths are not close. Therefore, first, the path is relaxed with regular NEB until the maximal79

perpendicular force to the MEP is below a threshold of 0.5 eVÅ−1. At this point, NEB has usually found the qualitatively80

correct energy valley, and further optimization only nudges the path slightly while finding the bottom. At this point, CINEB81

is turned on to let the highest energy image climb along the path until it finds an energy maximum. CINEB is run until the82

path has been relaxed fully and the maximal perpendicular force on the path does not exceed 0.05 eVÅ−1. This threshold was83

chosen as a compromise between having accurate reaction paths in the dataset and limiting redundant DFT calculations. No84

further refinement of the transition states was done at this point as the goal is to generate a dataset of molecular configurations85

close to reaction pathways rather than finding accurate transition states. Ten images were used to represent all reaction paths86

and the spring constant between them was 0.1 eVÅ−2.87

Data selection88

When running NEB, unphysical configurations are often encountered in reactions that do not converge. Such images in the89

data will interfere with model when training, and therefore those reactions are discarded entirely. There are 10073 converged90

reactions in Transition1x. In the final steps of NEB, the molecular geometries of images are similar between each iteration as91

the images are nudged only slightly close to convergence. Data points should be spread out so that models do not overfit to92

specific regions of the data. Updated paths are only included in the dataset if they are significantly different from previous93

ones. The maximal perpendicular force, Fmax, to the path is a proxy for how much the path moves between iterations. Once the94

cumulative sum of Fmax from previous iterations, since the last included path, exceeds 0.1 eVÅ−1 the current path is included.95

This means that often in the first iterations of NEB every path is included, but as we move towards convergence new data points96

are included at a lower frequency.97

Model and Training98

To validate the dataset, we train and evaluate PaiNN31 models on Transition1x, QM9x and ANI1x and compare the their99

performances. PaiNN is an equivariant Message Passing Neural Network (MPNN)32 model specifically designed to predict100

properties of molecules and materials. Forces are calculated as the negative gradient of the energy wrt. the Cartesian coordinates101

of the atoms rather than as a direct output from the model. This ensures consistent forces. We used a cut-off distance of 5 Å to102

generate the molecular graph neighborhood, three message-passing steps, and 256 neurons in each hidden layer of the model.103

The model was trained using the ADAM33 optimizer and an initial learning rate of 10−4. During training, the learning rate was104

decreased by 20% if no improvement was seen on training data for 104 batches. The loss is a combination of a squared error105

loss on force and energy. The force error is the Euclidian distance between the predicted and the true force vector divided by106

the number of atoms in the molecule, as otherwise, the force term would contribute more to the loss on bigger molecules. All107

datasets are stratified by molecular formula such that no two configurations that come from different data splits are constituted108

of the same atoms. Test and validation data each consist of 5% of the total data and are chosen such that configurations contain109

all heavy atoms (C, N, O). Potentially, models can learn fundamental features faster from simpler molecules, therefore, all110

molecules with less than three heavy atom types are kept in the training data. The models are trained on the training data with111

early stopping on the validation data, and we report the mean and standard deviation of Root Mean Square Error (RMSE) and112

Mean Average Error (MAE) from the evaluation of test data.113

QM9 and QM9x114

QM934 consists of DFT calculations of various properties for 135k small organic molecules in equilibrium configurations. All115

molecules in the dataset contain up to 9 heavy atoms, including C, N, O, and F. QM9 is ubiquitous as a benchmark for new116

QM methods, and to enable direct comparison with Transition1x, all geometries from the QM9 dataset is recalculated with the117

appropriate level of DFT. Since configurations in the original QM934 are not relaxed in our potential, there will be forces on118

some configurations. All recalculated geometries are saved in a dataset that we shall refer to as QM9x.119

ANI1x120

ANI1x26 is a dataset of off-equilibrium molecular configurations generated by perturbing equilibrium configurations using121

pseudo molecular dynamics. Data is included or rejected from the dataset based on the Query by Comittee (QbC) algorithm. In122

QbC an ensemble (or committee) of models is trained on the dataset, and the relevance of new proposed data is assessed through123

the variance of the ensemble’s predictions without having to perform expensive calculations on the data. It is assumed that data124

points will contribute new information to the dataset if the committee disagrees. It is cheaper to evaluate the committee on data125

than running DFT calculations, so it is possible to screen many candidate configurations before calculating force and energy126
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with more expensive methods. The dataset is generated by alternating between training models and expanding the dataset. The127

procedure resulted in force and energy calculations for approximately 5 million configurations containing C, O, N, and H.128

Data Records129

Data records for Transition1x are available in a single Hierarchical Data Format (HDF5)35 file; Transition1x.h5, hosted130

by figshare36. It can be downloaded at https://doi.org/10.6084/m9.figshare.19614657.v4 or through the repository https:131

//gitlab.com/matschreiner/Transition1x. The HDF5 file structure is as shown in Figure 2. The parent file has four groups, one132

group contains all data and the three other groups contain symbolic links to the train, test, and validation data – these are133

the data splits used in this paper. In each data split group, there is a group for each chemical formula under which there is a134

subgroup for each reaction with the corresponding atoms. Each reaction has four datasets; the atomic numbers of the reaction,135

the energies of the configurations, the forces acting on the individual atoms, and the positions of atoms. For a reaction with m136

atoms where we have saved n images, the atomic_numbers dataset will have dimensions (m,), one for each atom. The energy137

dataset will have dimensions (n,), one energy per configuration. The force and position datasets will have dimensions (n,m,3)138

as we need three components of position and force for each of m atoms in n configurations. Under each reaction group, there is139

a child group for reactant, transition state, and product that follow the same structure as described above with n = 1. Products140

from some reactions are reactants for the next, and they can be linked with a hash value available for each product, transition141

state, and reactant in the hash dataset. The data has been uploaded to figshare, and there is a git repository with data loaders that142

can turn the HDF5 file into an ASE database or save the configurations as .xyz files.143
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Figure 2. Structure of Transition1x HDF5 file. Parent groups are data/train/val/test. The data group contains all configurations
in the set, and the train/val/test groups contain symlinks to the suggested data splits used in this paper. Each split has a set of
chemical formulas unique to that split, and each formula contains all reactions with the given atoms. Finally, energy and force
calculations can be accessed from the reaction groups for all intermediate configurations, including transition state, product,
and reactant.

Data records for QM9x are also available in a HDF5 file; QM9x.h5, hosted by figshare37. It can be downloaded at144

https://doi.org/10.6084/m9.figshare.20449701.v2 or through the repository https://gitlab.com/matschreiner/QM9x. The HDF5145

file structure is shown in Figure 3. Energy and force calculations for all configurations in the QM9x dataset consisting of a146

certain combination of atoms can be accessed as datasets through the formula group. The dimensions and structure of these147

datasets follow the same logic as described above.148

Technical Validation149

In figure 4 we show the MEP for a reaction involving C3H7O2 and the convergence of NEB for it. Often the barrier grows150

initially after turning on the climbing image because we start maximizing the energy in a new degree of freedom. NEB151
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Figure 3. Structure of QM9x HDF5 file. Energy and force calculations for all configurations in the QM9x dataset consisting
of a certain combination of atoms can be accessed as datasets through the formula group.
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Figure 4. Plot of NEB convergence on example reaction. Panel a) displays the final MEP with reactant, transition state, and
product plotted on top with H, C, and O in white, black, and red, respectively. On the x-axis; the reaction coordinate – distance
along the reaction path in configurational space, measured in Å. On the y-axis; the difference in potential energy between
reactant and current configuration. Panel b) displays the convergence of NEB. On the x-axis; iterations of NEB. On the y-axis;
force in eVÅ−1 and energy barrier in eV at the current step. Fmax, shown in red, is the maximal perpendicular force acting on
any geometry along the path, and Barrier, shown in blue, is the height of the energy barrier found at the current step. Moving
right in the plot both Fmax converges towards zero as NEB finds the saddle point, and the Barrier converges towards the final
value of 3.6 eV that can be seen in panel a.

converged on 10073 out of 11961 reactions, and 89 percent of the converged reactions did so within the first 200 iterations.152

To ensure the cleanliness of the data, we choose to discard all reactions that do not converge – these reactions often contain153

unphysical structures that do more harm than good as training data.154

155

The dataset includes a wide range of organic reactions. All reactions contain up to 7 heavy atoms including C, N, and O,156

and up to six bond changes where bonds are breaking and forming between all combinations of heavy atoms. Detailed analysis157

of the number of bond changes per reaction, number of bond changes involving specific pairs of atoms, the spread of activation158

energies, and SMARTS strings describing reactive centers of the reactions, is included in the original work Grambow et al.159

202019.160

161

The perpendicular force drops off rapidly when running NEB and so does the variation in data between iterations as the162

path is nudged less between iterations towards convergence of the algorithm. Fmax is used as a proxy for how much the path163

moves between iterations and once the cumulative Fmax since the last included path exceeds a threshold of 0.1 eV/Å, the path is164
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included in the dataset.165
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Figure 5. Comparison of transition states and barriers found in this work with NEB and the 6-31G(d) basis set, and in the
original work with GSM and the def2-mSVP basis set. Panel (a) displays energies in eV for all transition states calculated using
NEB on the x-axis and GSM on the y-axis. Panel (b) displays a histogram of Root Mean Square Deviation (RMSD) between
transition states found.

The transition states found with NEB correspond to the transition states from the original GSM data with a MAE of 0.16167

eV, RMSE of 0.19 eV, and an average Root Mean Square Deviation (RMSD) of 0.11Å. See Figure 5 in the Appendix for168

details. Barrier energies match, but the NEB energies tend to be shifted higher. Generally, it is easier to describe electron169

clouds around relaxed configurations than around transition states where bonds are breaking and other complex interactions170

take place. Therefore, the more expressive basis set enables us to relax configurations around transition states further than171

around equilibrium states which results in lower barrier heights. There are more outliers above the x = y line than below it172

which indicates that GSM was caught in suboptimal reaction pathways more often than NEB.173

174

Figure 6 displays the distribution of forces on each type of atom in Transition1x compared with ANI1x and QM9. Interest-175

ingly, even though geometries in Transition1x are further away from equilibrium than in ANI1x (regions between equilibria are176

actively sought out in Transition1x), the distribution of forces on ANI1x has flatter, wider tails signifying higher variance in177

forces. Moreover, Transition1x cusps at zero whereas ANI1x maxima lie further out. Large forces are not necessarily involved178

when dealing with reactive systems. When reaction pathways are minimized, forces are minimized too in all but one degree179

of freedom. The transition states contribute as much to the force distribution as equilibrium configurations, as the transition180

state is a saddle point with no net force on any atoms. ANI1x has no inherent bias towards low forces on geometries as it181

explores configurational space with pseudo-MD and therefore, even though the configurations are closer to equilibrium we see182

a higher variance in forces. On the heavy atoms, the tails are qualitatively equal between ANI1x and Transition1x, trailing off183

exponentially, but it is different for hydrogen. In ANI1x, forces on Hydrogen trail off exponentially as with the other atoms, but184

for Transition1x there is a sudden drop of the distribution. Hydrogen atoms are often at the outskirts of the molecules and are185

relatively free to move compared to heavier atoms on the backbone. In the case of the Transition1x data generation procedure,186

energy and forces are minimized, and therefore Hydrogen atoms do not experience large forces as they have lots of freedom to187

relax in the geometry. In ANI1x, configurations are generated by perturbing the geometries randomly, and hydrogen atoms188

might end up with unrealistically large forces on them. This might be a general problem with ANI1x and also a reason why189

ANI1x is not a proper dataset to learn reaction mechanisms.190

191

Even though ANI1x has a wider distribution of forces, the inter-atomic distances between pairs of heavy atoms are less192

varied than in Transition1x. Figure 7 displays the distribution of distances between pairs of heavy atoms for Transition1x,193

ANI1x, and QM9x. For QM9x, a dataset of only equilibrium configurations, some inter-atomic distances are not present at all.194

Distances are measured in units of r0, the single bond equilibrium distance between the atoms in the smallest possible molecule195

constructed out of the two. For example, in the case of "C, C" we measure in units of the distance between carbon atoms in196

ethane. Many of the more extreme inter-atomic distances in Transition1x are difficult to produce by the normal mode sampling197
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Figure 6. Distribution of forces acting on atom-types in each dataset. The x-axis is the force measured in eV/Å. The y-axis is
the base 10 logarithm of the count of forces in each bin, normalized over the full domain so that all sets can be compared. In
blue; Transition1x. In yellow; ANI1x. In green QM9x.

technique of ANI1x as many atoms would randomly have to move such that the whole molecule moves along a low-energy198

valley. However, because NEB samples low-energy valleys by design, we discover likely molecules with inter-atomic distances199

that are otherwise energetically unfavorable.200

201
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contributes with n(n−1)/2 distances in the count. On the y-axis; the log frequency of interatomic distance, normalized
between 0 and 1 for comparison as datasets vary in size. On the x-axis; distance given in units of r0 where r0 is the equilibrium
bond length for a single bond between the smallest possible stable molecule that can be made with the atoms in question. In
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Energy [eV] Forces [eV/Å]
Trained on Tested on RMSE MAE RMSE MAE
ANI1x 0.629 (11) 0.495 (10) 0.593 (18) 0.331 (7)
Transition1x Transition States 0.112 (3) 0.075 (1) 0.158 (1) 0.089 (1)
QM9x 3.132 (23) 2.957 (25) 0.637 (15) 0.261 (4)
ANI1x 0.042(8) 0.023(2) 0.063(2) 0.036(1)
Transition1x ANI1x 0.362(2) 0.227(9) 0.42(3) 0.176(3)
QM9x 3.06(4) 2.319(11) 1.99(3) 1.284(7)
ANI1x 0.65(7) 0.29(1) 0.57(3) 0.16(6)
Transition1x Transition1x 0.068(3) 0.04(1) 0.12(1) 0.053(1)
QM9x 1.72(3) 1.21(3) 0.476(5) 0.23(2)
ANI1x 0.134(1) 0.124(1) 0.057(1) 0.031(1)
Transition1x QM9x 0.111(3) 0.074(3) 0.08(1) 0.047(0)
QM9x 0.032(5) 0.015(1) 0.011(3) 0.006(0)

Table 1. Test results of PaiNN models trained on ANI1x, QM9x, Transition1x. We report RMSE and MAE on energy and
forces. Force error is the component-wise error between the predicted and true force vector. The test sets have been constructed
such that all configurations contain C, N, O, and H, and such that no formula has been seen previously in the training data. We
show the best performing model in bold in each test-setup.
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Energy [eV] Forces [eV/Å]
Trained on Tested on RMSE MAE RMSE MAE
ANI1x 0.629 (11) 0.495 (10) 0.593 (18) 0.331 (7)
Transition1x Transition States 0.112 (3) 0.075 (1) 0.158 (1) 0.089 (1)
QM9x 3.132 (23) 2.957 (25) 0.637 (15) 0.261 (4)
ANI1x 0.044(5) 0.023(1) 0.041(1) 0.016(0)
Transition1x ANI1x 0.365(17) 0.226(8) 0.321(25) 0.078(1)
QM9x 3.042(13) 2.313(11) 1.314(8) 0.559(2)
ANI1x 0.628(63) 0.289(13) 0.542(118) 0.13(5)
Transition1x Transition1x 0.102(2) 0.048(1) 0.102(1) 0.046(1)
QMx 2.613(18) 1.421(11) 0.433(3) 0.199(1)
ANI1x 0.134(1) 0.124(1) 0.051(1) 0.025(1)
Transition1x QM9x 0.111(2) 0.074(3) 0.072(1) 0.038(0)
QM9x 0.04(2) 0.015(1) 0.014(0) 0.005(0)

Table 2. Test results of PaiNN models trained on ANI1x, QM9x, Transition1x. We report RMSE and MAE on energy and
forces. Force error is the component-wise error between the predicted and true force vector. The test sets have been constructed
such that all configurations contain C, N, O, and H, and such that no formula has been seen previously in the training data. We
show the best performing model in bold in each test-setup.

We test all resulting models against the test data from each dataset and Transition States from the test reactions. Table 2202

displays the results. It is clear from their evaluation of Transition1x and transition states, that models trained on ANI1x do not203

have sufficient data in transition state regions to properly learn the complex interactions present here. ANI1x has a broad variety204

of chemical structures, but many of the fundamental interactions found in ANI1x are present in Transition1x, which is why205

models trained on Transition1x perform better on ANI1x than vice versa. In general, the PES of a set of atoms is an incredibly206

complex function of quantum mechanical nature. Models trained on QM9x do not perform well on either Transition1x or207

ANI1x. This is as expected as QM9x contains only equilibrium (or very close to equilibrium in the new potential) structures,208

so the models trained on it have not seen any of the out-of-equilibrium interactions that are present in the more challenging209

datasets of ANI1x and Transition1x.210

211

Transition state data is required if we want to replace DFT with cheap ML potentials in algorithms such as NEB38 or212

GSM, or train molecular dynamics models to work in transition state regions. NNs are phenomenal function approximators,213

given sufficient training examples, but they do not extrapolate well. Training examples spanning the whole energy surface are214

needed to train reliable and general-purpose ML models. Transition1x is a new type of dataset that explores different regions of215

chemical space than other popular datasets and it is highly relevant as it expands on the completeness of available data in the216

literature.217

Code availability218

There are download scripts and data loaders available in the repositories https://gitlab.com/matschreiner/Transition1x and219

https://gitlab.com/matschreiner/QM9x. See the repositories and README for examples and explanations of how to use the220

scripts and datasets.221

All electronic structure calculations were computed with the ORCA electronic structure packages, version 5.0.2. All NEB222

calculations were computed with ASE version 3.22.1. Scripts for calculating, gathering and filtering data can be found in223

the Transition1x repository. scripts/neb.py takes reactant, product, output directory, and various optional arguments224

and runs NEB on the reaction while saving all intermediate calculations in an ASE database in the specified output directory.225

scripts/combine_dbs.py takes an output path for the HDF5 file and a JSON-list of all output directories produced by226

running the previous script and combines them in the HDF5 file as described in the paper. See the repository for how to install,227

specific commands, options, and further documentation.228
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Abstract. Quantum mechanical methods like Density Functional Theory (DFT) are used with

great success alongside efficient search algorithms for studying kinetics of reactive systems. However,

DFT is prohibitively expensive for large scale exploration. Machine Learning (ML) models have

turned out to be excellent emulators of small molecule DFT calculations and could possibly replace

DFT in such tasks. For kinetics, success relies primarily on the models’ capability to accurately

predict the Potential Energy Surface (PES) around transition-states and Minimal Energy Paths

(MEPs). Previously this has not been possible due to scarcity of relevant data in the literature. In

this paper we train equivariant Graph Neural Network (GNN)-based models on data from 10.000

elementary reactions from the recently published Transition1x dataset. We apply the models

as potentials for the Nudged Elastic Band (NEB) algorithm and achieve a Mean Average Error

(MAE) of 0.23 eV and Root Mean Squared Error (RMSE) of 0.52 eV on barrier energies on unseen

reactions. We compare the results against equivalent models trained on QM9x and ANI1x. We also

compare with and outperform Density Functional based Tight Binding (DFTB) on both accuracy

and required computational resources. The implication is that ML models are now at a level where

they can be applied to studying chemical reaction kinetics given a sufficient amount of data relevant

to this task.

u1 [  ]
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Figure 1. Minimal Energy Paths (MEPs) found with Nudged Elastic Band (NEB) applying the

Graph Neural Network (GNN) architecture Polarizable Atom interaction Neural Network (PaiNN)

trained on the Transition1x dataset and Density Functional Theory (DFT) as potentials. The MEPs

are projected onto planes in structural space, intersecting product, reactant and transition-state of

the converged MEPs. The PES has been calculated on the planes in the vicinity of the MEPs with

the respective potential and is shown on the z-axis. The x and y-axes are basis vectors describing

the plane. The reaction involves a H-transfer coupled with a C-C bond formation on C6H8. The

reaction can be seen as a GIF by following this link.



1. Introduction

Machine Learning (ML) models and especially

Graph Neural Networks (GNNs) [1, 2] have

turned out to be potent emulators of Density

Functional Theory (DFT) potentials for small

molecules [3, 4, 5, 6, 7], thanks to their remark-

able ability to find complex relations in high

dimensional data. They have a complexity-

scaling orders of magnitudes lower than clas-

sic Quantum Mechanics (QM) methods, but

have in recent years achieved comparable ac-

curacy [8, 9, 10, 11, 12]. The capability of

these models is manifested by their success

in tasks beyond simple prediction of molecu-

lar features such as structural optimization or

studying finite-temperature dynamical proper-

ties through molecular dynamics [13, 14]. De-

spite their achievements, there has only been

limited success in applying ML-models as po-

tentials for transition search algorithms. The

earliest work studied simple diatomic molecule

dissociation and achieved acceptable accuracy

with tens of thousands of data points [15].

Other works have had success by limiting

their scope to studying single or few reactions

but sacrificing the generality of the approach

[16, 17, 18]. Attempts to study reactive sys-

tems with Gaussian Processs (GPs) [19] have

been successful too, but the GP is trained on

the particular atomic system, sacrificing speed

for generality by requiring expensive DFT cal-

culations at inference time. Transition-states

are notoriously hard to find as there is no well-

defined gradient on the Potential Energy Sur-

face (PES) to guide traditional optimization

algorithms towards them. A wealth of algo-

rithms have been proposed to solve this prob-

lem – one is the Nudged Elastic Band (NEB)

[20] algorithm, which works by interpolating

an initial path between reactant and product

and iteratively updating it to minimize en-

ergy by using information about the PES. It

shares a common bottleneck with other tran-

sition search algorithms – the necessity to re-

peatedly evaluate energy and atomic forces of

molecular configurations, which is extremely

costly, especially if ab-initio or electron DFT

calculations are used[21].

Recent advances in ML have not allevi-

ated the bottleneck as even modern Neural

Network (NN) architectures have not proved

proficient potential approximators for this type

of application. The fault lies primarily with

available data in the literature rather than the

models’ expressiveness [22]. Most quantum

mechanical datasets are focused on molecular

configurations in or near equilibrium [23, 24,

25, 26]. Without configurations on and around

reaction pathways in the training data, ML

models cannot learn the interatomic interac-

tions that occur during chemical reactions and

cannot reliably be applied for transition-state

search.

We compare ML models against Density

Functional based Tight Binding (DFTB), [27]

a fast approximation to DFT that is often

used for fast screening of large quantities

of configurations with an acceptable trade-

off between accuracy and speed, and our
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models outperform DFTB with a factor three

in accuracy and a factor two in CPU time.

In this work, we bridge generalization,

speed, and accuracy for transition-state search

by applying Polarizable Atom interaction

Neural Network (PaiNN) models as surrogate

potentials for DFT. We build on and showcase

the utility of our previous paper [28] where

we released Transition1x, a dataset constituted

by DFT calculations for 10 million molecular

configurations, all sampled around reaction

pathways from 10.000 elementary, organic

reactions. It is clear from the results of this

paper, that for precise modeling of transition-

state regions, and, consequently, transition

states and barrier energies, hitherto popular

benchmark datasets have had insufficient

relevant data. On the other hand, training ML

potentials on the Transition1x dataset allows

for accurate modeling of PESs in transition-

state regions, underlining that relevant and

available data in the literature is as important

as the efficiency of available models.

Reliable and fast analysis of reaction

kinetics through ML will bring the whole

field of computational chemistry a considerable

step closer to the ultimate goal, a virtual

laboratory, hyper-accelerating the discovery of

reaction mechanisms for synthesizing drugs

and materials.

2. Methods

2.1. Nudged Elastic Band

NEB [20] is a method for finding Minimal

Energy Path (MEP) and transition-state given

product and reactant of a chemical reaction. It

does so by iteratively nudging an interpolated

path between the reaction endpoints in

the direction of the force perpendicular to

the path. Once the perpendicular force

converges to zero, NEB reports the maximal-

energy configuration along the path as the

transition-state. The path is represented by

an array of molecular configurations called

images, and there is no guarantee that,

at convergence, the maximal energy image

corresponds to the maximal energy along the

path. The maximum might lie between two

images. Climbing Image Nudged Elastic Band

(CINEB) [29] addresses this problem by letting

the transition-state candidate (the maximal

energy image) further maximize its energy by

following the gradient on the PES parallel to

the current path between iterations. If the

current path has not converged properly, the

climbing image can pull the predicted MEP

off the true MEP and therefore, the path is

first relaxed with regular NEB before turning

on CINEB. The MEP is considered converged

once the maximal perpendicular force on the

path is below a threshold of 0.05 eVÅ−1. The

spring constant between images on the path is

set to 0.1 eVÅ−2, and ten images are used to

represent the path.

2.2. Initial Path Generation

The endpoints of the reaction have to be

minimized in their respective minima before

running NEB – otherwise the energetic

difference between reactant and transition-

state cannot be evaluated properly. A

configuration is considered relaxed if the norm

of the forces acting on it is below 0.01 eVÅ−1.

Once the endpoints have been minimized, the

initial guess for the MEP is found by running

NEB with the Image Dependent Pair Potential

(IDPP) [30] on a linearly interpolated path

between reactant and product. IDPP is an

inexpensive potential specifically designed to

generate physically realistic MEP guesses for

NEB at an extremely low computational cost.
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2.3. Optimizers

Reactants and products are relaxed using the

BFGS [31] optimizer with α = 70 and a

maximal step size of 0.03 Å in configurational

space. The MEP is found with an optimizer

[32] designed to reduce the computational

cost of transition-state search algorithms by

applying an adaptive time step selection

algorithm with α = 0.01 and rtol = 0.1, and

a preconditioning scheme to the PES given an

estimate of its curvature.

3. Data

We train all models on ANI1x [24], QM9x [33],

Transition1x [28]. All datasets are calculated

with the 6-31G(d) [34] basis set and ωB97x [35]

functional which has an accuracy comparable

to the gold standard but expensive high-level

CCSD(T) [36] [37] calculations. Given the

compatibility of the datasets, it is possible to

train on either dataset alone or combinations

of them to leverage all of their strengths.

3.1. ANI1x

ANI1x [38] aims to provide varied data of

off-equilibrium molecular configurations by

perturbing equilibrium configurations with

pseudo molecular dynamics. The data is

collected through an active learning technique

called Query by Committee; an automated

data diversification process that trains an

ensemble (committee) of models on a dataset

and accepts or rejects new proposed data

based on the disagreement of models in the

committee. The assumption is that if the

committee disagrees the data is sufficiently

different from what has already been learned,

and the proposed data should be included in

the analysis. The procedure for proposing data

and evaluating it with the committee is cheap

compared to the calculation of data using

DFT. The dataset is consecutively expanded

by alternating between training committees

and adding new data points based on the

committee uncertainty. In total, ANI1x

contains force and energy calculations for

approximately 5 million configurations.

3.2. Transition1x

We have recently published Transition1x [28],

a dataset providing a collection of molecular

configurations on and along reaction paths for

approximately 10.000 reactions. The reactions

consist of up to 7 heavy atoms, including C, N,

and O. Transition events are rare, and it is not

possible to collect sufficient data in relevant re-

gions by simple molecular dynamics if the in-

tention is to train NNs models to understand

chemical reactions. Transition1x addresses

this problem by sampling molecular configu-

rations around reaction pathways proposed by

NEB, using DFT as potential. The procedure

resulted in approximately 10 million DFT cal-

culations that were collected and saved during

the process and constitute the dataset. Tran-

sition1x is available through the repository

https://gitlab.com/matschreiner/Transition1x

which includes data loaders and scripts for

downloading the dataset and generating ASE-

database files.

3.3. QM9 and QM9x

QM9 [33] is a dataset of 135k small or-

ganic molecules with various chemical prop-

erties that has served as the benchmark for

many existing ML methods for quantum chem-

istry. All molecules in QM9 are in equi-

librium. We have recalculated QM9 with

the 6-31G(d) basis set and ωB97x func-

tional to make it compatible with Transi-

tion1x and ANI1x, and we refer to the recal-
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culated dataset as QM9x. Molecular configu-

rations recalculated in the new potential are

not necessarily in equilibrium as the poten-

tial shifts when changing functional and ba-

sis sets. QM9x is available through the repos-

itory https://gitlab.com/matschreiner/QM9x

which includes data loaders and scripts for

downloading the dataset and generating ASE-

database files.

3.4. Models and Training

Message Passing Neural Networks (MPNNs)

[39] are a class of GNNs [1, 2] that build

their internal graph representation by running

a series of message passing steps. A

single message passing step consists of two

distinct operations: i) Message Dispatching,

each node computes a message given its

state (and possibly information about the

edge connecting to – and the state of

the receiving node) and sends it to its

neighbors. ii) State Update, incoming messages

are collected with an aggregation function,

and are used to simultaneously update the

internal representation of all nodes. After

the message-passing phase, a readout function

extracts the inner representation of the nodes

and computes a final feature vector of the

graph for downstream tasks. In the case of

molecules, interesting properties are energy

and forces where conservative force fields

can be computed via the back-propagation

algorithm as the negative gradient of the

energy wrt. coordinates of the atoms.

The PaiNN model [40] was used for all

experiments – it is a GNN architecture that

implements rotationally equivariant represen-

tations for prediction of tensorial properties of

graph structures. We refer to the literature for

further details [40]. A cut-off radius of 5 Å was

used to generate the initial molecular graph.

All models have three message passing steps

and 256 units in each hidden layer, and are

trained using the ADAM [41] optimizer with

learning rate 10−3 on training examples from

QM9x, ANI1x, and Transition1x. A batchsize

of 75 was used for all datasets and a maxi-

mum of 106 training steps was allowed - how-

ever, models training on ANI1x and Transi-

tion1x reached maximal scores on validation

data after around 6 · 105 steps. In order to

understand to which extent a PaiNN-model

trained on Transition1x can generalize to reac-

tions with unseen atomic compositions, build-

ing on an assessment of the substructures or

elemental features, Transition1x was stratified

by chemical formula such that each formula

can only be found in one split. The Tran-

sition1x was split in 10, and 10 models were

trained such that each split could be set aside

once as testing data for the NeuralNEB algo-

tithm and once as validation data for early

stopping. ANI1x was stratified by chemical

formula such that test, validation and train-

ing sets consist of chemical formulas unique to

that set. QM9x was split randomly. In the

case of QM9x and ANI1x, 80% of the data

was used for training, 10% for testing, and 10%

was used for validation and early stopping. In

QM9x all configurations are unique as they are

in distinct equilibria and can therefore be split

randomly. No attention was paid to the molec-

ular scaffold. For ANI1x, it is necessary to

split on chemical formula to ensure that config-

urations across splits are significantly different.

Each chemical formula contains similar config-

urations, since data is generated by randomly

perturbing identical initial configurations.

4. Results

Table 1 shows the overall findings of the

paper. Each row displays the performance
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Barrier [ eV ] NEB Convergence

MAE RMSE Rate Avg. CPU Time Avg. Iterations

ANI1x 0.51 1.67 69.3% 37s 149

T1x 0.23 0.52 80.3% 33s 135

QM9x 3.40 3.59 35.0% 28s 111

DFTB 0.70 0.85 65.7% 82s 114

DFT - - 84.1% 12h14m43s 100.74

Table 1. Performance of various potentials used for Nudged Elastic Band (NEB) when compared to Density

Functional Theory (DFT). ANI1x, Transition1x and QM9x indicate PaiNN models trained on the respective

dataset. The Barrier column displays the Mean Average Error (MAE) and Root Mean Squared Error (RMSE)

of barrier predictions, where the individual error is the difference between the barrier as predicted when using

DFT as potential vs. using the surrogate potential. The convergence rate is the percentage of reactions that

converged. Average CPU time is CPU time spent per reaction. Average iterations is the average number of

Minimal Energy Path (MEP) updates before convergence.

of a surrogate potential, where datasets in

the leftmost column indicate PaiNN models

trained on the given dataset. The barrier error

is the difference in barrier heights found when

applying DFT as potential for NEB versus

when applying the surrogate potential.

As different initializations of parameters

in equivalent architectures result in variations

in the trained models capabilities, five models

were trained on each of QM9x and ANI1x and

ten models were trained on the Transition1x

dataset. QM9x and ANI1x models were

used as potentials for all reactions in the

Transition1x dataset, and models trained on

Transition1x were used as potentials only for

those reactions with atomic compositions from

the test split. The best models are trained on

Transition1x, with the lowest Mean Average

Error (MAE) and Root Mean Squared Error

(RMSE) and the highest convergence ratio.

The QM9x models have only seen data very

close to equilibrium and have not learned

the structure of the PES between equilibria

which makes it unable to converge in most

cases. In general DFT performs the best

in terms of convergence rate and average

iterations run, but it comes at a steep price,

running almost a factor 1500 times slower

than the ML potentials. DFTB is the go-

to fast potential, but the models trained on

Transition1x are twice as fast and three times

as accurate. Figure 1, on the frontpage,

displays MEPs calculated with NEB using

DFT and PaiNN trained on Transition1x side

by side. Each MEP is projected onto a

plane in configurational space spanned by

the reaction’s transition-state, product, and

reactant. The x and y axes are basis vectors

describing the plane in units of Å, and the

z-axis and color-coding show the atomization

energy of configurations in the plane in eV. Not

only does PaiNN trained on the Transition1x

accurately calculate the barrier energy for the

reaction, but it also correctly identifies the

plane spanned by the configurations defining

the reaction, and calculates an almost identical

PES in the vicinity of the MEP. Each MEP is

projected from a high dimensional space onto

the plane, and therefore, only the atomization

energy of equilibria and transition-states are

shown correctly in the plot. At these

points, the MEP intersects with the plane.

The intermediate points have energies slightly

shifted up the sides of the energy valley. The
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Figure 2. Histogram of barrier errors. The x-axis shows errors between reaction barriers calculated using

Density Functional Theory (DFT) and surrogate potentials for Nudged Elastic Band (NEB). The x-axis has

been truncated at +/- 2 eV error (see appendix for the full plot). The y-axis shows the frequency of each bin.

Green, red and blue display results from PaiNN models trained on Transition1x, QM9x and ANI1x, respectively.

Yellow displays results from Density Functional based Tight Binding (DFTB). The QM9x model has such a low

convergence frequency, and general barrier error, that the model does not show in the plot.

MEP does not necessarily lie in the plane, and

since the MEP represents the energy valley,

projecting it onto the plane, will increase

the energy. The × symbols on the surfaces

are projections of images predicted by NEB

and the dashed lines connecting them are

cubic spline interpolations. The importance

of accurate predictions in the vicinity of the

MEP is clear, as these calculations will guide

the search for the transition-state. The

Transition1x model predicts smooth and well-

behaved PESs resembling DFT.

Figure 2 and B2 tell similar stories. Figure

2 is a histogram of barrier errors where

the error is the difference between activation

energy found using the surrogate potential

and DFT. The Transition1x model is precise

and accurate, with a sharp peak around zero,

whereas DFTB and ANI1x have wider spreads

with means below and above zero, respectively.

The QM9x model is plotted on the histogram,

but due to high errors and low convergence,

only a few calculated barriers fall within an

error of ±2 eV, as shown in the figure. See

appendix for an equivalent figure without

truncated x-axis.

Figure B2 compares activation energies

found with DFT on the x-axis with those

found using various surrogate potentials on

the y-axis. Each marker represents a single

reaction. Predictions from the model trained

on Transition1x follow the x = y line with

a MAE of only 0.23 eV. The QM9x model

does not have a proper representation of the
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ANI1x: MAE = 0.51 eV, RMSE = 1.67 eV
DFTB: MAE = 0.70 eV, RMSE = 0.85 eV
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Figure 3. Comparison of reaction barriers found with Nudged Elastic Band (NEB) using Density Functional

Theory (DFT) as potential on the x-axis vs. various surrogate potentials on the y-axis. Green, red and blue

markers are PaiNN models trained on The Transition1x, QM9x, and ANI1x datasets respectively. Yellow is

Density Functional based Tight Binding (DFTB). Points on the dashed line have been calculated perfectly. The

figure displays a subsample of 500 reactions - see appendix for the full scatter plot.

Corrected Barrier [ eV ] Systematic Error [ eV ]

MAE RMSE

ANI1x 0.48 1.66 0.23

T1x 0.23 0.51 -0.10

QM9x 0.89 1.14 -3.40

DFTB 0.48 0.62 -0.58

Table 2. Mean Average Error (MAE) and Root Mean Squared Error (RMSE) of barrier errors found by PaiNN

trained on Transition1x and ANI1x and DFTB, after correcting for systematic error.

transition-state regions as it has not seen

that type of data during training. Often,

the QM9x model does not recognize nearby

initial equilibria as minima on the PES, and

even before optimizing the MEP, the reaction

endpoints have dropped further on the PES to

qualitatively different endpoints which results

in the model calculating the MEP for a

completely different reaction. The algorithm

is not set up to detect this, and as long

as the reaction converges, it is included in

the analysis. Even when the QM9x model

relaxes the endpoints of the reaction correctly,

it either finds low energy shortcuts in the

faulty potential or does not converge, and

as a result the converged reactions are often

only the energy difference between reactant

and product. The QM9x dataset was not
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designed with any type of molecular dynamics

or reaction kinetics in mind, and comparing it

to ANI1x and Transition1x for reaction path

search is perhaps inappropriate. However,

given the ubiquity of QM9 in the literature,

it is an important point to convey, that

new datasets are required for solving higher

order problems in computational chemistry.

The Transition1x and ANI1x models drop

in performance above 5 eV. Data becomes

scarcer at higher energies and consequently,

models are less accurate in high energy regions.

DFTB and the ANI1x models have systematic

errors in their predictions. The ANI1x

models are biased towards high energies in

the transition regions as they have not seen

the low energy valleys connecting equilibria.

The DFTB potential systematically predicts

energies too low. In Table 2 the systematic

errors are corrected based on the training

data. This leads to a lower test error for

the ANI1x and DFTB, but equal test error

for Transition1x underlining that Transition1x

models are already very accurate.

5. Discussion

To train models that can properly step in as

surrogate potentials for DFT when running

NEB, it is necessary to have datasets with

appropriate data in and around transition-

state regions. Finding reaction barriers with

ML models and NEB is a non-trivial test.

ML models, and especially NNs, are known

to perform poorly for out of distribution tasks

[42, 43]. Table A1 illustrates this clearly with

results for training and testing ML models on

various datasets.

Finding reaction barriers with NEB is a

much more demanding test of the models’

capabilities. When running NEB, the PES is

swept by the path connecting endpoints, and

data encountered in the process can diverge

wildly from any data seen during testing and

training. The model can get caught in even a

small region of high error, or it can be thrown

off the correct MEP and be unable to converge

altogether, so the model must be accurate

across the entire PES.

The reaction paths are represented by

ten images in all reactions. A core strength

of NNs is their ability to utilize GPUs to

evaluate multiple data points at once, and in

principle, NEB can be run with hundreds of

images instead of tens at little to no additional

cost when using NNs as potentials. We ran

experiments with high density paths with the

rest of the setup fixed but saw no improvement

in neither accuracy nor convergence speed.

The preconditioning scheme of the NEB

optimizer relies on a sparsely populated path.

But this approach could possibly produce

robust results by applying other optimizers.

A clear application of this work is as a

screening procedure for complex reaction net-

works. Cheap methods, such as permuting

bond order matrices, can be used to auto-

matically generate nodes for entire reaction

networks. The individual reactions can be

screened fast using the method before recalcu-

lating entire reaction networks with expensive

methods. Usually this is done with DFTB [27]

but running NEB with NNs is faster and more

accurate.

6. Conclusion

We have trained GNN potentials on various

datasets and used them as surrogate potentials

for DFT when running NEB for transition-

state search. A MAE of 0.23 eV and Root

Mean Squared Error (RMSE) of 0.52 eV

is achieved with the best model, compared

against running the same set up with DFT.
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The models converge 80.3% of the time on

unseen reactions. We show that expressive

models alone are not sufficient for solving

complex tasks in quantum chemistry moving

forward, but just as much care has to be put

into designing and generating datasets. We

tested 3 different datasets: ANI1x, QM9x and

Transition1x and only models trained on the

latter could reliably solve the transition search

task.

Our results show that the future develop-

ment of the field of ML for quantum chemistry

stands on two legs – the completeness of the

available data, and the expressiveness of the

available models. Transition1x deals with only

four types of atoms. To apply the results of

this paper to general chemistry, larger datasets

with more atom types should be produced.

Our results indicate that the machine learn-

ing approach scales: With the right amount of

the right data, accuracies at a sufficient level

can be achieved.
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Appendix A.

Table displaying results of the models when training and testing on various datasets. In all test

set-ups the models that perform best, are models that have been trained on training data from

the corresponding dataset.

Energy [eV] Forces [eV/Å]

Trained on Tested on MAE RMSE MAE RMSE

ANI1x 0.02(0) 0.04(1) 0.01(0) 0.04(0)

Transition1x ANI1x 0.22(1) 0.35(2) 0.08(0) 0.34(2)

QM9x 2.32(1) 3.03(2) 0.56(2) 1.3(7)

ANI1x 0.28(2) 0.61(7) 0.10(5) 0.5(1)

Transition1x Transition1x 0.10(0) 0.15(1) 0.04(1) 0.09(0)

QMx 1.42(1) 2.61(2) 0.19(0) 0.43(0)

ANI1x 0.12(0) 0.13(0) 0.02(0) 0.05(0)

Transition1x QM9x 0.07(1) 0.12(0) 0.04(0) 0.07(0)

QM9x 0.02(1) 0.04(2) 0.01(0) 0.01(0)

Table A1. Test results of PaiNN models trained on ANI1x, QM9x, Transition1x. We report RMSE and MAE

on energy and forces. Force error is the Euclidian distance between the predicted and true force vector.

Appendix B. Additional Figures

This section contains the unbounded version of Fig. 2, a scatter plot equivalent to Fig. B2,

but without subsampling reactions, and additional plots of MEPs and PESs comparing PaiNN

trained on Transition1x with DFT.
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Figure B1. Histogram of barrier errors. The figure is equivalent to 2, but without a truncated x-axis. The

x-axis shows errors between reaction barriers calculated using Density Functional Theory (DFT) and surrogate

potentials for Nudged Elastic Band (NEB). The y-axis shows the frequency of each bin. Green, red and blue

display results from PaiNN models trained on Transition1x, QM9x and ANI1x, respectively. Yellow displays

results from Density Functional based Tight Binding (DFTB).
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Figure B2. Comparison of reaction barriers found with Nudged Elastic Band (NEB) using Density Functional

Theory (DFT) as potential on the x-axis vs. various surrogate potentials on the y-axis. Green, red and blue

markers are PaiNN models trained on The Transition1x, QM9x, and ANI1x datasets respectively. Yellow is

Density Functional based Tight Binding (DFTB). Points on the dashed line have been calculated perfectly.
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Figure B3. Reaction involving C5OH8. The reaction can be seen as a GIF by following this link.
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Figure B4. Reaction involving C3NCOH7. The reaction can be seen as a GIF by following this link.
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Figure B5. Reaction involving C3NCNH8. The reaction can be seen as a GIF by following this link.
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Figure B6. Reaction involving C3NC2OH9. The reaction can be seen as a GIF by following this link.
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Neural Networks can solve Chemical Reactions Fast!
When Given the Right Data

Mathias Schreiner, Arghya Bhowmik, Tejs Vegge
Jonas Busk, Peter Bjørn, Ole Winther
Technical University of Denmark

Method: 

• NEB - a method for finding MEPs by iteratively nudging an initial 
guess for the reaction path using information about the potential 
energy surface.

• PaiNN - an equivariant graph neural network architecture 
designed for predicting molecular features was trained on the 
datasets listed below and used as forcefield for NEB.

• QM9x - a dataset of 135k molecules in equilibrium containing all 
configurations from the ubiquitous QM9 dataset, recalculated 
with a level of DFT matching ANI1x and Transition1x.

• ANI1x - a dataset containing 6m molecules generated with 
activate learning and pseudo molecular dynamics. 

• Transition1x - a dataset containing 10m configurations on and 
around reaction pathways generated using NEB. 

Abstract: 

• Neural Networks have proven to be excellent emulators of DFT 
for calculating features of small molecules.

• We train Neural Networks as surrogate potentials for DFT and 
use them as forcefields for the Nudged Elastic Band Algorithm 
(NEB) to find Minimal Energy Paths (MEPs) fast and accurately. 
We call this approach NeuralNEB.

• We propose a new dataset, Tansition1x, that includes relevant 
configurations on and around reaction pathways - these are 
necessary for ML models to learn complex interactions between 
atoms happening during chemical reactions. 

Transition1x NeuralNEB

Results:

Convergence ratios, timings, and prediction performance on activation energies of reactions with 
unseen isomers, for PaiNN models trained on various datasets, compared to DFT. 

Illustration of the types of data found in ANI1x, QM9x and Transition1x. 

MEPs found with NEB applying PaiNN (left) and DFT (right) as potentials. The MEPs are projected 
onto planes in structural space, intersecting product, reactant and transition-state of the 
converged MEPs. The reaction involves a H-transfer coupled with a C-C bond formation on C6H8.

Comparison of reaction barriers found with NEB using DFT as potential on the x-axis vs. various 
surrogate potentials on the y-axis. Points on the dashed line have been calculated perfectly. The 
figure displays a subsample of 500 reactions out of the 10k in Transition1x.



Machine Learning for Chemical Reactions
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Jonas Busk2 Peter B. Jørgensen2 Ole Winther1,3,4

1DTU Compute, Technical University of Denmark (DTU), 2800 Lyngby, Denmark
2DTU Energy, Technical University of Denmark (DTU), 2800 Lyngby, Denmark

3Department of Biology, University of Copenhagen (UCph), 2700 Copenhagen N, Denmark
4Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen Ø, Denmark

Abstract

Machine Learning (ML) models have proved to be excellent emulators of Density
Functional Theory (DFT) calculations for predicting features of small molecular
systems. The activation energy is a defining feature of a chemical reaction, but,
despite the success of ML in computational chemistry, an accurate, fast, and general
ML-calculator for Minimal Energy Paths (MEPs) has not yet been proposed. Here,
we summarize contributions from two of our recent papers, where we apply Graph
Neural Network (GNN) based models, trained on various datasets, as potentials
for the Nudged Elastic Band (NEB) algorithm to speed up MEP-search. We show
that relevant data from reactive regions of the Potential Energy Surface (PES)
in training data is paramount to success. Hitherto popular benchmark datasets
primarily contain configurations in, or close to, equilibrium, and are not adequate
for the task. We propose a new dataset, Transition1x, that contains force and energy
calculations for 10 million molecular configurations from on and around MEPs
of 10.000 organic reactions of various types. By training GNNs on Transition1x
and applying the models as PES-evaluators for NEB, we achieve a Mean Average
Error (MAE) of 0.23 eV on predicted activation energies of unseen reactions,
compared to DFT, while running the algorithm 1200 times faster. Transition1x is a
challenging dataset containing a new type of data that may serve as a benchmark
for future methods for transition-state search.

Introduction

The activation energy of a chemical reaction is the difference between the reactant and transition
state energies. It describes the energetic barrier of the reaction, and it dominates the reaction-
rate exponentially through the Arrhenius Equation. To build a virtual laboratory, where reaction
mechanisms for synthesis of drugs and materials can be studied, it is crucially important to be able
to quickly and accurately predict activation energies and Minimal Energy Paths (MEPs) between
equilibrium configurations. Nudged Elastic Band (NEB)1 is an effective algorithm, designed to find
MEPs, and activation energies in chemical space. It does so by iteratively nudging an initial guess for
the reaction path in the direction of the force perpendicular to the path until convergence. The NEB
algorithm requires a subordinate algorithm for calculating gradients and energies on the surrounding
Potential Energy Surface (PES), and Density Functional Theory (DFT) is a popular choice for this.
However, a single DFT calculation can take from a minute and up to several hours, depending on the
size of the molecule and level of theory. Even for small molecular systems of 6-7 heavy atoms, NEB
has to evaluate thousands of configurations to converge, making DFT inappropriate for large scale
exploration of reaction-networks.

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.
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Machine Learning (ML) models, and Graph Neural Networks (GNNs)2,3 in particular, have proved to
be capable surrogate DFT potentials that can accurately evaluate molecular properties fast4–13. In this
paper we train Polarizable Atom interaction Neural Network (PaiNN)14 models, a GNN architecture,
on various datasets and apply them as surrogate potentials for DFT to alleviate the NEB-bottleneck.

Initially, the models were trained on existing datasets in the literature. However, available datasets of
significant volume that are interesting for training Neural Network (NN) models, either contain molec-
ular configurations exclusively in equilibrium, or are generated through Molecular Dynamics (MD).
Transitions between equilibriums are rare events, and datasets generated through MD-simulations do
not contain sufficient samples of data around reaction paths to enable training models with accurate
representations of these regions15,16. We created a new dataset, Transition1x, to address this problem.
Transition1x leverages NEB to sample relevant configurations on and around reaction pathways
for thousands of organic reactions. All intermediate configurations encountered while running the
algorithm were calculated using the same level of DFT as the popular ANI1x17,18 dataset, such that
models trained on the two datasets can be compared in a meaningful way.

Method
Nudged Elastic Band
NEB1 is a method for finding transition-states and MEPs given products and reactants of chemical
reactions. It does so by iteratively nudging an initial guess for the MEP directed by the force
perpendicular to the path. The path is represented by an array of molecular configurations called
images connected by an artificial spring force which ensures that the images stay evenly separated
and do not fall into the minimas at the reaction endpoints. Eventually, as the perpendicular force
on the path converges to zero, the MEP will relax at the bottom of the local low-energy valley.
At this point, NEB returns the maximal-energy configuration along the path as the transition-state.
However, the true transition-state of the reaction may lie between two images representing the path.
Climbing Image Nudged Elastic Band (CINEB)19 addresses this problem by, between iterations,
choosing a transition-state candidate and further maximize its energy by following the gradient on
the PES, parallel to the current path. The CINEB algorithm terminates once both the maximal force
perpendicular to the path, and climbing force on the transition-state candidate has converged. At this
point, the maximal energy-configuration representing the path corresponds to the transition state.

Datasets
Transition1x was generated by running NEB, applying DFT as potential, on all reactions in the
dataset released by Grambow et al. (2020)20. The original data contains products, reactants, and
transition states for 11.000 organic reactions of various types. To ensure compatibility with ANI1x
and QM9x, all intermediate calculations were made using the 6-31G(d)21 basis set and ωB97x
functional22 . NEB typically converges within 200 iterations given the elements and sizes of
molecules in the dataset. Calculations become gradually more similar towards convergence of
NEB, as the path is nudged less between iterations. In order to reduce redundancy in data, paths
are excluded from the dataset unless the cumulative maximal force, perpendicular to the path, from
previous iterations exceeds 0.1 eV/Å. The data is limited to molecules with up to 7 heavy atoms,
including C, N, and O. In order to train truly generalizable models we need to include all elements
and sizes of molecules.

ANI1x18,17 is a dataset based on active-learning and MD. The data generation procedure alternates
between proposing new configurations using various forms of MD and pseudo-MD, and accepting or
rejecting data based on the query by committee algorithm23. The dataset contains force and energy
calculations for 6 million molecular configurations.

QM9 (QM9x) is a ubiquitous benchmark dataset for Quantum Mechanics (QM) methods that contains
a multitude of QM features for 135.000 molecular equilibrium configurations. In order to make QM9
compatible with ANI1x and Transition1x we recalculated all configurations with the appropriate level
of DFT, and we refer to it as QM9x.

PaiNN
PaiNN14 is a message-passing GNN architecture designed for predicting molecular properties of
atomic systems represented as graphs. The molecular graph is generated by a neighborhood function
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Barrier NEB Convergence
MAE [eV] RMSE [eV] RMSD [Å] Rate Avg. CPU Time Avg. Iterations

ANI1x 0.51(1) 1.67(3) 0.28(2) 69.3% 37s 149
T1x 0.23(3) 0.52(1) 0.21(1) 80.3% 33s 135
QM9x 3.4(1) 3.59(8) 0.59(2) 35.0% 28s 111
DFTB 0.70 0.85 0.22 65.7% 82s 114
DFT - - - 84.1% 12h14m43s 101

Table 1: Comparison of potentials for Nudged Elastic Band (NEB). ANI1x, Transition1x and QM9x
indicate PaiNN models trained on the respective dataset. The barrier column shows Mean Average
Error (MAE) and Root Mean Squared Error (RMSE) of activation energies, and the Root Mean
Square Deviation of atomic positions (RMSD) between transition states found with DFT and surrogate
potentials. The Convergence column displays the convergence rate, average CPU time to compute a
reaction, and average iterations before convergence.

that assigns edges between atoms if they are sufficiently close. The network calculates molecular fea-
tures by letting neighboring atoms exchange messages calculated from their internal representations.
Conservative forces can be calculated by the back-propagation algorithm as the negative gradient of
energy with respect to positions.

Five hundred reactions are set aside from Transition1x for evaluating various models’ capabilities to
find reaction pathways. Five equivalent PaiNN models are trained on each of ANI1x, QM9x, and the
remaining data from Transition1x. The models have three hidden layers with 256 neurons in each.
The molecular graph is generated with a cutoff radius of 5 Å. The models are trained with the ADAM
optimizer, a batch size of 75, an initial learning rate of 10−3, and a scheduler that scales the learning
rate with a factor of 0.8 if the model has not improved for 5000 training steps.

Results

We trained five PaiNN models on each of Transition1x, ANI1x, and QM9x, and evaluated their
capability to predict transition states on test reactions set aside from Transition1x. In Table 1 we report
convergence rate, timings, Mean Average Error (MAE), Root Mean Squared Error (RMSE) and Root
Mean Square Deviation of atomic positions (RMSD) of the various models’ predictions. Datasets in
the leftmost column represent PaiNN models trained on the respective dataset. Density Functional
based Tight Binding (DFTB), is a fast and cheap approximation to DFT, used as a benchmark.
We do not report standard deviation of MAE and RMSE of DFTB predictions as the algorithm is
deterministic, whereas the performance of the PaiNN models depends on the training seed. The
predicted activation energy is the difference between energies of reactant and transition state, while
the error is the difference between the activation energies predicted by the surrogate potential and
DFT. ML potentials trained on Transition1x outperform all other tested surrogate potentials in terms
of MAE, RMSE and RMSD. QM9x contains only equilibrium configurations, and its models have not
learned the intricacies of the PES around reaction pathways. This is reflected in the results through
low convergence rates and high errors.

Figure 1 compares cross sections of PESs, spanned by reactant, product, and transition state of the
reactions, calculated using DFT, and PaiNN trained on Transition1x, for two different reactions.
The x and y axes are basis vectors describing the plane in units of Å, and the z-axis and color-
coding show the atomization energy of configurations in the plane in eV. Not only does PaiNN
trained on the Transition1x accurately calculate the barrier energy for the reaction, it also predicts
an almost identical PES in the vicinity of the MEP and correctly identifies the plane spanned by the
configurations defining the reaction.

Figure 2 displays the performance of each surrogate potential. Panel a is the distribution of RMSDs
between transition states predicted by surrogate potentials and DFT. The distributions are unnor-
malized to reflect convergence ratios. Panel b compares activation energies found by DFT on the
x-axis with energies found by surrogate potentials on the y-axis. Models trained on ANI1x tend to
overestimate activation energies as they have not seen the low energy valleys connecting equilibrium
configurations, while DFTB tends to underestimate activation energies. Correcting ANI1x and DFTB
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(a) Reaction involving C4N2H8. Follow this link to see GIF of reaction.
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(b) Reaction involving C4NOH7. Follow this link to see GIF of reaction.

Figure 1: Minimal Energy Paths (MEPs) for two different reactions, found with the Nudged Elastic
Band (NEB) algorithm, applying the Graph Neural Network (GNN) architecture PaiNN, trained on
Transition1x, and DFT as potentials. The MEPs are projected onto intersections of the Potential
Energy Surfaces (PESs) spanned by product, reactant and transition-state of the converged MEPs.
The x- and y-axes are basis vectors describing the plane. The PESs have been calculated in the
vicinity of the MEPs with the respective potential and is shown with colors and on the z-axis.
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Figure 2: Performance of surrogate potentials compared to DFT. Panel (a) displays the unnormalized
distribution of Root Mean Square Deviation of atomic positions (RMSD) between transition-states
found by DFT and surrogate potentials. Panel (b) displays activation energies found by DFT on the
x-axis, and found by surrogate potentials on the y-axis. Points that lie on the dashed line have been
calculated perfectly.

for systematic error leads to a MAE of 0.48 eV and 0.48 eV and RMSE of 1.66 eV and 0.62 eV for
ANI1x models and DFTB, respectively.

Conclusion
Relevant data is as important as expressive models for solving higher-order tasks in computational
chemistry. We have presented the Transition1x dataset which contain force and energy calculations
for 10 million molecular configurations on and around reaction pathways, and used it to train a fast
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and accurate ML calculator that can predict reaction pathways for general organic reactions. We
achieved a MAE of 0.23 eV on activation energies on unseen reactions when compared to evaluating
the PES with DFT, while simultaneously speeding up the MEP-search significantly.
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Impact Statement
Transition1x and QM9x
We believe that Transition1x24 is an important contribution to the completeness of available data in
the literature for ML for molecular science. It provides a different type of data, facilitating new down-
stream tasks for ML models. It is calculated with the 6-31G(d)21 basis set and ωB97x22 functional,
which makes it compatible with the ANI1x17,18, and permits training models with rich representa-
tions by leveraging strengths from both datasets. The ubiquitous QM925, dataset was recalculated
with the appropriate level of theory and released under the name QM9x24. Data loaders, examples,
and scripts for Transition1x and QM9x are available in their respective repositories - Transition1x:
https://gitlab.com/matschreiner/Transition1x, and QM9x: https://gitlab.com/matschreiner/QM9x. The
data collection procedure for Transition1x is scalable and can easily be extended to include new
elements and reactions.

NeuralNEB

NeuralNEB is an accurate, inexpensive, and general ML calculator for transition-state and MEP search
that outperforms NEB with DFTB26 as potential, both in terms of accuracy and computational cost. It
yields a new and better trade-off between speed and accuracy for screening of large reaction-networks.
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Abstract

Computing properties of molecular systems rely on estimating expectations of the
(unnormalized) Boltzmann distribution. Molecular dynamics (MD) is a broadly
adopted technique to approximate such quantities. However, stable simulations
rely on very small integration time-steps (10−15 s), whereas convergence of some
moments, e.g. binding free energy or rates, might rely on sampling processes on
time-scales as long as 10−1 s, and these simulations must be repeated for every
molecular system independently. Here, we present Implict Transfer Operator (ITO)
Learning, a framework to learn surrogates of the simulation process with multiple
time-resolutions. We implement ITO with denoising diffusion probabilistic models
with a new SE(3) equivariant architecture and show the resulting models can
generate self-consistent stochastic dynamics across multiple time-scales, even
when the system is only partially observed. Finally, we present a coarse-grained
CG-SE3-ITO model which can quantitatively model all-atom molecular dynamics
using only coarse molecular representations. As such, ITO provides an important
step towards multiple time- and space-resolution acceleration of MD.

1 Introduction

TΩ(1)
̂TΩ(N )Time

μ

p(Ω
)

Ω

Figure 1: Implicit Transfer Opera-
tor: A multiple time-scale surrogate
of stochastic molecular dynamics.

Numerical simulation of stochastic differential equations
(SDE) is critical in the sciences, including statistics, physics,
chemistry, and biology applications [1]. Molecular dynamics
(MD) simulations are an important example of such simu-
lations [2]. These simulations prescribe a set of mechanis-
tic rules governing the time evolution of a molecular system
through numerical integration of, for example, the Langevin
equation [3]. MD grants mechanistic insights into experi-
mental observables. These observables are expectations, in-
cluding time-correlations, of observable functions (e.g., pair-
wise distances or angles) computed for the Boltzmann dis-
tribution µ̂(x) ∝ exp[−βU(x)] corresponding to the po-
tential U(·) : Ω → R of a M -particle molecular system,
x ∈ Ω ⊂ R3M kept at the inverse temperature β = 1/kT .
However, stable numerical integration relies on time steps, τ ,
which are strictly smaller than the fastest characteristic time-
scales of the molecular system (10−15 s, e.g., bond vibrations),
yet many molecular systems are characterized by processes on
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much longer time-scales (10−3 − 10−1 s, e.g. protein-folding,
protein-ligand unbinding, regulation). Consequently, we need infeasibly long simulations to charac-
terize many important processes quantitatively due to the slow mixing in Ω.

In this work, we present the implicit Transfer Operator (ITO, Fig. 1) as an effective way to learn
multiple time-step surrogate models of the stochastic generating distribution of MD. To our knowledge,
this is the first surrogate modeling approach that allows for the simultaneous generation of stochastic
dynamics at multiple different time resolutions. By adopting an SE(3)-equivariant generative model,
we further demonstrate stable long-time-scale dynamics in increasingly difficult settings where an
increasing number of degrees of freedom are marginalized. Our approach can be several orders of
magnitude more efficient than direct MD simulations and can be made asymptotically unbiased if the
generative model permits exact likelihood evaluation.

Our contributions are

1. the Implicit Transfer Operator (ITO) framework for learning generative models for
multiple time resolution molecular dynamics simulations,

2. ChiroPaiNN an efficient SE(3) equivariant message passing neural network,

3. implementation of ITO using a denoising diffusion probabilistic model (DDPM) [4] with
strong empirical results across resolutions: SE(3)-equivariant ITO model (SE3-ITO) gives
stable long time-scale simulations and self-consistent dynamics across multiple time-scales
for molecular benchmarks and Coarse-grained SE3-ITO model (CG-SE3-ITO) trained on
large-scale protein folding data sets shows quantitative agreement with major dynamic and
stationary observables of interest.

2 Background and Preliminaries

Notation Throughout this work, diffusion time, related to Diffusion Models (see Sec. 2), and
physical time are represented using superscripts and subscripts, respectively.

Molecular dynamics and observables Molecular dynamics (MD) is a wide-spread simulation
strategy in computational chemistry and physics. In this approach, the time-evolution of N particles
configuration in Euclidean space x ∈ Ω ⊂ R3M , is modeled via a stochastic differential equation
(SDE) with a drift term based on a potential energy model U(x) : Ω → R. An important aim of MD
is to compute:

1. Stationary observables: Of = Eµ[f(x)]

2. Dynamic observables: Of(t)h(t+∆t) = Ext∼µ[Ext+∆t∼pτ (xt+∆t|xt)[f(xt)h(xt+∆t)]]

where µ is the normalized Gibbs measure, and pτ (xt+∆t | xt) is a conditional probability density
function encoding the time-discrete evolution of the molecular system x, with time-step ∆t = Nτ
as prescribed by a dynamic model, e.g. Langevin dynamics [3], integrated with time-step, τ . N
is typically a large integer. The functions f, h : Ω → R are observable functions or ‘forward
models’ describing the microscopic observation process, e.g. computing a distance or an angle.
The observables, Of(t), and Of(t)h(t+∆t), include binding affinities and binding rates of a drug to a
protein, respectively. Conventionally, these observables are estimated from simulation trajectories
using naive Monte Carlo estimators.

For illustrative purposes, we assume the temporal behavior of a state, x, follows the Brownian
dynamics SDE (Itô form)

dxt = −∇U(xt)γ
−1 dt+

√
2DdW, (1)

where D = γ−1β−1 is a diffusion constant, with friction γ and inverse-temperature β, and dW is a
Wiener process. Using the Euler–Maruyama time-discretization, with time-step τ , simulating the
SDE corresponds to simulating a Markov chain with the transition probability density

p(xt+τ | xt, τ) = N (xt+τ |xt − τ∇U(xt)γ
−1, τ

√
2DI3M ) (2)

where N specifies the multi-variate Normal distribution, and I3M is the 3M -dimensional identity
matrix. If τ is sufficiently small to allow stable simulation, the invariant measure, of the Markov chain
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(eq. 2), is the Boltzmann distribution (normalized Gibbs measure) corresponding to the potential
energy model U(x) at β. Consequently, by simulating a large number of steps we can draw samples
from µ to compute stationary observables and compute dynamic observables by simulating ∆t = Nτ
steps enough times with initial states distributed according to µ. Explicit simulation make such
computations extremely costly, and consequently, there’s much interest in speeding up the calculations
of these quantities.

Transfer Operators Let ρ specify an initial condition, a probability density function on Ω. We can
define a Markov operator TΩ : L1(Ω) → L1(Ω) using a transition density (e.g., 2):

[TΩ ◦ ρ] (xt+τ ) ≜
1

µ(xt+τ )

∫
xt

µ(xt)ρ(xt)p(xt+τ | xt)dxt (3)

which then describes the µ-weighed evolution of absolutely convergent probability density functions
on Ω according to eq. 1, with time-step, τ . Such an operator is called the (Ruelle) Transfer Operator
[5, 6]. We can express the operator using a spectral form

TΩ(τ) =
∞∑
i=0

λi(τ)|ψi⟩⟨ϕi| (4)

where only eigenvalues λi(τ) = exp(−τκi) depend on the time-step, τ . κi are characteristic
‘relaxation’ rates associated the left and right eigenfunction pair, ϕi and ψi [7]. We can compute the
operator with time-lag Nτ via the Chapman-Kolmogorov equation (see Sec. A.1, for details)

TΩ(Nτ) =
∞∑
i=0

λi(τ)
N |ψi⟩⟨ϕi|. (5)

Equivariant Message Passing Neural Networks In this work, we are concerned with MD, where
the time-evolution of a molecule is governed by a force field F(·) ≜ −∇U(·) derived from a central
potential U(·). While U(·) is invariant to group-actions of the Euclidean group in three dimensions
(E(3)), its corresponding force field is E(3)-equivariant. We call a function, f ‘invariant’ under a
group-action g iif f(x) = f(Sgx) and ‘equivariant’ iff Tgf(x) = f(Sgx), where Sg and Tg are
linear representations of the group element g [8].

While the force field F(·) is equivariant under E(3) group-actions, in practice, classical molecular
dynamics simulations do not change parity during simulation, and consequently, our data generating
distribution — molecular dynamics — is equivariant under actions of the special E(3) (SE(3)) group,
also called the group of rigid body motions, which excludes reflections.

As we aim to distinguish mirror images of molecules, we extend PaiNN [9], an E(3)-equivariant
message passing neural network (MPNN), making it SE(3) equivariant by breaking its symmetry with
respect to parity. Briefly, PaiNN embeds a graph G = (V,E), where nodes, V , exchange equivariant
messages through edges within a local neighborhood defined as N (i) = {j | ∥rij∥ ≤ rcutoff},
where rij is the distance between nodes denoted i and j, and rcutoff is the maximal distance at
which nodes are allowed to exchange messages. Messages are pooled and subsequently used to
update node features, thereby enabling exchange of equivariant information. We achieve parity
symmetry-breaking by constructing the equivariant messages in a manner that depends on cross-
products between equivariant node features and direction vectors between interacting nodes. The
cross-product is an axial vector (i.e., does not change sign under parity). Consequently, by combining
these vectors with polar vectors (change sign under parity), the model can learn to distinguish chiral
molecules. We refer to this modified PaiNN architecture as ChiroPaiNN (CPaiNN). Further details
are in the Appendix D.

Diffusion Models The diffusion model (DM) formalism is a powerful generative modeling frame-
work that learns distributions by modeling a gradual denoising process [4, 10, 11]. In DMs, we pre-
specify a forward diffusion process (noising process), which gradually transforms the data distribution
p(x0) to a simple prior distribution p(xT ), e.g., a standard Gaussian, through a time-inhomogenous
Markov process, described by the following SDE (Itô form)

dxt = f(xt, t) dt+ g(t) dW. (6)
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where 0 < t < T is the diffusion time, f and g are chosen functions, and dW is a Wiener process.
We can generate samples from the data distribution p(x0) by sampling from p(xT ) and solving the
backward diffusion process (denoising process)

dxt =
[
f(xt, t)− g2(t)∇xt log p(xt | t)

]
dt+ g(t) dW (7)

by approximating the score field ∇xt log p(xt | t) — or equivalently a time-dependent Gaus-
sian transition kernel [4] — with a deep neural network surrogate ∇xt log p̂(xt | t,θ). We
can use the learned score field to define a neural ordinary differential equation (ODE) [12,
13], or probability flow ODE [14] — eq. 7 less the term g(t) dW and scaling g2(t) by
1/2 — which we can leverage for efficient sampling and sample likelihood evaluation.

ChiroPaiNN

̂ϵ
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z N
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(m,3)(1)(m)
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Figure 2: ITO ϵ̂ networks (A) SE3-ITO used for molec-
ular application (B) MB-ITO, used for experiments with
the Müller-Brown potential. Λpos and Λnom are positional
and nominal embedding respectively, Concat is a concate-
nation, and MLP is a multi-layer perceptron. Arrows are
annotated with input and output shapes.

Here, we are concerned with building
equivariant probability density functions
under SE(3) group actions. Conse-
quently, we parameterize the DM us-
ing a learned Gaussian transition kernel
of a time-inhomogenous diffusion pro-
cess. By restricting the transition ker-
nels p(xt+1 | xt) to be equivariant un-
der SE(3) group-actions, the marginal of
xt+1 is always invariant [15]. Combin-
ing the equivariant transition kernel with
an invariant prior density [16] ensures
the whole Markov process is invariant to
SE(3) group actions. Consequently, com-
bining an isotropic mean-free Gaussian
as prior with ChiroPaiNN-parameterized
transition kernels, we can construct an
SE(3) equivariant diffusion model.

3 Implicit Transfer Operator

We here consider simulation trajectories
of a system as ancestral samples from
a conditional probability density: X =
{xτ , . . . ,xNτ} ∼ p(xnτ | x(n−1)τ ),
with n = {1, . . . , N}, generated by ex-
plicit simulation by time-discretization
of, for example, the Langevin equation. τ is a ‘physical time-step’ determined by the integration
scheme used to carry out MD. In general, the state variable x, contains both position and veloc-
ity information of the particles, along with other details such as box dimensions, depending on
the simulation scheme and target ensemble. Throughout this study, we only consider the position
information.

If our MD simulation is performed with time-invariant potential energy (drift), we can express the
generating transition probability as a decomposition of time-variant and -invariant parts (Proof, see
Sec. A.2)

p(xNτ | x0) =
∞∑
i=1

λNi (τ)︸ ︷︷ ︸
time-variant

αi(xNτ )βi(x0)︸ ︷︷ ︸
time-invariant

(8)

where αi and βi are time-invariant projection coefficients of the state variables on-to the left and right
eigenfunctions ϕi and ψi, of the Transfer operator TΩ(τ) [5] and |λi(τ)| ≤ 1 is its i’th eigenvalue.

We build a surrogate of the conditional transition probability distribution (eq. 8) from MD data. In
practice, we learn a generative model xt+Nτ ∼ pθ(xt+Nτ | xt, N) with a conditional denoising
diffusion probabilistic model (cDDPM) of the form

p(x0
t+Nτ | xt, N) ≜

∫
p(x0:T

t+Nτ | xt, N) dx1:T (9)
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where x1:T are latent variables of the same dimension as our output, and follow a joint density
describing the backward diffusion process (eq. 7) and xT ∼ N (0, I). We define a conditional sample
likelihood as

ℓ(I; θ) ≜
∏
i∈I

pθ(x
0
ti+Niτ | xti , Ni) (10)

where I is a list of generated indices i specifying a time ti and a time-lag (τ ) integer multiple
Ni, associating two time-points in the trajectory, X. Following Ho et al., we train the cDDPM by
optimizing a simplified form of the variational bound of the log-likelihood [4],

L(θ) = Ei∼I,ϵ∼N (0,I),tdiff∼U(0,T )

[
∥ϵ− ϵ̂θ(x̃

tdiff
ti+Niτ

,xti , Ni, tdiff)∥2
]
, (11)

where x̃tdiff
t ≜

√
ᾱtdiffxt +

√
1− ᾱtdiff ϵ, with ᾱtdiff =

∏tdiff

i (1− βi) and βi is the variance of the
forward diffusion process at diffusion time, i. ϵ̂θ(·) is one of the two ITO neural network model
architectures shown in Fig. 2, and is directly related to the score [4].

As outlined in Algorithm 1, we generate the indices i ∈ I, in a manner such that the model is
exposed to multiple time-lags, sampled uniformly across orders of magnitude, used for gradient-
based optimization with Adam [17]. As a result, the model will be exposed to multiple different
linear combinations of the eigenfunctions of TΩ(τ) in each batch during training. We conjecture
that this data augmentation procedure will enable better learning of implicit representations of these
eigenfunctions and, consequently, better generalization across time scales and yield more stable
sampling.

3.1 ITO Architectures

We present two architectures for learning cDDPMs encoding ITO models, one for molecular applica-
tions SE3-ITO and one for the Müller-Brown benchmark system (Fig. 2). The SE3-ITO architecture
uses our new SE(3) equivariant MPNN (ChiroPaiNN, described in sec. 2) to encode xt, N , and
atom-types, z, to invariant features, s, and equivariant features, v. We concatenate s with an encoding
of the diffusion-time tdiff and process them through a MLP (multi-layer perceptron). The output from
the MLP are passed along with v and x̃tdiff

t as input to a second ChiroPaiNN module which predicts
ϵ̂. More details on the architecture and hyperparameters are available in Appendices D and E.

Algorithm 1 Training. DisExp is defined in Ap-
pendix E

Input: n MD-trajectories; X =

{xj
0, . . . ,x

j
tj}

n
j=0, ITO score-model; ϵ̂θ,

max lag; Nmax

X ′ = Concatenate({xj
0, . . . ,x

j
tj−Nmax

}nj=0)

while not converged do
xt ∼ Choice(X ′)
N ∼ DisExp(Nmax)
tdiff ∼ Uniform(0, T )
Take gradient step on:
∇θ

[
∥ϵ− ϵ̂θ(x̃

tdiff
t+Nτ ,xt, N, tdiff)∥2

]
end while
return ϵ̂θ

Algorithm 2 Ancestral sampling. Sampling
from pθ is defined in Appendix E, Algorithm 4

Input: initial condition x0, lag N , nesting
steps n.
Allocate T ∈ R(n+1)×dim(x0)

T [0] = x0

for i = 1 . . . n do
xi ∼ p̂θ(T [i− 1], N)
T [i] = xi

end for
return T

4 Long time-step stochastic dynamics with Implicit Transfer Operators

4.1 Datasets and test-systems

To evaluate how robustly ITO models can model long time-scale dynamics, we conducted three
classes of experiments, ranging from fully observed, high time-resolution, to sparsely observed and
low time resolution. Details on training and computational resources are available in Appendices E
and F, respectively.
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Table 1: VAMP2 score-gaps. Difference in VAMP2-scores of ancestral sampling from ITO models
with fixed lag and stochastic lags, compared to baseline Langevin simulations. Perfect match is 0,
negative and negative values correspond to under and over estimation of meta-stability, respectively.
Standard deviations on last decimal place are given in parentheses.

system ⧹ lag 10 100
Müller-Brown (fixed) -0.0351 (5) -0.1189 (2)
Müller-Brown (stochastic) -0.0312 (4) -0.0970 (5)

Müller-Brown is a 2D potential commonly used for benchmarking molecular dynamics sampling
methods. We generate a training data-set by integrating eq. 1 with the Müller-Brown potential energy
as U(x) (For details, see Appendix B.1). This dataset corresponds to a fully observed case.

Alanine dipeptide We use publicly available data from MDshare [18]. Simulation is performed
with 2 fs integration time-steps and data is saved at 1 ps intervals. The simulations are performed
in explicit solvation, but we only model the 22 atoms of the solute, without considering velocities.
Consequently, this dataset is only partially observed.

Fast-folding proteins We use molecular dynamics data previously reported by Lindorff-Larsen
et al. on the fast-folding proteins Chignolin, Trp-Cage, BBA, and Villin [19]. The data is proprietary
but available upon request for research purposes. The simulations were performed in explicit solvent
with a 2.5 fs time-step and the positions was saved at 200 ps intervals. We coarse-grain the simulation
by representing each amino-acid by the Euclidean coordinate of their Cα atom as done previously
[20], leading to 10, 20, 28, and 35 particles in each system respectively. Consequently, these data
correspond to a mostly unobserved case.

4.2 Stochastic lag improves meta-stability prediction
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Figure 3: Müller-Brown potential. Conditional Probability Densities
starting in x0 indicated by cross, in ITO models trained with fixed or
stochastic lag. Comparison of histograms of direct and ancestral sampling
to direct simulation (Langevin). Nsamples=250k

In sec. 2, we conjecture
that exposing an ITO
model to multiple lag
times during training
leads to better and more
robust models. To
test this, we trained a
set of models on the
Müller-Brown dataset
with fixed constant lags
N = {10, 100, 1000}
(fixed lag) and a
single model with
N ∼ DisExp(1000)
(stochastic lag) using the
MB-ITO model (Fig. 2).

We find that the model
trained with a stochas-
tic lag systematically out-
performs models trained
with fixed lag (Table 1).
We gauge the agreement
by comparing Variational
Approach to Markov Pro-
cesses (VAMP)-2 scores
[21] (for details, see Ap-
pendix G), between model samples and training data and find that both models tend to underestimate
meta-stability compared to training data slightly. However, the model trained with stochastic lag
is marginally closer to the reference values. We note that the difference in the ability of fixed and
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stochastic lag ITO models to capture long-time-scale dynamics is also reflected in the learned tran-
sition densities (Fig. 3). Together, these results suggest that lag-time augmentation during training
leads to better implicit learning of the Transfer operator’s eigenfunctions than training with a fixed
lag.

4.3 Efficient and accurate self-consistent long time-scale dynamics

We evaluate the ITO models trained with stochastic lags to capture long time-scale dynamics in a
self-consistent manner, in the Chapman-Kolmogorov sense, i.e., p(x∆t | x0) ≜ p(xNτ | x0) =∏N

i=1 p(xiτ | x(i−1)τ ), or if samples generated by direct sampling with time-step ∆t = Nτ are
distributed similarly to samples generated by performing ancestral sampling N times, each with
time-step τ .

For the fully-observed Müller-Brown case, we find that the ITO model is self-consistent by the strong
overlap in transition densities sampled in a direct and ancestral manner (Algorithm 2). These results
generalize to molecular systems and partially observed systems. Sampling an SE3-ITO model (Fig. 2)
trained with alanine dipeptide data, we find strong agreement between the ancestrally and directly
sampled transition densities (Fig. 4) and we again have a strong consistency with corresponding
transition densities computed from molecular dynamics simulations. Note here, that the time-step
of the ITO-sampled transition densities varies from 104 to 106 times the MD integration time-step.

ψϕ

Figure 4: Alanine dipeptide dynamics with SE3-ITO
model; Rows of increasing time-lag (from top to bottom).
Contours are samples from SE3-ITO model, and 2D his-
tograms show estimates from MD data. The first column
shows conditional transition densities projected onto the tor-
sion angles ϕ and ψ (inset). The black cross indicates the ini-
tial condition. The second and third columns show marginal
distributions of ϕ and ψ, respectively, with direct sampling
in orange, ancestral sampling in blue, and MD data in black.

Next, we consider four fast-folding
proteins [19] where only the Cα
atoms are visible during model train-
ing. In this sparsely observed case
(CG-SE3-ITO), we find strong model
self-consistency, as shown by the com-
parison between conditional densi-
ties from the folded and unfolded
states (Fig. 5) projected onto a lin-
ear subspace determined using time-
lagged independent component anal-
ysis (time-lagged independent compo-
nents, tIC) [22] (see Appendix B.3).
Further, the long time-scale transi-
tion density gradually converges to the
data distribution as expected.

Finally, by ancestral sampling (Algo-
rithm 2), we perform a simulation of
Chignolin with the same length as
the training trajectory (106µs), us-
ing a CG-SE3-ITO model, and com-
pare with MD. The CG-SE3-ITO sim-
ulation is 2120 steps with ∆t =
5ns. Running in parallel, on a sin-
gle Titan X GPU we can simulate
the CG-SE3-ITO model at a rate
of 363 ns/(swM2) where sw denotes
seconds wall-time (Appendix C.2).
Remarkably, these trajectories are vir-
tually indistinguishable in the slowly
relaxing TICA coordinates, illustrating stability of ITO. These conclusions extend to the proteins
Villin, BBA, and Trp-Cage (See Appendix, Figs. 6,7 and 8)

Together these results suggest that ITO models accurately and self-consistently capture the slow
dynamics of molecular systems and are robust to situations where the system is only partially
observed. In general, we expect robustness to sparsely observed representations as long as the input
representations are sufficient to span the eigenfunctions of TΩ [23, 24]. Approximation errors will
translate into systematic under-estimation of relaxation time-scales [7], consistent with our slight
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Figure 5: Reversible protein folding-unfolding of Chignolin with CG-SE3-ITO Conditional
probability densities (orange contours) starting from unfolded (upper panels) and folded (lower
panels) protein states, at increasing time-lag (left to right), shown on top of data distribution. Below:
time-traces of 106 microsecond MD simulations and ITO simulations on tICs 1 and 2.

under-estimation of VAMP-2 scores (Table 1). In future work, combining the learning of SE3-ITO
models with a systematic scheme for coarse-graining [25, 26], could be an avenue for scaling to
large-scale molecular systems at a low computational cost.

5 Prediction of dynamic and stationary observables of using CG-SE3-ITO

As outlined in section 2, an important aim of MD simulations is to compute stationary and dynamic
observables, which involves intractable integrals typically approximated via Monte Carlo estimators.
Using the trained ITO models we can efficiently sample i.i.d. from the transition density needed for
computing dynamic observables, and by choosing a time-step which is sufficiently large we can also
sample i.i.d from the Boltzmann distribution µ, the latter akin to Boltzmann generators [27] (See
Appendix A.1). We note that, the ITO models are surrogates and as such without reweighing we
cannot expect unbiased samples from the Boltzmann and dynamic transition densities. Nevertheless,
we gauge how accurately ITO models we can compute these observables of interest in the context of
protein folding without reweighing:

• Free Energy of Folding, ∆G = − log
[

pf

1−pf

]
• Mean first passage time, folding, ⟨τf ⟩ =

∫
x0∈¬f

∫∞
0
δ(xt ∈ f)p(xt | x0, t)tdtdx0

• Mean first passage time, unfolding,⟨τu⟩ =
∫
x0∈f

∫∞
0
δ(xt ∈ ¬f)p(xt | x0, t)tdtdx0

where {f,¬f} ⊂ Ω are disjoint subsets corresponding to the folded and unfolded states of a protein,
pf =

∫
x∈f

µ(x) dx, is the folded state probability and δ(·) is the Dirac delta.

We compute these observables using the reference molecular simulation data [19] and samples statis-
tics from the CG-SE3-ITO models of each of the four fast-folding proteins (details in Appendix C.1).
Strikingly, the observables computed using CG-SE3-ITO models agree well with those computed
from long all-atom MD simulations (Table 2).

We implemented all experiments using PyTorch[28], PyTorch Lightning[29], JAX[30], and used
DPM-Solver[31] for probability flow ODE Sampling.
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Table 2: Molecular observables Standard deviations on last decimal place are given in parentheses.
Stationary and dynamic observables are denoted s and d, respectively.

∆Gfold/kT (s) ⟨τf ⟩/µs (d) ⟨τu⟩/µs (d)
Chignolin (MD/ITO) -1.28(1)/-1.53(2) 0.565(4)/0.700(8) 2.01(2)/3.24(4)
Trp-Cage (MD/ITO) 1.47(6)/2.84(6) 13.6(4)/37(2) 3.4(2)/2.85(9)
BBA (MD/ITO) 0.97(3)/1.52(3) 11.7(2)/8.6(2) 5.1(1)/1.75(4)
Villin (MD/ITO) 1.21(2)/2.22(3) 2.41(3)/3.27(7) 0.68(1)/0.354(5)

6 Related Work

Molecular sampling Sampling molecular configurations is a broad field and can broadly be divided
into two main areas: physically motivated sampling of the Boltzmann distribution and conformer
generation. The first area includes algorithmic approaches to sample the Boltzmann distribution
including Molecular Dynamics simulations [2], Markov Chain Monte Carlo, extended ensemble
methods [32, 33, 34], including analysis methods involving deep generative nets [35], and surrogate
models which directly approximate the Boltzmann distribution and allow for recovery of unbiased
statistics, including Boltzmann generators [36, 16]. Conformer generation concerns generating
physically plausible conformers without explicitly trying to follow the Boltzmann distribution. The
latter approaches can be split into ML [15, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46] and chemoinformatic
[47, 48] approaches. Finally, speeding up molecular simulations by reducing the effective number of
particles to simulate through coarse-graining with special purpose forcefield models [49] including
machine learned variants [50, 51, 20, 52] and learned coarse-graining maps [25, 26] is an orthogonal
approach to sample conformation space. Further, several methods to recover all-atom models from
coarse-grained representations through ML [53, 54] and rule-based approaches [55] are available.

Transfer Operator surrogates Building transfer operator surrogates is commonly used in molec-
ular modeling including (Deep Generative) Markov state models (MSM) [56, 7, 57, 58], dynamic
graphical models,[59] VAMPnets[60, 21], observable operator models[61], however, primarily for
analysis of molecular dynamics data. Markov state models are time-space discrete approximations of
the transfer operator and Deep Generative MSM [62] and VAMPnets [60] are deep learning infused
versions, where state discretization is learned by deep nets. Dynamic graphical models reparameterize
MSMs as kinetic Markov random fields allowing for scaling to larger systems [59]. Klein et al.
recently introduced timewarp which is a flow-based generative model to simulate molecular systems
with a large (up to 0.5 ns), fixed, time-lag, [63] providing asymptotically unbiased equilibrium
samples through a Metropolis-Hastings correction [64]. While timewarp generates conformers with
realistic local structure, it has limitations in capturing long time-scale dynamics, which is reflected
in the predicted transition probability densities. In contrast, our approach captures long time-scale
dynamics efficiently allowing for accurate prediction of dynamic observables.

7 Limitations

Surrogate model Implicit Transfer Operators are surrogate models of stochastic dynamics’ con-
ditional transition probability densities. We cannot guarantee unbiased sampling of dynamics and
the stationary distribution due to aleatoric (e.g., finite data) and epistemic (e.g., model misspecifica-
tion) uncertainty. We can overcome the latter by reweighing against a Markov Chain Monte Carlo
acceptance criterion as proposed previously [63], to ensure unbiased dynamics path-reweighing is
necessary, which in turn requires closed-form expressions for the target path probabilities [65].

Transferability and scalability Currently, ITO does not generalize across chemical space and
thermodynamic variables. In future work, we anticipate that generalization across chemical space
limitations can be overcome by appropriate data set curation and parameter-sharing schemes. Gen-
eralization across thermodynamic variables such as temperature and pressure would require using
a surrogate model which is steerable under these changes, e.g., temperature steerable flows [66].
Currently, we assume a fully connected graph that scales O(M2) in system size, which limits what
systems are practically accessible. Devising new surrogate models which use mean-field approxima-
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tion approaches from e.g., computational physics [67] or chemistry to truncate the graphs and treat
long-range as an additive term [68] could yield more favorable scaling [69].

8 Conclusions

This paper introduces Implicit Transfer Operators (ITO), an approach to building multiple time-scale
surrogate models of stochastic molecular dynamics. We implement ITO models with a conditional
DDPM using a new time-augmentation scheme and show how ITO models capture fast and slow
dynamics on benchmarks and molecular systems. We show ITO models are self-consistent over
multiple time scales and highly robust to the marginalization of degrees of freedom in the system,
which are unimportant to capture the long-time-scale dynamics. Combined with a new SE(3)
equivariant MPNN architecture (ChiroPaiNN), we further show strong empirical evidence of scaling
to applications, such as the folding of coarse-grained proteins. As such, we are confident that ITO is
a stepping-stone toward general-purpose surrogates of molecular dynamics.
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A Properties of the Transfer operator

A.1 Relaxation of TΩ spectrum

In this section, we outline the ‘relaxation’ or ‘decay’ of the spectral components of TΩ as a function
of time-step, τ . We use that ⟨ϕi|ψi⟩µ =

∫
ϕi(x)ψi(x) dµ(x) = 1 if i = j and 0 if i ̸= j, e.g.

the eigenfunctions are orthonormal under the µ-weighed inner-product. Since TΩ(τ) is Markov,
composing TΩ(τ) with itself N times we get,

[TΩ(τ)]
N = TΩ(τ) ◦ · · · ◦ TΩ(τ) (12)

=

∞∑
i=0

λi(τ)|ψi⟩⟨ϕi|λi(τ)|ψi⟩⟨ϕi| . . . λi(τ)|ψi⟩⟨ϕi| (13)

=

∞∑
i=0

λi(τ)
N |ψi⟩⟨ϕi|ψi⟩µ⟨ϕi| . . . |ψi⟩⟨ϕi| (14)

=
∞∑
i=0

λi(τ)
N |ψi⟩⟨ϕi| (15)

We assume the dynamics governed by TΩ are

1. reversible λi ∈ R

2. measure-preserving 0 ≤ |λi| ≤ 1

3. ergodic, λ0 = 1 and |λi>0| < 1

where we have sorted the eigenvalues eigenfunction pairs in descending order. Consequently, for
N → ∞ we have TΩ(Nτ) → |1⟩⟨µ|, where 1 is the constant function.

A.2 Decomposition of transition density

In this section, we detail the decomposition of the transition density, p(xNτ | x0).

Let ρ specify an initial condition, an absolutely convergent probability density function on Ω. We can
define a Transfer operator TΩ using a transition probability density [6]:

[TΩ ◦ ρ] (xNτ ) ≜
1

µ(xNτ )

∫
x0

µ(x0)ρ(x0)p(xNτ | x0) dx0, TΩ : L1(Ω) → L1(Ω) (16)

which then describes the µ-weighed evolution of densities on Ω according to MD discretized in time
by a step-size of τ . µ is a normalized Gibbs measure, or the Boltzmann distribution.

Since we only consider MD with time-invariant drift, only the eigenvalues λi(τ) of TΩ(τ) depend on
τ . We can express arbitrary transition probabilities through a bilinear form

p(xNτ | x0) = ⟨δxNτ
|TN

Ω (τ)|δx0
⟩ =

∞∑
i=1

λNi (τ)⟨δxNτ
|ϕi⟩⟨ψi|δx0

⟩ =
∞∑
i=1

λNi (τ)αi(xNτ )βi(x0)

(17)
where αi and βi are time-invariant projections coefficients of the state variables on-to the eigenfunc-
tions ϕi and ψi, and δx is the Dirac delta centered at x. TN

Ω (τ) means TΩ(τ) acting N times (See
A.1).

B Datasets

Throughout we train on all available data, as it is often sparse and difficult to split in an appropriate
manner due to rare events e.g. folding and unfolding.
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Table 3: Details about the Alanine dipeptide data (taken verbatim from mdshare)

Property Value
Code ACEMD
Forcefield AMBER ff-99SB-ILDN
Integrator Langevin
Integrator time step 2 fs
Simulation time 250 ns
Frame spacing 1 ps
Temperature 300 K
Volume (2.3222nm)3 periodic box
Solvation 651 TIP3P waters
Electrostatics PME
PME real-space cutoff 0.9 nm
PME grid spacing 0.1 nm
PME updates every two time steps
Constraints all bonds between hydrogens and heavy atoms

B.1 Müller Brown

We generate the Müller Brown data set used for training by integrating the 2D potential energy model:

U(x, y) =

4∑
i=1

Ai exp
[
ai(x− x̄i)

2 + bi(x− x̄i)(y − ȳi) + ci(y − ȳi)
2
]

(18)

using simulating overdamped Langevin or Brownian dynamics SDE, through a Euler-Mayurama
time-discretization, and where

A = (−200,−100,−170, 15)

a = (−1,−1,−6.5, 0.7)

b = (0, 0, 11, 0.6)

c = (−10,−10,−6.5, 0.7)

x̄ = (1, 0,−0.5,−1)

ȳ = (0, 0.5, 1.5, 1).

(19)

We we generate 32 trajectories with random initial conditions in the ranges

x = [−1.5, 1.2]

y = [−0.2, 2.0],
(20)

and save every 10th step after a burn-in of 1000 steps. Each trajectory is simulated for 100000 steps.

A separate testing set was generated in an identical manner but with a different random seed. The
values in Table. 1 are computed compared to this test set.

B.2 Alanine dipeptide

We use the data from MDShare (Table 3) which consists of three independent trajectories of 250 ns
each.

Pre-processing The atomic coordinates are standardized before model training, each atom has a
unique nominal embedding as atom type.

B.3 Fast folding proteins

The original data was obtained upon request from DE Shaw Research, and details about the simula-
tions are available in the original publication [19]. All configurations were preprocessed by centering
them at the origin. Furthermore, all configurations were scaled to ensure a standard deviation of one
across the dataset.
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Table 4: MSM hyperparameters. All models used 100 cluster centers, and clustered in the 5 first
TICs.

TICA lag MSM lag ITO ∆t

Chignolin 1ns 100ns 200ns
Trp-Cage 1ns 100ns 200ns
BBA 1ns 800ns 200ns
Villin 1ns 200ns 200ns

Figure 6: Reversible protein folding-unfolding of Trp-Cage with CG-SE3-ITO Conditional
probability densities (orange contours) starting from folded (upper panels) and unfolded (lower
panels) protein states, at increasing time-lag (left to right), shown on top of data distribution. Below:
time-traces of 208 microsecond MD simulations and ITO simulations on tICs 1 and 2.

C Additional results

C.1 Fast folding proteins

Figures 6, 7 and 8, show conditional distributions generated by CG-SE3-ITO models and comparisons
of MD with ITO simulations on the fast folders Trp-Cage, BBA, and Villin, respectively.

Reference value and observables We compute observables using Markov state models. First, we
estimate a reference model for each system (see hyper-parameters in Table 4). Briefly, non-redundant
and non-trivial pair-wise Cα distances were used as input for TICA dimension reduction, the reduced
space was clustered using k-means. MSMs were sampled from a Bayesian posterior as previously
described [70], using cluster assignments as state assignments. We identified folded and unfolded
states using PCCA (Perron Cluster-Cluster analysis) [71], which in turn enabled the calculation of
mean first passage times (MFPT) of folding ⟨τf ⟩ and unfolding ⟨τu⟩ and the free energy of folding
∆Gfold.

Observables computed from ITO simulations were computed by processing the simulation data by
projecting them onto the TICA space and the cluster centers determined on the MD data. MSMs
were sampled as for MD data and observables were computed in the same way.

The reported uncertainties are standard deviations from Bayesian posterior sampling.
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Figure 7: Reversible protein folding-unfolding of BBA with CG-SE3-ITO Conditional probability
densities (orange contours) starting from unfolded (upper panels) and folded (lower panels) protein
states, at increasing time-lag (left to right), shown on top of data distribution. Below: time-traces of
250 microsecond MD simulations and ITO simulations on tICs 1 and 2.

C.2 Sample timings

Running on a single device of a NVIDIA TITAN V node, using all memory, we can concurrently
generate

• 253 simulation-steps/s for Chignolin

• 61 simulation-steps/s for Trp-Cage

• 35 simulation-steps/s for BBA

• 21 simulation-steps/s for Villin

• 48 simulation-steps/s for Alanine-Dipeptide

Note that all samples presented in this paper have been calculated equivalently using 50 ODE-steps.
Depending on simulated lag, arbitrarily long trajectories can be sampled efficiently. Our models were
trained on lags of up to 200 ns, but our findings suggest no constraints on extending the framework to
much longer time scale.

D Architectural details

Positional embedding, Λpos , maps diffusion time tdiff , physical time ∆t, and interatomic distances
rij to n-dimensional features-vectors with the n’th dimension defined as:

Λn
pos(x) =

cos
((

1 + n
2

)
x π
l0

)
for even n

sin
((

1 + n−1
2

)
x π
l0

)
for odd n,

(21)

where l0 is a hyperparameter.

Nominal embedding Λnom , maps atomic elements or residue types to continuous n-dimensional
feature vectors, f : C → Rn, where C is the set of all categorical values and n is the dimension of
the embedded vector.
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Figure 8: Reversible protein folding-unfolding of Villin with CG-SE3-ITO Conditional probability
densities (orange contours) starting from folded (upper panels) and unfolded (lower panels) protein
states, at increasing time-lag (left to right), shown on top of data distribution. Below: time-traces of
125 microsecond MD simulations and ITO simulations on tICs 1 and 2.
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Figure 9: ChiroPaiNN architecture utilized in SE3-ITO and CG-SE3-ITO models (Fig. 2) for the
embedding of conditional configuration and score prediction. Arrows are annotated with input and
output shapes. × indicates cross product operations between all vectors along the first dimension,
and ◦ indicates element-wise multiplication along the first dimension.

E Training details

E.1 Sampling of configurations

The last Nmax frames were truncated from each trajectory such that xt could be sampled uniformly
while keeping xt+Nmax

in bounds. N is sampled discretely from DisExp(Nmax) following;

Algorithm 3 Sampling from DisExp
Nlog ∼ Uniform(0, log(Nmax))
Return: floor(exp(Nlog))
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Algorithm 4 Sampling from p̂θ(x0, N)

Input: initial condition x0, lag; N , diffusion steps; Tdiff , ITO score-model; ϵ̂θ
xTdiff

N ∼ N (0,1)
for tdiff = Tdiff . . . 1 do

ϵ ∼ N (0,1)

xtdiff−1
N = 1√

αtdiff

(
xtdiff
N − 1−αtdiff√

1−ᾱtdiff
ϵ̂θ(x

tdiff
N ,x0, N, tdiff)

)
+ σtϵ

end for
return x0

N

E.2 Data splits

All available data was used for training with no test/validation set. Reference MFPT values are
already coarse estimates and cannot be accurately calculated from a subset of the data due to slow
time scales compared to the length of available trajectories.

E.3 Hyper Parameters

Müller-Brown For the Müller-Brown results we trained with the MLP in MB-ITO architecture
with 32 dimensional positional embeddings for tphys and N and the MLP had 32 hidden nodes and
5 layers. We used a cosine learning rate scheduler and a sigmoidal β-scheduler with parameters
as listed for alanine dipeptide and the fast folders. The model with stochastic lag was trained with
Nmax = 1000 and for fixed lag models N was fixed during data generation and the positional
embeddings of N were removed from the model.

Alanine dipeptide and Fast folders Hyperparameters employed for experiments on the fast folding
proteins and Alanine Dipeptide are outlined below:

n_features: 64
n_message_passing_blocks_cpainn_embed: 2
n_message_passing_blocks_cpainn_score: 5

N_max: 1000
length_scale: 3.
beta_scheduler: sigmoidal(-8,-4)
diffusion_steps: 1000

batch_size: 128
learning_rate: 1e-3
optimizer: Adam

n_message_passing_blocks_cpainn_{embed/score} refers to the number of message passing
and update blocks in the CPaiNN networks shown in Figure 2. A message passing block refers to a
message block followed by an update block as shown in Figure 9. Where sigmoidal(t_0,T) =

1
1+e−x |x∈(t0,T ). n_features and batch_size corresponds to n andm in Figure 9. length_scale
correspond to the value of l0 in (Eq. 21) and defines the radial resolution of the embedding.
n_features was chosen such that equivalent models could fit in memory of available hardware
while maintaining a consistent batch_size across all systems. The remaining hyperparameters were
fixed and were not systematically optimized.

E.4 Bond lengths Alanine Dipeptide

We evaluate how well the fast vibrational degrees of freedom are captured by the SE3-ITO model
on Alanine dipeptide by inspecting the bondlength distributions of model samples (Fig. 10). The
variances are generally over estimated slightly, but it does not appear to significantly our ability to
predict slow dynamics. However, it would impact importance sampling as many configurations would
have unfavorable physical energies. We leave it for future work to improve.
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Figure 10: Bond lengths of samples Alanine Dipeptide

F Compute resources

F.1 Training

All reported experiments have been conducted on NVIDIA TITAN V, NVIDIA TITAN X (Pascal),
and NVIDIA GeForce GTX TITAN X’s. All GPUs have ∼ 12GB memory and range from 3000-5000
CUDA cores. Given the hyperparameters specified above, the SE3-ITO models converge within 2-4
days of training depending on system size.

Throughout the project, ∼ 250 models were trained for an average duration of ∼ 12 hours pr model
on single GPU devices, resulting in a total of ∼ 3000 GPU hours spent on training.

F.2 Sampling

In total 589 GPU hours have been spent on sampling throughout the entire project.

G Variational Approach to Markov Processes (VAMP)

The Variational Approach to Markov Processes (VAMP) is a recent result in non-linear dynamics
theory, its key contribution is a family of VAMP-scores [21]. The VAMP-scores are devised based
upon the insight that the best (smallest prediction error) linear model can be expressed in terms of the
top singular components of the Koopman operator, K [72]. The scores measure sum of the singular
values of K multiplied by overlap coefficients between a set of (ortho-normalized) feature-maps f
and g and the singular components of K. We can optimize VAMP-scores to learn optimal feature
mappings and Markovian models of the dynamics from time-series data [60] or for model comparison
[21]. We here use the VAMP-score for the latter and assume f = g.

VAMP-r score is computed via the singular values of the Koopman matrix K estimated from data
using the feature maps f and g [73],

VAMP−r =
k∑

i=0

σr
i (22)

where r ∈ N+.

G.1 VAMP gap

Informally, the VAMP-r scores quantify the meta-stability of a Koopman matrix. We define the
VAMP-gap ∆V between two Koopman matrices, K and K′, as the difference between their VAMP-2
scores:

∆V = VAMP−2(K)−VAMP−2(K′), (23)
where K′ is a reference and K is a query matrix, respectively. In this context, ∆V = 0 means
meta-stability in K and K′ is indistinguishable, ∆V < 0 means K underestimates meta-stability,
and vice versa for ∆V > 0.
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APPENDIXE
Mors Vejledning Til Min

Afhandling
(Selvfølgelig også til andre interesserede - tak for at læse med)

I begyndelsen af det 20. århundrede bevidnede vi, gennem fødslen af kvante-
mekanik, en banebrydende udvikling i vores forståelse af fysikken og den mikroskopiske
verden, der omgiver os. Med kvantemekanikken kunne vi svare på fundamentale
spørgsmål, omdiskuteret i tusindvis af år, om hvordan atomer og molekyler fungerer.
Det er yderst vigtigt at have en dybdegående forståelse af molekyler da de styrer alt
fra biologiske processer til egenskaberne af de materialer, vi bygger verden omkring os
med. Selvom kvantemekanikken rent matematisk er blevet beskrevet fyldestgørende,
har det vist sig at være en formidabel udfordring at anvende den på molekyler. In-
tensiv forskning har gennem mange år resulteret i en række sofistikerede værktøjer,
kendt som elektronstruktur metoder, der kan give visse indsigter i molekylers kvante-
mekaniske egenskaber. Elektronstruktur metoder er, ikke overraskende, meget bereg-
ningstunge, hvilket forhindrer dem i at blive brugt på en stor skala. Udfordringerne
forbundet med at bruge disse metoder udgør en flaskehals for udviklingen af nye
teknologier og metoder, der potentielt kunne have afgørende indflydelse på mange af
verdens problemer.

I de senere år har vi været vidne til en ny revolution i form af kunstig intelligens, der
måske er lige så vigtig som kvantemekanikkens revolution. Neurale netværk, der er
en specifik form for kunstig intelligens model, har vist sig at være i stand til at løse
problemer så komplekse at det virkede utænkeligt for bare få år siden at det skulle
kunne lade sig gøre. Neurale netværk kan generere realistiske og kreative billeder
og have uhyggeligt menneskelige samtaler. Det er nemt at vurdere hvor langt vi
er nået med kunstig intelligens i disse ‘menneskelige regi’, men faktisk er der ikke
meget forskel, set fra et neuralt netværks perspektiv, på at bestemme et molekyles
elektroniske struktur eller generere et sjovt billede af hunde der fester på skateboards.
Desuden opererer neurale netværk mange gange hurtigere end de omtalte elektron-
struktur metoder, og det er en oplagt mulighed at integrere dem i kvantekemi for
at løse udfordringer forbundet med elektronstruktur beregninger. I min afhandling
udforsker jeg nogle af de muligheder, der åbner sig op, når vi forener de to felter.
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Molekyler er små systemer af atomer forbundet i en specifik konfiguration af kemiske
bånd. Grundlæggende kan en kemisk reaktion forstås som en omorganisering af de
bånd, der forbinder atomerne i et eller flere molekyler. På sin vis er dette meget lig
at skille en LEGO-figur ad, og samle klodserne igen på en anderledes måde. Klod-
serne svarer til atomer, og figurerne svarer til molekyler. Der er dog en væsentlig
ekstra udfordring i atom-LEGO, da klodserne her agerer som små magneter, der er
forbundet med fjedre på kryds og tværs, og man kan ikke skille den ene figur helt
ad, før man samler den anden. En kemisk reaktion kan beskrives ved tre vigtige
molekylære konfigurationer - reaktanten, overgangstilstanden, og produktet. Reak-
tanten beskriver, hvilke atomer der er forbundet, via kemiske bånd før reaktionen, og
tilsvarende beskriver produktet, hvilke atomer der er forbundet efter. Overgangstil-
standen beskriver den konfiguration af molekylet, der udgør ‘vendepunktet’ i reaktio-
nen. Tilsvarende det øjeblik, hvor en bold der skubbes op ad en bakke når topper
og pludselig falder ned på den anden side af sig selv. Overgangstilstande er særligt
svære at beskrive kvantemekanisk, fordi de på samme tid involverer brud på gamle
bånd og dannelsen af nye. I LEGO analogien kan overgangstilstande på sin vis ses
som en kritisk figur vi skal have bygget undervejs for nemmest at komme fra den
gamle til den nye LEGO figur. Man kan udlede meget vigtig information om en
reaktion ved at kende til dens overgangstilstand. For eksempel, hvor hurtigt den vil
foregå, eller hvordan den bliver påvirket af temperatur. Gennem en dyb forståelse af
overgangstilstande for kemiske reaktioner kan vi designe procedurer for, hvordan vi
kan syntetisere molekyler og materialer med specifikke egenskaber i laboratorier i den
virkelige verden. Dette kunne for eksempel være nye former for medicin, nedbrydelige
alternativer til plastic, eller nye måder at lagre energi på i batterier. Kun fantasien
sætter grænser. Problemet er, at overgangstilstande er ekstremt svære at finde, da
det kræver at vi udregner komplekse bevægelser for mange atomer på en gang, der
alle påvirker hinanden på kryds og tværs. Som regel betyder det at vi er nødt til at
lave tusindvis af tunge elektronstruktur beregninger for at finde overgangstilstanden
for bare en enkelt reaktion. Dette betyder, at hvis vi for eksempel har flere ideer til,
hvordan en reaktion kan foregå, kan det være udfordrende at prøve dem alle af. 

E.1 Transition1x
For at bruge et neuralt netværk skal vi igennem en såkaldt træningsfase. I denne fase
har vi brug for adskillige eksempler på korrekte elektronstruktur beregninger som vi
kan vise modellen. I løbet af trænings fasen lærer modellen de grundlæggende møn-
stre for, hvordan man laver disse beregninger, ved at se utallige eksempler. Samlingen
af vores træningseksempler udgør det vi kalder vores træningssæt. Hvis vi har mange
eksempler kan vi lægge nogle af dem til side under træningsfasen, så modellen aldrig
får lov at se dem. Disse eksempler kan så bruges, når træningsfasen er overstået, til en
slags afsluttende eksamen for modellen. Udfra hvor godt modellen klarer sin eksamen
får vi en ide om, hvor meget den har lært under træningsfasen og i hvilken udstrækn-
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ing vi kan stole på dens beregninger, når den skal lave elektronstruktur beregninger
senere. Modeller som ChatGPT og de populære billedgenereringsmodeller skylder en
stor del af deres succes til de enorme mængder af billede- og tekst data der ligger
frit tilgængeligt på internettet. Træningsdata er lige så vigtige for neurale netværk
der anvendes i kvantekemi som modeller der virker på tekst og billeder. I den første
artikel i min Ph.D. udgav jeg et stort dataset som jeg kaldte Transition1x. Dette
datasæt indeholder elektronstruktur beregninger for 10 millioner molekyler, der er i
færd med at indgå i kemiske reaktioner, på forskellige tidspunkter i processen. For at
samle data til Transition1x fandt jeg et sæt af 10.000 forskellige kemiske reaktioner.
Efterfølgende brugte jeg tunge elektronstruktur metoder til at beregne overgangstil-
stande for alle reaktionerne, og opsamlede alle udregninger der blev lavet undervejs.
Disse beregninger blev udført på DTUs supercomputer og tog flere uger. Hvis jeg
skulle have gjort det på min egen bærbare ville det have taget ca. 25 år. Indtil
nu har der ikke været meget data tilgængeligt for kemiske reaktioner i litteraturen,
og derfor har det været vanskeligt at anvende neurale netværk til forskning i den
retning. Forhåbentligt vil mit datasæt vise sig være et værdifuldt bidrag til feltet,
der åbner op for nye muligheder og metoder for at bruge neurale netværk til at finde
overgangstilstande og studere kemiske reaktioner. 

E.2 NeuralNEB
I det næste projekt ville jeg forsøge at bruge det datasæt, som jeg havde skabt for at
se, om det faktisk var muligt at bruge neurale netværk til at finde overgangstilstande
for kemiske reaktioner. Jeg kaldte min procedure for NeuralNEB da den er baseret
på neurale netværk og en metode fra kvantekemi der hedder Nudged Elastic Band
(NEB). Forestil dig et ujævnt landskab med høje bakker og dybe dale. Bakker i dette
landskab svarer til molekylære konfigurationer med høj energi, og tilsvarende svarer
dale til konfigurationer med lav energi. Vi kalder dette landskab en energi-overflade.
Et molekyle i bunden af en dal er stabilt. Det er det fordi at det kræver en væsentlig
mængde energi at ‘sparke’ det ud af dalen. Hvis molekylet får et lille spark, util-
strækkeligt til at det kan undslippe ud af dalen, vil det simpelthen vende tilbage til
bunden hvor det kom fra. Forestil dig nu at reaktanten og produktet (start og slut
konfigurationerne i reaktionen) ligger i bunden af to tilstødende dale. Overgangstil-
standen for reaktionen svarer til den passage, hvor man kan komme fra den ene dal
til den anden med den mindst mulige mængde energi. Se for eksempel forsiden af
min afhandling - her ser du en illustration af en kemisk reaktion på en energioverflade.
Konfigurationerne i dalene svarer til reaktionens produkt og reaktant, og konfiguratio-
nen i midten er overgangstilstanden. Idéen med NEB er grundlæggende at forbinde
de to nabodale med en meget tung og slap elastik. Vægten af elastikken vil trække
den ned, og den vil automatisk finde den laveste passage mellem de to dale. Normalt
beregnes denne energioverflade ved hjælp af elektronstruktur beregninger, og det er
derfor at det er så tungt at finde overgangstilstande. I NeuralNEB er idéen i stedet at
bruge neurale netværk, der er trænet på Transition1x datasættet til at udregne denne
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overflade. Dette gjorde algoritmen i stand til at finde overgangstilstande for kemiske
reaktioner 1350 gange hurtigere. Desværre var de overgangstilstande metoden fandt
ikke helt inden for det vi kalder ‘kemisk nøjagtigthed’. Kemisk nøjagtighed er utroligt
svært at opnå, og resultaterne er stadig gode. Metoden er ny, og der er mange ting
der kan pudses af for at gøre den bedre. Det vigtige resultat var at vise nytten af
Transition1x og at konceptet fungerer. 

E.3 Implicit Transition Operator
I det sidste projekt udviklede jeg en ny metode til at simulere molekylære systemer.
I de foregående projekter fokuserede jeg primært på at finde overgangstilstande for
reaktioner, da vigtig information om reaktionen kan blive udledt fra disse tilstande.
En anden tilgang til at studere molekyler er simpelthen at vælge et molekyle og holde
øje med, hvordan det bevæger sig over en længere periode, og så drage konklusioner
baseret på ens observationer. Dette gør man gennem computersimulation - det er ikke
muligt at holde øje med rigtige molekyler, de er for små og for kaotiske. Man kan
bruge en metode der hedder molekylær dynamik til at lave disse simuleringer. Her
har man et ‘billede’ af et molekyle. Ud fra dette billede er det muligt at udregne alle
kvantemekaniske og magnetiske kræfter, der virker på hvert enkelt atom i molekylet.
Ud fra disse beregninger kan man forudsige, hvordan et billede af molekylet vil se
ud et splitsekund senere. Ved at gentage denne procedure mange gange kan man
beregne en hel film af molekylets bevægelse. Dette skal gøres i ekstremt små skridt,
da kræfterne på atomerne ændrer sig hurtigt, når atomerne bevæger sig den mind-
ste smule, og derfor er sådanne simuleringer også meget vanskelige. I dette projekt
trænede jeg et neuralt netværk til at se ‘forud’ i filmen. Modellen kunne da gætte
hvordan molekylet ville have bevæget sig i løbet af 10, 100 eller 1000 skridt, uden
at skulle lave mellemregningerne. Modellerne var i stand til at simulere op til en
million skridt ad gangen. Jeg testede det ikke yderligere. Det giver os en mulighed
for at ‘spole’ når vi simulerer molekyler, så vi både kan studere fænomener, der sker
ekstremt hurtigt eller ekstremt langsomt. I princippet svarer det til, at vi med et
kamera kan studere, hvordan en sommerfugl gennemgår sin transformation fra larve,
og samtidig kan fange detaljer, såsom hvordan den bevæger sine vinger, mens den
flyver.

E.4 Konlusion
Grundlæggende er de metoder jeg har udviklet i løbet af min Ph.D. en del af et
verdensomspændende samarbejde, hvor vi forsøger at udvikle et virtuelt laboratorium,
hvor vi effektivt kan udforske løsninger til en lang række problemer i verden. Kunstig
intelligens og kvantekemi er et utroligt spændende felt, der bevæger sig meget hrugtigt,
og det er fedt at være en del af det.
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