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Summary (English)

In this thesis, we study Weierstrass semigroups at one or multiple places of
certain maximal function fields, with a twofold purpose: extending the theoretical
knowledge on these function fields and investigating applications to Algebraic
Geometry codes (AG codes).

The first major contribution of the thesis consists in the determination of the
Weierstrass semigroups at all the places of one of the known maximal function
fields with the third largest genus. Consequently, we are also able to determine
the full automorphism group of the function field. We find several different types
of Weierstrass semigroups and a surprisingly rich set of Weierstrass places, which
had never been observed before for any of the other maximal function fields for
which the Weierstrass places are known.

A second major contribution presented in this dissertation is the computation of
the Weierstrass semigroups at certain pairs of places of two different families of
maximal function fields: the Beelen-Montanucci function fields and the Skabelund
function field obtained as a cyclic extension of the Suzuki one. As a result, we
are able to estimate the minimum distance of certain two-point AG codes from
these function fields, obtaining improvements on comparable AG codes that had
previously been studied in the literature.

As a final contribution, we present the study of upper and lower bounds for a
constant that captures the asymptotic behaviour of the number of rational points
of projective curves over a finite field, when the degree of the curve becomes large
with respect to the field cardinality. The exact value of the constant remains
unknown, but improvements to the previously known bounds are found.
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Summary (Danish)

I denne afhandling studerer vi Weierstrass-semigrupper ved ét eller flere steder
af visse maksimale funktionslegemer, med et todelt formål: dels at udvide den
teoretiske viden om disse funktionslegemer og dels at undersøge anvendelser
inden for Algebraisk Geometri-koder (AG koder).

Det første væsentlige bidrag består i bestemmelsen af Weierstrass-semigrupperne
ved alle steder af ét af de kendte maksimale funktionslegemer med det tred-
jestørste genus. En konsekvens af dette er, at vi er i stand til at bestemme
den fulde automorfigruppe for funktionslegemet. Vi finder mange forskellige
typer af Weierstrass-semigrupper og en overraskende rig mængde af Weierstrass-
steder, som aldrig før er blevet observeret for nogen af de andre maksimale
funktionslegemer, hvor Weierstrass-stederne er kendte.

Et andet væsentligt bidrag er beregningen af Weierstrass-semigrupperne ved visse
par af steder for to forskellige familier af maksimale funktionslegemer: Beelen-
Montanucci funktionslegemerne og Skabelund funktionslegemet, der opnås ved
en cyklisk udvidelse af Suzuki funktionslegemet. Som følge af dette er vi i
stand til at estimere minimumsafstanden for visse to-punkt AG koder fra disse
funktionslegemer, og vi opnår forbedringer i forhold til sammenlignelige AG
koder, der tidligere er blevet studeret i litteraturen.

Til sidst præsenterer vi studiet af øvre og nedre grænser for en konstant, der
beskriver hvordan antallet af rationelle punkter på projektive kurver over et
endeligt legeme opfører sig asymptotisk, når graden af kurven bliver stor i forhold
til legemets kardinalitet. Den præcise værdi af konstanten er stadig ukendt, men
vi opnår forbedringer af de tidligere kendte grænser.
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Preface

The work contained in this thesis was developed during my PhD studies under the
supervision of Professor Peter Beelen and Associate Professor Maria Montanucci.
The studies were conducted at the Technical University of Denmark, in the
period from 15 October 2020 to 14 October 2023.

During this period, I co-authored five scientific papers: [11], [65], [6], [12] and [64].
The following list outlines the publication status of the aforementioned papers:

• [11] is published in the proceedings of the 18th International Conference
on Arithmetic, Geometry, Cryptography, and Coding Theory,

• [65] and [12] are published in the international journal Finite Fields and
Their Applications,

• [6] and [64] are available online and are currently submitted for publication
in international journals.

This thesis includes, in a more extensive version, the contents of [11], [65], [12]
and [64]. In particular, the results contained in [65], [12] and [64] have been
rewritten in the language of function fields and, where specified, extended with
further results.

The thesis comprises six chapters.

Chapter 1 provides an introduction to the central topics of the thesis and explains
the motivations for their study.
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Chapter 2 includes a presentation of the essential background theory and intro-
duces the notations necessary for the discussion of the work presented in the
rest of the manuscript. The results recalled in the chapter are widely known
and therefore nearly all of them are presented without proofs. References to
the pertinent literature are given at the beginning of each section and, for the
possibly less famous results, are also specified alongside the statements.

Chapter 3, Chapter 4 and Chapter 5 contain, respectively, a detailed discussion
of the results presented in [12], [64, 65] and [11].

Chapter 6 concludes the manuscript, summarizing the main contributions of this
dissertation to the field of research and considering possible ideas for further
investigation.

Unless otherwise specified, statements such as theorems, propositions, lemmas
and corollaries that appear in this thesis, alongside their relative proofs and data
and results arising from them, are, up to our knowledge, original. When already
known results are included, it is explicitly indicated and references are given.

Lyngby, 14-October-2023

Lara Vicino
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Chapter 1

Introduction

Several aspects of our everyday life revolve around instant communications and
unrestrained access to information. In this setting, a pivotal role is played by
digital telecommunications, that make worldwide prompt transmission of data
possible. However, transmitting information through a communication channel
poses various challenges, that need to be faced in order to ensure reliability in the
communication process. Indeed, a channel is inherently noisy, which means that,
during the transmission, messages will possibly be altered due to the intrinsic
properties of the channel.

In 1948, C. Shannon published the groundbreaking paper A Mathematical Theory
of Communication [78], which laid the foundations of the field of Information
Theory. In this work, he formalized the concept of transmission of information
through a noisy communication channel, showing theoretically that, regardless
of the degree of noise contamination, it is always possible to reliably transmit
data, up to a certain maximum rate.

Therefore, these results initiated also the field of Coding Theory, that deals with
the development and study of methods to ensure the reliable transmission of
data through unreliable channels. There are different branches of Coding Theory,
each focusing on certain specific problems regarding digital data transmission.
Among these, channel coding is the one dealing with error correction, that is,
the study and implementation of tools which, by means of adding redundancy to
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a message, guarantee that a receiver is able to recover the original information
even if the message is altered by the noise in the channel.

The techniques for adding redundancy to a message in such a way that, up to
a certain extent, the detection and correction of errors is possible, are called
error correcting codes. The first error correcting code was invented by R. W.
Hamming in 1950 [43], paving the way for the future development of Coding
Theory. A first intuitive way of adding redundancy to a message is, for instance,
to transmit it multiple consecutive times across the channel. Nonetheless, when
dealing with consistent amounts of information to be transmitted, this method
is highly inefficient, if not unfeasible at all.

For this reason, several more sophisticated methods for encoding (adding redun-
dancy) and decoding (retrieving the original information) have been developed
and studied through the years. Among these methods, many have their roots in
theoretical results from the fields of Algebra and Algebraic Geometry, and their
study is therefore often referred to as Algebraic Coding Theory. In fact, the
nowadays most widely used error correcting codes are Reed-Solomon codes, that
are a special class of the so-called Algebraic Geometry codes (AG codes for short).
The name of this kind of codes is due to the fact that they are constructed from
algebraic curves (or, more in general, from algebraic varieties) over finite fields,
which are a classical object of study in Algebraic Geometry. In the case of curves,
as it will be more precisely discussed in Chapter 2, the construction of AG codes
can be equivalently described in the setting of algebraic function fields of one
variable, which is the perspective that we adopt throughout this manuscript.

While Reed-Solomon codes have several excellent properties and provide efficient
solutions in many present real-life applications, the new developments of the
digital era yield several new settings in which their features, in the long run, will
not be enough. For instance, distributed data storage systems will soon need
more efficient codes to handle the ever growing amount of data that is produced
and needs to be safely stored across the globe. In this setting, AG codes could
provide new error correcting codes able to tackle the new challenges in storage
and communication systems, see for instance [17].

AG codes were first introduced by V.D. Goppa between the 70’s and the 80’s
(see [36–40]), with a construction coming from algebraic curves over finite fields.
Soon afterwards, in 1982, a striking result on these codes was proved by M.
Tsfasman, S. Vlăduţ and T. Zink in [86], as a consequence of their work on
modular and Shimura curves. Indeed, they related their results to the existence
of sequences of asymptotically good codes and showed that there are some AG
codes that are better than random codes, if the cardinality q of the field is a
square and q ≥ 49.
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This result, that a large part of the mathematical community had before believed
to be untrue, sparked a vast interest in the study of AG codes and their properties.
Since a fundamental role in the construction of AG codes is played by the function
field of the underlying curve, this entailed that the study of certain classes of
function fields, in particular those with many rational places with respect to
their genus, started thriving beyond the borders of pure Algebraic Geometry.

For instance, the Weierstrass semigroup at one or multiple places of a function
field is an algebraic object that carries a notable amount of information with
respect to the AG codes constructed form the function field, see for instance [21],
[24,25] and [62] for the one-point case and [50–52], [67,68], [15] and [5] for the
two-point case. In fact, the knowledge of Weierstrass semigroups can be used to
compute the dimension of such codes, which is the parameter giving a measure
of how much redundancy is added to the messages, or to estimate their minimun
distance, which is instead the parameter giving a measure of how many errors
can be detected or corrected.

The results contained in this thesis mostly concern Weierstrass semigroups at
one or multiple places of certain maximal function fields, with the aim to expand
the knowledge on these function fields also with respect to the construction of
AG codes with good parameters. More specifically, the manuscript is organized
in the following way.

In Chapter 2, we introduce the essential background setting necessary for the
discussion of the work presented in the rest of the dissertation. In Section 2.1
and Section 2.2, we collect some fundamental results on algebraic function fields
of one variable and algebraic curves, while in Section 2.3 and in Section 2.4 we
recall some basic concepts regarding numerical semigroups and a generalization
of Weierstrass semigroups to the case of pairs of places. Finally, in Section 2.5,
we introduce Algebraic Geometry codes and certain bounds for the minimum
distance of some classes of such codes.

In Chapter 3, a first major result is presented, which consists in the determination
of the Weierstrass semigroups at all the places of one of the known maximal
function fields with the third largest genus, that we denote by Fq2(X3). As a
consequence, the full automorphism group of the function field is also computed.
More precisely, in Section 3.1, we describe Fq2(X3) and set the notations that are
used throughout the rest of the discussion, while also computing the principal
divisors and the power series expansions at certain places of some specific
functions. In particular, we explicitly determine a canonical divisor that is
crucial for the results in Section 3.5 and Section 3.6. Section 3.2 deals instead
with the computation of two families of functions in Fq2(X3) that play a key
role for determining the Weierstrass semigroups. In Section 3.3, Section 3.4,
Section 3.5 and Section 3.6, we then explicitly compute the semigroups at all
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the places of Fq2(X3), pointing out some final remarks on the Weierstrass places
in Section 3.7. Lastly, the full automorphism group Aut(Fq2(X3)) is determined
in Section 3.8.

In Chapter 4, we present a second major result of this thesis, that is the
determination of the Weierstrass semigroups at certain pairs of places of two
different families of maximal function fields: the Beelen-Montanucci function
fields and the Skabelund function field obtained as a cyclic extension of the Suzuki
one. As a result, we are able to study two-point AG codes from these function
fields. In Section 4.1, we study the case of two-point codes from the Beelen-
Montanucci function fields Fq2n(BMn), for all n ≥ 3 odd, and we compare our
results with those obtained in [5] from the Garcia-Güneri-Stichtenoth function
fields Fq2n(GGSn). On the other hand, in Section 4.2, we study the case of
two-point codes from the Skabelund function field Fq4(S̃q).

In Chapter 5, the final contribution that we present is the study of upper and
lower bounds for the constant D(q) introduced by M. Homma in [49]. This
constant captures the asymptotic behaviour of the number of rational points
of projective curves over Fq, when the degree d of the curve becomes large
with respect to q. We first slightly improve Homma’s upper bound on D(q), in
Section 5.1, by means of refining the argument provided in [49]. Afterwards, in
Section 5.2, we explicitly construct a sequence of curves whose degrees are close
to their number of rational points, in order to show that D(q) ≥ 1. Finally, in
Section 5.3, we prove the lower bound D(q2) ≥ q2−q

q+1 , using a particular tower
of function fields over Fq2 that was constructed recursively by A. Garcia and H.
Stichtenoth in [31]. Although Weierstrass semigroups are not the main focus
of this final chapter, they still play a crucial role for the proof of the results in
Section 5.3, which constitutes the main part of the chapter.



Chapter 2

Background

The purpose of this chapter is to summarize the essential background theory
necessary for the results presented in the thesis, and to set the notations that are
used throughout the manuscript. More specifically, Section 2.1 and Section 2.2
contain a collection of fundamental results on algebraic function fields of one
variable and algebraic curves, while Section 2.3 and Section 2.4 include salient
concepts regarding numerical semigroups and a generalization of Weierstrass
semigroups to the case of pairs of places. Finally, Section 2.5 consists of a brief
introduction to Algebraic Geometry codes and to some specific bounds for the
minimum distance of certain classes of the aforementioned codes.

2.1 Algebraic function fields of one variable

Almost all the results contained in this section, including their proofs, can be
found in [81, Chapters 1,3,4,5,7], to which we refer for a more detailed and
thorough exposition. For the results not contained in [81], we specify the related
references throughout the discussion.

Let K be a perfect field of characteristic char(K) = p ≥ 0 and let K denote a
fixed algebraic closure of K.



6 Background

Definition 2.1. An algebraic function field F of one variable over K is an
extension field F ⊇ K such that F is a finite algebraic extension of K(x) for
some element x ∈ F which is transcendental over K.

Henceforth, let F be an algebraic function field of one variable over K. We
assume that K is the full constant field of F , which means that K = {z ∈
F | z is algebraic over K} and, for brevity, we simply refer to F as a function
field. The most basic example of a function field is the rational function field
F = K(x), for some x ∈ F which is transcendental over K.

Definition 2.2. A discrete valuation of F is a function v : F −→ Z∪ {∞} with
the following properties:

(i) v(x) = ∞ ⇐⇒ x = 0

(ii) v(xy) = v(x) + v(y) ∀ x, y ∈ F

(iii) v(x+ y) ≥ min{v(x), v(y)} ∀ x, y ∈ F

(iv) v(a) = 0 ∀ 0 ̸= a ∈ K.

For a discrete valuation v of F , the Strict Triangle Inequality holds, namely if
x, y ∈ F with v(x) ̸= v(y), then v(x+ y) = min{v(x), v(y)}.

A valuation ring of a function field F is a ring OP such that K ⫋ OP ⫋ F and
for all z ∈ F we have that either z ∈ OP or z−1 ∈ OP . It can be shown that
OP is a local principal ideal domain whose unique maximal ideal P is called
a place of the function field F . If t ∈ F is a generator of P , then t is said to
be a local parameter at P and each 0 ̸= z ∈ F has a unique representation of
the form z = tnu, for some n ∈ Z and u ∈ O∗

P , with O∗
P being the group of

units of OP . In particular, these properties show that OP is in fact a discrete
valuation ring (DVR). The discrete valuation of F associated with OP is the
map vP : F −→ Z ∪ {∞} such that vP (0) := ∞ and vP (z) := n, for 0 ̸= z ∈ F ,
z = tnu, with t a local parameter at P and u ∈ O∗

P .

More specifically, a local parameter t can be used in order to define an embedding
of F in the field of formal Laurent series F ((T )), where T is a variable. This
means that every z ∈ F can be written as

z =

∞∑
i=vP (z)

cit
i, ci ∈ K.
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Note that a valuation ring OP is uniquely determined by its maximal ideal P , as
OP = {z ∈ F | z−1 ̸∈ P}. More precisely, the following result shows that places,
valuation rings and discrete valuations are essentially equivalent notions.

Theorem 2.3. Let F be a function field over K.

(i) For a place P of F , the function vP defined above is a discrete valuation
of F . Moreover we have

OP = {z ∈ F | vP (z) ≥ 0}
O∗

P = {z ∈ F | vP (z) = 0}
P = {z ∈ F | vP (z) > 0}.

(ii) An element x ∈ F is a local parameter at P if and only if vP (x) = 1.

(iii) Conversely, suppose that v is a discrete valuation of F . Then the set
P := {z ∈ F | vP (z) > 0} is a place of F and OP = {z ∈ F | vP (z) ≥ 0}
is the corresponding valuation ring.

Let P be a place of F and OP its valuation ring, then OP /P is a field and, for
x ∈ OP , we define x(P ) ∈ OP /P to be the residue class of x modulo P . Since
K ⊆ OP and K ∩ P = {0}, it holds that the residue class map OP −→ OP /P
induces a canonical embedding of K into OP /P , so that we can always consider
K as a subfield of FP := OP /P via this embedding. The degree of a place P
is then defined as deg(P ) := [FP : K] and the places of degree one are called
K-rational (or just rational).

Let now PF := {P | P is a place of F} be the set of places of F and let z ∈ F
and P ∈ PF . We say that P is a zero of z if vP (z) > 0, while P is said to
be a pole of z if vP (z) < 0. If vP (z) = m > 0, P is a zero of z of order (or
multiplicity) m; if vP (z) = −m < 0, P is a pole of z of order (or multiplicity) m.

The following results ensure that the degree of a place is always finite and that
PF is always non-empty.

Proposition 2.4. If P is a place of F and 0 ̸= x ∈ P , then

deg(P ) ≤ [F : K(x)] <∞.

Lemma 2.5. In a function field F over K every element 0 ̸= x ∈ F has only
finitely many zeros and poles, and each z ∈ F transcendental over K has at least
one zero and one pole. As a consequence, PF ̸= ∅.



8 Background

We recall now the concepts of divisors, canonical divisors and Riemann-Roch
spaces. These notions are in fact needed in order to define the genus of the
function field F and to state the Riemann-Roch Theorem.

Definition 2.6. The divisor group Div(F ) of F is defined as the (additively
written) free abelian group which is generated by the places of F . The elements
of Div(F ) are called divisors of F and each is a formal sum

D =
∑

P∈PF

nPP,

with nP ∈ Z, almost all nP = 0. The support of D is defined as

supp(D) := {P ∈ PF | nP ̸= 0}.

Two divisors D =
∑
nPP and D′ =

∑
n′PP are added coefficient-wise

D +D′ =
∑

P∈PF

(nP + n′P )P,

and the zero element of the divisor group Div(F ) is the divisor

0 :=
∑

P∈PF

rPP, all rP = 0.

For Q ∈ PF and D =
∑
nPP ∈ Div(F ) we define vQ(D) := nQ. A partial

ordering on Div(F ) is defined by

D1 ≤ D2 : ⇐⇒ vP (D1) ≤ vP (D2) ∀ P ∈ PF .

A divisor D ≥ 0 is called effective, and the degree of a divisor is defined as

deg(D) :=
∑

P∈PF

vP (D)deg(P ).

Lemma 2.5 ensures that the following definition can be stated.

Definition 2.7. Let 0 ̸= x ∈ F and denote by Z (resp. N) the set of zeros (resp.
poles) of x in PF . We define

(x)0 :=
∑
P∈Z

vP (x)P, the zero divisor of x

(x)∞ :=
∑
P∈N

(−vP (x))P, the pole divisor of x

(x) := (x)0 − (x)∞ =
∑

P∈PF

vP (x)P, the principal divisor of x.
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A remarkable result is that all principal divisors have degree zero. More precisely,
for any x ∈ F \K it holds that

deg(x)0 = deg(x)∞ = [F : K(x)].

The set of principal divisors Princ(F ) := {(x) | 0 ̸= x ∈ F} is a normal subgroup
of Div(F ), and the quotient group Cl(F ) := Div(F )/Princ(F ) is called the
divisor class group of F . Two divisors D,D′ ∈ Div(F ) are said to be equivalent,
D ∼ D′, if their images in Cl(F ) via the projection map are the same, i.e., if
D = D′ + (x) for some x ∈ F \ {0}.

Definition 2.8. Let A ∈ Div(F ), the Riemann-Roch space associated to A is

L(A) := {x ∈ F \ {0} | (x) ≥ −A} ∪ {0}.

The Riemann-Roch space L(A) is a K-vector space and its dimension is denoted
by ℓ(A). In particular, ℓ(A) = 0 if deg(A) < 0, see [81, Corollary 1.4.12]. It
can be shown that there exists a constant γ ∈ Z such that, for all divisors
A ∈ Div(F ), it holds deg(A) − ℓ(A) ≤ γ. As a result, the genus of a function
field F can be defined in the following way.

Definition 2.9. The genus g(F ) of F is defined by

g(F ) := max{deg(A)− ℓ(A) + 1 | A ∈ Div(F )} ≥ 0.

Let now p be a prime number, h ∈ Z>0 and q := ph. Denote by Fq the finite
field with q elements and as Fq a fixed algebraic closure of Fq. Consider F a
function field over Fq of genus g and denote by N(F ) the cardinality of the set
{P ∈ PF | P is Fq-rational}. Then, the following renowned result by H. Hasse
and A. Weil gives both an upper and a lower bound for the number N(F ).

Theorem 2.10 (Hasse-Weil). Let F be a function field over Fq of genus g. Then

|N(F )− (q + 1)| ≤ 2g
√
q.

A function field F with genus g > 0 and attaining the Hasse-Weil upper bound
is said to be Fq-maximal or simply maximal, if the field of definition is clear.

Remark 2.11. If F has genus zero, it trivially attains the Hasse-Weil upper
bound. On the other hand, if the genus of F is positive, then a necessary condition
for F to be maximal is that q is a square.
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Example 2.12 (The Hermitian function field). The Hermitian function field is
defined over Fq2 as H := Fq2(u, v), with uq+1 + vq+1 + 1 = 0. It can be shown
that its genus is equal to q(q−1)

2 and that H is Fq2-maximal. In [74], H.-G. Rück
and H. Stichtenoth showed that H is in fact the only Fq2-maximal function field
of genus q(q−1)

2 , up to Fq2-isomorphism.

On the other hand, the asymptotic behaviour of the number of rational places
of a function field over Fq, when the genus g becomes large with respect to q, is
described by Ihara’s constant. For a given q, let g ≥ 0 and define

Nq(g) := max{N(F ) | F is a function field over Fq of genus g}.

Then, Ihara’s constant is the real number

A(q) := lim sup
g→∞

Nq(g)

g
≤ √

q − 1, (2.1)

where the inequality on the right-hand side is the celebrated bound by V. Drinfeld
and S. Vlăduţ (see [20, Theorem 1]). If q is a square, it was proved by Y. Ihara
in [56] and by M. Tsfasman, S. Vlăduţ and T. Zink in [86] that A(q) attains the
Drinfeld-Vlăduţ bound, that is, A(q) = √

q − 1.

Let henceforth F be a function field over K of genus g.

Definition 2.13. An adele of F is a mapping

α :

{
PF −→ F

P 7−→ αP

such that αP ∈ OP for almost all P ∈ PF . The set

AF := {α | α is an adele of F}

is called the adele space of F and it is a K-vector space.

For a divisor A ∈ Div(F ), we define the following K-subspace of AF :

AF (A) := {α ∈ AF | vP (α) ≥ −vP (A) for all P ∈ PF }.

A Weil differential of F is a K-linear map ω : AF −→ K vanishing on AF (A)+F
for some divisor A ∈ Div(F ). It can be shown that the set

ΩF := {ω | ω is a Weil differential of F}

of Weil differentials of F is in fact a one-dimensional vector space over F .
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For each Weil differential ω ̸= 0, consider the set

M(ω) := {A ∈ Div(F ) | ω vanishes on AF (A) + F}.

It can be proved that there is a uniquely determined divisor W ∈ M(ω) such
that A ≤ W for all A ∈ M(ω). Such a divisor is usually referred to as the
divisor (ω) of the differential ω and it is called a canonical divisor. For P ∈ PF ,
the valuation of ω at P is hence defined as vP (ω) := vP ((ω)) and P is said to
be a zero (resp. pole) of ω if vP (ω) > 0 (resp. vP (ω) < 0). Moreover, a Weil
differential ω is called regular at P if vP (ω) ≥ 0, and it is said to be regular (or
holomorphic) if it is regular at all places P ∈ PF .

For a place P ∈ PF and x ∈ F , define ιP (x) ∈ AF to be the adele such that

ιP (x)(Q) =

{
x if Q = P ∈ PF ,

0 if Q ̸= P ∈ PF .

The local component of a Weil differential ω ∈ ΩF at P is defined to be the
K-linear mapping

ωP :

{
F −→ K

x 7−→ ω(ιP (x)).

An important property of canonical divisors of a function field F is that any two
of them are equivalent, i.e., they form a whole class in the divisor class group
Cl(F ), which is called the canonical class of F . This shows in particular that
any two canonical divisors have the same degree, which can be proven to be
2g − 2 as a consequence of the following fundamental theorem.

Theorem 2.14 (Riemann-Roch Theorem). Let W be a canonical divisor of F .
Then for each divisor A ∈ Div(F ),

ℓ(A) = deg(A) + 1− g + ℓ(W −A).

A divisor A ∈ Div(F ) is called non-special if

ℓ(A) = deg(A) + 1− g.

As a consequence of the Riemann-Roch Theorem, it directly follows that a divisor
A with deg(A) ≥ 2g − 1 is non-special.

The Riemann-Roch Theorem is also crucial for investigating the properties of
elements of F having exactly one pole, as it constitutes an essential tool for the
proof of Weierstrass Gap Theorem.
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Definition 2.15. Let P ∈ PF and n ∈ Z≥0. The integer n is called a pole
number of P if there exists an element x ∈ F such that (x)∞ = nP . Otherwise,
n is called a gap number of P .

The set of pole numbers of a place P is denoted by H(P ) and it is called the
Weierstrass semigroup at P , since it is a sub-semigroup of the additive semigroup
N (in our notations, 0 ∈ N). Its elements are usually referred to as the non-gaps
at P . The set G(P ) := N \H(P ) is instead the set of gap numbers at P and its
elements are called the gaps at P .

Theorem 2.16 (Weierstrass Gap Theorem). Let F be a function field of genus
g and P a place of degree 1. Then, there are exactly g gap numbers i1 < · · · < ig
of P and, in particular, i1 = 1 and ig ≤ 2g − 1.

Remark 2.17. Let K = K and let F be a function field over K. It can be shown
(see [82]) that almost all the places of F (that is, all but finitely many) have the
same Weierstrass semigroup, that is hence referred to as the generic semigroup.
On the other hand, the finitely many places of F having a Weierstrass semigroup
that is different from the generic one are called the Weierstrass places of F .

Let ω be a regular Weil differential of F . The following result relates the valuation
of ω at a place P ∈ PF to the gaps at P .

Proposition 2.18 ([76, Corollary 14.2.5]). Let F be a function field over K
of genus g. Let P be a place of F and ω be a regular differential of F . Then
vP (ω) + 1 is a gap at P .

Let now F ′ be a function field over K where F ′ ⊇ F is an algebraic extension of
F , that we denote by F ′/F . Note that, since we assumed K to be perfect, the
extension F ′/F is separable. As above, let PF ′ be the set of places of F ′ and let
P ′ ∈ PF ′ . The place P ′ is said to lie over P ∈ PF if P ⊆ P ′. Similarly, we say
that P ′ is an extension of P , or that P lies under P ′, and we write P ′|P .

It can be shown that, for each place P ′ ∈ PF ′ , there is precisely one place P ∈ PF

such that P ′|P , namely P = P ′ ∩ F . Conversely, each place P ∈ PF has at least
one, but only finitely many extensions P ′ ∈ PF ′ . Moreover, for an extension P ′|P
there is a canonical embedding of FP := OP /P as a subfield of F ′

P ′ := OP ′/P ′,
given by x(P ) 7−→ x(P ′), for all x ∈ OP . Therefore, we can consider the field
extension F ′

P ′/FP and define f(P ′|P ) := [F ′
P ′ : FP ], that is called the relative

degree of P ′ over P . Furthermore, there exists a positive integer e(P ′|P ), called
the ramification index of P ′ over P , such that vP ′(x) = e(P ′|P ) · vP (x) for all
x ∈ F .
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Theorem 2.19 (Kummer). Consider P ∈ PF and assume that F ′ = F (y),
with y ∈ F ′ such that its minimal polynomial over F is φ(T ) ∈ OP [T ]. Denote
by φ̄(T ) the polynomial whose coefficients are the residue classes in FP of the
coefficients of φ(T ). Moreover, let

φ̄(T ) =

r∏
i=1

γi(T )
εi ∈ FP [T ]

be the decomposition of φ̄(T ) into irreducible factors over FP . Choose monic
polynomials φi(T ) ∈ OP [T ] such that

φ̄i(T ) = γi(T ) and deg φi(T ) = deg γi(T ).

Then, for 1 ≤ i ≤ r, there are places Pi ∈ PF ′ such that

Pi|P, φi(y) ∈ Pi, f(Pi|P ) ≥ deg γi(T ) and Pi ̸= Pj for i ̸= j.

Furthermore, if
εi = 1 ∀ i = 1, . . . , r,

then there exists precisely one place Pi ∈ PF ′ with Pi|P and φi(y) ∈ Pi, for
1 ≤ i ≤ r. The places P1, . . . , Pr are exactly all the places of F ′ lying over P and

εi = e(Pi|P ), deg γi(T ) = f(Pi|P )

for all i = 1, . . . , r.

Let F ′′ be another function field over K, such that F ′′/F ′ is an algebraic
extension, and let P ′′ ∈ PF ′′ be a place of F ′′ lying over P ′ ∈ PF ′ . Then,

e(P ′′|P ) = e(P ′′|P ′) · e(P ′|P ) and f(P ′′|P ) = f(P ′′|P ′) · f(P ′|P ).

Moreover, for a place P ∈ PF we define its conorm with respect to F ′/F as the
divisor of F ′ given by

ConF ′/F (P ) :=
∑

P ′∈PF ′ , P ′|P

e(P ′|P ) · P ′.

The following result combines the just introduced definitions into a single funda-
mental equality.

Theorem 2.20 (Fundamental Equality). Let F ′/F be a finite extension, let
P ∈ PF and let P ′

1, . . . , P
′
m ∈ PF ′ be all the places of F ′ lying over P . Then

[F ′ : F ] =

m∑
i=1

e(P ′
i |P ) · f(P ′

i |P ).
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If F ′/F is a finite extension of degree n, we say that P ∈ PF splits completely in
F ′/F if there are exactly n distinct places P ′ ∈ PF ′ lying over it. Note that, by
the Fundamental Equality, this implies that e(P ′|P ) = f(P ′|P ) = 1 for all the
extensions of P . Conversely, we say that P is totally ramified in F ′/F if there
is exactly one place P ′ ∈ PF ′ such that P ′|P and e(P ′|P ) = n. Furthermore,
P is said to be ramified in F ′/F if there is at least one extension P ′|P such
that e(P ′|P ) > 1, while we say that P is unramified in F ′/F if e(P ′|P ) = 1
for all P ′|P . The function field extension F ′/F is said to be ramified (resp.
unramified) if at least one place P ∈ PF is ramified in F ′/F (resp. if all P ∈ PF

are unramified in F ′/F ).

We recall now the Riemann-Hurwitz Genus Formula, that is a key result relating
the genus g of F to the genus g′ of F ′, for F ′/F a finite separable extension
of function fields. Let P ∈ PF and let O′

P be the integral closure of OP in F ′.
Denote by

CP := {z ∈ F ′ | TrF ′/F (z ·O′
P ) ⊆ OP }

the complementary module over OP , where TrF ′/F (·) denotes the usual field
trace. Then, there exists an element t ∈ F ′ such that CP = t ·O′

P and vP ′(t) ≤ 0
for all P ′|P . Moreover, for almost all P ∈ PF we have CP = O′

P , so that the
different divisor of the extension F ′/F can be defined in the following way.

Definition 2.21. Let P ∈ PF and CP = t ·O′
P be the complementary module

over OP . Then, for P ′|P we define the different exponent of P ′ over P as

d(P ′|P ) := −vP ′(t) ≥ 0.

The different of F ′/F is defined to be the effective divisor

Diff(F ′/F ) :=
∑

P∈PF

∑
P ′|P

d(P ′|P ) · P ′.

Theorem 2.22 (Riemann-Hurwitz Genus Formula). Let F be a function field
over K of genus g and F ′ be a function field over K of genus g′ such that F ′/F
is a finite separable extension. Then

2g′ − 2 = [F ′ : F ](2g − 2) + deg Diff(F ′/F ).

Theorem 2.23 (Dedekind’s Different Theorem). Let F ′/F be as before and
P ∈ PF . For all P ′ ∈ PF ′ with P ′|P , it holds that d(P ′|P ) ≥ e(P ′|P ) − 1. In
particular, d(P ′|P ) = e(P ′|P )− 1 if and only if e(P ′|P ) is not divisible by the
characteristic of K.

If the characteristic of K is positive and divides e(P ′|P ), Dedekind’s Different
Theorem does not provide an effective way for computing the different exponent.
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However, if the extension F ′/F is a Galois extension, there is another fundamental
result providing an explicit formula for d(P ′|P ), namely Hilbert’s Different
Formula. To the aim of stating this result, we start by discussing some generalities
regarding the automorphisms of a function field F , and subsequently we recall
the definition of Galois extension of function fields.

Let F be a function field defined over K and let K be a fixed algebraic closure
of K. Furthermore, let Ψ ⊇ F be a fixed algebraic closure of F and consider
the compositum of F and K in Ψ, namely F̄ := FK. The field F̄ is a function
field extending F and it is called a constant field extension of F . The group of
K-automorphisms of F , also referred to as the full automorphism group of F , is
defined as

Aut(F ) := {σ : F̄ −→ F̄ | σ is an isomorphism with σ(z) = z ∀z ∈ K}.

In particular, if F is defined over K ̸= K, then we also define the group AutK(F )
of K-rational automorphisms of F , that is, the subgroup of Aut(F ) given by

AutK(F ) := {σ ∈ Aut(F ) | σ(F ) ⊆ F}.

By [41, Theorem 3.10] it holds that, if F is a maximal function field defined
over Fq of genus strictly larger than 1, then AutFq

(F ) = Aut(F ). Moreover, it
is interesting to observe that places lying in the same orbit under the action of
Aut(F ) have the same Weierstrass semigroup. Indeed, as a more general case
of [81, Lemma 3.5.2 (a)], it holds that

vσ(P )(y) = vP (σ
−1(y)), (2.2)

for any y ∈ F , P ∈ PF and σ ∈ Aut(F ), which implies precisely that H(P ) and
H(σ(P )) are equal (see Definition 2.15).

Let now F ′ ⊇ F be another function field defined over K, such that F ′/F is a
finite separable extension of function fields. The automorphism group of the
extension F ′/F is defined as

Aut(F ′/F ) := {σ : F ′ −→ F ′ | σ is an isomorphism with σ(z) = z ∀z ∈ F},

and [81, Lemma 3.5.2] ensures that equation (2.2) holds in particular in the case
σ ∈ Aut(F ′/F ). Moreover, it also guarantees that, for all σ ∈ Aut(F ′/F ) and
for all P ′ ∈ PF ′ , if P ′|P ∈ PF then σ(P ′)|P and

e(σ(P ′)|P ) = e(P ′|P ), f(σ(P ′)|P ) = f(P ′|P ) and d(σ(P ′)|P ) = d(P ′|P ).

The extension F ′/F is said to be Galois if the automorphism group Aut(F ′/F )
has order equal to [F ′ : F ]. If this condition is satisfied, Aut(F ′/F ) is called
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the Galois group of F ′/F and denoted by Gal(F ′/F ). An important observation
concerning a Galois extension F ′/F is that, if P ∈ PF , then Gal(F ′/F ) acts
transitively on the set {P ′ ∈ PF ′ | P ′ lies over P} of extensions of P in F ′

(see [81, Theorem 3.7.1]).

Let F ′/F be a Galois extension with Galois group G := Gal(F ′/F ) and consider
P ∈ PF and P ′ ∈ PF ′ such that P ′|P . For every i ∈ Z≥−1, the i-th ramification
group of P ′|P is defined as

Gi(P
′|P ) := {σ ∈ G | vP ′(σ(z)− z) ≥ i+ 1 ∀z ∈ OP ′}.

For all i ∈ Z≥−1, the i-th ramification group Gi := Gi(P
′|P ) is a subgroup of G

and, in particular,

G−1 ⊇ G0 ⊇ · · ·Gi ⊇ Gi+1 ⊇ · · · with Gm = {id} for m sufficiently large,

where id denotes the identity element of G. Furthermore, it holds that

|G−1| = e(P ′|P ) · f(P ′|P ) and |G0| = e(P ′|P ),

and, if the characteristic of F is p > 0, then G1 is a normal subgroup of G0

and |G1| = pℓ, for some ℓ ∈ Z≥0, while the quotient group G0/G1 is cyclic and
has order relatively prime to p. Moreover, for all i ∈ Z≥1, the group Gi+1 is a
normal subgroup of Gi and the quotient Gi/Gi+1 is an elementary abelian group
of exponent p.

We are now ready to state the following crucial result, that relates the different
exponent d(P ′|P ) and the ramification groups Gi(P

′|P ).

Theorem 2.24 (Hilbert’s Different Formula). Let F ′/F be a Galois extension
of function fields, P ∈ PF and P ′ ∈ PF ′ such that P ′|P . Then

d(P ′|P ) =
∞∑
i=0

(|Gi(P
′|P )| − 1).

Since eventually, for i large enough, Gi(P
′|P ) = {id}, note that the above sum

is in fact finite.

We conclude this section by recalling the definitions of two specific kinds of
Galois extensions, namely Kummer and Artin-Schreier extensions.

Proposition 2.25 (Kummer extensions). Let F be an algebraic function field
over K, with K containing a primitive n-th root of unity (n > 1 and relatively
prime to char(K)). Assume that u ∈ F is an element such that

u ̸= wd for all w ∈ F and d | n, d > 1.
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Let F ′ = F (y), with yn = u. Then F ′/F is said to be a Kummer extension of
F . It is a cyclic Galois extension of degree n and the minimal polynomial of y
over F is Tn − u. Moreover, for P ∈ PF and P ′ ∈ PF ′ such that P ′|P , define
rP := gcd(n, vP (u)) > 0. Then

e(P ′|P ) = n

rP
and d(P ′|P ) = n

rP
− 1.

The following corollary is a special case of Proposition 2.25, which we highlight
as it is often particularly convenient for showing that certain extensions are
Kummer extensions.

Corollary 2.26 ([81, Corollary 3.7.4]). Let F be an algebraic function field
over K and F ′ = F (y), with yn = u ∈ F and n ̸≡ 0 (mod char(K)). Further,
assume that K contains a primitive n-th root of unity and that there exists a
place Q ∈ PF such that gcd(vQ(u), n) = 1. Then K is the full constant field of
F ′, the extension F ′/F is cyclic of degree n and

g(F ′) = 1 + n(g(F )− 1) +
1

2

∑
P∈PF

(n− rP )deg(P ),

where rP is as defined in Proposition 2.25.

Proposition 2.27 (Artin-Schreier extensions). Let F be an algebraic function
field over K, with char(K) = p > 0. Assume that u ∈ F is an element such that

u ̸= wp − w for all w ∈ F.

Let F ′ = F (y), with yp − y = u. Then F ′/F is said to be an Artin-Schreier
extension of F . It is a cyclic Galois extension of degree p and, for P ∈ PF and
P ′ ∈ PF ′ such that P ′|P , the following hold. Let mP be the integer

mP :=

{
m if ∃ z ∈ F with vP (u− (zp − z)) = −m < 0, m ̸≡ 0 (mod p)

−1 if vP (u− (zp − z)) ≥ 0 for some z ∈ F.

Then, P is unramified if and only if mP = −1, while it is totally ramified if and
only if mP > 0. In the latter case, if P ′ is the unique place of F ′ lying over P ,
then d(P ′|P ) = (p− 1)(mP + 1).

2.2 Algebraic curves over a finite field

For the results collected in this section and their proofs, our main references
are [29] and [46, Chapters 1,3,4,8].
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As in the previous section, let K be a perfect field of characteristic char(K) =
p ≥ 0 and let K denote a fixed algebraic closure of K. Let K∗ (resp. K∗) be the
multiplicative group of invertible elements of K (resp. K).

For a positive integer n, we define the n-th dimensional affine space over K as
the set of n-tuples of elements of K, namely

An := {(a0, . . . , an−1) | ai ∈ K ∀i = 0, . . . , n− 1}.

The n-th dimensional projective space Pn over K is the set of (n + 1)-tuples
(a0, . . . , an) ∈ An+1 with at least one nonzero coordinate, modulo the equivalence
relation

(a0, . . . , an) ∼ (b0, . . . , bn) ⇐⇒ ∃λ ∈ K∗ such that ai = λbi ∀i = 0, . . . , n.

The equivalence class of a tuple (a0, . . . , an) is denoted by [a0 : · · · : an] :=
{(λa0, . . . , λan) | λ ∈ K∗} and it is called a point of Pn with homogeneous
coordinates a0, . . . , an.

A homogeneous polynomial in K[x0, . . . , xn] is either a constant polynomial or a
polynomial f ∈ K[x0, . . . , xn] of positive degree d such that f(λx0, . . . , λxn) =
λdf(x0, . . . , xn) for all λ ∈ K. An ideal I ⊆ K[x0, . . . , xn] is said to be a homo-
geneous ideal if it is generated by homogeneous polynomials. To a homogeneous
ideal I ⊆ K[x0, . . . , xn] we associate the subset of Pn

V (I) := {P point of Pn | f(P ) = 0, ∀ homogeneous f ∈ I} ⊆ Pn,

which is called a projective algebraic set. This definition allows to endow Pn with
the Zariski topology, in which the closed sets are precisely projective algebraic
sets.

Let V ⊆ Pn be a projective algebraic set. In the following discussion, we indicate
as V (K) the collection of points of V , and as V (K) the subset of V (K) containing
the points with homogeneous coordinates that can all be chosen to be elements
of K. The points in V (K) are said to be K-rational, or simply rational, if the
field of definition is clear. The homogeneous ideal of V is defined as

I(V ) := {f ∈ K[x0, . . . , xn] | f is homogeneous, ∀P ∈ V (K) f(P ) = 0}.

A projective algebraic set V is said to be irreducible over K (or absolutely
irreducible) if it cannot be written as V = V1 ∪ V2, with V1, V2 ⊆ Pn algebraic
sets both different from V . An absolutely irreducible projective algebraic set is
said to be a projective variety, and it can be shown that V is a projective variety
if and only if I(V ) is a prime ideal of K[x0, . . . , xn].
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For a projective variety V ⊆ Pn, we define the homogeneous coordinate ring of
V to be

K[V ] := K[x0, . . . , xn]/I(V ),

while the field of rational functions of V is defined to be the following subfield
of the field of fractions of K[V ]:

K(V ) :=

{
f + I(V )

h+ I(V )

∣∣∣∣∣ f, h homogeneous, deg(f) = deg(h), h ̸∈ I(V )

}
. (2.3)

The field K(V ) is also simply referred to as the function field of V and the
dimension of the variety V is defined as the transcendence degree of the field
extension K(V )/K.

A projective algebraic curve X ⊆ Pn is a projective variety of dimension 1.
The curve X is said to be defined over K if its homogeneous ideal I(X ) can
be generated by homogeneous polynomials with coefficients in K. If that is
the case, I(X ) is also a prime ideal of K[x0, . . . , xn] and we can define the
K-rational function field of X , denoted by K(X ), in a similar way as in equation
(2.3). Namely, we consider the following subfield of the field of fractions of
K[x0, . . . , xn]/I(X ):

K(X ) :=

{
f + I(X )

h+ I(X )

∣∣∣∣∣ f, h homogeneous, deg(f) = deg(h), h ̸∈ I(X )

}
.

Note that, in particular, K(X ) is a subfield of K(X ).

Definition 2.28. Let P ∈ X (K). Then, a rational function α ∈ K(X ) is regular
at P if there exist f, h ∈ K[x0, . . . , xn] homogeneous of the same degree such that
α = f+I(X )

h+I(X ) , with h(P ) ̸= 0.

Let now X ⊆ Pn and Y ⊆ Pm be two curves, a rational map

φ = [α0 : · · · : αm] : X −→ Y

is an element φ ∈ Pm(K(X )). The map φ is said to be regular at a point P of
X if there exists λ ∈ K(X ) such that λαi is regular at P for all i = 0, . . . ,m
and there exists j ∈ {0, . . . ,m} such that (λαj)(P ) ̸= 0. If this is the case, then
φ(P ) is the point of Y defined as

φ(P ) := [(λα0)(P ) : · · · : (λαm)(P )].

A rational map φ : X −→ Y is said to be dominant if the image of φ in Y is
dense in Y, with respect to the Zariski topology. If a rational map φ : X −→ Y
is regular at every point P of X , then φ is called a morphism.
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Let now Z ⊆ Pk be another curve and let φ = [α0 : · · · : αm] : X −→ Y and
ψ = [β0 : · · · : βk] : Y −→ Z be rational maps. If fi, hi ∈ K[x0, . . . , xm] are
such that βi =

fi+I(Y)
hi+I(Y) and hi(α0, . . . , αm) ̸= 0 for all i = 0, . . . , k, we define the

composition of the rational maps φ and ψ as

ψ ◦ φ := [γ0 : · · · : γk],

with γi :=
fi(α0,...,αm)
hi(α0,...,αm) . If instead there exists an index j such that hj(α0, . . . , αm) =

0, then ψ ◦ φ is not defined.

A rational map φ : X −→ Y is said to be birational (and X ,Y are said to be
birationally equivalent) if there exists a rational map φ−1 := ψ : Y −→ X such
that ψ ◦ φ = idX and φ ◦ ψ = idY , where idX (resp. idY) is the identity map on
X (resp. Y). If both φ and φ−1 are morphisms, φ is called an isomorphism. It
can be shown that being birationally equivalent is in fact an equivalence relation
on the class of projective curves.

It can be proved that a rational map between curves is dominant if and only if
it is non-constant. In this setting, we can define the pull-back of a non-constant
rational map φ : X −→ Y, which gives a correspondence between the function
fields K(X ) and K(Y) (and in particular between K(X ) and K(Y), if X and Y
are both defined over K).

Theorem 2.29. Let φ = [α0 : · · · : αm] : X −→ Y be a non-constant rational
map. Then the map

φ∗ :

{
K(Y) −→ K(X )
f+I(Y)
h+I(Y) 7−→ f(α0,...,αm)+I(X )

h(α0,...,αm)+I(X )

is called the pull-back of φ and it is a non-trivial field homomorphism such that
φ∗(c) = c for all c ∈ K (i.e., φ∗ is a K-homomorphism). In particular, φ is
birational if and only if φ∗ is an isomorphism, which means that the curves X and
Y are birationally equivalent if and only if their function fields are K-isomorphic.

From the results just discussed and from those contained in the previous section,
it follows that the algebraic function fields of one variable over a field K are
precisely the function fields of curves defined over K.

On one hand, it is immediate to see that K(X ) = K(x̄1, . . . , x̄n), where x̄i :=
xi+I(X )
x0+I(X ) , for i = 1, . . . , n. Moreover, by [87, Chapter 2, Theorem 30] and by the
Primitive Element Theorem, it can also be seen that there exist j ∈ {1, . . . , n} and
y ∈ K(x̄1, . . . , x̄n) such that K(x̄1, . . . , x̄n) = K(x̄j , y), which is a function field of
one variable over K (see Definition 2.1). Note that, in the light of Theorem 2.29,
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this means in particular that any projective curve X is birationally equivalent to
a projective plane curve.

On the other hand, if F is a function field of one variable over K, then it is
a finite extension of K(x), for some x transcendental over K, so that by the
Primitive Element Theorem it can be described as F = K(x, y), for some y ∈ F .
Hence, by what just observed above, this means precisely that F can be seen as
the function field of a projective plane curve X .

By virtue of this correspondence, we define the genus of a curve X to be the
genus of its function field K(X ).

Definition 2.30. Let P ∈ X (K). The local ring of X at P is

K[X ]P := {α ∈ K(X ) | α is regular at P}.

It can be shown that, for any point P , the ring K[X ]P is a Noetherian local
integral domain, whose maximal ideal is

MP := {α ∈ K[X ]P | α(P ) = 0}.

Definition 2.31. A point P ∈ X (K) is said to be nonsingular if the local ring
K[X ]P is a DVR of K(X ). Conversely, if K[X ]P is not a DVR, the point P is
said to be singular. The curve X is said to be nonsingular if every point P in
X (K) is nonsingular.

Note that, if X is defined over K, the above discussion and definitions actually
hold for K, also in the case that K ̸= K, so that algebraic function fields of one
variable over K are precisely the function fields of curves defined over K, and
Definitions 2.30 and 2.31 can be stated as well in this setting.

There is a precise relation between points of a curve X defined over K and
DVRs of the function field K(X ), which is summarized in the following result
(see [46, Theorem 4.32]).

Theorem 2.32. Let OM be a DVR of K(X ) with maximal ideal M . Then there
exists a unique point P of X such that

K[X ]P ⊆ OM , K[X ]P ∩M =MP .

The point P is called the center of the DVR OM . Moreover, if P is a nonsingular
point of X , then K[X ]P is the only DVR of K(X ) centered at P .

Equivalently, if P is the center of a DVR OM , we also say that it is the center of
the place M , or that M is centered at P .
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Remark 2.33. Theorem 2.32 implies that each nonsingular point P of X
corresponds to exactly one place of K(X ), namely P corresponds to the maximal
ideal MP of the local ring at P , and vice-versa. On the other hand, if P is a
singular point of X , then the local ring K[X ]P is not a DVR and there might be
multiple places of K(X ) centered at P . Moreover note that, for Theorem 2.32
to be valid, it is essential that the field K is algebraically closed. In fact, if
X is defined over K ̸= K, then the K-rational nonsingular points of X are
still in one-to-one correspondence with the K-rational places of K(X ), but for
the non-K-rational points the correspondence fails, also in the case in which
they are nonsingular. For more details, see for instance [81, Appendix B.10]
and [46, Chapters 4,5,8].

Remark 2.33 suggests that the study of curves with singular points might pose
more challenges than the study of nonsingular curves. However, the following
result shows that, even when we are interested in studying curves with singular
points, we can ultimately consider the case of nonsingular curves.

Theorem 2.34. Every projective curve X is birationally equivalent to a non-
singular projective curve X̃ (possibly in a higher dimensional projective space),
called the desingularization of X .

Hence, when dealing with a curve X having singular points, we can always
consider instead the desingularization X̃ and study its properties by focusing on
the function field K(X̃ ) of X̃ , since this is isomorphic to K(X ) by Theorem 2.29.
In particular, if X is defined over K ̸= K, then also the K-rational function
fields K(X̃ ) and K(X ) are isomorphic.

2.3 Numerical semigroups

The following section comprises some introductory results on numerical semi-
groups, which are part of the essential background knowledge required for the
study of Weierstrass semigroups. An extensive and accurate exposition of these
notions is contained in [73, Chapter 1]. In our notations, we always assume that
0 ∈ N.

A numerical semigroup S ⊆ N is a sub-semigroup of the additive semigroup
N. Any subset of elements of S that generate the whole semigroup is called a
generating set of S, while the set G := N \ S is called the set of gaps of the
semigroup. The genus of S is defined as g(S) := |G| < ∞. These notions are
particularly important in Chapter 3, where we study Weierstrass semigroups at
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all the places of a certain maximal function field. Indeed, as noted in Section 2.1,
the Weierstrass semigroup H(P ) at a place P is a numerical semigroup and its
genus g(H(P )) is precisely equal to the genus of the function field.

The multiplicity of a semigroup S is defined as

mS := min{s ∈ S | s > 0}

and the conductor of S is

cS := 1 + max G(S),

i.e., it is the smallest nonnegative integer cS such that Z≥cS is contained in the
semigroup. Moreover, S is said to be symmetric if

∀ n ∈ N, either n ∈ S or (max G(S)− n) ∈ S.

It is a well-known result that S is symmetric if and only if max G(S) = 2g(S)−1,
see [73, Corollary 4.5, 1)].

An important object associated to a semigroup S is the Apéry set of S. This is
defined as the set

A(S) := {s ∈ S | s−mS ̸∈ S}. (2.4)

The Apéry set consists of mS elements, that form a complete set of (minimal)
representatives for the congruence classes of Z modulo mS . The knowledge of
the Apéry set of a semigroup S provides a way of computing the genus of the
semigroup, since it can be shown that

g(S) =
∑

a∈A(S)

⌊
a

mS

⌋
. (2.5)

However, the computation of the Apéry set is, in general, a difficult task, therefore
it is convenient to also consider different methods for the computation of the
genus. We here recall the particular case of telescopic semigroups (see [47, Section
5.4]), for which there is a closed formula for the computation of the genus that
does not involve the Apéry set.

Let (a1, . . . , ak) be a sequence of positive integers with greatest common divisor
equal to 1. Define

di := gcd(a1, . . . , ai) and Ai :=

{
a1
di
, . . . ,

ai
di

}
,

for i = 1, . . . , k. Let d0 := 0 and Hi be the semigroup generated by Ai. If
ai/di ∈ Hi−1 for all i = 2, . . . , k, then the sequence (a1, . . . , ak) is called telescopic.
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A numerical semigroup is called telescopic if it is generated by a telescopic
sequence and, from [47, Proposition 5.35], it holds that the genus of a telescopic
semigroup S generated by a telescopic sequence (a1, . . . , ak) is equal to

g(S) =
1

2

(
1 +

k∑
i=1

(
di−1

di
− 1

)
ai

)
. (2.6)

2.4 Two-point Weierstrass semigroups

In Section 2.1, we recalled the definition and some basic results on Weierstrass
semigroups. The aim of this section is to focus on the background notions
regarding a generalization of Weierstrass semigroups introduced in [13] by P.
Beelen and N. Tutaş. The proofs and a more detailed presentation of the results
that we collect here can be found in the cited paper.

Let F be a function field over Fq and let Q,P be two distinct Fq-rational places
of F . Denote by R(Q,P ) the ring of functions in F that are regular except
possibly at Q and P , namely

R(Q,P ) := {f ∈ F | vR(f) ≥ 0 ∀R ̸= Q,P}. (2.7)

Definition 2.35 ([13, Definition 1]). The two-point Weierstrass semigroup
H(Q,P ) can be defined as the set

H(Q,P ) := {(i, j) ∈ Z2 | ∃f ∈ R(Q,P ) \ {0}, vQ(f) = −i, vP (f) = −j}.

The period π of H(Q,P ) is defined to be

π := min{k ∈ N \ {0} | k(Q− P ) is a principal divisor}. (2.8)

Note that H(Q,P ) is in fact a sub-semigroup of the additive semigroup {(i, j) ∈
Z2 | i+ j ≥ 0}, since the Riemann-Roch space L(iQ+ jP ) = {0} if i+ j < 0,
see [5, Remark 7].

Moreover, let τQ,P be the function

τQ,P : Z −→ Z (2.9)
i 7−→ min{j | (i, j) ∈ H(Q,P )}.

This function was introduced in [13] and is a generalization of a function previously
introduced in [60], describing a bijection between the sets of gaps G(P ) and G(Q).
As a consequence of the Riemann-Roch Theorem, it holds that τQ,P (i)+i ≤ 2g(F )
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for all i ∈ Z, see [5, Remark 7]. The function τQ,P has many peculiar properties
and we summarize in the following proposition those that will be useful for us in
Chapter 4.

Proposition 2.36 ([13, Propositions 14,17]). Let π be the period of the two-point
Weierstrass semigroup H(Q,P ) and g be the genus of F . Then:

1. τQ,P is bijective, with inverse map τ−1
Q,P = τP,Q;

2. −i ≤ τQ,P (i) ≤ 2g − i for all i ∈ Z;

3. τQ,P (i+ π) = τQ,P (i)− π for all i ∈ Z;

4.
∑π+c−1

i=c (i+ τQ,P (i)) = πg for all c ∈ Z.

Furthermore, as explicitly proved in [65, Corollary 2.10], τQ,P allows the deter-
mination of H(Q,P ) as

H(Q,P ) = {(i, j) ∈ Z2 | τQ,P (i) ≤ j, τ−1
Q,P (j) ≤ i},

therefore its knowledge is essentially equivalent to the knowledge of the two-point
semigroup.

For computational purposes that will be clear in Chapter 4, it is convenient to
provide a method to describe the map τ−1

Q,P = τP,Q. The following proposition
shows how τ−1

Q,P (j) can be computed efficiently for all j ∈ Z.

Proposition 2.37 ([65, Proposition 2.7]). Let π be the period of the two-
point Weierstrass semigroup H(Q,P ). Let j ∈ Z and i := τ−1

Q,P (j). Then
i = i′ − j + τQ,P (i

′), where i′ is the unique integer in {0, . . . , π − 1} such that
τQ,P (i

′) ≡ j (mod π).

Proof. From Proposition 2.36, we have that τQ,P (a+ π) = τQ,P (a)− π for all
a ∈ Z and that τQ,P is bijective; thus, {τQ,P (a) | 0 ≤ a < π} is a complete
set of representatives of congruence classes modulo π. In particular, there
exists a unique i′ ∈ {0, . . . , π − 1} such that τQ,P (i

′) ≡ j (mod π). Write
τQ,P (i) = j = τQ,P (i

′) + (j − τQ,P (i
′)). Then

τQ,P (i
′) = τQ,P (i)− (j − τQ,P (i

′)) = τQ,P (i+ (j − τQ,P (i
′))), (2.10)

where the last equality follows from Proposition 2.36 3., as j − τQ,P (i
′) is a

multiple of π. Applying τ−1
Q,P to the left and the right side of equation (2.10),

we hence obtain that i′ = i+ j − τQ,P (i
′) and the proposition follows.
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2.5 Algebraic Geometry codes

In this section, we deal with the pivotal definitions and results concerning
Algebraic Geometry (AG) codes and certain bounds for the minimum distance
of the duals of some specific classes of such codes. For a deeper and extensive
exposition of the results discussed here, we refer to [8], [47, Chapter 4] and [81,
Chapter 2].

Let p be a prime, h a positive integer and Fq be the finite field with q = ph

elements.

A linear [n, k, d] code C over the alphabet Fq is a linear subspace of Fn
q , seen

as a vector space over Fq. The positive integer n is called the length of C and
the integer k is the dimension of C as a vector space over Fq and it is called the
dimension of the code. For C ̸= {0}, d is the minimum distance of C and it is
defined as follows:

d := min{δ(a, b) | a, b ∈ C and a ̸= b},

where δ(a, b) := |{i | ai ̸= bi}| is the Hamming distance on Fn
q . If C = {0}, we

set d := 0. Moreover, given a code C ⊆ Fn
q , its dual code is defined as

C⊥ := {u ∈ Fn
q | ⟨u, c⟩ = 0 ∀ c ∈ C},

where ⟨u, c⟩ denotes the canonical inner product on Fn
q . If C is an [n, k, d] code,

the integers n, k, d are referred to as the parameters of C. A fundamental relation
among the parameters of an [n, k, d] code is given by the renowned Singleton
bound, that is,

d ≤ n− k + 1.

The codes attaining this bound are called Maximum Distance Separable codes,
or simply MDS codes.

Let now F be a function field of genus g over Fq, let P1, . . . , Pn be pairwise distinct
rational places of F and define the divisor D := P1+· · ·+Pn ∈ Div(F ). Moreover,
let G ∈ Div(F ) be another Fq-rational divisor such that supp(G)∩ supp(D) = ∅.

Definition 2.38. Let evD be the evaluation map defined as follows:

evD : L(G) −→ Fn
q

f 7−→ (f(P1), . . . , f(Pn)).

The Algebraic Geometry code (or simply AG code) CL(D,G) associated with
the divisors D and G is defined as

CL(D,G) := {evD(f) | f ∈ L(G)}.
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It can be shown that CL(D,G) is an [n, k, d] code with parameters

k = ℓ(G)− ℓ(G−D) and d ≥ n− deg(G).

The bound d ≥ n− deg(G) is called the Goppa bound. In particular, if 2g − 2 <
deg(G) < n, then k = deg(G)− g + 1 and n− deg(G) > 0. Moreover, we have
that

1 +
1

n
− g

n
≤ k

n
+
d

n
≤ 1 +

1

n
,

which gives an intuition of why, for constructing AG codes with good parameters,
we are in general interested in considering maximal function fields.

With notations as above, given P1, . . . , Pn distinct rational places of F , it can
be proved that there exists a Weil differential η of F such that vPi

(η) = −1 and
ηPi

(1) = 1 for all i = 1, . . . , n, see [81, Lemma 2.2.9]. Given such a differential
and an [n, k, d] AG code CL(D,G), by [81, Proposition 2.2.10] we have that the
AG code CL(D,H), with H := D − G + (η), is equal to the code CL(D,G)

⊥,
that is hence an [n, n − k, d′] AG code. The Goppa bound for its minimum
distance reads as d′ ≥ n− deg(H) = deg(G)− 2g + 2.

An AG code CL(D,G) is called one-point if the support of the divisor G consists
of one place of F , while CL(D,G) is called two-point if the support of G consists
precisely of two distinct places, namely if G = aQ+ bP , with Q,P ∈ PF , Q ̸= P .
It is worth mentioning that, in the literature, it is common to refer also to duals
of one-point (resp. two-point) codes simply as one-point (resp. two-point) codes,
although this terminology is slightly abusive. Indeed, even though the dual
CL(D,G)⊥ of a one-point (resp. two-point) code is itself an AG code CL(D,H),
the support of the divisor H might in general not consist of only one place (resp.
two distinct places).

Duals of one-point and two-point AG codes have been extensively studied in the
literature. This is due to the fact that it is possible to obtain bounds for the
minimum distance of these codes that are more refined than the Goppa bound.
In fact, although always providing an interesting bound on the minimun distance
when deg(G) < n, in several cases the Goppa bound turns out to be not sharp.
An interesting bound worth mentioning, from this point of view, is the Feng-Rao
bound for the minimum distance of duals of one-point codes. This bound has its
roots in the work appeared in [24] and [21], and was introduced by G.-L. Feng
and T.R.N. Rao in [25] (see also [62]).

Definition 2.39. Let F be a function field of genus g and let P, P1, . . . , Pn ∈ PF

be rational places. Furthermore, let H(P ) = {h1 := 0 < h2 < . . .} be the
Weierstrass semigroup at P and, for any ℓ ∈ N, let

νℓ := |{(i, j) ∈ N2 | hi + hj = hℓ+1}|.
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For D := P1+· · ·+Pn ∈ Div(F ) and Cℓ := CL(D,hℓP )⊥, the Feng-Rao designed
minimum distance of Cℓ is defined as

dORD(Cℓ) := min{νm | m ≥ ℓ}.

Since it holds that
d ≥ dORD(Cℓ) ≥ hℓ − 2g + 2,

the integer dORD(Cℓ) is also called the Feng-Rao bound or the order bound.

In Chapter 4, we use a generalization of the Feng-Rao bound that was introduced
by P. Beelen in [8]. This generalization, known as the generalized order bound,
applies to the duals of AG codes such that the support of the divisor G is
constituted by multiple distinct places and it gives improvements on the Goppa
bound for the minimum distance of such codes. In order to recall the definition
of the generalized order bound, we first introduce some preliminary notions.

Definition 2.40 ([8, Definition 1]). Let G be a divisor of a function field F and
let R ∈ PF be a rational place. The set of G-non-gaps at R is defined as

H(R;G) :=

−vR(f)

∣∣∣∣∣ f ∈
∞⋃

i=−deg(G)

L(G+ iR) \ {0}

 .

It follows immediately that H(R;G + R) = H(R;G) and that H(R; 0) is the
Weierstrass semigroup H(R) at R. Moreover, define

N(R;G) := {(i, j) ∈ H(R; 0)×H(R;G) | i+ j = vR(G) + 1},
ν(R;G) := #N(R;G).

Definition 2.41 ([8, Definition 6]). Let D := P1 + · · ·+ Pn be a divisor that
is a sum of n distinct rational places of the function field F and G be another
rational divisor of F . Further, suppose that supp(G) ∩ supp(D) = ∅. For any
infinite sequence S = R1, R2, . . . of rational places in PF \ supp(D), define

dS(G) := min{ν(Ri+1;G+R1 + · · ·+Ri)},

where the minimum is taken over all i ≥ 0 such that L(G + R1 + · · · + Ri) ̸=
L(G+R1 + · · ·+Ri+1). Moreover, define

d(G) := max dS(G),

where the maximum is taken over all infinite sequences S of rational places in
PF \ supp(D).
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Remark 2.42. Note that, in Definition 2.41, the assumption that the places
R1, R2, . . . constituting a sequence S are rational is not essential, as one can
always extend the constant field of definition of F .

Proposition 2.43 ([8, Theorem 7]). Let CL(D,G) be an AG code with D and G
as in Definition 2.41. Then, the minimum distance d′ of the dual code CL(D,G)⊥

satisfies the inequality d′ ≥ d(G).

This shows that the integer d(G) is in fact a lower bound for the minimum
distance d′ of CL(D,G)

⊥. It is called the generalized order bound, since it can
be seen as a generalization of the Feng-Rao bound for duals of one-point AG
codes (see Definition 2.39). Furthermore, in [8, Proposition 10] it is shown that
the generalized order bound d(G) is always at least as good as the Goppa bound,
that is, d(G) ≥ deg(G) − 2g + 2, where g is the genus of the function field F .
More precisely, the following lemma shows that d(G) coincides with the Goppa
bound, if G has degree larger than or equal to 4g − 1, and it cannot be worse
than the Goppa bound if deg(G) < 4g − 1.

Lemma 2.44 ([65, Lemma 2.3]). Let D and G as in Definition 2.41. Let
g := g(X ). Then d(G) ≥ deg(G) − 2g + 2. If deg(G) ≥ 4g − 1, the equality
d(G) = deg(G)− 2g + 2 holds.

Proof. The inequality d(G) ≥ deg(G)−2g+2 follows directly from [8, Proposition
10]. Assume deg(G) ≥ 4g − 1. Fix a sequence S = R1, R2, . . . of places in
PF \ supp(D). As in particular deg(G) ≥ 2g − 1, the Riemann-Roch Theorem
implies that L(G + R1 + · · · + Ri) ̸= L(G + R1 + · · · + Ri+1) for all i ≥ 0.
Moreover, it follows from [8, Remark 5] that ν(Ri+1; 0, G + R1 + · · · + Ri) =
deg(G+R1 + · · ·+Ri)− 2g + 2 for all i ≥ 0. As a consequence,

dS(G) = ν(R1; 0, G) = deg(G)− 2g + 2.

Since dS(G) does not depend on the chosen sequence S, the conclusion follows.

Remark 2.45 ([65, Remark 2.4]). Though the generalized order bound d(G) can
be obtained theoretically by considering all possible sequences of places that do
not occur in the support of D, this is not feasible in practice unless we restrict
the set of possible sequences to a finite set. A first step into this direction is
to observe that the computation of d(G) using Definition 2.41 is only needed
when deg(G) < 4g − 1 (see Lemma 2.44) and that, in this case, only the first
4g − 1 − deg(G) entries from every sequence S are relevant to define d(G).
However, some additional condition must be imposed: for example, at the cost
of obtaining a possibly worse bound, one restricts the choice of the places that
can occur in a sequence S to a finite set of places P, chosen beforehand. For
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practical convenience, the set P can be chosen as the set of rational places of F
that are not in the support of D.

For simplicity, in Chapter 4, we will apply the restriction suggested in Re-
mark 2.45, when needed for practical purposes. With slight abuse of notation,
we will continue to denote the bound with d(G) and we will refer to it simply
as the order bound. Note that this choice does not affect the statements of
Proposition 2.43 and Lemma 2.44.

It is interesting to observe that, to study two-point AG codes CL(D, aQ+bP )⊥ by
making use of the order bound, the knowledge of the function τQ,P is particularly
important, as it provides a simple way for determining the dimension of L(aQ+
bP ), a, b ∈ N, and for explicitly computing the set of G-non-gaps at Q and the
set of G-non-gaps at P . This was proved in [5], in the two following results.

Theorem 2.46 ([5, Theorem 9]). Let G = aQ+bP with a, b ∈ N. The Riemann-
Roch space L(G) has dimension |{i ≤ a | τQ,P (i) ≤ b}|.

Corollary 2.47 ([5, Corollary 10]). Let G = aQ + bP with a, b ∈ N. Then
H(Q;G) = {i ∈ Z | τQ,P (i) ≤ b} and H(P ;G) = {i ∈ Z | τ−1

Q,P (i) ≤ a}.



Chapter 3

On a maximal function field
with the third largest genus

This chapter comprises the study of the Weierstrass semigroup at every place
and the description of the full automorphism group of a maximal function field
having the third largest possible genus. The results included in the chapter are
contained in [12] and were jointly developed by P. Beelen, M. Montanucci and
the author of this thesis. In Section 3.3 and Section 3.4, the work contained
in [12] is expanded with new results not included in the original paper.

A celebrated result due to Y. Ihara [56] is that the genus of an Fq2-maximal
function field is always less than or equal to the value

g1 :=
q(q − 1)

2
,

which is precisely the genus of the Hermitian function field, see Example 2.12.
Subsequently, H.-G. Rück and H. Stichtenoth showed in [74] that the Her-
mitian function field is the only maximal function field of genus g1, up to
Fq2-isomorphism.

These results raised the interest in the study of the spectrum of genera of maximal
function fields, i.e., the set of possible values that the genus of an Fq2-maximal
function field can attain, and in the characterization of maximal function fields
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with genera equal to the largest values in the spectrum. In [27], R. Fuhrmann
and F. Torres determined the second largest genus to be

g2 :=

⌊
(q − 1)2

4

⌋
,

and in [26] R. Fuhrmann, A. Garcia and F. Torres characterized, for q odd, the
function fields having this genus. More precisely, they showed that a maximal
function field has genus g2 if and only if it is Fq2 -isomorphic to the Fq2 -rational
function field of the curve defined by the affine equation

X2 : xq + x = y
q+1
2 .

For q even, a weaker although similar result was instead obtained in [1] by M.
Abdón and F. Torres, who proved the characterization under the extra condition
that the function field had a particular Weierstrass place. They showed that, if
the extra condition is satisfied, then a function field has genus g2 if and only if
it is Fq2-isomorphic to Fq2(Y2), where Y2 is the curve defined over Fq2 by the
affine equation

Y2 : x
q
2 + . . .+ x2 + x = yq+1.

The value of the third largest genus was instead computed by G. Korchmáros
and F. Torres in [63], where it was proved to be

g3 :=

⌊
q2 − q + 4

6

⌋
,

and examples of maximal function fields whose genus attains the value g3 had
already been provided in [32] and [16, Theorem 2.1]. More specifically, the
Fq2 -rational function fields of the plane curves defined over Fq2 by the following
affine equations are maximal and have genus precisely g3:

X3 : x
q+1
3 + x

2(q+1)
3 + yq+1 = 0, if q ≡ 2 (mod 3)

Y3 : yq − yx
2(q−1)

3 + x
q−1
3 = 0, if q ≡ 1 (mod 3)

Z3 : yq + y +

(
t∑

i=1

x
q

pi

)2

= 0, if q = 3t.

(3.1)

Note that all these examples are Galois subfields of degree 3 of the Hermitian
function field, and it is still an open problem to determine whether they are the
only Fq2-maximal function fields of genus g3, up to isomorphism.

In this chapter, we are interested in the study of the Fq2 -rational function field
of the curve X3. However, in order to have a more concise discussion, we do not
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investigate directly Fq2(X3), but we focus instead on the study of its constant
field extension with the algebraic closure of Fq2 , that is, the field Fq2(X3)Fq2 .
Note that this is precisely the function field Fq2(X3) of the curve X3, see (2.3).

In particular, we determine the Weierstrass semigroup at every place of Fq2(X3)

and give a complete description of the full automorphism group Aut(Fq2(X3)).
Note that, by [81, Theorem 3.6.3], it holds that the genus of Fq2(X3) is equal to
the genus g3 of Fq2(X3).

The chapter is organized as follows: in Section 3.1, we describe the function field
Fq2(X3), setting the notations that are used throughout the rest of the discussion.
We explicitly compute the principal divisors and the power series expansions at
certain places of some specific functions, that will come in handy later. Moreover,
we determine a particular canonical divisor that will be important for the results
in Section 3.5 and Section 3.6. In Section 3.2, we compute two families of
functions in Fq2(X3) that play a key role for the computation of the Weierstrass
semigroups. Sections 3.3, 3.4, 3.5 and 3.6 are devoted to the explicit computation
of the Weierstrass semigroups at all the places of Fq2(X3), while Section 3.7
collects some conclusive remarks on the Weierstrass places. Finally, in Section 3.8,
we determine the full automorphism group Aut(Fq2(X3)).

3.1 The function field Fq2(X3)

We start by investigating some properties of the function field Fq2(X3). For more
convenient notations, we set m := q+1

3 , so that the affine equation of X3 in (3.1)
reads

X3 : yq+1 + x2m + xm = 0 (3.2)

and Fq2(X3) can be described as Fq2(x, y), with yq+1 + x2m + xm = 0.

Moreover, let Fq2(H) be the function field of the Hermitian curve H, that is, the
curve defined over Fq2 by the affine equation

H : uq+1 + vq+1 + 1 = 0. (3.3)

The function field Fq2(H) can be described as Fq2(u, v), with uq+1+vq+1+1 = 0.
Note that the Hermitian function field H described in Example 2.12 is in fact
the Fq2-rational function field of H. We define the rational map

φ :

{
H −→ X3

(u, v) 7−→ (u3, uv),
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and note that the pull-back map of φ,

φ∗ : Fq2(X3) −→ Fq2(H),

defines a Galois extension Fq2(H)/Fq2(X3) of degree 3, with x := u3 and y := uv.
In particular, the Galois group Gal(Fq2(H)/Fq2(X3)) of the extension is generated
by the automorphism

τ : (u, v) 7−→ (ζ3u, ζ
2
3v), (3.4)

where ζ3 is a primitive cube root of unity in Fq2 .

Remark 3.1. The extension Fq2(H)/Fq2(X3) is unramified: indeed, by the
Riemann-Hurwitz Genus Formula, it holds that

deg Diff(Fq2(H)/Fq2(X3)) = 2g(Fq2(H))− 2− 3(2g(Fq2(X3))− 2)

= 2

(
q(q − 1)

2

)
− 2− 3

(
2(q2 − q + 4)

6
− 2

)
= q2 − q − 2− (q2 − q − 2)

= 0,

which implies that Diff(Fq2(H)/Fq2(X3)) = 0. The extension Fq2(H)/Fq2(X3)

is hence unramified. As a consequence of this fact, if Q is a place of Fq2(H)

lying over the place P of Fq2(X3), then for any f ∈ Fq2(X3) it holds that
vQ(f) = vP (f).

Furthermore, as the field Fq2 is algebraically closed, the relative degrees of all the
places in the extension Fq2(H)/Fq2(X3) are equal to 1.

Let a ∈ F∗
q2 be such that am + 1 ̸= 0 and consider the place Pa that is the zero

of the function x− a in Fq2(x). The polynomial ρ(T ) := T q+1 + x2m + xm is the
minimal polynomial of y over Fq2(x) and is an element of OPa

[T ]. In particular,
let ρi(T ) := T − bξi ∈ OPa

[T ], for i = 0, . . . , q, where ξ is a primitive (q + 1)-th
root of unity in Fq2 and b ∈ F∗

q2 is such that bq+1 = −a2m − am. Moreover, let

ρ̄(T ) := T q+1 + a2m + am ∈ Fq2 [T ]

be the polynomial whose coefficients are the residue classes in OPa/Pa of the
coefficients of ρ(T ). Then, the decomposition of ρ̄(T ) into irreducible factors
over Fq2 is

ρ̄(T ) =

q∏
i=0

(T − bξi) =

q∏
i=0

ρ̄i(T ). (3.5)
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Since ρi(T ) = ρ̄i(T ) ∈ Fq2 [T ] for each i = 0, . . . , q, by Theorem 2.19 there
exists a unique place P(a,bξi) ∈ PFq2 (X3)

such that P(a,bξi)|Pa and ρi(y) ∈ P(a,bξi).
Moreover, it holds that

e(P(a,bξi)|Pa) = 1

for all i = 0, . . . , q. This means that, for all i = 0, . . . , q, the functions x− a and
y − bξi in Fq2(X3) have only one common zero, namely the place P(a,bξi).

Let now, instead, a ∈ F∗
q2 be such that am + 1 = 0. Note that all such a are in

fact in F∗
q2 , as m = q+1

3 . Since Fq2(X3)/Fq2(x) is a Kummer extension of degree
q + 1 (see Corollary 2.26), by Proposition 2.25 we immediately have that there
exists a unique place P(a,0) ∈ PFq2 (X3)

such that

P(a,0)|Pa, e(P(a,0)|Pa) = q + 1 and y ∈ P(a,0).

This place is the only common zero of the functions x− a and y in Fq2(X3).

By virtue of these considerations, for a ∈ F∗
q2 and b ∈ Fq2 such that bq+1 =

−a2m − am, we will henceforth denote by P(a,b) ∈ PFq2 (X3)
the place that is the

common zero of the functions x− a and y − b in Fq2(X3). In a similar way, still
as a consequence of Theorem 2.19, we will also denote by Q(A,B) ∈ PFq2 (H) the

place of Fq2(H) that is the common zero of the functions u− A and v − B in
Fq2(H), for A,B ∈ Fq2 .

Let now z := y3

x , so that zm = −(xm + 1) and the function field extension
Fq2(z, x)/Fq2(x) is a Kummer extension of degree m (see Proposition 2.25 and
Corollary 2.26). Denote by P0 the zero of x in Fq2(x) and by ρ(T ) := Tm+xm+1

the minimal polynomial of z over Fq2(x). With notations as before, we have

ρ̄(T ) := Tm + 1 =

m∏
i=1

(T − λi) ∈ OP0/P0[T ], (3.6)

with λi ∈ F∗
q2 , λmi = −1 for all i = 1, . . . ,m. Note that the λi are all distinct and,

since 2m divides q2 − 1, they are all elements of F∗
q2 . By Theorem 2.19, equation

(3.6) implies that there are precisely m places {Pλi
0 }mi=1 of Fq2(z, x) lying over

P0, each such that e(Pλi
0 |P0) = 1. Observing that Fq2(z, x) = Fq2(y

3, x), it
is then immediate to see that the extension Fq2(X3)/Fq2(z, x) is Kummer of
degree 3 and the places Pλi

0 are totally ramified in this extension. Hence, it
follows that there are precisely m places P 1

0 , . . . , P
m
0 ∈ PFq2 (X3)

lying over P0 in

Fq2(X3)/Fq2(x), with
e(P i

0|P0) = 3

for all i = 1, . . . ,m.
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Fq2(x, y) P 1
0 · · · Pm

0

Fq2(x, z) Pλ1
0 · · · Pλm

0

Fq2(x) P0

q+1

3
e
(
P 1

0 |P
λ1
0

)
=3 e(Pm

0 |Pλm
0 )=3

m
e
(
P

λ1
0 |P0

)
=1 e(Pλm

0 |P0)=1

Let now P∞ denote the pole of x in Fq2(x). With completely similar arguments,
setting w := x2

y3 and considering the extension Fq2(w, x)/Fq2(x), with wm =

− 1
1+ 1

xm
, it also follows that there are exactly m places P 1

∞, . . . , P
m
∞ ∈ PFq2 (X3)

lying over P∞ in Fq2(X3)/Fq2(x), with

e(P i
∞|P∞) = 3

for all i = 1, . . . ,m.

For reasons that will be clear from the subsequent discussion, we now set the
following notations:

R := {P(a,b) ∈ PFq2 (X3)
| a, b ∈ F∗

q2 and am + 1 ̸= 0}

O0 := {P 1
0 , . . . , P

m
0 }

O∞ := {P 1
∞, . . . , P

m
∞}

Om := {P(a,0) | a ∈ F∗
q2 , a

m + 1 = 0}

and
O := O0 ∪ O∞ ∪ Om. (3.7)

Remark 3.2. Consider the Fq2-rational function field Fq2(X3) of the curve X3.
Similarly to what we observed for the extension Fq2(X3)/Fq2(x), the extension
Fq2(X3)/Fq2(x) is also a Kummer extension of degree q+1. Moreover, the preced-
ing discussion concerning the extensions Fq2(z, x)/Fq2(x) and Fq2(w, x)/Fq2(x)
holds also for the extensions Fq2(z, x)/Fq2(x) and Fq2(w, x)/Fq2(x). This is the
case since, as already noted, the elements λi in equation (3.6) are in fact elements
of F∗

q2 .

Therefore, denoting with P̄0 and P̄∞ the zero and the pole of x in Fq2(x), respec-
tively, we have that there are exactly m places P̄ 1

0 , . . . , P̄
m
0 ∈ PFq2 (X3) lying over
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P̄0 and m places P̄ 1
∞, . . . , P̄

m
∞ ∈ PFq2 (X3) lying over P̄∞, with

e(P̄ i
0|P̄0) = e(P̄ i

∞|P̄∞) = 3 and f(P̄ i
0|P̄0) = f(P̄ i

∞|P̄∞) = 1

for all i = 1, . . . ,m.

Moreover, again by arguments similar to those discussed above, for all a ∈ F∗
q2

and b ∈ Fq2 such that bq+1 = −a2m − am, it holds that the functions x − a
and y − b in Fq2(X3) have precisely one common zero P̄(a,b). This place is
Fq2-rational and lies over the zero P̄a of x in Fq2(x), with f(P̄(a,b)|P̄a) = 1. If
am +1 ̸= 0, then e(P̄(a,b)|P̄a) = 1, while if am +1 = 0, then e(P̄(a,0)|P̄a) = q+1.
Theorem 2.19 implies also that these places are precisely all the remaining Fq2-
rational places of Fq2(X3). Furthermore, it follows that, in the constant field
extension Fq2(X3)/Fq2(X3), the place P(a,b) ∈ PFq2 (X3)

is the only place lying
over P̄(a,b) ∈ PFq2 (X3), for all a ∈ F∗

q2 and b ∈ Fq2 with bq+1 = −a2m − am.

Remark 3.3. In the constant field extension Fq2(X3)/Fq2(X3), we have

deg ConFq2 (X3)/Fq2 (X3)
(P ) = deg(P )

for all places P ∈ PFq2 (X3), see [81, Theorem 3.6.3]. Therefore, each rational
place of Fq2(X3) lies under exactly one place of Fq2(X3) and Remark 3.2 implies
that

• P i
0|P̄ i

0, for all i = 1, . . . ,m,

• P i
∞|P̄ i

∞, for all i = 1, . . . ,m,

• P(a,b)|P̄(a,b), for each a ∈ F∗
q2 and b ∈ Fq2 with bq+1 = −a2m − am.

This means that there is a one-to-one correspondence between the Fq2-rational
places of Fq2(X3) and the places of Fq2(X3) in O ∪R.
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O ∪R Fq2(x, y)

Fq2(x, z)

{Fq2 -rational places} Fq2(x, y) Fq2(x)

Fq2(x, z)

Fq2(x)

1:1

3

m

3

m

Since, as already observed, the extension Fq2(X3)/Fq2(x) is a Kummer extension
of degree q+1, the Galois group Gal(Fq2(X3)/Fq2(x)) is cyclic and generated by
the automorphism y 7−→ δy, where δ is a primitive (q+1)-th root of unity in Fq2 .
The sets O0 and O∞ are distinct orbits of the action of Gal(Fq2(X3)/Fq2(x)) on
the places of Fq2(X3), while all the places in Om are fixed by Gal(Fq2(X3)/Fq2(x)).
However, the notation introduced in equation (3.7) is convenient since, in Corol-
lary 3.7, we will show that the set O is contained in an orbit of the automorphism
group Aut(Fq2(X3)) and, in Section 3.8, we will in fact show that O is an orbit
of Aut(Fq2(X3)), in its action on PFq2 (X3)

.

We now determine the divisors of several elementary functions in Fq2(X3). We
denote as D∞ the divisor

D∞ :=

m∑
j=1

P j
∞.

For a place P(a,b) ∈ PFq2 (X3)
, we define the function

xa :=
x− a

a
,

which, as we will see later, turns out to be a local parameter for P(a,b). Further-
more, let tP (a,b) be the function

tP(a,b)
:= mam−1(2am + 1)(x− a) + bq(y − b) (3.8)

in Fq2(X3), and let Q(A,B) be a place of Fq2(H) lying over P(a,b). Note that
tP(a,b)

is the function associated to the tangent line at the affine point with
(x, y)-coordinates (a, b) of the plane curve defined by equation (3.2).
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With O defined as in equation (3.7), for P(a,b) ∈ PFq2 (X3)
\ O we define

α(P(a,b)) :=
am

1 + am
=

Aq+1

1 +Aq+1
. (3.9)

As 1− α(P(a,b)) =
1

1+am , in particular 1− α(P(a,b)) ̸= 0 and we can define the
following nonzero function in Fq2(X3), which will be useful later:

f0 : =
3(1− α(P(a,b)))

Aq+1
tP(a,b)

= (1− α(P(a,b)))

((
2Aq+1 + 1

)
A3

(x− a) +
3Bq

A
(y − b)

)
,

(3.10)

where A3 = a and AB = b. Given a place P(a,b) ∈ PFq2 (X3)
\ O and Q(A,B) a

place of Fq2(H) lying over P(a,b), the following proposition describes the local
power series expansion of the functions xa and f0 at Q(A,B), with respect to the
local parameter T := u−A

A . In this proposition, as well as in the remainder of
the chapter, whenever we write f = g +O(Tn), for f and g nonzero elements of
Fq2(X3), we mean that vP(a,b)

(f − g) ≥ n.

Proposition 3.4. Let P(a,b) ∈ PFq2 (X3)
\ O and Q(A,B) a place of Fq2(H) lying

over P(a,b). Consider the functions xa, f0 and T := (u−A)/A, which is a local
parameter at Q(A,B). Then, the local power series expansions of xa and f0 at
Q(A,B) with respect to T are

xa = 3T + 3T 2 + T 3,

f0 = 3T 2 + (α(P(a,b)) + 1)T 3 +O(T q),
(3.11)

where α(P(a,b)) is as defined in equation (3.9).

Proof. For convenience, we will simply write α instead of α(P(a,b)) in this proof.
We start by computing the local power series expansions of the functions x− a
and y − b with respect to the local parameter T := (u − A)/A at Q(A,B). We
have:

xa =
x− a

a
=
x−A3

A3
=
u3 −A3

A3
=

(u−A)3 + 3A(u−A)2 + 3A2(u−A)

A3

= 3T + 3T 2 + T 3

and

y − b = uv −AB = (u−A)(v −B) +B(u−A) +A(v −B)−AB +AB

= A(v −B)(T + 1) +ABT.

(3.12)



40 On a maximal function field with the third largest genus

Moreover, from vq+1 + uq+1 + 1 = 0, we obtain

(u−A)q+1 −Aq+1 +Aqu+Auq + (v −B)q+1 −Bq+1 +Bqv +Bvq + 1 = 0

or equivalently

Aq+1T q+1 + (v −B)q+1 +Aq+1T q +B(v −B)q +Aq+1T +Bq(v −B) = 0

which gives v −B = −Aq+1

Bq T +O(T q). Combining this with equation (3.12), we
obtain

y − b = A(v −B)(T + 1) +ABT = −AA
q+1

Bq
T (T + 1) +ABT +O(T q)

= A

(
B − Aq+1

Bq

)
T − Aq+2

Bq
T 2 +O(T q).

We can now compute also the local power series expansion of the function f0
at Q(A,B) with respect to the local parameter T . Using equation (3.10) and the
previously computed expansions of xa and y − b, we find

f0 = (1− α)(3
(
Aq+1 + 1

)
T 2 +

(
2Aq+1 + 1

)
T 3) +O(T q)

= 3T 2 + (α+ 1)T 3 +O(T q),

where in the final equality we used that α = Aq+1/(1 +Aq+1).

Proposition 3.5. In the above notations, the principal divisors of the functions
xa, x, y, y − b and f0 in Fq2(X3) are:

(xa) =


P(a,b) +

∑
ξq+1=1, ξ ̸=1 P(a,ξb) − 3D∞ if am ̸= −1,

(q + 1)P(a,0) − 3D∞ if am = −1,

(3.13)

and

(x) = 3

m∑
i=j

P j
0 − 3D∞,

(y) =

m∑
j=1

P j
0 +

∑
am+1=0

P(a,0) − 2D∞,

(y − b) = P(a,b) + Eb − 2D∞,

(3.14)

where Eb ∈ Div(Fq2(X3)) is an effective divisor of degree 2m− 1. Moreover, if
P(a,b) ∈ PFq2 (X3)

\ O and α(P(a,b)) ̸= −1, then P(a,b) ̸∈ supp(Eb). Furthermore,
for P(a,b) ∈ PFq2 (X3)

\ O, let f0 be the function defined in equation (3.10). Then

(f0) = 2P(a,b) + E0 − 3D∞, (3.15)

where E0 ∈ Div(Fq2(X3)) is an effective divisor such that P(a,b) ̸∈ supp(E0).
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Proof. To find the divisors of xa and x, recall that Fq2(X3)/Fq2(x) is a Kummer
extension of degree q + 1. Then, it is sufficient to note that the zeros of xm + 1
are totally ramified in this extension, while the zero and the pole of x have
ramification index equal to three, see the discussion before Remark 3.2. No
further ramification occurs, as yq+1 = −xm(xm + 1). This equation also gives
the divisor of y. It is not clear that the divisor of y − b is of the form as stated
in the proposition, but it might happen that P(a,b) ∈ supp(Eb). In this case, the
polynomial f(x) := x2m + xm + bq+1 would have a as a multiple root. Since
3f ′(x) = xm−1(2xm + 1) and P(a,b) ̸∈ O, this can only happen if 2am + 1 = 0.
Using that α(P(a,b)) + 1 = (2am + 1)/(am + 1), the result on the divisor of y − b
follows.

Finally, from equation (3.11), we know that vP(a,b)
(f0) = 2 and, as f0 is a

linear combination of xa and y − b, by the triangle inequality we also know that
vP j

∞
(f0) = −3 and that f0 has no poles outside the P j

∞, 1 ≤ j ≤ m. Hence,
equation (3.15) follows.

Lemma 3.6. The automorphism group Aut(Fq2(X3)) contains a subgroup G of
order 2(q + 1)2, which is isomorphic to a semidirect product of an abelian group
A of order (q + 1)2/3 and a symmetric group of order 6. More precisely,

A := {θγ,δ(x, y) = (γx, δy) | γm = δq+1 = 1},

while the symmetric group of order 6 is generated by the involution θ2 and the
order 3 automorphism θ3 given by

θ2(x, y) =

(
1

x
,
y

x

)
and θ3(x, y) =

(
y3

x2
,
y

x

)
.

Proof. By direct computation, it can be checked that ⟨A, θ2, θ3⟩ is an automor-
phism group of Fq2(X3), that is, all the maps presented in the lemma preserve the
equation yq+1+xm+x2m = 0. The group T generated by θ2 and θ3 is isomorphic
to the symmetric group of order 6 as θ2θ3θ2 = θ23, again by direct computation.
Both θ2 and θ3 normalize A, since computations show that θ2θγ,δθ2 = θγ−1,δγ−1

and θ3θγ,δθ
−1
3 = θγδ−3,γδ−2 , hence T normalizes A. Since T and A have trivial

intersection, we hence obtain that ⟨A, T ⟩ = A⋊ T .

Corollary 3.7. Let O be the set defined in equation (3.7). Then |O| = q + 1
and O is an orbit of the automorphism group G defined in Lemma 3.6, in its
natural action on the places of Fq2(X3).

Proof. We observe that the Galois group of the extension Fq2(X3)/Fq2(x), that is
the cyclic group generated by (x, y) 7−→ (x, δy), where δ is a primitive (q + 1)-th
root of unity, fixes each place in the set Om, while it acts transitively on the sets
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O0 and O∞. The group A, as defined in Lemma 3.6, acts transitively on the
set Om, since it maps x to γx, where γm = 1. The automorphism θ2 maps x to
1/x and hence, from equation (3.14), merges the two Galois orbits O0 and O∞
under the action of G. Instead, the automorphism θ3 acts as a cycle of order 3
on O0, O∞ and Om. This can be seen from equation (3.14) and the fact that θ3
maps x to y3/x2. As a result, all the three considered sets are merged into one
orbit under the action of G.

Remark 3.8. Let Φ be the Fq2-Frobenius map and ā ∈ Fq2 be such that ām = −1.
Then, from the Fundamental Equation [46, Page xix (ii)] it follows in particular
that, for any P(a,b) ∈ PFq2 (X3)

\ O, there exist functions fP(a,b),i ∈ Fq2(X3) and

ϕP(a,b)
∈ Fq2(X3) such that

(fP(a,b),i) = qP(a,b) +Φ(P(a,b))− (q + 1)P i
∞, (3.16)

for all i = 1, . . . ,m, and

(ϕP(a,b)
) = qP(a,b) +Φ(P(a,b))− (q + 1)P(ā,0).

Hence, we can consider the following function in Fq2(X3), that will be useful
later:

FP(a,b)
:= ϕP(a,b)

· xā. (3.17)

By Proposition 3.5, the principal divisor of FP(a,b)
is

(FP(a,b)
) = qP(a,b) +Φ(P(a,b))− 3

m∑
j=1

P j
∞.

We conclude the section computing a particular canonical divisor in Fq2(X3),
that will be important for the study of the Weierstrass semigroups. Indeed, we
will use it in order to construct certain regular differentials that will allow the
determination of the set of gaps at each place P(a,b) ∈ PFq2 (X3)

\ (O ∪R) (see
Proposition 2.18).

Lemma 3.9. The divisor (q − 2)D∞ is canonical. More precisely,(
ydx

x(xm + 1)

)
= (q − 2)D∞.

Proof. The result follows directly from the fact that Fq2(X3)/Fq2(x) is a Kummer
extension of degree q + 1, see the discussion before Remark 3.2 and the proof of
Proposition 3.5. Hence, we have

(dx) = 2

m∑
j=1

P j
0 + q

∑
am+1=0

P(a,0) − 4D∞
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and the claim follows from direct computations, by using Proposition 3.5.

Corollary 3.10. Let P be a place of Fq2(X3) not in O∞. Then, for any
h ∈ L((q − 2)D∞), the integer vP (h) + 1 is a gap of the Weierstrass semigroup
at P .

Proof. From Proposition 2.18 and Lemma 3.9, it is enough to consider the regular
differential

w :=
hydx

x(xm + 1)
.

Since vP (w) = vP (h), the corollary follows.

3.2 Two families of functions in Fq2(X3)

The aim of this section is to prove Theorem 3.19 and Theorem 3.20, that introduce
two families of functions in Fq2(X3) with prescribed vanishing orders at certain
places. These functions will be crucial for the computation of the Weierstrass
semigroups at all the places not contained in O.

We start by giving the following definition, introducing some functions that will
be practical to use in the proofs of Theorem 3.19 and Theorem 3.20.

Definition 3.11. Let i ∈ Z. Furthermore, let F be a field of characteristic
different from three and assume that it contains a primitive cube root of unity,
which we will denote by ζ3. Then we define the following rational functions in
F(s):

Pi(s) :=
(s+ ζ3)

3i − (s+ ζ23 )
3i

3(ζ3 − ζ23 )s(s− 1)

and

Qi(s) :=

(
1−ζ3
3

)
(s+ ζ3)

3i−1 +
(

1−ζ2
3

3

)
(s+ ζ23 )

3i−1

s− 1
.

Note that it is not strictly necessary to assume that the field F contains a
primitive cube root of unity. If it does not, the above definition makes sense over
the larger field F(ζ3), but actually Galois theory can be used to show that Pi(s)
and Qi(s) are in F(s).

Example 3.12. Assume F = Q. Then P0(s) = 0, P1(s) = 1, P2(s) = 2s3−3s2−
3s+2 and P3(s) = 3s6−9s5−9s4+33s3−9s2−9s+3. Moreover, Q1(s) = s+1,
Q2(s) = s4+ s3−9s2+ s+1, Q3(s) = s7+ s6−27s5+29s4+29s3−27s2+ s+1,
and Q0(s) = (s2 − s+ 1)−1.
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In fact, as illustrated in this example, for positive values of i the rational functions
Pi(s) and Qj(s) are polynomials in s. We investigate this further in the following
lemma.

Lemma 3.13. Let i ∈ Z>0. Then Pi(s) is a nonzero polynomial of degree at
most 3i− 3, while Qi(s) is a nonzero polynomial of degree 3i− 2.

Proof. It is easy to see that, for any i ∈ Z>0, the polynomial P̃i(s) := (s+ζ3)
3i−

(s+ ζ23 )
3i has at most degree 3i− 1. It is not the zero polynomial, since if s is

substituted by −ζ3, one obtains

P̃i(−ζ3) = 03i − (−ζ3 + ζ23 )
3i = (−1 + ζ3)

3i, (3.18)

which is not zero, as ζ3 ̸= 1. Here we used that the field F does not have
characteristic three. It is easy to see that P̃i(0) = 0, while

P̃i(1) = (1 + ζ3)
3i − (1 + ζ23 )

3i = (−ζ23 )3i − (−ζ3)3i = (−1)i − (−1)i = 0.

We may conclude that Pi(s) is a polynomial of degree at most 3i− 3. Similarly,
the polynomial Q̃i(s) :=

1−ζ3
3 (s+ ζ3)

3i−1 +
1−ζ2

3

3 (s+ ζ23 )
3i−1 is a polynomial of

degree 3i−1 having 1 as a root. Hence Qi(s) is a polynomial of degree 3i−2.

It can also be seen that the coefficient of s3i−3 of the polynomial Pi(s) equals
3i(ζ3 − ζ23 ). Hence, if the characteristic of the field F, which already is assumed
to be distinct from three, is zero or does not divide i, then the degree of Pi(s) is
exactly 3i− 3. Since we will work over Fq2 , where q ≡ 2 (mod 3), it may well
happen that deg(P)i(s) < 3i− 3.

The following lemma gives a relation, that will come in handy later, between the
rational functions just introduced.

Lemma 3.14. Let i, j, ℓ ∈ Z. Then

Pi(s)Pℓ+j(s)− Pj(s)Pℓ+i(s) = (s2 − s+ 1)3jPi−j(s)Pℓ(s) (3.19)

and

Pi(s)Qℓ+j(s)− Pj(s)Qℓ+i(s) = (s2 − s+ 1)3jPi−j(s)Qℓ(s). (3.20)

Proof. For convenience, we will simply write Pi and Qj instead of Pi(s) and
Qi(s) in this proof. We only prove the second identity, since the first one can
be proved in a very similar way, with simpler looking intermediate expressions.
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First of all, using Definition 3.11 and writing S1 = s + ζ3, S2 = s + ζ23 , one
obtains by direct computation

3(ζ3 − ζ23 )s(s− 1)2PiQℓ+j =

1− ζ3
3

S3i+3j+3ℓ−1
1 +

1− ζ23
3

S3i
1 S

3j+3ℓ−1
2 −1− ζ3

3
S3i
2 S

3j+3ℓ−1
1 −1− ζ23

3
S3i+3j+3ℓ−1
2

and

3(ζ3 − ζ23 )s(s− 1)2PjQℓ+i =

1− ζ3
3

S3i+3j+3ℓ−1
1 +

1− ζ23
3

S3j
1 S

3i+3ℓ−1
2 −1− ζ3

3
S3j
2 S

3i+3ℓ−1
1 −1− ζ23

3
S3i+3j+3ℓ−1
2 .

Hence

3(ζ3 − ζ23 )s(s− 1)2(PiQℓ+j − PjQℓ+i) =

(S1S2)
3j

(
1− ζ3

3
(S3ℓ+3i−3j−1

1 − S3i−3j
2 S3ℓ−1

1 ) +
1− ζ23

3
(S3i−3j

1 S3ℓ−1
2 − S3ℓ+3i−3j−1

2 )

)
= (S1S2)

3j(S
3(i−j)
1 − S

3(i−j)
2 )

(
1− ζ3

3
S3ℓ−1
1 +

1− ζ23
3

S3ℓ−1
2

)
= 3(ζ3 − ζ23 )s(s− 1)2(s2 − s+ 1)3jPi−jQℓ.

For the last equality, note that S1S2 = s2 − s+ 1.

Remark 3.15. For any i ∈ Z>0, the polynomials Pi(s) and Qi(s) have no
common roots. Indeed, this is clear for i = 1, since P1(s) = 1. If i ≥ 2, Lemma
3.14 applied with ℓ = 0 and j = i− 1 implies that

Pi(s)Qi−1(s)− Pi−1(s)Qi(s) = (s2 − s+ 1)3i−4,

where we used that Q0(s) = (s2−s+1)−1. Hence, the only possible common roots
of Pi(s) and Qi(s) could be −ζ3 or −ζ23 , the roots of s2−s+1. However, equation
(3.18) implies that Pi(−ζ3) ̸= 0 and similarly one sees that Pi(−ζ23 ) ̸= 0.

Remark 3.16. Let F = Fq2 be the algebraic closure of Fq2 . Then, for any
α ∈ F \ {0, 1,−ζ3,−ζ23}, there exists i > 0 such that Pi+1(α) = 0. Indeed, for
such α one has Pi+1(α) = 0 if and only if ((α+ ζ3)/(α+ ζ23 ))

3i+3 = 1. Since any
nonzero element of F has a finite multiplicative order, the existence of i follows.
Moreover, since P1(s) = 1, we see that i > 0.

This remark motivates the following definition.

Definition 3.17. Let α ∈ Fq2 \ {0, 1,−ζ3,−ζ23}. Then we define the P-order of
α as the smallest positive integer i such that Pi+1(α) = 0.
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Later, we will apply the notion of a P-order in case α = α(P(a,b)). The following
lemma is a first source of information in this setting.

Lemma 3.18. Let i be a positive integer. The number of P(a,b) ∈ PFq2 (X3)
\ O

such that α(P(a,b)) has P-order i is equal to (q+1)2φ(i+1) if gcd(i+1, p) = 1 and
0 otherwise. Here, φ(·) denotes Euler’s totient function. Moreover, for P(a,b) ∈
PFq2 (X3)

\ O, it holds that a, b ∈ Fq2 if and only if α(P(a,b))
2 − α(P(a,b)) + 1 = 0

or the P-order i of α(P(a,b)) satisfies that i+ 1 divides m.

Proof. If α := α(P(a,b)) has P-order i for some positive integer i, then α ̸∈
{0, 1,−ζ3,−ζ23} and P(a,b) ̸∈ O. As observed in Remark 3.16, we have Pi+1(α) =
0 if and only if ((α+ ζ3)/(α+ ζ23 ))

3i+3 = 1. If the characteristic p divides i+ 1,
we see that ((α+ ζ3)/(α+ ζ23 ))

3(i+1)/p = 1, implying that Pj(α) = 0 for some
j strictly smaller than i + 1. By definition of P-order, this is impossible. If
gcd(p, i+ 1) = 1, the α that have P-order i are precisely those satisfying that
((α + ζ3)/(α + ζ23 ))

3 is a primitive (i + 1)-th root of unity. Hence, there are
3φ(i + 1) many α with P-order i. Since α = am/(1 + am) and α ̸∈ {0, 1}, for
each such α there are m distinct possibilities for a. Since P(a,b) ̸∈ O, for each
such a there are q+ 1 distinct possibilities for b. This proves the first part of the
lemma.

Now suppose that P(a,b) ∈ PFq2 (X3)
\O is such that a, b ∈ Fq2 and α2−α+1 ̸= 0.

First of all, we claim that in this case α ∈ Fq. Indeed, since a, b ∈ Fq2 ,
we obtain that a3m = aq+1 ∈ Fq and a2m + am = −bq+1 ∈ Fq. But then
am = (a3m+a2m+am)/(a2m+am+1) ∈ Fq. Here we used that a2m+am+1 ̸= 0,
which follows from the assumption that α2 − α+ 1 ̸= 0. Now am ∈ Fq, which
implies that α = am/(1 + am) ∈ Fq. In particular αq = α. This in turn implies
that (

α+ ζ3
α+ ζ23

)q

=
αq + ζq3
αq + ζ2q3

=
α+ ζ23
α+ ζ3

,

which is exactly the inverse of α+ζ3
α+ζ2

3
. Hence

(
α+ζ3
α+ζ2

3

)3m
=
(

α+ζ3
α+ζ2

3

)q+1

= 1, which
shows that i+ 1 divides m.

Conversely, if α2 − α+ 1 = 0, then a satisfies a2m + am + 1 = 0, which implies
that bq+1 = 1 and hence a, b ∈ Fq2 . If α2 − α+ 1 ̸= 0 and i+ 1 divides m, then

3(i+ 1) divides q + 1 and
(

α+ζ3
α+ζ2

3

)3(i+1)

= 1. Hence
(

α+ζ3
α+ζ2

3

)q+1

= 1, which after
clearing denominators amounts to the equation (α+ ζ3)

q+1 − (α+ ζ23 )
q+1 = 0.

This is a polynomial in α of degree q and we have already seen that this equation
is satisfied for all α ∈ Fq. We may therefore conclude that α ∈ Fq. From this, it
follows that am ∈ Fq, which implies that bq+1 = −a2m − am ∈ Fq. Hence, also
in this case we conclude that both a, b ∈ Fq2 .
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Next, we use the polynomials Pj(s) and Qj(s) to investigate the existence
of functions that will be useful later when determining gaps at the places
P(a,b) ∈ Fq2(X3) \ O.

Theorem 3.19. Let P(a,b) ∈ PFq2 (X3)
\O and suppose that α(P(a,b))

2−α(P(a,b))+

1 ̸= 0. Furthermore, let i be the P-order of α(P(a,b)). If i ≤ m− 2, then there
exists a function fi ∈ L((3i+ 3)D∞) such that vP(a,b)

(fi) = 3i+ 3. Moreover,
for each j ∈ Z with 0 ≤ j ≤ min{i − 1,m − 2}, there exists a function fj ∈
L((3j + 3)D∞) with vP(a,b)

(fj) = 3j + 2.

Proof. Throughout the proof we simplify the notation by writing α instead of
α(P(a,b)). In a similar vein, we will write Pj and Qj , rather than Pj(α) and
Qj(α).

Let Q(A,B) be a place of Fq2(H) lying over P(a,b) and let T := (u−A)/A, which
is a local parameter at Q(A,B). For each j such that 0 ≤ j ≤ i, we claim that
there exists a function fj ∈ L((3j + 3)D∞) such that the local power series
expansion of fj at Q(A,B) with respect to the local parameter T is

fj = 3Pj+1T
3j+2 +Qj+1T

3j+3 +O(T q). (3.21)

Note that, by definition of the P-order, this will imply that

fi = Qi+1T
3i+3 +O(T q). (3.22)

This is sufficient to prove the theorem since, as observed in Remark 3.1,
vQ(A,B)

(fj) = vP(a,b)
(fj) and 3j + 3 < q for all j under consideration.

First of all, note that, for j = 0, we can take f0 to be exactly the function defined
in equation (3.10) and whose local power series expansion with respect to T was
computed in equation (3.11). To show the result for j = 1, we define

f1 := −9x2a + 27f0 − 3(α− 5)xaf0 + (α2 − α− 5)f20 .

Elementary calculations show that the local power series expansion of f1 at
Q(A,B) with respect to T is precisely

f1 = 3P2T
5 +Q2T

6 +O(T q).

For j = 2, we instead define

f2 := (α+ 1)−3
(
−27P2f1 + 3P2

2f
2
0xa − 3P2(α

4 + α3 − 4α2 − 4α+ 3)f30
)

+ (7α2 − 16α+ 7)f1f0.
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A somewhat lengthy, but elementary, calculation shows that the local power
series expansion of f2 equals

f2 = 3P3T
8 +Q3T

9 +O(T q).

For 3 ≤ j ≤ i, we assume now that fj−1 and fj−2 have the form claimed in
equation (3.21) and we construct inductively the remaining functions fj in the
following way, defining:

fj := −Pjfj−2f1 − P2Pj−1fj−1f0
(α2 − α+ 1)2Pj−2

.

The idea of choosing the functions fj−2f1 and fj−1f0 is that the vanishing order
at Q(A,B) is 3j + 1 for both. Hence, a suitable linear combination of them
will vanish with order at least 3j + 2. Moreover, as fj−2f1 and fj−1f0 lie in
L((3j + 3)D∞), a linear combination of them does as well. Therefore, we only
need to show that

Pjfj−2f1 − P2Pj−1fj−1f0 =

= −(α2 − α+ 1)2Pj−2

(
3Pj+1T

3j+2 +Qj+1T
3j+3 +O(T q)

)
.

The local power series expansion of Pjfj−2f1 −P2Pj−1fj−1f0 with respect to T
can be obtained from the expansions of the functions fj−2f1 and fj−1f0, which
are:

fj−2f1 =
(
3Pj−1T

3j−4 +Qj−1T
3j−3 +O(T q)

) (
3P2T

5 +Q2T
6 +O(T q)

)
= 9P2Pj−1T

3j+1 + (3Pj−1Q2 + 3P2Qj−1)T
3j+2 +Q2Qj−1T

3j+3 +O(T q),

fj−1f0 =
(
3PjT

3j−1 +QjT
3j +O(T q)

) (
3T 2 +Q1T

3 +O(T q)
)

= 9PjT
3j+1 + (3PjQ1 + 3Qj)T

3j+2 +Q1QjT
3j+3 +O(T q).

Hence, we have

Pjfj−2f1 − P2Pj−1fj−1f0 =

= 3(Pj−1PjQ2 + P2PjQj−1 − P2Pj−1PjQ1 − P2Pj−1Qj)T
3j+2+

+ (PjQj−1Q2 − Pj−1P2QjQ1)T
3j+3 +O(T q).

We are therefore left to prove the two following identities:

3(Pj−1PjQ2 + P2PjQj−1−P2Pj−1PjQ1 − P2Pj−1Qj) =

=− 3(α2 − α+ 1)2Pj−2Pj+1

(3.23)

and
PjQj−1Q2 − Pj−1P2QjQ1 = −(α2 − α+ 1)2Pj−2Qj+1. (3.24)
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This can be conveniently done by using Lemma 3.14. Indeed, consider first
equation (3.23) and use identity (3.20) as

PjQ2 − P2Qj = Pj−2Q0 · (s2 − s+ 1)6,

i.e., with indices (j, 2, 0) (listed in order as in the statement of Lemma 3.14).
Then, we obtain

Pj−1PjQ2 − P2Pj−1Qj = Pj−1(PjQ2 − P2Qj)

= Pj−1 · (α2 − α+ 1)5Pj−2.
(3.25)

By using again equation (3.20), this time with indices (j − 1, 1, 0), we can also
rewrite

P2PjQj−1 − P2Pj−1PjQ1 = P2PjQj−1P1 − P2Pj−1PjQ1

= −P2Pj(Pj−1Q1 − P1Qj−1)

= −P2Pj · (α2 − α+ 1)2Pj−2.

(3.26)

Then, by equations (3.25) and (3.26), we have that equation (3.23) is equivalent
to

Pj−1 · (α2−α+1)5Pj−2−P2Pj · (α2−α+1)2Pj−2 = −(α2−α+1)2Pj−2Pj+1.

Dividing out the factor (α2 − α+ 1)2Pj−2 both in the right hand side and the
left hand side of this equality and rearranging the terms, we obtain

Pj−1 · (α2 − α+ 1)3 = P2Pj − Pj+1,

which holds by Lemma 3.14, as it is precisely identity (3.19) with indices (j, 1, 1).

In order to prove equation (3.24), we can argue in a similar way. Indeed, we
have:

PjQj−1Q2 − Pj−1P2QjQ1 = (PjQ2 − P2Qj + P2Qj)Qj−1 − Pj−1P2QjQ1

=
(
Pj−2 · (α2 − α+ 1)5 + P2Qj

)
Qj−1 − Pj−1P2QjQ1,

where the last equality follows from equation (3.20) with indices (j, 2, 0). More-
over,(

Pj−2 · (α2 − α+ 1)5 + P2Qj

)
Qj−1 − Pj−1P2QjQ1 =

= Pj−2 · (α2 − α+ 1)5Qj−1 − P2Qj (Pj−1Q1 − P1Qj−1)

= Pj−2 · (α2 − α+ 1)5Qj−1 − P2QjPj−2 · (α2 − α+ 1)2,
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where the last equality follows from equation (3.20) with indices (j − 1, 1, 0).
Finally, using again equation (3.20) with indices (2, 1, j − 1), we have

Pj−2 · (α2 − α+ 1)5Qj−1 − P2QjPj−2 · (α2 − α+ 1)2 =

= −Pj−2 · (α2 − α+ 1)2
(
P2Qj −Qj−1 · (α2 − α+ 1)3P1

)
= −Pj−2 · (α2 − α+ 1)2Qj+1,

which proves equation (3.24).

From this, equation (3.21) follows directly, while equation (3.22) follows observing
that Pi+1 = 0 by hypothesis and Qi+1 ̸= 0 by Remark 3.15. As we have already
observed that, by construction, fj ∈ L((3j + 3)D∞) for all j in 0 ≤ j ≤ i, the
proof of the theorem is then completed.

Note that the proof of Theorem 3.19 does not work if α2 − α+ 1 = 0. However,
another approach, different but very similar, can be used, as it will become clear
in the proof of the following result. Recall that, if α2 − α+ 1 = 0, then α is not
a root of any Pi, for all i ∈ Z>0.

Theorem 3.20. Suppose that P(a,b) is a place of Fq2(X3) such that α(P(a,b))
2 −

α(P(a,b)) + 1 = 0. Then, for every positive integer i such that i ≤ m− 2, there
exists a function gi ∈ L((3i+ 3)D∞) with vP(a,b)

(gi) = 3i+ 2.

Proof. As before, in this proof we write α instead of α(P(a,b)) and Pj , Qj instead
of Pj(α), Qj(α). For each i ∈ Z≥0, we claim that there exists a function
gi ∈ L((3i+ 3)D∞) such that the local power series expansion of gi at Q(A,B)

with respect to the local parameter T := (u−A)/A is:

gi = 3T 3i+2 + (α+ 1)T 3i+3 +O(T q). (3.27)

Denoting by f0 and f1, the functions constructed in the previous theorem, we
see that g0 = f0, while g1 = (2α− 1)f1/9, since

(2α− 1)3P2 ≡ 27 (mod α2 − α+ 1)

and
(2α− 1)Q2 ≡ 9α+ 9 (mod α2 − α+ 1).

For i ≥ 2, we assume now that gi−1 and gi−2 have the form claimed in equation
(3.27) and we construct inductively the remaining functions gi by taking a
suitable linear combination of

gi−1, gi−2 · g0 · xa, gi−2 · g20 and gi−1 · g0.
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The point of choosing these four functions is that their vanishing orders at
Q(A,B) are 3i− 1, 3i− 1, 3i and 3i+ 1 respectively. Therefore a suitable linear
combination of them will vanish with order at least 3i+ 2. Moreover, since the
four functions all lie in L((3i+ 3)D∞), any linear combination of them does as
well.

More in detail, if we set

gi := (6α− 3)gi−1 −
2α− 1

3
gi−2g0xa +

3α− 2

3
gi−2g

2
0 − (α− 2)gi−1g0,

then a direct computation shows that equation (3.27) is satisfied.

With Theorem 3.19 and Theorem 3.20 established, we now have all the necessary
tools for the computation of the Weierstrass semigroup at every place of Fq2(X3).
We will assume that q is at least five, so that m ≥ 2. If q = 2, the function field
Fq2(X3) is in fact elliptic, so all Weierstrass semigroups are just {0} ∪ Z≥2 in
that case. We start with the determination of the semigroup at the places in the
set O and then continue to all the other places, starting from those in R.

Remark 3.21. Note that the Fundamental Equation [46, Page xix (ii)] and [46,
Proposition 10.9] have as a direct consequence that both q and q+1 are non-gaps
at all the places in O ∪R. However, in Theorem 3.22 and in Lemma 3.24, we
prove this fact again, as we show this with some easy explicit computations.

3.3 The Weierstrass semigroup at P ∈ O

Theorem 3.22. Let P ∈ O. Then H(P ) = ⟨q − 2, q, q + 1⟩.

Proof. We will prove that

H(P(a,0)) = ⟨q − 2, q, q + 1⟩

for P(a,0) ∈ Om and hence the result will follow as, by Corollary 3.7, O is
contained in an orbit of Aut(X3) and all the places in the same orbit have the
same Weierstrass semigroup.

We start by showing that the semigroup H := ⟨q− 2, q, q+ 1⟩, that is to say, the
semigroup generated by q− 2, q and q+1, is contained in H(P(a,0)). Proposition
3.5 implies that the functions

1

x− a
,

y

x− a
, and

y3

x(x− a)
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in Fq2(X3) only have a pole at P(a,0) and of order q+1, q, and q− 2 respectively.
This shows that q − 2, q, q + 1 ∈ H(P(a,0)), proving that H ⊆ H(P(a,0)).

Hence, to conclude the proof of the theorem it is sufficient to show that the
genus of the semigroup H is equal to g(Fq2(X3)). To do so, note that semigroup
H is telescopic, since the sequence (a1, a2, a3) := (q − 2, q + 1, q) is a telescopic
sequence. Then, defining d0 = 0, d1 = q − 2, d2 = gcd(q − 2, q + 1) = 3, and
d3 = gcd(q − 2, q, q + 1) = 1, the genus of H is given by (see equation (2.6))

g(H) =
1

2

(
1 +

3∑
i=1

(
di−1

di
− 1

)
ai

)
= g(Fq2(X3)).

Remark 3.23. Using equation (2.5), we can compute the Apéry set A(H) of
the semigroup

H := ⟨q − 2, q, q + 1⟩
determined in Theorem 3.22.

Note first that the multiplicity of H is q − 2. We claim that the following set

A := {0, q, q + 1}
∪ {iq + (i− 2), iq + (i− 1), i(q + 1) | i = 2, . . . ,m− 2}
∪ {(m− 1)q + (m− 3), (m− 1)q + (m− 2)}
∪ {mq + (m− 2)}

is the Apéry set of the semigroup H. To prove this result, we first show that
A contains exactly q − 2 elements, that are representatives of pairwise distinct
congruence classes modulo q − 2, so that

∑
a∈A(H)

⌊
a

q−2

⌋
≤
∑

a∈A

⌊
a

q−2

⌋
. Then,

since by equation (2.5) we have that g(Fq2(X3)) =
∑

a∈A(H)

⌊
a

q−2

⌋
, we conclude

the proof showing that
∑

a∈A

⌊
a

q−2

⌋
= g(Fq2(X3)).

Observe that

• 0, q, q + 1 are representatives for the classes of 0, 2, 3, respectively;

• iq + (i− 1) ≡ 3i− 1 (mod q − 2), and hence the elements iq + (i− 1), for
i = 2, . . . ,m− 2, form a set of representatives for the congruence classes
of 5, 8, . . . 3m− 7;

• similarly, as i(q + 1) ≡ 3i (mod q − 2), the elements i(q + 1), for i =
2, . . . ,m − 2, are a set of representatives for the congruence classes of
4, 7, . . . 3m− 8.
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• Moreover, as iq + (i− 2) ≡ 3i− 2 (mod q − 2), the elements iq + (i− 2),
for i = 2, . . . ,m− 2, are a set of representatives for the congruence classes
of 6, 9 . . . , 3m− 6.

• Finally, (m−1)q+(m−3) ≡ 3m−5 (mod q−2) and (m−1)q+(m−2) ≡
3m− 4 (mod q − 2), while mq + (m− 2) ≡ 1 (mod q − 2).

Therefore, the set A contains exactly 3(m− 3)+6 = q− 2 distinct elements, each
of which is a representative for a congruence class modulo q − 2.

Now, note that ⌊
q

q − 2

⌋
=

⌊
q + 1

q − 2

⌋
= 1

and that, for every i = 2, . . . ,m− 2,⌊
iq + (i− 2)

q − 2

⌋
=

⌊
iq + (i− 1)

q − 2

⌋
=

⌊
i(q + 1)

q − 2

⌋
= i.

Moreover, we have⌊
(m− 1)q + (m− 3)

q − 2

⌋
=

⌊
(m− 1)q + (m− 2)

q − 2

⌋
= m− 1

and ⌊
mq + (m− 2)

q − 2

⌋
= m+ 1.

Therefore, we obtain

∑
a∈A

⌊
a

q − 2

⌋
= 2 + 3

m−2∑
i=2

i+ 2(m− 1) +m+ 1

= 3m+ 1 + 3

m−3∑
i=1

(i+ 1)

=
q2 − q + 4

6
= g(Fq2(X3)).

3.4 Weierstrass semigroups at P(a,b) ∈ R

Lemma 3.24. Let P(a,b) ∈ R. Then q + 1 and q are contained in H(P(a,b)).
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Proof. The fact that q+1 ∈ H(P(a,b)) is simply a consequence of equation (3.16).
To prove that q ∈ H(P(a,b)), let P(ā,0) ∈ Om and consider the function

f :=
(x− a)fP(ā,0),1

fP(a,b),1(x− ā)
,

where the functions fP(a,b),1 and fP(ā,0),1 are defined as in equation (3.16). Then,
from equations (3.16), (3.13), (3.14), one has

(f) = P(a,b) +
∑

ξq+1=1, ξ ̸=1

P(a,ξb) − 3

m∑
j=1

P j
∞ + (q + 1)P(ā,0) − (q + 1)P 1

∞+

− (q + 1)P(a,b) + (q + 1)P 1
∞ − (q + 1)P(ā,0) + 3

m∑
i=1

P i
∞

=− qP(a,b) +
∑

ξq+1=1, ξ ̸=1

P(a,ξb),

implying that q ∈ H(P(a,b)).

Theorem 3.25. Let P(a,b) ∈ R be a place such that α(P(a,b))
2−α(P(a,b))+1 = 0.

Then

H(P(a,b)) = ⟨q, q + 1, (q − 1) + i(q − 2) | i = 0, . . . ,m− 2⟩.

Proof. We start by showing that the semigroup H := ⟨q, q + 1, (q − 1) + i(q −
2) | i = 0, . . . ,m − 2⟩ is contained in H(P(a,b)). To this aim, we show that
q, q+1, (q− 1)+ i(q− 2), for all i = 0, . . . ,m− 2, are pole numbers of P(a,b). By
Lemma 3.24, we already know that q, q + 1 ∈ H(P(a,b)), so we are left to show
that (q− 1)+ i(q− 2) is a pole number for every i = 0, . . . ,m− 2. We prove this
considering the following family of functions. For all i such that 0 ≤ i ≤ m− 2,
let P(ā,0) ∈ Om and define the function

Gi :=
gi · f i+1

P(ā,0),1

f i+1
P(a,b),1

· (x− ā)i+1
,

where the functions gi are those constructed in Theorem 3.20. Then, using
equations (3.16), (3.13), (3.14) and Theorem 3.20, the divisor of the function Gi
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is seen to be

(Gi) = (3i+ 2)P(a,b) + Ei − (3i+ 3)

m∑
j=1

P j
∞

+ (i+ 1)(q + 1)P(ā,0) − (i+ 1)(q + 1)P 1
∞

− (i+ 1)(q + 1)P(a,b) + (i+ 1)(q + 1)P 1
∞

− (i+ 1)(q + 1)P(ā,0) + (3i+ 3)
m∑
j=1

P j
∞

= Ei − ((q − 1) + i(q − 2))P(a,b),

where Ei ∈ Div(Fq2(X3)) is an effective divisor such that P(a,b) ̸∈ supp(Ei).
Therefore, (q − 1) + i(q − 2) ∈ H(P(a,b)) for all i = 1, . . . ,m− 2.

To complete the proof, we need to show that the genus of the semigroup H is less
than or equal to g(Fq2(X3)). Indeed, the inequality g(H) ≥ g(Fq2(X3)) is already
clear, since we just showed that H ⊆ H(P(a,b)). Of course we know that 0 ∈ H,
but we claim that, for j = 1, . . . ,m−1, all integers in {j(q−2)+1, . . . , j(q+1)} are
inH as well. This is clear for j = 1, since q−1, q, q+1 ∈ H. If this is true for some
j < m−1, then adding q−1 and q+1 to all integers in {j(q−2)+1, . . . , j(q+1)}
shows that the consecutive integers in {(j + 1)(q − 2) + 2, . . . , (j + 1)(q + 1)}
are all in H. Since (j + 1)(q − 2) + 1 = (q − 1) + j(q − 2) ∈ H, we conclude
that all integers in {(j + 1)(q − 2) + 1, . . . , (j + 1)(q + 1)} are in H, which
proves the claim. Now note that {(m − 1)(q − 2) + 1, . . . , (m − 1)(q + 1)}
consists of q − 2 consecutive integers, all in H. Adding integral multiples of
q − 1 and q to this set, we obtain that all integers greater than or equal to
(m− 1)(q − 2) + 1 + q − 1 = (m− 1)(q + 1) + 2 are in H. This means that the
following inequality holds for the genus of H:

g(H) ≤ (q − 2) + (q − 5) + · · ·+ 3 + 1,

where the final +1 counts the potential gap (m− 1)(q + 1) + 1. Hence

g(H) ≤ 1 + 3

m−1∑
k=1

k = 1 + 3m(m− 1)/2 = g(Fq2(X3)),

which is what we needed to show.

Remark 3.26. As in Remark 3.23, we compute the Apéry set A(H) of the
semigroup

H := ⟨q, q + 1, (q − 1) + i(q − 2) | i = 0, . . . ,m− 2⟩

determined in Theorem 3.25.
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We first note that the multiplicity of H is q − 1 and we claim that the following
set

A := {0, q, q + 1}
∪ {(q − 1) + (i− 1)(q − 2), iq + (i− 1), i(q + 1) | i = 2, . . . ,m− 1}
∪ {m(q − 1) + 2m− 1}

is the Apéry set of H. Similarly to the discussion in Remark 3.23, we first show
that A contains precisely q − 1 elements, that are representatives of pairwise
distinct congruence classes modulo q−1, so that

∑
a∈A(H)

⌊
a

q−1

⌋
≤
∑

a∈A

⌊
a

q−1

⌋
.

Then, since g(Fq2(X3)) =
∑

a∈A(H)

⌊
a

q−1

⌋
, we conclude the proof showing that∑

a∈A

⌊
a

q−1

⌋
= g(Fq2(X3)).

Observe that

• 0, q, q + 1 are representatives for the classes of 0, 1, 2, respectively;

• iq + (i− 1) ≡ 2i− 1 (mod q − 1), and hence the elements iq + (i− 1), for
i = 2, . . . ,m− 1, form a set of representatives for the congruence classes
of 3, 5, . . . 2m− 3;

• similarly, as i(q + 1) ≡ 2i (mod q − 1), the elements i(q + 1), for i =
2, . . . ,m − 1, are a set of representatives for the congruence classes of
4, 6, . . . 2m− 2.

• Moreover, as (q−1)+(i−1)(q−2) ≡ q−1−(i−1) (mod q−1), the elements
(q− 1)+ (i− 1)(q− 2), for i = 2, . . . ,m− 1, are a set of representatives for
the congruence classes of 2m, . . . , q − 3, q − 2. Finally, m(q − 1) + 2m− 1
is a representative for the class of 2m− 1.

Therefore, the set A contains exactly 3(m− 2)+4 = q− 1 distinct elements, each
of which is a representative for a congruence class modulo q − 1.

Finally, note that⌊
(q − 1) + (q − 2)

q − 1

⌋
=

⌊
q

q − 1

⌋
=

⌊
q + 1

q − 1

⌋
= 1

and that, for every i = 2, . . . ,m− 2⌊
(q − 1) + i(q − 2)

q − 1

⌋
=

⌊
iq + (i− 1)

q − 1

⌋
=

⌊
i(q + 1)

q − 1

⌋
= i.
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Moreover, we have⌊
(m− 1)q + (m− 2)

q − 1

⌋
=

⌊
(m− 1)(q + 1)

q − 1

⌋
= m− 1

and ⌊
m(q − 1) + 2m− 1

q − 1

⌋
= m.

Therefore, we obtain

∑
a∈A

⌊
a

q − 1

⌋
= 3 + 3

m−2∑
i=2

i+ 2(m− 1) +m

= 3

m−1∑
i=1

i+ 1

=
q2 − q + 4

6
= g(Fq2(X3)).

Theorem 3.27. Let P(a,b) ∈ R be a place such that α(P(a,b))
2−α(P(a,b))+1 ̸= 0.

Furthermore, let i be the P-order of α(P(a,b)). If i ≤ m− 2, then

H(P(a,b)) = ⟨q, q + 1, (q − 1) + j(q − 2), (q − 1) + i(q − 2)− 1 | j = 0, . . . , i− 1⟩.

If i = m− 1, then

H(P(a,b)) = ⟨q, q + 1, (q − 1) + j(q − 2) | j = 0, . . . ,m− 2⟩.

Proof. We first assume that i ≤ m− 2.We proceed similarly as in the proof of
Theorem 3.25, showing that the semigroup H := ⟨q − 1, q, q + 1, (q − 1) + j(q −
2), (q − 1) + i(q − 2)− 1 | j = 1, . . . , i− 1⟩ is contained in H(P(a,b)) and has at
most g(Fq2(X3)) gaps. For all j such that j = 1, . . . , i− 1, let P(ā,0) ∈ Om and
define the function

Fj :=
fj · f j+1

P(ā,0),1

f j+1
P(a,b),1

· (x− ā)j+1
,

where the fj are the functions constructed in Theorem 3.19. Using equations
(3.16), (3.13), (3.14) and Theorem 3.20, the divisor of the function Fj can be
seen to be

(Fj) = (3j + 2)P(a,b) + Ej − (3j + 3)D∞

+ (j + 1)(q + 1)P(ā,0) − (j + 1)(q + 1)P 1
∞

− (j + 1)(q + 1)P(a,b) + (j + 1)(q + 1)P 1
∞

− (j + 1)(q + 1)P(ā,0) + (3j + 3)D∞

= Ej − ((q − 1) + j(q − 2))P(a,b),
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where Ej ∈ Div(Fq2(X3)) is an effective divisor such that P(a,b) ̸∈ supp(Ej).
Therefore, (q − 1) + j(q − 2) ∈ H(P ) for all j = 1, . . . , i− 1. Similarly,

(Fi) = (3i+ 3)P(a,b) + Ei − (3i+ 3)D∞

+ (i+ 1)(q + 1)P(ā,0) − (i+ 1)(q + 1)P 1
∞

− (i+ 1)(q + 1)P(a,b) + (i+ 1)(q + 1)P 1
∞

− (i+ 1)(q + 1)P(ā,0) + (3i+ 3)D∞

= Ei − ((q − 1) + i(q − 2)− 1)P(a,b),

where Ei ∈ Div(Fq2(X3)) is an effective divisor such that P(a,b) ̸∈ supp(Ei). We
have hence shown that H ⊆ H(P(a,b)).

What remains to be shown is that the genus of the semigroup H does not exceed
g(Fq2(X3)). We know that 0 ∈ H and, just as in the proof of Theorem 3.25, we
conclude that all integers in the set {j(q− 2) + 1, . . . , j(q+ 1)} are in H, for any
j = 1, . . . , i. Furthermore, we have already shown that (i+ 1)(q − 2) ∈ H and
adding q − 1, q, and q + 1 to the integers in {i(q − 2) + 1, . . . , i(q + 1)} yields
that {(i+ 1)(q − 2) + 2, . . . , (i+ 1)(q + 1)} ⊆ H.

Since P(a,b) ∈ R, Lemma 3.18 implies that i + 1 divides m. We claim that,
for k = 0, . . . ,m/(i + 1) − 1 and all j = 1, . . . , i, the sets {(k(i + 1) + j)(q −
2) + 1, . . . , (k(i + 1) + j)(q + 1)} are contained in H as well as the integer
((k+1)(i+1))(q−2) and the set {(k+1)(i+1)(q−2)+2, . . . , (k+1)(i+1)(q+1)}. We
have so far shown this for k = 0. If the claim is true for some k−1 < m/(i+1)−1,
adding (i+ 1)(q − 2) and the integers in {(i+ 1)(q − 2) + 2, . . . , (i+ 1)(q + 1)}
immediately shows that the claim is true for k as well, proving the initial claim.
For k = m/(i+1)−1, we obtain that {m(q−2)+2, . . . ,m(q+1)}, which contains
q consecutive integers, is a subset of H. This shows that all integers greater than
or equal to m(q−2)+2 = (m−1)(q+1)+2 are in H. Estimating the number of
gaps is now done very similarly as in the proof of Theorem 3.25. The number of
gaps of the semigroup there is in fact exactly the same as those of the semigroup
H constructed here: in the proof of Theorem 3.25, for all k = 1, . . . ,m/(i+1)−1,
the integer k(i+ 1)(q − 2) was a gap, while k(i+ 1)(q − 2) + 1 was not. Now we
have instead that k(i+ 1)(q − 2) is in H and k(i+ 1)(q − 2) + 1 is not, hence
g(H) ≤ g(Fq2(X3)) holds again.

We are left to prove the theorem if i = m−1. Using exactly the same approach as
above, we can show that H := ⟨q−1, q, q+1, (q−1)+ j(q−2) | j = 1, . . . ,m−2⟩
is contained in H(P(a,b)). Now note that H is exactly the same semigroup as
the one occurring in Theorem 3.25, hence g(H) ≤ g(Fq2(X3)) holds in this case
as well.

Remark 3.28. Similarly to what done in Remark 3.23 and Remark 3.26, we
here compute the Apéry set of the semigroup H determined in Theorem 3.27 for
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the cases i ≤ m − 2. The case i = m − 1 is indeed the same as the semigroup
determined in Theorem 3.25.

As in Remark 3.26, note firstly that the multiplicity of H is q− 1. We define the
following sets:

A1 : = {0, q, q + 1,m(q − 1) + 2m− 1},
A2 : = {jq + (j − 1), j(q + 1) | j = 2, . . . ,m− 1},
A3 : = {(q − 1) + j(q − 2) | 1 ≤ j ≤ m− 2 ∧ j + 1 ̸≡ 0, 1 (mod i+ 1)},

A4 : =

{
(q − 1) + j(q − 2)− 1 | j = ki+ (k − 1) ∧ k = 1, . . . ,

⌊
m− 2

i+ 1

⌋}
∪
{
(q − 1) + j(q − 2)− 1 + q | j = ki+ (k − 1) ∧ k = 1, . . . ,

⌊
m− 2

i+ 1

⌋}
.

Note that the set A4 can also be rewritten as

A4 =

{
k(i+ 1)(q − 2), k(i+ 1)(q − 2) + q | k = 1, . . . ,

⌊
m− 2

i+ 1

⌋}
;

furthermore, if i = 1, the set A3 is empty.

We claim that the set
Ã := A1 ∪A2 ∪A3 ∪A4

is the Apéry set A(H) of the semigroup H. We start by showing that the
elements of Ã are all distinct and constitute a complete set of representatives
for the congruence classes modulo q − 1. Similarly to what done in the proof of
Remark 3.26, we observe that

• 0, q, q + 1 are representatives for the classes of 0, 1, 2, respectively;

• jq+ (j − 1) ≡ 2j − 1 (mod q− 1), and hence the elements jq+ (j − 1), for
j = 2, . . . ,m− 1, form a set of representatives for the congruence classes
of 3, 5, . . . 2m− 3;

• similarly, as j(q + 1) ≡ 2j (mod q − 1), the elements j(q + 1), for j =
2, . . . ,m − 1, are a set of representatives for the congruence classes of
4, 6, . . . 2m− 2;

• m(q − 1) + 2m− 1 is a representative for the class of 2m− 1.

• Finally, the elements of A3 ∪A4 are a set of representatives for the con-
gruence classes of 2m, . . . , q − 3, q − 2. Indeed, if (q − 1) + j(q − 2) ∈ A3,
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then (q− 1)+ j(q− 2) ≡ q− 1− j (mod q− 1). On the other hand, for the
elements of A4 we have that, for all j = ki+(k−1), with k = 1, . . . ,

⌊
m−2
i+1

⌋
,

(q − 1) + j(q − 2)− 1 ≡ q − 1− (j + 1) (mod q − 1)

and
(q − 1) + j(q − 2)− 1 + q ≡ q − 1− j (mod q − 1).

This shows that, for each j = 1, . . . ,m− 2, there is exactly one element of
Ã that is congruent to q − 1− j modulo q − 1.

Therfore, we conclude that Ã contains a representative for each congruence class
modulo q − 1 and |Ã| = 4 + 2(m− 2) + (m− 2) = q − 1.

Finally, we observe that ⌊
q

q − 1

⌋
=

⌊
q + 1

q − 1

⌋
= 1,

⌊
m(q − 1) + 2m− 1

q − 1

⌋
= m,

and, for every j = 2, . . . ,m− 1,⌊
jq + (j − 1)

q − 1

⌋
=

⌊
j(q + 1)

q − 1

⌋
= j.

Moreover, for the elements of A3, we have that⌊
(q − 1) + j(q − 2)

q − 1

⌋
= j,

while, for the elements of A4, we have⌊
(q − 1) + j(q − 2)− 1

q − 1

⌋
= j

and ⌊
(q − 1) + j(q − 2)− 1 + q

q − 1

⌋
= j + 1.

Therefore, we obtain∑
a∈A

⌊
a

q − 1

⌋
= 2 +m+ 2

m−1∑
j=2

j +

m−2∑
j=1

j

= 2

m−1∑
j=1

j +

m−2∑
j=1

j +m

=
q2 − q + 4

6
= g(Fq2(X3)),
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which concludes the proof.

In the following two sections, we compute the Weierstrass semigroups at all the
remaining places of Fq2(X3), namely at all the places P(a,b) ∈ PFq2 (X3)

\ (O ∪R).
We start by computing the semigroup for the generic case, i.e., for the non-
Weierstrass places of the curve and, lastly, we determine the semigroups for the
remaining Weierstrass places.

3.5 The generic case

Theorem 3.29. Let P(a,b) ∈ PFq2 (X3)
\ (O ∪R) be such that Pj(α(P(a,b))) ̸= 0

for all j = 2, . . . ,m− 1. Then

G(P(a,b)) = {jq + k | j = 0, . . . ,m− 2, k = 1, . . . , q − 3j − 2} ∪ {(m− 1)q + 1},

that is,

H(P(a,b)) = {0, (j+1)(q−3)+2+k, (m−1)q+2, . . . | j = 0, . . . ,m−2, k = 0, . . . , 3j+1}.

Proof. Let G := {jq+k | j = 0, . . . ,m−2, k = 1, . . . , q−3j−2}∪{(m−1)q+1}
be the putative set of gaps. Direct computations show that

|G| = 1 +

m−2∑
j=0

(q − (3j + 2)) = g(Fq2(X3)).

We need to prove that, for every g ∈ G, there exists a function hg ∈ L((q−2)D∞)
such that vP(a,b)

(hg) = g − 1, see Proposition 2.18.

Let g = jq + k ∈ G. We distinguish the following cases.

1. If
⌊
k
3

⌋
̸= 0, then we define:

hg :=



F j
P(a,b)

· f⌊ k
3 ⌋−1 if k ≡ 0 (mod 3),

F j
P(a,b)

· (y − b) · f⌊ k
3 ⌋−1 if k ≡ 1 (mod 3),

F j
P(a,b)

· tP(a,b)
· f⌊ k

3 ⌋−1 if k ≡ 2 (mod 3).
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2. If
⌊
k
3

⌋
= 0, we define instead:

hg :=


F j
P(a,b)

if k = 1,

F j
P(a,b)

· (y − b) if k = 2.

Here, the function f⌊ k
3 ⌋−1 is one of the functions fi constructed in Theorem 3.19

and the function FP(a,b)
is as defined in equation (3.17).

Note that, as j = 0, . . . ,m− 2, for k = 3, . . . , q − 3j − 2 it holds that

0 ≤
⌊
k

3

⌋
− 1 ≤

⌊
q − 3j − 2

3

⌋
− 1 =

q − 2

3
− j − 1 = m− 2− j ≤ m− 2,

hence the function hg is well defined, for any i = 0, . . . ,m− 2 and k = 1, . . . , q−
3j − 2. Indeed, defining the function hg in this way, for any g = jq + k ∈ G, we
have what follows.

Case 1:
⌊
k
3

⌋
̸= 0.

If k ≡ 0 (mod 3), then

vP(a,b)
(hg) = jq + 3

(⌊
k

3

⌋
− 1

)
+ 2 = jq + k − 1

and

(hg)∞ ≤
(
3j + 3

(⌊
k

3

⌋
− 1 + 1

))
D∞ = (3j + k)D∞

≤ (3j + q − 3j − 2)D∞ = (q − 2)D∞.

If k ≡ 1 (mod 3), then

vP(a,b)
(hg) = jq + 3

(⌊
k

3

⌋
− 1

)
+ 2 + 1 = jq + (k − 1)− 3 + 3 = jq + k − 1

and

(hg)∞ ≤
(
3j + 3

(⌊
k

3

⌋
− 1 + 1

)
+ 2

)
D∞ = (3j + k + 1)D∞

≤ (3j + q − 3j − 4 + 1)D∞ = (q − 3)D∞,

where the last inequality follows from the fact that q−3j−2 ≡ 0 (mod 3), hence
if k ≡ 1 (mod 3), then k ≤ (q − 3j − 2)− 2 = q − 3j − 4.
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If k ≡ 2 (mod 3), then

vP(a,b)
(hg) = jq + 3

(⌊
k

3

⌋
− 1

)
+ 2 + 2 = jq + (k − 2)− 3 + 4 = jq + k − 1

and

(hg)∞ ≤
(
3j + 3

(⌊
k

3

⌋
− 1 + 1

)
+ 3

)
D∞ = (3j + k + 1)D∞

≤ (3j + q − 3j − 3 + 1)D∞ = (q − 2)D∞,

where the last inequality follows from the fact that q−3j−2 ≡ 0 (mod 3), hence
if k ≡ 2 (mod 3), then k ≤ (q − 3j − 2)− 1 = q − 3j − 3.

Case 2:
⌊
k
3

⌋
= 0.

If k = 1, then
vP(a,b)

(hg) = jq

and
(hg)∞ ≤ (3j)D∞ ≤ ((q + 1)− 6)D∞ = (q − 5)D∞.

If k = 2, then
vP(a,b)

(hg) = jq + 1

and
(hg)∞ ≤ (3j + 2)D∞ ≤ ((q + 1)− 6 + 2)D∞ = (q − 3)D∞.

Since the Weierstrass semigroup at all but a finite number of places of Fq2(X3)
is as described in Theorem 3.29 (see Remark 2.17), we call

Hgen := {0, (j+1)(q−3)+2+k, (m−1)q+2, . . . | j = 0, . . . ,m−2, k = 0, . . . , 3j+1}

the generic Weierstrass semigroup of Fq2(X3) and

Ggen := {jq + k | j = 0, . . . ,m− 2, k = 1, . . . , q − 3j − 2} ∪ {(m− 1)q + 1}

the generic set of gaps of Fq2(X3).
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3.6 Weierstrass semigroups at the remaining Weier-
strass places

Theorem 3.30. Let P(a,b) ∈ PFq2 (X3)
\ (O ∪ R) and let i be the P-order of

α(P(a,b)). Suppose that i ≤ m− 2. Then

G(P(a,b)) =

(
Ggen \

{
(m − 2 − i − ℓ(i + 1))q + (ℓ + 1)(3i + 3) | ℓ = 0, . . . ,

⌊
m − 2 − i

i + 1

⌋})
∪
{
(m − 2 − i − ℓ(i + 1))q + (ℓ + 1)(3i + 3) + 1 | ℓ = 0, . . . ,

⌊
m − 2 − i

i + 1

⌋}
,

(3.28)

that is,

H(P(a,b)) =

(
Hgen \

{
(m − 2 − i − ℓ(i + 1))q + (ℓ + 1)(3i + 3) + 1 | ℓ = 0, . . . ,

⌊
m − 2 − i

i + 1

⌋})
∪
{
(m − 2 − i − ℓ(i + 1))q + (ℓ + 1)(3i + 3) | ℓ = 0, . . . ,

⌊
m − 2 − i

i + 1

⌋}
.

Proof. Let G as in equation (3.28) be the putative set of gaps. Since the
cardinality of the set{

(m− 2− i− ℓ(i+ 1))q + (ℓ+ 1)(3i+ 3) | ℓ = 0, . . . ,

⌊
m− 2− i

i+ 1

⌋}
is the same as the cardinality of the set{

(m− 2− i− ℓ(i+ 1))q + (ℓ+ 1)(3i+ 3) + 1 | ℓ = 0, . . . ,

⌊
m− 2− i

i+ 1

⌋}
,

it follows immediately that |G(P(a,b))| = |Ggen| = g(Fq2(X3)). Hence, as in the
proof of Theorem 3.29, we are now left to show that, for each g ∈ G, there exists
a function hg such that hg ∈ L((q − 2)D∞) and vP(a,b)

(hg) = g − 1.

For any g = jq + k, let c :=
⌊

k
3(i+1)

⌋
. We can then write⌊

k

3

⌋
= c(i+ 1) + h,

where h is an integer such that 0 ≤ h ≤ i, and

k =

⌊
k

3

⌋
· 3 + r = 3c(i+ 1) + 3h+ r,

where r is an integer such that 0 ≤ r ≤ 2. First note that, with this choice of c,
0 ≤

⌊
k
3

⌋
− (c(i+ 1) + 1) ≤ i− 1 for all k such that

⌊
k
3

⌋
̸= c(i+ 1). Indeed,⌊

k

3

⌋
− (c(i+ 1) + 1) ≤ i− 1 ⇐⇒

⌊
k

3

⌋
− c ≤ i+ ci,
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hence, as
⌊
k
3

⌋
= c(i+ 1) + h, with h an integer such that 0 ≤ h ≤ i, we obtain⌊

k

3

⌋
− c ≤ i+ ci ⇐⇒ c(i+ 1) + h− c ≤ i+ ci ⇐⇒ h ≤ i,

which is satisfied.

We now distinguish the following cases.

1. If
⌊
k
3

⌋
̸= c(i+ 1), then we define:

hg :=



F j
P(a,b)

· f⌊ k
3 ⌋−(c(i+1)+1) · f

c
i if k ≡ 0 (mod 3),

F j
P(a,b)

· (y − b) · f⌊ k
3 ⌋−(c(i+1)+1) · f

c
i if k ≡ 1 (mod 3),

F j
P(a,b)

· tP(a,b)
· f⌊ k

3 ⌋−(c(i+1)+1) · f
c
i if k ≡ 2 (mod 3).

2. If
⌊
k
3

⌋
= c(i+ 1), we define instead:

hg :=



F j
P(a,b)

· (y − b) · tP(a,b)
· fi−1 · f c−1

i if k ≡ 0 (mod 3) and j ≤ m− 2− i,

F j
P(a,b)

· f k
3−1 if k ≡ 0 (mod 3) and j ≥ m− 1− i,

F j
P(a,b)

· f ci if k ≡ 1 (mod 3),

F j
P(a,b)

· (y − b) · f ci if k ≡ 2 (mod 3).

Indeed, for g = jq + k ∈ G, we have the following situation.

Case 1:
⌊
k
3

⌋
̸= c(i+ 1).

If k ≡ 0 (mod 3), then

vP(a,b)
(hg) = jq + 3

(⌊
k

3

⌋
− (c(i+ 1) + 1)

)
+ 2 + 3c(i+ 1)

= jq + k − 3 + 2 = jq + k − 1

and

(hg)∞ ≤ (3j + 3

(⌊
k

3

⌋
− (c(i+ 1) + 1) + 1

)
+ 3c(i+ 1))D∞

= (3j + k)D∞

≤ (3j + q − 3j − 2)D∞ = (q − 2)D∞,
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where the last inequality above follows from the fact that k ≤ q − 3j − 2.

If k ≡ 1 (mod 3), then

vP(a,b)
(hg) = jq + 1 + 3

(⌊
k

3

⌋
− (c(i+ 1) + 1)

)
+ 2 + 3c(i+ 1)

= jq + (k − 1)− 3 + 3 = jq + k − 1

and

(hg)∞ ≤ (3j + 2 + 3

(⌊
k

3

⌋
− (c(i+ 1) + 1) + 1

)
+ 3c(i+ 1))D∞

= (3j + k + 1)D∞

≤ (3j + q − 3j − 3)D∞ = (q − 3)D∞,

where the last inequality follows from the fact that q−3j−2 ≡ 0 (mod 3), hence
if k ≡ 1 (mod 3), then k ≤ (q − 3j − 2)− 2 = q − 3j − 4.

If k ≡ 2 (mod 3), then

vP(a,b)
(hg) = jq + 2 + 3

(⌊
k

3

⌋
− (c(i+ 1) + 1)

)
+ 2 + 3c(i+ 1)

= jq + (k − 2)− 3 + 4 = jq + k − 1

and

(hg)∞ ≤ (3j + 3 + 3

(⌊
k

3

⌋
− (c(i+ 1) + 1) + 1

)
+ 3c(i+ 1))D∞

= (3j + k + 1)D∞

≤ (3j + q − 3j − 2)D∞ = (q − 2)D∞,

where the last inequality follows from the fact that q−3j−2 ≡ 0 (mod 3), hence
if k ≡ 2 (mod 3), then k ≤ (q − 3j − 2)− 1 = q − 3j − 3.

Case 2:
⌊
k
3

⌋
= c(i+ 1).

If k ≡ 0 (mod 3) and j ≤ m− 2− i, then

vP(a,b)
(hg) = jq+1+2+3(i−1)+2+3(c−1)(i+1) = jq+3c(i+1)−1 = jq+k−1

and

(hg)∞ ≤ (3j + 2 + 3 + 3i+ 3(c− 1)(i+ 1))D∞

= (3j + k + 2)D∞

≤ (3j + q − 3j − 5 + 2)D∞ = (q − 3)D∞,
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since in this case k ≤ q− 3j − 3 ≡ 2 (mod 3) and hence, as k ≡ 0 (mod 3), then
k ≤ (q − 3j − 3)− 2 = q − 3j − 5.

If k ≡ 0 (mod 3) and j ≥ m − 1 − i, note that, as 3j ≥ q − 3i − 2, then
k ≤ q− 3j− 2 ≤ q− (q− 3i− 2)− 2 = 3i and k

3 − 1 ≤ i− 1. Hence, we have that

vP(a,b)
(hg) = jq + 3

(
k

3
− 1

)
+ 2 = jq + k − 1

and

(hg)∞ ≤
(
3j + 3

(
k

3

))
D∞

= (3j + k)D∞

≤ (3j + q − 3j − 2)D∞ = (q − 2)D∞,

since k ≤ q − 3j − 2 in this case.

If k ≡ 1 (mod 3), then

vP(a,b)
(hg) = jq + 3c(i+ 1) = jq + k − 1,

as 3
⌊
k
3

⌋
= 3c(i+ 1) = k − 1. Moreover,

(hg)∞ ≤ (3j + 3c(i+ 1))D∞

= (3j + k − 1)D∞

≤ (3j + q − 3j − 2− 1)D∞ = (q − 3)D∞,

since k ≤ q − 3j − 2.

If k ≡ 2 (mod 3), then

vP(a,b)
(hg) = jq + 1 + 3c(i+ 1) = jq + (k − 2) + 1 = jq + k − 1,

as 3
⌊
k
3

⌋
= 3c(i+ 1) = k − 2. Moreover,

(hg)∞ ≤ (3j + 2 + 3c(i+ 1))D∞

= (3j + k)D∞

≤ (3j + q − 3j − 2)D∞ = (q − 2)D∞,

since k ≤ q − 3j − 2.
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3.7 Final remarks on the Weierstrass places

In this section, we collect a few further facts on the Weierstrass places of Fq2(X3).

From the previous discussion, we have a complete determination of all types of
Weierstrass semigroups that occur at the different places of Fq2(X3). Here, we
start by computing, for places P ∈ O or P(a,b) ∈ R, how many of them attain a
given type of semigroup. To avoid trivial cases, we assume q ≥ 5.

Remark 3.31. Henceforth, for simplicity, given a place P(a,b) we will often,
with slight abuse of notation, refer to the P-order of α(P(a,b)) just as the P-order
of P(a,b).

Theorem 3.32. The number of distinct Weierstrass semigroups among the places
in O ∪R is exactly the same as the number of divisors of m. The semigroups
that occur and the places for which they occur are:

• H(P ) = ⟨q − 2, q, q + 1⟩ for q + 1 many P ∈ O.

• H(P(a,b)) = ⟨q, q+1, (q−1)+j(q−2), (q−1)+i(q−2)−1 | j = 0, . . . , i−1⟩,
where 1 ≤ i ≤ m− 2 and i+ 1 divides m, for the (q + 1)2φ(i+ 1) many
P(a,b) ∈ R for which α(P(a,b)) has P-order i.

• H(P(a,b)) = ⟨q, q+1, (q−1)+j(q−2) | j = 0, . . . ,m−2⟩ for the (q+1)2φ(m)
many P(a,b) ∈ R for which α(P(a,b)) has P-order m− 1 as well as for the
2m(q + 1) many P(a,b) ∈ R for which α(P(a,b))

2 − α(P(a,b)) + 1 = 0.

Proof. First of all, Theorems 3.22, 3.25 and 3.27 combined describe all possible
Weierstrass semigroups that occur among the places in O ∪ R. Moreover,
Lemma 3.18 implies that the only possible P-orders i for such places correspond
to divisors i+ 1 ≥ 2 of m. Therefore, the total number of possible Weierstrass
semigroups is exactly the number of divisors of m, where the divisor 1 counts
the semigroup ⟨q − 2, q, q + 1⟩.

As for the number of places in O ∪R attaining a particular type of semigroup:
we know that |O| = q+1, while Lemma 3.18 implies how many places P(a,b) ∈ R
have P-order equal to a given i. The only number of places left to determine is
those P(a,b) ∈ R such that α(P(a,b))

2 − α(P(a,b)) + 1 = 0. Using that α(P(a,b)) =
am/(1+am), we see that α(P(a,b))

2−α(P(a,b))+1 = 0 if and only if a2m+am+1 =
0 and bq+1 = −1. Hence, for exactly 2m(q + 1) many P(a,b) ∈ R one has
α(P(a,b))

2 − α(P(a,b)) + 1 = 0.

Remark 3.33. It can also be observed that the indicated generators in Theorem
3.32 are in all cases a minimal set of generators. Moreover, by Remark 3.3,
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the cardinality of the set O ∪ R is equal to the number of Fq2-rational places
of the function field Fq2(X3), that is q2 + 1 + 2qg(Fq2(X3)) =

(q+1)(q2+q+3)
3 , by

Theorem 2.10. Then, as a sanity check, note that indeed,

q + 1 +

m−1∑
i=1;i+1|m

(q + 1)2φ(i+ 1) + 2m(q + 1) = q2 + 1 + 2qg(Fq2(X3)),

using the equation
∑

d|m φ(d) = m where the sum is over all divisors of m.

Furthermore, the multiplicity and the conductor of the semigroups are easy to
determine, since they can be directly deduced from the knowledge of the Apéry sets,
which we have already computed in Remark 3.23, Remark 3.26 and Remark 3.28.
In particular, we have already shown that the multiplicity of the semigroups is
q − 1, unless P ∈ O, in which case it is q − 2. Moreover, from the definition of
Apéry set A(S) (see equation (2.4)) of a semigroup S, it is also immediate to
realize that the conductor c of S is simply c = 1+max A(S)−mS, where mS is
the multiplicity of S. Therefore, by Remark 3.23, Remark 3.26 and Remark 3.28,
we obtain that, for all P ∈ O ∪R, the conductor of H(P ) is 2g(Fq2(X3)).

However, note that, in our case, we could have also computed the conductor
directly, without knowing the Apéry set, in the following way. Recall that (q −
2)D∞ is a canonical divisor by Lemma 3.9, hence 3D∞ ∼ (q + 1)P(a,0) by
equation (3.13). Moreover, for any P ∈ O ∪R, by the Fundamental Equation
we have that (q + 1)P ∼ (q + 1)P(a,0) and hence that (q − 2)mP is a canonical
divisor. As a consequence, (q − 2)m+ 1 = 2g(Fq2(X3))− 1 is a gap and hence
H(P ) is symmetric. This implies exactly that, for all P ∈ O ∪R, the conductor
of H(P ) is 2g(Fq2(X3)).

Proposition 3.34. Only for q ∈ {2, 5, 8} all the Weierstrass places of Fq2(X3)
are precisely those in O ∪R.

Proof. Lemma 3.18 and Theorem 3.30 imply that a Weierstrass place in PFq2 (X3)
\

(O∪R) exists precisely if there exists i such that 1 ≤ i ≤ m− 2, gcd(i+1, p) = 1
and i+1 does not divide m. Since m has at most m/3+1 divisors (not counting
m itself) and there are at most ⌊m/p⌋ multiples of p between 1 and m, we
see that, if m − 2 > 1 +m/3 +m/p, then there exists a Weierstrass place in
PFq2 (X3)

\ (O ∪ R). Since p ≥ 2, and m − 2 > 1 + m/3 + m/2 if and only if
q > 53, this already shows that there exists a Weierstrass place not in O ∪R
for all q > 53. On the other hand, it is immediate to check that at least one
i satisfying the conditions exists for q ∈ {11, 17, 23, 29, 32, 41, 47, 53}, while no
such i exists for i ∈ {2, 5, 8}.
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Remark 3.35. At this point, we are able to determine the number of distinct
possible Weierstrass semigroups H(P ) as P varies. Indeed, the possible P-orders
less than or equal to m − 1 are simply the number of i between 1 and m − 1,
such that gcd(p, i + 1) = 1. Counting the semigroup for P ∈ O as well, this
gives m−⌊m/p⌋ possible semigroups different from the generic one. The generic
semigroup corresponds to those places P of Fq2(X3) whose P-order is at least m.
Hence, there are precisely m− ⌊m/p⌋+ 1 possible semigroups.

Remark 3.36. For the places in O ∪ R, we determined the multiplicity and
conductor of the corresponding Weierstrass semigroup. Using Theorem 3.29, we
see that, in the generic case, the smallest positive non-gap in H(P ) is q − 1,
while the largest gap is (m− 1)q + 1. Hence, in the generic case, the multiplicity
is q − 1 and the conductor (m − 1)q + 2. On the other hand, in the case that
P(a,b) ∈ PFq2 (X3)

\ (O∪R) has P-order i ≤ m− 2, Theorem 3.30 implies that the
largest gap is still (m− 1)q + 1 and therefore that the conductor is (m− 1)q + 2.

Concerning the places P(a,b) ∈ PFq2 (X3)
\ (O ∪R) with P-order i ≤ m− 2, the

situation for the multiplicity is instead more complicated and we discuss it in
the following theorem.

Theorem 3.37. Let P(a,b) ∈ PFq2 (X3)
\ (O ∪R). Then the multiplicity of the

semigroup H(P(a,b)) is q − 2 or q − 1. Moreover, the following are equivalent:

1. The multiplicity of H(P(a,b)) is q − 2.

2. The P-order i of α(P(a,b)) is such that i+ 1 divides m− 1.

3. Pm−1(α(P(a,b))) = 0.

4. The Fq2-Frobenius of the affine point (a, b), that is Φ(a, b) := (aq
2

, bq
2

),
lies on the tangent line at (a, b) of the plane curve defined by the equation
yq+1 + x2m + xm = 0.

Proof. Comparing the gap set in the generic case and the case described in
Theorem 3.30, we see that the only difference is that the value of certain gaps is
increased by one. Since, in the generic case, 1, . . . , q−2 are gaps and q−1 is not a
gap, this means that the multiplicity ofH(P(a,b)) for any P(a,b) ∈ PFq2 (X3)

\(O∪R)

can be either q − 2 or q − 1, which proves the first part of the theorem. We now
proceed to show the equivalence of the four listed items. For convenience, we
write P = P(a,b) and α = α(P(a,b)).

(1) ⇒ (2) : Assume that q − 2 ∈ H(P ) and let i be the P-order of α. Then,
according to Theorem 3.30, q − 2 can be written in the form (m− 2− i− ℓ(i+
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1))q + (ℓ + 1)(3i + 3) for some ℓ between 0 and ⌊(m − 2 − i)/(i + 1)⌋. Then
necessarily m−2− i−ℓ(i+1) = 0, which is only possible if ℓ = (m−2− i)/(i+1)
is an integer. Hence i+ 1 divides m− 1.

(2) ⇒ (3) : From the definition of the polynomial Pi+1(s), we see that ((α +
ζ3)/(α + ζ23 ))

i+1 = 1. If i + 1 divides m − 1, this implies that ((α + ζ3)/(α +
ζ23 ))

m−1 = 1, which in turn implies that Pm−1(α) = 0.

(3) ⇒ (4) : The tangent line ℓP of the plane curve yq+1+x2m+xm = 0 at (a, b) is
given by the equation am−1(2am+1)(x−a)+3bq(y−b) = 0. Hence Φ(a, b) lies on
ℓP if and only if am(2am+1)(aq

2−1−1)+3bq+1(bq
2−1−1) = 0. Using that bq+1 =

−a2m − am, we can express all quantities in this equation in terms of am and
obtain the equivalent equation am((am)q−1−1)2(2(am)q+(am)q−1+am+2) = 0.
Since P ̸∈ (O ∪R), we know in particular that am ̸∈ Fq and hence we conclude
that

(aq
2

, bq
2

) ∈ ℓP ⇐⇒ 2(am)q + (am)q−1 + am + 2 = 0.

Using that am = α/(1− α), we conclude that

(aq
2

, bq
2

) ∈ ℓP ⇐⇒ αq−1 + (α− 1)q−1 + 1 = 0. (3.29)

Now let us investigate our assumption: Pm−1(α) = 0. This implies(
α+ ζ3
α+ ζ23

)q−2

= 1 and hence
(
α+ ζ3
α+ ζ23

)q

=

(
α+ ζ3
α+ ζ23

)2

,

which in turn gives

0 = (α+ζ3)
q(α+ζ23 )

2−(α+ζ23 )
q(α+ζ3)

2 = (αq+ζ23 )(α+ζ
2
3 )

2−(αq+ζ3)(α+ζ3)
2.

Multiplying everything out and dividing by ζ23 − ζ3, we find that

0 = 2αq+1 − αq + α2 − 2α = α(α− 1)(αq−1 + (α− 1)q−1 + 1).

In light of equation (3.29), we hence obtain that Φ(a, b) ∈ ℓP .

(4) ⇒ (1) : If Φ(a, b) ∈ ℓP , then the function tP /FP , see equations (3.8) and
(3.17), has a pole of order q − 2 at P(a,b) and no other poles. Since we have
already seen that H(P ) has multiplicity q − 1 or q − 2, the conclusion is that
the multiplicity is q − 2.

Remark 3.38. Let us denote by Wq the total number of Weierstrass places. We
have seen that

Wq = −(q + 1)2 + (q + 1) + 2(q + 1)m+ (q + 1)2

m−1∑
i=0

φ(i+ 1)−
(m−1)/p−1∑

i=0

φ(p · (i+ 1))


= −(q + 1)2 + (q + 1) + 2(q + 1)m+ (q + 1)2

 m∑
i=1

φ(i)−
(m−1)/p∑

i=1

φ(p · i)

 .
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Here the notation
∑ξ

i=0 for ξ ∈ R≥0 is shorthand for
∑⌊ξ⌋

i=0.

Using iteratively that

(m−1)/p∑
i=1

φ(p · i) = (p− 1)

(m−1)/p∑
i=1

φ(i) +

(m−1)/p2∑
i=1

φ(p · i),

we obtain that
(m−1)/p∑

i=1

φ(p · i) =
⌊logp(m−1)⌋∑

e=1

(p− 1)

(m−1)/pe∑
i=1

φ(i).

It is well known, see for example [44, Theorem 330], that
∑N

i=1 φ(i) =
3
π2N

2 +
O(N log(N)) asymptotically as N → ∞.

Hence, we have that

(m−1)/p∑
i=1

φ(p · i) =

⌊logp(m−1)⌋∑
e=1

3(p− 1)(m− 1)2

π2p2e
+O

⌊logp(m−1)⌋∑
e=1

m− 1

pe
logp

(
m− 1

pe

)
=

3(p− 1)(m− 1)2

π2

1− p2/p2⌊logp(m−1)⌋

p2 − 1

+O

(∫ logp(m−1)

0

m− 1

pe
logp

(
m− 1

pe

)
de

)

=
3(m− 1)2

π2(p+ 1)
− 3p2

π2(p+ 1)

(
m− 1

p⌊logp(m−1)⌋

)2

+O(q log(q))

=
3(m− 1)2

π2(p+ 1)
+O(q log(q)).

Going back to the number of Weierstrass places, we see that

Wq = (q + 1)2

m−1∑
i=1

φ(i)−
(m−1)/p∑

i=1

φ(p · i)

+O(q2) (3.30)

= (q + 1)2
(
3(m− 1)2

π2
− 3(m− 1)2

π2(p+ 1)

)
+O(q3 log(q)) (3.31)

=
3(m− 1)2(q + 1)2

π2

p

p+ 1
+O(q3 log(q)) (3.32)

=
q4

3π2

p

p+ 1
+O(q3 log(q)). (3.33)

Recall now that the number of places in O ∪ R is the same as the number of
Fq2-rational places of the function field Fq2(X3) (see Remark 3.3), which is O(q3).
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Therefore, equation (3.30) shows that, for large q, the number of Weierstrass
places not in O∪R, vastly outnumbers the number of Weierstrass places contained
in such set. In the setting of the function field Fq2(X3), this means that the
number of non-rational Weierstrass places is significantly larger than the number
of rational places, when q is large.

3.8 The full automorphism group Aut(Fq2(X3))

Knowing the Weierstrass semigroup at all the places in the set O ∪ R allows
us, in particular, to determine the full automorphism group Aut(Fq2(X3)) of
Fq2(X3). Therefore, we devote this section to this aim. As before, q ≡ 2 (mod 3)
and we denote by p the characteristic of Fq2 . As discussed in Section 3.1, the
function field Fq2(X3) can be seen as a subfield of the Hermitian function field
Fq2(H), and the extension Fq2(H)/Fq2(X3) is an unramified Galois extension
of degree 3 (see Remark 3.1 and the preceding discussion). The Galois group
Gal(Fq2(H)/Fq2(X3)) is generated by the automorphism τ , defined in equa-
tion (3.4), which is a useful observation when constructing automorphisms of
the function field Fq2(X3).

Indeed, a way to find automorphisms of Fq2(X3) is to consider the normalizer
N(⟨τ⟩) of ⟨τ⟩ in Aut(Fq2(H)) ∼= PGU(3, q). Doing so, the group N(⟨τ⟩)/⟨τ⟩
is theoretically guaranteed to be a subgroup of the full automorphism group
of the fixed field Fq2(X3) of ⟨τ⟩. The group N(⟨τ⟩) in PGU(3, q) is a well-
known maximal subgroup stabilizing a self-polar triangle, see [46, Theorem
A.10]. It has order 6(q + 1)2/gcd(3, q + 1) = 2(q + 1)2 and is isomorphic to the
semidirect product of an abelian group of order (q + 1)2/3 containing τ and a
symmetric group of order 6. This explains the structure of the automorphism
group described in Lemma 3.6.

Remark 3.39. Note that, in our notations from Chapter 2, Aut(Fq2(X3)) =
Aut(Fq2(X3)) and, since the curve X3 is defined over Fq2 and Fq2(X3) is maximal
and of genus at least 2, by [41, Theorem 3.10] it holds that Aut(Fq2(X3)) =
AutFq2

(Fq2(X3)).

We now begin our study of the group Aut(Fq2(X3)).

Lemma 3.40. Let O be the set defined in equation (3.7). Then O is an orbit
of Aut(Fq2(X3)).

Proof. Consider the constant field extension Fq2(X3)/Fq2(X3). As noted in
Remark 3.39, we have that Aut(Fq2(X3)) = Aut(Fq2(X3)) = AutFq2

(Fq2(X3))
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and, by [41, Proposition 3.8, Theorem 3.10], it follows that Aut(Fq2(X3)) acts on
the set of Fq2 -rational places of Fq2(X3). This means that Aut(Fq2(X3)) acts on
the set O ∪R, see Remark 3.2 and Remark 3.3. Let H(P(a,b)) and H(P ) be the
Weierstrass semigroups at a place P(a,b) ∈ PFq2 (X3)

\ O and P ∈ O, respectively.
Since the semigroups H(P(a,b)) and H(P ) are not the same (see Theorem 3.22,
Theorem 3.25 and Theorem 3.27), the automorphism group Aut(Fq2(X3)) acts
separately on O and PFq2 (X3)

\O. Moreover, since, from Corollary 3.7, the set O
is an orbit of G ⊆ Aut(Fq2(X3)), we deduce that O is also an orbit of the entire
Aut(Fq2(X3)).

We now use that O is an orbit in order to start investigating the p-Sylow
subgroups of Aut(Fq2(X3)).

Lemma 3.41. Let q ≥ 11. Let Sp denote a Sylow subgroup of Aut(Fq2(X3)).
Then |Sp| < q.

Proof. Since Sp acts on O by Lemma 3.40, we see that Sp has at least one fixed
place P ∈ O. Since Fq2(X3) is maximal, it is a well-known result that it has p-rank
zero. This can be seen for instance by [80, Satz 1], as the p-rank and the Hasse-
Witt invariant are equivalent notions (see the discussion after [46, Definition
6.97]). Then, by [46, Lemma 11.129], it follows that every nontrivial element of
Sp has exactly one fixed place and, more specifically, by [46, Remark 11.128],
that all the nontrivial elements of Sp have the same fixed place. This implies
that Sp acts with long orbits on O \ {P}, which in turn implies that |Sp| ≤ q.

Suppose now that |Sp| = q. Observe first that, since O is an orbit under
the action of Aut(Fq2(X3)), then, in particular, the stabilizers of the places
in O are all conjugated with respect to this action. Since, by the arguments
above, the stabilizer of the place P ∈ O contains Sp, this hence implies that
the stabilizer of any place Q ∈ O \ {P} contains a Sylow p-subgroup as well,
that acts transitively on O \ {Q} (as we are assuming that the cardinality of
a p-Sylow is q). This implies that Aut(Fq2(X3)) acts 2-transitively on O, and
the stabilizer of two places is cyclic in this action, since it is of order relatively
prime to p (see [46, Theorem 11.49]). Hence, from [59, Theorem 1.1], we have
that Aut(Fq2(X3)) has a regular normal subgroup N , unless:

• Aut(Fq2(X3)) is isomorphic to either PSL(2, q), PGL(2, q), or

• q = q̄3 and Aut(Fq2(X3)) is isomorphic to PSU(3, q̄) or PGU(3, q̄), or

• Aut(Fq2(X3)) is isomorphic to the Suzuki group Sz(q̄), where q = q̄2.
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The first two possibilities can be excluded, since in that case |Aut(Fq2(X3))| would
not be divisible by 2(q+1)2. Furthermore, if Aut(Fq2(X3)) was isomorphic to the
Suzuki group Sz(q̄), then the characteristic would be two and q = q̄2 would be an
even power of two. However, this is impossible, since q ≡ 2 (mod 3). This means
that Aut(Fq2(X3)) has a regular normal subgroup N . Then, from [14, Theorem
1.7.6], we see that |O| = q + 1 = ℓh for some h ∈ Z>0 and some prime number
ℓ. If q is odd, this cannot happen as q + 1 is divisible by 6. If q is even, we
would have |O| = q + 1 = 2n + 1 = ℓh. If h = 1, this would mean that ℓ is a
Fermat prime, which is only possible if n is a power of two. However, since n is
odd, this would imply n = 1. This is impossible, since q ≥ 11. If h > 1, then
from Catalan’s Conjecture (Mihailescu’s Theorem [69]), we see that the only
possibility is that ℓ = 3 and n = 3. This is again not possible, since we assumed
that q ≥ 11. Hence, we conclude that the only possibility is |Sp| < q.

We now prove a lemma that will allow us to identify certain automorphisms of
Fq2(X3).

Lemma 3.42. Let α ∈ Aut(Fq2(X3)) and suppose that α(x) is a cube, when
seen as an element of the function field Fq2(H). Then α can be lifted to an
automorphism ᾱ of Fq2(H).

Proof. Since α is an automorphism of Fq2(X3), we know that

α(y)q+1 + α(x)(q+1)/3 + α(x)2(q+1)/3 = 0.

Let α(x) = w3, where w = w(u, v) ∈ Fq2(H), and define ᾱ(u) = w and ᾱ(v) =
α(y)
ᾱ(u) . Then

ᾱ(u)q+1 + ᾱ(v)q+1 + 1 = wq+1 +
α(y)q+1

wq+1
+ 1

=
α(x)2(q+1)/3 + α(y)q+1 + α(x)(q+1)/3

wq+1

= 0.

This means that ᾱ preserves the defining equation of the Hermitian function
field and defines an automorphism of Fq2(H).

Note that, since all automorphisms of Fq2(H) are defined over Fq2 , the automor-
phism ᾱ will also be defined over Fq2 . Therefore, if α(x) is a cube in Fq2(H),
it was necessarily already a cube in Fq2(H), see [41, Proposition 3.8, Theorem
3.10].
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3.8.1 Case q odd

We start by observing that the case q = 5 is already settled. Indeed, if q = 5,
the plane curve defined by the (affine) equation X5 +X = Y 3 is birationally
equivalent to X3. The corresponding isomorphism of function fields is described
as x = wX + (wX)−1, y = Y/X, where w2 = 2. This curve is known to
have an automorphism group that is isomorphic to a semidirect product of a
cyclic group of order 3 with PGL(2, 5), see [46, Theorem 12.11]. In particular,
|Aut(Fq2(X3))| = 360 if q = 5, which is five times the cardinality of the group of
automorphisms G described in Lemma 3.6.

Henceforth, in this subsection, we assume that q ≥ 11 and that q is odd.
Under these assumptions, we wish to use the information that O is an orbit of
Aut(Fq2(X3)) to show that Aut(Fq2(X3)) actually coincides with the group of
automorphisms G determined in Lemma 3.6. To see why this holds, let us first
prove, under the aforementioned hypotheses on q, that Aut(Fq2(X3)) is tame,
that is, it does not contain any element of order p.

Lemma 3.43. Let q ≥ 11 and q odd. Then |Aut(Fq2(X3))| is not divisible by
the characteristic p of the field Fq2 .

Proof. Suppose by contradiction that Aut(Fq2(X3)) admits a Sylow p-subgroup
Sp of order pi for some i ≥ 1. As we have seen in the proof of Lemma 3.41, we
may assume that Sp fixes a place P(a,0) ∈ Om ⊆ O and that it acts with long
orbits on O \ {P(a,0)}. Furthermore, by Lemma 3.41, we may also assume that
|Sp| < q.

Recall that the automorphism σ : (x, y) 7→ (x, δy), where δ is a primitive (q+ 1)-
th root of unity, fixes the set Om point-wise, while it acts transitively on the sets
O0 and O∞. From this, it follows that σ normalizes Sp (see [46, Theorem 11.49])
and preserves the orbit of Sp containing Om. We have thus two possibilities for
any fixed P(ā,0) ∈ Om: either the orbit of Sp containing P(ā,0) is contained in
Om, or it contains entirely either O0 or O∞. In the second case, we would get
that |Sp| ≥ (q+1)/3+1 and hence |Sp| = q, which is not possible. Therefore, we
can deduce that, for any place P(ā,0) ∈ Om, the Sp-orbit of P(ā,0) is contained in
Om. Since Sp acts on O = Om ∪O0 ∪O∞, Sp must then act with long orbits on
O0 ∪ O∞, which is a set of cardinality 2(q + 1)/3. We hence obtain the desired
contradiction, as 2(q + 1)/3 is not divisible by p.

Theorem 3.44. Let q ≥ 11, q odd. Then Aut(Fq2(X3)) = G, where G is the
group of automorphisms described in Lemma 3.6.

Proof. Suppose by contradiction that |Aut(Fq2(X3))| > |G|. Let GP(a,0)
be
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the stabilizer in G of a place P(a,0) ∈ Om ⊆ O. Since, by the orbit-stabilizer
theorem, |G| = |O||GP(a,0)

| and, by Lemma 3.40, O is an orbit of Aut(Fq2(X3)),
the stabilizer Aut(Fq2(X3))P(a,0)

of P(a,0) in Aut(Fq2(X3)) contains some extra
automorphism γ ̸∈ GP(a,0)

. Let Cq+1 be the cyclic group generated by σ :
(x, y) 7−→ (x, δy), where δ is a primitive (q + 1)-th root of unity. Then, since
Aut(Fq2(X3))P(a,0)

is cyclic (as follows by [46, Theorem 11.49], from the fact
that Aut(Fq2(X3)) is of order relatively prime to p), γ commutes with Cq+1 and
hence it acts on the places that Cq+1 fixes (and, in general, on its orbits). This
means that γ acts on the sets Om and O0 ∪ O∞, because the set Om is exactly
the set of all the places fixed by Cq+1. Since O0 and O∞ are orbits of Cq+1 of
the same length, then either γ fixes both O0 and O∞, or it interchanges them.

If γ fixes both O0 and O∞, then it fixes the divisor of x from equation (3.14).
This means that γ(x) = λx, for some constant λ ∈ F∗

q2 . Hence, γ(x) is a cube
in Fq2(H), as x = u3 and λ is a constant. Suppose instead that γ interchanges
O0 and O∞. Then, γ maps the divisor of x to the divisor of 1/x, meaning that
there exists a constant λ such that γ(x) = λ/x. Hence, in all cases α(x) is a
cube in Fq2(H).

From Lemma 3.42, γ can hence be lifted to an automorphism γ̄ of Fq2(H)
acting on the set of 3(q + 1) places lying over those in O. These places are the
zeros of three functions, in Fq2(H), that geometrically correspond to three lines
intersecting each other in three points outside the Hermitian curve H, that is, a
self-polar triangle. Since this shows that γ is induced by N(⟨σ⟩), we hence have
that γ ∈ G, which gives a contradiction.

3.8.2 Case q even

We now turn our attention to the case where q is even, that is to say when
q = 2n, n odd. If q = 2, the function field F4(X3) is isomorphic to the Hermitian
function field F4(H) and therefore has PGU(3, 2) as automorphism group, which
contains 216 elements. Note that here only automorphisms defined over Fq2 were
considered, hence, in this case, there are twelve times more automorphisms than
described in Lemma 3.6. If q = 8, the automorphism group of Fq2(X3) is also
known, as in this case Fq2(X3) is isomorphic to the Giulietti-Korchmáros maximal
function field, see [33]. This function field can for example be regarded as the
function field of the plane curve with affine equation Y 9 = (X2+X)(X2+X+1)3.
An explicit isomorphism on the level of function fields is then given by X =
ζ3 + (x5 + x4 + x3)/y9 and Y = (x5 + x4 + x3)/y8.
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Hence, for q = 8, the automorphism group of Aut(Fq2(X3)) is a semidirect product
of a cyclic group of order 3 and PGU(3, 2), resulting in 648 automorphisms, four
times more than those contained in the group from Lemma 3.6.

For the remainder of this subsection, we will assume that q = 2n, n ≥ 5 odd.
We will show that, in this case, the automorphism group of Fq2(X3) coincides
with the group G from Lemma 3.6. To this aim, a similar argument as in the
previous subsection will be provided. Of course, in this case, we cannot prove
that Aut(Fq2(X3)) is tame, as G itself is nontame. We will in fact first prove
that, if a Sylow 2-subgroup of Aut(Fq2(X3)) has order larger than 2, then its
cardinality must be q/2.

Lemma 3.45. Let n ≥ 5 and q = 2n. Let also S2 denote a Sylow 2-subgroup of
Aut(Fq2(X3)). Then, either |S2| = 2 or |S2| = q/2. In the latter case, a 2-Sylow
S2 fixing a place P(a,0) ∈ Om acts on O with the following 3 orbits:

• {P(a,0)},

• OS2
1 := O0 ∪ {P(β1,0), . . . , P(β(q−2)/6,0)},

• OS2
2 := O∞ ∪ {P(γ1,0), . . . , P(γ(q−2)/6,0)},

where {P(a,0)}, {P(β1,0), . . . , P(β(q−2)/6,0)} and {P(γ1,0), . . . , P(γ(q−2)/6,0)} is a suit-
ably chosen partition of Om.

Proof. Let S2 be of order 2i for some i ≥ 1. Just as in the proof of Lemma 3.43,
we may assume that S2 fixes a place P(a,0) ∈ Om ⊆ O and that it acts with long
orbits on O \ {P(a,0)}. Furthermore, by Lemma 3.41, we may also assume that
|S2| < q.

Recall that the automorphism σ : (x, y) 7−→ (x, δy), where δ is a primitive
(q + 1)-th root of unity, fixes P(a,0) and hence normalizes S2, from [46, Theorem
11.49]. Moreover, σ fixes the set Om element-wise, while it acts transitively on
O0 and O∞. This means that, for any P(ā,0) ∈ Om, σ preserves the orbit of S2

containing P(ā,0). We have thus two possibilities for a fixed place P(ā,0): either
the orbit of S2 containing P(ā,0) is contained in Om, or it contains entirely either
O0 or O∞.

If the second case never occurs, then S2 acts semiregularly (i.e., all the orbits of
the action are long orbits) on O0 ∪ O∞, which is a set of cardinality 2(q + 1)/3.
This implies that |S2| = 2. If, instead, the second case occurs for some P(ā,0),
then we get that |S2| ≥ (q + 1)/3 + 1 > q/4 and hence |S2| = q/2. Note that, in
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this case, the only possible configuration of orbits of S2 acting on the q places in
O \ {P(a,0)} is that S2 has exactly 2 orbits of length q/2: one OS2

1 containing
O0 and (q − 2)/6 places in Om, and another one OS2

2 containing O∞ and the
remaining (q − 2)/6 places in Om.

We now exclude the second case in Lemma 3.45.

Lemma 3.46. The case |S2| = q/2 cannot occur.

Proof. Suppose by contradiction |S2| = q/2. With notations as in Lemma 3.45,
we can assume that S2 acts on O with three orbits {P(a,0)}, OS2

1 and OS2
2 . The

cyclic group Cq+1, generated by σ : (x, y) 7−→ (x, δy), where δ is a primitive
(q + 1)-th root of unity, fixes any place in Om, in particular P(a,0), and hence
normalizes S2. In particular, the group generated by σ and the elements of S2

has |S2|(q + 1) many elements. Since the stabilizer of two places is tame and
cyclic (see [46, Theorem 11.49]), we conclude that Cq+1 is the stabilizer of two
places, the place P(a,0) and any other place in Om.

Using the notations from Lemma 3.45, choose γ ∈ S2 to be such that γ(P(β1,0)) =

P(β2,0), with P(β1,0), P(β2,0) ∈ OS2
1 distinct places. Such a γ exists, since P(β1,0)

and P(β2,0) are in the same orbit under the action of S2. Then, γ−1 · σ · γ fixes
P(a,0) and

γ−1 · σ · γ(P(β1,0)) = γ−1 · σ(P(β2,0)) = γ−1(P(β2,0)) = P(β1,0).

Hence, γ−1 · σ · γ is an element of order q+1 fixing both P(a,0) and P(β1,0). This
implies that γ−1 ·σ · γ ∈ Cq+1 and, more specifically, that γ−1 ·σ · γ = σk, where
(k, q+1) = 1. Moreover, since Cq+1 normalizes S2, there exists γ̃ ∈ S2 such that
σ · γ = γ̃ · σ. Therefore,

id = γ−1 · σ · γ · σ−k = γ−1γ̃ · σ1−k.

Since S2∩Cq+1 = {id}, this implies that k = 1 and hence that γ and σ commute.

Now let ι be a suitable power of γ such that ι has order two. Then, for any
P(βj ,0) ∈ OS2

1 , we have that ι(P(βj ,0)) ∈ OS2
1 , since S2 acts on OS2

1 . On the
other hand, using that σ and ι commute and that σ fixes all the places in
Om, we have that σ · ι(P(βj ,0)) = ι · σ(P(βj ,0)) = ι(P(βj ,0)). Hence, ι(P(βj ,0))
is a place fixed by σ, which implies that ι(P(βj ,0)) ∈ Om. We conclude that
ι(P(βj ,0)) ∈ OS2

1 ∩ Om = {P(β1,0), . . . , P(β(q−2)/6,0)}. In other words, this means
that ι acts on the set {P(β1,0), . . . , P(β(q−2)/6,0)}. Since (q − 2)/6 = (q/2− 1)/3
is an odd number, this implies that, apart from P(a,0), ι fixes at least one more
place. However, since the characteristic is two and Fq2(X3) is maximal and hence
has 2-rank zero, this is impossible according to [46, Lemma 11.129].
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We are now ready to compute Aut(Fq2(X3)) when q is even.

Theorem 3.47. Let q = 2n, n ≥ 5 odd. Then Aut(Fq2(X3)) = G.

Proof. Combining Lemma 3.45 and Lemma 3.46, we conclude that |S2| = 2.
Suppose now, by contradiction, that |Aut(Fq2(X3))| > |G|. Let GP(a,0)

be the
stabilizer in G of P(a,0) ∈ Om ⊆ O. Since, by the orbit-stabilizer theorem, |G| =
|O||GP(a,0)

| and, by Lemma 3.40, O is an orbit of Aut(Fq2(X3)), the stabilizer
Aut(Fq2(X3))P(a,0)

of P(a,0) in Aut(Fq2(X3)) contains some extra automorphism
γ ̸∈ GP(a,0)

. Also, since |S2| = 2 and |G| = 2(q + 1)2, γ can be assumed to be of
odd order.

Let Cq+1 be the cyclic group generated by σ : (x, y) 7−→ (x, δy), where δ is a
primitive (q+1)-th root of unity. Then, since the tame part of Aut(Fq2(X3))P(a,0)

is cyclic (see [46, Theorem 11.49]), γ commutes with Cq+1 and hence it acts on
the places that are fixed by Cq+1 (and, in general, on its orbits). At this point,
the remainder of the proof is then exactly the same as the proof of Theorem
3.44.



Chapter 4

Two-point Weierstrass
semigroups and AG codes

This chapter is devoted to the study of two-point AG codes from two different
families of maximal function fields. Since a fundamental tool for the investigation
of such codes are certain two-point Weierstrass semigroups, a consistent part
of the chapter is dedicated to a thorough study of these algebraic objects. The
results included in Section 4.1 are contained in [65] and were jointly developed
by L. Landi and the author of this thesis. Those contained in Section 4.2 were
instead presented in [64] and were obtained by L. Landi, M. Timpanella and the
author of this thesis in a joint collaboration.

Starting from the description of the Weierstrass semigroup at a place discussed in
Section 2.1 (see Definition 2.15), it appears natural to investigate the more general
case in which multiple places are considered. With this regard, a generalization
of Weierstrass semigroups to the case of more than one place first appeared
in [3, p. 365]. Given a function field F , the Weierstrass semigroup at an n-tuple
of rational places P1, . . . , Pn ∈ PF was defined as

H̃(P1, . . . , Pn) := {(k1, . . . , kn) ∈ Nn | ∃ f ∈ F with (f)∞ = k1P1+ · · ·+knPn}.

Since its definition, this generalization of the Weierstrass semigroup has been
extensively studied in the literature. Some of its arithmetical and geometrical
properties have been studied in [19], [4] and [57], and for small values of n some
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specific cases have been explicitly investigated in [60], [48], [61] (case n = 2) and
in [58] (case n = 4).

In the case n = 2, the connections with two-point AG codes have also been
studied, for instance in [50], [67], [68], [51], [52] and [15]. The knowledge of
H̃(Q,P ) is indeed crucial for the study of two-point codes, since it can be used
for obtaining good bounds for their minimum distance, as done in [67, Theorem
2.1] and [50, Theorem 3.3]. With respect to this application, a tool that turned
out to be particularly important is a bijective function between the set of gaps
at a place Q and the set of gaps at another place P , that was introduced by S.J.
Kim in [60]. The function introduced in this paper is

σ : G(Q) −→ G(P ) (4.1)

i 7−→ min{j | (i, j) ∈ H̃(Q,P )}

and it is closely connected to the determination of the semigroup H̃(Q,P ), as
pointed out in [50].

In this spirit, P. Beelen and N. Tutaş introduced in [13] a different generalization
of Weierstrass semigroups. In the above notations, they defined

H(P1, . . . , Pn) := {(k1, . . . , kn) ∈ Zn | ∃ f ∈ R(P1, . . . , Pn)\{0}, vPi
(f) = −ki ∀ i},

where R(P1, . . . , Pn) := {f ∈ F | vR(f) ≥ 0 ∀R ̸= P1, . . . , Pn}. This definition
has the advantage of allowing, in a natural way, the generalization of the function
σ to a bijective function from Z to Z. Indeed, as discussed in Section 2.4, one
can define the function

τQ,P : Z −→ Z
i 7−→ min{j | (i, j) ∈ H(Q,P )},

which by [13, Proposition 14] is bijective and has many further remarkable
properties, as observed in Proposition 2.36.

Moreover, this generalization also turned out to be interesting for the study of
two-point AG codes. Indeed, in [8] P. Beelen introduced a generalization of the
Feng-Rao bound (see the generalized order bound defined in Definition 2.41 and
Proposition 2.43) that gives good estimates for the minimum distance of AG
codes with the support of the divisor G consisting of multiple places. In the
case of two-point codes, the knowledge of the function τQ,P plays a fundamental
role in the computation of this bound and allows to determine effectively the
dimension of the codes, see Theorem 2.46 and Corollary 2.47. This has been
pointed out in [5], where this second generalization of Weierstrass semigroups
and the generalized order bound were used in order to study two-point AG codes
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from the Garcia-Güneri-Stichtenoth function fields [30]. Such codes have been
found to have excellent parameters.

In this chapter, we use the approach introduced in [5] in order to study two-point
AG codes from two different families of maximal function fields, the Beelen-
Montanucci function fields [10] and the Skabelund function field [79] obtained as
a cyclic extension of the Suzuki function field. In Section 2.4 and Section 2.5,
we have already thoroughly discussed the definitions and the essential results
from [13] and [8] that we need.

The chapter is divided into two sections. In Section 4.1, we investigate two-
point AG codes from the Beelen-Montanucci function fields Fq2n(BMn), for all
n ≥ 3 odd, comparing our results with those obtained in [5] from the Garcia-
Güneri-Stichtenoth function fields Fq2n(GGSn). In Section 4.2, we study instead
two-point codes from the Skabelund function field Fq4(S̃q). We observe that,
for all the two-point codes considered from such function field, the minimum
distance is always at least that of a one-point code of the same length and
dimension.

4.1 The case of the Beelen-Montanucci function
fields

Let q be a prime power, n ≥ 3 be an odd integer and m := (qn + 1)/(q + 1). We
start by recalling some context on the Beelen-Montanucci function fields.

In [33], M. Giulietti and G. Korchmáros constructed a maximal function field
that, for q > 2, is not a subfield of the Hermitian one. This function field is the
Fq6-rational function field of the curve

GK :

{
yq+1 = xq + x,

zq
2−q+1 = y xq2−x

xq+x .

A first generalization of Fq6(GK) to an infinite family of Fq2n -maximal function
fields, for n ≥ 3 an odd integer, was given by A. Garcia, C. Güneri and H.
Stichtenoth in [30], where they constructed such a family as the Fq2n-rational
function fields of the so-called GGSn curves. These curves are defined over Fq2n

by the affine equations

GGSn :

{
yq+1 = xq + x,

zm = y xq2−x
xq+x ,



84 Two-point Weierstrass semigroups and AG codes

and in [30] it was shown that, for n = 3, the function field Fq2n(GGSn) is precisely
Fq6(GK).

Another generalization of Fq6(GK) was subsequently introduced by P. Beelen
and M. Montanucci in [10]. For n ≥ 3 odd, the Beelen-Montanucci function field
Fq2n(BMn) is the Fq2n-rational function field of the curve

BMn :

{
yq+1 = xq+1 − 1,

zm = y xq2−x
xq+1−1 .

(4.2)

The function field Fq2n(BMn) is maximal and for n = 3 it is isomorphic to
Fq2n(GGSn) and, equivalently, to Fq6(GK). Furthermore, in [10] it is also proved
that Fq2n(BMn) is isomorphic to Fq2n(GGSn) if and only if n = 3.

For n ≥ 3 an odd integer, consider the Fq2n-model of the Hermitian curve (see
equation (3.3)) given by

H̃ : yq+1 = xq+1 − 1,

whose Fq2n-rational function field we denote by Fq2n(H̃). We collect some
generalities on Fq2n(H̃) and on the extension Fq2n(BMn)/Fq2n(H̃).

Let s := y
x , so that sq+1 = 1− 1

xq+1 and the function field Fq2n(s, x) = Fq2n(x, y) =

Fq2n(H̃). Denote by P the pole of x in Fq2n(x) and with ρ(T ) := T q+1+ 1
xq+1 −1

the minimal polynomial of s over Fq2n(x). Then

ρ̄(T ) := T q+1 − 1 ∈ Fq2n [T ]

is the polynomial whose coefficients are the residue classes in OP /P of the
coefficients of ρ(T ), and its decomposition into irreducible factors over OP /P is

ρ̄(T ) =

q+1∏
i=1

(T − ξi),

where ξ is a primitive (q+1)-th root of unity in Fq2n . Hence, by Theorem 2.19, we
have that for each i = 1, . . . , q + 1 there exists a unique place P(∞,ξi) ∈ Fq2n(H̃)

such that P(∞,ξi)|P and s− ξi ∈ P(∞,ξi). Moreover, it holds that

e(P(∞,ξi)|P ) = 1

for all i = 1, . . . , q + 1. This means that, for all i = 1, . . . , q + 1, the functions
1/x and s− ξi in Fq2n(H̃) have only one common zero, namely the place P(∞,ξi).
For more convenient notations:

• if q is even, we set P i := P(∞,ξi−1), for i = 1, . . . , q + 1,
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• if q is odd, we set instead P i := P
(∞,ξ

q+1
2

+(i−1))
, for i = 1, . . . , q + 1.

We make this choice so that, in both cases, the place P 1 denotes precisely the
only common zero of the functions 1/x and x+ y in Fq2n(H̃).

Note that the places P 1, . . . , P q+1 are exactly the poles of x in Fq2n(H̃). Moreover,
it is not difficult to see that these places are totally ramified in Fq2n(BMn)/Fq2n(H̃),
as the extension is Kummer of degreem. We denote by Pi the place of Fq2n(BMn)
lying over P i, for every i = 1, . . . , q + 1, and set

O1 := {P1, . . . , Pq+1}.

Consider now a ∈ F∗
q2n and let Qa be the place that is the zero of the function

x− a in Fq2n(x). Since Fq2n(H̃)/Fq2n(x) is a Kummer extension of degree q + 1
(see Corollary 2.26), by Proposition 2.25 we directly have that

• if aq+1 − 1 = 0, then there exists a unique place Q(a,0) of Fq2n(H̃) such
that

Q(a,0)|Qa, e(Q(a,0)|Qa) = q + 1 and y ∈ Q(a,0).

This place is the only common zero of the functions x−a and y in Fq2n(H̃).

• If instead aq+1−1 ̸= 0, then Qa splits completely in Fq2n(H̃)/Fq2n(x), that
is, for each i = 1, . . . , q + 1, there exists a place Q(a,bξi) of Fq2n(H̃) such
that

Q(a,bξi)|Qa, e(Q(a,bξi)|Qa) = 1 and y − bξi ∈ Q(a,bξi),

where b ∈ F∗
q2n satisfies bq+1 = aq+1−1 and ξ ∈ Fq2n is a primitive q+1-th

root of unity.

All the places Q(a,0) and Q(a,bξi) are totally ramified in Fq2n(BMn)/Fq2n(H̃),
since the extension is Kummer of degree m. We denote by

O2 := {Q1, . . . , Qq3−q} ⊆ PFq2n (BMn)

the set of extensions of these places in Fq2n(BMn). For convenience of notations,
as it will be clear in the subsequent discussion, for all a ∈ F∗

q2n with aq+1− 1 = 0

we set Qa ∈ O2 to denote the place lying over Q(a,0).

Remark 4.1. Observe that, with this choice of notations, P1 denotes the common
zero of the functions 1/x and x+y in Fq2n(BMn), while Q1 denotes the common
zero of the functions x− 1 and y in Fq2n(BMn).
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We now recall, in the following proposition, some of the main properties of the
function field Fq2n(BMn), which will be useful throughout the section.

Proposition 4.2. Let q be a prime power, n ≥ 3 an odd integer and Fq2n(BMn)
the corresponding Beelen-Montanucci function field. Moreover, with notations as
above, consider the function field Fq2n(H̃).

1. The function field Fq2n(BMn) is maximal and has genus

g(Fq2n(BMn)) =
1

2
(q − 1)(qn+1 + qn − q2)

and
Nn := q2n+2 − qn+3 + qn+2 + 1

Fq2n-rational places.

2. The full automorphism group Aut(Fq2n(BMn)) is isomorphic to SL(2, q)⋊
Cqn+1, where Cqn+1 is the cyclic group with qn + 1 elements, and the sets
O1 and O2 are separate orbits in its action on the places of Fq2n(BMn).

Remark 4.3. From a geometrical point of view, for every i = 1, . . . , q + 1,
the place Pi in O1 is centered at the point at infinity of BMn that can be
parametrized in homogeneous [x : y : z : w]-coordinates as [1 : ai : 0 : 0], with
aq+1
i = 1, a1 = −1. On the other hand, for every a ∈ F∗

q2n with aq+1 − 1 = 0,
the place Qa in O2 is centered at the affine point of BMn with homogeneous
[x : y : z : w]-coordinates [a : 0 : 0 : 1].

Let now M := (m − 1)/(q2 − q). From [70, Theorem 1.1], the Weierstrass
semigroup H(P ) at any place P ∈ O1 is

H(P ) = ⟨qn + 1,mq + k(q2 − q) | k = 0, . . . ,M⟩ (4.3)

and the Weierstrass semigroup H(Q) at any place Q ∈ O2 is

H(Q) = ⟨qn + 1−m, qn + 1− k | k = 0, . . . ,M⟩. (4.4)

Since the Weierstrass semigroup at any place is invariant under the action of the
automorphism group Aut(Fq2n(BMn)) on that place (see for example [81, Lemma
3.5.2]), places in the same orbit have the same Weierstrass semigroup. With
notations as above, in the following discussion we will choose the places P1 and
Q1 as representatives of the orbits O1 and O2, respectively.

Remark 4.4. For any i = 1, . . . , q + 1, the stabilizer Si of a place P i ∈
PFq2n (H̃), under the action of PGU(3, q), contains a subgroup of cardinality
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q(q−1)(q+1) that is isomorphic to the group SL(2, q). As shown in [16, Lemma
3.1], this subgroup acts sharply transitively on the set of the remaining q3 − q
places of Fq2n(H̃) lying under the places in O2, and it is lifted completely in
Aut(Fq2n(BMn)), i.e., each of its elements can be extended in precisely m distinct
ways to an automorphism of Aut(Fq2n(BMn)) (see Theorem 2.5 and the results in
Section 4 of [10]). Therefore, the stabilizer of a place Pi ∈ PFq2n (BMn) contains a
subgroup isomorphic to SL(2, q) and acting transitively on O2. This implies that,
for any choice of Pi, Pj ∈ O1 and Qh, Qk ∈ O2, there exists σ ∈ Aut(Fq2n(BMn))
such that σ(Pi) = Pj and σ(Qh) = Qk.

We now recall some functions in Fq2n(BMn) and their principal divisors, that
will be useful in the discussion. Let

α :=
x− 1

x+ y
and θk :=

zk

x+ y

for k = 0, . . . ,M . From [70, Lemmas 3.1, 3.3]:

(x+ y) = mqP1 −m

q+1∑
i=2

Pi, (4.5)

(α) = (qn + 1)(Q1 − P1), (4.6)

(θk) = k

q3−q∑
i=1

Qi + (m− k(q2 − q))

q+1∑
i=2

Pi − (mq + k(q2 − q))P1. (4.7)

Lemma 4.5. Let θ̃0 := θ0 − 1. The principal divisor of θ̃0 in Fq2n(BMn) is
(θ̃0) = mQ1 +E −mqP1, where E is an effective divisor whose support does not
contain Q1 and P1.

Proof. Define t := x+ y− 1, so that θ̃0 = −t/(x+ y) and θ̃0 has principal divisor
(θ̃0) = (t) − (x + y). With the notations defined before Proposition 4.2, let
P 1, . . . , P q+1 be the q+1 distinct poles of x in Fq2n(H̃) and, for i = 1, . . . , q+1,
let Pi be the unique place of Fq2n(BMn) lying over P i.

Since we already know the divisor of x+ y in Fq2n(BMn) (see equation (4.5)),
in order to compute the divisor of θ̃0 we only need to determine the divisor of t
in Fq2n(BMn). We do this by determining the divisor of t in Fq2n(H̃) and then
lifting it to Fq2n(BMn).

We start by noting that the pole divisor of t is the same as the pole divisor of
x+ y in Fq2n(H̃), which by equation (4.5) and the discussion above we already
know to be

∑q+1
i=2 P i. Since the degree of this divisor is q, we deduce that t has

at most q distinct zeros in Fq2n(H̃).
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Furthermore, for b ∈ Fq2n , consider the function x− (1− b) in Fq2n(x) and let
Q1−b be the zero of this function in Fq2n(x). We start by observing that the
common zeros of x − (1 − b) and y − b in Fq2n(H̃) are also zeros of t, since
x − (1 − b) + y − b = x+ y − 1. Therefore, in order to compute the principal
divisor of t, we start by determining the common zeros of the functions x− (1−b)
and y − b.

Note that, since bq+1 − (1 − b)q+1 + 1 = 0 if and only if bq + b = 0, it is only
meaningful to study the common zeros of the functions x − (1 − b) and y − b
for b ∈ Fq2n such that bq + b = 0 (every such b is in fact an element of Fq2), as
otherwise such functions would have no zeros in common in Fq2n(H̃).

If b = 0, observe that x − (1 − b) = x − 1 and y − b = y and hence, with
notations as in the discussion before Remark 4.1, Q1−b = Q1 and Q(1,0) is the
only common zero of x− 1 and y in Fq2n(H̃).

On the other hand, if b ̸= 0, we let ρ(T ) := T q+1 − xq+1 + 1 be the minimal
polynomial of y over Fq2n(x) and

ρ̄(T ) := T q+1 − (1− b)q+1 + 1 = T q+1 − bq+1 ∈ Fq2n [T ]

be the polynomial whose coefficients are the residue classes in OQ1−b
/Q1−b of

the coefficients of ρ(T ). The decomposition of ρ̄(T ) into irreducible factors over
Fq2n is

ρ̄(T ) =

q∏
i=0

(T − bξi),

where ξ is a primitive (q+1)-th root of unity in Fq2n . Therefore, by Theorem 2.19,
we have that there exists exactly one place Q(1−b,bξi) ∈ PFq2n (H̃) such that

Q(1−b,bξi)|Q1−b, y − bξi ∈ Q(1−b,bξi) and e(Q(1−b,bξi)|Q1−b) = 1,

for each i = 0, . . . , q.

Since y−bξi = y−b for i = 0, we hence conclude that, for each b ∈ Fq2 satisfying
bq + b = 0, the functions x− (1− b) and y− b have exactly one zero in common in
Fq2n(H̃), namely the place Q(1−b,b). From what observed above, this implies that
the q distinct places Q(1−b,b), for b ∈ Fq2 , bq + b = 0, are zeros of the function
t in Fq2n(H̃). Since we already noted that the pole divisor of t in Fq2n(H̃) is∑q+1

i=2 P i, this means that the places Q(1−b,b) are in fact all the zeros of t in
Fq2n(H̃) and therefore

(t)Fq2n (H̃) =
∑
b∈Fq2

bq+b=0

Q(1−b,b) −
q+1∑
i=2

P i.
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We also already observed, in the discussion preceding Proposition 4.2, that the
places Q(1−b,b) of Fq2n(H̃) are totally ramified in Fq2n(BMn)/Fq2n(H̃). For b ̸= 0,
we denote by Qib ∈ O2 the unique extension of Q(1−b,b) in Fq2n(BMn)/Fq2n(H̃),
where ib is an index in {2, . . . , q3−q}, and we denote by Q1 the unique extension
of Q(1,0) (see discussion before Remark 4.1). Since [Fq2n(BMn) : Fq2n(H̃)] = m,
we hence obtain that the principal divisor of t in Fq2n(BMn) is

(t) = mQ1 +m
∑
b∈F∗

q2

bq+b=0

Qib −m

q+1∑
i=2

Pi. (4.8)

Therefore, since (θ̃0) = (t) − (x+ y), by equation (4.8) and equation (4.5) we
have that

(θ̃0) = mQ1 +m
∑
b∈F∗

q2

bq+b=0

Qib −m

q+1∑
i=2

Pi −mqP1 +m

q+1∑
i=2

Pi

= mQ1 +m
∑
b∈F∗

q2

bq+b=0

Qib −mqP1,

which gives the desired result.

4.1.1 The two-point Weierstrass semigroup H(Q1, P1)

Our aim is now to study the duals of two-point AG codes from the function field
Fq2n(BMn), for all n ≥ 3 odd.

More specifically, with the notations introduced in the previous section, we are
interested in the codes CL(D,G)

⊥, where G := aQ1 + bP1, for a, b ∈ Z such
that a+ b ≥ 0, and D is the sum of all the Fq2n-rational places of Fq2n(BMn)
different from Q1 and P1. The two-point Weierstrass semigroup H(Q1, P1) plays
a fundamental role in the investigation of such codes. Indeed, as pointed out
in Section 2.4, the knowledge of H(Q1, P1) is equivalent to that of the function
τQ1,P1

(see equation (2.9)), which is a crucial tool for computing the dimension
of the codes CL(D,G)

⊥ and the order bound for their minimum distance, see
Definition 2.41, Theorem 2.46 and Corollary 2.47. Therefore, the aim of this
subsection is to explicitly compute the function τQ1,P1

.

We start by giving an explicit description of the ring of functions that are
regular outside Q1 and P1 (see equation (2.7)), and by computing the period of
H(Q1, P1), see (2.8).
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Proposition 4.6. R(Q1, P1) = Fq2n [α, α
−1, θ̃0, θ1, θ2, . . . , θM ].

Proof. From (4.6), (4.7) and Lemma 4.5 it is clear that the Fq2n -rational functions
α, θ̃0, θ1, . . . , θM are regular outside P1; furthermore, from (4.3) it follows that

H(P1) = ⟨−vP1
(α),−vP1

(θ̃0),−vP1
(θ1), . . . ,−vP1

(θM )⟩.

We first prove that the ring R(P1) :=
⋃

i≥0 L(iP1) of Fq2n-rational functions
that are regular outside P1 is

R(P1) = Fq2n [α, θ̃0, θ1, . . . , θM ]. (4.9)

It is clear that Fq2n [α, θ̃0, θ1, . . . , θM ] ⊆
⋃

i≥0 L(iP1). In fact, for each function
h of the ring Fq2n [α, θ̃0, θ1, . . . , θM ], being h a combination of α, θ̃0, θ1, . . . , θM ,
there exists a positive integer γ̂ such that h ∈ L(γ̂P1).
Conversely, if h ∈

⋃
i≥0 L(iP1), then in particular h ∈ L(ihP1) for some ih ≥ 0.

We prove that h belongs to Fq2n [α, θ̃0, θ1, . . . , θM ] by induction on ih. If ih = 0,
then trivially h belongs to L(0) = Fq2n ⊆ Fq2n [α, θ̃0, θ1, . . . , θM ]. We proceed
now to the induction step. Assume that the claim holds for all integers ih less
than or equal to ñ and consider ih = ñ + 1. If ñ + 1 is not an element of
H(P1), then h ∈ L(kP1) for some k ≤ ñ, and the thesis follows by induction. If
instead ñ+ 1 belongs to H(P1), then ñ+ 1 can be written as a combination of
−vP1

(α),−vP1
(θ̃0),−vP1

(θ1), . . . ,−vP1
(θM ), namely

ñ+ 1 = a1(−vP1
(α)) + · · ·+ aM+2(−vP1

(θM ))

for some ai ∈ N, 1 ≤ i ≤ M + 2. Then note that the pole divisor (h)∞ of h is

(h)∞ = (αa1 · θ̃0
a2 · θa3

1 · · · θaM+2

M )∞

and hence there exists λ ∈ Fq2n\{0} such that h′ := h−λαa1 ·θ̃0
a2 · · · θa3

1 · · · θaM+2

M

is an element of
⋃

i≥0 L(iP1) with vP1(h
′) > −(ñ+ 1). By the induction hypoth-

esis, h′ ∈ Fq2n [α, θ̃0, θ1, . . . , θM ] and hence

h = h′ + λαa1 · θ̃0
a2 · · · θa3

1 · · · θaM+2

M ∈ Fq2n [α, θ̃0, θ1, . . . , θM ].

The statement of the proposition now follows. Indeed, it is clear from (4.6) and
(4.9) that any function in Fq2n [α, α

−1, θ̃0, θ1, . . . , θM ] is regular outside Q1 and P1;
conversely, for any f ∈ R(Q1, P1) there exists a suitable integer k ≥ 0 such that
fαk belongs to R(P1). This shows that f belongs to Fq2n [α, α

−1, θ̃0, θ1, . . . , θM ].

Lemma 4.7. The period π of the Weierstrass semigroup H(Q1, P1) is π = qn+1.
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Proof. Assume by contradiction that k(Q1 − P1) is a principal divisor for some
k ∈ {1, . . . , qn}. Let f ∈ Fq2n(BMn) such that (f) = k(Q1 − P1). In particular,
k is a non-gap of the Weierstrass semigroup H(Q1), as vQ1

(f−1) = −k and Q1

is the only pole of f−1. The smallest nonzero element of H(Q1) is qn + 1−m
(see (4.4)), hence qn + 1−m ≤ k ≤ qn and we can write k = qn + 1−m+ j for
some j ∈ {0, . . . ,m− 1}. Since

(α−1f) = (qn + 1− k)(P1 −Q1) = (m− j)(P1 −Q1),

then m− j must be a non-gap of the Weierstrass semigroup H(Q1); this is not
possible, as 0 < m− j < qm = qn + 1−m.

Given Proposition 4.6 and Lemma 4.7, we are now able to prove the following
theorem, which provides the explicit expression of the function τQ1,P1

, see (2.9).
As pointed out before, the knowledge of such function is sufficient to determine
the two-point Weierstrass semigroup H(Q1, P1), see Section 2.4.

Theorem 4.8. Let i ∈ Z and write i = −k(qn + 1)− ℓm− β for a unique triple
(k, ℓ, β) ∈ Z3 such that 0 ≤ β < m, 0 ≤ ℓ < q + 1. Let γ := ⌈β/M⌉. Then

τQ1,P1(i) = k(qn + 1) + (γ + ℓ)mq + β(q2 − q).

Proof. Define the map τ̃ : Z → Z such that τ̃(i) = k(qn+1)+(γ+ℓ)mq+β(q2−q)
for all i ∈ Z and k, ℓ, β, γ as in the assumptions. We will prove that τ̃(i) =
τQ1,P1

(i) for all i ∈ Z. In the following, we fix i ∈ Z, so that k, ℓ, β, γ are fixed
too. Choose M nonnegative integers i1, . . . , iM such that

M∑
j=1

ijj = β and
M∑
j=1

ij = γ.

Such choice of i1, . . . , iM always exists: letting β′ := β mod M , if β′ ̸= 0 one
can choose iM = γ − 1, iβ′ = 1 and ij = 0 for j ̸= M,β′. If β′ = 0, one can
instead choose iM = γ and ij = 0 for j ̸=M .
Consider now the function

f := αkθ̃0
ℓ

M∏
j=1

θ
ij
j .
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From (4.6), (4.7) and Lemma 4.5, the principal divisor of f is

(f) =k(qn + 1)(Q1 − P1) + ℓ(mQ1 + E −mqP1)+

M∑
j=1

ij

j q3−q∑
i=1

Qi + (m− j(q2 − q))

q+1∑
i=2

Pi − (mq + j(q2 − q))P1


=

k(qn + 1) + ℓm+

M∑
j=1

ijj

Q1 + E′−

k(qn + 1) +

 M∑
j=1

ij + ℓ

mq +

M∑
j=1

ijj(q
2 − q)

P1

=− iQ1 + E′ − τ̃(i)P1.

where E and E′ are effective divisors whose supports do not contain Q1 and
P1. The above computation shows that (i, τ̃(i)) belongs to H(Q1, P1) and thus
τ̃(i) ≥ τQ1,P1

(i) by definition of τQ1,P1
.

Finally, we can use Lemma 2.36 4) to show that the equality τ̃(i) = τQ1,P1
(i)

holds. Indeed, we have just proved that τ̃(i) ≥ τQ1,P1(i) for all i ∈ Z and
therefore

π+c−1∑
i=c

(i+ τ̃(i)) ≥
π+c−1∑
i=c

(i+ τQ,P (i)) = πg(Fq2n(BMn)) (4.10)

for all c ∈ Z. To conclude, it is enough to check that the left side of equation
(4.16) is equal to πg(Fq2n(BMn)). We can choose c = −π + 1 without loss of
generality, so that

0∑
i=−π+1

(i+ τ̃(i)) =

m−1∑
β=0

q∑
ℓ=0

(−mℓ− β + (γ + ℓ)mq + β(q2 − q)). (4.11)

Writing γ = 1
M (β + (M − β)modM), the quantity on the right side of equation

(4.11) yields

− m2q(q + 1)

2
− m(m− 1)(q + 1)

2
+
m2(m− 1)q(q + 1)

2M
+

mq2(q2 − 1)(M − 1)

2
+
m2q2(q + 1)

2
+
m(m− 1)q(q2 − 1)

2
.

It can be checked with a direct computation that the above quantity is equal to
1
2 (q

n + 1)(q − 1)(qn+1 + qn − q2) = πg(Fq2n(BMn)).
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Figure 4.1: The two-point Weierstrass semigroup H(Q1, P1) for q = 2 and
n = 5, of period π = 33. Only the pairs (i, j) ∈ H(Q1, P1) with
−2π < i, j < 2π are represented.

4.1.2 Computation of the order bound and results

We are now ready to compute the order bound, under the restrictions of
Remark 2.45, for dual codes of two-point AG codes from the function field
Fq2n(BMn), for all n ≥ 3 odd. As pointed out in the previous subsection, we
study the two-point codes CL(D,G)⊥ with G := aQ1+bP1 and the divisor D that
is the sum of all the Fq2n -rational places of Fq2n(BMn) different from Q1 and P1.
The degree ofD is therefore deg(D) = Nn−2, whereNn := q2n+2−qn+3+qn+2+1
is the number of Fq2n-rational places of Fq2n(BMn). The two-point AG code
CL(D,G) and its dual CL(D,G)

⊥ are hence linear subspaces of FNn−2
q2n .

Remark 4.9. As a consequence of the observations in Remark 4.4, our study of



94 Two-point Weierstrass semigroups and AG codes

the two-point codes CL(D,G)⊥ comprises in fact all the codes with G := aQh+bPk

and D the sum of all the rational places of Fq2n(BMn) different from Qh and
Pk, for any Qh ∈ O2 and any Pk ∈ O1.

Let δ := a+ b be the degree of the divisor G and observe that, if δ ≥ Nn+2g−3,
then the code CL(D,G)

⊥ is the zero code; this follows from the fact that, if
δ ≥ Nn+2g−3, the divisors G and G−D are non-special, as their degrees exceed
2g − 2 and, from the Riemann-Roch theorem, dim(CL(D,G)) = dim(L(G))−
dim(L(G−D)) = Nn − 2.

Define ∆ := 4g − 1. As pointed out in Section 2.5, it is sufficient to determine
the order bound for the code CL(D,G)

⊥ in the case δ < ∆ only, since the
order bound coincides with the Goppa bound if the degree of G is larger than
or equal to ∆ (see Lemma 2.44). The condition δ < ∆, which also implies
deg(G) < deg(D), makes the determination of the dimension of CL(D,G)

⊥ a
particularly easy task; indeed,

dim(CL(D,G)
⊥) = Nn − 2− dim(L(G)).

The dimension of L(G) can be conveniently computed applying Theorem 2.46
with the map τQ1,P1

defined in Theorem 4.8.

The algorithm we propose for computing the order bound for CL(D,G)
⊥ is

inspired by [5, Algorithm 1] and takes into account the observations above.
Similarly to [5], we recursively obtain a bound for the minimum distance of the
code CL(D,G)

⊥ by successive iterations on the degree δ of G, starting from
δ = ∆ − 1 and decreasing δ by 1 at each round of the procedure, until δ = 0.
Observe that it is easy to check if

dim(L(aQ1 + bP1)) ̸= dim(L((a+ 1)Q1 + bP1)), (4.12)

since, from Theorem 2.46, equation (4.12) holds if and only if τQ1,P1(a+ 1) ≤ b.
Similarly, the inequality dim(L(aQ1 + bP1)) ̸= dim(L(aQ1 + (b+ 1)P1)) holds if
and only if τ−1

Q1,P1
(b+ 1) ≤ a. Note that τ−1

Q1,P1
(b+ 1) can be computed using

Proposition 2.37.

Furthermore, Corollary 2.47 ensures that the knowledge of the function τQ1,P1

and its inverse provides also a straightforward way for computing the integers
ν(Q1; 0, ãQ1 + b̃P1) and ν(P1; 0, ãQ1 + b̃P1), for any ã, b̃ ∈ Z≥0, ã+ b̃ = δ.

Algorithm 4.10. Input: a prime power q and an odd integer n ≥ 3.
Output: a table T whose rows consist of three cells: the first cell contains an
integer k representing the dimension of a code CL(D, aQ1+bP1)

⊥; the second cell
contains a pair of integers (a, b) such that d(aQ1 + bP1) ≥ d(a′Q1 + b′P1) for all
codes CL(D, a

′Q1 + b′P1)
⊥ of dimension k; the third cell contains d(aQ1 + bP1).
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1. Initialize an empty table T .

2. Define g := 1
2 (q − 1)(qn+1 + qn − q2) and ∆ := 4g − 1.

3. Construct an upper-left triangular matrix A of size (∆ + 1)× (∆ + 1) and
set A[a,∆− a] = ∆− 2g + 2 for a = 0, . . . ,∆.

4. Define δ := ∆− 1.

5. For a = 0, . . . , δ, define b := δ − a and

dQ1
:=

{
min{ν(Q1; 0, aQ1 + bP1), A[a+ 1, b]} if τQ1,P1

(a+ 1) ≤ b,

A[a+ 1, b] otherwise,

dP1 :=

{
min{ν(P1; 0, aQ1 + bP1), A[a, b+ 1]} if τ−1

Q1,P1
(b+ 1) ≤ a,

A[a, b+ 1] otherwise,

d := max{dQ1 , dP1}.

6. Compute k := dim(CL(D, aQ1 + bP1)
⊥).

7. Check if a row with value k in the first cell exists in the table T .

(a) If such row does not exist, add a new row to T with k in the first cell,
(a, b) in the second cell, d in the third cell.

(b) If such row exists and d is strictly larger than the value in the third
cell, update the row by overwriting the pair in the second cell with
(a, b) and the value in the third cell with d.

(c) If such row exists and d is not larger than the value in the third cell,
do nothing.

8. Redefine δ := δ − 1 and repeat the procedure from step 5 until δ = 0.

The table T in output of Algorithm 4.10 stores the information on possible
improvements on the minimum distance of codes CL(D,G)

⊥ over the Goppa
bound. Note for example that the improvements obtained for q = 2, n = 3 and
q = 3, n = 3 are identical to the ones obtained in [5] (the case q = 2, n = 3 is
summarized in Table 4.1, compare with [5, Table 1]); on one hand this should
not surprise, since Fq6(BM3) and Fq6(GGS3) are isomorphic, but on the other
hand it is interesting to see that the definition of order bound that we use, which
is slightly weaker than the one given in [5], does not affect the estimate for the
minimum distance in these particular cases.
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k (a, b) d k (a, b) d k (a, b) d
195 (0, 37) 20 205 (1, 26) 11 215 (1, 16) 4
196 (1, 35) 19 206 (1, 25) 10 216 (7, 8) 4
197 (1, 34) 18 207 (1, 24) 9 217 (1, 14) 3
198 (1, 33) 17 208 (1, 23) 9 218 (1, 13) 3
199 (1, 32) 16 209 (1, 22) 8 219 (1, 11) 3
200 (1, 31) 15 210 (0, 22) 6 220 (4, 7) 2
201 (0, 31) 14 211 (0, 21) 6 221 (2, 7) 2
202 (1, 29) 13 212 (0, 20) 6 222 (2, 5) 2
203 (4, 25) 13 213 (0, 19) 6
204 (0, 28) 12 214 (1, 17) 5

Table 4.1: Table T obtained from Algorithm 4.10 with q = 2, n = 3 and code
length N3 − 2 = 223.

We also compared our results obtained using Algorithm 4.10 with the results
obtained using [5, Algorithm 1] for q = 2 and n = 5. In this case, the two function
fields F210(BM5) and F210(GGS5) are not isomorphic. Table 4.2 summarizes the
cases where our results improve those from [5].

k (a, b) d d2 k (a, b) d d2
3875 (5, 132) 52 51 3920 (5, 87) 17 16
3876 (5, 131) 51 50 3926 (15, 71) 14 12
3878 (5, 129) 49 48 3927 (15, 70) 14 12
3880 (5, 127) 47 46 3928 (15, 69) 13 11
3904 (0, 108) 28 27 3929 (15, 68) 13 11
3909 (5, 98) 23 22 3930 (14, 68) 12 11
3917 (5, 90) 19 18 3934 (1, 77) 8 7

Table 4.2: For q = 2, n = 5, Table 4.2 reports the largest estimate for the
minimum distance d of a code CL(D, aQ1+bP1)

⊥ of length N5−2 =
3967 and dimension k and compares d with d2, the largest estimate
obtained in [5] for codes of same length and dimension. Only the
cases where d > d2 are reported.

4.2 The case of the Skabelund function field Fq4(S̃q)

After having studied the case of the Beelen-Montanucci function fields, we con-
tinue our investigation focusing on one of the maximal function fields introduced
by D. Skabelund in [79]. We start by setting the following notations, that will
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be used throughout the section: let s ∈ N, s ≥ 1, and let q0 := 2s, q := 2q20 and
m := q − 2q0 + 1.

The Suzuki function field Fq(Sq) is the Fq-rational function field of the curve
defined by the affine equation

Sq : yq + y = xq0(xq + x).

Its genus is equal to q0(q − 1) and the set O of its rational places has cardinality
q2 + 1. Furthermore, the full automorphism group of Fq(Sq) is the Suzuki group
of cardinality (q2 + 1)q2(q − 1) and acts doubly transitively on the set O.

We consider now the constant field extension Fq4(Sq) := Fq(Sq)Fq4 and note
that, for each place in O, there is exactly one place of Fq4(Sq) lying over it, with
relative degree equal to 4. Throughout this section, we denote by O the set of
such places. It is not difficult to compute the total number of rational places of
Fq4(Sq), which shows that such function field is in fact maximal.

The Skabelund function field Fq4(S̃q) is a Kummer extension of Fq4(Sq), namely
it is the Fq4 -rational function field of the curve given by the equations

S̃q :

{
yq + y = xq0(xq + x),

zm = xq + x.
(4.13)

It can be seen that all the places in O are totally ramified in the extension
Fq4(S̃q)/Fq4(Sq). Henceforth, we set the notation

Õ := {Q ∈ PFq4 (S̃q)
| Q|Q, Q ∈ O}

for the set of extensions of these places.

In the following proposition, we recall some of the main properties of Fq4(S̃q).
Further details can be found in [34] and [79].

Proposition 4.11 ([34, Section 3], [79, Section 3]). Let Fq4(S̃q) be the Skabelund
function field as defined by equation (4.13).

• The function field Fq4(S̃q) is maximal, with genus

g(Fq4(S̃q)) =
1

2
q(q − 1)2

and q5 − q4 + q3 + 1 Fq4-rational places.
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• The full automorphism group Aut(Fq4(S̃q)) acts on the set of rational places
of Fq4(S̃q) with two short orbits; one is non-tame of size q2 + 1, consisting
of exactly the places in Õ, the other is tame of size q5 − q4 + q3 − q2,
consisting of all the remaining Fq4-rational places.

We denote by P∞ the unique place of Fq4(S̃q) lying over the pole of x in the
extension Fq4(S̃q)/Fq4(Sq), which belongs to the orbit Õ. Moreover, we denote
by P(a,b,c) ∈ PFq4 (S̃q)

the place that is the only common zero of the functions

x−a, y−b and z−c in Fq4(S̃q), for a, b, c ∈ Fq4 . Henceforth, for less cumbersome
notations, we simply denote by P the place P(0,0,0) ∈ Õ \ {P∞}.

Remark 4.12. From a geometrical point of view, the place P(a,b,c) ∈ PFq4 (S̃q)

is centered at the affine point of S̃q that can be parametrized in homogeneous
[x : y : z : w]-coordinates as [a : b : c : 1]. On the other hand, the place P∞ is
centered at the only point at infinity of S̃q.

In the following proposition, we recall the principal divisors of the coordinate
functions and of the two functions

t := x2q0+1 + y2q0 and β := xy2q0 + t2q0

in Fq4(S̃q).

Proposition 4.13 ([9, Section 2]). The principal divisors in Fq4(S̃q) of the
functions x, y, z, t, β are:

(x) = mP + Ex − (q2 − 2qq0 + q)P∞,

(y) = m(q0 + 1)P + Ey − (q2 − qq0 + q0)P∞,

(z) =
∑

aq+a = 0,
bq+b = 0

P(a,b,0) − q2P∞,

(t) = m(2q0 + 1)P + Et − (q2 − q + 2q0)P∞,

(β) = (q2 + 1)(P − P∞),

(4.14)

where Ex, Ey, Et are effective divisors whose support does not contain P and
P∞.

4.2.1 The two-point Weierstrass semigroup H(P, P∞)

As in Section 4.1, we are again interested in using the order bound (see Defi-
nition 2.41) for estimating the minimum distance of the AG codes CL(D,G)

⊥
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with
D :=

∑
R∈R\{P,P∞}

R and G := aP + bP∞, (4.15)

where R denotes the set of all Fq4-rational places of Fq4(S̃q) and a, b ∈ Z>0.
Therefore, as discussed in Section 4.1.1, our first goal is to explicitly determine
the function τP,P∞ , whose knowledge is equivalent to that of the two-point
Weierstrass semigroup H(P, P∞).

Since the places P∞ and P lie in the same orbit under the action of the full
automorphism group of Fq4(S̃q) (see Proposition 4.11), it holds that H(P ) =
H(P∞). Moreover, the Weierstrass semigroup at every place of the Skabelund
function field Fq4(S̃q) is known, see [9]. We recall the structure of H(P∞) in the
following proposition.

Proposition 4.14 ([9, Theorem 3.2]). The Weierstrass semigroup of Fq4(S̃q) at
P∞ is

H(P∞) = ⟨q2 − 2qq0 + q, q2 − qq0 + q0, q
2 − q + 2q0, q

2, q2 + 1⟩.

To the aim of determining the function τP,P∞ , we now compute the ring R(P, P∞)
of regular functions outside P and P∞, see equation (2.7).

Proposition 4.15. The ring of all Fq4-rational functions that are regular outside
P and P∞ is

R(P, P∞) = Fq4 [x, y, z, t, β, β
−1].

Proof. It is clear from (4.14) that any function in Fq4 [x, y, z, t, β, β
−1] is regular

outside P and P∞. Conversely, from (4.14) and Proposition 4.14 it follows that
the ring R(P∞) consisting of all Fq4-rational functions that are regular outside
P∞ is

R(P∞) = Fq4 [x, y, z, t, β].

Hence, for any f ∈ R(P, P∞) there exists a suitable integer k ≥ 0 such that fβk

belongs to R(P∞). This shows that f belongs to Fq4 [x, y, z, t, β, β
−1].

Lemma 4.16. The period of the Weierstrass semigroup H(P, P∞) is q2 + 1.

Proof. Assume by contradiction that there exists a function f defined on S̃q

having principal divisor (f) = k(P −P∞), for some k ∈ {1, . . . , q2}. Then k must
be a non-gap of the Weierstrass semigroup H(P∞). The smallest nonzero element
of H(P∞) is q2 − 2qq0 + q (see Proposition 4.14), hence q2 − 2qq0 + q ≤ k ≤ q2
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and we can write k = q2 − 2qq0 + q + j for some j ∈ {0, . . . , 2qq0 − q}. The
function βf−1 has principal divisor

(βf−1) = (q2 + 1− k)(P − P∞) = (2qq0 − q + 1− j)(P − P∞),

hence 2qq0 − q + 1− j must be a non-gap of the Weierstrass semigroup H(P∞).
This is not possible, as 0 < 2qq0 − q + 1− j < 2qq0 − q + 1 < q2 − 2qq0 + q.

In the following discussion, we denote the period of H(P, P∞) by ρ := q2 + 1.

Lemma 4.17. Let i ∈ Z, k :=
⌊
i−1
ρ

⌋
and r := i−kρ−1. Then, i can be written

uniquely as

i = (k + 1)ρ− (az +max + (q0 + 1)may + (2q0 + 1)mat),

with at, ax, ay, az ∈ Z such that 0 ≤ az ≤ m− 1 and{
0 ≤ ax ≤ q0, ay = 0, at = q0 if r < m(q0 + 1),

0 ≤ ax ≤ q0 − ay, 0 ≤ ay ≤ 1, 0 ≤ at ≤ q0 − 1 otherwise.

Proof. Observe that kρ + 1 ≤ i ≤ (k + 1)ρ and 0 ≤ r ≤ ρ − 1. Assume first
r < m(q0 + 1) and note that the condition

0 ≤ ρ− 1− (az +max + (q0 + 1)may + (2q0 + 1)mat) < m(q0 + 1)

holds for any choices of at, ax, ay, az as in the assumptions. Moreover, suppose
that r can be expressed as

r = ρ− 1− (az +max + (2q0 + 1)mq0) = ρ− 1− (a′z +ma′x + (2q0 + 1)mq0),

with 0 ≤ az, a
′
z ≤ m−1, 0 ≤ ax, a

′
x ≤ q0. Considering the above equation modulo

m, it directly follows that az = a′z and ax = a′x. Hence, there are precisely
m(q0 +1) distinct integers in the interval [0,m(q0 +1)− 1], one for each possible
choice of at, ax, ay, az, that can be written as ρ− 1− (az +max + (2q0 +1)mq0).
The first case of the statement follows.

A similar argument can be repeated for the case m(q0 + 1) ≤ r ≤ ρ − 1; the
condition

m(q0 + 1) ≤ ρ− 1− (az +max + (q0 + 1)may + (2q0 + 1)mat) ≤ ρ− 1

holds for any choices of at, ax, ay, az as in the assumptions. Further, assume
that r can be expressed as:

r = ρ− 1− (az +max + (q0 + 1)may + (2q0 + 1)mat)

= ρ− 1− (a′z +ma′x + (q0 + 1)ma′y + (2q0 + 1)ma′t)
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with 0 ≤ az, a
′
z ≤ m − 1, 0 ≤ ax ≤ q0 − ay, 0 ≤ a′x ≤ q0 − a′y, 0 ≤ ay, a

′
y ≤

1, 0 ≤ at, a
′
t ≤ q0 − 1. Considering the above equation first modulo m, then

modulo 2q0 + 1, and finally modulo q0 + 1, we conclude that az = a′z, ax = a′x,
ay = a′y, at = a′t. There are m(q + q0) possible choices of at, ax, ay, az, as
well as distinct integers in the interval [m(q0 + 1), ρ − 1]; we conclude that
any integer in the interval [m(q0 + 1), ρ − 1] can be expressed uniquely as
ρ − 1 − (az +max + (q0 + 1)may + (2q0 + 1)mat) and the second case of the
statement follows.

Theorem 4.18. Let i ∈ Z, k :=
⌊
i−1
ρ

⌋
and write

i = (k + 1)ρ− (az +max + (q0 + 1)may + (2q0 + 1)mat),

for a unique quadruple (at, ax, ay, az) ∈ Z4 such that 0 ≤ az ≤ m−1, 0 ≤ ay ≤ 1,
0 ≤ ax ≤ q0 − ay and 0 ≤ at ≤ q0. Then

τP,P∞(i) = (azq
2+at(q

2−q+2q0)+ay(q
2−qq0+q0)+ax(q2−2qq0+q))−(k+1)ρ.

Proof. To prove the theorem, we define the map τ̃ : Z → Z such that

τ̃(i) = (azq
2+at(q

2− q+2q0)+ay(q
2− qq0+ q0)+ax(q2− 2qq0+ q))− (k+1)ρ

for all i ∈ Z and k, at, ax, ay, az as in the assumptions, and we show that
τ̃(i) = τP,P∞(i) for all i ∈ Z.

We start by showing that τ̃(i) ≥ τP,P∞(i) for all i ∈ Z. To this aim, let i ∈ Z,
k :=

⌊
i−1
ρ

⌋
as above and write i as

i = (k + 1)ρ− (az +max + (q0 + 1)may + (2q0 + 1)mat),

for the suitable quadruple (at, ax, ay, az) ∈ Z4. Consider the function

f := β−(k+1)tatzazyayxax .

Then, by Proposition 4.13, it follows that the principal divisor of f is

(f) =− (k + 1)(q2 + 1)(P − P∞) + az

 ∑
aq+a = 0,
bq+b = 0

P(a,b,0) − q2P∞


+ at

(
m(2q0 + 1)P + Ez − (q2 − q + 2q0)P∞

)
+ ay

(
m(q0 + 1)P + Ey − (q2 − qq0 + q0)P∞

)
+ ax

(
mP + Ex − (q2 − 2qq0 + q)P∞

)
=− iP + E − τ̃(i)P∞,
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where E is an effective divisor whose support does not contain P and P∞. The
above computation shows that (i, τ̃(i)) lies in H(P, P∞) and thus τ̃(i) ≥ τP,P∞(i)
by definition of τP,P∞ .

For showing that the equality τ̃(i) = τP,P∞(i) holds for all i ∈ Z, we can now
use Proposition 2.36 4). Indeed, we have just proved that τ̃(i) ≥ τP,P∞(i) for all
i ∈ Z and therefore

π+c−1∑
i=c

(i+ τ̃(i)) ≥
π+c−1∑
i=c

(i+ τP,P∞(i)) = πg(Fq4(S̃q)) (4.16)

for all c ∈ Z. To conclude, it is enough to check that the left side of equation
(4.16) is equal to πg(Fq4(S̃q)). We can choose c = 0 without loss of generality,
hence we obtain
π−1∑
i=0

(i+ τ̃(i)) =

= −
m−1∑
az=0

q0−1∑
at=0

1∑
ay=0

q0−ay∑
ax=0

((az +max + (q0 + 1)may + (2q0 + 1)mat)+

− (azq
2 + at(q

2 − q + 2q0) + ay(q
2 − qq0 + q0) + ax(q

2 − 2qq0 + q)))+

−
m−1∑
az=0

q0∑
ax=0

((az +max + (2q0 + 1)mq0)− (azq
2 + q0(q

2 − q + 2q0) + ax(q
2 − 2qq0 + q)))

= −(1− q2)

(
(q0 + 1)q0

(m− 1)m

2
+ q20

(m− 1)m

2
+ (q0 + 1)

(m− 1)m

2

)
+

− (m− (q2 − 2qq0 + q))

(
q0(q0 + 1)

2
q0m+

(q0 − 1)q0
2

q0m+
q0(q0 + 1)

2
m

)
+

− ((2q0 + 1)m− (q2 − q + 2q0))

(
(q0 − 1)q0

2
(q0 + 1)m+

(q0 − 1)q0
2

q0m+ q0(q0 + 1)m

)
+

− ((q0 + 1)m− (q2 − qq0 + q0))(q
2
0m) = 16q100 − 16q80 + 8q60 − 4q40 + q20 = πg(Fq4(S̃q)).

4.2.2 Results and comparisons

In this section, we present the results obtained for the AG codes CL(D,G)
⊥

from Fq4(S̃q) with

D :=
∑

R∈R\{P,P∞}

R and G := aP + bP∞,
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65

-65

130-130
130
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Figure 4.2: The two-point Weierstrass semigroup H(P, P∞) for s = 1, of period
π = 65. Only the pairs (i, j) ∈ H(P, P∞) with −2π < i, j < 2π are
represented.

where R denotes the set of all Fq4 -rational places of Fq4(S̃q), a, b ∈ Z>0 and the
parameter s is set to be s = 1 (see equation (4.15)). With this choice, we have
q0 = 2 and q = 8, so that the Skabelund function field F84(S̃8) is maximal over
F84 and has exactly 29185 F84-rational places. Hence, the associated two-point
AG codes have length N := |R| − 2 = 29183.
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The order bound for the minimum distance of these codes is computed with
the same algorithm as Algorithm 4.10, which is inspired by [5, Algorithm 1].
Therefore, we refer to Section 4.1.2 for a thorough description of the algorithm
and the technical details. Indeed, the assumptions that we made in Remark 2.45
for computational purposes hold for both cases. In particular, this means that
we only consider codes with a+ b ≤ 4g(F84(S̃8))− 1.

The results obtained show that in several cases the order bound significantly
improves the Goppa bound. Moreover, we observed that, for all the two-point
codes considered, the minimum distance is always at least that of the best
comparable one-point code of the same dimension (see Table 4.3 for the details).
In Table 4.3, we denote by d the order bound for the minimum distance of the
two-point code CL(D, aP +bP∞)⊥ and with d1 the order bound for the minimum
distance of the best one-point code CL(D, b

′P∞)⊥ with the same dimension k.
The table contains all the results, for s = 1 and code length N = 29183, for
which the difference between the estimates d and d1 is larger than or equal to
10. The four rows in bold of Table 4.3 mark the codes for which d − d1 = 20,
which is the largest value obtained for such difference.

Remark 4.19. Defining the curve S̃q over Fq, one could consider its Fq-rational
function field Fq(S̃q) and study two-point AG codes from it. In this setting, both
the support of D and G would consist of Fq-rational places, and one could in
principle compute the order bound for these codes and compare them with the
two-point codes arising from the Suzuki function field Fq(Sq), that were studied
in [68]. However, since the genus of Fq(S̃q) is considerably larger than the number
of its Fq-rational places, the order bound does not give a good estimate for the
minimum distance in this case.

Table 4.3: For s = 1, the table contains the best possible estimates for the min-
imum distance d and d1, obtained with the order bound, for a two-
point code CL(D, aP + bP∞)⊥ and a one-point code CL(D, b

′P∞)⊥

of a certain dimension k and length N = 29183, respectively.

k (a, b) d d1 b′ k (a, b) d d1 b′

28860 (1, 517) 138 128 518 28933 (1, 444) 70 60 445
28861 (1, 516) 138 128 517 28934 (1, 443) 70 60 444
28864 (1, 513) 134 124 514 28935 (1, 442) 70 60 443
28865 (1, 512) 134 124 513 28936 (1, 441) 70 60 442
28866 (1, 511) 134 124 512 28938 (1, 439) 65 50 440
28868 (1, 509) 130 120 510 28939 (1, 438) 65 50 439
28869 (1, 508) 130 120 509 28940 (1, 437) 65 50 438
28870 (1, 507) 130 120 508 28941 (1, 436) 65 50 437

Continued on next page
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Table 4.3 – continued from previous page
k (a, b) d d1 b′ k (a, b) d d1 b′

28871 (1, 506) 130 120 507 28942 (1, 435) 65 50 436
28874 (1, 503) 124 114 504 28943 (1, 434) 65 50 435
28875 (1, 502) 124 114 503 28944 (1, 433) 65 50 434
28876 (1, 501) 124 114 502 28945 (1, 432) 65 50 433
28878 (1, 499) 120 110 500 28946 (1, 431) 65 50 432
28879 (1, 498) 120 110 499 28948 (6, 424) 60 40 430
28880 (1, 497) 120 110 498 28949 (6, 423) 60 40 429
28881 (1, 496) 120 110 497 28950 (6, 422) 60 40 428
28884 (1, 493) 114 104 494 28951 (6, 421) 60 40 427
28885 (1, 492) 114 104 493 28952 (1, 425) 55 40 426
28886 (1, 491) 114 104 492 28953 (1, 424) 55 40 425
28888 (1, 489) 110 100 490 28954 (1, 423) 55 40 424
28889 (1, 488) 110 100 489 28955 (1, 422) 55 40 423
28890 (1, 487) 110 100 488 28956 (1, 421) 55 40 422
28891 (1, 486) 110 100 487 28957 (1, 420) 50 40 421
28898 (1, 479) 100 90 480 28958 (1, 419) 50 40 420
28899 (1, 478) 100 90 479 28959 (1, 418) 50 40 419
28900 (1, 477) 100 90 478 28960 (1, 417) 50 40 418
28901 (1, 476) 100 90 477 28961 (1, 416) 50 40 417
28908 (1, 469) 90 80 470 28978 (11, 389) 40 30 400
28909 (1, 468) 90 80 469 28979 (11, 388) 40 30 399
28910 (1, 467) 90 80 468 28980 (11, 387) 40 30 398
28911 (1, 466) 90 80 467 28981 (11, 386) 40 30 397
28923 (1, 454) 79 65 455 28997 (56, 324) 30 20 380
28924 (1, 453) 79 64 454 28998 (56, 323) 30 20 379
28925 (1, 452) 79 64 453 28999 (56, 322) 30 20 378
28926 (1, 451) 79 64 452 29000 (56, 321) 30 20 377
28927 (1, 450) 75 64 451 29001 (56, 320) 30 20 376
28928 (1, 449) 75 60 450 29002 (56, 319) 30 20 375
28929 (1, 448) 75 60 449 29003 (56, 318) 30 20 374
28930 (1, 447) 75 60 448 29004 (56, 317) 30 20 373
28931 (1, 446) 75 60 447 29005 (56, 316) 30 20 372
28932 (1, 445) 70 60 446
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Chapter 5
On the asymptotic

behaviour of rational points
of curves over Fq

In order to investigate the subject of study of this final chapter, we need to adopt
a more geometrical language. This entails that we start by fixing the following
notations, that will be used throughout the discussion.

Let X ⊆ Pn be a projective curve of genus g and degree d defined over Fq.
Here, by genus of the curve we mean the genus of its function field, while by
degree of the curve we mean the maximum number of intersections (counted
with multiplicity) of the curve with a hyperplane of Pn not containing any of its
components. We say that a curve defined over Fq is irreducible (over Fq) if it
consists of only one component defined and irreducible over Fq, while we call
it absolutely irreducible if it is irreducible over Fq. Furthermore, the curve is
said to be nondegenerate if it is not contained in any hyperplane of Pn. Being
consistent with Definition 2.31, we say that the curve X is nonsingular if all
of its points (i.e., all the points in X (Fq)) are nonsingular. Moreover, we say
that an absolutely irreducible curve X ⊆ Pn is a complete intersection if its
homogeneous ideal is generated by precisely n − 1 homogeneous polynomials,
see Section 2.2 and [45, p.136]. Note that, with a slight abuse of terminology, in
the following discussion we will use the term curve also when not dealing with
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a variety, in the sense of Section 2.2, which means that we will also consider
projective algebraic sets that are not absolutely irreducible.

In this chapter, we investigate lower and upper bounds for a constant introduced
by M. Homma in [49], which measures the asymptotic behaviour of the number of
rational points of projective curves over Fq, when the degree becomes large. The
results included in the chapter are contained in [11] and were jointly developed
by P. Beelen, M. Montanucci and the author of this thesis.

In Chapter 2, we recalled the definition of Ihara’s constant A(q) (see (2.1)),
which describes the asymptotic behaviour of the number of rational places of a
function field F over Fq, when the genus g becomes large with respect to q. As
already observed in Section 2.1, the Drinfeld-Vlăduţ bound (see [20]) ensures
that, for any q, Ihara’s constant A(q) satisfies the inequality

A(q) ≤ √
q − 1.

Furthermore, if q is a square, Y. Ihara in [56] and M. Tsfasman, S. Vlăduţ and
T. Zink in [86] proved that A(q) attains this bound, that is, A(q) = √

q − 1.

Lower bounds for A(q) have also been widely investigated in the literature,
especially using the concept of (infinite) towers of function fields. A tower F of
function fields over Fq is an infinite sequence

F = (F0 ⊊ F1 ⊊ F2 ⊊ . . . ⊊ Fn ⊊ . . .)

of function fields defined over Fq, such that

• the genera g(Fi) → ∞ for i→ ∞,

• for every i, Fq is the full constant field of Fi and the extension Fi+1/Fi is
finite and separable.

As a consequence of the Riemann-Hurwitz Genus Formula (see Theorem 2.22),
A. Garcia and H. Stichtenoth showed in [31, Corollary 2.2] that, for any tower F ,
the sequence

{
N(Fi)
g(Fi)

}
i≥0

, where N(Fi) denotes the number of rational places

of Fi, is convergent. Hence, we have the well-defined notion of limit λ(F) of a
tower F , that is,

λ(F) := lim
i→∞

N(Fi)

g(Fi)
.

By equation (2.1) and the definition of λ(F), it immediately follows that

0 ≤ λ(F) ≤ A(q),
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and a tower F over Fq is said asymptotically bad if λ(F) = 0, asymptotically
good if λ(F) > 0 or asymptotically optimal if λ(F) = A(q). This motivates why
studying the limits of towers of function fields and constructing asymptotically
good towers are interesting problems, also to the aim of finding nontrivial lower
bounds for Ihara’s constant A(q). It was in fact using class field towers that J.-P.
Serre proved, in [77], the inequality

A(q) > c log2(q),

for any q and for some constant c > 0 independent of q, which implies in particular
that A(q) > 0 for all q. In [71, Theorem 5.2.9], H. Niederreiter and C. Xing
showed that the constant c can be taken to be c = 1

96 . Later on, constructing
certain recursive towers of function fields with many rational places, A. Bassa, P.
Beelen, A. Garcia and H. Stichtenoth proved in [7] that

A(q) ≥ 2
1

pm−1 + 1
pm+1−1

if q = p2m+1, with m > 0, providing the currently best known lower bound for
A(q) in such cases. However, the exact value of A(q) is unknown when q is not
a square.

Observe that, in the light of Section 2.2 and with the terminology just introduced
above, Ihara’s constant can equivalently be seen as describing the asymptotic
behaviour of rational points of projective, nonsingular, absolutely irreducible
curves defined over Fq. On the other hand, by considering projective irreducible
curves over Fq, with the only requirements of being nondegenerate and of
positive degree, one can investigate a different asymptotic property, namely the
asymptotic behaviour of the number of rational points of such curves when the
degree (instead of the genus) becomes large with respect to q. This property
was first considered by M. Homma in [49], which originated from previous work
developed by himself and S.J. Kim in the series of papers [53–55].

In these papers, the authors showed that, if X is a (possibly absolutely reducible)
plane curve without Fq-linear components, then

|X (Fq)| ≤ (d− 1)q + 1, (5.1)

except for curves isomorphic over F4 to the curve defined by

K : (X + Y + Z)4 + (XY + Y Z + ZX)2 +XY Z(X + Y + Z) = 0,

which satisfies |K(F4)| = 14. The bound (5.1) was originally conjectured by P.
Sziklai in [83], where explicit examples of some curves achieving it had also been
provided. The natural question on whether the bound (5.1) was valid for curves
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in higher dimensional projective spaces Pn, for n ≥ 3, was then analyzed by
M. Homma in [49], where it was shown that equation (5.1) is in fact also true
when n ≥ 3 and X has no Fq-linear components, unless d = q = 4 and X is
Fq-isomorphic to the plane curve K.

In the same paper [49], an analogue of Ihara’s constant A(q) was introduced, by
replacing the genus g with the degree d. More precisely, the following definitions
were given. For a fixed prime power q and a fixed positive integer d, let

Mq(d) := max{|X (Fq)| | X ⊆ Pn, n ≥ 3, irreducible curve of degree d over Fq},

i.e., Mq(d) is the maximum number of Fq-rational points that an irreducible
curve of a fixed degree d, in a projective space of some dimension, can have.
Note that here the dimension of the projective space is not fixed and therefore
allowed to be arbitrarily large. An analogue of A(q) is then defined as

D(q) := lim sup
d→∞

Mq(d)

d
, (5.2)

which measures the asymptotic behavior of the number of rational points of
projective curves over Fq when d becomes large. Throughout the chapter, we
refer to D(q) as Homma’s constant.

In [49], it was already observed that, since the bound (5.1) is valid for curves in
any projective space Pn, n ≥ 2, with the only exception mentioned above, one
may conclude that D(q) ≤ q. Moreover, in the same paper, the lower bound
D(q) ≥ A(q)/2 was also derived.

In the work contained in this chapter, we find new upper and lower bounds for
the value of D(q), by a refinement of Homma’s methods and by using towers of
algebraic function fields. The exact value of D(q) remains unknown for all q.

Our main results are summarized in the following theorem.

Theorem 5.1. Let q = pe be a prime power and let D(q) be Homma’s constant
as defined in (5.2). Then

1. D(q) ≤ q − 1,

2. D(q) ≥ 1 provided that q > 2,

3. D(q2) ≥ q
q+1A(q

2) = q2−q
q+1 .

Note that the lower bound D(q) ≥ 1 is interesting for small values of q only, since
otherwise Homma’s lower bound D(q) ≥ A(q)/2 is better. The values q ≤ 31
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for which the lower bound D(q) ≥ 1 is currently the best known are listed in
Remark 5.5.

The chapter is organized as follows. In Section 5.1, we start by slightly improving
Homma’s upper bound on D(q), refining the argument provided in [49] and thus
proving Item 1 of Theorem 5.1. Subsequently, in Section 5.2, we prove Item 2
of Theorem 5.1. The technique that we use consists in explicitly constructing a
sequence of curves whose degrees are close to their number of rational points.
Finally, in Section 5.3, we prove Item 3 of Theorem 5.1, by making use of a
particular tower of function fields over Fq2 that was constructed recursively by
A. Garcia and H. Stichtenoth in [31].

5.1 An upper bound for D(q): the proof of Item
1 of Theorem 5.1

The upper bound D(q) ≤ q obtained by M. Homma in [49, Proposition 5.4] was
deduced from the bound (5.1), but in the same paper the following theorem was
given.

Theorem 5.2 ([49, Theorem 3.2]). Let X ⊆ Pn be a nondegenerate irreducible
curve of degree d defined over Fq. Then

|X (Fq)| ≤
(q − 1)(qn+1 − 1)

q(qn − 1)− n(q − 1)
d. (5.3)

Using this result, we can already prove Item 1 in Theorem 5.1. Indeed, for a
fixed value of q, considering equation (5.3) and dividing both sides by d gives

|X (Fq)|
d

≤ (q − 1)(qn+1 − 1)

q(qn − 1)− n(q − 1)
=

(q − 1)
(qn+1 − 1)

qn+1

q(qn − 1)

qn+1
− n(q − 1)

qn+1

. (5.4)

This observation can be used to improve the upper bound for D(q). Note
that by taking the lim supd→∞Mq(d)/d as in (5.2), we are by definition of
D(q) considering curves of increasing degree. However, the dimension of the
projective spaces containing the curves will also be increasing as d increases.
Indeed, if for a family of curves (Xi)i≥0, with degrees di tending to infinity as
i tends to infinity, there exists an n ∈ N such that, for all i, Xi ⊆ Pn, then
|Xi(Fq)| ≤ |Pn(Fq)| = (qn+1−1)/(q−1) for all i, implying that |Xi(Fq)|/di tends
to zero as i tends to infinity.
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Now let (Xi)i≥0 be a family of curves with degrees di tending to infinity such that
lim supi→∞ |Xi(Fq)|/di > 0, and assume, for each i, that Xi is a nondegenerate
curve contained in Pni . We have seen that ni tends to infinity as i tends to
infinity, therefore, from equation (5.4), we obtain:

D(q) ≤ lim
i→∞

(q − 1)
(qni+1 − 1)

qni+1

q(qni − 1)

qni+1
− ni(q − 1)

qni+1

= q − 1.

This proves Item 1 of Theorem 5.1.

5.2 A lower bound for D(q): the proof of Item 2
of Theorem 5.1

For a prime power q = pe strictly larger than two, consider the tower of function
fields T = (Tm)m≥1 over Fq defined recursively by

T1 = Fq(x1) and Ti+1 = Ti(xi+1) with xq−1
i+1 = −1+ (xi +1)q−1.

The tower T is similar to an asymptotically good tower considered in [81,
Proposition 7.3.3], but the variation we consider is actually not asymptotically
good.

A first observation is that the zero of x1 in T1 is totally ramified in the tower
and therefore the equation xq−1

i+1 = −1 + (xi + 1)q−1 is absolutely irreducible,
when viewed as a polynomial in Ti[xi+1], for all integers i ≥ 1. Indeed, for all
β ∈ F∗

q , let P (1)
β−1 be the zero of the function x1 − (β − 1) in Fq(x1), and let P (1)

∞
be the pole of x1 in Fq(x1). Note that, with this choice of notations, we have
that the zero of x1 in Fq(x1) is denoted by P (1)

0 = P
(1)
β−1, with β = 1. Let now

u1 := (x1 + 1)q−1 − 1, then we have that

u1 := (x1 + 1)q−1 − 1 =
∏

β ∈ F∗
q

(x1 + 1− β) =
∏

β ∈ F∗
q

(x1 − (β − 1)),

and hence we immediately deduce that the principal divisor of the function u1
in Fq(x1) is

(u1)Fq(x1) =
∑

β ∈ F∗
q

P
(1)
β−1 − (q − 1)P (1)

∞ .



5.2 A lower bound for D(q): the proof of Item 2 of Theorem 5.1 113

Therefore, by Corollary 2.26, we directly obtain that the function field exten-
sion Fq(x1, x2)/Fq(x1) = T2/T1 is Kummer of degree q − 1. This follows for
instance observing that v

P
(1)
0

(u1) = 1, hence P
(1)
0 is a place of Fq(x1) such

that gcd(v
P

(1)
0

(u1), q − 1) = 1. Then, by Proposition 2.25, it follows in particu-

lar that P (1)
0 is totally ramified in Fq(x1, x2)/Fq(x1) and that the polynomial

xq−1
2 +1− (x1+1)q−1, that defines the extension, is irreducible over Fq. Also, de-

noting with P (2)
0 the unique extension of P (1)

0 in T2/T1, we have that v
P

(2)
0

(x2) = 1.
Furthermore, since the above arguments hold as well if we consider the constant
field extensions Fq(x1), Fq(x1, x2), and the extension Fq(x1, x2)/Fq(x1), we also
note that the polynomial xq−1

2 + 1− (x1 + 1)q−1 is in fact absolutely irreducible.
Let now ui := (xi + 1)q−1 − 1 ∈ Ti and consider the extension Ti+1/Ti, for any
i ≥ 2. Repeating the reasoning just discussed, mutatis mutandis, we can then
iteratively show, for all i ≥ 2, that there is exactly one place P (i)

0 that is a zero
of xi in Ti, lies over P (i−1)

0 and is totally ramified in Ti+1/Ti, with P
(i+1)
0 |P (i)

0

being its unique extension. Moreover, it holds that v
P

(i)
0
(xi) = 1 and that the

equation xq−1
i+1 = −1 + (xi + 1)q−1 is absolutely irreducible, when viewed as a

polynomial in Ti[xi+1], for all i ≥ 2.

The fact that the polynomial xq−1
i+1 + 1 − (xi + 1)q−1 ∈ Ti[xi+1] is absolutely

irreducible, for all i ≥ 1, implies in particular that the ideal Iℓ := ⟨xq−1
2 + 1−

(x1+1)q−1, . . . , xq−1
ℓ +1− (xℓ−1+1)q−1⟩ ⊆ Fq[x1, . . . , xℓ] is a prime ideal. Since

we wish to deal with projective curves, the following proposition, concerning the
homogenization of the ideal Iℓ, is essential.

Proposition 5.3. Let ℓ > 1 be an integer and define I ′ℓ := ⟨xq−1
2 + zq−1 −

(x1 + z)q−1, . . . , xq−1
ℓ + zq−1 − (xℓ−1 + z)q−1⟩ ⊆ Fq[x1, . . . , xℓ, z]. Then I ′ℓ is

a homogeneous prime ideal and the homogenization of the prime ideal Iℓ :=
⟨xq−1

2 + 1− (x1 + 1)q−1, . . . , xq−1
ℓ + 1− (xℓ−1 + 1)q−1⟩ ⊆ Fq[x1, . . . , xℓ].

Proof. For convenience, let us write gi := xq−1
i+1 +1− (xi+1)q−1 and g′i := xq−1

i+1 +
zq−1 − (xi + z)q−1. We have already seen that the ideal Iℓ is a prime ideal. Now
let >deglex denote the degree-lexicographic ordering with xℓ >deglex . . . >deglex x1
as a monomial ordering in Fq[x1, . . . , xℓ]. Since under this monomial ordering
the leading terms of the gi are coprime, the set {g1, . . . , gℓ−1} is a Gröbner
basis of Iℓ. Then, from [18, §8.4, Theorem 4], it follows that {g′1, . . . , g′ℓ−1} is a
Gröbner basis for the homogenization of Iℓ, with respect to the monomial ordering
xℓ >deglex . . . >deglex x1 > z in Fq[x1, . . . , xℓ, z]. Hence, I ′ℓ is a homogeneous
prime ideal that is precisely the homogenization of the prime ideal Iℓ.

With Proposition 5.3 in place, consider, for ℓ ∈ Z≥2, the projective algebraic set
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Xℓ ⊆ Pℓ defined over Fq by the homogeneous equations

xq−1
i+1 = −zq−1 + (xi + z)q−1 for i = 1, . . . , ℓ− 1. (5.5)

By Proposition 5.3 and the preceding discussion, we have that Xℓ is actually
an absolutely irreducible projective curve, that is in particular a complete
intersection. Hence, it holds that deg(Xℓ) = deg(g′1) · · · deg(g′ℓ−1) = (q − 1)ℓ−1

(see [23, Theorem III-71]).

Our goal is now to estimate the number of Fq-rational points of Xℓ. To this
aim, we consider the number of projective points [x1 : x2 : · · · : xℓ : 0] satisfying
equation (5.5). Substituting z = 0 in equation (5.5), we obtain that

xq−1
i+1 = xq−1

i for i = 1, . . . , ℓ− 1,

and, choosing x1 = 1, we see that any solution is defined over Fq and that there
are exactly (q−1)ℓ−1 points at infinity on Xℓ. In particular, |Xℓ(Fq)| ≥ (q−1)ℓ−1.
Therefore, we deduce that

D(q) ≥ lim sup
ℓ→∞

|Xℓ(Fq)|
deg(Xℓ)

≥ (q − 1)ℓ−1

(q − 1)ℓ−1
= 1,

which completes the proof of Item 2 of Theorem 5.1.

5.3 A lower bound for D(q2): the proof of Item 3
of Theorem 5.1

In order to prove Item 3 of Theorem 5.1, we use the following tower of function
fields over Fq2 , that was constructed recursively by A. Garcia and H. Stichtenoth
in [31]:

F1 = Fq2(x1) and Fi+1 = Fi(xi+1) with xqi+1+xi+1 =
xqi

xq−1
i + 1

.

This tower is optimal in the sense that, if N(Fi) denotes the number of rational
places and g(Fi) the genus of Fi, then limm→∞N(Fm)/g(Fm) = q − 1 = A(q2),
see [31, Theorem 3.1].

Indeed, by [31, Lemma 3.9], any zero of the function x1 − α in F1, for α ∈
Fq2 \ {α | αq + α = 0}, splits completely in the extension Fm/F1, implying that
N(Fm) ≥ (q − 1)qm. Moreover, in [31, Remark 3.8] it is shown that the genus
g(Fm) of Fm, for any m ≥ 1, is

g(Fm) =

{
(qm/2 − 1)2 if m ≡ 0 (mod 2),

(q
m+1

2 − 1)(q
m−1

2 − 1) if m ≡ 1 (mod 2).
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For computing the genus g(Fm), it is proven that the pole P∞ of x1 ∈ F1

is totally ramified in all extensions Fm/F1, m ≥ 2, see [31, Lemma 3.3] and
also [72, Proposition 1.1]. We denote here by P (m)

∞ the unique extension of P∞

in Fm, for all m ≥ 2. Moreover, note that P (m)
∞ is a rational place, since P∞ is

totally ramified in Fm/F1.

Even though it is in general a difficult challenge to compute the Weierstrass
semigroups at places in a tower, R. Pellikaan, H. Stichtenoth and F. Torres
in [72] computed the Weierstrass semigroup H(P

(m)
∞ ) at P (m)

∞ for all m ≥ 1.
More precisely, they proved that, for any m ≥ 2, the semigroup at P (m)

∞ has a
particularly interesting property, namely it can be computed from the one at
P

(m−1)
∞ by means of a recursive procedure. Indeed, from [72, Theorem 3.1] it

follows that

H(P (m)
∞ ) =

{
Z≥0 if m = 1

qH(P
(m−1)
∞ ) ∪ Z≥cm if m > 1

(5.6)

where cm := qm − q⌈
m
2 ⌉ is the conductor of H(P

(m)
∞ ).

Let {γ1, . . . , γℓ} be a set of generators of H(P
(m)
∞ ), so that

H(P (m)
∞ ) = ⟨γ1, . . . , γℓ⟩,

and 0 < γ1 < · · · < γℓ. Note that equation (5.6) implies that γ1 = qm−1, being
the smallest positive element of H(P

(m)
∞ ). This then implies that H(P

(m)
∞ ) ∩

Z<cm+qm−1 is a generating set and that therefore we may assume

γℓ ≤ cm + qm−1 − 1. (5.7)

By definition of the Weierstrass semigroup H(P
(m)
∞ ), there exist functions

f1, . . . , fℓ ∈ Fm such that

(fi)∞ = γiP
(m)
∞ , i = 1, . . . , ℓ.

In [75], the functions f1, . . . , fℓ are used to define a birational morphism between
a nonsingular projective curve X and a curve X ′, with only one point at infinity.
Intuitively, the idea is to use such functions in order to define a map φm from
the set of places of Fm to an algebraic curve Xm ⊆ Pℓ. This map is easiest to
describe when first extending the constant field of Fm to the algebraic closure
Fq2 of Fq2 , as all the places of F̄m := FmFq2 are rational. We denote by P̄ (m)

∞

the only place of F̄m lying over P (m)
∞ in the constant field extension F̄m/Fm,

see [81, Theorem 3.6.3]. Moreover, with notations as in Section 2.1, we let here
fi(Q) ∈ OQ/Q denote the residue class of the function fi modulo the place Q.
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Since OQ/Q ∼= Fq2 , with slight abuse of notation we can then regard fi(Q) as
an element of Fq2 .

In this setting, we define the map φm in the following way:

φm : P(F̄m) −→ Pℓ,

with
φm(Q) := [1 : f1(Q) : · · · : fℓ(Q)], if Q ̸= P̄

(m)
∞ ,

φm(Q) := [0 : · · · : 0 : 1], otherwise.

By [35, Theorem 4.2.2], it holds that the image of φm is a projective curve
Xm defined over Fq2 , since the functions f1, . . . , fℓ ∈ Fm = Fq2(x1, . . . , xm).
Therefore, we henceforth consider the curve Xm as a curve defined over Fq2 .
Moreover, [75, Theorem 15] ensures that the Fq2-rational function field of Xm

is exactly Fm, that apart from possibly φm(P̄
(m)
∞ ) the curve has no singular

points and that P̄ (m)
∞ is the only place of Fm centered at the point φm(P̄

(m)
∞ ).

In other words, this means that φm induces a bijection between PF̄m
\ {P̄ (m)

∞ }
and Xm(Fq2) \ {φm(P̄

(m)
∞ )}.

Remark 5.4. The curve Xm is a nondegenerate curve in Pℓ. Indeed, if this
was not the case, then there would exist a combination a1 + a2f1 + · · ·+ aℓ+1fℓ,
for some ai ∈ Fq2 not all equal to zero, such that a1 + a2f1 + · · ·+ aℓ+1fℓ ≡ 0,
which is impossible by the linear independence of {1, f1, . . . , fℓ} over Fq2 given
by [81, Proposition 3.6.1].

We now wish to investigate the degree and number of Fq2 -rational points of the
curve Xm. The number of rational points is easy to bound, since the Fq2 -rational
places of Fm are in bijection with the points on Xm defined over Fq2 . Indeed,
the place P (m)

∞ corresponds to the projective point [0 : · · · : 0 : 1], while the
remaining Fq2 -rational points of Xm are nonsingular and hence each corresponds
to a unique rational place of Fm (see Remark 2.33). This shows that

|Xm(Fq2)| = N(Fm) ≥ (q − 1)qm, (5.8)

where the inequality N(Fm) ≥ (q − 1)qm was already mentioned before, as a
consequence of [31, Lemma 3.9].

At this point, we only need to derive some information on the degree deg(Xm)
of the curve Xm. To this aim, we claim that the following chain of inequalities
hold:

deg(Xm) ≤ γℓ ≤ cm + qm−1 − 1. (5.9)

In order to prove it, we start by observing that the last inequality is simply
equation (5.7), therefore it is already settled. Furthermore, let L(γℓP̄

(m)
∞ ) denote
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the Riemann-Roch space of the divisor γℓP̄
(m)
∞ , and let X0, . . . , Xℓ be a choice of

coordinate functions in Pℓ. We note that the points of intersection of the curve
Xm and a hyperplane of equation a0X0+ · · ·+aℓXℓ = 0 in Pℓ correspond, by the
definition of φm, to the places that are zeros of the function a0 +

∑ℓ
i=1 aifi ∈

L(γℓP̄
(m)
∞ ). Then, since the pole divisor of a0 +

∑ℓ
i=1 aifi has degree at most γℓ,

the same is true for its zero divisor, and hence the number of intersection points
is at most γℓ.

Combining equation (5.8) and equation (5.9), and recalling that A(q2) = q − 1,
we hence obtain

D(q2) ≥ lim sup
m→∞

|Xm(Fq2)|
deg(Xm)

≥ lim sup
m→∞

(q − 1)qm

cm + qm−1 − 1
=
q2 − q

q + 1
,

and Item 3 of Theorem 5.1 follows.

Remark 5.5. Item 3 of Theorem 5.1 improves Homma’s lower bound D(q2) ≥
A(q2)/2 for any value of q. The bound D(q) ≥ 1 is instead interesting for small
values of q > 2, since then Homma’s lower bound D(q) ≥ A(q)/2 is weaker.
The following table provides, for those small values of q, the best known lower
bound for A(q)/2. For all other values of q, except possibly when q is a prime,
A(q) ≥ 2.

q A(q)/2 ≥ reference
3 0.2464 [22]
4 0.5 [56, 86]
5 0.3636 [2, 85]
7 0.4615 [42]
8 0.75 [88]
11 0.5714 [42]
13 0.6 [66]
17 0.8 [66]
19 0.8 [42]
23 0.9230 [42]
29 0.9523 [42]
31 0.9523 [42]
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Chapter 6

Conclusion

In this thesis, we investigated various aspects concerning maximal function
fields over finite fields, with a particular focus on Weierstrass semigroups and
their applications to Algebraic Geometry codes. In this concluding chapter,
we summarize the main results that we obtained and reflect on some ideas for
possible future research.

In Chapter 3, we computed the Weierstrass semigroups at all the places of
the maximal function field Fq2(X3), which has the peculiarity of having the
third possible largest genus in the spectrum of genera of maximal function
fields. As a consequence of our results on the Weierstrass semigroups, we were
also able to determine the full automorphism group Aut(Fq2(X3)). Our results
show, quite surprisingly, that Fq2(X3) has several different types of Weierstrass
semigroups and that the set of its Weierstrass places is considerably richer than
the set O ∪R, which corresponds to the set of Fq2-rational places of Fq2(X3),
in the constant field extension Fq2(X3)/Fq2(X3). This behaviour had never
been observed before, in any of the other maximal function fields for which
the Weierstrass places are known. On the other hand, the determination of
Aut(Fq2(X3)) shows that the function field does not seem to be particularly special
with respect to its automorphisms, in the sense that, except for q = 2, 5, 8, the
full automorphism group Aut(Fq2(X3)) consists precisely of the automorphisms
inherited from the Hermitian function field. An interesting problem to be
addressed in future research could for instance be the study of the Weierstrass
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semigroups at the places of the two other known maximal function fields with the
third largest genus, namely Fq2(Y3) and Fq2(Z3), with notations as in Chapter 3.
Indeed, the full understanding of Weierstrass semigroups, Weierstrass places
and automorphisms of these function fields might constitute an important step
towards the characterization of maximal function fields with the third genus.
Techniques involving the knowledge of these objects have in fact already been
used for obtaining characterization results regarding other function fields, see for
instance [26], [1], [28] and [84].

In Chapter 4, we determined the two-point Weierstrass semigroups at certain
pairs of places of the Beelen-Montanucci function fields Fq2n(BMn), for all
n ≥ 3 odd, and of the Skabelund function field Fq4(S̃q). In both cases, we
used the results obtained on the semigroups in order to study two-point AG
codes from the considered function fields. In the case of the Beelen-Montanucci
function fields, it is interesting to note that we find in several cases AG codes
with better parameters with respect to the comparable ones studied in [5] and
constructed from the Garcia-Güneri-Stichtenoth function fields. In the case of
the Skabelund function field Fq4(S̃q), it is instead of interest to observe that,
for all the two-point codes considered, the minimum distance is always at least
that of the best comparable one-point code of the same dimension. However,
in our discussion, we used a weaker version of the generalized order bound
introduced in [8]. Therefore, it would be interesting to use sharper versions of
the order bound (or possibly other bounds) in order to estimate the distance of
the considered two-point codes.

Finally, in Chapter 5, we determined lower and upper bounds for the constant
D(q) introduced by M. Homma in [49]. We used different techniques for the
proofs, including some based on the knowledge of the Weierstrass semigroups at
certain places of a specific tower of function fields. Items 1 and 3 of Theorem 5.1
always improve the bounds for D(q) previously obtained in [49], while Item 2
gives improvements only for values of q ≤ 31, as pointed out in Remark 5.5.
The newly computed bounds contribute to advance the understanding of the
asymptotic behavior of the number of rational points of projective curves over
Fq, when the degree d of the curve becomes large with respect to q. On the other
hand, we do not know whether the bounds stated in Item 1 and 3 of Theorem 5.1
are sharp, and the exact value of D(q) remains unknown for all q. Therefore,
further investigations on D(q) and its relation with Ihara’s constant A(q) could
be interesting, in order to understand more thoroughly the asymptotic behaviour
of rational points of projective curves over Fq.
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