

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 30, 2024

can-logic: Automotive Intrusion Detection via Temporal Logic

Kidmose, Brooke Elizabeth; Meng, Weizhi

Published in:
Proceedings of the 13th International Conference on the Internet of Things

Link to article, DOI:
10.1145/3627050.3627059

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kidmose, B. E., & Meng, W. (2023). can-logic: Automotive Intrusion Detection via Temporal Logic. In
Proceedings of the 13th International Conference on the Internet of Things (pp. 113-120). Association for
Computing Machinery. https://doi.org/10.1145/3627050.3627059

https://doi.org/10.1145/3627050.3627059
https://orbit.dtu.dk/en/publications/df0d2fa2-0059-4c33-b07e-212f0596021d
https://doi.org/10.1145/3627050.3627059

can-logic: Automotive Intrusion Detection via Temporal Logic
Brooke Lampe
blam@dtu.dk

Technical University of Denmark
Kongens Lyngby, Denmark

Weizhi Meng
weme@dtu.dk

Technical University of Denmark
Kongens Lyngby, Denmark

ABSTRACT
The controller area network (CAN) protocol is all but synony-
mous with the terms “automotive network" or “in-vehicle network."
Nearly all modern vehicles leverage one or more controller area net-
works to facilitate intra-vehicle communications. Unfortunately, the
CAN bus is inherently insecure and severely resource-constrained.
As such, researchers, industry experts, and legislators have been
hard-pressed to improve the security of the CAN bus. Automo-
tive intrusion detection has been propounded in the literature as
a lightweight CAN bus security solution. Automotive intrusion
detection systems (IDSs) can solve many of the resource-related
challenges of CAN bus security; unfortunately, they still fall short
in terms of practicability. An IDS capable of successfully detecting
attacks will inevitably raise some false positives. When it comes to
in-vehicle networks, even a relatively low false positive rate, e.g.,
0.0001, would still produce approximately 100 false positives every
1,000,000 messages—that is, every five to ten minutes. Needless to
say, such an IDS would not be practicable.

In this paper, we highlight several engineering-based indica-
tors of compromise (IoCs) that—for all practical purposes—should
never occur in the absence of an attack. We leverage both “normal"
and attack CAN traffic captures to rationalize our IoCs. Next, we
adapt our chosen IoCs to formal specifications. To formalize our
engineering-based IoCs, we examine linear temporal logic (LTL),
metric temporal logic (MTL), and signal temporal logic (STL)—to
be more precise, a first order extension of STL. We conjecture that
many IoCs can be codified as LTL, MTL, and/or STL properties. Fi-
nally, we implement our IoCs in Python and conduct a benchmark
to assess the practicability (in terms of false positives) of our IoCs.
The ultimate goal of our work—beyond the scope of this paper—is to
encode each IoC in temporal logic and construct a formal “monitor"
capable of detecting anomalies in CAN packet traces. The formal
monitor would be an online monitor and would be installed in a
real vehicle to protect it from CAN bus attacks.

KEYWORDS
automotive, controller area network, intrusion detection system,
temporal logic, metric temporal logic, monitor

ACM Reference Format:
Brooke Lampe and Weizhi Meng. 2023. can-logic: Automotive Intrusion
Detection via Temporal Logic. In The International Conference on the Internet

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

IoT 2023, November 07–10, 2023, Nagoya, Japan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0854-1/23/11.
https://doi.org/10.1145/3627050.3627059

of Things (IoT 2023), November 07–10, 2023, Nagoya, Japan. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3627050.3627059

1 INTRODUCTION

Figure 1: Attack-free scenario

The controller area network (CAN) protocol is immanently inse-
cure [6, 22]. It was developed back in the early 1980s [11]—well
before the advent of connected and autonomous vehicles (CAVs).
At the time, automobiles were not connected—they did not have
built-in Bluetooth, Wi-Fi, and cellular connections—and automo-
biles were not autonomous—they did not have advanced driver as-
sistance systems (ADASs), such as parking assist or lane-keeping
assist. Therefore, standard security practices (e.g., authentication,
encryption, etc.) were not incorporated into the protocol. The CAN
protocol is still the de facto standard for in-vehicle networks (IVNs),
and it is as insecure today as it was when it was designed. In Figure
1 depicts the CAN bus under attack-free conditions.

A large body of work—from research papers [6, 18] to proto-
cols [13, 16] to prototypes [20, 27] to standards [27] to legislation
[9, 10]—has been devoted to improving the security of CAN pro-
tocol. Unfortunately, one fundamental problem has inhibited the
widespread adoption of these security improvements: practicability.

The CAN bus is resource-constrained: it has limited bandwidth,
and its endpoints are electronic control units (ECUs) with limited

Figure 2: Vulnerabilities of Controller Area Networks

113

https://orcid.org/0000-0002-6673-6163
https://orcid.org/0000-0003-4384-5786
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3627050.3627059
https://doi.org/10.1145/3627050.3627059
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627050.3627059&domain=pdf&date_stamp=2024-03-22

IoT 2023, November 07–10, 2023, Nagoya, Japan Brooke Lampe and Weizhi Meng

Figure 3: The on-board diagnostic port (left) and a diagnostic
device (right).

computing power. As such, ex post facto attempts to integrate either
authentication [33, 35] or encryption [8, 32] into the CAN bus gen-
erally require significant re-engineering effort as well as new hard-
ware. Similar practicability issues plague new CAN standards, such
as [27]. Automotive intrusion detection systems (IDSs) have been
proposed as a re-engineering-free alternatives to cryptographic
security strategies, but they, too, suffer from practicability issues,
namely, false positives. When it comes to in-vehicle networks, even
a relatively low false positive rate, e.g., 0.0001, would still produce
approximately 100 false positives every 1,000,000 messages—that
is, every five to ten minutes.

In this paper, we identify several engineering-based indicators of
compromise (IoCs) that are virtually guaranteed to indicate an attack.
Then, we adapt our chosen IoCs to formal specifications. For the
purposes of formalizing our engineering-based IoCs, we examine
linear temporal logic (LTL), metric temporal logic (MTL), and signal
temporal logic (STL)—specifically, a first order extension of STL. Our
conjecture is that many IoCs can be codified as LTL, MTL, and/or
STL properties. Ultimately, the goal of this work—beyond the scope
of this paper—is to encode each IoC in temporal logic and construct
a formal “monitor" capable of detecting anomalies in CAN packet
traces. The formal monitor would be an online monitor and would
be installed in a real vehicle to protect it from CAN bus attacks.
In Figure 3, we can see the on-board diagnostic port of a 2016
Chevrolet Silverado. An IoC-based IDS could easily be deployed
on this port, as it is required by law in the United States and the
European Union [1].

Contributions: Our contributions are as follows:
(1) We analyze various CAN bus attacks and identify indicators

of compromise (IoCs) that should never occur in attack-free
conditions. We include snippets of both “normal" CAN traffic
and attack CAN traffic to justify our IoCs.

(2) We adapt our engineering-based IoCs to formal—or semi-
formal—temporal logic to facilitate the use of a formal moni-
tor for automotive intrusion detection.

(3) We implement our IoCs in Python and conduct a bench-
mark to determine if our IoCs can reduce false positives to a
practicable level.

The remainder of this paper is organized as follows: Section 2
motivates our work, Section 3 covers essential background infor-
mation, and Section 4 highlights a number of related works. Then,
Section 5 details our methodology and Section 6 benchmarks our

approach. In Section 7, we analyze the results of our benchmark,
and in Section 8, we discuss limitations and opportunities for future
work. Lastly, in Section 9, we conclude our work.

2 MOTIVATION
Intrusion detection via deep learning models hinges on the mod-
els’ ability to differentiate between benign and anomalous traffic.
An ideal intrusion detection system would produce neither false
positives (benign traffic misclassified as anomalous) nor false nega-
tives (anomalous traffic misclassified as benign). In an automotive
environment, a false positive would alert the driver that an attack is
occurring—and perhaps even attempt mitigation—when, in reality,
there was no attack. A false negative, then, means that the IDS failed
to detect an actual attack. In such a scenario, the driver would not
be warned of the ongoing attack, and no mitigation attempt would
be made.

Deep learning models are not infallible; we would expect to see
some false positives. In contrast, if we develop a formal model using
predicates that we know will always—or never—be true, then we
can reduce false positives. In this context, even a relatively low false
positive rate, e.g., 0.0001, will still produce 100 false positives every
1,000,000 messages—or every five to ten minutes (depending on the
vehicle). If an automotive intrusion detection system raises false
positives every ten minutes, then the user will probably disable it.
At best, the user will become desensitized to the warning, and, if
an attack does occur, he or she might not realize it is, in fact, an
attack—until it is too late.

Deep learning is oft-cited in the literature as a means of reducing
false positives, but although deep learning is capable of remark-
ably low false positive rates (FPRs) of, e.g., 0.005, 0.0001, and even
0.00004 [22], when we receive 1,000,000 messages every five to
ten minutes, then even the best-case scenario, 40 false positives,
is still unacceptable. Therefore, we need to tighten our detection
capability, shifting the bias from false positives to false negatives.

Shifting the bias from false positives to false negatives might be
concerning to some. However, as it stands, most—if not all—vehicles
face a 100% false negative rate. As it is now, there is no protection,
so even if we cannot detect all attacks, we are still significantly
advancing automotive security.

3 BACKGROUND
The term “controller area network" (CAN) is nearly synonymous
with the term “automotive network." The CAN bus has been the de
jure standard in the United States since 2008 [1]; as such, the av-
erage modern automobile implements controller area networks as
one—or more—of its in-vehicle networks (IVNs). IVNs interconnect
an automobile’s electronic control units (ECUs)—i.e., automotive
embedded systems—and its sensors. The CAN bus is amazingly
reliable; alas, it is also spectacularly insecure. The CAN bus was de-
veloped back in 1983 [11], at a time when automobiles did not have
Bluetooth, Wi-Fi, and cellular access. As such, IVN security—i.e.,
CAN bus security—was deemed unnecessary. In order to compro-
mise the CAN bus, the attacker would have to physically access the
vehicle, and, at that point, he or she might as well cut the brakes. As

114

can-logic: Automotive Intrusion Detection via Temporal Logic IoT 2023, November 07–10, 2023, Nagoya, Japan

Figure 4: Attack scenario: Gear spoofing

such, the CAN bus lacks standard security features, e.g., authentica-
tion, authorization, and encryption, etc. Figure 2 highlights several
major vulnerabilities of the CAN bus.

Modern times have given rise to connected and autonomous
vehicles (CAVs), which, as the name implies are connected—e.g., to
the Internet, road-side units, and fellow CAVs—and autonomous.
Autonomous—and even semi-autonomous—vehicles are especially
vulnerable, as they are heavily dependent on electronics. Vehi-
cles that are more autonomous are also more electronic (i.e., less
mechanical), meaning that an attacker can seize control of more
systems. For example, parking assist and lane-keeping assist are
two examples of an automated driver assistance system (ADAS)
that necessitates electronic control of the steering column.

In 2014, security researchers Miller and Valasek conducted a
remote attack on 2014 Jeep Cherokee. They seized control of the
accelerator and the brakes, demonstrating the seriousness of auto-
motive cyberattacks. In 2015, the same researchers implemented a
proof-of-concept attack on the Jeep Cherokee’s steering column,
compelling the vehicle to turn sharply at speed—30 miles per hour
[25, 26]. Figure 4 illustrates a gear-spoofing attack: an attacker gen-
erates spoofed “neutral" messages, overwhelming the true “drive"
messages and prompting the vehicle to shift into “neutral" gear.

In the United States, since 2020, several states have instituted
“right to repair" laws that would allow equipment owners and in-
dependent repair shops to repair various types of equipment (e.g.,
laptops, appliances, farm equipment, and even vehicles). “Right to
repair" laws are intended to facilitate repair rather than disposal—
often in a landfill—and should be better for the environment
[30]. However, there are some concerns with regard to safety
and security. The National Highway Traffic Safety Administra-
tion (NHTSA) instructed automotive manufacturers to disregard
Massachusetts’s “right to repair" law and instead abide by federal
law. Massachusetts’s “right to repair" law requires automotive data
(e.g., telematics) to be remotely accessible. The NHTSA is concerned
that an adversary “could utilize such open access to remotely com-
mand vehicles to operate dangerously, including attacking multiple
vehicles concurrently" [30, 31]. Josh Siegel, an assistant professor
of engineering at Michigan State University who researchers con-
nected and autonomous vehicle (CAV) security, pointed out that the
Massachusetts “right to repair" law gave the automotive industry

approximately one year to build an open data platform—not enough
time to create a safe and secure system [24]. Several more “right to
repair" laws have passed even this year—2023—and will be coming
into force soon. As such, it is urgent that controller area networks
be made secure.

4 RELATEDWORK

Listing 1 A CAN traffic capture. The capture demonstrates a denial
of service (DoS) attack. The red lines indicate attack CAN frames.
(1671905222.535656) can0 1E5#5 CFE1611030001C0

(1671905222.535661) can0 34C#F9BE0F33000D0FD8

(1671905222.536284) can0 000#0000000000000000

(1671905222.536996) can0 000#0000000000000000

(1671905222.537774) can0 0C7#0074 AA47

(1671905222.537779) can0 0F9#025 D40092B489C0C

(1671905222.537844) can0 000#0000000000000000

(1671905222.538581) can0 000#0000000000000000

(1671905222.538838) can0 1CE #180007 FD

(1671905222.539348) can0 000#0000000000000000

(1671905222.539901) can0 1FE#069 E73030000C171

(1671905222.539908) can0 362#00000000

(1671905222.539911) can0 0F1#1 C0500400000

(1671905222.539946) can0 000#0000000000000000

(1671905222.540488) can0 000#0000000000000000

(1671905222.540972) can0 0AA#2 CC12C0D0253F200

(1671905222.540980) can0 0BE #00030005 ABFD

(1671905222.541718) can0 000#0000000000000000

(1671905222.542053) can0 0C9 #8017900000001800

(1671905222.542070) can0 0D3#2CC1

(1671905222.542074) can0 18E#00000072372306 BC

(1671905222.542077) can0 1ED #614004 A3033070DE

(1671905222.542081) can0 135#0200175 ECC161607

(1671905222.542457) can0 000#0000000000000000

(1671905222.543123) can0 000#0000000000000000

(1671905222.543699) can0 000#0000000000000000

(1671905222.544204) can0 0C1#01 C957DA015E5873

(1671905222.544223) can0 0C5#8071 DDFF83BCE1AC

(1671905222.544595) can0 000#0000000000000000

Naldurg, Sen, and Thati [28] developed an online monitor—and
intrusion detection system—for specifications encoded in temporal
logic. They leveraged the EAGLE logic language to implement a pro-
totype IDS, MONID, based on a temporal logic monitor. Naldurg, Sen,
and Thati provide several examples of EAGLE-encoded formulas,
many of which are linear temporal logic (LTL) properties.

Bonakdarpour, Deshmukh, and Pajic [5] emphasized the use
of signal temporal logic (STL) for security and privacy in cyber-
physical systems. They designed an STL extension for cyber-
physical systems security, dubbed “SA-STL," that provides stan-
dard security primitives as first-class predicates, enabling security
professionals to compose machine-checkable security properties.
Bonakdarpour, Deshmukh, and Pajic suggest that online STL moni-
toring should be supplemented by predictive metric temporal logic
(MTL) monitoring.

Jones, Kong, and Belta [17] leveraged STL to define “normal"
system behavior; violations of the STL formulas were then flagged
as anomalies. They conducted two case studies: one on a linear
system and one on a train braking scenario.

115

IoT 2023, November 07–10, 2023, Nagoya, Japan Brooke Lampe and Weizhi Meng

Wu et al. [36] sought to enforce the safety properties of safety-
critical CPSs using real-value logical “shields." Boolean shields can-
not handle real-value signals; therefore, Wu et al. built real-value
shields out of Boolean monitors. Their benchmark included appli-
cations such as automotive powertrains, cruise control, and au-
tonomous driving.

Lettnin et al. [23] explored embedded systems verification—
specifically, temporal property verification. Computability issues
go hand-in-hand with model checking; as such, they investigated
simulation-based verification. They extended the SystemC tempo-
ral checker with new interfaces, equipping it to monitor variables
and functions of embedded systems.

Bartocci et al. [4] surveyed specification-based monitoring in the
context of cyber-physical systems. The survey includes a section
on formal monitoring in automotive CPSs—in particular, runtime
monitoring and property falsification.

Beyond formal monitoring, Huang, Lan, and Yu [15] leveraged
signal temporal logic to build a formal control framework for au-
tonomous vehicles. Yu and Gligor [37] developed temporal logic-
based specifications to address denial of service (DoS), which they
regard as both a safety and a liveness problem.

5 METHODOLOGY
To investigate the indicators of compromise that appear in
attack traffic but not attack-free traffic, we leveraged the
can-train-and-test dataset [19, 21]. We exploited both manual
(e.g., visual inspection) and programmatic (e.g., filtering, counting,
calculating intervals) analysis techniques.

Here, we provide several attack traffic samples, which exhibit
the indicators of compromise enumerated in this section:

• Listing 1 illustrates a denial of service (DoS) attack—albeit an
unsophisticated one. We can see that the patterns exhibited
by a DoS attack are markedly different from the patterns
exhibited by a gear spoofing attack.

• Listing 2 provides a CAN traffic snippet from a fuzzing at-
tack. Random arbitration identifiers, paired with randomly
generated data fields, are transmitted to the CAN bus.

• Listing 3 showcases a gear spoofing attack, in which the
vehicle is tricked into shifting to the “neutral" gear.

5.1 Indicators of Compromise (IoCs)
We have identified four types of attacks—(1) DoS, (2) fuzzing, (3)
replay, and (4) spoofing—to be detected via temporal logic predi-
cates. For each attack, we have specified patterns to be transcribed
into formal temporal logic predicates.

(1) Denial of Service (DoS) (See Listing 1)
(a) An interval of less than one-half the shortest “normal" interval—

i.e., the shortest attack-free interval—is highly suspicious.
(b) The identifier 000 is highly suspicious (it is not a legitimate iden-

tifier in the four vehicles we have evaluated).
(c) A value of 0000000000000000 for the data field can be valid—e.g.,

all four wheels are reporting zero speed because the car is stopped
at a red light—but it is also associated with unsophisticated DoS
attacks.

(d) If the valid arbitration IDs are 0C1, 0C5, 0C9, 0F1, 0F9, 120, 12A,
134, 138, etc., then 0C1 is the highest-priority arbitration ID. If
we see 0C1 more than twice in a row, then it is highly suspicious

Listing 2A CAN traffic capture. The capture demonstrates a fuzzing
attack. The red lines indicate attack CAN frames.
(1671907705.772800) can0 1C6#2 E392C8100034DFC

(1671907705.772815) can0 1C7#08 D2B72C00003F

(1671907705.772819) can0 1E5#5 C002210000000CA

(1671907705.772823) can0 1FC#FF3D0068000081F3

(1671907705.773036) can0 131#9742

(1671907705.773889) can0 0F1#1 C0500400000

(1671907705.774207) can0 767#

(1671907705.775279) can0 1EC#5874 D575E1498948

(1671907705.776028) can0 17D#222442 FF0017

(1671907705.776046) can0 1CE #080007 FF

(1671907705.776352) can0 678#70724 A2D62477D63

(1671907705.777146) can0 137#1 F020FE52E0F5C0A

(1671907705.777431) can0 3C9#B3

(1671907705.778229) can0 0C7 #00234882

(1671907705.778240) can0 0F9#00 AA40184A0E631E

(1671907705.778505) can0 3AE#

(1671907705.779308) can0 1CC #0000000000

(1671907705.779329) can0 1E1 #000000000314 E0

(1671907705.779585) can0 10D#1 CC1FA2A6F561A70

(1671907705.780410) can0 0AA#2 C5F2C6102539E24

(1671907705.780448) can0 0C1#41 D11D4C82B2A198

(1671907705.780459) can0 0BE #0001240591 FF

(1671907705.780820) can0 376#3 FDC

(1671907705.781533) can0 0C5#803 E9F0D40682148

(1671907705.781545) can0 0C9 #8013190023001800

(1671907705.781553) can0 0D1#C002FFFB00FD00

(1671907705.781562) can0 0D3#2C5F

(1671907705.781566) can0 1E5#5 C002230000000EA

(1671907705.781911) can0 694#11 B3E209FB65

(we have never seen the same arbitration ID repeated twice—let
alone thrice—under attack-free conditions).

(2) Fuzzing (See Listing 2)
(a) An interval of less than one-half the shortest “normal" interval—

i.e., the shortest attack-free interval—is highly suspicious.
(b) If the valid arbitration IDs are If the valid arbitration IDs are 0C1,

0C5, 0C9, 0F1, 0F9, 120, 12A, 134, and 138, then an arbitration ID
of 0BB would be indicative of a fuzzing attack. Note that arbitra-
tion IDs are constrained to 11 bits, so 7FF would be the largest
possible arbitration ID (and also the lowest priority). We could
check that no arbitration ID exceeds 7FF, but since the protocol
does not allow for larger arbitration IDs, it is doubtful that such
a message could even be sent.

(3) Replay
(a) An interval of less than one-half the shortest “normal" interval—

i.e., the shortest attack-free interval—is highly suspicious.
(b) If we see the same arbitration ID more than twice in a row, it is

highly suspicious.
(c) If one arbitration ID suddenly becomes more frequent, it is highly

suspicious. Typically, we would expect an attacker to launch a
replay attack in order to manipulate the vehicle’s behavior—e.g.,
an attacker might replay a gear message that says “reverse” when
the vehicle has since shifted to the “drive" gear. If successful,
the replayed message would damage the transmission (i.e., strip
the gears). In such cases, the attacker must overwhelm the real
message (“drive" gear) with the replayed message (“reverse" gear).
Often, overwhelming the real message requires a high volume
of replayed messages. As such, we would expect to see the same
arbitration ID more frequently.

(d) Unfortunately, a replay attack replays a legitimate message, so
the message itself would not be suspicious. We could check

116

https://bitbucket.org/brooke-lampe/can-train-and-test/src/master/

can-logic: Automotive Intrusion Detection via Temporal Logic IoT 2023, November 07–10, 2023, Nagoya, Japan

Listing 3 A CAN traffic capture. The capture demonstrates a gear
spoofing attack (the “neutral" gear is spoofed). The red lines indicate
attack CAN frames.
(1674131126.787240) can0 1CC #0000000000

(1674131126.787250) can0 0C1#109 F068B507C8CC5

(1674131126.787644) can0 1F5#0 D0D000300020300

(1674131126.788317) can0 0C5#511 F872A10C008BB

(1674131126.788328) can0 0D1 #00000000000000

(1674131126.788332) can0 185#1 BF2

(1674131126.788336) can0 1C7#096 EF68F00003F

(1674131126.788339) can0 1E5#5 C00325007000121

(1674131126.789404) can0 0AA#2 BBD2BF480540C00

(1674131126.790481) can0 0BE#0 C02000591FB

(1674131126.790490) can0 0C9#800 F8E2D00081800

(1674131126.790493) can0 0D3#2BC3

(1674131126.790496) can0 1A1 #002641414 E4000

(1674131126.790498) can0 18E#00001064 A63D063D

(1674131126.790500) can0 1A3#80

(1674131126.791111) can0 1F5#0 D0D000300020300

(1674131126.791578) can0 1ED #61410000000070 DE

(1674131126.791584) can0 1AA#0063 D6646A7009

(1674131126.791587) can0 1BA #069569566 D695970

(1674131126.791590) can0 1C3#064 A069500000000

(1674131126.792649) can0 1C4#6 D62C50F060003FD

(1674131126.792654) can0 1C5#2 BE92BE92D59

(1674131126.792657) can0 1CE #100007 FE

(1674131126.792659) can0 1DF #80000000

(1674131126.792662) can0 1F4 #000000000000

(1674131126.792664) can0 287#000000

(1674131126.794197) can0 1F5#0 D0D000300020300

(1674131126.795848) can0 0F1 #000705400000

(1674131126.796836) can0 1F5#0 D0D000300020300

for repeated messages, but some messages would normally be
repeated—e.g., if we are stopped at a red light, the message
0000000000000000 would be sent repeatedly by the ECU that
reports wheel speeds.

(4) Spoofing (see Listing 3 and Figure 4)
(a) An interval of less than one-half the shortest “normal" interval—

i.e., the shortest attack-free interval—is highly suspicious.
(b) If we see the same arbitration ID more than twice in a row, it is

highly suspicious.
(c) If one arbitration ID suddenly becomes more frequent, it is highly

suspicious. The justification for this phenomenon is similar to the
justification for the same phenomenon during a replay attack.

(d) Unfortunately, spoofing attacks are intended to spoof a somewhat
“normal" value in order to induce a certain behavior—e.g., spoofing
“reverse" for the current gear while driving in order to damage
the transmission (i.e., strip the gears). As such, spoofed messages
will generally appear legitimate.

Several of the above patterns are exhibited by multiple types of
attacks. As such, we elected to focus on the following patterns:

(1) An inter-message interval of less than one-half the shortest
“normal" interval (i.e., the shortest attack-free interval).

(2) An arbitration identifier that appears thrice in a row (or
more).

(3) An arbitration identifier that is invalid (i.e., an arbitration
identifier that does not belong to the set of unique arbitration
identifiers collected under attack-free conditions).

If an attacker wishes to physically affect the vehicle, then he
or she will need to send high-frequency attack messages in order

to overwhelm (i.e., drown out) legitimate messages originating
from the real ECU. High-frequency messages result in shorter inter-
message intervals, which will be detected by the first pattern. The
first pattern will also detect attacks in which the attacker varies the
arbitration identifier in order to avoid detection. The second pattern
is geared toward the detection of replay and spoofing attacks, as
messages with the same arbitration ID must be sent repeatedly in
order to manipulate the vehicle. The third pattern is intended to
detect fuzzing attacks, which generate invalid arbitration IDs. The
third pattern would also detect the 000 arbitration IDs common in
unsophisticated denial of service (DoS) attacks.

5.2 Logics
Our traces are time-ordered—and timestamped—therefore, to en-
code our engineering-based IoCs into logical properties, we focus
on temporal logic. As the name suggests, temporal logic specifies
properties over time [14]. Temporal logics include linear temporal
logic (LTL) [12], metric temporal logic (MTL) [7], signal temporal
logic (STL) [3], real-time temporal logic (RTL) [2], computation tree
logic (CTL), and temporal logic of actions (TLA)—to name a few.

Two types of properties are commonly expressed in temporal
logic: (1) safety and (2) liveness. A safety property specifies that
something bad must not happen, whereas a liveness property asserts
that something good must happen [14, 37].

In the literature, concurrent programming and deadlock pre-
vention are often cited as applications of temporal logic [4, 29]. In
addition, temporal logic can (1) describe the behavior of finite-state
systems (e.g., industrial control systems) [14] and (2) monitor cyber-
physical systems (CPSs) [4, 5]. The cyber-physical applications of
temporal logic are discussed in detail in the Related Work section.

In this work, we explore the following logics:

(1) Linear temporal logic (LTL): Boolean predicates, discrete
time

(2) Metric temporal logic (MTL): Boolean predicates, real
time

(3) Signal temporal logic (STL): Real-value predicates, real
time

LTL, MTL, and STL are all expressed over a single computational
path or run—whereas CTL (and others) are expressed over a tree of
possible executions. Essentially, LTL, MTL, and STL are linear-time
logics, while CTL (and others) are branching-time logics.

Of the aforementioned linear-time logics, LTL is the least expres-
sive; STL is the most expressive. However, expressiveness comes at
the cost of computability. Our goal is to select the logic most suited
to each IoC. Any finite trace-suitable variant of the above logics
would be satisfactory.

For the first IoC, we use STL—or rather, a first-order extension of
STL. Specifically, we leverage signal first-order logic (SFO) [3]. To
adapt this IoC into SFO, we need to move the time interval into a
signal dimension; now, our signal dimensions are (1) timestamp, (2)
arbitration ID, (3) data field, and (4) time since the previous message.
We also need to establish a baseline for the “normal" time interval;
we can determine this baseline from our traces of attack-free CAN
traffic.

𝜑1 ≡ ∀ 𝑠, 𝑠′ : 𝑠 ≠ 𝑠′ → 𝐺 (|𝑠𝑡 − 𝑠′𝑡 | ≥ 𝑛𝑡)

117

IoT 2023, November 07–10, 2023, Nagoya, Japan Brooke Lampe and Weizhi Meng

The 𝑠 term refers to a distinct sample (i.e., a distinct signal). The
𝑡 superscript refers to the time since the previous message, and the
𝑛𝑡 term refers to the “normal" time interval.

For the second IoC, we can use LTL, as below:

𝜑2 ≡ 𝐺¬(𝑖𝑑 ∧ 𝑋𝑖𝑑 ∧ 𝑋𝑋𝑖𝑑)
The 𝑖𝑑 term refers to the arbitration identifier.
For the third IoC, we can again use LTL. We will obtain the set

of valid arbitration identifiers from an attack-free CAN traffic trace.

𝜑3 ≡ 𝐺 (𝑖𝑑1 ∨ 𝑖𝑑2 ∨ 𝑖𝑑𝑛)
Here, 𝑛 is the number of valid arbitration identifiers, and each

𝑖𝑑 corresponds to a valid arbitration ID from the set we collected
from the attack-free trace.

LTL, MTL, and STL are all temporal logics, which were selected
in order to reduce cognitive load. Given that the formulas relevant
to detecting certain attacks are quite small, we can—potentially—
achieve lightweight monitors. In the case of LTL, for example,
our formulas will result in relatively small finite automata, which,
when implemented, would yield lightweight monitors, a signifi-
cant engineering (i.e., computational) advantage. For the resource-
constrained environment of an automotive, lightweight monitors
are non-negotiable. However, while we can encode MTL formulas
as LTL, we elect to use MTL because it provides a more compact
representation of the predicate.

6 BENCHMARK
For our benchmark, we initially planned to implement a formal
monitor—using the metric-temporal-logic [34] Python package.
However, we quickly realized that such an implementation would
be prohibitively slow: during development and debugging, we used
a tiny subset of our data—only 1,000 attack-free messages and 100
attack messages—and the program execution still took several min-
utes. Therefore, we shifted to an engineering-based implementation
for our proof-of-concept benchmark.

Tables 1, 2, 3, and 4 provide the TP, TN, FP, FN metrics for the
following combinations of patterns: Patterns #1, #2, and #3; Pattern
#1; Pattern #2; and Pattern #3. All patterns were evaluated against
all sub-datasets and all testing subsets.

Table 1: TP, TN, FP, FN Metrics - Patterns #1, #2, and #3

Sub-dataset, True True False False
Testing subset Positives Negatives Positives Negatives
#1, #1 34595 5635751 3486 28516
#1, #2 163420 2611190 3672357 577
#1, #3 6473 8613422 917 13772
#1, #4 6742 9484369 3721864 6991
#2, #1 6710 13205750 483 7023
#2, #2 18651 52389 8372869 424
#2, #3 11512 12119170 2044 17222
#2, #4 18002 30753 4741126 0
#3, #1 107031 8411456 1543 52004
#3, #2 115637 1655931 5041439 37425
#3, #3 5024 9427485 2185 12980
#3, #4 142492 1672596 5073424 6694
#4, #1 102585 6742297 3723 46601
#4, #2 51417 86708 17262808 972
#4, #3 56813 6695843 1527 96249
#4, #4 208457 39748 7922459 4441

Table 2: TP, TN, FP, FN Metrics - Pattern #1

Sub-dataset, True True False False
Testing subset Positives Negatives Positives Negatives
#1, #1 0 5638813 424 63111
#1, #2 12 6283072 475 163985
#1, #3 0 8613423 916 20245
#1, #4 2 13205753 480 13731
#2, #1 2 13205753 480 13731
#2, #2 2 8424348 910 19073
#2, #3 1 12120090 1124 28733
#2, #4 0 4771761 118 18002
#3, #1 0 8412999 0 159035
#3, #2 0 6697370 0 153062
#3, #3 0 9429670 0 18004
#3, #4 0 6746020 0 149186
#4, #1 0 6746020 0 149186
#4, #2 0 17349516 0 52389
#4, #3 0 6697370 0 153062
#4, #4 0 7962207 0 212898

Table 3: TP, TN, FP, FN Metrics - Pattern #2

Sub-dataset, True True False False
Testing subset Positives Negatives Positives Negatives
#1, #1 34595 5636175 3062 28516
#1, #2 50898 6278897 4650 113099
#1, #3 80 8614338 1 20165
#1, #4 48 13206230 3 13685
#2, #1 48 13206230 3 13685
#2, #2 788 8425242 16 18287
#2, #3 11511 12120294 920 17223
#2, #4 12122 4771526 353 5880
#3, #1 27000 8411456 1543 132035
#3, #2 17513 6695843 1527 135549
#3, #3 4370 9427485 2185 13634
#3, #4 91789 6742297 3723 57397
#4, #1 91789 6742297 3723 57397
#4, #2 0 17349512 4 52389
#4, #3 17513 6695843 1527 135549
#4, #4 20566 7960889 1318 192332

Table 4: TP, TN, FP, FN Metrics - Pattern #3

Sub-dataset, True True False False
Testing subset Positives Negatives Positives Negatives
#1, #1 0 5639237 0 63111
#1, #2 163420 2611365 3672182 577
#1, #3 6393 8614339 0 13852
#1, #4 6693 9484695 3721538 7040
#2, #1 6661 13206233 0 7072
#2, #2 18651 52396 8372862 424
#2, #3 0 12121214 0 28734
#2, #4 18002 30754 4741125 0
#3, #1 89353 8412999 0 69682
#3, #2 115377 1656043 5041327 37685
#3, #3 654 9429670 0 17350
#3, #4 142462 1672611 5073409 6724
#4, #1 10796 6746020 0 138390
#4, #2 51417 86708 17262808 972
#4, #3 43968 6697370 0 109094
#4, #4 208457 39748 7922459 4441

7 DISCUSSION OF RESULTS
We were surprised to observe a significant number of false posi-
tives when evaluating Pattern #1 (i.e., the inter-message interval
is too short), Pattern #2 (i.e., the arbitration identifier repeats too
often), and—especially—Pattern #3 (i.e., the arbitration identifier is

118

https://pypi.org/project/metric-temporal-logic/

can-logic: Automotive Intrusion Detection via Temporal Logic IoT 2023, November 07–10, 2023, Nagoya, Japan

invalid). For Pattern #2 in particular, the false positives were rela-
tively low compared to the true positives; even so, it was more than
we had expected—and more than would be tolerable in a real-world
setting. However, upon manual review, we realized that many of
the false alarms were occurring because a legitimate message was
sandwiched between two or more attack messages. Naturally, the
legitimate message would have a very short inter-message interval;
therefore, it would be flagged—erroneously—as an attack message
by Pattern #1. Similarly, when a legitimate message appears be-
tween several attack messages that share its arbitration identifier
(i.e., during a spoofing attack or a masquerade attack), then the
legitimate message would become part of a pattern of repeated
arbitration identifiers, which would be detected by Pattern #2. Es-
sentially, our IoCs are correctly detecting an attack, but they are
misidentifying legitimate messages as attack messages. Pattern #3
never generated false positives when the training vehicle and the
testing vehicle were the same. However, when the testing vehicle
was a different vehicle—especially a vehicle produced by a different
manufacturer—then there would be a significant volume of false
positives. Naturally, Pattern #3, which captures the valid arbitration
identifiers for a specific vehicle (and raises the alarm if it encoun-
ters an invalid arbitration identifier for that specific vehicle), would
need to be re-trained for each new vehicle. All in all, we believe that
our technique is effective. We will continue to explore techniques
that can help us to further reduce false positives.

One of the advantages of our IoC-based IDS is that it requires
very little “normal" training data—just enough to determine what
constitutes the minimum “normal" time interval, and which unique
arbitration identifiers are valid. It requires no attack data whatso-
ever, and it can still detect many types of attacks. Training and
testing are rapid; moreover, training can be expedited by reducing
the quantity of “normal" traffic that is used in training. Of course,
we would still need enough “normal" data to select an appropriate
“normal" time interval and ensure that we have accounted for all
the unique arbitration IDs. Future work might involve optimizing
the volume of “normal" traffic used to “train" each pattern—i.e.,
determine the appropriate parameters for each pattern.

Compared to previous work based on the can-train-and-test
dataset [19, 21] dataset, our approach is much faster. We have
achieved better metrics—in terms of accuracy, precision, recall,
and F1-score—than many of the machine learning-based IDSs. In
particular, with Patterns #1 and #2, we have achieved a much lower
false positive rate than many of the machine learning-based IDSs
actually capable of detecting attacks (we exclude machine learning-
based IDSs that are completely biased to the “negative" label and
never output the “positive label).

That said, our technique does result in false negatives, and, in
a real-world scenario, there is a chance that our technique might
fail to detect a particularly clever or sophisticated attack. Never-
theless, our IoC-based IDS adds a lot of security (compared to the
minimal—even nonexistent—security of today’s automobiles) with-
out sacrificing practicability. We hope that the practicability of
our approach will encourage adoption—both by consumers and by
automotive manufacturers.

8 LIMITATIONS & FUTUREWORK
Formal Monitoring. We have encoded our engineering-based
IoCs into formal temporal logic. Next, we plan to construct a for-
mal monitor capable of detecting anomalies in CAN packet traces.
Our attempt to leverage the metric-temporal-logic [34] Python
package was unsuccessful, as it was much too slow to be practicable.
Therefore, we plan to investigate alternate Python packages as well
as alternate software platforms.

Online Monitoring. Once we have successfully developed a
formal offline monitor, we plan to adapt the monitor from the
offline, packet trace scenario to the online, live vehicle scenario.
Offline monitors are finite, whereas online monitors are infinite. As
such, we will need to investigate potential issues with decidability
when we transition from finite to infinite. Ultimately, our goal is
to develop an online monitor that can be plugged into a vehicle’s
on-board diagnostic port, as shown in Figure 3.

Mitigation.When implemented, the monitor should function
in an anticipatory fashion; that is, it should detect attacks as early
as possible to facilitate mitigation. The longer the attack continues
(i.e., the more messages the attacker is able to deliver), the more
damage—to the vehicle and others—might occur. For example, one
spoofed “reverse" message will not overwhelm all the valid “drive"
messages. Therefore, if we can stop the attack before the vehicle’s
transmission is tricked into shifting into “reverse," then we can
prevent damage.

The mitigation is simple, immediate, and effective, but, to under-
stand it, we have to understand the CAN protocol. The controller
area network is a dual-wire differential protocol. In essence, the
voltage difference between CAN HIGH and CAN LOW enables com-
munication. Thus, if we connect CAN HIGH either to CAN LOW or
to the ground (i.e., if we short CAN HIGH), then the difference in
voltage will disappear, and no further communication can occur.
When this happens the electronic control units (ECUs) will fall back
to fail-safe defaults, and the attack will be thwarted. However, this
is a rather extreme response, so it is absolutely critical to minimize
false positives before implementing this mitigation technique.

9 CONCLUSION
In this paper, we investigated indicators of compromise (IoCs) in
CAN attack traffic. Specifically, we curated IoCs that should never
appear in attack-free traffic; as such, hypothetically, they should
never produce false positives. We justified our IoCs with snippets
of CAN traffic captures. Next, we adapted our curated IoCs to for-
mal specifications—with the ultimate goal of constructing a formal
monitor. To formalize our engineering-based IoCs, we explored lin-
ear temporal logic (LTL), metric temporal logic (MTL), and signal
temporal logic (STL)—or, more precisely, a first order extension
of STL. We made the conjecture that many IoCs could be codified
as LTL, MTL, and/or STL properties. Finally, we implemented our
IoCs in Python and conducted a benchmark to assess the practi-
cability of our IoCs—particularly in terms of false positives. We
were surprised to discover that all of our IoCs produced non-zero
false positives when pitted against some sub-datasets and testing
subsets. However, upon manual inspection, we realized that many
of the “false positives" were legitimate messages that appeared in
between attack messages. That is to say, many of our false positives

119

https://bitbucket.org/brooke-lampe/can-train-and-test/src/master/
https://pypi.org/project/metric-temporal-logic/

IoT 2023, November 07–10, 2023, Nagoya, Japan Brooke Lampe and Weizhi Meng

occurred during attack conditions, even if the messages that were
flagged were not actually attack messages. In addition, some false
positives occurred because the “normal" behavior of the original
training vehicle did not match the “normal" behavior of a different
testing vehicle (different manufacturer and/or model). In our future
work, we plan to develop a lightweight formal monitor to replace
our engineering-based implementation. The formal monitor will
ultimately be converted from an offline to an online monitor and
will be installed in a real vehicle.

ACKNOWLEDGMENTS
We would like to thank our test drivers, especially Christian Lampe,
Julie Lampe, and Wayne & Vickie Olsen.

REFERENCES
[1] Environmental Protection Agency. 1999. Control of Air Pollution

From New Motor Vehicles; Compliance Programs for New Light-
Duty Vehicles and Light-Duty Trucks. National Archives (1999).
https://www.federalregister.gov/documents/1999/05/04/99-9062/control-
of-air-pollution-from-new-motor-vehicles-compliance-programs-for-new-
light-duty-vehicles-and

[2] Rajeev Alur and Thomas A. Henzinger. 1992. Logics and Models of Real Time: A
Survey. Cornell University (1992). https://ecommons.cornell.edu/handle/1813/
7102

[3] Alexey Bakhirkin, Thomas Ferrère, Thomas A. Henzinger, and Deian Ničkovićl.
2018. The First-Order Logic of Signals. 2018 International Conference on Embedded
Software (EMSOFT) (2018). https://ieeexplore.ieee.org/document/8537203

[4] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded
Maler, Dejan Ničković, and Sriram Sankaranarayanan. 2018. Specification-Based
Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and Appli-
cations.. In Lectures on Runtime Verification: Introductory and Advanced Topics
(2018), Ezio Bartocci and Yliès Falcone (Eds.). Springer International Publishing,
135 – 175. https://link.springer.com/chapter/10.1007/978-3-319-75632-5_5

[5] Borzoo Bonakdarpour, Jyotirmoy V. Deshmukh, and Miroslav Pajic. 2018. Op-
portunities and Challenges in Monitoring Cyber-Physical Systems Security.. In
Leveraging Applications of Formal Methods, Verification and Validation. Industrial
Practice (2018-10-30), Tiziana Margaria and Bernhard Steffen (Eds.), Vol. 11247.
Springer International Publishing, 9 – 18. https://link.springer.com/chapter/10.
1007/978-3-030-03427-6_2

[6] Mehmet Bozdal, Mohammad Samie, Sohaib Aslam, and Ian Jennions. 2020. Eval-
uation of CAN Bus Security Challenges. Sensors 20 (2020). https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC7219335/

[7] Christoph Brzoska. 1995. Temporal logic programming with metric and past
operators.. In Executable Modal and Temporal Logics (1995), Michael Fisher and
Richard Owens (Eds.), Vol. 897. Springer Berlin Heidelberg, 21 – 39. https:
//link.springer.com/chapter/10.1007/978-3-319-75632-5_5

[8] Tri P. Doan and Subramaniam Ganesan. 2017. CAN Crypto FPGA Chip to Secure
Data Transmitted Through CAN FD Bus Using AES-128 and SHA-1 Algorithms
with A Symmetric Key. SAE International (2017). https://saemobilus.sae.org/
content/2017-01-1612/

[9] United Nations Economic Commission for Europe (UNECE). 2021. Three land-
mark UN vehicle regulations enter into force. United Nations Economic Com-
mission for Europe (UNECE) (2021). https://unece.org/sustainable-development/
press/three-landmark-un-vehicle-regulations-enter-force

[10] United Nations Economic Commission for Europe (UNECE). 2021. UN
Regulation No. 155 - Cyber security and cyber security management
system. United Nations Economic Commission for Europe (UNECE)
(2021). https://unece.org/transport/documents/2021/03/standards/un-regulation-
no-155-cyber-security-and-cyber-security

[11] Ian Foster and Karl Koscher. 2015. Exploring Controller Area Networks. ;login: 40
(2015), 6 – 10. https://www.usenix.org/system/files/login/articles/login_dec15_
02_foster.pdf

[12] Giuseppe De Giacomo and Moshe Y. Vardi. 2013. Linear Temporal Logic and
Linear Dynamic Logic on Finite Traces.. In Proceedings of the Twenty-Third Inter-
national Joint Conference on Artificial Intelligence (IJCAI ’13). AAAI Press, 854 –
860. https://www.ijcai.org/Proceedings/13/Papers/132.pdf

[13] Robert Bosch GmbH. 2023. CAN XL: Next step in CAN evolution. Bosch semi-
conductors for Automotive (2023). https://www.bosch-semiconductors.com/ip-
modules/can-protocols/can-xl/

[14] Reinhard Gotzhein. 1992. Temporal logic and applications—a tutorial. Computer
Networks and ISDN Systems 24, 3 (1992), 203–218. https://doi.org/10.1016/0169-
7552(92)90109-4

[15] Zhiyuan Huang, Weiyao Lan, and Xiao Yu. 2023. A Formal Control Framework
of Autonomous Vehicle for Signal Temporal Logic Tasks and Obstacle Avoidance.
IEEE Transactions on Intelligent Vehicles (2023), 1 – 10. https://ieeexplore.ieee.
org/document/10144389

[16] CAN in Automation (CiA). 2023. CAN FD - The basic idea. CAN in Automation
(CiA) (2023). https://www.can-cia.org/can-knowledge/can/can-fd/

[17] Austin Jones, Zhaodan Kong, and Calin Belta. 2014. Anomaly detection in cyber-
physical systems: A formal methods approach. 53rd IEEE Conference on Decision
and Control (2014). https://ieeexplore.ieee.org/document/7039487

[18] Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno Shwetak Patel,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, and Stefan Savage. 2010. Experimental Security Analysis of a Modern
Automobile. IEEE Symposium on Security and Privacy (2010). http://www.autosec.
org/pubs/cars-oakland2010.pdf

[19] Brooke Lampe. 2023. can-train-and-test. Bitbucket (2023). https://bitbucket.org/
brooke-lampe/can-train-and-test/src/master/

[20] Brooke Lampe and Weizhi Meng. 2022. IDS for CAN: A Practical Intrusion
Detection System for CAN Bus Security. 2022 IEEE Global Communications
Conference (GLOBECOM 2022) (2022). https://ieeexplore.ieee.org/document/
10001536

[21] Brooke Lampe and Weizhi Meng. 2023. can-train-and-test: A Cu-
rated CAN Dataset for Automotive Intrusion Detection. arXiv (2023).
arXiv:2308.04972 [cs.CR] https://arxiv.org/pdf/2308.04972.pdf

[22] Brooke Lampe andWeizhi Meng. 2023. A survey of deep learning-based intrusion
detection in automotive applications. Expert Systems with Applications 221 (2023),
119771. https://doi.org/10.1016/j.eswa.2023.119771

[23] Djones Lettnin, Pradeep K. Nalla, Jurgen Ruf, Thomas Kropf, Wolfgang Rosenstiel,
Tobias Kirsten, Volker Schonknecht, and Stephan Reitemeyer. 2008. Verification of
Temporal Properties in Automotive Embedded Software. 2008 Design, Automation
and Test in Europe (2008). https://ieeexplore.ieee.org/document/4484680

[24] Aarian Marshall. 2023. A Fight Over the Right to Repair Cars Takes a Wild Turn.
Wired (2023). https://www.wired.com/story/right-to-repair-cars-hackers/

[25] Charlie Miller and Chris Valasek. 2015. Remote Exploitation of an Unaltered
Passenger Vehicle. IOActive (2015). https://ioactive.com/wp-content/uploads/
2018/05/IOActive_Remote_Car_Hacking-1.pdf

[26] Charlie Miller and Chris Valasek. 2016. CAN Message Injection. Illmatics (2016).
https://illmatics.com/can%20message%20injection.pdf

[27] Mohomad Mokhadder, Mark Zachos, and John Potter. 2023. Evaluation of Vehicle
System Performance of an SAE J1939-91C Network Security Implementation..
In WCX SAE World Congress Experience (2023-04-11). SAE International. https:
//doi.org/10.4271/2023-01-0041

[28] Prasad Naldurg, Koushik Sen, and Prasanna Thati. 2004. A Temporal Logic Based
Framework for Intrusion Detection.. In Formal Techniques for Networked and
Distributed Systems – FORTE 2004 (2004), David de Frutos-Escrig and Manuel
Núñez (Eds.), Vol. 11247. Springer Berlin Heidelberg, 359 – 376. https://link.
springer.com/chapter/10.1007/978-3-030-03427-6_2

[29] Amir Pnueli. 1977. The temporal logic of programs. 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977) (1977). https://ieeexplore.ieee.org/
document/4567924

[30] Elaine S. Povich. 2023. The latest ’right to repair’ law is the broadest one
yet. Omaha World Herald (2023). https://omaha.com/news/the-latest-right-
to-repair-law-is-the-broadest-one-yet/article_bb7204ad-9fca-5685-8568-
c5acfd8338fb.html

[31] David Shepardson. 2023. US tells automakers not to comply with Massachusetts
vehicle data law. Reuters (2023). https://www.reuters.com/business/autos-
transportation/us-tells-automakers-not-comply-with-massachusetts-vehicle-
data-law-2023-06-13/

[32] Ali Shuja Siddiqui, Yutian Gui, Jim Plusquellic, and Fareena Saqib. 2017. Secure
communication over CANBus. 2017 IEEE 60th International Midwest Symposium
on Circuits and Systems (MWSCAS) (2017). https://ieeexplore.ieee.org/document/
8053160

[33] Hiroshi Ueda, Ryo Kurachi, Hiroaki Takada, Tomohiro Mizutani, Masayuki Inoue,
and Satoshi Horihata. 2015. Security Authentication System for In-Vehicle Net-
work. Sei Technical Review (2015). https://global-sei.com/technology/tr/bn81/
pdf/81-01.pdf

[34] Marcell Vazquez-Chanlatte. 2019. mvcisback/py-metric-temporal-logic: v0.1.1.
py-metric-temporal-logic (2019). https://doi.org/10.5281/zenodo.2548862

[35] Qiyan Wang and Sanjay Sawhney. 2014. VeCure: A practical security framework
to protect the CAN bus of vehicles. 2014 International Conference on the Internet
of Things (IOT) (2014). https://ieeexplore.ieee.org/document/7030108

[36] Meng Wu, Jingbo Wang, Jyotirmoy Deshmukh, and Chao Wang. 2019. Shield
Synthesis for Real: Enforcing Safety in Cyber-Physical Systems. 2019 Formal
Methods in Computer Aided Design (FMCAD) (2019). https://ieeexplore.ieee.org/
document/8894264

[37] C.-F. Yu and V.D. Gligor. 1990. A specification and verification method for
preventing denial of service. IEEE Transactions on Software Engineering 16 (1990),
581 – 592. https://ieeexplore.ieee.org/document/55087

120

https://www.federalregister.gov/documents/1999/05/04/99-9062/control-of-air-pollution-from-new-motor-vehicles-compliance-programs-for-new-light-duty-vehicles-and
https://www.federalregister.gov/documents/1999/05/04/99-9062/control-of-air-pollution-from-new-motor-vehicles-compliance-programs-for-new-light-duty-vehicles-and
https://www.federalregister.gov/documents/1999/05/04/99-9062/control-of-air-pollution-from-new-motor-vehicles-compliance-programs-for-new-light-duty-vehicles-and
https://ecommons.cornell.edu/handle/1813/7102
https://ecommons.cornell.edu/handle/1813/7102
https://ieeexplore.ieee.org/document/8537203
https://link.springer.com/chapter/10.1007/978-3-319-75632-5_5
https://link.springer.com/chapter/10.1007/978-3-030-03427-6_2
https://link.springer.com/chapter/10.1007/978-3-030-03427-6_2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219335/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219335/
https://link.springer.com/chapter/10.1007/978-3-319-75632-5_5
https://link.springer.com/chapter/10.1007/978-3-319-75632-5_5
https://saemobilus.sae.org/content/2017-01-1612/
https://saemobilus.sae.org/content/2017-01-1612/
https://unece.org/sustainable-development/press/three-landmark-un-vehicle-regulations-enter-force
https://unece.org/sustainable-development/press/three-landmark-un-vehicle-regulations-enter-force
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security
https://www.usenix.org/system/files/login/articles/login_dec15_02_foster.pdf
https://www.usenix.org/system/files/login/articles/login_dec15_02_foster.pdf
https://www.ijcai.org/Proceedings/13/Papers/132.pdf
https://www.bosch-semiconductors.com/ip-modules/can-protocols/can-xl/
https://www.bosch-semiconductors.com/ip-modules/can-protocols/can-xl/
https://doi.org/10.1016/0169-7552(92)90109-4
https://doi.org/10.1016/0169-7552(92)90109-4
https://ieeexplore.ieee.org/document/10144389
https://ieeexplore.ieee.org/document/10144389
https://www.can-cia.org/can-knowledge/can/can-fd/
https://ieeexplore.ieee.org/document/7039487
http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf
https://bitbucket.org/brooke-lampe/can-train-and-test/src/master/
https://bitbucket.org/brooke-lampe/can-train-and-test/src/master/
https://ieeexplore.ieee.org/document/10001536
https://ieeexplore.ieee.org/document/10001536
https://arxiv.org/abs/2308.04972
https://arxiv.org/pdf/2308.04972.pdf
https://doi.org/10.1016/j.eswa.2023.119771
https://ieeexplore.ieee.org/document/4484680
https://www.wired.com/story/right-to-repair-cars-hackers/
https://ioactive.com/wp-content/uploads/2018/05/IOActive_Remote_Car_Hacking-1.pdf
https://ioactive.com/wp-content/uploads/2018/05/IOActive_Remote_Car_Hacking-1.pdf
https://illmatics.com/can%20message%20injection.pdf
https://doi.org/10.4271/2023-01-0041
https://doi.org/10.4271/2023-01-0041
https://link.springer.com/chapter/10.1007/978-3-030-03427-6_2
https://link.springer.com/chapter/10.1007/978-3-030-03427-6_2
https://ieeexplore.ieee.org/document/4567924
https://ieeexplore.ieee.org/document/4567924
https://omaha.com/news/the-latest-right-to-repair-law-is-the-broadest-one-yet/article_bb7204ad-9fca-5685-8568-c5acfd8338fb.html
https://omaha.com/news/the-latest-right-to-repair-law-is-the-broadest-one-yet/article_bb7204ad-9fca-5685-8568-c5acfd8338fb.html
https://omaha.com/news/the-latest-right-to-repair-law-is-the-broadest-one-yet/article_bb7204ad-9fca-5685-8568-c5acfd8338fb.html
https://www.reuters.com/business/autos-transportation/us-tells-automakers-not-comply-with-massachusetts-vehicle-data-law-2023-06-13/
https://www.reuters.com/business/autos-transportation/us-tells-automakers-not-comply-with-massachusetts-vehicle-data-law-2023-06-13/
https://www.reuters.com/business/autos-transportation/us-tells-automakers-not-comply-with-massachusetts-vehicle-data-law-2023-06-13/
https://ieeexplore.ieee.org/document/8053160
https://ieeexplore.ieee.org/document/8053160
https://global-sei.com/technology/tr/bn81/pdf/81-01.pdf
https://global-sei.com/technology/tr/bn81/pdf/81-01.pdf
https://doi.org/10.5281/zenodo.2548862
https://ieeexplore.ieee.org/document/7030108
https://ieeexplore.ieee.org/document/8894264
https://ieeexplore.ieee.org/document/8894264
https://ieeexplore.ieee.org/document/55087

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	4 Related Work
	5 Methodology
	5.1 Indicators of Compromise (IoCs)
	5.2 Logics

	6 Benchmark
	7 Discussion of Results
	8 LIMITATIONS & FUTURE WORK
	9 Conclusion
	Acknowledgments
	References

