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ABSTRACT:
Non-invasive electrophysiological measures, such as auditory evoked potentials (AEPs), play a crucial role in

diagnosing auditory pathology. However, the relationship between AEP morphology and cochlear degeneration

remains complex and not well understood. Dau [J. Acoust. Soc. Am. 113, 936–950 (2003)] proposed a

computational framework for modeling AEPs that utilized a nonlinear auditory-nerve (AN) model followed by a lin-

ear unitary response function. While the model captured some important features of the measured AEPs, it also

exhibited several discrepancies in response patterns compared to the actual measurements. In this study, an enhanced

AEP modeling framework is presented, incorporating an improved AN model, and the conclusions from the original

study were reevaluated. Simulation results with transient and sustained stimuli demonstrated accurate auditory brain-

stem responses (ABRs) and frequency-following responses (FFRs) as a function of stimulation level, although wave-

V latencies remained too short, similar to the original study. When compared to physiological responses in animals,

the revised model framework showed a more accurate balance between the contributions of auditory-nerve fibers

(ANFs) at on- and off-frequency regions to the predicted FFRs. These findings emphasize the importance of cochlear

processing in brainstem potentials. This framework may provide a valuable tool for assessing human AN models and

simulating AEPs for various subtypes of peripheral pathologies, offering opportunities for research and clinical

applications.
VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0025136

(Received 27 June 2023; revised 16 February 2024; accepted 16 February 2024; published online 6 March 2024)

[Editor: Colleen G. Le Prell] Pages: 1799–1812

I. INTRODUCTION

Auditory evoked potentials (AEPs) are recordings of

synchronous neural activity in response to sound, captured

using scalp electrodes in the “far field.” Far-field responses

have a low resolution compared to the higher spatial resolu-

tion of “near-field” responses obtained through invasive

single-cell recordings in animals. To interpret these

responses accurately, it is essential to understand the contri-

butions from different neural sources excited by the stimuli.

For example, in electrocochleographic (ECochG) recordings

of transient stimuli like clicks or tone pulses, the compound

action potential (CAP) is primarily influenced by basal

auditory-nerve fibers (ANFs) with medium-to-high charac-

teristic frequencies (CFs) (Bourien et al., 2014). Another

component, the summating potential (SP) observed in

ECochG and auditory brainstem response (ABR) measure-

ments, reflects contributions with different magnitudes and

polarities from outer hair cells (OHCs) and inner hair cells

(IHCs), as well as “spiking” and “dendritic” ANFs (Lutz

et al., 2022). Understanding the mechanisms underlying the

generation of these electrophysiological responses is crucial,

particularly in relation to auditory deficits such as hair-cell

damage and neural degeneration in the auditory nerve (AN)

and the auditory brainstem.

Computational models have been utilized to simulate

early AEPs and explore peripheral auditory signal process-

ing (Dau, 2003; Harte et al., 2013; Rønne et al., 2012;

Verhulst et al., 2015; Verhulst et al., 2018). Dau (2003)

introduced a model for generating ABR waveforms in

response to transient stimuli and frequency-following

responses (FFRs) to tonal stimuli. This model is based on

the concept that evoked potentials recorded by remote elec-

trodes can be theoretically represented by convolving an ele-

mentary unit waveform, or unitary response (UR) function,

with the instantaneous discharge-rate function for the corre-

sponding unit (Goldstein and Kiang, 1958). Dau (2003)

employed the nonlinear computational AN model developed

by Heinz et al. (2001) to calculate the instantaneous dis-

charge firing rate for fibers within the frequency range from

0.1 to 10 kHz. The summed activity across CFs was con-

volved with a UR function derived from an averaged elec-

trophysiological recording (in humans) at a specific pair of

scalp electrodes, assuming that it reflects contributions froma)Email: mtegu@dtu.dk
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different cell populations within the auditory brainstem.

Simulated potential patterns were compared with experi-

mental data under various stimulus and level conditions,

including clicks, chirps designed to compensate for cochlear

travel-time differences across frequency (Dau et al., 2000),

long-duration stimuli comprising chirps, pure tones, and

slowly varying tonal sweeps. The results highlighted the sig-

nificance of basilar-membrane (BM) traveling wave and AN

processing effects in shaping ABRs and FFRs. Specifically,

the modeling results indicated that the FFR to low-

frequency (e.g., 300-Hz) pure tones primarily represents

synchronized activity originating from ANFs tuned to mid

and high CFs (i.e., off-CF fibers), rather than fibers tuned to

frequencies around the stimulus frequency (referred to as

on-CF fibers). Recent modeling studies suggested that tradi-

tional envelope-following responses (EFRs), obtained

through amplitude-modulated (AM) tones, and EFRs associ-

ated with the CAP (Chen and Jennings, 2022) are likely pre-

dominantly influenced by basal (off-CF) ANFs. These fibers

are distinct from those tuned to the carrier tone (Alamri and

Jennings, 2023; Encina-Llamas et al., 2019).

However, despite capturing various features in the ABR

and FFR data, the original model proposed by Dau (2003)

exhibited several discrepancies with the experimental data

in terms of response patterns. For example, the model gener-

ated strong onsets in response to ramped periodic stimuli

(e.g., pure tones or tonal sweeps) at high sound pressure lev-

els (SPLs), which were much less pronounced in the corre-

sponding experimental data. Additionally, the model failed

to account for the level-dependent latency shift of ABR

wave V. While the experimental data showed a latency shift

of approximately 2.3 ms for a 50 dB level change, the model

predicted a latency shift of less than 0.3 ms for the same

level change. The predicted evoked-potential morphology

strongly relies on the specific properties of the processing

stages in the AN model. The model introduced by Heinz

et al. (2001) represents an initial quantitative description of

neural signal processing in the AN, inspired by the original

work of Carney (1993). Over the past two decades, numer-

ous refinements have been made to the model to provide

more accurate descriptions of individual elements within the

processing chain, aligning them better with physiological

responses obtained in the cat AN (Bruce et al., 2003;

Carney et al., 2015; Nelson and Carney, 2004; Zhang and

Carney, 2005; Zilany et al., 2009; Zilany et al., 2014;

Zilany and Bruce, 2006, 2007). The most recent version of

the AN model was presented in Bruce et al. (2018).

In this study, we investigated the effects of AN process-

ing on the formation of ABRs, FFRs, and EFRs using a

computational model that predicts the far-field evoked

potential patterns based on AN activity convolved with the

UR function. The overall modeling approach and selected

stimulus paradigms were similar to those employed in Dau

(2003), with the addition of sinusoidally AM (SAM) and

rectangularly AM (RAM) tones to elicit EFRs. EFRs are

analogous to clinical auditory steady-state responses

(ASSRs) and have been proposed to reflect IHC

de-afferentation (or cochlear synaptopathy) (Shaheen et al.,
2015), with the large dynamic range elicited by RAM tones

being particularly effective (Vasilkov et al., 2021). One

major change is that simulated AN responses were obtained

using the model of Bruce et al. (2018) instead of the model

of Heinz et al. (2001). The consequences and implications

of the substantial modifications in the AN model for the for-

mation and interpretation of the obtained AEP patterns were

analyzed. Predicting early auditory responses offers a

valuable tool for evaluating AN models, as these potentials

represent a neural signature of peripheral neural excitation

in the far field. Particularly, a computational framework

capable of reproducing the key features of non-invasive

evoked potentials holds the potential to enhance our under-

standing of the impact of different types of sensorineural

impairment factors on the formation of early AEPs.

II. METHODS

Figure 1(A) illustrates the overall structure of the model

utilized in this study for predicting AEPs. The model com-

prises two main parts [main blocks in Fig. 1(A)]: A nonlin-

ear computational model of the AN representing compound

AN activity, and a linear UR function (independent of level

and frequency) that converts the compound AN response

into the AEP recorded by scalp electrodes. The AN model

details are discussed below.

A. The AN model

The AN model employed in this study was the phenom-

enological computational model developed by Bruce et al.
(2018) [top block in Fig. 1(A)]. Initially based on physiolog-

ical data from cats, the model was later adapted to humans

to reflect properties of human frequency selectivity (Ibrahim

and Bruce, 2010). The acoustic stimulus presented to the

“model tympanic membrane” undergoes processing through

a bandpass middle-ear transfer function. The frequency

selectivity of the BM is modeled by two parallel filters serv-

ing as inputs to the signal path. The signal filter C1 repre-

sents selectivity at low and medium stimulation levels using

a chirping or “time-varying narrowband” filter. This filter is

adjusted by a feed-forward control path that simulates OHC

function. The control wideband filter is also adjusted by the

control path and is followed by an asymmetric saturating

nonlinearity (NL), a low-pass (LP) filter, and a nonlinear

transformation. OHC dysfunction can be introduced and

controlled in this final stage (Zhang et al., 2001). The sec-

ond signal filter, C2, is a wideband linear filter representing

BM excitation at high stimulus levels (Zilany and Bruce,

2006).

The IHC model includes a saturating NL following fil-

ter C1, which generates a direct current (dc) component in

the IHC output for high-CF fibers. The stage following filter

C2 (INV) shifts the phase by 180� and adjusts the relative

amplitude of C1 and C2 at low, medium, and high SPLs.

The two transformed signals are combined linearly and LP
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filtered to limit sensitivity to phase locking (Carney, 1993)

and represent the relative IHC transmembrane potential.

The synaptic transmission between IHCs and ANFs and

the spike generation of the ANFs are modeled using a

“gently saturating” nonlinear mapping function, designed to

achieve realistic ANF thresholds and dynamic ranges in the

AN rate-level functions with respect to CF and spontaneous

rate (SR) (Bruce et al., 2018). This stage is followed by a

slow power-law adaptation (PLA) function representing off-

set adaptation and a fast PLA function simulating the effects

of “additivity” in AN rate responses to stimuli with ampli-

tude increments (Zilany et al., 2009). Finally, absolute and

relative refractory periods of the ANF are incorporated. The

model generates a spike train for each CF, simulating the

response of a single ANF tuned to that CF.

The AN model was implemented following the descrip-

tion in studies by Encina-Llamas et al. (Encina-Llamas

et al., 2019; Encina-Llamas et al., 2021). In all AN simula-

tions presented in this study, 200 CFs were utilized, ranging

from 125 Hz to 10 kHz and distributed uniformly by dis-

tance across the BM based on the function of Greenwood

(1990). A single IHC was simulated for each CF, resulting

in a total of 200 simulated IHCs. For each CF, multiple

ANFs were simulated, following a non-uniform distribution

estimated from the healthy human AN (Spoendlin and

Schrott, 1989) [Fig. 1(B)], resulting in 32 000 ANFs.

Consequently, in whole-nerve simulations, multiple ANFs

tuned to the same CF were simulated. The spike trains of

each ANF per CF were summed to obtain a population

response, similar to a post-stimulus time histogram (PSTH),

FIG. 1. (Color online) (A) Schematic

of the modeling framework utilized in

this study. The stimulus is first proc-

essed by the AN model of Bruce et al.
(2018) (top block). The model includes

a middle-ear filter and a control path

that represents the active processes,

depicted through OHC transduction. It

also incorporates a signal path repre-

senting IHC transduction and an ANF

model that includes synaptic transmis-

sion and a spike generator. The AN

model is implemented by simulating

200 IHCs, with each one being

assigned a unique CF. Each IHC is

innervated by a varying number of

ANFs, represented by “m,” in accor-

dance with physiological data from

humans as documented by Spoendlin

and Schrott (1989). The spike trains

across the ANFs are summed, and the

compound AN response is convolved

(represented by the symbol *) with a

unitary response (UR). This process

linearly transforms spikes into the AEP

recorded in the far field (as depicted in

the bottom block). Key terms include

the following: Time constant (T), low-

pass (LP) filter, static nonlinearity

(NL), characteristic frequency (CF),

inverting nonlinearity (INV), auditory

nerve fiber (ANF), power law adapta-

tion (PLA), fractional Gaussian noise

(fGn), and post-stimulus time histo-

gram (PSTH). COHC and CIHC are scal-

ing constants that specify OHC status

and IHC status, respectively. (B)

Number of ANFs (m) per CF, divided

into high-, medium-, and low-

spontaneous rate (SR) fibers, based on

data from Spoendlin and Schrott

(1989). (C) URs derived for the 2018

and 2001 AN model simulations.
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for each CF. Finally, population responses from each CF

were summed across all CFs to derive a compound AN

response. The model of Bruce et al. (2018) allows for the

input of SR as a free parameter, enabling the simulation of

different SR responses. The distribution of high-, medium-,

and low-SR fibers was set at 61%, 23%, and 16%, respec-

tively, based on data from cat ANFs (Liberman, 1978), as

human data are not available. The AN model operated at a

sampling rate of 100 kHz.

B. Main changes between the 2018 model of Bruce
et al. and 2001 model of Heinz et al.

Dau (2003) employed the AN model by Heinz et al.
(2001) as the front-end of the modeling framework for predict-

ing AEPs. Over the past 20 years, several modifications have

been made to the AN model to enhance the accuracy of the

physiological response simulations. Notably, the implementa-

tion of PLA has been a significant change, describing neural

offset and recovery adaptation and long-term dynamics in the

IHC-synapse complex. Additionally, PLA accounts for the

effect of “additive” rates to amplitude increments, which

reflects the ANF firing rates in response to level increases or

decreases, independent of the temporal interval between onset

and level change. This effect enhances response synchrony to

low-frequency tones and AMs, limited by the IHC cutoff fre-

quency (Zilany et al., 2009). Bruce et al. (2018) incorporated a

new synapse model utilizing four synaptic vesicle-docking

sites, based on recent physiological data (Peterson et al., 2014;

Peterson and Heil, 2018). This improvement enhanced the sim-

ulation of the ANF spiking statistics, particularly in physiologi-

cal forward masking, resulting in more realistic AN rate-level

functions. Furthermore, the model accounted for rapid (2-ms)

and short-term (60-ms) exponential adaptation observed in

onset responses. Other major modifications included more

accurate responses to high-intensity stimuli (Zilany and Bruce,

2006), enabling the model to account for highly nonlinear AN

response properties such as peak splitting (Kiang, 1990).

Redesign of the IHC transduction and the IHC-AN synaptic

complex (Zhang and Carney, 2005) improved maximum rates

at saturation for high-CF fibers (Zilany et al., 2014), and more

precise effects of acoustic trauma (Bruce et al., 2003) were

also implemented. The AN model was also adjusted to repre-

sent human characteristics (Ibrahim and Bruce, 2010) by modi-

fying certain model free parameters. These modifications

included the middle-ear filter transfer function, ANF frequency

tuning based on psychoacoustic estimates (Glasberg and

Moore, 1990) and human otoacoustic emissions (Shera et al.,
2001), and the audible frequency range.

C. The UR

The transformation from compound AN activity to far-

field evoked potentials is modeled by convolving the popu-

lation AN response with a UR function (Dau, 2003; Melcher

and Kiang, 1996). This approach is based on the original

work of Goldstein and Kiang (1958), where the linear trans-

formation from the spontaneous discharge of a given neuron

to its corresponding activity at electrodes located in the far

field was derived through deconvolution. The response cap-

tured by the electrodes was repeatedly deconvolved with the

neuron’s discharge pattern, effectively averaging out neural

noise that was not related to the neuron’s activity. By con-

volving the neuron’s response pattern with the UR function,

activity measured from these electrodes, reflecting the neu-

ron’s response to acoustic stimulation, could be predicted.

This concept was extended from individual cells to groups

of cells based on established anatomical and physiological

knowledge (Melcher and Kiang, 1996). Therefore, instanta-

neous discharge rates from the entire AN in response to

acoustic stimulation are linearly transformed using a single

URAN to simulate activity in the far field corresponding to

AN activity. To obtain the brainstem’s response, such as the

ABR, to a given stimulus, only the UR function and the

compound discharge pattern of each neural generator are

necessary. Dau (2003) further expanded this concept and

proposed using a single UR function to transform the com-

pound AN activity pattern into a full ABR waveform con-

taining waves generated by multiple nuclei. Thus, this UR

represents not only the propagation of the electric field gen-

erated by the compound AN activity to the recording site,

similar to URAN, but also includes contributions from subse-

quent nuclei. The main argument was that spherical bushy

cells in the anterior ventral cochlear nucleus (CN) and prin-

cipal cells in the medial superior olive (MSO), believed to

be the primary generators of ABR waves III and V, respec-

tively (Scherg and Von Cramon, 1985), exhibit firing behav-

ior similar to that of primary-like neurons (Blackburn and

Sachs, 1989; Goldberg, 1975; Yin and Chan, 1990). In Dau

(2003), the UR function was obtained by deconvolving aver-

aged ABRs obtained experimentally from several normal-

hearing listeners with the simulated compound AN response

(summed across CFs) using the AN model. The UR function

used in the present study was derived using the same experi-

mental ABR at 96 dB peak-equivalent sound pressure level

(peSPL) from Dau (2003). In future work, the UR could be

derived using ABRs calculated with a different number of

averages, allowing the measurement noise to be parame-

trized in the selected UR. In this study, the final simulated

waveforms are presented without [black, thick traces in

Figs. 4(B), 4(C), 5, and 6] and with added internal noise,

similar to Dau (2003) [gray, thin traces in Figs. 4(B), 4(C),

5, and 6). White Gaussian noise was chosen as internal

noise, and the power was adjusted to correspond to a signal-

to-noise ratio (SNR) of 5 dB at the highest stimulation level.

The URs derived in this study for the 2018 and 2001 AN

model simulations are shown in Fig. 1(C). Note that the UR

for the 2018 model is larger, since the output of the 2001

model to the click is larger.

D. Stimulus conditions

The stimulus conditions were similar to those consid-

ered in Dau (2003). Data were taken from Dau et al. (2000).

Transient-evoked responses, specifically ABRs, were
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simulated using 80-ls clicks presented at stimulus levels

ranging from 46 to 96 peSPL in 10 dB increments.

Responses to sustained stimuli, known as FFRs, were simu-

lated using 50-ms, 300-Hz pure tones with 5-ms Hanning

ramps at the onset and offset. The tones were presented at

SPLs of 50 to 100 dB in 10 dB steps. Moreover, the

“combination stimulus” from Dau et al. (2000) was consid-

ered, comprising two 30-ms pure tones at 320 Hz and 8 kHz

and a temporally and spectrally embedded chirp with an

instantaneous frequency rising from 320 to 8000 Hz. This

chirp was designed to compensate for BM travel-time differ-

ences across frequencies. The chirp was embedded in the

waveform between the low-frequency tone and the chirp

onset as well as the chirp offset and the high-frequency

tone. This stimulus was included to investigate potential dis-

tinctions in the modeling framework’s response to onset

transients as opposed to transients embedded in an acoustic

stimulus. In Dau (2003), the framework produced exagger-

ated onset responses, even to ramped stimuli; however, the

simulated response to the embedded chirp was qualitatively

more accurate. Finally, 4000 Hz pure tones with an ampli-

tude modulated at 120 Hz, either with a sinusoidal (SAM

tones) or a rectangular (duty cycle¼ 25% [RAM tones])

modulator at 85 dB rmsSPL, were used to simulate EFRs, as

in Vasilkov et al. (2021). All stimuli were generated digi-

tally in MATLAB (The MathWorks) at a sampling frequency

of 48 kHz. The stimulus waveforms were resampled to

match the model sampling frequency (100 kHz) with the

MATLAB function resample().

III. RESULTS

A. Simulations of single-unit AN (near-field)
responses to tones and clicks in cats

The AN models were originally designed to simulate

AN responses in cats. Figure 2 illustrates simulations of AN

responses to pure tones and clicks in cats using two different

models: the AN model of Bruce et al. (2018), referred to as

the “2018 AN model” (depicted by red circles), and the

model of Heinz et al. (2001), referred to as the “2001 AN

model” (depicted by blue triangles). These simulations are

compared with physiological recordings from Kim et al.
(1990) and Lin and Guinan (2000) (depicted by black

squares).

Figures 2(A) and 2(C) display responses to tones at var-

ious SPLs. The tones used were 200-ms 1-kHz pulses with

5-ms onset and offset ramps, similar to the study conducted

by Kim et al. (1990), at levels of 30, 50, and 70 dB SPL.

The driven rate, which represents the average firing rate

minus the average SR, is shown as a function of the CF of

high-SR ANFs. At 30 dB SPL [top panel in Fig. 2(C)], the

recorded data (squares) demonstrated a frequency-specific

neural response centered around the stimulus frequency

(1 kHz), with a maximum driven-rate response of approxi-

mately 180 spikes/s. As the SPL increased, the AN response

spread mainly towards higher CFs, indicating an “upward

spread” of neural excitation. The simulated responses

obtained with both AN models captured the on-CF response

observed in the data and reasonably reflected the neural

response at CFs below the stimulation frequency. However,

deviations from the data were observed for CFs above the

stimulus frequency in the simulations. Specifically, the 2001

AN model exhibited a substantially larger neural response

compared to the data, particularly at the highest stimulus

level (70 dB). In contrast, the simulations obtained with the

2018 AN model provided a closer match to the data. The

experimental and simulated data were fitted using the

smooth function in MATLAB, employing local regression

with weighted linear least squares and a second-degree poly-

nomial model. Outliers in the regression were assigned

lower weights. The fitted simulations were evaluated com-

puting the Euclidean distance using the pdist2 MATLAB

function.

Figures 2(B) and 2(D) display measured and simulated

responses to 90-ls clicks presented at levels ranging from

64 and 114 dB peSPL, in 5 dB increments, similar to the

study of Lin and Guinan (2000). Clicks of both polarities

(condensation and rarefaction) were presented, and the

PSTH was obtained after 500 repetitions at each level. The

earliest peak latency for each CF among the responses for

all presentation levels and polarities was selected, both in

the recordings (Lin and Guinan, 2000) and in the simula-

tions. Similar to Fig. 2(A), the data were smoothened using

local regression with weighted linear least squares (solid

lines). The simulations conducted with the 2018 AN model

(circles) exhibit a very close correspondence to the experi-

mental data (squares), with a small deviation observed at the

highest frequencies (>10 kHz). In contrast, the simulations

performed with the 2001 AN model (triangles) indicate very

small latency values around 0.5 ms, demonstrating minimal

variability across CF compared to the values between 1 and

3.5 ms observed in the data as well as in the simulations

with the 2018 AN model. This nearly flat latency-CF func-

tion obtained with the 2001 AN model suggests that the tem-

poral response at the output of this model to transient

broadband stimuli such as clicks or to onsets of sustained

stimuli like tones overestimates the amount of neural syn-

chronization across CFs.

B. Simulated far-field evoked potentials in humans

Figure 3 shows the experimental and simulated ABRs

to clicks at various levels of stimulations. Figure 3(A) dis-

plays the recorded responses obtained from Dau (2003),

with the cross indicating the peak of wave V for each ABR.

The dashed line represents the latency-level function

derived from the observed wave-V latencies. Figures 3(B)

and 3(C) present the corresponding simulated responses

using the 2018 and 2001 AN models, respectively, inte-

grated into the overall evoked-potential prediction frame-

work, as depicted in Fig. 1. For the simulations, the UR

functions were derived from the experimental ABRs

obtained in response to the click at the highest level (96 dB

peSPL). Since this was the fitting condition, it was expected
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that at this level the experimental and simulated ABRs were

similar. At lower levels, the simulations generated by both

models exhibited ABR morphologies that also closely

resembled those observed in the experimental data. While

both models predicted ABR wave-V peak amplitudes simi-

lar to those observed in the measured data, the simulations

obtained with the 2001 AN model demonstrated a slower

decay of wave-V amplitude with decreasing level. This

resulted in a distinct peak at the lowest simulated level at

46 dB peSPL, which was not present in the data or in the

predictions obtained with the 2018 AN model. Regarding

wave-V latency, the data showed an increase in 1.84 ms for

a 40 dB level change, consistent with findings from other

studies (Jiang et al., 1991; Picton et al., 1981; Prosser and

Arslan, 1987; Serpanos et al., 1997; Strelcyk et al., 2009).

However, both models strongly underestimated the observed

latency change and only predicted an effect of approxi-

mately 0.4 ms within the considered level range.

Figure 4 shows the measured and simulated responses

to the “combination stimulus.” The top row of the figure dis-

plays the waveform of the stimulus, with vertical lines indi-

cating the onset and offset of the embedded chirp. Figure

4(A) presents the data obtained at different stimulation lev-

els, which have been replotted from Dau (2003). It is evident

that there were phase-locked responses to the low-frequency

tone (320 Hz) in the first segment of the stimulus.

Additionally, a response to the embedded chirp can be

observed, particularly at lower stimulation levels. The chirp

elicited a synchronized neural response with a latency rela-

tive to the chirp offset, corresponding to a wave-V

FIG. 2. (Color online) Measured and

simulated responses of high-SR ANF

responses to pure tones (A and C) and

clicks (B and D) in cats. (A) Simulated

ANF driven rates (2018 AN model,

circles; 2001 AN model, triangles) in

response to 200-ms, 1-kHz pure tones

at 30, 50, and 70 dB SPL (top, middle

and bottom, respectively) as a function

of CF. The driven rates were computed

by subtracting the SR during the 800-

to 1000-ms period from the firing rates

during the 0- to 200-ms window. (B)

Simulated ANF earliest peak latencies

(2018 AN model, circles; 2001 AN

model, triangles) in response to 90-ls

clicks at 64–114 dB peSPL, presented

in 5 dB steps, using 500 repetitions per

level with both polarities at 33.3 Hz.

The solid lines represent smoothed fit-

ted functions obtained through local

regression with weighted linear least

squares and a 2nd degree polynomial

(2018 model, red; 2001 model, blue).

(C) Experimental data (Kim et al.,
1990) (squares) and model fits to same

stimuli as in panel (A). (D)

Experimental data (Lin and Guinan,

2000) (squares) and model fits to same

stimuli as in panel (B).
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FIG. 3. Measured and simulated click-evoked auditory brainstem responses (ABR) in human listeners. (A) Recorded ABR data from Fig. 2 in Dau et al.
(2000) in response to clicks presented at 46, 56, 66, 76, 87, and 96 dB peSPL. (B) Simulated ABRs to the same stimuli using a UR derived via deconvolution

from the recorded ABR obtained at the highest stimulation level and the 2018 AN model. (C) Corresponding simulations obtained with the 2001 AN model.

Wave-V peaks are indicated by crosses, and the latency-level functions are represented by dashed lines. Dotted vertical lines have been added as a visual

aid, indicating the latency of the wave-V peaks at the 96-dB-peSPL level. The dashed-dotted rectangle indicates the condition in which the UR was derived

(i.e., the fitting condition).

FIG. 4. Measured and simulated evoked responses to the “combination stimulus,” which consists of a low-frequency (300-Hz) tone segment, followed by a

rising chirp (between 0.3 and 8 kHz) designed to compensate for BM travel-time differences across frequency, and finally, a high-frequency (8-kHz) tone

segment, as indicated in the top row of each panel. The onset and offset of the embedded chirp are indicated by vertical lines. (A) Recorded responses,

replotted from Dau (2003), to the stimulus presented at 50, 60, 70, 80, 90, and 100 dB SPL. (B) Simulated responses to the combination stimulus using the

2018 AN model. Thick black lines represent simulations without added noise. Thin gray lines illustrate simulations with added Gaussian noise representing

measurement noise. (C) Corresponding simulations obtained with the 2001 AN model.
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component, as described in previous studies (Dau et al.,
2000; Fobel and Dau, 2004; Wegner and Dau, 2002).

Panels (B) and (C) of Fig. 4 show the corresponding

simulated responses obtained with the 2018 and 2001 AN

models, respectively. Consistent with the data, both models

exhibited strong phase-locked responses to the 320-Hz tone

at high stimulation levels and no FFR to the high-frequency

tone (8 kHz) in the final segment of the stimulus. However,

the 2001 AN model [Fig. 4(C)] produced exaggerated onset

responses that were absent in the data as well as in the simu-

lations obtained with the 2018 AN model. Regarding the

embedded chirp, both models qualitatively accounted for

the observed ‘transient’ response in the data at lower stimu-

lation levels. However, similar to the results described in

Fig. 3, both models again clearly underestimated the latency

change with stimulation level.

To investigate the generation mechanisms of the FFR to

pure tones within the model framework, Dau (2003) sepa-

rated the simulated evoked potentials into responses result-

ing from contributions of low- and high-frequency fibers in

the AN. Following a similar approach, Fig. 5 illustrates the

simulated FFRs to a 50-ms, 300-Hz tone using the 2018 AN

model [Fig. 5(A)] and the 2001 AN model [Fig. 5(B)]. To

demonstrate the contributions of “low-frequency” versus

“high-frequency” AN activity to the predicted response

within the model, the summed responses from the 3-octave

wide low-frequency region (0.125 to 1 kHz; left) and the

3-octave wide high-frequency region (1 to 8 kHz; right) are

shown. Similar to Dau (2003), at SPLs below 70 dB peSPL,

simulated FFRs with added noise (thin gray traces) were not

distinguishable, in line with experimental observations.

Despite this similarity, the results obtained with the two

model versions exhibited substantial differences. The 2018

AN model [Fig. 5(A)] predicted prominent “phase-locked”

responses in both frequency regions at the highest SPLs. As

SPLs decrease, the simulated AN FFR became more pro-

nounced in the lower-frequency region compared to the

higher-frequency region. On the other hand, the 2001 AN

model [Fig. 5(B)], as discussed in Dau (2003), exhibited a

response that was clearly dominated by high-CF activity at

all SPLs above 70 dB. In this model, the low-frequency

region did not produce any stimulus-related periodicity in

the response, even at the highest SPLs. Additionally, as

observed in Fig. 4(C), the 2001 AN model generated exag-

gerated onset responses in both frequency regions, which

were not observed in the simulations obtained with the 2018

AN model.

To further investigate the differences between the simu-

lations shown in Fig. 5 obtained with the two models, AN

responses at different CFs (indicated in hertz) and their con-

tribution to the far-field compound response were analyzed.

Figure 6 presents simulated FFRs to a high-intensity 100-dB

peSPL 300-Hz tone. Figure 6(A) shows the results obtained

with the 2018 AN model, while Fig. 6(B) shows the

FIG. 5. Simulated responses to a 300-Hz tone at 50, 60, 70, 80, 90, and 100 dB SPL obtained with the 2018 AN model (A) and the 2001 AN model (B). (A)

Contributions from low-frequency (0.125–1 kHz, left) vs high-frequency (1–8 kHz, right) AN activity to the tone at different SPLs, obtained using the 2018

AN model. Thick black lines represent simulations without added noise. Thin gray lines illustrate simulations with added Gaussian noise representing mea-

surement noise. (B) Corresponding simulations obtained with the 2001 AN model.

1806 J. Acoust. Soc. Am. 155 (3), March 2024 Temboury-Gutierrez et al.

https://doi.org/10.1121/10.0025136

 25 M
arch 2024 13:03:18

https://doi.org/10.1121/10.0025136


corresponding results obtained with the 2001 AN model.

Similar to Fig. 5, the left and right columns in the two panels

represent the contributions in the lower-frequency region

(between 0.1 and 1 kHz) and the higher-frequency region

(between 1 and 8 kHz), respectively. In the top section of

each panel, the FFRs obtained by convolving the responses

summed across CFs for the two frequency regions are dis-

played. For the 2018 AN model [Fig. 6(A)], the compound

neural activity (top) resulting from the low-frequency region

was comparable to that obtained from the higher-frequency

region. The single-CF responses (bottom rows) exhibited

relatively strong activity at low frequencies around the stim-

ulus frequency (300 Hz), but lacked strong synchronization

across frequency due to travel-time differences on the BM.

At the higher frequencies, the single-channel response

amplitudes were considerably smaller but demonstrated a

higher degree of synchrony across channels. Consequently,

the compound response for this stimulus at a high stimulus

level showed a similar overall amplitude. Therefore,

according to this model, the FFR to a low-frequency high-

intensity tone is generated by numerous ANFs tuned to a

wide range of CFs. In contrast, the compound responses

obtained with the 2001 AN model [Fig. 6(B)] suggested

that the FFR is primarily generated by the synchronized

neural activity in the higher-frequency channels, as dis-

cussed in Dau (2003). Furthermore, the responses obtained

with the 2001 AN model exhibited “oscillations” at higher

frequencies (not matching the 300-Hz stimulus frequency)

that were also present in the simulated compound response.

These oscillations were not observed in the data nor in the

predictions with the 2018 AN model. Last, as described

earlier (Figs. 3 and 4), the 2001 model predicts stronger

onset responses than those observed in the FFR data and in

the 2018 model.

EFRs have been proposed to be a marker for IHC de-

afferentation and are similar to the clinical ASSR (Shaheen

et al., 2015; Keshishzadeh et al., 2020). RAM tones have

been shown to produce larger responses than SAM tones

(Vasilkov et al., 2021) [Fig. 7(C), in gray]. The time-

domain waveform (left) and spectrum (right) of the SAM

and RAM tones used in this study are shown in Figs. 7(A)

and 7(B), respectively. The simulated EFRs, modeled using

the 2018 AN model, are shown in dark blue. The contribu-

tions from on-CF (1
3

octave around 4 kHz) and basal

(5–10 kHz) and more apical (1–2 kHz) off-CF channels are

shown below the EFR derived with all frequencies.

Simulated RAM tones elicited larger responses than the

SAM tone, as observed in the time-domain [Fig. 7(A) vs

Fig. 7(B)] and larger spectral amplitudes at the modulation

frequency (120 Hz) and its first 4 harmonics (up to 600 Hz,

as in Vasilkov et al. (2021) [Fig. 7(C), in blue]. The more

complex harmonic content in the stimulus of the RAM tone

resulted in less sinusoidal responses compared to responses

to the SAM tone [Figs. 7(B) and 7(D)], which qualitatively

matched experimental EFRs to a RAM tone from a repre-

sentative subject (Vasilkov et al., 2021) [Fig. 7(D)].

FIG. 6. Simulated responses to a 300-Hz pure tone at 100 dB peSPL obtained with the 2018 AN model (A) and the 2001 AN model (B). Contributions from

low-frequency (0.125–1 kHz; left) vs high-frequency (1–8 kHz; right) AN activity are shown in both panels. (A) The top rows display the far-field response

of all the ANFs in the two frequency ranges using the 2018 AN model. Thick black lines represent simulations without added noise. Thin gray lines illustrate

simulations with added Gaussian noise representing measurement noise. The bottom rows show the response of single CFs (representing a group of ANFs)

at different frequencies (125, 211, 352, 597, 1003, 1682, 2827, 4762, and 8014 Hz, with the same scale for both models). (B) Corresponding simulations

obtained with the 2001 AN model.
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IV. DISCUSSION

This study presents a model to predict early AEPs in

response to various stimuli, encompassing both transient

stimuli (such as clicks and chirps) and sustained stimuli

(including pure tone and AM tone), across different levels

of stimulation. The model builds upon a previous approach

presented in Dau (2003), but incorporates a significantly

modified AN processing front-end as part of the AEP pre-

diction framework. The predicted patterns of electrical

potentials obtained with the improved AN model (Bruce

et al., 2018) exhibited various characteristics consistent with

experimental data. The specific properties of AN processing,

which are highly nonlinear, strongly influence the formation

of the simulated AEPs, especially at high sound levels

where neural excitation is broad. Notably, the predictions

obtained with the 2018 AN model demonstrated realistic

onset responses to tones, while the 2001 AN model exhib-

ited exaggerated onset responses that increased with stimu-

lation level (Figs. 4, 5, and 6). This exaggerated response

was attributed to nearly constant first-peak latencies of AN

fiber in response to clicks at high levels, which were less

dependent on CF [as depicted in Fig. 2(B)]. The reduced

“CF-dependency,” particularly at higher CFs, resulted in

large compound responses arising from highly synchronized

broadband AN activation, particularly in response to high-

intensity onsets. In contrast, the 2018 AN model incorpo-

rated cochlear delays that exhibited a more pronounced

CF-dependency both at high [Figs. 2(B) and 2(D)] and lower

(not shown) levels, which aligns more closely with physio-

logical data. Regarding click stimulation, the predictions

obtained with the 2001 AN model did not exhibit an

“exaggerated” onset since this model was calibrated to accu-

rately reproduce click-ABR waveform morphologies when

convolved with the UR.

One noticeable discrepancy between the data and the

predictions obtained with both AN models was observed in

the latency-level functions of the click-evoked (or chirp-

evoked) wave V (also noted in Dau (2003). Both models

clearly underestimated the change in wave-V latency as a

function of SPL (see Fig. 3 for clicks and Fig. 4 for the

embedded chirp). This discrepancy could potentially be

attributed to retro-cochlear frequency- and level-dependent

neural delays, which are not accounted for in this simplified

model that assumes constant delays between wave I (gener-

ated in the AN), wave III, and wave V (Dau, 2003). One

possible way to further evaluate this aspect would be to

incorporate more detailed neural processes, representing the

firing rates at the assumed neural generation sites at the CN,

FIG. 7. (Color online) Simulated responses were generated using the 2018 AN model for a 4-kHz tone at 85 dB rmsSPL modulated at 120 Hz with a sinusoi-

dal and rectangular (duty cycle¼ 25%) modulators at 100% modulation depth. (A) Time-domain (left) and frequency-domain (right) representations of the

SAM tone stimulus and simulated EFRs. The modeled EFR is shown in dark blue, with the contribution of on-CF channels (1
3

octave centered around

4 kHz), off-CF basal channels (5–10 kHz) and off-CF apical channels (1–2 kHz) represented in various shades of blue below. The contribution from sets of

CFs was normalized to account for the difference in bandwidths. (B) Corresponding stimulus and simulated EFRs to the RAM tone in blue. (C)

Experimental EFR amplitudes (sum of f1–f5) to SAM and RAM stimuli (in gray) (Vasilkov et al., 2021) and amplitudes of simulated EFRs to SAM and

RAM tones in blue. (D) Temporal response to a RAM tone of a representative subject (Vasilkov et al., 2021) superimposed on the simulated RAM EFR.
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MSO, and inferior colliculus levels, as well as UR compo-

nents that reflect the transformation from the respective gen-

erators to the sensors (scalp electrodes). A recent study

employed a different approach to assess the AN model,

focusing on simulating cochlear-generated AEPs measured

with electrocochleographically (Alamri and Jennings,

2023). Using a UR function solely reflecting AN activity,

this method allowed for evaluating the model’s ability to

predict wave-I latency as a function of level. Latency-level

functions of click-evoked CAP N1 simulated with the AN

models of Zilany et al. (2014) and Verhulst et al. (2018)

were similarly underpredicted. The authors proposed that

the level-dependent human cochlear tuning parameters, esti-

mated in both cases with otoacoustic emissions, are not fully

captured in the model (Alamri and Jennings, 2023; Verhulst

et al., 2015). This suggests that the latency-level mismatch

lies in the process of humanizing the original cat AN model

(Ibrahim and Bruce, 2010). It is plausible that the latency-

level functions are physiologically accurate in cats, but the

transition from cat to human may not be accurately repre-

sented. Indeed, the humanized AN model has not been vali-

dated against single-unit physiological AN data for humans

due to ethical constraints. Intraoperative recordings of AN

activity in humans during surgery could potentially over-

come these limitations (Huet et al., 2022).

Another significant disparity between the simulated

potentials obtained with the two preprocessing models was

the relative contributions of low-frequency versus high-

frequency AN activity to the predicted FFRs (Fig. 5). The

2001 AN model generated synchronized neural activity pri-

marily originating from high CFs (above approximately

1 kHz), even when stimulated with low-frequency tones (at

300 Hz). This indicated that FFRs are primarily influenced

by basal “off-CF” neural excitation, with lower-frequency

activity having limited effectiveness in contributing to

FFRs. This limited contribution was due to desynchronized

neural activity across the lower-frequency channels caused

by larger travel-time differences at those frequencies (Dau,

2003). In contrast, the 2018 model exhibited stronger

responses in the lower-frequency region, resulting in larger

compound responses across frequencies in that range, espe-

cially at low and medium stimulation levels, despite the dif-

ferences in energy distribution across frequencies. At high

stimulus levels, the contribution from high-frequency (“off-

CF”) activity increased and led to an overall “broadband

response” (e.g., at 100 dB peSPL) (Fig. 6). This contrasts

with the interpretation provided in Dau (2003) based on the

original model predictions. The simulated results of the

2018 model align with physiological data from cats, show-

ing similar rates to pure tones at higher levels (Kim et al.,
1990) [Fig. 2(C); 70 dB SPL] and comparable synchrony to

the carrier frequency of SAM tones in both on-CF and off-

CF ANFs (Joris and Yin, 1992). The substantial differences

between the predictions obtained with the two models pri-

marily stem from several factors: the re-mapping of the

response magnitude as a function of CF (Zilany et al.,
2014), the improved CF- and SR-dependent rate-level

functions (Bruce et al., 2018), and the elimination of a static

nonlinearity in the control path (Bruce et al., 2003). The

presence of a static compressive nonlinearity in the 2001

AN model [between the control path filter and OHC nonlin-

earity, as shown in Zhang et al. (2001)] (Fig. 1), caused

undesired distortion products or “oscillations” in the AN

response (Bruce et al., 2003). These oscillations, observed

in responses at low-to-mid CFs (�500–1000 Hz) in the 2001

AN model (Fig. 6), resulted in weaker phase-locked com-

pound potentials (due to destructive interference) compared

to the responses originating from higher CFs. In contrast, in

the 2018 AN model, the low-to-mid CFs’ activity contrib-

uted constructively to the overall broadband compound

response.

The contribution of different CFs to the far-field

response was assessed qualitatively by dividing the simu-

lated AEP into two cochlear bands, spanning 3 octaves each

for low and high frequencies (Figs. 5 and 6), similar to Dau,

(2003). A more quantitative exploration of the model-based

generation of periodic potentials (FFRs and EFRs) is pre-

sented in Fig. 8. Due to the additive nature of convolution,

the AEP obtained by convolving the AN response of each

individual CFs with the UR and subsequently summing

them is equivalent to convolving the UR with the compound

AN response, after combining the individual responses. In

this analysis, the magnitude (Ao) and phase (h) of the spec-

trum at the frequency of the pure tone (300 Hz) or AM tone

modulator (120 Hz) were calculated for each CF after indi-

vidual convolution with the UR. The projection of each

CF’s response onto the total response component (at 300 or

120 Hz) was determined as Ao cos(htotal � h) (Fig. 8, bottom

traces in gray), where htotal represents the phase of the total

response at the frequency of interest (Fig. 8, dark blue hori-

zontal bands). In this detailed examination, the 2001 model

showed a substantial response in both low (125–500 Hz) and

high (2–10 kHz) CFs, featuring a noticeable “dip” at mid-

frequencies indicative of undesired distortions stemming

from the aforementioned static compressive nonlinearity. In

contrast, the 2018 model displayed a broadband response,

10 dB larger at the lower frequencies and a dip at 300 Hz

attributed to on-CF saturation in the IHCs. The observed

decrease in magnitude at CF was not present in the EFR, as

shown in Fig. 8(C) at 4 kHz. This observation is in contrast

to recent modeling studies by Alamri and Jennings (2023)

and Encina-Llamas et al. (2019), although these studies uti-

lized SAM stimuli, unlike the RAM stimuli discussed here

[see Figs. 7(A) and 7(B)]. The 2018 model further suggested

that AN phase-locking to the modulation frequency is lim-

ited to higher CFs (above 3 kHz) when using RAM tones.

This finding is consistent with previous modeling work indi-

cating a predominant contribution to the EFR from ANFs

tuned to frequencies above the carrier (4 kHz), often referred

to as off-CF or basal ANFs (Alamri and Jennings, 2023;

Encina-Llamas et al., 2019). Notably, a phase shift is

observed in the response of both models to the 300-Hz pure

tones, resulting in a negative projection onto the total

response component [Figs. 8(A) and 8(B)]. Interestingly, the

J. Acoust. Soc. Am. 155 (3), March 2024 Temboury-Gutierrez et al. 1809

https://doi.org/10.1121/10.0025136

 25 M
arch 2024 13:03:18

https://doi.org/10.1121/10.0025136


phase of the response, particularly the cochlear delay

[Fig. 8(B), top blue trace, >300 Hz], significantly influences

the individual CF’s projection onto the total response com-

ponent. With the 2001 model, the cochlear delay is chal-

lenging to discern but appears relatively short at high CFs

(horizontal phase), consistent with the simulations in cats

[Fig. 2(D)]. The 2018 model exhibits a larger cochlear

delay, appearing less pronounced in response to the RAM

tone [Fig. 8(C), top blue trace, >3 kHz] compared to the

pure tone condition [Fig. 8(B), top blue trace, >300 Hz]

due to the lower frequency (120 vs 300 Hz). This delay

results in higher CFs (>3 kHz) having a negative projec-

tion onto the total response component, owing to a phase

difference of approximately 100� with the total phase.

This analysis suggests that low-frequency pure tones and

high-carrier AM tones probe different sections of the

cochlea (apical and basal, respectively), making them

potentially valuable as complimentary diagnostic mea-

sures for IHC de-afferentation. The cochlear delay utilized

in the human version of the AN model (Bruce et al., 2018)

is identical to the cochlear delay used for the cat.
Consequently, caution is advised in interpreting projec-

tions that combine magnitude and phase. These findings

underscore the importance of accurately estimating human

cochlear delays, which are intricately tied to cochlear tun-

ing characteristics, and their incorporation into computa-

tional AN models.

The present study focused on investigating responses in

the “healthy” auditory system, which represents a crucial

step towards better understanding the capabilities and limi-

tations of the model in predicting AEPs in a young, normal-

hearing “reference” system. In addition to studying basic

stimuli, more complex stimuli, such as complex tones and

speech sounds, can be employed to explore complex EFRs

(Encina-Llamas et al., 2019; Keshishzadeh et al., 2020;

Mepani et al., 2021; Walton et al., 2002). An intriguing

application of the modeling is to systematically explore the

connection between auditory pathophysiology and the gen-

eration of evoked potentials as measured in clinical settings.

Previous studies have offered valuable insights in auditory

pathophysiology in clinical populations using a computa-

tional AN model (Drakopoulos et al., 2022; Vasilkov et al.,
2021; Verhulst et al., 2018). Simulating the complete AEP

waveform could enhance our understanding of response

morphology in patients with various types of hearing loss,

thereby assisting in individual diagnostics. However, accu-

rately simulating the AN response and deriving the individ-

ual UR of an individual with hearing loss pose challenges.

Since the “ground truth” of an individual’s specific cochlear

pathology is unknown, simulating the AN response for a lis-

tener with a hearing loss becomes inaccurate, and as a result,

their individual UR cannot be obtained. Nevertheless, a gen-

eral UR could be derived by averaging across many healthy

participants, and this average UR could be used in

FIG. 8. (Color online) Magnitude (top left axis, black) and phase (top right axis, blue) of the AN model response of individual CFs after convolution with

the UR in response to different periodic stimuli. The projections of individual CFs onto the total response component are depicted in gray below. The “total

response component” refers to the amplitude and phase of the simulated AEP at the stimulation frequency (i.e., the pure tone frequency or AM tone modula-

tion frequency). The term projection refers to the portion of the CF response that oscillates in-phase with the total response component, indicating its contri-

bution to the overall response. Panel (A) illustrates the magnitude (top left, black), phase (top right, blue), and projection (bottom, gray) of AEPs simulated

using the 2001 model at 300 Hz, corresponding to a high-level, 300-Hz tone. Panel (B) shows the corresponding simulations obtained with the 2018 model.

Panel (C) displays the magnitude (top left, black), phase (top right, blue), and projections (bottom, gray) of AEPs simulated with the 2018 model categorized

by CF, responding at 120 Hz to a high-level RAM tone with a carrier frequency of 4 kHz and modulation frequency of 120 Hz. The phase of the total

response component is depicted with darker blue horizontal bands and is “unwrapped” to present it in multiples of 360�, eliminating any discontinuities in

the plotted phase traces. CFs that contribute positively, ranging from 50 to 100% of the maximum projection, are indicated in green. In contrast, CFs with

contributions between 0 and 50% of the maximum projection are shown in light blue. For visual clarity, positive contributions that were less than 10% of

the maximum projection were not highlighted.
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conjunction with a version of the AN model that simulates

hearing loss to predict AEPs in individuals with hearing

loss. Different simulated peripheral pathologies could mod-

ify the predicted potentials to varying degrees of agreement

with the measured potentials.

The model framework presented in this study provides

an opportunity to evaluate the accuracy of humanized AN

models, which are challenging to validate through other

means. Computational models of AN physiology are typi-

cally developed using animal models, where experimental

data, such as single-ANF responses, are more readily avail-

able. Simulated responses are compared with these datasets,

and model parameters are validated or adjusted to achieve

greater physiological accuracy. However, in humans, the

availability of datasets that include responses from individ-

ual ANF responses to a range of stimuli is quite limited.

These datasets are mostly derived from surgical procedures,

such as cochlear implant surgeries or operations on the cere-

bellopontine angle (Huet et al., 2022). Consequently, it is

difficult to verify the physiological realism of the updated

parameters during the “humanization” process. This model-

ing framework provides an opportunity to indirectly com-

pare results from human AN models to human

measurements through non-invasive evoked potentials.

In summary, this framework may offer a valuable tool

to assess early processing in humans, using both basic and

more complex stimuli. It may provide a solid foundation for

studying the effects of different types of hearing loss and

age on AEP patterns. While not a definite standard, it is a

useful tool for examining how AEPs manifest, assuming

“archetypical” patterns of auditory dysfunction, wherein

individual URs can be estimated and subsequently main-

tained as a constant for each individual. This framework

also enables the exploration of related cochlear synaptop-

athy effects on ABR, FFR, and EFR morphology.

V. CONCLUSION

Overall, the findings of the present study emphasize the

impact of cochlear and AN processing properties on predic-

tions of AEP and highlight the notable improvements

achieved with the 2018 AN model in capturing physiologi-

cal response characteristics. The model-based interpretation

of the neural sources driving the generation of the FFR natu-

rally relies on the specific characteristics of the neural proc-

essing in the AN described in the respective models. With

the 2018 AN model demonstrating higher accuracy in pre-

dicting several neural features observed in physiological

animal data and closer resemblance to evoked potential pre-

dictions of ABR data, it suggests a more substantial broad-

band contribution to the generation of high-level FFR,

compared to earlier conclusions based on the previous AN

modeling framework (Dau, 2003). This work may provide

an interesting basis for investigating responses to more com-

plex stimuli at both AN and retro-cochlear levels, and it

offers perspectives on studying the effects of hearing loss,

age, and other factors.
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