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Molecular subtyping is essential to infer tumor aggressiveness and predict

prognosis. In practice, tumor profiling requires in-depth knowledge of bio-

informatics tools involved in the processing and analysis of the generated

data. Additionally, data incompatibility (e.g., microarray versus RNA

sequencing data) and technical and uncharacterized biological variance

between training and test data can pose challenges in classifying individual

samples. In this article, we provide a roadmap for implementing bioinfor-

matics frameworks for molecular profiling of human cancers in a clinical

diagnostic setting. We describe a framework for integrating several

methods for quality control, normalization, batch correction, classification

and reporting, and develop a use case of the framework in breast cancer.

1. Introduction

Large-scale multi-omics profiling experiments during

the last decade have defined tumor subtypes in glioblas-

toma, breast cancer, squamous cell lung cancer, and

colorectal cancer [1–4]. Morphologically similar tumor

samples can differ substantially in underlying genetic

aberrations and changes in gene expression. For several

cancers, specific tumor subtypes have been linked to dif-

ferent treatment responses and prognoses [5–7],

providing an important approach for patient stratifica-

tion and its application in precision medicine.

In the case of breast cancer, the definition of sub-

types has a history extending two decades [8–10] and
tumor profiling is already integrated into many mod-

ern clinical workflows [11]. More than 100 expression

profiles have been proposed [12], however, in practice,

the most widely used subtyping methods are the

PAM50 [9] and CIT [10] gene signatures. PAM50 is

used to classify samples into one of four subtypes:
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Luminal A, Luminal B, HER2-enriched, and Basal-

like. A fifth subtype derived from normal breast tissue

was also included in the original work: Normal-like

[9]. Classification into these four cancer subtypes was

originally based on research microarray and qRT-PCR

data, but later an FDA-approved platform was devel-

oped [13]. Using a similar approach relying on unsu-

pervised clustering, Guedj et al. [10] grouped breast

cancer samples into six subtypes; lumA, lumB, lumC,

mApo, basL, and normL. Additional subtypes, for

example, Claudin-low group [14], were discussed as a

subtype in the past but later inferred as a phenotype

extending across the spectrum of the other groups [15].

Despite their wide use, these subtyping methods are

associated with technical challenges in a diagnostic

laboratory. For example, most sample sizes in clinical

settings are small and may include as few as a single

sample from an individual patient. However, the sub-

typing methods depend on the distribution of data

from a group of samples. Additionally, classification

results may differ depending on whether a single sam-

ple or a batch of samples are used [16]. Additionally,

subtype assignment depends on the amount of non-

tumor cells in a given sample, and thus should con-

sider tumor purity. Lastly, many pivotal subtyping

methods were derived from microarray data, while

most laboratories have moved or are moving towards

RNA sequencing for gene expression profiling. The

incompatibility of these two data types makes it chal-

lenging to leverage established methods while transi-

tioning to more prevalent and unbiased gene

expression profiling technologies.

Here, we describe practical bioinformatics solutions

to address these challenges with a framework and

apply the resulting framework to the PAM50 [9]

and CIT [10] classifiers. We provide a generally appli-

cable roadmap for implementing data and bioinfor-

matics tools for robust inference of cancer subtypes in

a clinical setting, both from raw and processed RNA

sequencing data and on a per-sample basis. Finally, we

discuss several other molecular profiling features

which, together with subtyping, can be combined into

a comprehensive report to support diagnostic and clin-

ical insights.

2. Materials and methods

2.1. Data

2.1.1. TCGA

We used data from the cancer genome atlas (TCGA)

for assessing samples in our use case for breast cancer.

We downloaded gene expression data from the Xena

Browser [17] as transcripts per million (TPM) quanti-

fied using RSEM and TOIL, mapped to Gencode

GRCh38.p3. For visualization purposes, we selected

20 random samples from each cancer type.

2.1.2. GTEx

We downloaded data from the Genotype-Tissue

Expression (GTEx) project for assessing whether our

use case samples resembled healthy breast tissue. Gene

expression data were downloaded from the UCSC

Xena project [17] as TPM quantified using RSEM and

TOIL, mapped to Gencode GRCh38.p3. For the visu-

alizations presented here, we selected 20 random sam-

ples from each tissue type.

2.1.3. CIT reference data

The CIT microarray (Affymetrix HG-U133 Plus 2.0)

training data were downloaded from ArrayExpress

(accession: E-MTAB-365) and a subset of data for the

355 core samples and 375 probes defined by the origi-

nal publication [10]. The .CEL files were read and

RMA-normalized using the AFFY R package [18]. The

subtype for each of the samples was available in

the data of the CITBCMST R package [10] (package no

longer maintained).

2.1.4. PAM50 reference data

We used the breast invasive carcinoma samples from

the TCGA for which a PAM50 subtype has been

assigned, to train a classifier for the PAM50 subtyping

scheme. The expression of the 50 genes as defined by

Parker et al. [9] were used for classification. The for-

mat of the data is TPM transformed RNA-seq data.

2.1.5. Use case data

The use case data set comprises RNA-seq data from

the tumors of 57 breast cancer patients sequenced at

the Breast Cancer Translational Research Laboratory,

Institut Jules Bordet, Brussels, Belgium. It was origi-

nally presented by Fumagalli et al. [19] and derived

from EGA (accession number EGAD00001000627).

For visualization purposes, 10 of these samples (named

HER2-03, HER2-21, LUMA-18, LUMA-24, LUMA-

27, LUMA-29, LUMB-01, LUMB-17, TN-18, and

TN-22) were selected to be the use case data set in this

study, such that the included samples spanned the four

IHC- and grading-based subtypes from the original

work (Table S1). The full analysis of all 57 samples
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was also performed. For CIT classification, RNA

sequencing reads were mapped to the Affymetrix HG-

U133 Plus 2.0 probe set sequences [20], and subset to

the 375 CIT probes. For comparison to GTEx,

TCGA, and PAM50 classification using TCGA-BRCA

as a reference, reads were mapped to Gencode

GRCh38.p3. Furthermore, the reads were also subset

to the 375 CIT probes for PAM classification.

2.2. Methods

2.2.1. Quality assessment

We used ARRAYQUALITYMETRICS v3.54.0 to assess data

quality for microarray data [21] and FASTQC v0.12.0

[22] for RNA sequencing data.

2.2.2. Tumor purity estimates

We estimated tumor purity using a functional class

scoring based method, ESTIMATE v1.0.13, which pro-

vides enrichment scores for a stromal content gene set

and an immune infiltrate gene set in a given sample

[23]. These scores are then aggregated into a score that

serves as an indicator of tumor purity. As this method

works by calculating the enrichment of two gene sets,

it is important to ensure overlap between the gene

symbols in the gene sets and the samples.

2.2.3. Data harmonization

Data sets were harmonized using either ComBat [24]

(implemented in the SVA package v3.46.0) or simple

rank transformation of expression values.

2.2.4. Dimensionality reduction and projection

All dimensionality reduction was done using principal

component analysis (PCA) with the STATS package in

R. Initial PCA spaces were constructed on reference

genes (centered and scaled) and additional samples

were projected into the reference space by multiplying

the rotations from the reference space with the addi-

tional sample vectors. For construction of the TCGA

and GTEx reference spaces, features were first reduced

by subsetting significantly differentially expressed genes

between samples from each subtype versus the rest of

subtypes collectively, using a Mann–Whitney U test.

For the TCGA BRCA reference PCA, the 1092 sam-

ples with assigned PAM50 subtypes were subsetted to

genes with a log2-transformed fold change greater than

1 or smaller than �1. The choice of this filtering set-

ting was based on cross-validation performance. For

construction of the CIT PCA reference space, we used

the 375 probe sets originally defined by the authors.

2.2.5. Definition of subtype-specific gene sets

Subtype-specific gene sets were defined using a Mann–
Whitney U test on samples in each subtype versus the

rest of the samples. Features were subsetted first based

on Bonferroni multiple testing corrected P values

lower than 0.05, and then by log2-fold changes greater

than 1.

2.2.6. Classification

Classification of samples was carried out using three

different approaches: k-Nearest Neighbor (kNN) using

the e1071 v1.7-13 package in R, distance-to-centroid,

and subtype gene set single sample gene set enrichment

using the SINGSCORE package v1.18.0 in R [25]. For the

kNN classifier, the best k was empirically determined

by leave-one-out cross-validation. Then, a winner-

takes-all approach was used to assign subtypes. For

the distance-to-centroid classifier, centroids were calcu-

lated as the mean expression of genes in each class,

and the minimum centroid distance subtype was

assigned. It has been proposed to shrink the centroid

means to offset the effects of outliers on the mean. We

observed that defining centroids on the median expres-

sion worked just as well. For centroid distance using

gene expression, Euclidean distance was used, and for

the rank transformed data, we used the Kendall tau

distance. For subtype gene set single sample gene set

enrichment, we used Singscore. For performance eval-

uation, we used a leave-one-out approach and calcu-

lated precision and recall for each subtype as well as a

subtype frequency weighted accuracy.

3. Results

3.1. Pipeline for molecular subtyping

A robust workflow for subtyping involves several steps

(Fig. 1). Briefly, the process starts with data prepara-

tion where one or more reference data sets (e.g., sub-

type training samples) and a test data set (new samples

to be profiled) are processed. The latter step may also

involve some additional steps, to make test data com-

patible with additional reference sets like the TCGA

or GTEx sets. After processing each data set sepa-

rately, it is necessary to harmonize them to ensure that

they can be directly compared, after which the actual

subtyping can take place. In this paper, we describe

each step of the pipeline and exemplify the analysis
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using a data set of 10 breast cancer samples analyzed

with RNA sequencing. However, the workflow is

designed to be applicable, in principle, to any other

samples, cancers, or data types.

3.2. Preparing data

The first step in building a subtyping framework is to

prepare the data set(s) that should serve as a reference

for the subtypes. This set will typically be published

along with the method describing the subtyping

scheme, for example, raw data from the CIT

subtyping method published by Guedj et al. [10]. As a

general rule of thumb, the training data should be pre-

processed in accordance with the methods used by the

authors of the original publication, although this may

not affect classification performance in practice.

For samples analyzed with the same Affymetrix

platform, extracting the matching probe set intensities

is trivial. However, gene expression profiling has

largely shifted towards RNA sequencing, as this tech-

nique is now both cheaper and more comprehensive.

To address this technology incompatibility, we previ-

ously devised a method for integrating RNA sequenc-

ing data with DNA microarray data [20]. In short,

rather than mapping RNA sequencing reads to a refer-

ence transcriptome, we propose mapping the reads to

the probe set target sequences of the microarray. This

also ensures full overlap between the features of the

reference set and the test set, which is necessary for

harmonization, visualization, and classification. An

additional note regarding the use of sequencing data,

is that length-normalization is necessary for inter-gene

comparisons, on which subtyping is typically highly

dependent. One approach is to use transcript per

million-normalization.

3.3. Quality control

Quality control has two major components: technical

and non-technical quality control. Technical quality

control strictly deals with the quality of the data from

an instrumental point of view. Depending on the plat-

form used, different software packages can be applied

to assess the raw data. Data files with poor quality data

should be discarded as this can severely affect the results

of the downstream analyses. Quality assessment of

microarray data can be done using tools such as the BIO-

CONDUCTOR package ARRAYQUALITYMETRICS [21], while

RNA sequencing data can be assessed using FASTQC [22].

Non-technical quality issues, such as sample impu-

rity or sample swaps can be harder to detect. How-

ever, the majority of these non-technical quality

parameters can be estimated by comparing sample

characteristics to appropriate reference data sets.

Tumor purity naturally varies, and may not be an

issue for subtyping classification, unless the purity of a

sample is outside of the range of the reference set.

Tumor purity can be estimated using the software

package ESTIMATE [23], which utilizes ssGSEA [26] to

calculate enrichment of an immune signature and a

stromal signature, which are then aggregated into

a tumor purity score. As the method is rank-based, it

is less sensitive to batch effects. A subtyping analysis

of a breast cancer sample with potential low tumor cell

content can be done by comparing the purity scores of

the samples of interest to the purity scores of all breast

cancer samples in a reference set. The 10 samples used

for exemplifying the framework throughout this paper

provide a very broad range of tumor purity (Fig. 2).

Purity reflects the degree to which an expression pro-

file reflects patterns considered to represent normal cells

which are also present in tumors including stromal and

Fig. 1. Proposed pipeline for

molecular characterization of

cancer. The section describing each

step of the workflow is indicated

on the right.
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immune cells, and may need to be explicitly included in

tumor expression profiling. For example, two tumor

samples which are both characterized by high expres-

sion of a specific receptor, but which have different

purity, may have very different measured expression

values for the given receptor gene based on the tumor

sample. Accordingly, if a sample is at the extremes of

the purity range, one may consider normalizing expres-

sion by purity before reporting.

Generally, for subtyping purposes, it is important to

remember that subtypes are defined on bulk samples

which include the tumor microenvironment in addition

to malignant cells. Accordingly, defined subtypes can

actually be correlated with normal cell content, as is

the case for both the CIT and PAM50 classifiers

(Figs S1 and S2). In some subtyping schemes, the con-

tent of non-malignant cells is even the defining feature

of specific categories [27].

Sample swaps or major contamination can be diffi-

cult to detect, but clues can be provided by comparing

sample gene expression to expression characteristics of

comprehensive tissue-specific expression profiles such as

GTEx [28] or the TCGA [29]. As can be seen in Fig. 3,

the 10 breast cancer test samples appear highly likely to

be derived from breast tissue, which correlates with our

expectations. Naturally, projection of swapped samples

originating from the same tissue into the space of refer-

ence sets would not reveal the error. It does, however,

indicate whether the analyzed sample actually has an

expression profile resembling its true tissue of origin.

Furthermore, it may be used to reveal if a sample has

been severely impacted by any experimental processing

step, for example, late freezing [30]. Validation of this

procedure is shown for both GTEx and TCGA, where

samples from each type of tissue can be shown corre-

sponding to its tissue of origin (Fig. S3).

3.4. Harmonizing data

Before classification, harmonization of expression

values from the reference samples is necessary. This is

critical when considering data from the same or very

similar platforms, for example, two microarray experi-

ments. The need for harmonization is even greater

when comparing samples across technology platforms.

Even after mapping RNA sequencing reads to a refer-

ence consisting of probe sets, data from different exper-

iments have completely different distributions, as

illustrated in Fig. 4A. Harmonization can be carried

out using batch correction methods, for example, Com-

Bat [24] (Fig. 4B). While ComBat is designed to work

with small sample sizes, at least eight samples must be

submitted to adequately model technical variance [24].

If subtyping of fewer samples is needed, expression

values can also be rank normalized (Fig. 4C).

When evaluating batch correction, it is important to

consider that the method should provide complete and

unbiased integration of the different data sets since

even a small shift of the test set can change the distribu-

tion of assigned subtypes. ComBat and rank transfor-

mation solve the problem of this variation. ComBat

explicitly models both technical and biological vari-

ance, the latter relying on biological cofactors – that is,

sample condition, or in this case, the hitherto unknown

subtype. If batch correcting two large test sets with

equal distribution of biological conditions, this may

not pose a problem, but if the test data are “biased”

towards certain conditions, for example, includes only

Fig. 2. Distribution of purity scores of the CIT reference samples (shown as violin with boxplot) and the 10 samples from our test set

(shown as labeled points). The x axis represents purity in the range [0; 1]. A lower score indicates lower purity.
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one subtype, ComBat is not the optimal solution as

illustrated in Fig. 5A and Fig. S4. Rather, correction

methods for which the sample-wise transformation is

independent of the other samples in the test set is desir-

able [16,31], and as can be seen in Fig. 5B, rank trans-

formed data are readily comparable to the reference. In

situations where the reference data are not provided as

raw data, or only include a subset of features, it may be

useful to use a signature enrichment approach such as

biological process transformation.

3.5. Subtype classification

Once the reference and test data are harmonized, sub-

types can be assigned to the test samples. Some

subtyping studies provide a software package for clas-

sifying new samples, for example, the CIT classifier for

breast cancer [10], while others do not. In the latter

cases, an appropriate classifier must be trained and

applied. There are no one-size-fits-all approaches for

this, and hence, a classifier may be selected based on

its cross-validation performance. To demonstrate how

this is carried out, we have applied the CIT reference

data and leave-one-out cross-validation to test two

classification algorithms: a k-nearest neighbor classifier

and a distance-to-centroid classifier. Advantages of

these algorithms are (a) they are quite simple and thus

the results are easily interpretable, and (b) subtype

assignment probability can be inferred (fuzzy

classification), rather than the methods providing a

“winner-takes-all” classification. Distance-to-centroid

additionally allows for easy outlier detection. Another

strategy for classification is to define subtype specific

gene expression signatures using ssGSEA based on the

training set, and calculate the enrichment score of each

signature for each additional sample. An advantage of

this approach is that it is less sensitive to missing fea-

tures resulting from data sparsity (as observed in sin-

gle cell transcriptomics). As seen in Table 1, all three

classifiers perform reasonably well, with a slight per-

formance advantage for the distance-to-centroid

classifier.

The performance of the leave-one-out classification

of the reference data set reveals that if reference data

and test data is appropriately harmonized, even simple

classifiers can perform quite well. Of course, some

methods will be preferable to others as illustrated

above, but this can easily be established using cross-

Fig. 3. Heatmaps of Spearman’s correlations from samples to tissue mean-based centroids in data sets of comprehensive tissue-specific

expression profiles. Columns are clustered and dendrograms are shown. (A) Heatmap of example samples versus centroids defined from a

collection of healthy tissues from the GTEx project. (B) Heatmap of example samples versus centroids from a collection of cancer tissues

from the TCGA project.

Fig. 4. Principal component analysis (PCA) plots of the CIT reference data (microarray) with the use case data (probe-mapped RNA-seq, tran-

scripts per million (TPM)) projected in. Percent variance explained by the principal components (PCs) refer to the reference data set.

(A) PCA of samples without batch correction. (B) PCA of samples batch corrected with ComBat. (C) PCA of samples integrated using rank.
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validation. This conclusion is not only applicable for

the specific case of the CIT tool for breast cancer but

the approach may be used in much wider contexts

across data sets, subtyping schemes, and cancer types.

As mentioned, many classification methods, such as

those used here, have the added advantage of fuzzy

classification. This means that samples with almost

equal distances to two or more subtypes may be con-

sidered as mixed cases [10]. In clinical diagnostic set-

tings, such information may be of interest, but if more

simple classification is preferred, the single closest cen-

troid can also be reported as winner-takes-all. An

example of fuzzy classification is shown in Fig. 6,

where the 10 test samples are classified according to

the CIT scheme, using rank transformation followed

by a distance-to-centroid classifier. While some sam-

ples clearly resemble a single subtype (e.g., sample 10),

the label of others is more unclear (e.g., sample 6).

A similar approach to classification can be taken for

PAM50. The primary difference between CIT and

PAM50, is that the former study provided a training

set, a feature set, and a classifier, while the latter pro-

vided a 50-gene signature. Using the TCGA BRCA

data with the ranks of the 50 PAM50 genes, a nearest

centroid classifier yields a weighted accuracy of 0.894

(See Table S2 for full performance metrics). As shown

in Fig. 7, a majority of our included samples are

labeled as LumA. While this fits nicely with the IHC-

Fig. 5. Examples of harmonization of data sets with unbalanced biological conditions. Percent variance explained by the PCs refer to the full

CIT reference data. (A) Batch correction of the entire CIT reference data against the lumB samples only using ComBat with the full set as

reference. Without biological conditions as cofactors, ComBat under-estimates the biological variance causing the lumB samples to become

centered in the PC space. Similar plots for the remaining subtypes are shown in Fig. S4. (B) A similar example using rank transformation.

Table 1. Precision, recall, and weighted accuracy from leave-one-out cross-validation of k-nearest neighbor, nearest centroid, and subtype

signature enrichment for the CIT reference data. Highest precision per subtype, highest recall, and highest weighted accuracy are

highlighted in bold text.

Subtype

k-nearest neighbor

Distance-to-centroid

(Euclidean distance) Subtype signature ssGSEA

Precision Recall Precision Recall Precision Recall

normL 0.966 0.989 1 1 0.827 0.920

lumA 0.909 0.984 1 0.984 0.875 0.918

lumB 0.955 0.955 0.957 1 0.844 0.985

lumC 1 0.854 1 0.958 0.722 0.542

mApo 1 1 1 1 1 0.795

basL 1 1 1 1 1 0.925

Weighted accuracy 0.963 0.990 0.847
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based ER-positive status of all of these six samples, it

is somewhat conflicting that sample 1, which is also

HER2-positive, is not classified as Her2, but this sam-

ple was similarly classified as luminal with CIT. In the

case of sample 7, it is also quite close to the LumB

subtype (Fig. 7B), so this could be considered as a

mixed assignment. Sample 2, sample 8, and sample 10

behave as expected from their receptor status, but the

assignment of sample 9 to the Normal-like subtype

may seem unexpected. Of note, the PAM50 definition

of Normal-like is actually based on non-cancerous

breast tissue samples but the assignment of receptor-

negative samples to the Normal-like PAM50 subtype

is not unusual [32].

To further validate the results, classification using the

CIT scheme was also done on the full use case data set.

With this, 4/57 samples were classified differently

between rank transformed microarray data and rank

transformed RNA-seq data. The misclassifications were

between lumA, lumB, lumC, and normL. These four

misclassifications lie closely together in their PCA space

and seem like edge cases, when looking at the centroids

(Figs S5 and S6, Table S3).

3.6. Additional features

Besides the assignment of subtypes based on gene

expression analysis, additional tumor features may be

of interest when optimizing treatment regimens. In the

case of breast cancer, this includes expression levels of

specific receptor genes, such as the estrogen receptor

(ER), progesterone receptor (PR), and the HER2-

receptor [33]. While receptor status is mainly based on

immunohistochemistry or ERBB2 FISH probes, multi-

ple studies have shown that measurements at the

mRNA-level have reasonably strong correlations with

those from IHC [10,33–35]. Of note, a sample’s expres-

sion level of any tumor-associated gene may be

impacted by the sample purity, as also described in

brief in Section 3.3.

Generally speaking, any feature may be visualized in

relation to any reference (e.g., subtyping reference,

TCGA, and in-house samples), as seen in Fig. 8. In

addition to genes, enrichment of relevant gene signa-

tures or pathways related to prognostics can also be

visualized. More widely across cancer types, this can

include detection of specific mutations [36,37], or

Fig. 6. Subtyping of 10 test samples using rank transformation and a distance-to-centroid classifier (Kendall Tau distance). (A) Projection of

the samples from the use case data into CIT principal component space. Percent variance explained by the PCs refer to the CIT reference

data. (B) Distance-to-centroid matrix, scaled per sample. Black squares indicate the closest centroid for each sample.
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methylation analyses [38]. Such analyses add to the

complexity and costs of molecular profiling, but can

also provide valuable information.

4. Discussion

Molecular characterization of tumors is an important

tool for precision medicine. In this paper, we describe

a bioinformatics framework based on years of practi-

cal experience. Most characteristics rely on compari-

sons to reference samples. For tumor purity, the

sample can be compared to the previously collected

and analyzed samples to establish whether the sample

is within a reasonable range. For quality control, com-

parisons to different cancer samples in the TCGA data

or the healthy tissues in GTEx may reveal more seri-

ous sample issues, if samples do not resemble the

expected tissues.

For subtyping, samples are directly compared to the

reference data sets. For these comparisons to yield sensi-

ble results, mapping, normalization, and harmonization

must be considered, as transcriptomic measurements are

sensitive to batch effects and technology incompatibility

(e.g., comparing microarray data and RNA sequencing

data). In the case of CIT (and many other subtyping

methods), gene expression profiles were measured using

the Affymetrix HG-U133 Plus 2.0 DNA microarray. In

the original study, the subtyping itself was not based on

summarized gene expression values, but a selection of

probe set intensities. This means that while gene-level

classification is possible using the classifier offered by

the authors of CIT, additional samples should optimally

be classified based on intensities of the same probe sets.

Consequently, for comparing RNA sequencing data to

microarray, mapping to probe set sequences greatly

increases compatibility.

The batch correction tool of choice in the vast

amount of transcriptomics applications is ComBat.

However, ComBat is dependent on biological cofactors

to accurately model biological variance. Therefore,

using ComBat carries the risk of removing biological

variance without knowing the subtypes in advance.

Instead, it is recommended [31,39,40] to use the

expression ranks of genes. One caveat is that gene

expression ranks may be sensitive to noise – particu-

larly in the low end of the expression spectrum, where

Fig. 7. Subtyping of 10 test samples using rank transformation and a distance-to-centroid classifier (Kendall Tau distance). (A) Projection of

the samples from the use case data into PAM50 principal component space. Percent variance explained by the PCs refer to the TCGA refer-

ence set. (B) Distance-to-centroid matrix, scaled per sample. Black squares indicate the closest centroid for each sample.
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even a small change can induce swaps in the ranks.

One option is to apply the robust rank aggregation

[41], although when working with small, curated gene

sets such as PAM50, the effect is negligible.

Once data are harmonized, dimensionality reduction

and classification can be performed on the ranks. For

distance-based classifiers, a distance metric suitable for

ranks should be selected. Some studies have presented

advanced machine learning classifiers for breast cancer

samples [42–44]. In the present paper, we intentionally

focused on three very simple methods, and show that

with proper data harmonization, even simple models

Fig. 8. Visualizing the expression ranks of specific genes of interest in relation to the expression rank distributions in the reference data

(CIT). (A) Expression of ERBB2 (HER2). (B) Expression of ESR1 (Estrogen receptor). (C) Expression of PGR (Progesterone receptor).
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will work. Simple models come with the added bonus of

interpretability and are widely useful, especially in

resource constrained settings. Our classifiers were based

on the core gene sets defined by the original studies.

Others define their own gene sets to optimize cross-

validation performance [16,43]. While neither approach

is methodologically wrong, it does open the debate of

whether the subtype calls or the genetic features on

which they are based are of greater importance.

One of the classification methods we chose to apply,

stands out from the rest: the subtype-specific single

sample gene set enrichment analysis. Though it was

the poorest performing of the three tested methods, we

chose to highlight this method as it is more robust to

data sparsity [45], which may prove important in single

cell diagnostics [46]. One important thing to consider

in this context is that signatures derived from bulk

transcriptomics include signals from the entire micro-

environment, and as we show here, tumor purity not

only impacted the definitions of the subtypes, but also

the subsequent molecular characterizations. This

means that single tumor cells may not readily fit into

current subtyping schemes.

For diagnostic applications, stability is essential.

This means that the stability of the software packages

used, R versioning, etc., must be taken into consider-

ation. This is essential both from an operational point

of view, as well as from an analytical point. This may

be addressed by using a docker environment.

5. Conclusion

In this paper, we have presented a framework which

enables robust molecular characterization of clinical can-

cer samples. Particularly, the work emphasizes that har-

monization of the new data to be classified relative to the

reference is essential for deriving a molecular subtype.

The method for harmonization is important. Methods

relying on intra-sample relative expression values are par-

ticularly suited for classification of single samples. We

showed that once data are properly harmonized, even

simple classification models can yield high accuracy.
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