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Label-Free Blood Typing by Raman Spectroscopy and
Artificial Intelligence

Emil Alstrup Jensen, Murat Serhatlioglu, Cihan Uyanik, Anne Todsen Hansen,
Sadasivan Puthusserypady, Morten Hanefeld Dziegiel,* and Anders Kristensen*

Label-free blood typing by Raman spectroscopy (RS) is demonstrated by
training an artificial intelligence (AI) model on 271 blood typed donor whole
blood samples. A fused silica micro-capillary flow cell enables fast generation
of a large dataset of Raman spectra of individual donors. A combination of
resampling methods, machine learning and deep learning is used to classify
the ABO blood group, 27 erythrocyte antigens, 4 platelet antigens, regular
anti-B titers of blood group A donors, regular anti-A,-B titers of blood group O
donors, and ABH-secretor status, from a single Raman spectrum. The average
area under the curve value of the ABO classification is 0.91 ± 0.03 and 0.72 ±
0.09, respectively, for the remaining traits. The classification performance of
all parameters is discussed in the context of dataset balance and antigen
concentration. Post-hoc scalability analysis of the models shows the potential
of RS and AI for future applications in transfusion medicine and
blood banking.

1. Introduction

The non-labeling nature of Raman spectroscopy (RS) makes
it highly attractive for phenotyping in clinical medicine. RS
provides a spectral fingerprint specific to the biological sample
of interest. Supported by artificial intelligence (AI), (machine
learning (ML) and deep learning (DL)), it is possible to extract
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extremely subtle and extensive infor-
mation about the composition of a
sample.[1] In recent years, numerous ap-
plications of both ML[2] and DL[3] frame-
works have been suggested, to trans-
late the complexity of RS to a clinical
setting. RS has been used for a wide
range of applications in bioanalytics and
blood analysis[4,5] including detection of
glycated hemoglobin for diagnosis of
diabetes,[6] in vivo measurements of oxy-
gen saturation of hemoglobin,[7,8] and
point of care detection of hemolysis.[9–12]

RS has shown a potential to recog-
nize distinct features of the different
erythrocyte blood group antigens and
thus distinguish between ABO blood
group antigens, but has so far relied on
comprehensive sample preparation steps
applied to isolate specific substances

or components of the blood, thus limiting the throughput and
the resulting dataset sizes. A laser tweezers Raman spectroscopy
(LTRS) system has been proposed to probe single trapped
erythrocytes,[13] and surface-enhanced Raman scattering (SERS)
spectroscopy on purified globulins from blood plasma have been
used to discriminate ABO blood types.[14,15] Raman analysis
restricted to the individual substances has the advantage of
reducing the simultaneous scattering and absorption factors
that otherwise need to be considered, and produce features
in a Raman spectrum, which are otherwise hidden by the
strongly scattering hemoglobin in erythrocytes.[4,16,17] However,
in many point-of-care applications and particularly in transfu-
sion medicine, time is a decisive factor, and RS must be applied
directly on whole blood to avoid time and labor consuming
preparatory steps. Comprehensive work on RS on blood within
flow-through tubes has shown the potential to acquire Raman
spectra with minimal sample preparation in a fast and non-
invasive way.[18,19] Finally, some previous studies of Raman blood
analysis suffer from a low number of samples, subsequently
limiting the access to large datasets for ML and DL analysis thus
making the translation to clinical use difficult.[20]

ABO and RhD blood group determination for donors and pa-
tients is pivotal for safe transfusion medicine.[21] Determination
of blood groups and subsequent matching is mandatory in trans-
fusion medicine, and only RhD-negative erythrocytes are given
to RhD-negative recipients. O RhD negative erythrocytes are uni-
versal in the sense that any recipient can receive them without the
risk of reactivity with anti-A and anti-B antibodies and without
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Table 1. State-of-the-art blood typing methods..

Method Techniques Consumables Sample Preparation Scope Time Non-invasive

Manual agglutination [29,30] Slide testing, tube
testing

Antibody and antigen
specific reagents

Whole blood,
centrifugation

ABO, RhD 5–20 min No

Automated Agglutination
[29,30]

Microplate,
microcolumn gel

Antibody and antigen
specific reagents

Whole blood,
centrifugation

ABO, Rh, Duffy, Kell
Kidd, MNS

6–45 min No

Paper based microfluidics
(Agglutination) [29,31–33]

Dye-assisted, wax
printing and
dipping

Antibody treated paper,
antigen specific
reagents, indicator dyes
(e.g., BCG)

Whole blood (forward
typing), dilution

ABO, Rh, Duffy, Kell,
P1, Lewis, Kidd,
MNS

1–45 min No

Genotyping [26,27] PCR, sequencing PCR consumables PCR sample preparation,
dilution

All Hours No

Surface plasmon
resonance [29,34–36]

SPRi Antibody specific reagents,
SPR sensor chips

Washing, centrifugation ABO, Rh, Duffy 10–15 min No

Raman-based microfluidics RS None None All 1 min Yes

the risk of inducing irregular antibodies to the RhD antigen. This
makes the O RhD negative erythrocytes vital in emergency sit-
uations where the recipient blood group is unknown. However,
only ≈4% of the population are O RhD negative. Therefore, blood
banks strive to obtain fast determination of patients’ blood groups
and use donors with identical blood groups.[22] This motivates the
development of fast and comprehensive analytical technology.

The immune system always produces antibodies against the
ABO antigens that are not present on the surface of the RBCs of
the person, hence the term regular anti-A and anti-B antibodies—
and the interest in avoiding universal O type donors with exces-
sive anti-A and anti-B antibody. Extended phenotyping of addi-
tional blood group systems is done as a supplement to the ba-
sic determination of blood groups for ABO and RhD. This is
particularly important for patients who already have developed
alloantibodies, potentially causing a hemolytic transfusion reac-
tion (HTR).[23–25] A comparison to state-of-the-art blood typing
methods is presented in Table 1. Most other methods are well es-
tablished and tested with clinically relevant accuracies with both
low cost and fast options. However, most rely on antibody and
antigen specific reagents and are susceptible to the expression
levels of certain antigens or limited by weak agglutination. Al-
ternatively, PCR based genotyping has become state-of-the-art in
extended blood type matching[26,27] but remains time-consuming
and expensive on a larger scale due to the requirement of highly
trained technicians and multiple reference laboratories.[28]

In this work, we address the analytical challenges of the
consumable-heavy serological methods as well as the time-
consuming and expensive genotyping methods, using a flow cell
protocol to acquire RS from 271 whole blood samples with no
pre-analytical preparative steps. Based on a single Raman spec-
trum for each sample measured in 1 min, we aim to simulta-
neously map out 35 blood group traits and determine titers of
regular blood group antibodies.

Notably, a trait is not a direct measurement of a low concen-
tration antigen, but rather a characteristic of the donor that could
encompass several distinct components in the blood. The identity
and molar concentration of the entire set of informative analytes
are not clear, but it is assumed that the entire collection of in-
formative molecular moieties is far more abundant than the mo-
lar concentration of the single product representing the molec-

ular end-point of a trait. A similar approach of using a multi-
parameter association has recently been reported for proteomics
and blood groups ABO and Rh.[37] A strict association between
molar concentrations of the blood group antigens and the per-
formance of RS is not to be expected. Consequently, the complex
correlation between reference blood traits and RS is analyzed by
multivariate statistics, ML and DL, and the challenge of detect-
ing a rare trait is addressed by resampling methods such as ran-
dom undersampling, adaptive synthetic (ADASYN)[38] oversam-
pling and synthetic minority (SMOTE)[39] oversampling, as well
as using ensemble learning.[40,41] The observed scaling of accu-
racy with size of training set supports the principal feasibility to
achieve clinically relevant accuracy on determining blood traits
by RS and AI trained on 30–60 000 donor samples— with a per-
spective to radically improve transfusion medicine via fast and
easy access to all clinically relevant traits for donors and patients.

2. Experimental Section

2.1. Ethical Approval

Blood was collected from voluntary blood donors after obtaining
informed written consent for use of blood as normal material.
Samples were anonymized and accompanied by reference data
(ABO, phenotype predicted from genotype and hematology ref-
erence data). According to legislation, this use of anonymized
donor samples as normal material does not require approval by
an ethical committee.

2.2. Microfluidics

Whole blood samples in EDTA tubes were collected from donors
at the blood bank in Copenhagen University Hospital and stored
at 4 °C for no longer than 60 h before Raman measurements
were done. The main source of spectral change over time can
be attributed to oxygenation of hemoglobin, which was visible in
regions related to oxygenation and deoxygenation bands (1200–
1230 cm−1 and 1500–1660 cm−1.[42] A short window from the
time blood is collected to a Raman spectrum was acquired, limits

Adv. Mater. Technol. 2024, 9, 2301462 2301462 (2 of 16) © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH

 2365709x, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

t.202301462 by D
anish T

echnical K
now

ledge, W
iley O

nline L
ibrary on [26/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmattechnol.de


www.advancedsciencenews.com www.advmattechnol.de

Figure 1. a) Antigens on the surface of erythrocytes, platelets, in plasma, and antibodies in plasma all determine various blood groups and other traits
for a specific donor. b) A sample of whole blood is collected in EDTA with no pre-analytical sample preparation and drawn directly through a fused
silica microcapillary by a syringe pump during the acquisition of the Raman spectrum. c) The RS setup is built on an inverted microscope: The 785 nm
excitation laser source is focused to a spot inside the micro-capillary and Raman scattered light is collected by the microscope objective, filtered by notch
and long pass edge filters and delivered to a spectrometer.

the contamination of oxygenation, although some variance be-
tween donors can be expected (see Figure S2, Supporting Infor-
mation). The blood samples were drawn directly from the EDTA
tubes into a fused silica microcapillary with an inner diameter
of 250 μm and outer diameter of 360 μm (TSP250350, Polymi-
cro Technologies LLC) by a syringe pump (Harvard Apparatus
11 Plus) to measure Raman spectra while flowing the sample
as shown in Figure 1a–c. This flow cell configuration was cho-
sen to avoid elaborate sample preparation steps and multiple
disposable sample holder parts, to make the setup suitable for
high throughput applications[43] in comparison with previously
reported Raman-based methods, where sample preparation has
been the rate-limiting step. In addition, the flow of the sam-
ple accommodated the fact that stationary blood samples were
vulnerable to photodegradation and laser-induced denaturation
of erythrocytes.[44] Photodegradation is in large part due to the
strong absorption of hemoglobin at blue and green wavelengths,
however, even at near-infrared excitation and low laser powers,
photodamage of hemoglobin can occur. Heme aggregation due
to thermally or laser induced denaturation creates spectral inho-
mogeneity in the measurements, which ultimately will disturb
the blood type analysis.[45] A constant flow rate of 10 μL min−1

was found to be optimal in terms of limiting the needed sample
volume per measurement while avoiding photo-bleaching and -
degradation in the sample (see Figure S1, Supporting Informa-
tion). A maximum of 70 μL of whole blood was used per Raman

spectrum. In-between sample exchange the capillary was cleaned
by a bleach-based cleaning solution (Cat.no. BD 340345, BD Bio-
sciences) followed by a buffer solution consisting of 1000× 0.5
mm EDTA mixed with phosphate buffered saline in a 1:1000 ra-
tio to avoid any EDTA gradients and clot formation. The capillary
was cleaned for ≈5 min in-between sample exchange. Sample col-
lection and measurements were carried out over several weeks
using consistent sample loading and cleaning protocols.

2.3. Raman Spectroscopy

The flow cell was mounted on a motorized translational stage
of an inverted microscope (Nikon-Ti) with a 50× air objective
(NA 0.8, WD 1 mm). A diagram of the optical setup is shown
in Figure 1c. A tunable 765–805 nm diode laser (Toptica DLC
DL-pro) was used for Raman excitation at 785 nm and sidebands
were filtered using a tunable band-pass edge filter installed with a
fixed angle with respect to the incident light. The laser source was
then coupled into the inverted microscope in a backscattering
configuration and focused by the objective to a small spot inside
the fused silica capillary. A laser power of 25 mW at the excitation
spot was used. A long-pass edge filter (785RS-25, Semrock) and
a notch filter were inserted to suppress Rayleigh scattering such
that only Raman scattered light entered the spectrometer. The mi-
croscope field of view was imaged by a Shamrock 303i imaging
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spectrometer, with an integrated Newton 920 deep-cooled back-
illuminated CCD camera (Andor Technology). A 300 μm wide slit
was positioned at the entrance of the spectrometer to suppress
light away from the focus of the laser spot. A grating of 1200 lines
mm−1 was applied to image the spectral distribution of focused
Raman scattered light onto horizontal positions of the CCD cam-
era, while vertical positions corresponded to scattered light at var-
ious positions at the entrance slit of the spectrometer. Positions
that were spatially offset from the focus of the laser excitation spot
collect Raman scattered light from sample volume that was not in
focus with the focal plane of the microscope.[9] The capillary was
aligned perpendicular to the optical axis of the microscope objec-
tive with the center of the capillary in the xy-plane. Raman signal
from the fused silica capillary walls was suppressed by focusing
the excitation laser along the z direction until fused silica Raman
peaks disappear and signal from the blood samples was maxi-
mized. The position of the laser spot with respect to the sample
flow was calibrated by conducting a z-scan, tracking fused silica
bands (495, 606 cm−1) and hemoglobin bands, such that a sam-
ple volume 10 μm from the inner capillary wall can be probed
consistently (see Figure S3, Supporting Information). The short
penetration depth of the laser in the whole blood sample forces
the measurement position to be relatively close to the capillary
wall, where a cell-free region formed in close proximity to the
capillary walls,[46,47] creating a narrow region without fused silica
background. A z-scan calibration ensured that no unwanted vari-
ability in the spectra from glass signal, varying cell concentration
and flow velocity was introduced. The flow of the sample enabled
probing of a large sample volume and long integration time with-
out damaging the blood cells. An integration time of 60 s was
used in each measurement such that a relatively large sample
volume can be analyzed, and sufficient SNR achieved (6.8±1.7).
For each measurement the spectral range of 393–1869 cm−1 was
used with the spectral dispersion varying from 0.63 to 0.49 cm−1

per pixel. Wavenumber calibration was performed using the 520
cm−1 vibration of a single crystalline silicon wafer sample.

2.4. Dataset

The Raman dataset was collected from whole blood samples in
EDTA tubes from 69 type A, 69 type B, 70 type O, and 63 type AB
donors. Three separate Raman measurements were conducted
on each donor sample resulting in a total of 813 hyperspectral Ra-
man images with 2663×256 pixel values. The row with maximum
intensity in the spectral region of interest was extracted for fur-
ther pre-processing. The reference dataset consisted of serologi-
cally determined ABO and RhD blood groups for all the donors
in the dataset and antibody parameters determined by serology
for blood group A and O. Smaller subsets of the total donor co-
hort had an additional set of 51 blood group antigens predicted by
genotyping. Only 38 of the traits were deemed suitable for classi-
fication purposes in terms of providing sufficient occurrences of
both positive and negative donors for principal component anal-
ysis (PCA) and support vector machine (SVM) analysis. 27 of the
traits were erythrocyte antigens (molecular end-point of trait), 4
were platelet antigens (molecular end-point of trait), and 2 were
ABO antibody (Ab) titers, anti-B (aB), and anti-A,-B (aAB). The
anatomical location of the trait, blood group system, frequency

of the antigen, and molar antigen concentration are outlined in
Table 2.

All blood group antigens and haematological parameters were
provided by the donor database at the Copenhagen University
Hospital blood bank. The blood group antigen testing was car-
ried out by PCR methods[27] and haematology parameters were
determined by a commercial haematology analyzer (Sysmex).

2.5. Spectral Pre-Processing

To maximize the performance of the classification algorithms,
a series of pre-processing steps were carried out on the Raman
spectra. Fluorescence and measurement noise create a back-
ground drift in the spectra that needed to be accounted for,
such that any spectral differences due to thermal fluctuations
and other environmental factors are avoided. Background base-
lines for each spectrum were removed using an asymmetrically
reweighted penalized least squares smoothing (arPLS) algorithm
that effectively corrects noisy baselines while maintaining an ac-
curate peak height estimation.[48] The arPLS algorithm can be
tuned by a regularization parameter, 𝜆, which was treated as a
hyperparameter when training the classifiers. An outline of the
importance of 𝜆 can be found in Figure S4, Supporting Informa-
tion.

2.6. SVM Baselines and Training Details

SVM were used as the baseline classification method for all
blood traits due to their efficient implementation and high per-
formance on small datasets.[49] The four ABO blood groups were
divided into 6 pairwise sub-classification problems, while the rest
of the parameter determinations were reduced to a binary classi-
fication of either positive or negative. The input dataset consisted
of 813 vectors, each with 2663 intensity variables. Analyzing data
in a high-dimensional space was both computationally costly and
often required large amounts of data to obtain reliable results.
PCA was used to reduce the high dimensional (2663 intensity
variables) input data to 15 principal components (PCs) before
SVM classification. The number of PCs was treated as a hyper-
parameter when training the SVM classifiers. The SVM classi-
fier used a radial basis function (RBF) kernel to project the input
space into a higher dimensional space, such that the non-linearly
separable classes can be distinguished. A kernel coefficient, 𝛾 ,
and a SVM regularization parameter, C, were then optimized
along with the rest of the hyperparameters using fivefold cross-
validation. The area under the receiver operating characteristics
curves (AUC-ROC), balanced accuracy (BA), F1 score, precision,
sensitivity/recall, and specificity were used to evaluate the perfor-
mance of the models (see Section 2.9). BA was used as the loss
function when optimizing the models due to the imbalanced na-
ture of most of the parameters (see Section 2.7). The open source
Python module Scikit-learn[50] was used for all SVM analysis.

2.7. Dataset Imbalance and Ensemble Learning

The donors were selected to have a balanced ABO blood group
dataset and consequently the majority of the other parameters
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Table 2. Overview of the different antigens, the cell types or substances in which they are found, the designation of the corresponding blood group
system, number of antigens per cell, and concentration in μm..

Antigen Anatomical location System Number of antigens per cell Concentration, μm

A1 Erythrocyte ABO 800 · 103–1200 · 103 6.6–10.0

A2 Erythrocyte ABO 100 · 103–400 · 103 0.83–3.3

A1B (A antigen) Erythrocyte ABO 500 · 103–900 · 103 4.2–7.5

A2B (A antigen) Erythrocyte ABO <100 · 103 <0.83

B Erythrocyte ABO 750 · 103 6.3

A1B (B antigen) Erythrocyte ABO 430 · 103 3.6

ABH Secretions, plasma Secretor - -

C, c Erythrocyte Rh 50 · 103 0.42

Cw Erythrocyte Rh 14 · 103–32 · 103 0.075–0.28

Dd Erythrocyte Rh 9 · 103–23 · 103 0.075–0.192

DD Erythrocyte Rh 14 · 103–33 · 103 0.12–0.28

E Erythrocyte Rh 27.5 · 103 0.23

e Erythrocyte Rh 25 · 103 0.21

Coa, Cob Erythrocyte Colton 120 ⋅ 103–160 ⋅ 10
3

1.00–1.33

Kpa, Kpb Erythrocyte Kell 3.5 · 103–18 · 103 0.029–0.150

K, k Erythrocyte Kell 3.5 · 103–18 · 103 0.029–0.150

Kna, Knb Erythrocyte Knops 20–1500 0.00016–0.012

M, N Erythrocyte Glycophorin A 1000 · 103 8.33

S, s Erythrocyte Glycophorin B 170 ⋅ 103–250 ⋅ 10
3

1.4–2.1

Fya, Fyb Erythrocyte Duffy 6 · 103 0.050

Jka, Jkb Erythrocyte Kidd 14 · 103 0.12

Doa, Dob Erythrocyte Dombrock - -

Dia, Dib Erythrocyte Diego 1000 · 103 8.3

Lea, Leb Erythrocyte, secretions, plasma Lewis - -

Lua, Lub Erythrocyte Lutheran 1.64 ⋅ 103–4.07 ⋅ 10
3

0.0137–0.0339

Yta, Ytb Erythrocyte Cartwright 7 · 103–10 · 103 0.0583–0.0833

HPA-1a,b Platelet HPA-1 35 · 103–52 · 103 0.0146–0.0217

HPA-5a,b Platelet HPA-5 3 · 103–5 · 103 0.00125–0.0021

HPA-15a,b Platelet HPA-15 1 · 103 0.000417

have a highly imbalanced distribution of positive and negative
instances as they approximately reflect the balance in the popu-
lation. Most ML models trained on an imbalanced dataset were
susceptible to producing models which were biased toward the
majority class. SVMs, especially, have been shown to produce
separating hyperplanes ignorant toward the minority class, gen-
erating more false negative predictions.[51] Different re-sampling
methods were applied to balance the datasets before classifica-
tion. Random under-sampling, random over-sampling, and syn-
thetic over-sampling methods, SMOTE[39] and ADASYN[38] were
applied on the training data in each cross-validation evaluation to
solve the problem of class imbalance. Additionally, bagging en-
sembles of SVM models were used instead of a single estimator,
to further improve the classification performance.[40] Each indi-
vidual SVM was trained independently on subsets of the training
dataset, and an aggregate prediction was determined by majority
voting (see Figure 2c). The subsets were randomly chosen by a
bootstrap technique such that a spectrum can be used repeatedly
in the training of multiple models, and each subset was balanced
by resampling before training.[41] The size of the ensemble (num-
ber of n estimators) was treated as a hyper-parameter when opti-

mizing the models. The open source Python module imbalanced-
learn[52] was used for all imbalance and ensemble learning anal-
ysis.

2.8. CNN Architecture

When potentially increasing the dataset to thousands of donors
and combining all traits in a unified classification task, us-
ing a single or ensembles of non-linear SVMs was practically
infeasible.[53] CNNs were established as one of the most utilized
DL methods for pattern recognition and image classification,[54]

and various CNN architectures were proposed as an efficient and
accurate classifier of spectroscopic data.[55] The simple 1D CNN
model used in this study consisted of three convolutional lay-
ers and a pooling layer for feature extraction, followed by two
fully connected dense layers for classification. A block diagram
of the architecture can be seen in Figure 2d. To avoid overfitting,
a dropout of 0.2 was used in between each block, meaning 20% of
the nodes were left out randomly from one layer to the next. A sin-
gle 1D max pooling layer was applied after the last convolutional

Adv. Mater. Technol. 2024, 9, 2301462 2301462 (5 of 16) © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH
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Figure 2. a) Each Raman spectrum is baseline corrected and normalized. b) The dimension of the input data is reduced to a few principal components
(PCs) before the models are trained. c) The input data is then used to train an ensemble of SVM models where subsets are created with replacement from
the total dataset and balanced by resampling. The final prediction is computed by majority voting. d) Alternatively the preprocessed Raman spectra are
used directly as input data in a 1D convolutional neural network (CNN) model, with 3 convolutional layers, a max pooling layer and two fully connected
dense layers (see Section 2.8 for details). The number of filters (F) and the kernel size (K) in each convolutional layer are denoted (F,K).

layer, to reduce the dimension of the feature map before classi-
fication. The CNN architecture hyperparameters, including the
number of filters and kernel size in each convolutional layer as
well as the number of hidden units in fully connected dense lay-
ers, were optimized using the Hyperband tuning algorithm.[56]

The open source Python modules Keras[57] and TensorFlow[58]

were used for all DL analysis.

2.9. Performance Metrics

The metrics used to evaluate the classification performance of the
traits are defined as follows

Sensitivity = Recall = TP
TP + FN

, (1)

Adv. Mater. Technol. 2024, 9, 2301462 2301462 (6 of 16) © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH
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Specificity = TN
TN + FP

, (2)

Precision = TP
TP + FP

, (3)

BA = 1
2

(
Sensitivity + Specificity

)
, and (4)

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(5)

Here TP, TN, FP, and FN are true positive, true negative, false
positive, and false negative predictions, respectively. The AUC is
the area under the curve defined by the true positive rate (TPR)
and false positive rate (FPR) for arbitrary values of 𝜃 (posterior
probability between 0 and 1)

TPR(𝜃) =
TP(𝜃)

TP(𝜃) + FN(𝜃)
, (6)

FPR(𝜃) =
FP(𝜃)

FP(𝜃) + TN(𝜃)
. (7)

2.10. Overfitting and Data Leakage

In order to prevent overfitting and data leakage, pipeline frame-
works in both Scikit-learn[50] and Imbalanced-learn[52] were uti-
lized to make sure that feature selection were completely sep-
arated from the validation data, that is, the PCA was recom-
puted using only the training data for each run in the cross-
validation scheme and then the validation data was projected into
that subspace. Similarly, the resampling methods were imple-
mented within each fold and not across all cross-validation folds.
Using BA as the metric for model selection ensured that the mod-
els were not biased toward the majority class. Both training scores
and cross-validation scores were computed in the scalability anal-
ysis to show that the performance can be generalized. Too large
a discrepancy between training and cross-validation curves indi-
cated overfitting on the training data. In that case the SVM regu-
larization parameter, C, was decreased to limit model complexity
by preventing the weights of the models from becoming too large.

3. Results and Discussion

3.1. ABO Blood Group Classification

As mentioned, most bands in the whole blood Raman spectra
can be attributed to vibrations of the hemoglobin molecule. The
peaks are identified and assigned to different vibrational modes
in Figure 3a. The PC loadings in Figure 3b suggest that certain
Raman shifts contribute significantly more than others to the
most descriptive PCs. In Figure 3c the intensity distribution at 24
of the most interesting bands are plotted. Distributions of spectra
belonging to each of the ABO blood groups are plotted separately
to account for any differences between the groups. Distinct dif-
ferences can be seen at the Pyrrole (Pyr) breathing modes (𝜈15,
𝜈6, 𝜈46) as well as at the asymmetric (𝜈44, 𝜈30) and symmetric (𝜈41,
𝜈4, 𝜈12) Pyr half-ring modes, and the Pyr quarter-ring mode (𝜈20).
Similarly, differences can be seen at the Phe skeletal C–C mode
(898 cm−1), the deformation modes of amino acid side chains

(𝛿(CH2/CH3)) and amide I. Other porphyrin stretching modes
such as 𝜈(CmH) (𝜈13, 𝜈42, 𝜈21) and 𝜈(C𝛼Cm)asym (𝜈10) seem to be
ABO blood group dependent as well. Differences at vibrational
modes specific to Porphyrin between blood groups are consistent
with the existing study on single trapped erythrocytes.[13] Positive
and negative distributions of the intensity values at the same 24
bands for the rest of the traits can be found in Figure S5, Sup-
porting Information.

The ABO blood group classification is carried out without
any resampling or ensemble methods as the dataset is already
balanced by construction. The performance results of the SVM
(RBF) model are plotted in Figure 4 as ROC curves and confusion
matrices using fivefold cross-validation repeated ten times, and
all performance metrics are summarized in Table 3. The AUC val-
ues are 0.92 ± 0.03, 0.88±0.04, 0.93±0.02, 0.87±0.04, 0.90±0.03,
and 0.95±0.02 for AB-A, AB-B, AB-O, A-B, A-O, and B-O discrim-
ination, respectively, matching previously reported values.[13–15]

Type AB, A and B seem to be more difficult to discriminate which
could be explained by the fact that antigen A and antigen B differ
only by having the sugar N-acetylgalactosesamine and galactose
attached at the terminus, respectively.

The determinations of ABO Ab titers are given as regular anti-
B titers of blood group A donors ⩾10 (positive) or <10 (negative),
designated the aB Ab trait, and regular anti-A,-B titers of blood
group O ⩾ 50 (positive) or <50 (negative) designated the aAB Ab
trait. As outlined in Figure 5 and Table 3 the aB trait is classified
with an AUC of 0.80±0.06 on relatively limited reference dataset
of size 243, showing great potential of extending RS and ML to
antibody testing. The antibody titer laboratory tests are equivalent
to a specific level of antibodies in the donor plasma, thus a quan-
titative determination in contrast to the rest of the antigen traits.
Using RS to routinely measure quantitative levels of specific an-
tibodies in donor plasma would be a highly attractive clinical tool
for blood banks. Strong homology of anti-B in type A donors has
previously been reported,[61] which supports the claim that there
is a measurable difference in the Raman signal between donors
below and above 10 anti-B (aB).

The aAB reference dataset is highly imbalanced (24% pos-
itives) resulting in an AUC of 0.72±0.07 but a poor F1 score
of 0.52±0.06, suggesting the applied resampling and ensem-
ble methods have not been able to completely prevent underfit-
ting. The Se (dominant) and se (recessive) traits are the ABH-
secretor status of the donor, referring to a donor’s ability to make
ABO antigens in their plasma and secretions. Classification of
Se shows promising results using random undersampling with
an AUC of 0.88±0.07 despite significant class imbalance (see
Figure 5).

3.2. Erythrocyte and Platelet Antigen Traits

In order to maintain as large a dataset as possible, each erythro-
cyte and platelet antigen trait is classified as either negative or
positive, rather than a homozygote/heterozygote discrimination,
for example, JkaJka and JkbJkb. Intuitively, homozygote discrim-
ination would be easier due to a more distinct difference. How-
ever, the number of spectra available per class would be reduced
significantly, and the nature of the RS ensures that both forms
present in the heterozygote are clearly visible in the spectral data.

Adv. Mater. Technol. 2024, 9, 2301462 2301462 (7 of 16) © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH
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Figure 3. a) Peak assignments of blood components in a normalized average spectrum of all measurements. Assignments where 𝜈 is followed by
a number subscript are based on a labeling scheme developed for metalloporphyrins,[4,59,60] and constitute various vibrations in the porphyrin, the
main structure of hemoglobin. 𝜈15, 𝜈6, 𝜈44, 𝜈30, 𝜈41, 𝜈4, 𝜈12, 𝜈20, and 𝜈38 are all in-plane stretching modes belonging to Pyr, the outer ring structure of
Porphyrin. 𝜈7 is in-plane deformation mode belonging to Pyr. 𝜈45, 𝜈5, 𝜈18, 𝜈13, 𝜈42, 𝜈21, 𝜈28, 𝜈11, 𝜈19, 𝜈37, and 𝜈10 are other modes belonging to the Heme
b structure in hemoglobin. More specifically in-plane stretching and deformation vibrations of C–H and C–C at various 𝛼, 𝛽 and meso (m) positions
in porphyrin. Protein assignments include phenylalanine (Phe), an amino acid which is present in both hemoglobin and other membrane proteins,
deformation modes 𝛿(CH2/CH3) from amino acid side chains and amide I. Tyr refers to the amino acid Tyrosine. b) PC loadings for a few important
PCs, describing the importance of each intensity variable. c) Distributions of the intensity values at 24 of the most significant peaks according to (a) and
(b) for all Raman spectra.

Adv. Mater. Technol. 2024, 9, 2301462 2301462 (8 of 16) © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH
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Figure 4. ROC curves and confusion matrices for the ABO classification results. A ROC curve is produced for each of the five validation splits and the
average is calculated. Similarly, the confusion matrices are averaged over five iterations of CV splits.

The distribution of positives and negatives for each trait is given
in Table 3 as the fraction of positives in both the population[62]

and the actual dataset for training. Four classification perfor-
mance examples of erythrocyte antigens, S, Dob, Fyb, and Jka,
are presented in Figure 5. 50.1%, 87.1%, 78.9%, and 79.1% of
donors in each dataset are genotyped positive, respectively. The
highly imbalanced traits Dob, Fyb, and Jka are all randomly un-
dersampled to balance the datasets before classification, resulting
in promising AUC values of 0.75±0.1, 0.72±0.05, and 0.74±0.05,
and F1 scores of 0.86±0.03, 0.75±0.06, and 0.75±0.05, despite
the significant reduction of training dataset size. The S antigen
dataset is almost perfectly balanced from the start and is classi-
fied with an AUC of 0.73±0.04 without any resampling of the
training dataset.

3.3. Dataset Balance and Antigen Concentration

Traits with very few positive observations (<10%) Kpa, Lua, Cw,
K, and Ytb are resampled during training using ADASYN and
have promising AUC values 0.93±0.08, 0.86±0.07, 0.83±0.07,
0.72±0.15, and 0.67±0.19. However, all traits suffer from low pre-
cision and consequently low F1 scores (see Table 3) due to very
few available positives in the test splits, and the general perfor-
mance seems to vary significantly in each iteration of the repeated

cross-validation (see Figure 6). This can be attributed to a lack
of positive values when testing the performance in each cross-
validation split, and illustrates the challenge of constructing large
validation datasets for the rare antigens. Antigen e, which is pos-
itive for 98.1% of the donors, performs extremely well on all met-
rics, and oversampling seems to sufficiently describe the minor-
ity (negative) class.

As expected, the ABO blood groups are easiest to classify as the
datasets are both balanced and the molar antigen concentration
among the highest (see Table 2). Other high concentration anti-
gens, RhD, M, and N do, however, not perform as well with AUC
values of 0.7±0.05, 0.61±0.07, and 0.58±0.06, suggesting that a
balanced distribution of positives and negatives is more critical
than the molar antigen concentration during classification. HPA-
15 is the antigen with the lowest density of 1000 molecules per
platelet which with a platelet density of 250× 109 per L corre-
sponds to 417 pm. The two homozygous forms have compara-
ble frequencies of 0.26 and 0.24 and the amino acid difference
between the two antigens is a tyrosine to serine substitution.
Despite the antigen location on the relative sparse platelets, a
set of metrics above the average is observed (HPA-15a AUC =
0.76±0.05 and HPA-15b AUC = 0.72±0.08). Similarly, the more
abundant platelet antigens HPA-1b (1.46–2.17 nm) and HPA-5b
(1.25–2.1 nm) are classified with above average AUC values of
0.68±0.05 and 0.78±0.08.

Adv. Mater. Technol. 2024, 9, 2301462 2301462 (9 of 16) © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH
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Table 3. Bagging ensembles with either a single or 50 estimators and a SVM based estimator. Each dataset is either not resampled, under- or oversampled.
Hyperparameters are optimized by fivefold cross-validation using BA as the loss function. The cross-validation scores are presented in the table..

Antigen Balance (Pop.) Spectra Balance (Data) BA AUC F1 Recall Precision Specificity

AB-A - 396 0.477 0.85±0.04 0.92±0.03 0.86±0.03 0.9±0.05 0.83±0.04 0.8±0.02

AB-B - 396 0.477 0.81±0.04 0.88±0.04 0.82±0.04 0.81±0.05 0.83±0.06 0.81±0.03

AB-O - 399 0.474 0.86±0.04 0.93±0.02 0.87±0.03 0.89±0.05 0.86±0.04 0.83±0.02

A-B - 414 0.500 0.79±0.05 0.87±0.04 0.79±0.05 0.79±0.07 0.8±0.05 0.79±0.02

A-O - 417 0.496 0.82±0.04 0.9±0.03 0.82±0.04 0.77±0.06 0.87±0.05 0.88±0.02

B-O - 417 0.496 0.88±0.03 0.95±0.02 0.88±0.03 0.85±0.05 0.9±0.05 0.9±0.01

C 0.701 627 0.657 0.57±0.05 0.62±0.05 0.71±0.04 0.71±0.08 0.71±0.03 0.43±0.01

Cw 0.022 549 0.056 0.71±0.1 0.83±0.07 0.27±0.09 0.57±0.21 0.18±0.06 0.85±0.01

c 0.795 630 0.814 0.64±0.05 0.68±0.06 0.76±0.03 0.67±0.05 0.88±0.03 0.6±0.06

Cob 0.051 375 0.112 0.75±0.07 0.8±0.09 0.41±0.07 0.71±0.14 0.29±0.06 0.78±0.0

Doa 0.878 372 0.669 0.6±0.06 0.63±0.06 0.71±0.06 0.69±0.08 0.74±0.04 0.51±0.03

Dob 0.576 372 0.871 0.73±0.07 0.75±0.1 0.86±0.03 0.78±0.05 0.94±0.02 0.67±0.09

E 0.284 633 0.299 0.57±0.04 0.59±0.05 0.45±0.04 0.61±0.08 0.36±0.04 0.53±0.01

e 0.976 627 0.981 0.92±0.08 0.94±0.08 0.94±0.01 0.88±0.03 1.0±0.0 0.96±0.13

Fya 0.666 621 0.667 0.58±0.04 0.6±0.05 0.7±0.04 0.68±0.06 0.72±0.03 0.47±0.01

Fyb 0.822 603 0.789 0.65±0.06 0.72±0.05 0.75±0.06 0.66±0.09 0.88±0.03 0.64±0.02

Jka 0.764 618 0.791 0.68±0.04 0.74±0.05 0.75±0.05 0.65±0.07 0.89±0.02 0.7±0.02

Jkb 0.736 606 0.705 0.63±0.05 0.68±0.05 0.73±0.04 0.67±0.06 0.8±0.03 0.6±0.03

K 0.080 633 0.068 0.68±0.08 0.72±0.15 0.23±0.05 0.69±0.19 0.14±0.03 0.67±0.03

Knb 0.049 177 0.102 0.57±0.11 0.72±0.12 0.21±0.19 0.24±0.22 0.21±0.22 0.89±0.01

Kpa 0.020 450 0.027 0.88±0.12 0.93±0.08 0.33±0.12 0.85±0.26 0.22±0.09 0.91±0.01

Lea 0.22 135 0.200 0.64±0.1 0.78±0.11 0.4±0.2 0.38±0.22 0.51±0.26 0.91±0.01

Leb 0.72 138 0.696 0.67±0.09 0.78±0.1 0.83±0.06 0.87±0.09 0.8±0.06 0.48±0.08

Lua 0.063 453 0.060 0.76±0.11 0.86±0.07 0.3±0.09 0.71±0.24 0.2±0.06 0.82±0.02

M 0.78 579 0.807 0.58±0.06 0.61±0.07 0.75±0.06 0.68±0.08 0.84±0.03 0.48±0.04

N 0.72 441 0.728 0.57±0.06 0.58±0.06 0.6±0.07 0.49±0.08 0.79±0.05 0.64±0.03

P1 0.79 138 0.674 0.57±0.08 0.54±0.12 0.43±0.13 0.31±0.13 0.83±0.16 0.84±0.03

RhD 0.84 777 0.828 0.6±0.05 0.7±0.05 0.83±0.03 0.8±0.04 0.87±0.02 0.41±0.05

S 0.535 591 0.501 0.66±0.04 0.73±0.04 0.67±0.04 0.67±0.08 0.67±0.05 0.66±0.01

s 0.824 594 0.924 0.59±0.08 0.65±0.09 0.79±0.06 0.69±0.08 0.94±0.02 0.49±0.09

Se 0.849 177 0.847 0.78±0.1 0.88±0.07 0.87±0.04 0.81±0.07 0.95±0.04 0.75±0.14

se 0.627 177 0.661 0.7±0.08 0.73±0.08 0.7±0.08 0.59±0.09 0.86±0.08 0.81±0.06

Ytb 0.067 372 0.089 0.67±0.1 0.67±0.19 0.27±0.08 0.67±0.2 0.17±0.06 0.67±0.01

HPA-1b 0.231 387 0.326 0.62±0.06 0.68±0.05 0.52±0.07 0.64±0.12 0.44±0.06 0.61±0.0

HPA-5b 0.154 387 0.155 0.69±0.08 0.78±0.08 0.46±0.12 0.52±0.15 0.43±0.11 0.87±0.0

HPA-15a 0.759 378 0.762 0.69±0.06 0.76±0.05 0.78±0.04 0.71±0.06 0.87±0.04 0.66±0.07

HPA-15b 0.741 378 0.802 0.65±0.07 0.72±0.08 0.83±0.03 0.79±0.05 0.87±0.03 0.5±0.09

aAB - 350 0.240 0.69±0.06 0.72±0.07 0.52±0.07 0.61±0.12 0.46±0.07 0.76±0.0

aB - 243 0.556 0.73±0.06 0.8±0.06 0.77±0.06 0.81±0.09 0.75±0.05 0.65±0.03

For future construction of datasets containing the entire co-
hort of genotyped donors at Copenhagen University hospital
(≈35 000 and growing by 10 000 each year), only 2% would
be expected to be positive for the antigen Kpa, meaning less
than 1000 positive spectra can be collected. Even fewer donors
would be available for a specific phenotype such as homozy-
gote KpaKpa (0.04%), so to create a sufficiently large validation
dataset, oversampling and data augmentation of training data are
necessary.

3.4. Scalability and Learning Curves

The sample size of the training dataset remains one of the most
significant parameters of model selection and performance
evaluation in the field of ML and DL.[63] The selected model
must be able to capture the complexity of the problem, and its
own parameters must be able to be estimated through the avail-
able observation points. The total number of model parameters
are affected by various factors. Since the model is expected to
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Figure 5. ROC curves and confusion matrices for classification results of selected traits.

represent the underlying data point distribution, the model could
be extremely simple or complex, which decreases or increases
the total number of model parameters, respectively. Generally,
a large number of observation points improves the estimation
quality of the model parameters and the generalization ability of
the model. Low complexity ML algorithms perform well on small
datasets but tend to plateau when the training data reaches a
certain size, while the performance of DL algorithms is superior
with larger amounts of data.[64]

As reported in a study on the scaling of ML and DL models
trained on the UKBiobank brain images dataset,[65] one of the
largest biomedical datasets in the world, higher model complex-
ity does not necessarily improve the performance of a classifier
significantly, even when increasing the sample-size. It depends
entirely on the presence of learnable non-linearity in a dataset,
whether going from a linear SVM, to a shallow non-linear kernel
SVM (RBF) or a deep nonlinear neural network (CNN) will im-
prove the accuracy. If such non-linearity is accessible in a dataset,
the performance of a SVM model with a non-linear kernel is ex-
pected to surpass a linear SVM model. This seems to be the case
for our dataset as seen in Figure 8b where both the SVM (RBF)
and CNN model clearly outperforms a linear SVM model.

To give an estimate of the potential performance of the mod-
els when increasing the dataset significantly (more than 30 000),
a post-hoc sample-size analysis of the collected datasets based on
cross-validation is conducted.[66] Fivefold cross-validated training

and test scores are generated using different training test sizes.
Plotting the performance as function of the number of observa-
tions in the training subset then provides an approximation of
the learning process of the model and a saturating inverse power
law is fitted to each of the learning curves[67–69]

y = f (x; 𝛼, 𝛽) = 1 + 𝛼x𝛽 (8)

The learning rate, 𝛼, and decay rate, 𝛽 are estimated by non-
linear least squares. In order to have reasonably balanced data, a
scaling comparison of the SVM (RBF) and CNN model is carried
out on each of the ABO discrimination datasets, and the results
are presented in Figure 7. The learning curves suggest that at
a certain training size the CNN model starts to outperform the
SVM (RBF) model and approach clinically relevant AUC values
faster. To reach a combined (three steps) 1 error in 500 000
determinations of donors, a single determination accuracy of
0.99 would be required.[70] The learning potential does not seem
to have stagnated at the current dataset size, suggesting a larger
dataset could improve the performance. The potential level of
improvement should be investigated further by collection of
a large dataset. Both hemoglobin and albumin are high abun-
dance components in whole blood and dominate the Raman
spectra, which could mask signal from other analytes providing
valuable information to determine a trait. To fully exploit the
sensitivity and specificity of RS, blood components could be
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Figure 6. ROC curves and confusion matrices for classification results of traits with very few positives (Kpa, Lua, Cw, K, and Ytb) or very few negatives
(e).

Figure 7. Learning curves computed by varying the training size during fivefold cross-validation. Scaling comparison between a SVM model with an RBF
kernel and a CNN model.
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Figure 8. a) ABO learning curve fits for both the training and cross-validation score. b) Comparison between ABO learning curve fits using a linear SVM
model, non-linear SVM model and a CNN model. c) Average learning curve fits for 12 selected additional traits. Learning curves of the remaining traits
can be found in Figure S6, Supporting Information and include poor fits due to imbalance, small datasets, or outlier learning rates at low training sizes.

spatially separated in-line such that multiple analytes can be
probed independently without introducing sample preparation
steps or compromising the label-free nature of the method.[71,72]

Additionally, a more efficient collection of Raman scattered light
will improve SNR without increasing the exposure time, and on-
line suppression of fluorescence background using modulation
of the excitation wavelength[73,74] or shifted-excitation Raman
difference spectroscopy (SERDS)[75] could increase the amount
of accessible information in the Raman spectra significantly.
Using multiple excitation wavelengths could further improve
the detection level of low concentration analytes, by probing
several resonances and pre-resonances with electronic states in
the blood components.[76]

Learning curves are computed for 12 additional traits and pre-
sented in Figure 8c. All 12 traits show better performance when
increasing the training size, however, superior scaling of the
CNN model is not clear from this analysis. For some traits (Doa,
Jkb, RhD, aAB, s, and se) the CNN model out-performs the non-
linear kernel SVM model, both at current dataset size and at the
projected large training sizes. For other traits, (Fya, Fyb, Jka, S, Se,
and aB), the simple CNN model used in this study does not seem
to improve the classification performance.

Raman spectra are high dimensional data so a model trained
on a small dataset risk leading to over-fitting and it can be diffi-
cult to accurately estimate the learning ability of the model. Di-
mensionality reduction methods mitigates this problem,[77] but

Adv. Mater. Technol. 2024, 9, 2301462 2301462 (13 of 16) © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH
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for small training and subsequently test datasets (<100 samples
per class), bias and high uncertainty in the testing strategy can
falsely indicate a model’s learning rate and overestimate the per-
formance at low training sizes.[78,79] To examine the generaliz-
ability of the models the training and cross-validation scores are
plotted in Figure 8. The training and cross-validation scores ap-
proach each other as the training size increases, implying that the
SVM (RBF) models do not overfit on the ABO datasets, however,
a larger number of donors is needed to examine this further.

4. Conclusion

We demonstrated that using RS on whole blood in a fused silica
micro-capillary enables determination of multiple blood types in
one single, fast, label-free measurement with no pre-analytical
preparation. A peak analysis of the Raman spectra showed that
hemoglobin dominates the Raman scattered signal of whole
blood at 785 nm excitation, as expected. ABO blood groups were
pairwise discriminated with an average AUC of 0.91±0.03 using
SVM-based classification matching existing studies on Raman
based ABO blood typing.[13–15] However, the direct use of whole
blood significantly increases the throughput of our method
and lack of reproducibility due to any heterogeneity of SERS
substrates is avoided. Post-hoc scalability analysis indicated
that increasing the training size to the entire donor cohort at
Copenhagen University Hospital (30–60 000) would improve the
performance, potentially enabling clinically relevant values, and
scaling of the performance of a simple three-layer CNN model
supports the potential of increasing the dataset size in the future.

We demonstrated a correlation between the presence of vari-
ous erythrocyte and platelet antigens and the Raman spectrum of
whole blood. Spectra containing rare frequency erythrocyte anti-
gens such as Kpa, Lua, Cw, K, and Ytb were classified with an av-
erage AUC of 0.81±0.09 by oversampling the minority class dur-
ing training. The class imbalance presented a challenge in the
development of the ML and DL models and a larger validation
dataset should be used to improve the model stability and min-
imize the test variance. Highly imbalanced traits such as Dob,
Fyb, and Jka were randomly undersampled resulting in AUCs of
0.76±0.09, 0.72±0.05, and 0.74±0.05. The presence of low mo-
lar concentration platelet antigens HPA-1b, HPA-5b, HPA-15a,
and HPA-15b were correlated to the Raman spectra and classi-
fied with an average AUC of 0.73±0.4. Furthermore, Anti-B titers
of blood group A donors (aB) above and below 10 were classi-
fied with an AUC of 0.80±0.06 and the dominant ABH-secretor
status (Se) were classified with an average AUC of 0.88±0.7. We
emphasize that this is a proof-of-concept study and significant ef-
forts need to be made to achieve clinically relevant performance.
The specificity and sensitivity of the method are limited by high
abundance analytes, which dominate the Raman spectra. In addi-
tion to increasing the amount of training data, efforts need to be
made on emphasizing low concentration analytes, using meth-
ods such as in-line separation of blood components, background
fluorescence suppression, or multi-excitation RS to truly enable
clinical use.

Expansion of our approach to the entire available donor cohort
requires particular handling of rare frequency antigen donors,
using resampling, data augmentation and repeated measure-
ments in the training process, such that the number of validation

samples are sufficient. Our study shows the feasibility of develop-
ing RS and AI as an accurate and fast clinical tool to determine
a range of donor traits that are otherwise time-consuming and
expensive to procure.
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