

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 10, 2024

An adaptive large neighborhood search heuristic for the multi-port continuous berth
allocation problem

Martin-Iradi, Bernardo; Pacino, Dario; Ropke, Stefan

Published in:
European Journal of Operational Research

Link to article, DOI:
10.1016/j.ejor.2024.02.003

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Martin-Iradi, B., Pacino, D., & Ropke, S. (2024). An adaptive large neighborhood search heuristic for the multi-
port continuous berth allocation problem. European Journal of Operational Research, 316(1), 152-167.
https://doi.org/10.1016/j.ejor.2024.02.003

https://doi.org/10.1016/j.ejor.2024.02.003
https://orbit.dtu.dk/en/publications/b58ac966-dcaa-4ee6-869b-9078ae56ea74
https://doi.org/10.1016/j.ejor.2024.02.003

European Journal of Operational Research 316 (2024) 152–167

A
0

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Production, manufacturing, transportation and logistics

An adaptive large neighborhood search heuristic for the multi-port
continuous berth allocation problem
Bernardo Martin-Iradi ∗, Dario Pacino, Stefan Ropke
DTU Management, Technical University of Denmark, Akademivej Building 358, 2800 Kgs. Lyngby, Denmark

A R T I C L E I N F O

Keywords:
OR in maritime industry
Container terminal
Berth allocation problem
Speed optimization
Heuristics

A B S T R A C T

In this paper, we study a problem that integrates the vessel scheduling problem with the berth allocation
into a collaborative problem denoted as the multi-port continuous berth allocation problem (MCBAP). This
problem optimizes the berth allocation of a set of ships simultaneously in multiple ports while also considering
the sailing speed of ships between ports. Due to the highly combinatorial character of the problem, exact
methods struggle to scale to large-size instances, which points to exploring heuristic methods. We present
a mixed-integer problem formulation for the MCBAP and introduce an adaptive large neighborhood search
(ALNS) algorithm enhanced with a local search procedure to solve it. The computational results highlight
the method’s suitability for larger instances by providing high-quality solutions in short computational times.
Practical insights indicate that the carriers’ and terminal operators’ operational costs are impacted in different
ways by fuel prices, external ships at port, and the modeling of a continuous quay.
1. Introduction

The liner shipping industry is one of the major forms of international
freight transportation. According to the report by UNCTAD (2020),
seaborne trade and container throughput continued growing steadily
until 2019. Despite the Covid disruption during 2020, maritime trade
is projected to recover and expand by 4.3% in 2021. The report also
highlights that the world fleet is increasing, not only in the number of
ships (more than 3% in 2021) but also in size. The share of the total
capacity carried by mega-vessels increased from 6% to 40% in the last
ten years.

This increase in demand, together with IMO’s goal of reducing
shipping emissions by 50% by 2050 (IMO, 2018), requires container
terminals to increase capacity and improve the efficiency and sus-
tainability of their operations. The current growth of the vessel fleet
and size directly impacts one of the most critical container terminal
operations, namely the berth allocation (Steenken et al., 2004). Math-
ematically, this problem is denoted as the Berth Allocation Problem
(BAP), which aims to assign incoming ships to berthing positions.
The BAP can assume the quay to be discrete or continuous. In the
discrete version, the quay is divided into positions where each can be
occupied by one ship at a time. In the continuous BAP, ships can berth
at any point in the quay while respecting a safe distance from other
ships. Furthermore, the BAP can be dynamic or static. The static BAP

∗ Corresponding author.
E-mail addresses: bmair@dtu.dk (B. Martin-Iradi), darpa@dtu.dk (D. Pacino), ropke@dtu.dk (S. Ropke).

assumes all the ships to be already at the port when the planning is
done, whereas, in the dynamic version, ships can arrive at the port at
different times during the planning period. It should be noted that the
dynamic BAP is still a deterministic problem. The term dynamic refers
to the different arrival times of each ship and not to the nature of the
problem (Cordeau et al., 2005) like in, for example, vehicle routing
problems. Fig. 1 shows an example solution of the continuous and
dynamic BAP. Typically, each ship has a fixed time window defined by
its expected berthing start and finish time. If the ship arrives before its
berthing start time or if the quay is occupied, it must wait at the port,
resulting in waiting time. Similarly, when a ship exceeds its expected
finish time, a delay is incurred. As a result, the service time of a ship is
defined as the entire time that it spends at the port, i.e., its handling
time or berthing period plus its waiting time. The authors refer to
Sections 3–5 for further problem details.

Terminals optimize their berth allocation to minimize their oper-
ational costs and the time ships need to spend at the port, including
waiting time, handling time, and any delays. Due to the fierce com-
petition between container terminals, they do not tend to share more
information than is strictly required and do the planning independently
from other terminals. One potential problem is that if congestion arises
in a port, the affected ships can easily propagate delays to the following
ports in their routes. One way to reduce the delay is for vessels to
vailable online 6 February 2024
377-2217/© 2024 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.ejor.2024.02.003
Received 24 January 2023; Accepted 5 February 2024
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
mailto:bmair@dtu.dk
mailto:darpa@dtu.dk
mailto:ropke@dtu.dk
https://doi.org/10.1016/j.ejor.2024.02.003
https://doi.org/10.1016/j.ejor.2024.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2024.02.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.
Fig. 1. Example solution of the continuous and dynamic BAP for a port terminal with
four vessels.

speed up when sailing between ports. However, sailing faster results in
higher fuel consumption. This type of decision-making can be addressed
by shipping line companies (i.e., carriers) in the Vessel Scheduling
Problem (VSP). The goal of the VSP is to optimize the sailing speeds
between consecutive ports in the vessel’s route (i.e., voyage legs). Most
VSP studies aim to minimize the vessels’ fuel consumption, turnaround
time at the port, and the number of vessels needed to ensure a given
route frequency. However, the VSP has its limitations. One of them
is the simplistic way of modeling the berthing times of ships at port.
Whereas some studies model a simplified version of berth allocation,
most do not include it. Not integrating the BAP into the VSP can lead
to an unrealistic or even infeasible berth allocation and, as a result,
delays that ships can propagate.

A problem that integrates the berth allocation with the vessels’
speed optimization was first introduced by Venturini et al. (2017) as
the Multi-port Berth Allocation Problem (MBAP). This problem selects
a set of ships and a set of ports that are part of their routes and
simultaneously optimizes the berth allocation at all the ports, together
with the sailing time between ports. Venturini et al. (2017) studied
the version of the problem with a discrete set of berthing positions.
The problem involves the joint optimization of carrier and terminal
operations and relies on the a priori agreement of the vessels and ports
involved. Martin-Iradi et al. (2022b) showed that this type of collabora-
tion could generate cost savings for the players involved (i.e., shipping
carriers and terminal operators) but also benefit the environment as
fuel emissions can be reduced significantly.

As mentioned earlier in this section, the main difference between
the continuous and the discrete BAP is the flexibility in the berthing
positions. The set of berthing positions in the discrete BAP corresponds
to a subset of those from the continuous BAP. Therefore, one can argue
that modeling the quay as continuous can lead to a more resource-
efficient plan, as the optimal solution of the continuous BAP is equal to
or better than that of the discrete BAP. However, this potential increase
in solution quality comes at the expense of higher complexity, as the
solution space becomes considerably larger.

Martin-Iradi et al. (2022a) studied the MBAP with a continu-
ous quay (MCBAP) and highlighted the additional complexity, as the
method proposed cannot scale to large instances. This scalability issue
is addressed in our study, where we employ heuristic methods that can
tackle large real-world instances.

This paper makes the following four contributions:

1. We define a new mixed-integer problem (MIP) formulation for
the MCBAP.
153
2. We present an instance generator for the MCBAP based on real-
world port data, and define a set of benchmark instances that
are made publically available.

3. We implement an adaptive large neighborhood search (ALNS)
method tailored to the MCBAP and enhance it with a Local
Search (LS) procedure based on ejection chains.

4. We show the viability of the ALNS method on real-size instances
where it is able to find high-quality solutions faster than baseline
commercial solvers.

The remainder of this paper is structured as follows. Section 2
comprises an extensive literature review of the MBAP together with
other collaborative problems that include berth allocation or vessel
scheduling. Section 3 describes the MCBAP in detail and presents the
MIP formulation. The solution method is described in Section 4. Sec-
tion 5 includes the instance generator’s details and the computational
study. The conclusions and further research is summarized in Section 6.

2. Literature review

One of the most important problems in a container terminal is
the BAP, which has been studied extensively for over two decades. A
survey of most of these studies is compiled in surveys by Carlo et al.
(2014) and Bierwirth and Meisel (2015). Lim (1998) presented one
of the first formulations of the problem and showed that it is NP-
hard. Due to the additional hardness involving the BAP variant with
a continuous quay, the use of heuristic methods has been predominant
in the literature. The first studies of the continuous BAP were by Kim
and Moon (2003) and Imai et al. (2005), where they presented MIP
formulations to the problem and solved it using heuristic and meta-
heuristic algorithms such as simulated annealing. Cordeau et al. (2005)
covered both the discrete and continuous BAP and solved them using
a taboo search. Guan and Cheung (2005) presented both a composite
heuristic and a tree search exact method and showed that both out-
performed commercial solvers. De Oliveira et al. (2012) addressed
the continuous BAP combining a clustering search with a simulated
annealing metaheuristic, and Mauri et al. (2016) employed an ALNS,
the same metaheuristic framework as in this paper, to solve both the
discrete and continuous BAP. A hybrid variant between the continuous
and discrete BAP was studied in Kordić et al. (2016), where ships can
only berth in a subset of positions.

One of the main integrated problems studied is the berth allo-
cation and quay crane assignment problem (Iris & Lam, 2018). Iris
et al. (2017) present a mixed integer problem formulation with ad-
ditional enhancements and implement an ALNS heuristic to solve it,
whereas Cheimanoff et al. (2022) uses a variable neighborhood search
heuristic.

The VSP has also attracted significant attention in the literature.
Dulebenets et al. (2019) present a comprehensive survey about the
problem and highlight the potential of collaboration and information
sharing as one of the future research directions. To the best of our
knowledge, Fagerholt (2001) presented the first formulation of the
VSP. Negotiating the port calls with the terminal operator (Dulebenets,
2018) indicates that carriers and terminal operators can achieve sig-
nificant savings. A collaborative version of the VSP is presented by
Dulebenets (2019), where terminal operators offer different port call
durations and handling rates, leading to win-win situations. Fagerholt
et al. (2010) aim at minimizing fuel consumption by optimizing the
speed in a shipping route and modeling it as a shortest path problem.
The authors discretize the possible arrival times at each port to ap-
proximate the non-linear relation between fuel consumption and sailing
speed. Du et al. (2011) and Sun et al. (2018) integrate vessel speed
optimization and berth allocation by considering ships within a certain
sailing distance from the port.

In the last decade, together with the increased access to data,
the study of problems that require collaboration between different

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.

𝐹
w
s
f
c
p

h
s
n
c

stakeholders (e.g., carriers and terminal operators) has become more
relevant. Wang et al. (2015) present two collaborative mechanisms that
encourage sharing accurate information between carriers and terminal
operators. Lalla-Ruiz et al. (2016) study the discrete BAP and present a
cooperative search based on a grouping strategy where group members
can only share information within the group. The collaborative berth
allocation problem (CBAP) was introduced by Dulebenets et al. (2018)
where a terminal planning its berth allocation can divert excessive
demand to other terminals. Hellsten et al. (2020) present an ALNS
heuristic for the port scheduling problem (PSP), where the aim is to
schedule feeder vessels in multi-terminal ports. Collaboration has also
been studied in disruption management. Lyu et al. (2022) present a
formulation for re-planning the berth allocation and quay crane assign-
ment and propose a heuristic method to solve it. Guo et al. (2022) study
the berth assignment and allocation problem, which integrates the BAP
with the berth assignment and line clustering problem. The first formu-
lation of the MBAP was first introduced by Venturini et al. (2017). It
solved a dynamic and discrete BAP in multiple ports while optimizing
ships’ sailing speed between ports. Martin-Iradi et al. (2022b) presented
a branch-and-price method for the same problem and conducted a study
of the collaboration mechanism using cooperative game theory. Martin-
Iradi et al. (2022a) extended the branch-and-price method to the
MBAP with a continuous quay, the same problem of this study, and
showed that exact methods are competitive for small and medium size
instances but struggle to scale for larger instances. Recently, Yu et al.
(2022) presented a genetic algorithm to solve a problem that integrates
the BAP with speed optimization and vessel service differentiation to
address both vertical and horizontal collaborations.

3. Problem description

The MCBAP integrates operational aspects concerning terminal op-
erators and shipping carriers. We consider a set of ships and a set of
terminals, each of them in a different port, to optimize their operations.
Each ship visits all or a subset of the ports as a part of its route. The
ships may visit the ports in different orders. The aim of the problem is
to determine the berthing position and time of the ships at each of the
terminals visited. Each terminal has a limited berthing space, given by
the length of the quay. The service time required to load and unload
the vessel is denoted as handling time and depends on the berthing
position. We assume that it increases linearly with the deviation from
an ideal position. Similar to most BAP studies, the berthing time and
positions of ships are subject to a set of restrictions. Ships have a time
window to be serviced also known as a port call, this is planned in
advance and helps the operator to allocate berthing capacity and avoid
excessive congestion. To allow for delays, the end of the time window is
not strict but delays are penalized as they require the use of unexpected
resources such as more worker hours.

It is well known that the relation between sailing speed and fuel
consumption is non-linear. In fact, this relation is often approximated
with a cubic function as in Eq. (1) (Martin-Iradi et al., 2022b; Venturini
et al., 2017)

𝐹 (𝑠) = (𝑠
𝑠𝑑

)3𝐹𝑑 (1)

where 𝑠 is the sailing speed, 𝑠𝑑 is the design speed of the ship, and
𝑑 is the fuel consumption at the design speed. For our formulation,
e discretize the set of possible sailing speeds and assume ships will

ail the distance between ports at one of those speeds. Given the set of
easible sailing speeds, we can compute the corresponding set of fuel
onsumption rates. This assumption ensures a linear formulation of the
roblem.

Fig. 2 shows an example graphical representation of the problem,
ighlighting the main operational aspects of a ship (i.e., ship 1). The
hip berths strictly after its earliest start time and departs towards the
ext port in the route as soon as the loading and unloading operations
154

onclude. The chosen speed (i.e., slow) and the distance between ports
directly determines the travel time and arrival to the next port (i.e., port
2). At the time of arrival the quay is occupied and ship 1 needs to wait
until a berthing position is available. Due to the late berthing start and
the handling time, the ship’s service time exceeds the expected finish
time and incurs in a delay.

3.1. MIP formulation

We present a new MIP formulation for the MCBAP. This formulation
is based on the one for the continuous BAP from Kim and Moon (2003)
and the one for the discrete MBAP from Venturini et al. (2017):
Sets and parameters:

𝑁 Set of all ships berthing at any of the ports.
𝑁∗ ⊆ 𝑁 Set of ships that we are optimizing.
𝑁̄ ⊆ 𝑁 Set of external ships which are considered fixed.
𝑃 Set of ports.
𝑆 Set of speeds.
𝐿𝑝 Length of quay in port 𝑝 ∈ 𝑃 .
𝑃𝑖 ⊆ 𝑃 Set of ports planned to be visited by ship 𝑖 ∈ 𝑁∗

sorted in visiting order.
𝐶𝑖 = {1,… , 𝑐𝑖} Set of port calls for ship 𝑖 ∈ 𝑁 , one for each port

visit. 𝑐𝑖 is the last port visit, and the value is
equal to the number of port calls.

𝜌𝑐𝑖 The port 𝑝 ∈ 𝑃 corresponding to port visit 𝑐 ∈ 𝐶𝑖
for ship 𝑖 ∈ 𝑁 .

𝑁𝑝 ⊆ 𝑁 Set of ships that visit port 𝑝 ∈ 𝑃 .
𝐶𝑝𝑖 ⊆ 𝐶𝑖 Port call positions of ship 𝑖 ∈ 𝑁 visiting port

𝑝 ∈ 𝑃 .
𝑥𝑖,𝑐0 The ideal berthing position for ship 𝑖 ∈ 𝑁∗ at port

visit 𝑐 ∈ 𝐶𝑖 measured at the leftmost position of
the ship.

ℎ𝑖,𝑐0 Handling time at the ideal berthing position for
ship 𝑖 ∈ 𝑁∗ at port visit 𝑐 ∈ 𝐶𝑖.

𝐸𝑆𝑇 𝑐𝑖 The earliest start time of berthing for ship 𝑖 ∈ 𝑁∗

at port visit 𝑐 ∈ 𝐶𝑖.
𝐸𝐹𝑇 𝑐𝑖 The expected finish time of berthing for ship

𝑖 ∈ 𝑁∗ at port visit 𝑐 ∈ 𝐶𝑖.
𝐿𝐹𝑇 𝑐𝑖 The latest finish time of berthing for ship 𝑖 ∈ 𝑁∗

at port visit 𝑐 ∈ 𝐶𝑖.
𝛽 The relative increase in handling time per unit of

distance from the ideal berthing position.
𝛥𝑝,𝑝′ Distance between ports 𝑝, 𝑝′ ∈ 𝑃 .
𝛩𝑠 Travel time per unit of distance at speed 𝑠 ∈ 𝑆.
𝛤 𝑖𝑠 Fuel consumption per unit of distance at speed

𝑠 ∈ 𝑆 for ship 𝑖 ∈ 𝑁∗.
𝑙𝑖 Length of ship 𝑖 ∈ 𝑁 .
𝐹 Fuel cost in USD per tonne.
𝐻 Cost handling time in USD per hour.
𝐷 Cost of delay time in USD per hour.
𝐼 Cost of waiting time in USD per hour.
𝑈 Cost penalty of exceeding the latest finish time in

USD per hour.

Decision variables:

𝑥𝑐𝑖 ∈ R+ the leftmost position of ship 𝑖 ∈ 𝑁 at the quay for
port visit 𝑐 ∈ 𝐶𝑖.

𝑦𝑐𝑖 ∈ R+ the start time of berthing of ship 𝑖 ∈ 𝑁 at port
visit 𝑐 ∈ 𝐶𝑖.

𝑣𝑐𝑖,𝑠 ∈ B 1 if speed 𝑠 ∈ 𝑆 is chosen by ship 𝑖 ∈ 𝑁∗ to sail
between port visits 𝑐 and 𝑐 + 1; 𝑐 ∈ 𝐶𝑖∖{𝑐𝑖}.

𝑑𝑐𝑖 ∈ R+ delay over 𝐸𝐹𝑇 𝑐𝑖 for ship 𝑖 ∈ 𝑁∗ at port visit
𝑐 ∈ 𝐶𝑖.

𝑢𝑐𝑖 ∈ R+ delay over 𝐿𝐹𝑇 𝑐𝑖 for ship 𝑖 ∈ 𝑁∗ at port visit
𝑐 ∈ 𝐶𝑖.

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.
Fig. 2. Example representation of a solution for the MCBAP with five ships visiting three ports. The bolded elements refer to the timeline of operations for ship 1, where 𝐸𝑆𝑇 ,𝐸𝐹𝑇
and 𝐿𝐹𝑇 denote the earliest start time, the expected finish time, and the latest finish time of the ship at the ports. In this example, to travel between ports we assume only two
different speeds (slow and fast).
Auxiliary variables:

𝜎𝑐,𝑐
′

𝑖,𝑗 ∈ B 1 if ship 𝑖 is positioned left of vessel 𝑗 in the quay
space at port visit 𝑐 ∈ 𝐶𝑝𝑖 and port visit 𝑐′ ∈ 𝐶𝑝𝑗 at
port 𝑝 ∈ 𝑃 , 0 otherwise; 𝑖, 𝑗 ∈ 𝑁𝑝, 𝑖 ≠ 𝑗.

𝛿𝑐,𝑐
′

𝑖,𝑗 ∈ B 1 if ship 𝑖 finishes berthing before vessel 𝑗 starts
berthing at port visit 𝑐 ∈ 𝐶𝑝𝑖 and port visit 𝑐′ ∈ 𝐶𝑝𝑗
at port 𝑝 ∈ 𝑃 , 0 otherwise; 𝑖, 𝑗 ∈ 𝑁𝑝, 𝑖 ≠ 𝑗.

𝑟𝑖,𝑐 ∈ R+ distance between ideal and actual berthing
position of ship 𝑖 ∈ 𝑁∗ at port visit 𝑐 ∈ 𝐶𝑖.

Dependent variables:

𝑎𝑐𝑖 ∈ R+ arrival time of ship 𝑖 ∈ 𝑁∗ at port visit 𝑐 ∈ 𝐶𝑖.
ℎ𝑐𝑖 ∈ R+ handling time of ship 𝑖 ∈ 𝑁∗ at port visit 𝑐 ∈ 𝐶𝑖.

min
∑

𝑖∈𝑁∗

(

∑

𝑐∈𝐶𝑖

𝐼(𝑦𝑐𝑖 −𝑎
𝑐
𝑖)+𝐻(ℎ𝑐𝑖)+𝐷(𝑑𝑐𝑖)+𝑈 (𝑢𝑐𝑖)+

∑

𝑐∈𝐶𝑖∖{𝑐𝑖}
𝐹 (𝑣𝑐𝑖𝛤

𝑖
𝑠𝛥

𝜌𝑐𝑖 ,𝜌
𝑐+1
𝑖)

)

(2)

𝑥𝑐𝑖 + 𝑙𝑖 ≤ 𝐿𝑝, ∀𝑖 ∈ 𝑁𝑝, 𝑐 ∈ 𝐶𝑝
𝑖 , 𝑝 ∈ 𝑃 (3)

𝑥𝑐𝑖 + 𝑙𝑖 ≤ 𝑥𝑐′𝑗 + 𝐿𝑝
(

1 − 𝜎𝑐,𝑐
′

𝑖,𝑗

)

,

∀𝑝 ∈ 𝑃 , 𝑖, 𝑗 ∈ 𝑁𝑝, 𝑖 ≠ 𝑗, 𝑐 ∈ 𝐶𝑝
𝑖 , 𝑐

′ ∈ 𝐶𝑝
𝑗 (4)

𝑦𝑐𝑖 + ℎ
𝑐
𝑖 ≤ 𝑦𝑐′𝑗 +𝑀

(

1 − 𝛿𝑐,𝑐
′

𝑖,𝑗

)

,

∀𝑝 ∈ 𝑃 , 𝑖, 𝑗 ∈ 𝑁𝑝, 𝑖 ≠ 𝑗, 𝑐 ∈ 𝐶𝑝
𝑖 , 𝑐

′ ∈ 𝐶𝑝
𝑗 (5)

𝜎𝑐,𝑐
′

𝑖,𝑗 + 𝜎𝑐
′ ,𝑐
𝑖,𝑗 + 𝛿𝑐,𝑐

′

𝑖,𝑗 + 𝛿𝑐
′ ,𝑐
𝑖,𝑗 ≥ 1,

∀𝑖, 𝑗 ∈ 𝑁𝑝, 𝑖 < 𝑗, 𝑐 ∈ 𝐶𝑝
𝑖 , 𝑐

′ ∈ 𝐶𝑝
𝑗 , 𝑐 < 𝑐

′, 𝑝 ∈ 𝑃 (6)

𝑦𝑐𝑖 + ℎ
𝑐
𝑖 +

∑

𝑠∈𝑆
𝑣𝑐𝑖,𝑠𝛩𝑠𝛥

𝜌𝑐𝑖 ,𝜌
𝑐+1
𝑖 = 𝑎𝑐+1𝑖 , ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖∖{𝑐𝑖} (7)

𝑎𝑐𝑖 ≤ 𝑦𝑐𝑖 , ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖 (8)

𝐸𝑆𝑇 𝑐𝑖 ≤ 𝑦𝑐𝑖 , ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖 (9)

𝑦𝑐𝑖 + ℎ
𝑐
𝑖 − 𝐸𝐹𝑇

𝑐
𝑖 ≤ 𝑑𝑐𝑖 ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖 (10)

𝑦𝑐𝑖 + ℎ
𝑐
𝑖 − 𝐿𝐹𝑇

𝑐
𝑖 ≤ 𝑢𝑐𝑖 ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖 (11)

(

1 + 𝛽𝑟𝑖,𝑐
)

ℎ𝑖,𝑐0 = ℎ𝑐𝑖 , ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖 (12)

𝑥𝑐𝑖 − 𝑥
𝑖,𝑐
0 ≤ 𝑟𝑖,𝑐 , ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖 (13)

𝑥𝑖,𝑐0 − 𝑥𝑐𝑖 ≤ 𝑟𝑖,𝑐 , ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖 (14)
∑

𝑣𝑐𝑖,𝑠 = 1, ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖∖{𝑐𝑖} (15)
155

𝑠∈𝑆
𝑦𝑐𝑖 , 𝑥
𝑐
𝑖 ≥ 0 ∀𝑖 ∈ 𝑁, 𝑐 ∈ 𝐶𝑖 (16)

𝑎𝑐𝑖 , ℎ
𝑐
𝑖 , 𝑑

𝑐
𝑖 , 𝑢

𝑐
𝑖 , 𝑟

𝑖,𝑐 ≥ 0 ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖 (17)

𝑣𝑐𝑖,𝑠 ∈ {0, 1} ∀𝑖 ∈ 𝑁∗, 𝑐 ∈ 𝐶𝑖∖{𝑐𝑖} (18)

𝜎𝑐,𝑐
′

𝑖,𝑗 , 𝛿
𝑐,𝑐′
𝑖,𝑗 ∈ {0, 1} ∀𝑖, 𝑗∈𝑁𝑝, 𝑖≠𝑗, 𝑐 ∈ 𝐶𝑝

𝑖 , 𝑐
′∈ 𝐶𝑝

𝑗 , 𝑝 ∈𝑃 (19)

The set of external ships 𝑁̄ is considered fixed. Therefore, the corre-
sponding set of decision variables 𝑥𝑐𝑖 , 𝑦

𝑐
𝑖 , ℎ

𝑐
𝑖 , 𝑟

𝑖,𝑐 for ships 𝑖 ∈ 𝑁̄ are
constant and given as input to the problem.

The objective function (2) minimizes the operational costs of the
carriers and terminal operators. This is measured as a weighted sum
of the waiting time cost, handling time cost, delay cost, and fuel
consumption cost. Constraints (3) ensure that each ship berths within
the available space. Constraints (4) and (5) define the relative position
of each pair of ships in each dimension by enabling the auxiliary
variables 𝜎𝑐,𝑐′ and 𝛿𝑐,𝑐′ . The M value can be limited to the latest
finish time of the pair of ships. Constraints (6) ensure that berthing
periods do not overlap in time and space. Constraints (7) compute the
arrival time to a port based on the sailing speed chosen to travel from
the previous port. Constraints (8) and (9) enforce that the berthing
starts strictly after arrival at port and after the time window starts,
respectively. Constraints (10) compute the delay if the expected finish
time is exceeded and constraints (11) define if the last finish time is
respected. Constraints (12) compute the handling time for each ship
and port visit while constraints (13) and (14) compute the deviation
from the preferred berthing position. Finally. constraints (15) ensure
that only one speed is chosen to sail between ports, and constraints
(16)–(19) define the domain of the decision variables.

4. Solution method

To solve (2)–(19) we present an Adaptive Large Neighborhood
Search (ALNS) algorithm. The ALNS algorithm, introduced by Ropke
and Pisinger (2006), extends the large neighborhood search method
by Shaw (1998). At each iteration, the method partially destroys and
reconstructs a solution to generate a new solution. In our case, to
destroy part of a solution, we remove the berthing time and locations
of a subset of ships at a subset of ports. The combination of a scheduled
berthing time and position for a ship at one of the ports in its route is
denoted as a port visit, and we will refer to this term frequently in the
remainder of the paper. Additionally, in some cases, we will refer to the
scheduled port visit as a rectangle, in reference to how we can depict

berthing position and time in a time–space diagram (e.g., see Fig. 2).

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.

h
s
a
b
s
p
c
s
a
m
a
w
t
s
w
s

i
e
s

4

r
r

The overview of the solution method is summarized in Algorithm 1.

Algorithm 1: Adaptive large neighborhood search procedure
Data: 𝑖𝑛𝑠𝑡, 𝑝𝑎𝑟𝑎𝑚: a problem instance and a parameter setting

for the algorithm
Result: 𝑏𝑒𝑠𝑡𝑆𝑜𝑙: best found solution

1 begin
// initialize operator selection parameters

2 𝜓, 𝜋 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑖𝑛𝑠𝑡)
// construct initial solution

3 𝑠𝑜𝑙 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(𝑖𝑛𝑠𝑡)
4 𝑏𝑒𝑠𝑡𝑆𝑜𝑙 ← 𝑠𝑜𝑙
5 while timelimit not reached do
6 𝑐𝑢𝑟𝑟𝑆𝑜𝑙 ← 𝑠𝑜𝑙

// select operators
7 𝑟𝑒𝑚𝑜𝑣𝑎𝑙, 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛← 𝑠𝑒𝑙𝑒𝑐𝑡𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝜋)
8 𝑠𝑜𝑙 ← 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝑟𝑒𝑚𝑜𝑣𝑎𝑙(𝑐𝑢𝑟𝑟𝑆𝑜𝑙)) // get new solution
9 if 𝑐(𝑠𝑜𝑙) < 𝑐(𝑐𝑢𝑟𝑟𝑆𝑜𝑙) then
10 𝑠𝑜𝑙 ← 𝑙𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑠𝑜𝑙)

11 if isAccepted(sol) then
12 if 𝑐(𝑠𝑜𝑙) < 𝑐(𝑏𝑒𝑠𝑡𝑆𝑜𝑙) then
13 𝑏𝑒𝑠𝑡𝑆𝑜𝑙 ← 𝑠𝑜𝑙

14 𝑐𝑢𝑟𝑟𝑆𝑜𝑙 ← 𝑠𝑜𝑙

15 𝜋 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑃𝑎𝑟𝑎𝑚𝑠(𝜓)

4.1. Construction heuristic

The ALNS requires an initial solution to start with. We present a
construction heuristic process for this step that aims at finding a good
initial solution. Note that the BAP can be seen as a two-dimensional
packing problem. However, in the continuous berth setting, the BAP
has the increased complexity that the length of the rectangles (i.e., port
visits) vary depending on the berthing location in the quay. In the case
of the MCBAP, we are solving multiple continuous BAP problems with
the additional constraint that some of those berthing times depend on
a sailing time. Moreover, the fact that ships follow different routes
complicates the problem as greedy approaches become harder to apply.
Our construction method prioritizes reducing the delay of ships at
ports. We approach this by (i) trying to place port visits early in
time and close to their ideal space, therefore reducing the handling
time, and (ii) by reducing ‘‘useless’’ space, or, in other words, placing
port visits efficiently not to create empty spots in the decision space
that cannot be filled by remaining port visit. Notice that any possible
solution is mathematically feasible since we allow it to exceed the
latest finish time, and the time horizon is not limited. However, we
aim to construct solutions where none of the ships exceed the 𝐿𝐹𝑇 as
those can be perceived as infeasible by the port operators and are also
eavily penalized. The method acts as a greedy heuristic, where we
chedule one port visit at a time. The port visit to schedule is selected
s the most constrained one. To find it, we compute the set of feasible
erthing positions and times for each ship and port visit. Efficient
earch techniques such as the one presented in Lee et al. (2010) allow to
recompute a subset of promising positions. In our case, to balance the
omputational complexity and achieve a fast initial solution, we use a
implified version of the approach and consider a finite set of positions
nd times by dividing the quay into segments of a given length (e.g., 10
) and the planning horizon into intervals of 1 h. For each time instant

nd segment, we compute if the ship can berth starting at that time and
ith its left-most side starting at the segment. We do not count berthing

imes exceeding the latest finish time to measure how constrained a
hip’s port visit is. From all unscheduled port visits, we define the one
ith the fewest possible positions as the most constrained one. We then

chedule the port visit in one of the feasible positions. In fact, we do not
156

t

consider the entire set but only the subset of feasible positions, where
the port visit rectangle is directly adjacent to another scheduled port
visit or to the limits of the decision space (i.e., the limit of the quay
or planning horizon). From this subset of positions, we select the one
resulting in the minimal change to the objective function. Besides the
handling and delay cost directly computed when scheduling the port
visit, we need to compute fuel consumption and waiting time costs. We
consider these only if the previous port visit of the ship is scheduled.

Once a port visit is scheduled, we repeat the computation and
selection of the most constrained unscheduled port visit and schedule
it at the least costly efficient position. The procedure is described in
Algorithm 2.

Algorithm 2: Construction heuristic
Data: 𝑖𝑛𝑠𝑡: problem instance
Result: 𝑠𝑜𝑙: a solution with all port visits scheduled

1 begin
// initialize entire set of port visits to schedule

2 𝑢𝑛𝑠𝑐ℎ ← 𝑖𝑛𝑠𝑡
3 𝑠𝑜𝑙 ← ∅
4 while 𝑢𝑛𝑠𝑐ℎ ≠ ∅ do

// sort unplanned port visits by increasing number of
feasible positions

5 𝑢𝑛𝑠𝑐ℎ← 𝑠𝑜𝑟𝑡(𝑢𝑛𝑠𝑐ℎ)
// get first port visit from the list

6 𝑡𝑜𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← 𝑝𝑜𝑝𝑓𝑖𝑟𝑠𝑡(𝑢𝑛𝑠𝑐ℎ)
7 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒

// position at the earliest start time and closest to
the ideal position

8 𝑝𝑜𝑠← 𝑏𝑒𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃 𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡𝑜𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒)
9 while not 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 do
10 if feasible(pos, sol) then
11 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 ← 𝑡𝑟𝑢𝑒

// schedule the port visit
12 𝑠𝑜𝑙 ← 𝑝𝑙𝑎𝑛(𝑡𝑜𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑝𝑜𝑠)

13 else
// update to next feasible position with lowest

cost
14 𝑝𝑜𝑠 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑝𝑜𝑠, 𝑠𝑜𝑙)

4.2. Removal and insertion operators

The goal of a removal operator is to select a set of scheduled
port visits to be removed from the current solution. All the operators
presented in this paper select 𝐾 number of assignments to be removed,
computed as a percentage 𝜌 of the total number of port visits to be
scheduled. It should be noted that removing port visits that are totally
unrelated does not provide any potential gain. Therefore, a removal
operator should aim at removing assignments that are related.

After applying a removal operator, the partial solution has 𝐾 miss-
ng port visits that need to be scheduled. They need to be assigned
fficiently while respecting the other assignments and ensuring that the
olution remains feasible. This is the goal of the insertion operators.

.2.1. Shaw removal
This operator, first introduced by Shaw (1998), selects the most

elated pairs of assignments. To select them, we define a measure of
elatedness 𝑀𝑖,𝑗 between assignments 𝑖 and 𝑗 in Eq. (20), similar to the

one presented in Iris et al. (2017).

𝑀𝑖,𝑗 = 𝐴|𝑥𝑖 − 𝑥𝑗 | + 𝐵|𝑦𝑖 − 𝑦𝑗 | + 𝐶|(𝑦𝑖 + ℎ𝑖) − (𝑦𝑗 + ℎ𝑗)|, (20)

where 𝑥𝑖, 𝑦𝑖 and 𝑦𝑖 + ℎ𝑖 are the berthing positions, berthing start
ime, and berthing end time of assignment 𝑖, respectively. 𝐴,𝐵, and

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.
Fig. 3. Neighbor port visits in time and space for a given port visit in dark gray.
𝐶 are custom parameters that define the importance of each of the
aspects. Observe that a lower value of 𝑀𝑖,𝑗 translates into a higher
level of relatedness. To select a total of 𝐾 assignments, we select them
following a greedy randomized criterion. To introduce randomness in
the selection of the assignments, we define a parameter 𝛼. We sort all
the port visit pairs in increasing order of 𝑀𝑖,𝑗 and store them in the list
𝛺. We then select the 𝑖th element of the list applying Eq. (21):

𝑖 = ⌈|𝛺| ⋅ 𝑝𝛼⌉, (21)

where 𝑝 is a random number [0, 1). Note that if 𝛼 = 1, the selection
is completely random, but as the value of 𝛼 increases, the resulting
value has a more deterministic behavior. The element selected will
consist of two port visits to be removed. The selection process continues
until 𝐾 port visits are removed. Note that this method differs from the
original method from Shaw (1998) in that the subsequent pairs do not
necessarily need to be related with the first pair selected.

4.2.2. Time and space-relatedness removal
This removal uses a different relatedness measure. We first sort all

port visits by cost. The cost 𝐵𝑐𝑖 of port visit 𝑐 ∈ 𝐶𝑖 for ship 𝑖 ∈ 𝑁∗ is
defined in Eq. (22). It is measured by the ship’s waiting, handling, and
delay time at the port visit, plus half of the fueling costs from sailing
from the previous port (if any) and to the next port (if any).

𝐵𝑐𝑖 = 𝐻ℎ𝑐𝑖 +𝐷𝑑
𝑐
𝑖 + 𝐼(𝑦

𝑐
𝑖 − 𝑎

𝑐
𝑖) +

𝐹 𝑐𝑖
2

(22)

𝐹 𝑐𝑖 is the fuel costs associated with the previous and next port visits if
any. For example, if the ship sails from a previous port visit 𝑐𝑝 to port
visit 𝑐, and then continues to the next port visit 𝑐𝑛, then the fuel costs
are computed as in Eq. (23).

𝐹 𝑐𝑖 = 𝐹 (𝑣
𝑐𝑝 ,𝑐
𝑖 𝛤 𝑖𝑠𝛥

𝜌(𝑐𝑝),𝜌(𝑐)) + 𝐹 (𝑣𝑐,𝑐𝑛𝑖 𝛤 𝑖𝑠𝛥
𝜌(𝑐),𝜌(𝑐𝑛)) (23)

In the case that port visit 𝑐 is the first or last port visit in the route for
the ship, the corresponding missing sailing leg is removed from the fuel
cost computation.

We then select the 𝑖th most expensive assignment applying Eq. (21)
and remove all neighbor assignments. We define as neighbors all the
assignments that are within a distance of the assignment. We consider
the distance in both time and space. If an assignment is depicted as
a rectangle in a time–space diagram of the port, the neighbor area
represents the one that overlaps in time or space with it. All other
assignments that overlap partially or completely with the neighbor
area are considered neighbors and removed. We then select the most
expensive assignment and remove all neighbor assignments. We repeat
the process until 𝐾 assignments are removed.
157
Fig. 3 shows an example of neighbor port visits in time and space.
Depending on the dimension considered we define the two removal
operators as cost-time removal and cost-space removal.

4.2.3. Random removal
We also consider a fully randomized destroy operator. It randomly

selects 𝐾 assignments to be removed. The goal of this operator is not
to select relevant port visits to remove but rather to help diversify the
search.

4.2.4. Randomized greedy insertion
This method follows the same procedure as the construction heuris-

tic with the addition of a randomized component when selecting the
port visit to schedule at each step.

All unplanned port visits are sorted based on the number of avail-
able insertion positions. An available insertion position is one that
maintains a feasible solution. For instance, the port visit needs to ensure
that the previous, or following port visits, are connected through a
feasible sailing speed if any of these are already scheduled. We select
the port visit using a randomization parameter 𝛾 in the same way that
𝛼 is used in Eq. (21). This prioritizes the port visits with fewer available
insertion positions. The selected port visit is scheduled in the position
that increases the objective function the least (i.e., lowest cost). The
process iterates by recalculating the new number of insertion positions
for the remaining port visits.

4.2.5. 𝜅-Regret insertion
This insertion method is based on the regret-k heuristic presented

in Potvin and Rousseau (1993). This method has an additional look-
ahead component compared to a basic greedy heuristic. For each of the
port visits, we compute the 𝜅 best scheduling positions, and we then
measure the regret cost for each of them as the difference between the
best and 𝜅-best positions. The one with the highest regret cost becomes
the next port visit to plan. The process is described in Algorithm 3.

4.2.6. Packing greedy insertion
This insertion method is similar to the randomized greedy insertion

described in Section 4.2.4. The main difference is the position where
the port visits are planned. Scheduling the port visits in a position with
lower objective value can lead to the creation of empty spaces and,
therefore, to inefficient use of the decision space. This method restricts
the set of possible insertion positions to the ones strictly adjacent to
other scheduled ships, or to the limits of the quay or planning horizon.
By strictly adjacent, we mean that the port visit to schedule needs to
berth strictly next to another ship during at least one interval of time
(e.g., one hour) or berth strictly before (or after) another ship with

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.
Algorithm 3: 𝜅-regret insertion
Data: 𝑠𝑜𝑙, 𝑢𝑛𝑠𝑐ℎ, 𝜅: partially destroyed solution, set of port

visits to schedule, and the parameter 𝜅
Result: 𝑠𝑜𝑙: repaired solution with all port visits scheduled.

1 begin
2 while 𝑢𝑛𝑠𝑐ℎ ≠ ∅ do
3 𝑜𝑟𝑑𝑒𝑟 ← ∅ // initialize empty list
4 for 𝑝𝑜𝑟𝑡𝑉 𝑖𝑠𝑖𝑡 ∈ 𝑢𝑛𝑠𝑐ℎ do

// compute 𝜅 best insert positions
5 [𝑝𝑜𝑠] ← 𝑓𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑃 𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝜅)

// compute regret cost
6 𝑟𝑒𝑔𝑟𝑒𝑡𝐶𝑜𝑠𝑡← 𝑐(𝑝𝑜𝑠[𝜅] − 𝑝𝑜𝑠[1])

// update list by regret cost
7 𝑜𝑟𝑑𝑒𝑟 ← 𝑠𝑜𝑟𝑡𝐿𝑖𝑠𝑡(𝑝𝑜𝑟𝑡𝑉 𝑖𝑠𝑖𝑡, 𝑟𝑒𝑔𝑟𝑒𝑡𝐶𝑜𝑠𝑡)

8 𝑠𝑜𝑙 ← 𝑝𝑙𝑎𝑛(𝑜𝑟𝑑𝑒𝑟[1]) // plan selected port visit
// update set of unplanned port visits

9 𝑢𝑛𝑠𝑐ℎ ← 𝑝𝑜𝑝(𝑜𝑟𝑑𝑒𝑟[1])

Fig. 4. Graphical representation of example positions (continuous line) strictly adjacent
to the gray ship or the quay space. The position represented with a dashed line is
not part of the set of positions as it is not adjacent to another planned ship or the
boundaries of the decision space.

at least one quay segment in common. Also, we consider berthing
positions where one of the sides is at one end of the quay, or if the
berthing period starts or ends at the earliest and latest possible berthing
time, respectively. Fig. 4 shows some example positions considered.

4.2.7. Arrival greedy insertion
This method is identical to the one presented in Section 4.2.4 with

the only difference that instead of sorting the unplanned port visits
by increasing the number of feasible insertion positions, we sort the
unplanned port visits by the earliest possible arrival time. One of the
main goals of this method is to schedule port visits earlier, at the
expense of a potentially higher cost, in order to increase the number
of possible insertion positions for the remaining unplanned port visits.

4.3. Acceptance criterion

Once a new solution is reconstructed, we either accept it as the
new current solution or reject it and reuse the previous one. We use
a simulated annealing (SA) based criterion to take this decision. Such
an acceptance criterion has been widely used for ALNS studies (see
e.g., Ropke and Pisinger (2006) and Iris et al. (2017)). We accept
the new solution 𝑥′ over the current one 𝑥 if it is better (𝑓 (𝑥′) <
𝑓 (𝑥)), or if it is worse with a probability 𝑒

−(𝑓 (𝑥′)−𝑓 (𝑥))
𝑇 , where 𝑇 is the

current temperature at a particular iteration, and 𝑓 (𝑥) is the objective
function. We define an starting an ending temperature, 𝑇 and 𝑇
158

𝑠𝑡𝑎𝑟𝑡 𝑒𝑛𝑑
Table 1
Method reward categories.
Category Parameter

Current best solution 𝜓1
Better than current solution 𝜓2
Not better but accepted solution 𝜓3
Rejected solution 𝜓4

respectively, and the cooling time 𝑡𝑐𝑜𝑜𝑙 that defines the duration of going
from 𝑇𝑠𝑡𝑎𝑟𝑡 to 𝑇𝑒𝑛𝑑 . Based on these parameters, we can define the cooling
factor 𝜏 (0 < 𝜏 < 1), by isolating it from the formula 𝑇𝑒𝑛𝑑 = 𝑇𝑠𝑡𝑎𝑟𝑡𝜏𝑡𝑐𝑜𝑜𝑙 .
This cooling factor allows us to compute the temperature at any given
instant. Given temperature 𝑇 at iteration 𝑖, we find the temperature
𝑇 ′ to be used at iteration 𝑖 + 1 by computing 𝑇 ′ = 𝑇 𝜏𝑡𝑖𝑡 , where 𝑡𝑖𝑡
is the duration of the iteration 𝑖. Following the strategy used in Iris
et al. (2017), we compute 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑒𝑛𝑑 based on the cost of the
initial solution 𝑓 (𝑥0) described in Section 4.1, where 𝜉 and 𝜙 define
the percentage of the cost used to compute 𝑇𝑠𝑡𝑎𝑟𝑡 = 𝜉𝑓 (𝑥0) and 𝑇𝑒𝑛𝑑 =
𝜙𝑓 (𝑥0).

4.4. Adaptive weight adjustment

One of the main differences between the ALNS method and the
standard Large Neighborhood Search (LNS) is the adaptive component
of the former. The performance of the employed removal and insertion
operators is measured at each iteration. These measures are then used
to update the weight and, therefore, the probability of choosing the
respective methods. The most common way of measuring the perfor-
mance of a method is to give it a different score depending on the
quality of the solution. In our case, we define four reward categories
as shown in Table 1.

Let 𝑅 and 𝐷 denote the set of insertion and removal operators. Each
removal and insertion method has a probability 𝜋𝑅𝑖 , 𝜋

𝐷
𝑖 respectively of

being selected at each iteration. Throughout the algorithm run, the
probability of selecting these methods gets updated depending on their
performance. In our study, we update the probabilities after a 𝛥𝑢𝑝𝑑𝑎𝑡𝑒
time interval. During these iterations we accumulate the sum of 𝜓𝑅𝑖 , 𝜓

𝐷
𝑖

rewards for each method, and update the weight 𝜔𝑅𝑖 , 𝜔
𝐷
𝑖 of each method

as indicated in Eq. (24)

𝜔𝑅𝑖 = (1 − 𝜆)𝜔𝑅𝑖 + 𝜆𝜓𝑅𝑖 , 𝜔𝐷𝑖 = (1 − 𝜆)𝜔𝐷𝑖 + 𝜆𝜓𝐷𝑖 (24)

where 𝜆 is a parameter between 0 and 1 that denotes the degree of
adaptability of the method. If 𝜆 = 0, the weight remains equal to
the previous one. This means that each method would have the same
probability throughout the entire algorithm run, behaving like an LNS
with multiple neighborhoods. If 𝜆 = 1, the new operator’s probability
solely depends on the score achieved during the last 𝛥𝑢𝑝𝑑𝑎𝑡𝑒 and not on
previous scores. It is common to use an intermediate value for 𝜆 strictly
between 0 and 1. Once the weights are updated, the probability of each
repair method 𝜋𝑅𝑖 and destroy method 𝜋𝐷𝑖 can be computed as indicated
in Eq. (25).

𝜋𝑅𝑖 =
𝜔𝑖

∑

𝑖∈𝑅 𝜔𝑖
, 𝜋𝐷𝑖 =

𝜔𝑖
∑

𝑖∈𝐷 𝜔𝑖
(25)

4.5. Local search

An extension of the method is implemented where we perform a
local search procedure after reconstructing a new solution. This idea
has also been used in, for example, François et al. (2016) and Vieira
et al. (2021). This step aims to incrementally improve the solution by
testing small adjustments to the port visits.

The procedure is based on the ejection chains strategy used in
many routing and network-based problems (see Bräysy (2003), Glover
(1992), Rego (1998)). The idea, in our case, is to perturbate the
solution by re-planning a port visit to a better position (i.e., lower

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.
Fig. 5. Example representation of a local search step. The chain of moves originates from ship 1 being moved one step 𝑥 towards its ideal berthing position. The port visit in
gray depicts the first ship to move, and the dark gray indicates an overlapping area. The dashed rectangles represent the original position of the ship before the move.
operational cost) and iteratively re-plan any port visits that conflict
with the change. This method is also similar to the pushing ruin-and-
recreate heuristic presented in Correcher and Alvarez-Valdes (2017).
The chain of perturbations is limited to a maximum number of port
visits to re-plan 𝐾𝑐ℎ𝑎𝑖𝑛, and it terminates if this limit is reached or if
a conflict-free solution is achieved. Fig. 5 shows an example of this
move. Note that the handling time (i.e., the vertical dimension of the
port visitsships) is reduced or increased for the ships as their position
changes with respect to their ideal position.

A pseudo-code of the procedure is described in Algorithm 4. The
function 𝑚𝑜𝑣𝑒𝑃𝑜𝑟𝑡𝑉 𝑖𝑠𝑖𝑡(𝑝, 𝑛) performs the perturbation for a given port
visit (i.e., ship 𝑛 at port 𝑝). It should be noted that the direction is
given by the first perturbation made. To find the direction of the first
perturbation, we compute the cost variation of moving the port visit
in three directions: (i) one segment length towards the ideal position
along the spatial axis, and (ii) one time instant earlier and (iii) one
time instant later along the temporal axis. The direction in the spatial
axis is checked if the port visit is not scheduled already at its ideal
position. Once the perturbation is performed in the chosen direction,
the following port visits in conflict are perturbed in the same direction.

A high value of 𝐾𝑐ℎ𝑎𝑖𝑛 increases the probability of finding a better
solution and the number of operations to compute. The parameter
𝐾𝑐ℎ𝑎𝑖𝑛 should leverage both solution quality and low computational
complexity. Therefore, we define the value of 𝐾𝑐ℎ𝑎𝑖𝑛 to depend on the
number of instances ships and equal to 𝐾𝑐ℎ𝑎𝑖𝑛 = 2 ⋅ |𝑁|. The reason for
𝐾 > |𝑁| is that for some movements, a conflicting port visit may
159

𝑐ℎ𝑎𝑖𝑛
require multiple perturbations to achieve a feasible new position, and
selecting a lower 𝐾𝑐ℎ𝑎𝑖𝑛 value may be too restrictive.

Due to the additional computational effort of the local search pro-
cedure, we do not execute it at each ALNS iteration. Instead, we only
perform it if the reconstructed solution is better than the current one.
This reduces the number of times that the local search is performed,
allowing the algorithm to perform more iterations while at the same
time filtering the times the local search is performed to those where
we already have promising solutions.

5. Computational results

In this section, we first describe the generation process for the set
of benchmark instances, and we then perform a computational study
where we cover both the performance of the method and practical
insights of the problem.

5.1. Instance generation

To the best of our knowledge, Martin-Iradi et al. (2022a) is the only
study on the MCBAP. The instances presented in the study are rather
small and limited. Therefore, we develop a more comprehensive set of
benchmark instances. In the absence of real-life data, one could extend
current benchmarks instances of the continuous BAP to multiple ports.
Instead, we decided to use the public access to port data (Marine Traf-
fic, 2023), and we validated it with additional data from an industrial

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.

T
m
s
c
d

c
u
a
t
b
o
c
m
m
4
a

c

s
s
l
a

e
r
p
f
e
s
b

5

t
F
h
w
a
d

Algorithm 4: Local search procedure
Data: 𝑠𝑜𝑙, 𝐾𝑐ℎ𝑎𝑖𝑛: current solution, and the length of the ejection

chain (i.e., the maximum number of port visit moves)
Result: 𝑠𝑜𝑙: resulting solution

1 begin
2 𝑑𝑜𝑛𝑒 ← 𝑓𝑎𝑙𝑠𝑒 // initialize termination criterion
3 while not 𝑑𝑜𝑛𝑒 do
4 𝑛𝑒𝑥𝑡𝑆𝑜𝑙 ← 𝑠𝑜𝑙 // initialize current best solution
5 𝛥← 0 // initialize delta cost variation
6 for 𝑝 ∈P do
7 for 𝑛 ∈ 𝑁𝑝 do

// track the port visits to re-plan
8 𝑡𝑜𝑀𝑜𝑣𝑒 = [(𝑝, 𝑛)]

// initialize copy of current solution
9 𝑠𝑜𝑙′ ← 𝑠𝑜𝑙
10 while 𝑘 ≤ 𝐾𝑐ℎ𝑎𝑖𝑛 and 𝑡𝑜𝑀𝑜𝑣𝑒 ≠ ∅ do

// get port visit to re-plan
11 (𝑝, 𝑛) ← 𝑝𝑜𝑝(𝑡𝑜𝑀𝑜𝑣𝑒)

// move port visit
12 𝑠𝑜𝑙′ ← 𝑚𝑜𝑣𝑒𝑃𝑜𝑟𝑡𝑉 𝑖𝑠𝑖𝑡(𝑝, 𝑛, 𝑠𝑜𝑙′)

// check for conflicts
13 𝑡𝑜𝑀𝑜𝑣𝑒← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑠𝑜𝑙′)

// update the ejection chain length
14 𝑘 ← 𝑘 + |𝑡𝑜𝑀𝑜𝑣𝑒|

15 if 𝑡𝑜𝑀𝑜𝑣𝑒 = ∅ then
// compute cost variation

16 𝛿 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑒𝑙𝑡𝑎𝐶𝑜𝑠𝑡(𝑠𝑜𝑙, 𝑠𝑜𝑙′)
17 if 𝛿 < 𝛥 then
18 𝛥← 𝛿 // update best delta cost

// update current best solution
19 𝑛𝑒𝑥𝑡𝑆𝑜𝑙 ← 𝑠𝑜𝑙′

20 if 𝛥 < 0 then
21 𝑠𝑜𝑙 ← 𝑛𝑒𝑥𝑡𝑆𝑜𝑙 // update solution to return
22 else
23 𝑑𝑜𝑛𝑒← 𝑡𝑟𝑢𝑒 // no improving neighbor solution

research partner to create an instance generator for the MBAP with a
continuous quay.

We consider three different ship types: (i) feeders or small vessels
with a length of up to 200 m, (ii) medium-size vessels with a length
between 200 and 300 m, and (iii) large vessels longer than 300 m. Each
ship type has a different speed-fuel consumption relation. Moreover,
we consider three terminals at the three main ports in the north
sea: (i) Rotterdam APMT with a quay length of 1600 meters (APM

erminals, 2022b), (ii) Bremerhaven NTB, with a quay length of 1800
eters (APM Terminals, 2022a), and Hamburg EGH, with a quay mea-

uring 2100 meters (Eurogate, 2022). These three ports are relatively
lose to each other, and large, medium, and small vessels visit them in
ifferent sequences as part of their routes.

The duration of the vessel time window is based on the planned port
all duration. The planned duration of a vessel’s port call can often be
pdated the days previous to the arrival time. Therefore, we establish
fixed point in time for each ship two weeks before the actual arrival

ime and retrieve the planned port call duration as the time difference
etween the estimated time of arrival (ETA) and the estimated time
f departure (ETD). We compute this by averaging the planned port
all duration for each port and ship type berthing in a period of three
onths (January-March 2021). This value is also used to define the
inimum handling time ℎ0 (see Table 2). Port service times that exceed
8, 72, and 96 h for small, medium, and large ship types, respectively,
re categorized as outliers and removed from the dataset. The reason
160
Table 2
Minimum handling type in hours per ship type and terminal. These values define
ℎ𝑖,𝑐0 .

Ship type \Terminal DEHAM DEBRV NLRTM

Feeder 10.1 12.1 10.4
Medium 18.0 21.8 18.4
Large 41.0 33.7 26.7

for this is that such long service times usually involve maintenance or
fueling operations that are not usually performed on a regular basis.
Thus, they are not part of the problem.

We define six different ship patterns, each with a given route, type
of ship, and length. All ships visit two or three ports in different orders.
The 𝑁 ships for a given instance are sampled from the six patterns.

For each ship, we randomize the (i) desired berthing position at each
port visited and (ii) the earliest start time 𝐸𝑆𝑇 𝑐𝑖 , following parameters
ensuring that feasible sailing times between ports exist. The estimated
finish time 𝐸𝐹𝑇 𝑐𝑖 is computed by adding the average handling time

across the quay to 𝐸𝑆𝑇 𝑐𝑖 (𝐸𝐹𝑇 𝑐𝑖 = 𝐸𝑆𝑇 𝑐𝑖 +
ℎ𝑖,𝑐𝑚𝑎𝑥+ℎ

𝑖,𝑐
0

2). Similarly, we
ompute the latest finish time 𝐿𝐹𝑇 𝑐𝑖 by adding the average handling

time to 𝐸𝐹𝑇 𝑐𝑖 (𝐿𝐹𝑇 𝑐𝑖 = 𝐸𝐹𝑇 𝑐𝑖 +
ℎ𝑖,𝑐𝑚𝑎𝑥+ℎ

𝑖,𝑐
0

2).
As input to the instance generator, we define the number of external

hips at each port 𝑁𝑜𝑢𝑡 that are considered fixed. For each external
hip, we randomly define: (i) the berthing position and time, (ii) the
ength (comprised between 180 and 330 m), and (iii) the handling time,
dapted to be proportional to the length of the vessel.

We assume the entire quay is available for berthing unless an
xternal ship is occupying it. We also consider 10 different speed levels,
anging uniformly between 17-21.5 knots. The ALNS heuristic we
resent can handle any continuous value of the speed but not the MIP
ormulation we present. To ensure a fair comparison of the methods we
mploy a discretized set of speed levels in both the formulation and the
olution method. Furthermore, the distance between ports is computed
ased on the actual sea distance of the routes.

.1.1. Handling time
It is a general practice, especially on the discrete version of the BAP,

o define a different handling time depending on the berthing position.
or the continuous version implemented in this paper, we follow the
andling time definition presented in Meisel and Bierwirth (2009)
here deviations from a preferred berthing position are penalized using
deviation factor 𝛽 ≥ 0 (relative increase in handling time per unit of
istance, i.e., meters). Given the minimum handling time ℎ𝑖,𝑐0 at the

preferred berthing position and the actual deviation from the chosen
position 𝛥𝑏 (measured in meters), the handling time is computed as
follows:

ℎ𝑐𝑖 = (1 + 𝛽𝛥𝑏)ℎ𝑖,𝑐0 (26)

In this study, the value of 𝛽 is set to 0.001 as in Meisel and Bierwirth
(2009), corresponding to a 0.1% increase in handling time per meter.
As a reference, the handling time ranges between 20 and 60 h for
medium vessels and between 30 and 110 h for large ones. This is given
by berthing at the best and worst places, respectively.

5.1.2. Time windows
In the MCBAP, there are two types of time windows:

• The time window for each ship at each visited port. This is given by
the port call duration. The time window start must be respected,
but the end can be exceeded. The berthing period can, therefore,
exceed the end of the time window counting the additional time
as a delay.

We also consider a time window end that defines the latest
finish time (LFT). Ideally, this time window must be respected.

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.

5

a
E
(
t
o
f
I
t
$
(
r

5

i
a
T
w
t
a
t
c
t
p
s
G

5

v
b

W
𝑧
t
i
b
Y
s
t
l
v
b
a

o

s
i
t
t
t
W
l
t
s
m
o
t
s

t
b
b
e
f
n
n
b
t
w
(
f
t
a
t
r
b
a
g
s
t
t
g
s
f
T
w
n

Table 3
Parameter settings of the benchmark instance set.

Parameter Seed Number
of ships

Number of external
ships per port

Distance between
positions

Values 1–10 30, 50, 70 5, 10 10, 20, 40, 80

However, we allow violating this time window by adding a very
high penalty cost.

• The time window of the berthing positions. This time window can
be seen as the operational hours of a given berthing position. We
assume that all berthing positions are available at any time. It
should be noted that potential maintenance windows or partial
closures of the quay can be modeled in the same way as an
external ship occupying the given positions and time period.

.1.3. Benchmark instances
Using the instance generator described in this section, we create

set of benchmark instances. The entire set comprises 240 instances.
ach instance is a combination of the parameter values listed in Table 3:
i) a randomized seed, (ii) the number of ships to optimize, (iii) and
he number of external fixed port visits per port, and (iv) the length
f the quay segment used to define possible berthing positions. Finally,
ollowing the cost values used in Venturini et al. (2017) and Martin-
radi et al. (2022b), we set the fuel price per ton (𝐹) to 500 $ per tonne,
he cost of waiting at port (𝐼) and the terminal handling cost (𝐻) to 200
per hour, and the delay costs for exceeding the expected finish time
𝐷) and latest finish time (𝑈) to 300 $ per hour and to 2000 $ per hour,
espectively.

.2. Parameter tuning

The ALNS algorithm has a total of 18 algorithm parameters. These
nclude parameters used to calibrate the operators, the selection and
cceptance criteria, and the weight of the scores for new solutions (see
able 4). To select the best value setting for the algorithm parameters
e conducted a parameter tuning. We selected a subset of 12 instances

hat are representative of the entire set. For the tuning, we run the
utomatic algorithm configurator Pydgga (Ansótegui et al., 2021) for
he 30 generations with a time limit of 5 min for each ALNS run. The
onfigurator allows to parallelize the process, and the entire parameter
uning lasted 8 h. In Table 4, we define the domain of each algorithm
arameter used for tuning and the found setting. The models and
olution methods are written in Julia and run in a 2.90 GHz Intel Xeon
old 6226R using one thread and 16 GB of RAM.

.3. Method performance

We solve problem (2)–(19) with the presented method and its
ariants and compare the solution quality with the one obtained using
aseline commercial solvers; CPLEX v20.1 in this case.

Table 5 compares the results between CPLEX and the ALNS method.
e compute the objective gap for each instance run as 𝑧𝑜𝑏𝑗−𝑧𝑏𝑒𝑠𝑡

𝑧𝑏𝑒𝑠𝑡
where

𝑜𝑏𝑗 is the objective value of the best solution of the run, and 𝑧𝑏𝑒𝑠𝑡 is
he best-known solution across all experiments. We have grouped all
nstances per number of ships, external ships, and distance between
erthing positions. Each group contains 10 instances and is named X-
-Z according to their common characteristics. X is the number of
hips, Y is the number of external ships per port, and Z is the dis-
ance between consecutive positions considered in meters (i.e., segment
ength). Therefore, each row in the table corresponds to the average
alue across instances with different seed values. The ALNS is tested
y running each instance 10 times and computing the average, best
nd worst run.

CPLEX is not able to solve any of the instances from Table 5 to
ptimality within the time limit. Furthermore, we observe that CPLEX
161
cales poorly, especially in instances with more than 30 ships. The gap
s better for the smallest instances but quickly worsens. On average,
he ALNS method outperforms the commercial solver by achieving
ighter gaps in most instances. To further assess the performance of
he method, we conduct a Wilcoxon signed-rank test (Haynes, 2013;

ilcoxon, 1945) using solution values of both the CPLEX and ALNS so-
utions. We normalized the values by comparing, per problem instance,
he solution gap to the best-known solution in the same way as the gaps
hown in Table 5. We observe the p-values to be 1.6 ⋅10−29 for the five-
inute time limit and 1.6 ⋅ 10−24 for the one-hour time limit. Since the

btained p-values are well below the threshold of 0.05, this indicates
hat the difference between the ALNS and CPLEX objective values is
tatistically significant.

The solution gap is an indicator of the method performance relative
o each other but does not provide an optimality guarantee. The lower
ounds obtained with CPLEX indicate a high optimality gap. This could
e due to a low-quality solution or a poor lower bound. Martin-Iradi
t al. (2022b) indicated that the relaxation of the MIP formulation
or the MBAP with a discrete quay could be worse than that of a
etwork-flow reformulation. As indicated in Martin-Iradi et al. (2022a),
etwork-flow formulations for the MCBAP can suffer from scalability
ut show that the relaxation is stronger. We compare the results from
he branch-and-price method presented in Martin-Iradi et al. (2022a)
ith the ALNS method. The formulation presented in Martin-Iradi et al.

2022a) is slightly different from the one addressed in this paper. The
ormulation from Martin-Iradi et al. (2022a) defines the latest finish
ime for each ship berthing at a port that must be satisfied. We have
dapted the method from Martin-Iradi et al. (2022a) to the formula-
ion of this study. The branch-and-price method is based on a graph
epresentation, and therefore, we need to establish the latest possible
erthing time. This is set to 50% more than the latest finish time. This
llows the method to exceed the latest finish time while maintaining the
raph at a reasonable size. This is a generous bound, and our empirical
tudies show that this bound does not affect the optimal solution. For
hat, we have also generated a new set of instances of similar size to
he ones presented in Martin-Iradi et al. (2022a) using the instance
enerator defined in Section 5.1. The input parameters for the instance
et are defined in Table 6. The entire set comprises 720 instances, one
or each combination of input parameters. The results are shown in
able 7, where each row shows the average values across 90 instances
ith the same distance between considered positions and with a similar
umber of ships. The optimality gap is computed as 𝑧𝑜𝑏𝑗−𝑧𝑙𝑟

𝑧𝑙𝑟
where

𝑧𝑜𝑏𝑗 and 𝑧𝑙𝑟 are the upper and lower bound respectively obtained by
each exact method. We compare the branch-and-price method with
the ALNS and MIP formulation presented in this study. For both the
branch-and-price and CPLEX we compute their optimality gap, where
we do not observe a significant difference as both methods converge to
optimality in most cases. We also compute the gap to the best-known
solution (BKS) for all three methods as indicated at the beginning of
Section 5.3. In this case, we observe that CPLEX provides the best
performance, showing that despite its potential poorer relaxation, the
upper bounds found are optimal. The branch-and-price method shows
a robust performance achieving optimal solutions consistently, but fails
to solve instances with a fine discretization of the quay due to excessive
memory consumption. The ALNS method cannot achieve the same
solution quality as the exact methods, but we recall that for larger
instances, ALNS outperforms CPLEX significantly (see Table 5).

The ALNS method has two main components that differentiate it
from other heuristics: (i) the adaptive procedure that guides the opera-
tor selection and (ii) the local search procedure that is performed when
promising solutions are found. To quantify the impact of these two
procedures, we compare the proposed method to its variants with and
without each of the components. One variant is the method without its
adaptive component (i.e., large neighborhood search (LNS)), meaning
that each removal and insertion operator has an equal probability of

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.
Table 4
Studied range and chosen setting of algorithm parameters after the parameter tuning.

Symbol Description Min val Max val Tuned
setting

𝜖 value used to compute the cooling ratio 0.005 0.2 0.157
𝜑 pct of initial solution obj used to define start temperature (when reheated) 0.01 0.05 0.0246
𝜉 pct of initial solution obj used to define end temperature (to be reheated) 0.00005 0.001 0.000269
𝜌 degree of destruction, pct of total port visits to be removed by the removal methods 0.3 0.6 0.326
𝐴 weight for position deviation in shaw removal 0.5 2 0.55
𝐵 weight for berthing start time deviation in shaw removal 0.5 2 1.36
𝐶 weight for berthing end time deviation in shaw removal 0.5 2 0.89
𝛼 randomness parameter for shaw removal method 1 3 2.66
𝛾 randomness parameter for random greedy repair method 1 3 2.85
𝜇 randomness parameter for arrival greedy repair method 1 3 2.6
𝜅 k-regret parameter 2 4 2
𝛥 number of iterations between updating the weights of each method 0.01 0.05 0.017
𝜂 parameter to adjust the importance of recent scores vs. previous weight 0.3 0.7 0.456
𝜓1 score when finding a current best solution 10 20 11
𝜓2 score when finding a solution better than the current solution 4 8 4
𝜓3 score when the solution is accepted 1 3 2
𝜓4 score when the solution is rejected – – 0
𝛷 parameter that defines the position bounds for ship (times its length) 2 5 4.02
Table 5
Gap for the MIP formulation solved by CPLEX and the ALNS method with a time limit of 5 min and 1 h. We also report the average gap between the best and worst runs of the
ALNS. Each row corresponds to an instance group (i.e., the average results across 10 instances of the same size).

Instance
group

5 min 1 h*

MIP
gap (%)

ALNS
gap (%)

Best ALNS
gap (%)

Worst ALNS
gap (%)

MIP
gap (%)

ALNS
gap (%)

Best ALNS
gap (%)

Worst ALNS
gap (%)

30-5-10 1.3 3.9 3.1 4.6 0.1 2.6 1.9 3.1
30-5-20 1.6 3.7 3.0 4.4 0.1 2.4 1.9 2.9
30-5-40 1.8 3.2 2.5 3.8 0.4 1.9 1.4 2.4
30-5-80 3.0 2.8 2.0 3.5 0.5 1.4 0.8 2.0
30-10-10 2.0 4.3 3.0 5.4 0.1 2.5 1.9 3.1
30-10-20 3.3 3.9 2.9 5.0 0.4 2.0 1.4 2.6
30-10-40 3.7 3.4 2.5 4.5 0.8 1.7 1.3 2.4
30-10-80 10.7 2.9 1.9 3.9 3.6 1.0 0.3 1.8
50-5-10 87.0 15.5 7.4 24.5 61.0 4.6 1.0 8.0
50-5-20 102.8 15.6 8.4 23.7 61.6 5.3 1.6 9.9
50-5-40 103.5 16.0 9.4 24.0 63.5 4.6 0.3 8.4
50-5-80 127.3 17.8 9.6 26.0 80.6 5.1 1.0 8.9
50-10-10 87.6 22.4 12.4 35.9 56.4 7.9 1.9 14.3
50-10-20 109.6 21.2 11.7 30.7 87.4 7.7 2.8 13.4
50-10-40 160.4 20.5 10.5 30.9 80.1 5.9 0.6 10.7
50-10-80 176.5 21.9 14.4 31.8 138.9 6.7 1.3 11.4
70-5-10 124.1 29.6 17.2 42.4 124.1 9.8 2.1 16.7
70-5-20 122.4 26.7 12.9 41.0 120.4 8.7 0.5 15.2
70-5-40 146.1 22.1 11.4 33.3 146.1 8.3 1.6 13.7
70-5-80 144.8 19.8 9.7 30.4 144.8 7.6 0.5 13.3
70-10-10 110.7 25.8 11.5 40.4 110.7 9.1 1.2 15.6
70-10-20 111.8 21.7 10.0 33.9 111.8 7.4 0.4 14.5
70-10-40 113.3 18.9 10.2 26.4 113.3 7.4 0.9 14.3
70-10-80 112.0 16.4 7.4 27.1 112.0 5.4 0.7 9.4

Average 82.0 15.0 8.1 22.4 67.4 5.3 1.2 9.1

*We do not report results for longer execution times as they have proved not to have a significant impact.
.

Table 6
Parameter settings of the instance set based on the ones from Martin-Iradi et al. (2022a)

Parameter Seed Number
of ships

Number of external
ships per port

Distance between
positions

Values 1–5 4–15 3–5 10, 20, 40, 80

being selected throughout the algorithm run. Another variant is the
ALNS method without the local search (LS). The objective gap across
the methods is compared in Table 8, with a time limit of 5 min,
and 1 h. In most cases, the ALNS with the local search provides the
best performance. To further assess the value of both components, we
conduct a pairwise statistical analysis by performing a Wilcoxon test
162
for each pair of method variants. Table 9 shows the p-values of these
comparisons and underscores the statistically significant benefits of the
local search procedure and the adaptive component of the algorithm.

To measure the impact of the local search procedure, we compare
different strategies that differ in the frequency of execution of the local
search procedure. We test three other variants of the algorithm in which
the local search is called every 1, 2, and 4 iterations. The results are
summarized in Table 10 where we can observe the increased compu-
tational complexity that the local search can add to each iteration.
Performing the local search procedure very frequently can lead to good
solutions in fewer iterations, but it also results in longer computational
times. The proposed strategy performs the local search at iterations
where the reconstructed solution is better than the incumbent one, and

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.
Table 7
Performance comparison across 720 instances between the MIP formulation solved by CPLEX, the adapted branch-and-price method from Martin-Iradi et al. (2022a), and the ALNS
method, with a time limit of 5 min and 1 h. Each row shows the average gap values across all instances with same number of ships.

Number
of ships

Dist. btw
positions

CPLEX
Opt. gap (%)

Branch-and-price
Opt. gap (%)

CPLEX
Gap (%)

Branch-and-price
Gap (%)

ALNS+LS
Gap (%)

5 min 1 h 5 min 1 h 5 min 1 h 5 min 1 h 5 min 1 h

4–9 80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 1.4
40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 1.6
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 1.7
10 0.0 0.0 – – 0.0 0.0 – – 1.6 1.5

10–15 80 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.0
40 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 1.2
20 0.1 0.0 0.2 0.0 0.0 0.0 0.1 0.0 1.6 1.3
10 0.0 0.0 – – 0.0 0.0 – – 1.8 1.5

Average 0.04 0.00 0.03 0.00 0.00 0.00 0.02 0.00 1.56 1.40

‘‘–’’ denotes that not all instances could be solved due to the memory limit.
Table 8
Performance comparison between variants of the proposed ALNS method.

Instance
group

5 min 1 h

ALNS + LS
gap (%)

ALNS (no LS)
gap (%)

LNS + LS
gap (%)

LNS (no LS)
gap (%)

ALNS + LS
gap (%)

ALNS (no LS)
gap (%)

LNS + LS
gap (%)

LNS (no LS)
gap (%)

30-5-10 3.9 6.3 4.1 6.4 2.6 4.3 2.7 4.6
30-5-20 3.7 5.7 3.9 6.0 2.4 4.1 2.5 4.2
30-5-40 3.2 5.1 3.2 5.2 1.9 3.4 2.0 3.5
30-5-80 2.8 4.3 3.0 4.4 1.4 2.7 1.5 2.8
30-10-10 4.3 6.0 4.3 6.3 2.5 3.6 2.6 3.8
30-10-20 3.9 5.4 4.0 5.6 2.0 3.3 2.2 3.4
30-10-40 3.4 4.5 3.6 4.9 1.7 2.8 1.8 3.0
30-10-80 2.9 3.8 3.0 3.9 1.0 2.0 1.2 1.9
50-5-10 15.5 17.0 18.2 19.8 4.6 6.1 6.2 7.6
50-5-20 15.6 17.3 17.2 19.7 5.3 6.8 6.5 8.2
50-5-40 16.0 16.4 15.9 18.5 4.6 5.0 5.9 6.9
50-5-80 17.8 19.1 18.9 22.2 5.1 5.0 6.4 7.6
50-10-10 22.4 23.8 24.7 26.1 7.9 9.0 9.0 11.7
50-10-20 21.2 23.4 22.4 24.9 7.7 8.4 8.8 10.9
50-10-40 20.5 21.2 21.4 24.5 5.9 6.4 8.0 8.7
50-10-80 21.9 24.4 25.3 28.7 6.7 6.4 8.8 10.4
70-5-10 29.6 31.1 33.4 38.5 9.8 13.4 14.0 20.0
70-5-20 26.7 29.7 31.2 36.6 8.7 13.8 13.2 18.1
70-5-40 22.1 26.1 26.3 32.4 8.3 12.0 12.0 17.6
70-5-80 19.8 24.8 25.1 30.8 7.6 10.6 10.1 14.4
70-10-10 25.8 27.9 27.3 33.5 9.1 12.3 11.6 17.4
70-10-20 21.7 25.9 26.1 31.5 7.4 11.3 11.3 16.3
70-10-40 18.9 23.1 24.2 29.4 7.4 11.3 11.3 14.3
70-10-80 16.4 19.0 19.7 24.5 5.4 7.9 8.2 10.4

Average 15.0 17.1 16.9 20.2 5.3 7.2 7.0 9.5
Table 9
p-value of pair-wise comparison of solution method variants.

Methods
compared

ALNS (no LS) LNS + LS LNS (no LS)

5 min
ALNS + LS 6.2 ⋅ 10−24 6.0 ⋅ 10−20 1.5 ⋅ 10−38

ALNS (no LS) – 0.0231 2.7 ⋅ 10−33

LNS + LS – – 2.5 ⋅ 10−36

1 h
ALNS + LS 1.5 ⋅ 10−32 6.2 ⋅ 10−29 4.7 ⋅ 10−41

ALNS (no LS) – 0.0023 1.4 ⋅ 10−33

LNS + LS – – 4.7 ⋅ 10−37

we show that this strategy performs the best. This method allows us
to perform the local search in a fewer number of iterations, but at the
same time, has the potential to result in promising and better solutions.

Tables 11 and 12 summarized the performance of the different
removal and insertion operators used within the ALNS method. For
each removal operator, we compute three metrics: (i) the percentage of
iterations in which the operator was selected % its, (ii) the percentage
of current best solutions found using the operator % new best, and (iii)
the percentage of times that the resulting solution was better than the
163
current one using the operator % better than current. For the insertion
methods, we also display a fourth column % of time, which indicates
the percentage of time each operator has consumed from the total
time spent repairing solutions. The time spent in removal methods
is significantly lower than in insertion operators; therefore, we do
not compute this metric for the removal operators. We observe that
the random and cost-time removals are the better-performing removal
methods when the number of ships is 30. However, for larger instances,
the performance of the cost-time removal improves. In particular, this
operator is efficient at improving the current solution, which leads to
finding most of the best-known solutions. This also suggests that when
the number of port visits increases, the probability of removing port
visits that are not related at all also increases, making pure random
methods less efficient. Furthermore, removing port visits that overlap in
time is more effective than removing the ones that overlap in berthing
space. While ships can berth at multiple positions along the quay
without major delays and disruptions in their schedule, berthing earlier
or later can negatively impact the sailing in the rest of the voyage
legs. Therefore, their flexibility comes at a larger cost. We also notice
that the Shaw removal becomes less useful in larger instances. This

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.
Table 10
Algorithm comparison with different frequencies for the local search procedure with a time limit of one hour.

Instance
group

Local search
every iteration

Local search
every 2 iterations

Local search
every 4 iterations

Local search every iteration where
the solution is better than the incumbent

Gap
(%)

Iterations
x1000

Gap
(%)

Iterations
x1000

Gap
(%)

Iterations
x1000

Gap
(%)

Iterations
x1000

% of iterations
with local search

30-5-10 1.6 46.6 1.8 58.6 2.0 67.3 2.6 79.1 1.7
30-5-20 1.5 72.8 1.7 99.0 1.9 120.3 2.4 153.2 1.5
30-5-40 1.1 102.8 1.2 154.2 1.4 203.8 1.9 307.5 1.3
30-5-80 0.9 130.7 1.0 211.2 1.0 300.5 1.4 550.6 1.1
30-10-10 1.5 49.4 1.7 61.1 1.9 69.3 2.5 81.0 1.4
30-10-20 1.2 79.2 1.4 105.2 1.7 126.1 2.0 157.0 1.3
30-10-40 1.0 115.8 1.2 167.4 1.4 218.1 1.7 316.9 1.2
30-10-80 0.8 162.2 1.0 247.5 1.0 340.1 1.0 568.3 1.2
50-5-10 5.5 11.1 5.9 16.5 6.0 20.6 4.6 30.6 0.4
50-5-20 7.1 15.1 6.8 23.5 6.3 32.9 5.3 56.2 0.3
50-5-40 8.5 18.8 7.9 31.4 7.4 48.7 4.6 118.2 0.3
50-5-80 13.0 20.3 12.0 36.4 10.2 59.8 5.1 218.7 0.3
50-10-10 8.4 12.3 9.5 17.6 8.4 21.1 7.9 30.1 0.3
50-10-20 11.2 17.5 9.8 26.2 9.9 35.1 7.7 57.5 0.3
50-10-40 11.6 22.4 10.9 36.4 9.3 53.9 5.9 118.2 0.3
50-10-80 16.2 27.6 14.5 46.7 12.3 73.2 6.7 223.1 0.3
70-5-10 12.5 3.7 11.2 5.8 12.6 8.5 9.8 16.3 0.3
70-5-20 13.8 4.8 12.9 8.1 13.9 12.6 8.7 30.2 0.2
70-5-40 17.0 5.7 15.7 10.1 14.1 17.0 8.3 62.0 0.3
70-5-80 18.6 5.8 17.7 10.6 16.5 18.9 7.6 115.0 0.3
70-10-10 11.0 4.7 10.2 7.2 11.1 9.7 9.1 16.7 0.4
70-10-20 12.1 6.1 11.9 9.9 11.8 14.5 7.4 31.0 0.3
70-10-40 14.4 7.4 14.5 12.7 13.6 20.8 7.4 64.4 0.3
70-10-80 14.1 8.3 13.4 14.7 13.3 25.1 5.4 116.8 0.4

Average 8.5 39.6 8.2 59.1 7.9 79.9 5.3 146.6 0.7
Table 11
Performance summary of the four removal operators. The instances are grouped per number of ships.

Number
of ships

Cost-berth removal Cost-time removal Shaw removal Random removal

% its % new
best

% better
than current

% its % new
best

% better
than current

% its % new
best

% better
than current

% its % new
best

% better
than current

30 13 9 8 30 38 42 23 16 16 34 37 35
50 8 9 4 46 49 58 15 12 8 32 29 30
70 10 12 6 68 67 81 8 7 3 15 14 10
Table 12
Performance summary of the four insertion operators. The instances are grouped per number of ships.

Number
of ships

Efficient packing insertion Random greedy insertion Arrival greedy insertion 𝜅-regret insertion

% its % of
time

% new
best

% better
than current

% its % of
time

% new
best

% better
than current

% its % of
time

% new
best

% better
than current

% its % of
time

% new
best

% better
than current

30 21 16 24 18 28 19 24 31 24 17 23 22 27 38 29 28
50 12 9 12 7 30 23 29 29 28 22 28 29 31 40 30 34
70 19 14 19 16 21 17 20 18 40 30 42 48 20 33 19 18
operator removes pairs of port visits at a time. These pairs can be highly
unrelated between them, worsening the effects of the overall operator.
Similarly to the random removal, this inter-relatedness issue increases
with the number of port visits.

Regarding the repair methods, the performance is more homoge-
neous and all contribute similarly. The 𝜅-regret insertion method is
computationally more intensive, requiring more time. All methods help
achieve the best-found solutions in a similar with fewer ships, and the
arrival greedy insertion becomes more effective in larger instances.

To better understand the algorithm’s behavior and when the opera-
tors are used, we tracked the use of each operator during the algorithm
run. Figs. 6 and 7 show an example run of one hour for an instance with
30 ships, 10 external ships per port, and a distance between consecutive
positions of 10 m. We observe that the cost-space removal is only used
at the first half of the algorithm run when each operator has a more
balanced probability of being chosen. The packing greedy heuristic
shows a similar behavior and correlates with the low usage of these
two operators, as shown in Table 11 and 12. Nonetheless, the rest of
164
the operators are used for most algorithm runs. Some operators show
an oscillating behavior, such as the cost-time removal operator. This
behavior correlates with the temperature of the acceptance criterion,
which is reheated periodically and suggests that the operator is more
likely to be selected when the temperature is higher.

Additionally, for both removal and insertion operators, we tested
the algorithm removing the worst performing operators, one at a time,
but the performance of the method worsened in all cases, indicating
that all operators are to some extent useful and combine well together.

5.4. Practical impact

This problem involves two main stakeholders, namely, the terminal
operators and the shipping carriers. The objective function covers the
operational costs of both of them. This section disaggregates and ana-
lyzes the different operational costs by performing various sensitivity
analyses.

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.

t
b
t
t
i
i
b
o
T
o

Fig. 6. Usage of each removal operator during an algorithm run of 1 h for an instance from group 30 − 10 − 10.
Fig. 7. Usage of each insertion operator during an algorithm run of 1 h for an instance from group 30 − 10 − 10.
Table 13
Average operational costs and cost variation across instances with different distance between consecutive
positions. All instances are run for one hour. The costs are in thousands of USD.

Distance
btw. positions

Waiting Handling Delay Fuel Penalty Total % of penalized
port visits

10 519 534 930 1277 1750 5010 12
20 518 535 933 1278 1753 5018 12
40 540 535 1019 1277 2066 5437 13
80 586 538 1243 1280 2893 6540 16
In Table 13, we group the instances per distance between consecu-
ive positions. We observe a natural trade-off here: A shorter distance
etween positions allows a more granular set of berthing positions and,
herefore, a potentially better solution quality. However, this increases
he complexity of the problem, and in the case of our method, it results
n fewer iterations per hour. Despite performing less than a fifth of the
terations of the instances with 80 meters distance, the method finds
etter solutions for the shorter-distance instances. The improvement in
bjective value mainly translates into shorter delays, and waiting time.
he handling and fuel costs remain similar. The vessel time windows
r port calls are already pre-planned, considering a low sailing speed.
165
This, together with the fact that fuel costs account for a large part of
the total costs, results in that ships already sailing at the slowest speed
in most of the solutions (see Table 15). We observe that considering
more berthing positions improves the number of penalized ships that
exceed their time window, reducing their average exceeded time in up
to 50%.

Another operational aspect we inspect is the impact of the external
ships in the planning process. We solve the problem instances with 30
ships with a varying number of external ships per port, from none to
twenty ships per port. The results are summarized in Table 14. The
results support the rationale that an increased number of external ships

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.
Table 14
Operational costs for instances grouped by different number of external ships per port.

External
ships per port

Waiting Handling Delay Fuel Penalty Total % increase of
penalized port visits

0 82 308 116 755 16 1278 –
5 111 315 222 756 170 1573 +6%
10 148 322 466 761 837 2534 +21%
20 288 323 1316 762 5186 7874 +54%
Table 15
Average fuel consumption per ship and sailing speed based on different fuel prices.

Number
of ships

Fuel price (USD/metric tonne)

200 500 1100

Average fuel consumption
(metric tonne per ship)

Average
speed (knots)

Average fuel consumption
(metric tonne per ship)

Average
speed (knots)

Average fuel consumption
(metric tonne per ship)

Average
speed (knots)

30 50.3 17.50 50.3 17.50 50.3 17.50
50 51.2 17.54 51.0 17.51 50.9 17.50
70 52.6 17.72 51.6 17.60 51.1 17.55

Average 51.4 17.59 51.0 17.54 50.8 17.52
per port results in a more congested berth allocation and, as a result,
higher operational costs. In this case, the port congestion is reflected
in the number of penalized port visits. Since the external ships are
considered fixed, a higher number of these can lead to excessive delays
due to port visits exceeding their latest finish time and propagating such
delays to following ports in their routes. These results also indicate
that the level of impact of this type of collaborative problem can
increase significantly when more ships are involved. When more ships
collaborate, their potential joint savings increase and the terminal has
more planning flexibility.

As mentioned previously, fuel consumption is the main cost driver
for carriers. Fuel prices have fluctuated significantly in the last two
years due to the global socio-economical and political situation. We
consider that ships use a very low sulfur fuel oil (VLSFO) with an
estimated price of 500 USD per metric ton. However, the prices of this
fuel have ranged between 200 and 1100 USD per metric ton in the last
two years. Therefore, we have also tested our method using a fuel price
of 200 and 1100 USD per metric ton (Ship & Bunker, 2022)

Table 15 shows the average fuel consumption per ship and sailing
speed, grouped by instances with the same number of ships. We observe
that the average consumption can increase by almost half a metric
tonne when the fuel price decreases from 500 USD per tonne to 200
USD per tonne. This difference is more prominent in instances with a
large number of ships, where more ships sail marginally faster to arrive
earlier at the next port to get a better service. However, when the fuel
price increases above 500 USD per metric tonne, the reductions in fuel
consumption are relatively small. The main explanation for this is due
to the low sailing speeds in general. The fuel costs already account for a
large part of the operational costs, and the solutions indicate that ships
sail close to the slowest speed of 17 knots in most cases. We observe a
slight increase in average sailing speed when the fuel price is low and
the number of ships increases. At the highest fuel price, the average
speed never reaches the minimum of 17 knots, underscoring the need
for continued speed optimization, as imposing all ships to travel at the
lowest speed could lead to higher overall operational costs. A similar
sensitivity analysis performed by Venturini et al. (2017) indicated a
similar behavior.

6. Conclusions

In this work, we address an emerging problem in maritime collabo-
rative logistics that integrates the operations of both shipping carriers
and terminal operators. We present both a new MIP formulation for
the multi-port continuous berth allocation problem with speed opti-
166

mization, and an ALNS algorithm to solve it. The ALNS algorithm takes
advantage of a diverse set of tailored insertion and removal methods.
It guides the algorithm by prioritizing the better-performing methods.
The modular characteristic of the algorithm could be exploited to
develop a decision support tool for terminal operators, where the
operators’ experience can lead to new tailored operators. Furthermore,
in terms of computational performance, the heuristic method is able to
find high-quality solutions to larger instances than the ones studied in
the literature and outperforms commercial solvers such as CPLEX. We
also study the practical impact of the problem in terms of operational
costs for the carriers and terminal operators and analyze the resulting
quality of the berth plans and sailing speeds. We conclude that engaging
in this type of collaboration can result in overall cost reductions for the
stakeholders and also benefits to the environment due to the potential
lower fuel consumption.

Some aspects of this study remain as future work or research
direction. Regarding the solution method, the insertion operators are
the main bottleneck in terms of computational complexity. One could
explore simpler insertion operators or other heuristic variants. Studying
the scalability of the method in more detail could be relevant. There
is no doubt that the heuristic method scales better than CPLEX, and
results in small instances indicate that the ALNS achieves near-optimal
solutions. For larger instances, the optimality gap of CPLEX increases
significantly, and the lower bound becomes impractical. Finally, incor-
porating practical aspects such as transhipments or disruptions manage-
ment is an attractive research direction. We envision the use of frame-
works such as stochastic programming to tackle this type of problem.
All in all, this type of study highlights the potential impact of collabo-
rative logistics and the value of integration in the transportation sector.

Acknowledgments

The authors thank the Danish Maritime Fund for supporting this
work and three anonymous reviewers for their valuable comments.

References

Ansótegui, C., Pon, J., & Sellmann, M. (2021). Boosting evolutionary algorithm
configuration. Annals of Mathematics and Artificial Intelligence, http://dx.doi.org/10.
1007/s10472-020-09726-y.

APM Terminals (2022a). APM terminals bremerhaven NTB. https://www.apmterminals.
com/en/bremerhaven/practical-information/practical-information, (Accessed:
2022-11-4).

APM Terminals (2022b). APM terminals maasvlakte II. https://www.apmterminals.
com/en/maasvlakte/about/our-terminal, (Accessed: 2022-09-15).

Bierwirth, C., & Meisel, F. (2015). A follow-up survey of berth allocation and quay
crane scheduling problems in container terminals. European Journal of Operational

Research, 244(3), 12689, 675–689. http://dx.doi.org/10.1016/j.ejor.2014.12.030.

http://dx.doi.org/10.1007/s10472-020-09726-y
http://dx.doi.org/10.1007/s10472-020-09726-y
http://dx.doi.org/10.1007/s10472-020-09726-y
https://www.apmterminals.com/en/bremerhaven/practical-information/practical-information
https://www.apmterminals.com/en/bremerhaven/practical-information/practical-information
https://www.apmterminals.com/en/bremerhaven/practical-information/practical-information
https://www.apmterminals.com/en/maasvlakte/about/our-terminal
https://www.apmterminals.com/en/maasvlakte/about/our-terminal
https://www.apmterminals.com/en/maasvlakte/about/our-terminal
http://dx.doi.org/10.1016/j.ejor.2014.12.030

European Journal of Operational Research 316 (2024) 152–167B. Martin-Iradi et al.

C

D

D

H

H

Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle-routing
problem with time windows. Informs Journal on Computing, 15(4), 347–368. http:
//dx.doi.org/10.1287/ijoc.15.4.347.24896.

Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2014). Transport operations in container
terminals: Literature overview, trends, research directions and classification scheme.
European Journal of Operational Research, 236(1), 1–13. http://dx.doi.org/10.1016/
j.ejor.2013.11.023.

Cheimanoff, N., Fontane, F., Kitri, M. N., & Tchernev, N. (2022). Exact and heuristic
methods for the integrated berth allocation and specific time-invariant quay crane
assignment problems. Computers & Operations Research, 141, Article 105695. http:
//dx.doi.org/10.1016/j.cor.2022.105695.

Cordeau, J. F., Laporte, G., Legato, P., & Moccia, L. (2005). Models and tabu search
heuristics for the berth-allocation problem. Transportation Science, 39(4), 526–538.
http://dx.doi.org/10.1287/trsc.1050.0120.

orrecher, J. F., & Alvarez-Valdes, R. (2017). A biased random-Key genetic algorithm
for the time-invariant berth allocation and quay crane assignment problem. Expert
Systems with Applications, 89, 112–128. http://dx.doi.org/10.1016/j.eswa.2017.07.
028.

De Oliveira, R. M., Mauri, G. R., & Lorena, L. A. N. (2012). Clustering search heuristic
for solving a continuous berth allocation problem. In M. Jin-Kao Hao (Ed.), Vol.
7245, Lecture notes in computer science (including subseries lecture notes in artificial
intelligence and lecture notes in bioinformatics) (pp. 49–62). Springer-Verlag, http:
//dx.doi.org/10.1007/978-3-642-29124-1_5.

u, Y., Chen, Q., Quan, X., Long, L., & Fung, R. Y. (2011). Berth allocation considering
fuel consumption and vessel emissions. Transportation Research Part E: Logistics and
Transportation Review, 47(6), 1021–1037. http://dx.doi.org/10.1016/j.tre.2011.05.
011.

ulebenets, M. A. (2018). A comprehensive multi-objective optimization model for
the vessel scheduling problem in liner shipping. International Journal of Production
Economics, 196, 293–318. http://dx.doi.org/10.1016/j.ijpe.2017.10.027.

Dulebenets, M. A. (2019). Minimizing the total liner shipping route service costs via
application of an efficient collaborative agreement. Ieee Transactions on Intelligent
Transportation Systems, 20(1), Article 8315131. http://dx.doi.org/10.1109/TITS.
2018.2801823.

Dulebenets, M. A., Golias, M. M., & Mishra, S. (2018). A collaborative agreement
for berth allocation under excessive demand. Engineering Applications of Artificial
Intelligence, 69, 76–92. http://dx.doi.org/10.1016/j.engappai.2017.11.009.

Dulebenets, M. A., Pasha, J., Abioye, O. F., & Kavoosi, M. (2019). Vessel scheduling in
liner shipping: a critical literature review and future research needs. Flexible Services
and Manufacturing Journal, 33(1), 43–106. http://dx.doi.org/10.1007/s10696-019-
09367-2.

Eurogate (2022). Eurogate hamburg. http://www1.eurogate.de/en/EUROGATE/
Terminals/Hamburg, (Accessed: 2022-11-4).

Fagerholt, K. (2001). Ship scheduling with soft time windows: An optimisation based
approach. European Journal of Operational Research, 131(3), 559–571. http://dx.doi.
org/10.1016/S0377-2217(00)00098-9.

Fagerholt, K., Laporte, G., & Norstad, I. (2010). Reducing fuel emissions by optimizing
speed on shipping routes. Journal of the Operational Research Society, 61(3),
523–529. http://dx.doi.org/10.1057/jors.2009.77.

François, V., Arda, Y., Crama, Y., & Laporte, G. (2016). Large neighborhood search
for multi-trip vehicle routing. European Journal of Operational Research, 255(2),
422–441. http://dx.doi.org/10.1016/j.ejor.2016.04.065.

Glover, F. (1992). New ejection chain and alternating path methods for traveling
salesman problems. In O. Balci, R. Sharda, & S. A. Zenios (Eds.), Computer Science
and Operations Research. New Developments in their Interfaces, 491–508.

Guan, Y., & Cheung, R. K. (2005). The berth allocation problem: Models and solution
methods. Container Terminals and Automated Transport Systems: Logistics Control
Issues and Quantitative Decision Support, 141–158. http://dx.doi.org/10.1007/3-540-
26686-0_6.

Guo, L., Zheng, J., Du, H., Du, J., & Zhu, Z. (2022). The berth assignment and
allocation problem considering cooperative liner carriers. Transportation Research
Part E: Logistics and Transportation Review, 164, Article 102793. http://dx.doi.org/
10.1016/j.tre.2022.102793.

aynes, W. (2013). Wilcoxon rank sum test. In W. Dubitzky, O. Wolkenhauer, K.-
H. Cho, & H. Yokota (Eds.), Encyclopedia of systems biology (pp. 2354–2355).
New York, NY: Springer New York, http://dx.doi.org/10.1007/978-1-4419-9863-
7_1185.

ellsten, E. O., Sacramento Lechado, D., & Pisinger, D. (2020). An adaptive large
neighbourhood search heuristic for routing and scheduling feeder vessels in multi-
terminal ports. European Journal of Operational Research, 287(2), 682–698. http:
//dx.doi.org/10.1016/j.ejor.2020.04.050.

Imai, A., Sun, X., Nishimura, E., & Papadimitriou, S. (2005). Berth allocation in a con-
tainer port: using a continuous location space approach. Transportation Research Part
B-methodological, 39(3), 199–221. http://dx.doi.org/10.1016/j.trb.2004.04.004.

IMO (2018). Initial IMO strategy on reduction of GHG emissions from ships.
Tech. Rep. MEPC.304(72), (p. 3). International Maritime Organization, URL
http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/
Pages/GHG-Emissions.aspx, (Accessed on 04.05.2020).

Iris, C., & Lam, J. S. L. (2018). Models for continuous berth allocation and quay crane
assignment: Computational comparison. Ieee International Conference on Industrial
Engineering and Engineering Management, 2017-, 374–378. http://dx.doi.org/10.
1109/IEEM.2017.8289915.
167
Iris, C., Pacino, D., & Røpke, S. (2017). Improved formulations and an adaptive large
neighborhood search heuristic for the integrated berth allocation and quay crane
assignment problem. Transportation Research. Part E: Logistics and Transportation
Review, 105, 123–147. http://dx.doi.org/10.1016/j.tre.2017.06.013.

Kim, K. H., & Moon, K. C. (2003). Berth scheduling by simulated annealing. Transporta-
tion Research, Part B (Methodological), 37(6), 541–560. http://dx.doi.org/10.1016/
S0191-2615(02)00027-9.

Kordić, S., Davidović, T., Kovač, N., & Dragović, B. (2016). Combinatorial approach to
exactly solving discrete and hybrid berth allocation problem. Applied Mathematical
Modelling, 40(21–22), 8952–8973. http://dx.doi.org/10.1016/j.apm.2016.05.004.

Lalla-Ruiz, E., Melián-Batista, B., & Moreno-Vega, J. M. (2016). A cooperative search
for berth scheduling. Knowledge Engineering Review, 31(05), 498–507. http://dx.doi.
org/10.1017/s0269888916000266.

Lee, D. H., Chen, J. H., & Cao, J. X. (2010). The continuous berth allocation problem: A
greedy randomized adaptive search solution. Transportation Research Part E: Logistics
and Transportation Review, 46(6), 1017–1029. http://dx.doi.org/10.1016/j.tre.2010.
01.009.

Lim, A. (1998). The berth planning problem. Operations Research Letters, 22(2–3),
105–110. http://dx.doi.org/10.1016/S0167-6377(98)00010-8.

Lyu, X., Negenborn, R. R., Shi, X., & Schulte, F. (2022). A collaborative berth planning
approach for disruption recovery. Ieee Open Journal of Intelligent Transportation
Systems, 3, 153–164. http://dx.doi.org/10.1109/OJITS.2022.3150585.

Marine Traffic (2023). Port calls data. https://www.marinetraffic.com/en/data/,
(Accessed: 2023-01-14).

Martin-Iradi, B., Pacino, D., & Ropke, S. (2022a). The multi-port continuous berth
allocation problem with speed optimization. In J. de Armas, H. Ramalhinho, &
S. Voß (Eds.), Computational logistics (pp. 31–43). Cham: Springer International
Publishing.

Martin-Iradi, B., Pacino, D., & Ropke, S. (2022b). The multiport berth allocation
problem with speed optimization: Exact methods and a cooperative game analysis.
Transportation Science, 56(4), 972–999. http://dx.doi.org/10.1287/trsc.2021.1112.

Mauri, G. R., Ribeiro, G. M., Lorena, L. A. N., & Laporte, G. (2016). An adaptive large
neighborhood search for the discrete and continuous Berth allocation problem.
Computers & Operations Research, 70, 140–154. http://dx.doi.org/10.1016/j.cor.
2016.01.002.

Meisel, F., & Bierwirth, C. (2009). Heuristics for the integration of crane produc-
tivity in the berth allocation problem. Transportation Research Part E: Logistics
and Transportation Review, 45(1), 196–209. http://dx.doi.org/10.1016/j.tre.2008.
03.001.

Potvin, J., & Rousseau, J. (1993). A parallel route building algorithm for the vehicle-
routing and scheduling problem with time windows. European Journal of Operational
Research, 66(3), 331–340. http://dx.doi.org/10.1016/0377-2217(93)90221-8.

Rego, C. (1998). A subpath ejection method for the vehicle routing problem.
Management Science, 44(10), 1447–1459.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science, 40(4),
455–472. http://dx.doi.org/10.1287/trsc.1050.0135.

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. Lecture Notes in Computer Science, 1520, 417–431.

Ship & Bunker (2022). Global average bunker price - VLSFO. https://shipandbunker.
com/prices/av/global/av-g20-global-20-ports-average, (Accessed: 2022-12-18).

Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and
operations research - a classification and literature review. Or Spectrum, 26(1),
3–49. http://dx.doi.org/10.1007/s00291-003-0157-z.

Sun, B., Niu, B., Xu, H., & Ying, W. (2018). Cooperative optimization for port and
shipping line with unpredictable disturbance consideration. In M. Li, X. Ning,
Z. Xiao, G. Xiao, K. Li, & L. Wang (Eds.), Icnc-fskd 2018 - 14th international
conference on natural computation, fuzzy systems and knowledge discovery. Institute
of Electrical and Electronics Engineers Inc., http://dx.doi.org/10.1109/FSKD.2018.
8686901, 8686901, 113–118.

UNCTAD (2020). Review of maritime transport 2020. Tech. rep., UNCTAD.
Venturini, G., Iris, C., Kontovas, C. A., & Larsen, A. (2017). The multi-port berth alloca-

tion problem with speed optimization and emission considerations. Transportation
Research. Part D: Transport and Environment, 54, 142–159. http://dx.doi.org/10.
1016/j.trd.2017.05.002.

Vieira, B. S., Ribeiro, G. M., Bahiense, L., Cruz, R., Mendes, A. B., & Laporte, G.
(2021). Exact and heuristic algorithms for the fleet composition and periodic
routing problem of offshore supply vessels with berth allocation decisions. European
Journal of Operational Research, 295(3), 908–923. http://dx.doi.org/10.1016/j.ejor.
2021.03.022.

Wang, S., Liu, Z., & Qu, X. (2015). Collaborative mechanisms for berth allocation.
Advanced Engineering Informatics, 29(3), 572, 332–338. http://dx.doi.org/10.1016/
j.aei.2014.12.003.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin,
1(6), 80–83, URL http://www.jstor.org/stable/3001968.

Yu, J., Tang, G., & Song, X. (2022). Collaboration of vessel speed optimization with
berth allocation and quay crane assignment considering vessel service differentia-
tion. Transportation Research Part E: Logistics and Transportation Review, 160, Article
102651. http://dx.doi.org/10.1016/j.tre.2022.102651.

http://dx.doi.org/10.1287/ijoc.15.4.347.24896
http://dx.doi.org/10.1287/ijoc.15.4.347.24896
http://dx.doi.org/10.1287/ijoc.15.4.347.24896
http://dx.doi.org/10.1016/j.ejor.2013.11.023
http://dx.doi.org/10.1016/j.ejor.2013.11.023
http://dx.doi.org/10.1016/j.ejor.2013.11.023
http://dx.doi.org/10.1016/j.cor.2022.105695
http://dx.doi.org/10.1016/j.cor.2022.105695
http://dx.doi.org/10.1016/j.cor.2022.105695
http://dx.doi.org/10.1287/trsc.1050.0120
http://dx.doi.org/10.1016/j.eswa.2017.07.028
http://dx.doi.org/10.1016/j.eswa.2017.07.028
http://dx.doi.org/10.1016/j.eswa.2017.07.028
http://dx.doi.org/10.1007/978-3-642-29124-1_5
http://dx.doi.org/10.1007/978-3-642-29124-1_5
http://dx.doi.org/10.1007/978-3-642-29124-1_5
http://dx.doi.org/10.1016/j.tre.2011.05.011
http://dx.doi.org/10.1016/j.tre.2011.05.011
http://dx.doi.org/10.1016/j.tre.2011.05.011
http://dx.doi.org/10.1016/j.ijpe.2017.10.027
http://dx.doi.org/10.1109/TITS.2018.2801823
http://dx.doi.org/10.1109/TITS.2018.2801823
http://dx.doi.org/10.1109/TITS.2018.2801823
http://dx.doi.org/10.1016/j.engappai.2017.11.009
http://dx.doi.org/10.1007/s10696-019-09367-2
http://dx.doi.org/10.1007/s10696-019-09367-2
http://dx.doi.org/10.1007/s10696-019-09367-2
http://www1.eurogate.de/en/EUROGATE/Terminals/Hamburg
http://www1.eurogate.de/en/EUROGATE/Terminals/Hamburg
http://www1.eurogate.de/en/EUROGATE/Terminals/Hamburg
http://dx.doi.org/10.1016/S0377-2217(00)00098-9
http://dx.doi.org/10.1016/S0377-2217(00)00098-9
http://dx.doi.org/10.1016/S0377-2217(00)00098-9
http://dx.doi.org/10.1057/jors.2009.77
http://dx.doi.org/10.1016/j.ejor.2016.04.065
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb20
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb20
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb20
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb20
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb20
http://dx.doi.org/10.1007/3-540-26686-0_6
http://dx.doi.org/10.1007/3-540-26686-0_6
http://dx.doi.org/10.1007/3-540-26686-0_6
http://dx.doi.org/10.1016/j.tre.2022.102793
http://dx.doi.org/10.1016/j.tre.2022.102793
http://dx.doi.org/10.1016/j.tre.2022.102793
http://dx.doi.org/10.1007/978-1-4419-9863-7_1185
http://dx.doi.org/10.1007/978-1-4419-9863-7_1185
http://dx.doi.org/10.1007/978-1-4419-9863-7_1185
http://dx.doi.org/10.1016/j.ejor.2020.04.050
http://dx.doi.org/10.1016/j.ejor.2020.04.050
http://dx.doi.org/10.1016/j.ejor.2020.04.050
http://dx.doi.org/10.1016/j.trb.2004.04.004
http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/GHG-Emissions.aspx
http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/GHG-Emissions.aspx
http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/GHG-Emissions.aspx
http://dx.doi.org/10.1109/IEEM.2017.8289915
http://dx.doi.org/10.1109/IEEM.2017.8289915
http://dx.doi.org/10.1109/IEEM.2017.8289915
http://dx.doi.org/10.1016/j.tre.2017.06.013
http://dx.doi.org/10.1016/S0191-2615(02)00027-9
http://dx.doi.org/10.1016/S0191-2615(02)00027-9
http://dx.doi.org/10.1016/S0191-2615(02)00027-9
http://dx.doi.org/10.1016/j.apm.2016.05.004
http://dx.doi.org/10.1017/s0269888916000266
http://dx.doi.org/10.1017/s0269888916000266
http://dx.doi.org/10.1017/s0269888916000266
http://dx.doi.org/10.1016/j.tre.2010.01.009
http://dx.doi.org/10.1016/j.tre.2010.01.009
http://dx.doi.org/10.1016/j.tre.2010.01.009
http://dx.doi.org/10.1016/S0167-6377(98)00010-8
http://dx.doi.org/10.1109/OJITS.2022.3150585
https://www.marinetraffic.com/en/data/
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb36
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb36
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb36
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb36
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb36
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb36
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb36
http://dx.doi.org/10.1287/trsc.2021.1112
http://dx.doi.org/10.1016/j.cor.2016.01.002
http://dx.doi.org/10.1016/j.cor.2016.01.002
http://dx.doi.org/10.1016/j.cor.2016.01.002
http://dx.doi.org/10.1016/j.tre.2008.03.001
http://dx.doi.org/10.1016/j.tre.2008.03.001
http://dx.doi.org/10.1016/j.tre.2008.03.001
http://dx.doi.org/10.1016/0377-2217(93)90221-8
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb41
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb41
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb41
http://dx.doi.org/10.1287/trsc.1050.0135
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb43
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb43
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb43
https://shipandbunker.com/prices/av/global/av-g20-global-20-ports-average
https://shipandbunker.com/prices/av/global/av-g20-global-20-ports-average
https://shipandbunker.com/prices/av/global/av-g20-global-20-ports-average
http://dx.doi.org/10.1007/s00291-003-0157-z
http://dx.doi.org/10.1109/FSKD.2018.8686901
http://dx.doi.org/10.1109/FSKD.2018.8686901
http://dx.doi.org/10.1109/FSKD.2018.8686901
http://refhub.elsevier.com/S0377-2217(24)00094-8/sb47
http://dx.doi.org/10.1016/j.trd.2017.05.002
http://dx.doi.org/10.1016/j.trd.2017.05.002
http://dx.doi.org/10.1016/j.trd.2017.05.002
http://dx.doi.org/10.1016/j.ejor.2021.03.022
http://dx.doi.org/10.1016/j.ejor.2021.03.022
http://dx.doi.org/10.1016/j.ejor.2021.03.022
http://dx.doi.org/10.1016/j.aei.2014.12.003
http://dx.doi.org/10.1016/j.aei.2014.12.003
http://dx.doi.org/10.1016/j.aei.2014.12.003
http://www.jstor.org/stable/3001968
http://dx.doi.org/10.1016/j.tre.2022.102651

	An adaptive large neighborhood search heuristic for the multi-port continuous berth allocation problem
	Introduction
	Literature review
	Problem description
	MIP formulation

	Solution method
	Construction heuristic
	Removal and insertion operators
	Shaw removal
	Time and space-relatedness removal
	Random removal
	Randomized greedy insertion
	κ-regret insertion
	Packing greedy insertion
	Arrival greedy insertion

	Acceptance criterion
	Adaptive weight adjustment
	Local search

	Computational results
	Instance generation
	Handling time
	Time windows
	Benchmark instances

	Parameter tuning
	Method performance
	Practical impact

	Conclusions
	Acknowledgments
	References

