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Abstract
This thesis presents an investigation into the dynamics of photonic crystal Fano lasers.
It combines theoretical analysis and simulations, practical application estimations,
and experimental validations to deepen our understanding of laser dynamics and
their potential applications.

Initially, the thesis revisits the fundamental concepts and steady-state properties
of Fano lasers. A new multi-section approach that includes carrier diffusion, a factor
previously unexplored in Fano laser models, is developed. We investigate the model’s
numerical stability for this approach and assess the deviations from previous models
that assumed uniform carrier distribution.

The focus then shifts to the modulation of the Fano laser’s nanocavity. Under
rapid modulation, pulses with unique waveforms are generated in Fano lasers. Uti-
lizing the concepts of Q-switching and cavity-dumping, we explain the underlying
physics and examine the characteristics of those pulses. Methods for tuning the
nanocavity’s refractive index, such as the free carrier effect and thermal effect, are ana-
lyzed. This analysis facilitates the construction of a modulated Fano laser model that
accurately predicts pulse generation phenomena, which aligns well with experimental
results. Comparisons with Fabry–Pérot lasers demonstrate the energy efficiency of
Fano lasers in pulse generation.

Expanding beyond conventional Fano lasers, we explore a new configuration fea-
turing an active external feedback cavity. This structure reveals multiple oscillation
modes, including optical bistability between Fano and Fabry–Pérot modes under spe-
cific nanocavity detuning conditions. This discovery sparks interest in utilizing feed-
back Fano lasers as flip-flop devices, potentially creating compact, energy-efficient op-
tical memories. The characteristics of flip-flop operations are investigated, showcasing
picosecond switching times and femtojoule energy consumption per bit. Preliminary
experiments on prototype feedback Fano laser samples, although not yet exhibiting
bistability, reveal multiple modes consistent with theoretical predictions. Optical-
thermal characteristics of these samples are also measured. An analytical comparison
between two coupled cavities nanolasers and waveguide-nanocavity systems highlights
our system’s stability and absence of mode oscillation.

Finally, the focus changes to the stochastic simulation of nanolasers, using a
quantum-based approach distinct from the semi-classical methods used in previous
chapters. We revisit two stochastic methods—the fixed time increment (FTI) method
and Gillespie’s first reaction method (FRM)—and compare their characteristics and
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computational efficiency. The focus is on the behavior of nanolasers in near-threshold
regions, where we successfully capture the photon burst phenomenon with quantum
dot laser configurations. We also calculate the deviations between analytical solutions
and those obtained from the two stochastic methods and analyze the photon statistics
of pulses generated during laser turn-on transients.

In summary, this thesis pushes the boundaries of understanding the nanolaser dy-
namics based on Fano resonance, exploring new configurations and operating methods,
and laying the groundwork for future photonics and optical computing innovations.
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CHAPTER1
Introduction

1.1 Semiconductor photonic crystal nanolasers in the
modern world applications

In today’s world, communication technology emerges as a cornerstone of global inter-
connectivity, driving advancements in diverse fields. The last decade has witnessed a
dramatic increase in network bandwidth demand, driven by the rise of applications
such as virtual reality, online gaming, cloud computing, and high-definition video
streaming [1]. Central to this advancement is the role of semiconductor lasers, which
have become pivotal in optical communication due to their compactness, efficiency,
and high-speed operation capabilities. As an essential component in optical commu-
nication systems, they have revolutionized how information is transmitted, offering a
blend of high bandwidth and lower energy consumption [2] crucial for modern com-
munications. The development of on-chip laser technology represents a significant ad-
vancement in this field. Semiconductor lasers have been miniaturized to fit on chips,
leading to the emergence of integrated photonic systems. These compact systems
offer enhanced speed and energy efficiency performance, which is vital for modern
data centers that consume vast amounts of electricity, mainly for data processing
and transmission needs [3]. Reducing power consumption and size are key benefits of
on-chip laser technology, addressing critical challenges in optical communication.

Photonic crystal lasers [4] represent a breakthrough in semiconductor laser tech-
nology. Known for their ability to confine light within extremely small volumes [5],
photonic crystals create unique lasing properties essential for high-performance in-
tegrated photonic devices. Their ease of integration into silicon makes them highly
desirable for both inter-chip and intra-chip optical interconnects. Research has shown
the advantages of photonic crystal lasers, such as low threshold current [6, 7], high
output power [8, 9], and low divergence angle of PhC lasers [9, 10], which lay the
foundation for establishing potential monolithic light sources for high-density optical
interconnects in future electronics [11]. The advancement of on-chip semiconductor
lasers has also positioned them as promising candidates for key roles in the fields of
all-optical computing and artificial intelligence. This integration is essential for ad-
vancing all-optical computing, where light is used for information processing, poten-
tially leading to faster and more energy-efficient computation methods by avoiding
electrical-to-optical transduction [12]. In the architecture of computer frameworks,
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one of the key aspects is memory. The laser’s bistable characteristic [13], is suitable
for binary information mapping. Moreover, in artificial intelligence, these on-chip
semiconductor lasers, particularly efficient in generating spikes, can mimic biological
neural networks through spike generation, enabling fast information processing [14].
This unique characteristic positions on-chip semiconductor lasers as powerful tools
in machine learning applications, meeting the growing need for advanced computing
technologies.

This study focuses on the dynamics of photonic crystal lasers, particularly when
a phenomenon known as ”Fano resonance” emerges within the nanometer scale struc-
tures. Exploring aspects like spike generation and bistability with lower energy con-
sumption. This research holds potential for advancing emerging computing and com-
munication technologies.

1.1.1 Development of on-chip optical memories

The principle behind optical memories is to utilize light, instead of electrical charges,
to store and retrieve binary information. This shift from electronic to photonic data
storage has numerous advantages, such as high bandwidth and low latency [15], which
are essential for high-speed data processing and communication systems. Using light
as a data medium also implies less heat generation and reduced energy consump-
tion compared to traditional electronic memories, which might solve the problem of
thermal management, which is one of the critical issues in modern computing hard-
ware [3].

The necessity of a pumping source for lasers makes them only suitable for volatile
memories. However, the bistability phenomenon (Chapter 4) that appears in lasers
allows for operation without constant refreshing and rewriting, making them appro-
priate for static random access memory (SRAM), which can operate much faster
than dynamic random access memory (DRAM). The skin effect in electrical wiring,
which causes an increase in resistance and energy consumption at higher operating
frequencies [16], is a challenge unique to electrical systems. This issue, absent in
optical systems, also serves as a limiting factor for the bandwidth of electronic RAM.
Presently, the bandwidths of state-of-the-art on-chip electronic SRAM are limited
to approximately 20 GB/s [17]. Another major advantage of optical memory over
electronic systems is the access time, limited in electronics by RC delay. State-of-
the-art high-performance electronic SRAM exhibits access times around 200 ps [18].
In contrast, laser systems have shown response times of less than 70 ps across vari-
ous platforms [19–21] (as also shown in this work). In the 2020 study, T. Alexoudi
et al. [15] provided a comprehensive comparison of access times versus energy con-
sumption per bit for both optical and electronic memory technologies (see Fig. 6(b)
in the work [15]). Optical memory has improved power efficiency from around 2
pJ/bit [19] to less than 10 fJ/bit [21] while maintaining memory access times under
100 ps, offering short access times with energy efficiency improvements. In contrast,



1.1 Semiconductor photonic crystal nanolasers in the modern world applications 3

electronic memory struggles to improve memory access times and energy efficiency
simultaneously due to increased energy and heat dissipation requirements [18].

One of the primary disadvantages of the optical system might be its integration
density. Currently, electronic SRAM has achieved a size reduction down to 0.027 µm2

with 7 nm processing technology [22], whereas most optical systems remain above 1
µm2. T. Alexoudi et al. [15] (refer to Fig. 6(a) in the work [15]) shows the evolution
of optical and electrical SRAM components in terms of footprint over the past two
decades. The early 2000s marked a key period for optical memory, driven by advances
in reliable photonic integration. The progression from larger hybrid-integrated con-
figurations using planar lightwave circuit technology [20] to compact, monolithically
integrated memory cells [23], and eventually towards sub-micrometer-scale photonic
crystal nanocavities or nanolasers [21,24], signifies a dramatic reduction in scale. This
trajectory represents a twelve-orders-of-magnitude improvement in footprint, transi-
tioning from square meter-scale bulky components [25] to today’s micro-meter-scale
integrated cells. In comparison, electronic technology evolved from a 130 nm2 pro-
cessing node [26] to a 7 nm2 node [22] during the same period, shrinking SRAM cell
size by three orders of magnitude. The advancement in optical memory technology
has been more pronounced and rapid compared to its electronic counterpart.

1.1.2 On-chip lasers in photonic neuromorphic computing

The traditional centralized processing architecture of computers, characterized by a
central processor and separate memory units, is not optimal for managing distributed,
massively parallel, and adaptive computational models. These types of models are
particularly prevalent in neuromorphic computing within artificial intelligence (AI),
which aims to mimic the network structure of the human brain [14]. Neuromorphic
computing, which often requires a hierarchical processing structure and recurrent
networks for tasks like image and language processing [14], demands the signals to
travel relatively longer distances for distributed information processing. Photonic
waveguides present an ideal solution due to the distinct advantage over their electronic
counterparts, as they have lower attenuation and do not suffer from heat generation
or signal distortion issues [27], such as the skin effect, as previously mentioned.

On-chip lasers are crucial in this framework as they can not only be seamlessly
integrated with waveguides to construct photonic neural networks but also can act
as neurons. These photonic neurons are designed to handle multiple optical inputs,
implement a nonlinear operation, and generate an optical output to activate other
photonic neurons. Lasers provide the requisite nonlinear response for neuron-like
processing. Spike neurons, a common category in neuromorphic computing [14], are
designed to produce spiky output only when the input exceeds a specific threshold,
similar to the way lasers generate pulses through modulation. Traditional methods
of laser pulse generation typically involve using an external modulator to modulate a
continuous-wave laser signal [28], or altering the laser gain around the lasing threshold
[29]. The former approach tends to occupy a substantial footprint, while the latter
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requires excessive energy, hindering the capability to drive other photonic neurons
(cascadability) and energy efficiency. Consequently, developing on-chip lasers with
compact modulators and energy-efficient modulation methods, as presented in this
work (Chapter 3), becomes essential. This study could lead to the development of
more efficient, scalable, and powerful photonic-based neural network architectures,
potentially transforming AI computing and related fields.

1.2 Overview of the thesis

This work’s primary goal is to explore nanolaser dynamics based on Fano resonance.
Theoretical models of Fano lasers have been extensively developed over the past
decade, encompassing aspects such as lasing mode [30], modulation response [30–32],
self-pulsing mechanism [33], and stability under weak feedback [34, 35]. Correspond-
ing experimental studies have also been conducted, including demonstrations of self-
pulsing [36] and linewidth measurement [37]. This work seeks to extend the frontiers
of this field further.

Chapter 2 introduces the fundamental concept of the Fano laser. It starts with
the temporal coupled mode theory, forming the basis for deriving the formulae for
reflection and transmission of the Fano mirror and steady-state lasing conditions.
Extending from conventional semiconductor equations, small perturbation dynamics
rate equations and iterative dynamics rate equations for Fano lasers are derived. An
improved multi-section model that accounts for carrier diffusion is proposed. The
effects of the number of sections and diffusion rate on calculation results and stability
are examined, along with comparisons between various models.

Chapter 3, based on the published work ”Cavity dumping using a microscopic
Fano laser” [38], where I contributed as the second author alongside G. Dong in
experimental work. This chapter explores two laser pulse generation mechanisms: Q-
switching and cavity dumping. These mechanisms are later observed in Fano lasers
with fast modulation of the nanocavity frequency. Different modulation mechanisms,
such as the free carrier effect and thermal effect, are illustrated. This chapter esti-
mates the static and dynamic frequency shifts of nanocavities and simulates the Fano
lasers’ response, observing and analyzing pulse generation characteristics. The exper-
imental details of pulse generation and comparisons with conventional Fabry–Pérot
lasers using gain tuning are presented.

Chapter 4 investigates Fano lasers with an active external feedback cavity. Equa-
tions for feedback Fano lasers and their lasing conditions are derived, revealing the
emergency of multiple lasing modes. This chapter thoroughly investigates these
modes, examining their responses to tuning the nanocavity frequency and explor-
ing variations under different feedback strengths and external cavity lengths. The
multi-section model from Chapter 2 is extended to feedback Fano lasers for numeri-
cal simulations, where bistability is observed. This chapter also demonstrates flip-flop
functionality in a feedback Fano laser with modulated pulses, examining triggering
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conditions for mode switching and analyzing their relation with modulation pulse
characteristics. The energy costs associated with photonic crystal nanocavity struc-
tures are estimated. Finally, experimental measurements on feedback Fano lasers are
presented and compared with the outcomes from the numerical models.

Chapter 5 shifts focus to the stochastic simulation of semiconductor lasers, a rel-
evant topic as quantum properties become important in nanolasers with low carrier
and photon numbers. In this chapter, we employ a method that contrasts with the
semi-classical models used previously, instead presenting a purely quantum model.
It introduces two stochastic simulation methods: fixed time increment (FTI) and
Gillespie’s first reaction method (FRM), comparing their principles and computa-
tional efficiencies. The dynamics near the lasing threshold are explored, reproducing
a ”photon burst” phenomenon reported earlier [39]. Subsequently, the turn-on tran-
sient dynamics and their associated photon statistical properties are analyzed. The
chapter concludes by comparing FTI and FRM with analytic models of nanolasers in
the near-threshold region.
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CHAPTER2
Fano lasers

2.1 Introduction

Semiconductor integrated circuit fabrication techniques have significantly improved
over the past two decades. With these improvements, it is now feasible to construct
high-quality factor nanocavities (NC) with discrete modes on a chip. One innovative
approach involves coupling the NC to a waveguide (WG), allowing the resonance of
the discrete NC mode to interact with the continuum of modes of the WG. This
unique interplay between discrete and continuous states was first conceptualized in
atomic physics by Ugo Fano, who explained the appearance of asymmetric resonance
lineshapes, now recognized as Fano resonances [40].

Optical WGs for on-chip photonic platforms are conventionally realized using sili-
con wire structures [41]. An alternative approach is using line-defect structures within
photonic crystals (PhCs). This article delves deeper into the system based on the PhC
structure, with further details to be discussed in Subsection 3.5.2. When considering
optical cavities, introducing hole defects into PhC structures creates nanometer-scale
cavities where light can form standing waves inside. These cavities can be positioned
adjacent to the WGs, as depicted in Figure 2.1. In those structures, a portion of
the light field traveling through the WG can couple into the NC. The light then out-
couples from the NC with a phase shift, interfering with the original wave propagating
through the WG [42]. By meticulously tuning this phase shift, which is characterized
by a parameter q in the Fano formula [43], one can modulate reflection and trans-

Figure 2.1. Schematic of a line-defected waveguide (WG) and a hole-defected nanocavity
(NC) in a photonic crystal. The red arrows indicate the direction of light propagation.
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mission as functions of the detuning between light mode and the NC’s frequency,
giving rise to the distinctive Fano resonance lineshape, as shown in Figure 2.2(a).
The frequency-dependent characteristics exhibited by this resonance, especially its
narrow linewidth, can effectively serve as an optical latch to control light transmis-
sion by slightly shifting the Fano resonance spectrum. Such features have paved the
way for observing diverse phenomena and exploring potential applications, notably
in optical filters and switches [42]. Figure 2.2(b) and (c) show an example of a Fano-
based optical switch. By introducing the parameter q [43], a substantial contrast can
be achieved between the low and high transmission points of the spectrum within a
narrow detuning range. When an external pump excites the NC, the resonance under-
goes a shift (due to carrier-induced nonlinear dynamics, which will be elaborated in
section 3.3.1). As a result, the light traveling inside the WG (denoted as a probe light
in Figure 2.2(b)), initially at a low transmission level, shifts to a high transmission
state and passes through the switch.

Another intriguing concept emerging from this field is utilizing this frequency-
dependent mirror to create a laser called a Fano laser [30, 44]. A schematic of a
Fano laser can be seen in Figure 2.3. Its design includes a waveguide (WG) with
one open end adjacent to a nanocavity (NC). At the closed end, there is a broadband
mirror, which can be implemented using various techniques such as a Dielectric Bragg
Reflector (DBR) [45,46], a metallic mirror [47], or even a photonic crystal bandgap [5].
On the opposite end, where the coupling takes place, a Fano mirror is formed. The
laser cavity is thus defined by the space enclosed by the broadband mirror and the
Fano mirror within the WG. By introducing active material into the WG, the optical
field can attain gain, allowing amplification to achieve lasing.

Due to this frequency-dependent mirror, Fano lasers exhibit characteristics that
differ from traditional Fabry–Pérot (FP) lasers [30, 44]. A primary distinction from
FP lasers is that, for effective lasing in Fano lasers, the WG length must be carefully
selected to ensure the longitudinal mode frequency aligns closely with the resonance
frequency of the NC. This results in the laser cavity’s quality factor (Q-factor) being
influenced by the cavity length, as illustrated in Figure 2.4(a) [44]. Another notable
trait of Fano lasers is that, as the lasing mode is established, most of the optical
field becomes localized within the NC, depicted in Figure 2.4(b) [37]. The laser’s
emitted field can exit not only through the right side of the main WG (Through-
port (TP) shown in Figure 2.3); it also disperses vertically from the NC or another
ancillary WG coupled to the opposite side of the NC (Cross-port (CP) shown in
Figure 2.3). Additionally, this field concentration within the NC leads to diminished
overlap between the optical field and the active materials. This lessens the impact
of random phase fluctuations stemming from spontaneous emission, resulting in a
narrower linewidth for Fano lasers [37].

The intensity concentration in the NC paves the way for efficient laser modulation.
A modest optical power or electrical current can effectively shift the NC’s refractive
index [48]. This capability allows for the generation of pulses through cavity dumping
and Q-switching [38] (as discussed in Section 3.2) with minimal energy consumption.
Additionally, Fano lasers are theoretically predicted to have remarkable modulation
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Figure 2.2. (a) Transmission spectrum of Fano resonance, where q is the asymmetry
parameter. (b) Measured transmission spectrum of the Fano-based optical switch. The probe
light’s wavelength is initially positioned at the lowest transmission point and transitions to
the highest point upon injection of the pump light. Reprinted from [42]. (c) Normalized
electric field distribution, computed using 3D-FDTD, at both the highest and lowest points
of transmission. Reprinted from [42].

speeds [31,32]. Figure 2.5(a) depicts the modulation response to the nanocavity reso-
nance frequency. When the external modulation frequency is below both the mirror’s
linewidth (γT ) and the laser’s round-trip time (γL), Fano lasers’ lasing frequency can
effectively track the changes of NC detuning. As a result, outputs from both TP and
CP exhibit a pronounced frequency modulation response and show the resonance at
the relaxation oscillation (RO) frequency. Conversely, when the external modulation
frequency surpasses the mirror’s linewidth and inverse of the laser’s round-trip time,
the response of Fano lasers gradually increases to unity instead of diminishing [32,44].
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Figure 2.3. Schematic of a Fano laser implemented in a photonic crystal slab. A nanocavity
(NC) is side-coupled to a waveguide (WG), forming a Fano mirror and creating a laser cavity
in conjunction with a left mirror. The through-port is the port from which the light is out
coupled from the main WG. An ancillary WG can be coupled to the opposite side of the
NC, being the cross-port. Red arrows indicate the direction and flow of light fields.

This occurs because the field inside the NC can change with the external modula-
tion frequencies via adiabatic frequency conversion [49]. Such features could enable
the response time of lasers to reach the femtosecond scale [44], significantly surpass-
ing the 60 GHz seen in today’s best-performing lasers [50]. Conversely, at reduced
modulation frequencies, Fano lasers exhibit additional damping [32]. This behavior
arises from the filtering properties of the Fano mirror, enhancing the threshold for
critical feedback and bolstering resistance against instability [34]. The Fano mirror
can act as a saturable absorber when accounting for an active NC. Within the NC,
carriers undergo excitation and depletion, leading to cyclical increases and decreases
in reflectivity [33]. This dynamic results in Q-switching and subsequent self-pulsing.
Simulations have demonstrated the emission of a GHz repetition-rate pulse train with
pulsewidth on the order of picoseconds, as depicted in Figure 2.5(b) and (c).

2.2 Modeling of Fano lasers

2.2.1 Semiconductor nanolaser rate equations
Semiconductors utilize the recombination of electrons and holes within the active
region to produce photons. Semiconductor laser rate equations present a different
case than atomic laser systems, where the carrier lifetime is substantially shorter than
the photon lifetime, allowing for the adiabatic elimination of carrier and polarization
variations in laser rate equations. In semiconductor lasers, carrier lifetime is almost in
the same order as photon lifetime, placing them in the category of class B lasers [51],
necessitating using two variables to describe lasers’ behavior.
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Figure 2.4. (a) Variation of the Quality factor (Q-factor) with Fano laser cavity length.
The upper panel is the long-range variation. The lower panel is a detailed view of one
specific mode. Reprinted from [44]. (b) Calculated electric field intensity profile of a Fano
laser, illustrating a high intensity within the nanocavity. The white dashed lines indicate
the nanocavity (upper square) and the waveguide (lower rectangle). Reprinted from [37].

For standard single-mode semiconductor lasers, the dynamics can be described by
two coupled nonlinear equations that account for the dynamics of carrier density N
and the photon density Np [52]:

dN

dt
= Rp − N

τc
− vggNp (2.1)

dNp

dt
= ΓvggNp + ΓβRsp − Np

τp
(2.2)

Here Rp is the pumping rate, and τc is the carrier lifetime. The group velocity is given
by vg = c/ng, where c is the speed of light in vacuum, and ng is the group index,
Additionally, g is the optical gain. The confinement factor, Γ = Va/Vp, is defined
as the ratio of the active material region volume Va to the overall mode volume
Vp = AL, where A is the cross-section of the WG mode and L is the length of the
optical cavity. The spontaneous emission factor, β, is the proportion of spontaneous
photons that enter the lasing mode. The spontaneous emission rate is given by Rsp,
and τp is the photon lifetime. In subsequent calculations, we will ignore spontaneous
emission unless explicitly stated, given our concentration on the behavior above the
lasing threshold. Spontaneous emission minimally influences the dynamics above the
threshold, where stimulated emission dominates the lasing mode.
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Figure 2.5. (a) Frequency response (FM) (black) and modulation index (blue) with respect
to the nanocavity resonance frequency. The FM response is the maximum excursion of the
optical frequency, normalized to the modulation amplitude ϵγT . The modulation index is
the maximum power amplitude normalized to the steady-state power output. Reprinted
from [44]. (b) Phase diagram of Fano laser output as determined by pump current and
nanocavity frequency. In the gray region, the laser operates below the threshold. In the
blue region, the output is a continuous wave, while in the yellow region, the output exhibits
self-pulsing. The dashed black line shows the boundary of the self-pulsing regime predicted
by stability analysis. Reprinted from [33]. (c) Temporal variation of the output power and
carrier density of Fano laser in the self-pulsing state. Reprinted from [33].

In principle, the optical gain function g(ω,N) is a function of mode frequency
and carrier density. Here, assuming the cavity mode bandwidth is much narrower
than the gain function profile, g can be approximated solely relying on N . For bulk
material, when N is not too large and the effects of gain compression can be ignored,
g can be further approximated as a linear function: g ≈ g(N) = gn(N − N0). Here,
N0 is transparency carrier density, the neutral point where neither gain nor lose as
light passes through. gn is the differential gain coefficient.

The carrier lifetime τc encompasses the combined effects of spontaneous emission
and non-radiative decay mechanisms such as interactions with lattice defects and
Auger recombination [53], which can be expressed as the relation: 1/τc = 1/τsp+1/τnr

[52]. The photon lifetime τp is determined by the internal absorption loss within the
cavity αi as well as the losses resulting from transmission at the cavity’s mirrors αm,
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which can be expressed as [52]:

1
τp

= vg(αm + αi) = vg

2L
ln
(

1
|rL|2|rR|2

)
+ vgαi (2.3)

Here, the coefficients rL and rR are the reflection coefficients of the left-hand side
(LHS) and right-hand side (RHS) mirrors, respectively.

According to Equations 2.1 and 2.2, the carrier density in the semiconductor laser
increases due to pumping but decreases because of non-radiative recombination and
stimulated emission. This stimulated emission, in turn, raises the photon population.
However, the number of photons also decreases due to cavity loss. The energy in
the semiconductor laser therefore oscillates between these two reservoirs, eventually
reaching an equilibrium (if a stable state exists), as demonstrated in Figure 2.6 (all
the simulation parameters used in this chapter are listed in Table 2.1, unless specified
otherwise). Above the threshold, in a steady state, the carrier density N remains
clamped at a constant value irrespective of the pumping level. This constant value is
the threshold carrier density Nth that balances optical gain and cavity loss.

Figure 2.6. Example of turn-on transients of photon density (upper panel) and carrier
density (lower panel) in a semiconductor laser. The carrier density clamped at its threshold
value. The pumping rate used is Rp = 4 × 1031 s−1, and the reflectivity of the right-hand
side mirrors is |rR| = 0.95.

2.2.2 Temporal coupled-mode theory and Fano mirror
The temporal coupled-mode theory (CMT) [54] describes the dynamics of a field
coupled with a cavity. This is especially relevant for Fano lasers, composed of a
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WG coupled to an NC, as shown in Figure 2.7. Considering a single-mode WG side
connected to an NC. The field propagating inside the WG can couple between WG
and NC via either the left or the right ports. These two ports are assumed to have
equivalent coupling rate γc, as shown in Figure 2.7. The CMT equation can be written
as [30]:

dAc

dt
= −(iδ(ω) + γt)Ac + √

γce
iθ1S+

L (2.4)

S−
L = rBS

+
L + √

γce
iθ1Ac (2.5)

S−
R = −itBS+

L + √
γce

iθ2Ac (2.6)

Here, Ac is the amplitude of the field inside the NC, while S+(−)
L(R) is the amplitude

of the propagating wave at the termination plane of the WG beneath the NC. The
subscript L(R) refers to the position at LHS (RHS) of the WG, with the superscript
+(−) indicating the inward(outward) direction with respect to the NC. The term
δ(ω) = ωc − ω is the detuning between the mode and the NC resonance frequency
ωc. Additionally, γt is the total decay rate of the NC, whereas γc is the coupling rate
between the NC and the WG. For an NC, besides the coupling decay, other decay
channels also exist. These include vertical out-coupling, characterized by the rate γv,
and intrinsic loss, characterized by the rate γi (the intrinsic loss rate encompasses
decay not directed into the WG mode, such as absorption and in-plane losses.). This
leads us to γt = γc + γv + γi . Using the quality factor (Q-factor) as Qx = ω/(2γx),
we can also have the relation: 1/Qt = 1/Qc + 1/Qv + 1/Qi.

Figure 2.7. Schematic of a Fano laser and the variables used in the temporal coupled-mode
theory.

The parameter θ1(2) defines the coupling phase between the fields S1(2) and the
NC. A partially transmitting element (PTE) within the WG is typically positioned
near the NC, often realized with a hole defect [42]. This PTE introduces a partial
reflection surface, influences the coupling phase, and subsequently modifies the Fano
lineshape. The coefficients associated with the reflection and transmission of the PTE
are represented by rB and tB , respectively. By using energy conservation and time-
reversal symmetry [55], we can derive a relationship between the coupling phase and
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the coefficients of the PTE [42]:

ei(θ1−θ2) = 1
itB

(
ei2θ1 + rB

)
(2.7)

and
cos (2θ1) = −rB (2.8)

From the above formulations, it becomes evident that in the absence of the PTE, θ1
and θ2 assume a value of π/4. By redefining our reference plane such that eiθ1Ac

transforms to Ac, we can eliminate θ in CMT equations by introducing a factor of
i before S+

L in Equation 2.4. Note that there is also a factor of i between S−
R and

S+
L in Equation 2.6, suggesting that the optical path spanning the coupling region

contributes an additional phase shift of π/2.
Upon achieving a steady state in the system (where da/dt = 0), and under the

assumption of negligible intrinsic loss, the reflection and transmission coefficients
of the Fano mirror can be derived as rF (ω) = SL

−/SL
+ and tF (ω) = SR

−/SL
+

respectively. This leads us to the following expressions [30]:

rF (ω) = iγc

iδ(ω) + γt
(2.9)

tF (ω) = δ(ω) − iγv

iδ(ω) + γt
(2.10)

These equations define the Fano mirror’s behavior. As demonstrated in Figure 2.8(a),
the reflectance, |rF (ω)|2 and the phase, Arg[rF (ω)] of the Fano mirror is a function of
ω. The Fano mirror exhibits a Lorentzian lineshape in reflection with its bandwidth
dictated by γt. When the mode frequency resonates with the NC, where δ(ω) = 0, the
reflectance reaches its peak value and imposes a π/2 phase shift in the field. Figure
2.8(b) demonstrates the corresponding transmittance and phase. Note that when the
mode frequency is far detuned, the Fano mirror becomes transparent, causing the
transmitted field to undergo a −π/2 phase shift, as described in Equation 2.6.

At first glance, one might assume that the dynamics of a Fano laser can be cap-
tured by merely replacing the reflectivity of a conventional broadband mirror with
that of a Fano mirror at the laser oscillation frequency in the FP laser equations. How-
ever, given the frequency-dependent characteristics of the Fano mirror, the reflectance
and phase are not static. They fluctuate over time until the lasing frequency stabi-
lizes. This introduces complexity as the photon number cannot be represented by
Equation 2.2, given that the photon’s lifetime is also a time-dependent function. A
feasible strategy to tackle this problem is first solving the steady-state solution for the
lasing conditions. After that, one could implement a small perturbation expansion to
study the dynamics around this equilibrium.

The steady-state solution of Fano lasers can be obtained by solving the lasing
oscillation conditions (OC), which are the criteria for phase-matching and gain-loss
balance [30]:

Arg[rL] +Arg[rF (ωs)] + 2L
vg
ωs = 2mπ (2.11)
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Figure 2.8. Frequency dependence of the (a) reflectance and (b) transmittance (blue lines),
and their corresponding phase (red lines) of the Fano mirror as a function of detuning.

Γgn(Ns −N0) = 1
2L

ln
(

1
|rL|2|rF (ω)|2

)
+ αi (2.12)

Here, ωs and Ns represent the steady-state mode frequency and carrier density, re-
spectively. As N is clamped when the laser surpasses the lasing threshold, Ns is
concurrently defined as the threshold carrier density. The integer m signifies differ-
ent longitudinal modes. Figure 2.9(a) shows how Ns and ωs evolve with L for various
longitudinal modes. When ωs match the WG round-trip 2mπ phase shift and per-
fectly align with the NC frequency ωc, the field perceives the maximal reflectance
from the Fano mirror, resulting in minimized cavity mirror loss, corresponding to
the lowest threshold point in the figure. Near these specific cavity lengths, ωs ex-
hibits a flat region insensitive to cavity length variations. This ”frequency pinned”
phenomenon starkly contrasts with the behavior of FP lasers, a distinction further
highlighted by experimental measurements in Figure 2.9(b).

2.3 Numerical simulations of Fano lasers

2.3.1 Ordinary differential equation (ODE) approach

As mentioned in the last section, it is possible to expand the laser oscillation conditions
around their steady-state solutions to derive small perturbation equations [30]. We
can express the complex wavenumber k(ω,N) as:

k(ω,N) = n

c
ω − i

2
(Γgn(N −N0) − αi) (2.13)
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Figure 2.9. (a) Steady-state carrier density (blue lines) and mode frequency (red lines) as
functions of cavity length for multiple longitudinal modes.(b) Experimental measurement of
Fano laser modes wavelength relative to cavity length, compared with a Fabry–Pérot (FP)
laser, M1–M7 denote the mode order. Reprinted from [44].

When no nonlinear effects are present, the refractive index n remains constant, and
k can be expanded near the point (ωs, Ns):

k(ω,N) ≈ k(ωs, Ns) + ∂k

∂ω
(ω − ωs) + ∂k

∂N
(N −Ns)

= k(ωs, Ns) + n

c
(ω − ωs) − i

2
Γgn(N −Ns)

(2.14)

At the steady state, the spectral density of the propagating field E+(−)(ω) is governed
by the following relations:

E+(ω) = rL exp (i2k(ω,N)L)E−(ω) (2.15)

E−(ω) = rF (ω)E+(ω) (2.16)
From these, we can deduce:

1
rL

exp (−i2k(ω,N)L) = rF (ω) (2.17)

Substituting Equation 2.14 into 2.15, we have:
E−(ω) = rF (ωs)E+(ω)

≈ rF (ωs)
(

1 − LΓgn(N −Ns) − i
2nL
c

(ω − ωs)
)
E+(ω)

(2.18)

Applying the Fourier transform converts the term −i(ω − ωs)E+(ω) into dS+
L (t)/dt.

Equation 2.18 then becomes:
dS+

L (t)
dt

= c

2nL
(LΓgn(N −Ns) − 1)S+

L (t) + c

2nL
1

rF (ωs)
S−

L (t) (2.19)
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Furthermore, to establish a link between NP and S+
L , we introduce the parameter σs,

which is the ratio of total photon number to the field intensity. At steady-state, it
takes the form [36,56]:

σs = 2ϵ0nng

ℏωs

(
(|rL| + |rF (ωs)|)(1 − |rL||rF (ωs)|)

(Γg − αi)|rL|
+ c

nωs

|rL|
|rF (ωs)|

Im (rF (ωs))
)

(2.20)
with the relation Np = σs|S+

L |2/Vp. In conjunction with Equation 2.19, 2.5, and 2.1,
there is a set of three equations for three variables S+

L , Ac, and N to solve for Fano
laser dynamics.

2.3.2 Iterative approach with fixed time steps
The ODE approach, based on small perturbations around the steady state, inherently
comes with a limitation when dealing with the laser dynamic involved in the large
signal response. An alternative strategy to circumvent this problem is to adopt iter-
ative approaches. Assuming the field behaves like a plane wave propagating within
the WG, the following relationship can be set:

SL
+(t+ τrt) = rLSL

−(t) exp (i2k (ω(t), N(t))L) (2.21)

and
SL

−(t) = √
γcAc(t) (2.22)

Here, τrt = 2L/vg is the round-trip time of the laser cavity, used as the iteration time
step.

There are several methods to convert ODEs into time difference equations (TDEs).
Here, we use the straightforward Euler method, transforming the derivative term into
a finite difference by dx/dt = (xn+1 − xn)/τ [57]. Given this, Equations 2.1 and 2.4
become:

N(t+ τrt) = N(t) + τrt

(
Rp − N(t)

τc
− vggn (N(t) −N0) σs|SL

+|2

Vp

)
(2.23)

Ac(t+ τrt) = Ac(t) + τrt

(
− (iδ(ω) + γt)Ac(t) + i

√
γcSL

+(t)
)

(2.24)
Given that this model considers only a single spatial section, we use the term ”Single-
section Euler method” (S-E) in the later content.

For more accurate results, one can directly integrate Equations 2.1 and 2.4 to
obtain a more precise finite difference formulation. If the time step is sufficiently
small compared to the system’s evolution, we can assume that S+

L (t) does not vary
significantly and can thus be approximated as constant within a single time step.
Equations 2.4 and 2.1 then adopt the form dx(t)/dt = −ax(t) + b, which has the
solution x(t+ τ) = b

a +
(
x(t) − b

a

)
e−aτ . This gives us:

Ac (t+ τrt) =
(
Ac (t) − Cb

Ca

)
exp (−Caτrt) + Cb

Ca
(2.25)
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where

Ca = iδ (ω) + γt

Cb = i
√
γcS

+
L (t)

(2.26)

Similarly, for the carrier density equation:

N (t+ τrt) = (N (t) − Cd) exp
(

−
(

1
τc

+ Cn

)
τrt

)
+ Cd (2.27)

where

Cn = vggn
σs|S+

L (t) |2

Vp

Cd = Rp + CnN0
1
τc

+ Cn

(2.28)

This ”Single-section integration method” (S-I) is expected to exhibit superior accuracy
and numerical stability compared to the previous S-E method.

2.3.3 Multi-section approach
In the iterative method detailed in subsection 2.3.2, the computation is based solely
on a specific site in the WG located directly below the NC, and the carrier density
is presumed to be uniform across the WG. Challenges arise when the pump is non-
uniform (as detailed in Chapter 4) or when the diffusion of the carrier density becomes
essential. Such scenarios can lead to non-uniform carrier density and field distribution.
Another limitation of the single-site iterative model is its time step. The value at that
specific site can only be updated when the field completes one round trip within the
lasing cavity. As a result, the time step cannot be arbitrarily chosen; instead, it
must correspond to the round-trip time, which is dictated by the cavity length. This
constraint becomes an issue when modeling the rapid dynamic shifts of a system
where the time scale is less than τrt, compromising the resolution of the dynamics.

To overcome these problems, one solution is to divide the WG into multiple sec-
tions. We divide the WG into M sections with each section boundary defined as a
site. The multi-section model is illustrated in Figure2.10. From the LHS mirror to
the NC, the mth site is denoted as m = 1, 2...M , The last site, M + 1 below the
NC, is equal to the subscript L used before. Fields and carrier densities at each site
are represented as Sm(t) and Nm(t), respectively. Consequently, the propagation
equation 2.21 becomes:

S+
m (t+ τd) =


rLS

−
1 (t+ τd)

(m= 1)
S+

m−1 (t) exp (ik (ω,Nm−1(t)) vgτd)
(2 ≤ m ≤ M + 1)

(2.29)
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S−
m (t+ τd) =


S−

m+1 (t) exp (ik (ω,Nm+1(t)) vgτd)
(1 ≤ m ≤ M)√
γcAc(t+ τd)

(m = M + 1)

(2.30)

where τd = d/vg is the time taken to traverse a section of length d. For Nm, the
equation is:

Nm (t+ τd) = (Nm (t) − Cd) exp
(

−
(

1
τc

+ Cn

)
τd

)
+ Cd (2.31)

The coefficients are:

Cn = vggn

σ0
(∣∣S+

m (t) |2+
∣∣S−

m (t) |2
)
d

Vd

Cd = Rp + CnN0
1
τc

+ Cn

(2.32)

Here, σ0 = 2ϵ0nng/(ℏωs) is the prefactor of the photon number-amplitude parameter
in Equation 2.20. Vd = (d/L)Vp is the section mode volume. This ”multi-section
method” (MS) presumes Sm and Nm are uniformly distributed within each section.

Figure 2.10. Schematic of the multi-section model. The WG is divided into M sections.
The light yellow region represents the gain material.

The MS approach provides an approach to incorporate the effects of carrier dif-
fusion. The diffusion effect on N can be described by the diffusion term D∇2Nm.
Utilizing the forward Euler scheme, this can be translated into its finite difference
representation:

D∇2Nm → D
Nm+1 − 2Nm +Nm−1

d2 (2.33)

Here, D represents the diffusion coefficient. With this representation, we can modify
Equation 2.31 and 2.32 as follows:

Nm (t+ τd) = (Nm (t) − Cd) exp
(

−
(

1
τc

+ Cn +D′
)
τd

)
+ Cd (2.34)
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Cd =
Rp + CnN0 + D

d2 (Nm+1(t) +Nm−1(t))
1
τc

+ Cn +D′ (2.35)

In this context, D′ = 2D/d2; it should be noted that at positions m = 1 and M + 1,
D′ becomes D/d2 since we assume the active material is located only within the laser
cavity (i.e. not in the side-coupled cavity), resulting in diffusion from only one side
at sites 1 and M + 1.

When the diffusion rate of carriers is sufficiently large, allowing carriers to spread
across the WG within their effective lifetime (i.e.,

√
Dτeff ≥ L1), the distribution of

carriers is nearly homogeneous (if the field inside the WG is absent). We can therefore
define Duni = L2

1/τeff as the criterion that carriers are able to spread throughout
the entire WG. Here, the effective lifetime is defined as:

1
τeff

= 1
τc

+ vggnNp (2.36)

This accounts for both recombination and stimulated emission effects. At steady state,
setting the derivative dN/dt = 0 in Equation 2.1, we can establish a relationship
between τeff and Rp:

τeff =
(

Ns −N0

RP τc −N0

)
τc (2.37)

However, in the finite difference method, the diffusion length within a single time step
τd can not exceed the section length d. This leads to the requirement D ≤ Dlim =
d2/(2τd). Exceeding this limit may lead to numerical instabilities, as discussed in [58].

Figure 2.11 displays the contour plot illustrating the numerical stability as a func-
tion of the number of sections M and the normalized pumping rate Rp/Rth. Here,
Rth = Ns/τc is the threshold pumping rate. The blue line outlines the condition
where Duni = Dlim. Below this line, it is safe to assume a sufficiently high diffusion
rate that carriers can diffuse throughout the entire WG within its effective lifetime
and still maintain the stability of the MS method. As seen, for a lower pump rate, a
finer resolution is achievable. However, at higher pump rates, the effective lifetime
is shortened. To assume a uniform distribution of carriers, a higher diffusion rate
setting is required. This setting could potentially result in stability issues in the MS
method.

The computational time and data storage requirements as functions of M are
depicted in Figure 2.12(a). Here, we model a Fano laser with D = Dlim, setting the
total simulation duration to 1.5ns. Both computational time and data storage demand
show an exponential increase with M . As M increases to 70, the storage memory
requirement has already escalated to 3.6GB. This highlights the substantial storage
demands associated with larger M . Nonetheless, one might not necessarily require
such a high M . To explore the impact of M , Figure 2.12(b) presents the temporal
variation of N1(t) and the steady-state Ns of m = 1 and M + 1 with increasing M .
The growth rate of N and the final Ns appear to converge as M increases. As seen, Ns

stabilizes once M exceeds 10 sections. Note that the steady-state solutions computed
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Figure 2.11. Contour plot illustrating numerical stability in relation to the number of
sections M and the normalized pumping rate Rp/Rth. The blue line indicates the condition
Duni = Dlim. The region below the blue line is stable (light green), while the region above
the blue line is unstable (light yellow).

via the MS method exhibit a deviation from the OC solutions. This discrepancy stems
from the MS method’s ability to account for the non-uniform field distribution within
the WG. As a result, Ns values at the LHS end (N1) differ from those at the RHS
end (NM+1), as illustrated in Figure2.12(c). The OC solutions, calculated assuming
all carriers are excited by the mean field and uniformly distributed throughout the
WG, have solutions between these two outcomes and fail to capture this feature.

In the investigation of howD affects computational outcomes, Figure 2.13 displays
the relative deviations ∆X (X : N,ENC) of the computed values from the oscillation
condition (OC) solutions. In subfigures (a) and (b), as D increases, ∆ENC exhibits a
decreasing trend. This decrease becomes less pronounced once D surpasses Duni. In
(c), ∆N demonstrates a decreasing trend for NM+1 while it shows the opposite for
N1. As D increases, these curves approach each other. This suggests a diminishing
difference in N between the WG’s two ends at high diffusion rates.

Notably, when D = Dlim (red dashed lines in Figure 2.13), ∆ENC has its value
at approximately 5.7%, which contrasts with the relatively smaller 1.13% observed in
∆N . This discrepancy can be attributed to the properties of the Fano laser, where
the field intensity is stronger in the NC compared to the WG. The difference in field
strength increases the deviation from the homogeneous model at the WG’s right end
relative to its left end. Given that NC is positioned at the right end, ENC deviates
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Figure 2.12. (a) Computational time (blue line) and required memories (red line) against
section number M , with a fixed simulation duration of 1.5ns. (b) Carrier density against M .
The upper black line denotes NM+1, and the lower black line denotes N1. The central red
dashed line is the oscillation condition solution, which assumes a uniform carrier distribution.
(c) Spatial carrier density distribution along the WG (blue line) with the starting point
positioned at the left mirror. The red dashed line is the OC solution. The pumping rate
used is Rp = 3Rth.

more from the OC solutions (the relative deviation of output power ∆Pout shows the
same trend as ∆ENC , as evidenced in the SM). The greater deviation in ∆NM+1
compared to ∆N1 further supports this interpretation.

Considering realistic diffusion rates, the uppermost limit for D in InGaAsP is
6.027 × 10−4 m2/s [59] (a rate we will refer to as Dreal). At this rate, deviations in
∆ENC can amount to 20%. Conversely, owing to the threshold-clamping phenomenon,
∆N remains relatively modest, only around 1.8% for NM+1 and 1.1% for N1.

Turning to the case with NC detuning, depicted in subfigures (d), (e), and (f),
we used an NC detuning value of ∆ωc = 3γt. This can be done in an experiment
by adjusting the refractive index of the NC (detailed further in Section 3.3). The
introduction of this NC detuning causes a shift in the lasing frequency, accompanied
by an effective detuning, which in turn lowers the reflectance of the Fano mirror.
Here, the Fano mirror’s reflectance drops to around rF = 0.8, which is lower than the
left mirror. This leads to reduced power in the NC, making the intensity relatively
more uniform than in the zero NC detuning scenario. Consequently, at Dreal, ∆ENC

reduces to roughly 9%. Interestingly, the results indicate that under finite NC detun-
ing, the homogeneous carrier approximation can be more reliable than under zero NC
detuning, especially when evaluating output power from the NC or the Fano mirror
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output port.

Figure 2.13. Relative deviation ∆X between multi-section approach and lasing oscillation
condition solutions as a function of the diffusion coefficient D over a range from 0 to Dlim

for the pumping rate R = 3Rth. (a) Deviation of nanocavity energy ∆ENC . (b) Deviation
of carrier density ∆N with the yellow line representing NM+1 and the blue line representing
N1. (c) and (d) are scenarios when NC detuning is ∆ωc = 3γt. Insets in each subfigure
provide zoom-in views for D ranging from 0 to 10−3 m2/s. Red dashed lines mark Duni.
Green dashed lines mark Dreal.

2.3.4 Comparison between various approaches
Figure 2.14 shows the temporal variations of N(t) and |Ac(t)|2 simulated using the or-
dinary differential equation (ODE), the single-section Euler method (S-E), the single-
section integration method (S-I), and the multi-section method either with the small
value realistic diffusion coefficient (MS, Dreal) or with the large limit-value diffusion
coefficient (MS, Dlim), considering no NC detuning and assuming Rp = 3Rth. As dis-
played in Figure 2.14(a), all methods exhibit similar RO frequencies and decay rates
and converge to a similar steady-state value. However, distinctions between (MS,
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Dlim) and the other approaches arise when examining the turn-on delay τDL. The
ODE, S-E, S-I, and (MS, Dreal) approaches align well with the theoretical turn-on
delay for semiconductor lasers [52]. The delay is measured from the moment the laser
is turned on until the carrier density N first reaches the steady-state value Ns:

τDL = τc ln
(

Rpτc

Rpτc −Ns

)
(2.38)

Here, τDL is calculated assuming that carriers are not influenced by neighboring sites,
which is an underlying assumption for the ODE, S-E, and S-I methods. For the (MS,
Dreal), the diffusion rate is so low that carrier dynamics are largely decoupled from
neighbor sites; therefore, their turn-on delay also follows Equation 2.38. Although
these four methods yield the same τDL, the ODE approach exhibits a different dura-
tion from τDL to the emergence of the first relaxation oscillation pulse, compared to

Figure 2.14. Evolution of carrier density N and NC energy ENC over time for different
approaches with (a), (b) NC detuning ∆ωc = 0 and (c), (d) NC detuning ∆ωc = 3γt. The
vertical black dashed lines represent the theoretical turn-on delay τDL from Equation 2.38.
The horizontal black dashed lines represent the OC solutions. The pumping rate used is
Rp = 3Rth.
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the S-E, S-I, and (MS, Dreal) methods. Given the limitations of the ODE method
when handling large signal variations, the duration before the first relaxation oscilla-
tion pulse it calculates may be as accurate as the durations determined by the other
methods. On the other hand, (MS, Dlim) shows a longer turn-on delay. This ex-
tended delay could arise from the slower carrier accumulation rate due to diffusion
effects.

Similar patterns are exhibited in the case ∆ωc = 3γt (Figure 2.14(c) and (d)).
Here, the decreased power within the cavity reduced the decay rate of the RO, mak-
ing the oscillations more pronounced, in line with predictions made by traditional
semiconductor laser models [52]. The investigation of even larger detuning cases can
refer to the work [60], which shows the discrepancies between OC, ODE, and S-I
methods across broader detuning ranges.

Parameter Symbol Value
NC frequency ωc 1.215 × 1015 Hz
NC coupling Q Qc 500

NC vertical scattering Q Qv 105

NC internal loss Q Qi 86000
WG internal loss αi 10 cm−1

LHS mirror reflection coefficient rL -1
Phase and group indices n, ng 3.5

Confinement factor Γ 0.01
Differential gain gn 5 × 10−16 m−2

Transparency carrier density N0 5 × 1021 m−3

Carrier lifetime τc 0.28 ns
Cross-section of WG mode A 1.05 × 10−13 m2

WG length L 5.37 µm
Threshold pumping rate Rth 3.325 × 1031 m−3s−1

Table 2.1. Simulation parameters used in Chapter 2.



CHAPTER3
Pulse generation in

Fano lasers
3.1 Introduction

Ultra-short laser pulses, known for their high peak energy and short duration, enable
controlling a system with finer temporal resolution without large energy dissipation,
granting them a wide range of applications. Their short duration with high power and
wide spectral bandwidth renders them highly suitable for optical communication [61],
meeting the demands for large bandwidth and energy efficiency, giving the optical
devices an advantage over traditional electrical-based devices [62, 63]. Laser pulses
are also essential for artificial intelligence neuromorphic computing, as discussed in
Chapter 1 [14].

Techniques like mode-locking can generate pulses in the femtosecond (fs) range
[64], with peak powers reaching hundreds of gigawatts, even for only a few milli-
joules in energy. However, mode-locked lasers, typically built with free-space optics
or fiber lasers [65], often require complex, large-footprint setups, even on on-chip plat-
forms [66, 67]. Alternative pulse generation techniques like Q-switching [68, 69] and
cavity dumping [70,71], although limited to generating pulses in the nanosecond to pi-
cosecond range, offer simpler structures and are more amenable to integration within
nanophotonic platforms. Several examples of high-speed on-chip microlaser modu-
lation through gain tuning have already been realized [72–74], and cavity dumping
exploiting reflectivity modulation has been demonstrated as modulating the stopband
edge of distributed Bragg reflectors (DBRs) [75] or composite mirrors [76,77].

Despite these advancements, finding a pulse generation device that satisfies small
footprints and low energy consumption remains challenging. Fano lasers, charac-
terized by their dispersive mirror properties as described in Chapter 2, present a
promising solution by allowing modulation through simple tuning of the NC. The
small volume of the NC resolves the difficulties related to footprint and energy con-
sumption, paving the way for efficient, compact lasers capable of pulse generation.
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3.2 Mechanisms of pulse generation

3.2.1 Q-switching
Q-switching, as the name suggests, is a technique that manipulates the Q-factor of a
laser cavity, resulting in the generation of short, intense pulses of light [78]. Figure
3.1(a) depicts the process of Q-switching pulse generation in a laser cavity. Initially,
the cavity experiences high losses that exceed the gain, preventing the establishment
of lasing. In this state, the intra-cavity power remains minimal, with only weak
spontaneous emission. As the pumping continuously excites carriers, these carriers
accumulate and the gain increases. At a certain point, when the cavity loss is suddenly
reduced, the photon lifetime inside the cavity increases. This change triggers a cascade
of stimulated emissions, rapidly building power within the cavity and emitting a pulse.
As the carriers recombine, the gain decreases. The pulse reaches its peak power when
the gain equals the cavity loss. After this peak, the emitted power starts to decrease
because the gain falls below the level of the cavity loss. Typically, this emission process
extends over several round-trip times, producing pulses often on the nanosecond scale.

Q-switching techniques can be classified into two primary categories [79]: active
Q-switching and passive Q-switching (Figure 3.1(b)). Active Q-switching utilizes
an external modulator such as shutters, spinning mirrors, or attenuators to control
cavity loss and therefore can have a flexible repetition rate. Conversely, passive Q-
switching employs a saturable absorber within the laser cavity. This absorber induces
substantial absorption when it is unsaturated, maintaining the cavity in a high-loss
state. However, as the absorber reaches saturation, the loss diminishes, allowing the
pulse to be generated. Passive Q-switching usually has a repetition rate inherently
tied to the saturable absorber characteristics and pumping power, making it less
adjustable than its active counterpart.

3.2.2 Cavity dumping
Cavity dumping is an alternative method for generating laser pulses. Initially, when
a cavity maintains a high Q-factor, minimal light is coupled out [81]. An external
modulator, similar to those used in active Q-switching, can be utilized to decrease
the cavity’s Q-factor. This scenario is similar to removing one of the cavity’s mirrors,
which allows the stored power to be rapidly released in the form of a pulse. Here,
energy is stored in the intracavity field, not in carriers. This approach generates pulses
within a single round-trip time, producing pulses with shorter duration compared to Q-
switching and independent of pumping power. However, it also imposes an additional
constraint absent in Q-switching: the mirror switch-off time must not exceed the
round-trip time, otherwise, the energy inside the cavity cannot be fully emitted during
a single round-trip, resulting in a reduction of the peak power. Assuming the mirror
switching time is adequately fast, and the change in mirror reflectance ∆r from the
steady state rs to its minimum point rf can be considered instantaneous, the output
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Figure 3.1. (a) Illustration of the Q-switching pulse generation process. The red line is
cavity loss, the green line is gain, and the blue line is photon number. The yellow dashed line
marks the pulse peak. Reprinted from [79]. (b) Schematics of active and passive Q-switching
setups. Reprinted from [80].

peak power will occur when r = rf . The peak power can be estimated by Po =
|tf |2|S+

L |2, where |tf |2 = 1 − |rf |2 is the final state transmittance. The following can
then be derived [38]:

Po =
(
1 − |rs − ∆r|2

)
|SL

+|2

=
(
1 − |rs|2

)
|SL

+|2 +
(
2rs∆r − ∆r2) |SL

+|2

= Ps + 2rs∆r − |∆r|2

|ts|2
Ps

(3.1)

Considering that typically rs → 1 and ts ≪ 1, cavity dumping can achieve signifi-
cantly higher peak power than pump tuning when using equivalent modulation energy.
The peak power for gain tuning (bias modulation) is given by Po = Ps +ηp(∆R/R)Ps,
where ηp is a coefficient smaller than one, and R and ∆R are the pumping rate and
its change, respectively [38]. Compared with Equation 3.1, modulating ∆r will result
in a much larger power variation than modulating ∆R. Figure 3.2 shows simulations
of both gain tuning (the terms ”Gain switching” and ”Bias modulation” in the fig-
ure refer to variations of gain tuning differentiated by whether the original state is
below or above the threshold, respectively) and cavity dumping. A higher and much
narrower pulse generated by cavity dumping is observed [38].
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Figure 3.2. Comparison between the pulses generated by gain tuning and cavity dumping.
Parameters are set as r = 0.99, ∆r = 0.1, R = ∆R = 10Rth, and ηp = 1. Reprinted
from [38].

3.3 Modulating a nanocavity

3.3.1 Free carrier effects

When photons are absorbed by a semiconductor, carriers within the semiconductor are
generated. An electron can be excited to the conduction band either through direct
linear absorption by one photon with energy exceeding the bandgap or through weaker
two-photon absorption. In the neutral semiconductor, the creation of an electron in
the conduction band is accompanied by the creation of a hole in the valence band.
These excited carriers, being no longer bound with lattice atoms, can freely move,
thus termed free carriers. The electron density Ne is thus equal to the hole density
Np and can alternatively be expressed as carrier density N . These carriers can alter
the refractive index n of the material and, hence, modify the optical characteristics
of the semiconductor. Mainly, three effects are induced by the carriers: band filling,
bandgap shrinking, and free carrier absorption (FCA) [82].

The band-filling effect, also known as the Burstein-Moss effect [83, 84], occurs
when the excited electrons exceed the density of states near the band edge, filling
the lowest energy states in the conduction band. As a result, the Fermi level rises,
and new excited carriers must absorb photons with greater energy to overcome the
enlarged bandgap.

Bandgap shrinking arises from the Coulomb interaction between the carriers. The
repulsion could lower (increase) the energy for the electrons (holes) at the edge of the
conduction (valence) band, hence reducing the bandgap [85]. Lastly, the free carriers
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themselves can also absorb photons and make intra-band transitions [86].
The free carrier effects above can alter the absorption efficiency by either changing

the bandgap energy or carrier population. Changes in absorption related to the
imaginary part of the refractive index can also modify its real part according to
the Kramers–Kronig relations [87]. Reference [82] delineates how these three effects
affect the refractive index n in indium phosphide (InP). The change of refractive
index |∆n| as a function of N is depicted in Figure 3.3, where two different photon
energies below the bandgap of InP are considered; in this scenario, the excitation of
carriers is primarily due to two-photon absorption (TPA). The value of N used in our
simulations and estimates is around 1016 to 1017 cm−3, in which range ∆n is almost
linear. We therefore use the relation ∆ωc/ωc = −∆n/n and approximate the free
carrier effect on the NC frequency shift as a linear function:

∆ωcar
c = KcarNc (3.2)

where Nc is the NC carrier density, and Kcar is the free carrier coefficient. Note
that free carrier effects cause blueshift. The value of Kcar = 1.95 × 10−12 m3/s for
a hole defect NC implemented in an InP 2D photonic crystal slab is obtained by the
pump-probe measurement [48].

Figure 3.3. Variation in the refractive index of InP with respect to carrier density, evaluated
for photon wavelengths of 1.3 and 1.55µm. Reprinted from [82].

3.3.2 Thermal effect
The temperature can also impact the refractive index n due to the thermo-optic effect.
Alterations in the lattice constant due to temperature fluctuations can affect optical
absorption [88]. Typically, this refractive index shift is often related to the temper-
ature gradient relative to the surrounding environment. Reference [89] establishes
the temperature dependence of the refractive index nT = dn/dT = 2 × 10−4 K−1
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for crystalline silicon at a photon wavelength of around 1.5 µm at room temperature.
Note that thermal effects generally increase n and induce a redshift contrary to the
free carrier effects.

We can express the frequency shift due to thermal effects as follows:

∆ωth
c = −Kth∆T (3.3)

Here, Kth = ωcnT /n, and ∆T denotes the temperature variation of the NC from the
original room temperature, which is also the temperature difference between the NC
and its surrounding environment (assuming the surrounding environment remains at
room temperature). The thermal diffusion equation gives [48]:

d∆T (t)
dt

= −γth∆T (t) + Pabs(t)
CInP

(3.4)

where γth is the thermal relaxation rate, CInP is the thermal capacitance of InP PhC
slabs, and Pabs is the absorbed power, which subsequently transforms into heat.

Assuming an external optical source is employed to modulate the NC frequency
utilizing TPA and following the experimental setup described in Section 3.5 where
light is directed from the top side of the NC, we can formulate Pabs as:

Pabs(t) = KF CA(2ϵ0nc)|A′
c(t)|2Nc(t) + ηKT P A(2ϵ0nc)2|A′

c(t)|4 (3.5)

with
KF CA = cσF CA/n (3.6)

KT P A = c2βT P A/(n2VT P A) (3.7)
Here, A′

c is the field amplitude of the externally modulated source, whose mode
could be different from the lasing mode. The absorption cross-section is denoted by
σF CA [90]. The TPA coefficient is denoted by βT P A [91], and the effective TPA mode
volume is denoted by VT P A [92]. The parameter η is the fraction of TPA energy
converted to heat. Since the energy sum of the two absorbed photons exceeds the
bandgap energy Eg would convert into phonons and induce heat (assuming the Fermi
level is near the band edge), we have the relation: η = (2ℏω − Eg)/(2ℏω).

For a passive NC, the carrier density dynamics should follow:

dNc(t)
dt

= −Nc(t)
τnc

+ KT P AVT P A

2ℏω′V 2
F CA

(2ϵ0nc)2|A′
c(t)|4 (3.8)

Here, VF CA is the effective FCA mode volume [92]. The term τnc is the carrier
lifetime inside the NC, which is typically shorter than τc, attributed to the much
smaller mode volume in the NC, resulting in to denser carrier distribution and faster
carrier diffusion [48]. In the following calculation, we set τnc = τc/10.

The field evolution equation inside the cavity can be obtained by modifying Equa-
tion 2.4:

dA′
c(t)
dt

= −(iδ(ω′) + γ′
t)A′

c(t) + ηm

√
γ′

v

√
Pm

2ε0nc
(3.9)
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Figure 3.4. Shift in nanocavity frequency as a function of bias power Pm due to free carrier,
thermal, Kerr effects, and their cumulative effect at steady state.

where γ′
t and γ′

v represent the total coupling rate and vertical coupling rate for the
modulation mode with frequency ω′, respectively. The modulation power is denoted
by Pm, and the coupling efficiency of the modulation mode is denoted by ηm. At
steady-state, for negligible detuning (i.e. |δ(ω′)| ≪ γ′

t ), the following holds:

|A′
c|2 = η2

m

γ′
v

γ′2
t

Pm

2ϵ0nc
(3.10)

Figure 3.4 shows the estimation of ∆ωc as a function of Pm when a 1500 nm contin-
uous wave (CW) source at room temperature is used as a bias, injected into the NC
at steady state (all the simulation parameters used in this chapter are listed in Table
3.1, unless specified otherwise). Here we assume ηm = 5.6%, γ′

t = 2.2 × 1011 s−1, and
γ′

v = 7.8 × 1010 s−1 as obtained from experimental fitting [38]. It is observed that the
thermal effect shifts the NC frequency on a comparable scale to the free carrier effect
when Pm is below 0.7 W. Given that the free carrier and thermal effects counteract
each other due to opposite directional shifts in ωc, approximately 1.3W CW power
is needed to achieve a mere |∆ωc| = 0.5γt (≃ 0.78 nm). Such power is large and cur-
rently challenging to integrate on-chip. To circumvent this issue, enhancing coupling
efficiency and rate through in-plane coupling or utilizing an electrical micro-heater for
direct NC heating can be considered. If a blueshift is mandatory or shift direction is
irrelevant, high-peak-power short pulses can alternatively be employed. At moderate
repetition rates, short pulses with low total energy prevent heat accumulation, caus-
ing the NC to exhibit only the blueshift from the free carrier effect. Figure 3.5 shows
the response of carrier density (green line), temperature (red line), and frequency
shift (blue line) of the NC to a modulation pulse with a pulse width of 5 ps and peak
power of 150 W. Under these conditions, the highest ∆T remains at a minimal 0.39
K, while ∆ωc can go to 3.8γt, primarily attributed to the free carrier effects. Addi-
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tionally, it is observable that the decay process of ∆ωc also largely coincides with the
Nc decay process.

Figure 3.5. Dynamic response of the nanocavity to a modulation pulse. The green line
shows the carrier density. The red line shows the temperature. and the blue line shows the
frequency shift. The modulation pulse is set to have 1500 nm wavelength, 5 ps pulse width,
and 150 W peak power.

3.3.3 Kerr effect

Kerr effect is a nonlinear optical phenomenon that influences the refractive index
of a material. This effect arises from the reorientation of molecules, leading to a
polarization-dependent shift in the optical phase and, consequently, an effective re-
fractive index alteration [93]. When a light wave propagates through a medium, its
electric field can self-induce the Kerr effect, with its strength proportional to the
optical intensity. Notably, since the Kerr effect is purely optical and unrelated to
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carriers, its response time is virtually instantaneous, especially when compared to the
slower free carrier or thermal effects.

The frequency shift in the NC due to the Kerr effect is given by ∆ωKerr
c =

−KKerr(2ϵ0nc)|A′
c|2. where KKerr is the Kerr coefficient. It can be defined in terms

of the NC’s properties as [48]:

KKerr = ωccnk

n2VT P A
(3.11)

where nk represents the intrinsic Kerr coefficient of the material [48]. Because the
Kerr effect occurs much rapidly than both the free carrier and thermal effects, one can
measure the change in ∆ωc shortly after modulation begins and estimate the value
of KKerr as demonstrated in [48]. As depicted in Figure 3.4, the impact of the Kerr
effect is substantially lesser in magnitude compared to the free carrier and thermal
effects. As a result, it will be neglected in the latter modulation simulations.

3.4 Modulation response of Fano lasers
In this section, we explore the response of the Fano mirror to variations in the NC
frequency. As a result, the laser exhibits modulation characteristics, enabling the
generation of pulses as described earlier. Specifically, our focus will be on the Fano
laser’s behavior during the transient periods when the NC bias is switched on and
off and its eventual steady state. Additionally, we will explore the response to pulse
modulation of the NC, a case that aligns more closely with experimental feasibility.

3.4.1 Fano mirror response to tuning the nanocavity
Introducing a bias on the NC produces a shift in the Fano mirror reflectivity rF (ω)
due to the variations in ωc(t) and, in turn, the detuning δ(t). However, for a laser, the
response of rF (ω) does not mirror the exact variations of ωc(t), given that the laser
requires time to establish the dominant resonance mode via relaxation oscillations
(RO). Consequently, we turn to our numerical model established in section 2.3, rep-
resented by the relationship rF (t) = S−

L (t)/S+
L (t). To evaluate rF (t), it is necessary

to initially find the lasing mode frequency under steady-state OC. Figure 3.6 shows
the effective lasing frequency detuning ∆ωs = ωs − ωc as a function of NC frequency
detuning ∆ωc = ωc0 −ωc, with ωc0 denoting the original NC frequency. As seen, ∆ωs

exhibits a near-zero negative value for positive ∆ωc and a positive value for negative
∆ωc. This highlights that while the Fano laser frequency follows the NC frequency,
it consistently remains marginally less shift.

Utilizing the numerical model developed in section 2.3, we can compute the tem-
poral evolution of rF (t) corresponding to the lasing mode with frequency ωs. Figure
3.7 shows the response of |rF |2 to the bias being switched on and off. Assuming the
laser is already in the lasing state at the onset (to avoid large-scale turn-on RO), at
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Figure 3.6. Effective lasing frequency detuning for a Fano laser against the nanocavity
frequency detuning.

t = 0.2 ns, a switch-on (or switch-off) bias is introduced, causing |rF |2 to decrease
(or increase). Following certain ROs, the laser settles into a steady state, with rF

aligning with the analytical steady-state values depicted by the black dashed line.
The oscillation frequency and decay rate depend on the final state, with a higher
magnitude for the bias switch-on due to the reduced photon number and shortened
photon lifetime, as predicted in the semiconductor laser model [52].

Figure 3.7. (a) Turn-on and (b) turn-off of the bias leading to nanocavity frequency shift
and the associated dynamics of the Fano mirror reflectance. The Black dashed line is the
analytical steady-state solution calculated from the lasing oscillation condition.

In Figure 3.8(a), the steady-state Fano mirror reflectance and phase against ∆ωc

are plotted for the Fano laser and compared with the solitary Fano mirror (employed
as a switch). Notably, |rF |2 is broader in the Fano laser compared to a solitary Fano
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mirror since the lasing frequency tends to automatically adjust to match ωc; this is
further verified by the observed linear phase variations. Figure 3.8(b) presents the
laser output power from the RHS of the WG Pout (proportional to |S−

R |2) and energy
contained within the NC ENC (proportional to |Ac|2). Despite rF reaching its peak
at ∆ωc = 0 and having the lowest lasing threshold, the output power also hinges
on the mirror’s transmission. The balance results in the output’s maximum being
obtained approximately 3γt away from the reference point (This value depends on
the Q-factor of the NC and the Fano mirror bandwidth). However, this limitation
can be circumvented by incorporating an additional port coupled to the NC. In such
a configuration, the output power would only be weakly influenced by the mirror’s
reflectivity. Moreover, Figure 3.8(b) shows that ENC has the same profile as the
solitary Fano mirror reflectance, suggesting that the higher reflectance of the Fano
mirror corresponds to an increased energy stored within the NC. This characteristic
leads to the reduction of the laser linewidth, as demonstrated in [37]. We will not
delve deeper into this phenomenon as it exceeds the scope of this thesis.

Figure 3.8. (a) Reflectance and phase of the Fano mirror at steady lasing state plotted
against the nanocavity frequency detuning. The black dashed line is the reflectance of
a solitary Fano mirror. (b) Output power emitted from the right side of the waveguide
and the energy contained within the nanocavity plotted against the nanocavity frequency
detuning.

3.4.2 Pulse modulation
We then examine the case when the temporal modulation of ∆ωc has the shape of a
pulse. In such scenarios, the Fano mirror experiences a rapid change. This leads to
phenomena such as cavity dumping and Q-switching.

Referring to Figure 3.5, it is seen that the behavior of ∆ωc resembles the decay
dynamics of Nc. To mirror this dynamic in the simulations, we model an external
modulation source characterized by a rapid rise in ∆ωc, reaching a peak frequency
shift (defined as the modulation depth) of 7γt, followed by a slow exponential decay
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at the rate τ−1
nc . This NC frequency shift is illustrated in Figure 3.9(a). As seen in

Figure 3.9(b), the output power Pout emerges in two pulses: one during the ascent
period of ∆ωc and another during its recovery period.

Figure 3.9. Dynamics of the Fano laser’s characteristic parameters under pulse-shaped
modulation of the nanocavity (NC) frequency. The panels show (a) NC frequency shift, (b)
output power, (c) intra-waveguide power, (d) intra-nanocavity energy, (e) carrier density,
and (f) Fano mirror reflectance. The ascent period of the NC frequency shift is modeled
using a Gaussian function with a pulse width of 10 ps. The decent period uses an exponential
decay function with a time constant τnc. The modulation depth (maximum NC frequency
shift) is set to be 7γt, and the pumping rate Rp is set to be 100Rth.

During the period of the first peak (t = 0.043 ns), the Fano mirror begins to
decrease its reflectance, leading to a decline in both the laser cavity (intra-waveguide)
power PW G (see Figure 3.9(c)) and the energy within the NC |Ac|2 (see Figure 3.9(d)).
However, N starts increasing (see Figure 3.9(e)), suggesting that the initial pulse
originates from the combined release of the laser cavity field and NC field but not the
field generated from the carrier recombination. This dynamic, similar to ”opening
the mirror,” generates a cavity-dumping pulse, manifesting as a sharp peak. It is
noteworthy that at the pulse peak, |rF |2 only reduces to 0.9, and after the pulse is
completely emitted, it only falls to 0.7 (see Figure 3.9(f)). This implies that even a
slight modification in the mirror loss can enable a large energy release in the Fano
laser. When the NC detuning is non-zero, the energy stored within the NC can be
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released as output power. Even with a partially open mirror, the field could still
couple out from the laser through the NC. This can be seen from Figure 3.8, where at
|∆ωc| = 5γt, the energy inside the NC ENC decreases nearly to zero, even the Fano
mirror reflectance|rF |2 only drops to 0.6.

The second output pulse (t = 0.065 ns) exhibits a distinct mechanism compared
to the first one. During this phase, Pout, PW G, and |Ac|2 all show an increase while
N decreases rapidly. This suggests that this pulse is due to the energy released from
the excited carrier, which enhances the overall light field within the laser. In the
intervening time between the two pulses, the laser is almost empty of photons, and
due to the absence of stimulated emission, the carrier number grows to a high level,
and the gain starts to increase. When the gain surpasses the mirror loss, a cascade
of stimulated emissions is initiated, leading to the generation of a large number of
photons. The origin of this second pulse can be attributed to the Q-switching mecha-
nism as described in the subsection 3.2.1. Following this second pulse, the laser tends
to return to its equilibrium state at a decay rate of τ−1

nc .
Figure 3.10 displays the two-pulse response as a function of varied laser pump-

ing rates or modulation depths. In Figure 3.10(a), RP gradually increases from 20
to 100Rth. It is evident that both the cavity dumping and Q-switching pulse am-
plitudes linearly increase with the pumping rate, maintaining nearly constant pulse
widths. This behavior is expected, given that both the intra-cavity power and carrier
accumulation rate scale with the pumping power. A decreasing delay time between
the two pulses is also attributed to the rapidly increasing gain, which speeds up the
stimulated emission that occurs after the cavity-dumping pulse. When the modula-
tion depth is adjusted (denoted as Am) from 2 to 10γt, as shown in Figure 3.10(b),
the peak value of the cavity dumping pulse grows with Am, and the pulse narrows
before reaching saturation. Even though a small Am can already release nearly all
photons within the Fano laser, the lower modulation depth can lead to a slow decrease
in reflectance rate. The inefficiency of the direct WG out-coupling channel results in
wider and less intense pulses. Conversely, the Q-switching pulse’s peak becomes both
taller and narrower as larger Am values lead to a more significant mirror loss. Conse-
quently, N can accumulate to high levels before the gain exceeds the loss, leading to
more intense pulses with longer inter-pulse intervals.

3.5 Experimental demonstration of pulse generation in
Fano lasers

3.5.1 Platform and design of the Fano laser

As introduced in Chapter 2, a Fano laser consists of a WG side-coupled to an NC. We
fabricated this structure on an indium phosphide (InP) 2D photonic crystal (PhC)
slab. The WG is created by removing a row of holes, introducing a line-defect struc-
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Figure 3.10. Output power response of the Fano laser subject to variations in (a) pumping
rate Rp and (b) modulation depth Am. In (a), Am is fixed at 4γt, and in (b), Rp is fixed at
50Rth. The inset in (b) is the zoom-in view of the cavity dumping pulses.

ture within the PhC. This design allows for a guiding mode whose frequency ω < ck||
(where k|| represents the in-plane wavenumber). This mode exists beneath the radi-
ation light cone (modes above this cone have a continuous spectrum and can radiate
into the air) and concurrently within the PhC bandgap, as illustrated in Figure 3.11
(a) [5]. Consequently, the light confined within the WG is confined via total internal
reflection in the out-of-plane direction, and the photonic bandgap restricts it in the
in-plane direction. At the LHS end of WG, the light encounters a broadband mirror
(in comparison to the bandwidth of the Fano resonance). At the RHS end of WG, a
C-shaped grating coupler (GC) is incorporated both for injecting the laser pumping
source and for collecting the output signal.

The NC is a smaller line-defect cavity formed by removing seven holes (termed
L7). It has a resonance frequency of approximately 1574 nm for its second-order
mode (which is the primary lasing mode we used due to higher output power). For
modulation purposes, the third-order mode is selected due to its superior light con-
finement compared to other modes. A scanning electron microscope (SEM) image
of the Fano laser is shown in Figure 3.11 (b). The NC is side-coupled to the WG,
positioned approximately 5 µm from the LHS end of WG. This placement fulfills the
phase-matching conditions required for lasing. Within the WG, the region extending
from the LHS mirror to the RHS Fano mirror has an embedded layer of InGaAsP/I-
nAlGaAs quantum wells inside the InP slab. This layer serves as the active material
of the laser and is confined to the area of the laser cavity, excluding the extended
portions of the WG and the NC. This design approach, known as the ”buried het-
erostructure” (BH), provides significant benefits by reducing unwanted absorption
and carrier diffusion outside the laser cavity [6, 7, 94,95].
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Figure 3.11. (a) An example of the band structure of a 2D photonic crystal slab with a line-
defect configuration. The frequency and wavevector are normalized by the lattice constant a.
Multiple guided modes are present beneath the light cone and within the bandgap. Reprinted
from [5]. (b) Scanning electron microscope image of a fabricated Fano laser (upper panel)
constructed on an InP PhC slab. Within the laser cavity, a buried heterostructure gain area
(highlighted by the red rectangle) is composed of the structure of a quantum well. Reprinted
from [38].

3.5.2 Experimental setup

We first conducted measurements on the static output of the Fano laser. The exper-
imental setup is illustrated in Figure 3.12. A 1480 nm CW laser source is vertically
injected into the device through a micro-photoluminescence setup [96]. This source
serves as the pump for the Fano laser, entering via the C-shaped GC on the RHS
end of WG. Before reaching the device, the pump light first passes through a po-
larization controller (PC) and a wavelength division multiplexer (WDM) designed
for 1480/1550 nm. The PC ensures that the polarization direction aligns with the
GC, and the WDM separates the two different wavelength lights into distinct ports,
a necessity since both the pump and output signals are coupled from the GC using
the same fiber. The output signal is then forwarded to an optical spectrum analyzer
(OSA) for analysis. In this configuration, the pumping efficiency is estimated to be
around 1%. The pump light, after being focused through an objective lens with a
numerical aperture of 0.65, achieves a spot size of approximately 3 µm.

The experimental framework is depicted in Figure 3.13 for the pulse genera-
tion measurements. The external modulation source is an ultra-short mode-locked
Ti:Sapphire laser. The laser pulses is sent to an optical parametric oscillator (OPO),
converting to the desired wavelength for the experiments. The laser pulses out from
OPO have a pulse width of 170 fs and a 79.9 MHz repetition rate. These pulses are
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Figure 3.12. Experimental setup of the static Fano laser output measurement. VOA:
variable optical attenuator; PC: polarization controller; BS: beam splitter; PM: power meter;
WDM: wavelength division multiplexers; OSA: optical spectrum analyzer; OL: objective lens;
LPF: long-wavelength pass filter; IR Camera: infrared camera; DUT: device under test. The
black lines are single-mode fibers. The blue beam is 1480 nm CW light. The red beam is
the output lasing light. Reprinted from [38].

directed through a 10 m single-mode fiber, broadening their width to 4 ps. Such a
modification is used to enhance the amplification efficiency for the following erbium-
doped fiber amplifiers (EDFAs). To attain sufficient peak power for modulation, we
employ a sequence of two EDFAs with optical band-pass filters to sculpt the pulse
and align its central frequency with the third-order mode of the NC. The modulated
pulse is subsequently combined with the continuous 1480 nm pump light using a
50:50 beam splitter (BS). Two light paths are adjusted to allow a slight spatial offset,
enabling selective illumination of either the NC or GC. The output from the Fano
laser is then routed through an optical circulator, which guides the signal either to
an OSA for spectral analysis or to a communication signal analyzer (CSA) for high-
speed waveform measurement. For waveform analysis, further amplification of the
signal is necessary to keep an optimal signal-to-noise ratio, which is achieved using a
low-power EDFA and filtering again by a band-pass filter.

3.5.3 Experimental results and observations

Figure 3.14(a) illustrates the steady-state output power of the Fano laser under CW
pumping. The power measurements, taken post objective lens, are explicitly focused
on the second-order mode due to its dominantly higher power over other modes.
An evident lasing threshold transition is observed at approximately -5dBm, aligning
closely with theoretical predictions (red line). For comparison, we also measured an
FP laser with a cavity identical in size to that of the Fano laser’s L7 NC, as shown in
Figure 3.14(b). Despite the lack of a GC and having to be directly pumped vertically
into the cavity, the FP laser exhibited a similar characteristic curve. This FP laser
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Figure 3.13. Experimental setup of the pulse generation measurement. SSMF: standard
single-mode fiber; (L-) EDFA: (low-power) erbium-doped fiber amplifier; OBPF: optical
band-pass filter; CSA: communication signal analyzer. The orange beam is the input mod-
ulating pulses. Reprinted from [38].

provides us with a comparison reference in the later pulse generation experiment.

Figure 3.14. Steady-state lasing threshold curve of (a) Fano laser and (b) Fabry-Pérot
(FP) laser. The inset in (b) is the SEM image of the L7 FP cavity. Reprinted from [38].

In the pulse generation experiment, the output power of the Fano laser from two
different ports is measured. The ”through-port (TP)” collected power from the GC,
the same as the approach used in the steady-state power measurements. In contrast,
the ”cross-port (CP)” collected power vertically from the top of NC. Figure 3.15(a)
shows an optimized cavity dumping pulse waveform with the pumping power set at
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P = 79Pth and an average modulated power of 1.26 mW. The TP’s output, rep-
resented by the red line, shows a cavity dumping pulse approximately 50 ps wide.
Following these initial pulses, a ”shoulder” emerges in the decay tail, indicating the
subsequent Q-switching pulse, as discussed in section 3.4.2. The CP’s output, rep-
resented by the blue line, exhibits a pronounced dip, which is consistent with the
theoretical expectation, as shown in Figure 3.15(b). For comparison, a gray line
represents the gain-modulated pulse generated by the FP laser. The cavity dump-
ing pulse is significantly sharper than the gain modulation counterpart in the FP
laser. Note that due to the oscilloscope’s restricted pulse response (16.5 ps), the
cavity dumping pulse from the Fano laser may be somewhat underestimated in this
measurement.

Figure 3.15(c) shows the optical spectra of the outputs from both the TP and
CP of the Fano laser. The dominant peak for the stable lasing wavelength is located
at 1574.6 nm. The noticeable blueshift tail in both ports indicates that the NC
frequency shift mainly arises from the free carrier effect, consistent with predictions
in Subsection 3.3.1. By tuning the simulation parameters and taking into account the
convolution of the oscilloscope’s pulse response, we are able to produce waveforms
and spectra that closely resemble the measured data. These convoluted results are
shown in Figure 3.15(d), while the unconvoluted results are shown in the inset of
panel (a). This similarity confirms that our theoretical model can closely mimic the
experimental data. In Figure 3.15(e), the temporal dynamics of the Fano mirror’s
reflection, |rF | and transmission, |tF |, are calculated. Despite the modulation depth is
not particularly large for the estimated reflection of the Fano mirror being |rF | = 0.92
(with a power reflection of |rF |2 = 0.85), it still enables the release of approximately
40-50% of the intra-cavity energy, as shown in Figure 3.15(b).

The responses of the pulse to variations in pumping power and modulation depth
are also investigated. Figures 3.16(a) and (d) show the evolution of the pulse waveform
with increasing modulation power (keeping the pumping power fixed at 63Pth), and
with increasing pumping power (keeping modulation power fixed at 1.26 mW). In
both scenarios, the cavity dumping peak power amplifies far more effectively than
the FP laser, as in the subfigures (b) and (e). At higher levels of either P or Pmod,
the FP laser’s output reaches a plateau due to carrier density saturation (subfigure
(c)). Note that the Q-switching pulse’s ”shoulder” becomes noticeable when Pmod

goes 1.26 mW but is less obvious at lower Pmod levels, as seen in the subfigure (a).
This observation suggests that at high pumping powers, the output pulses at lower
Pmod levels are unable to sufficiently delay the secondary Q-switching pulse, causing
the two pulses to merge and become indistinguishable, aligning with our simulation
in Figure 3.10(a). Conversely, with sufficiently high Pmod levels, as in subfigure (d),
the secondary pulses become more pronounced. A consistent pattern is observed as P
increases: the intensity of the Q-switching pulses grows, and their delay time shortens.
In contrast, the cavity dumping pulses remain temporally consistent. Both behavior
aligns well with the theoretical calculation in Figure 3.10.
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Figure 3.15. Demonstration of the pulse modulation. (a) Experimental measurement
and (b) Corresponding simulated fit of the output waveform. CP denotes the cross-port.
TP denotes the through-port. The violet circle marks the peak of the cavity dumping
pulse, and the green circle marks the ”shoulder” originating from the Q-switching pulse. (c)
Experimental measurement and (d) Corresponding simulated fit of the optical spectrum. (e)
Evolution of Fano mirror reflection |rF | (red line) and transmission |tF | (blue line) over time.
Reprinted from [38].
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Figure 3.16. Experimental measurement of pulse response concerning pumping power P
and modulation depth Pmod. Pulses response of the (a) Fano laser and (b) FP laser with
varying Pmod while P is fixed at 63Pth. (c) Corresponding peak power in (a) and (b). Pulses
response of the (d) Fano laser and (e) FP laser with varying P while Pmod is fixed at 1.26
mW. Green lines mark the time of the pulse peak. (c) Corresponding peak power in (d) and
(e). For clarity, the peak power for the FP laser in (c) and (f) is magnified by a factor of 10.
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Parameter Symbol Value
Original NC frequency ωc0 1.215 × 1015 Hz

NC coupling Q Qc 500
NC vertical scattering Q Qv 105

NC internal loss Q Qi 86000
WG internal loss αi 10 cm−1

LHS mirror reflection coefficient rL -1
Phase and group indices n, ng 3.5

Confinement factor Γ 0.01
Differential gain gn 5 × 10−16 m−2

Transparency carrier density N0 5 × 1021 m−3

Carrier lifetime τc 0.28 ns
Cross-section of WG mode A 1.05 × 10−13 m2

WG length L 5.37 µm
Threshold pumping rate Rth 3.325 × 1031 m−3s−1

Free carrier dispersion coefficient Kcar 1.95 × 10−12 m3s−1

Two-photon absorption coefficient βT P A 2.4 × 10−10 m/W
Effective two-photon absorption mode volume VT P A 2.1 × 10−19 m3

Free carrier absorption cross-section σF CA 4.5 × 10−21 m2

Free carrier absorption mode volume VF CA 1.3 × 10−19 m3

InP bandgap energy Eg 1.344 eV
Intrinsic Kerr coefficient nk 1.65 × 10−17 m2/W

Table 3.1. Simulation parameters used in Chapter 3.
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CHAPTER4
Fano lasers with active

feedback
4.1 Introduction

In semiconductor lasers, the characteristics are substantially altered when an external
field is injected back into the laser cavity, leading to both beneficial and negative
effects. This external field interaction can enable applications such as injection locking
[13], but it also risks introducing instability or chaos [13]. The interaction of an
external field with a laser modifies the original lasing mode’s power and frequency.
For lasers with external feedback, it acts as a laser that re-injects its own lasing field
after it passes through an external cavity, which is formed by the original out-coupling
mirror and an external mirror. As shown in Figure 4.1 [52], for lasers with weak
feedback (ignore the external cavity resonance), the mode’s frequency shift induced
by the external cavity can be approximated as a periodic function, resulting from the
altered phase after its round-trip through the external cavity. This leads to multiple
steady-state solutions that satisfy the laser rate equations. In semiconductor lasers,
the intensity-phase coupling expands the phase shift range, promoting the occurrence
of multiple states [52]. This intensity-phase coupling is characterized by the linewidth
enhancement factor α, which typically arises from refractive index variations due to
carrier density variations [52]. Determining the stability of these solutions usually
requires linear stability analysis [52].

Research on Fano lasers with weak optical feedback indicates robustness to coher-
ence collapse far exceeding that of Fabry–Pérot (FP) lasers [34]. In situations with
stronger feedback, the field can oscillate multiple times within the external cavity be-
fore it decays out. In this case, the feedback field’s amplitude and phase shift deviate
from simple sinusoidal functions, making analytical analysis more challenging. This
chapter explores a Fano laser with a high-reflectance external mirror ( |rext|2 > 5%),
incorporating a gain material embedded in the external cavity that enhances the
feedback field strength. The complex interplay between the Fano laser’s dispersive
mirror and the active external cavity leads to a complicated interplay between the
mode frequency and feedback strength. Theoretical calculations show the presence
of bistability in these configurations. This exploration could potentially provide new
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insights into the behavior of lasers with other types of mirrors, such as DBR lasers,
in the presence of strong optical feedback.

Figure 4.1. Graphical solution for the laser cavity modes with external feedback. The
intersections between the straight lines (laser cavity mode phase shifts) and the sinusoidal
curves (external cavity induced phase shifts) determine the modes under both weak and
strong feedback. Here, κf is the feedback rate, τL is the laser cavity round-trip time, τext is
the external cavity round-trip time, ∆ω is the total frequency shift, and α is the linewidth
enhancement factor. Note that an increase in α promotes the occurrence of multiple solutions.
Reprinted from [52].

4.2 Optical bistability

Optical bistability in lasers, where two stable states coexist, is characterized by
hysteresis behavior when external parameters such as injection power or feedback
strength are varied, as illustrated in Figure 4.2(a). The laser’s operational state is
typically influenced by initial conditions or the historical trajectory of the system.
Within this bistable range, pulse-like external signals can be employed to switch be-
tween these two states. This principle underpins digital electronics, particularly in
binary data storage, where the ”flip-flop” device is a fundamental element for random-
access memory and computing systems [97]. Optical counterparts exhibiting this be-
havior (Figure 4.2(b)) hold potential for applications in switching, routing, memory,
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pulse shaping, and logic operations [98]. Previously explored optical bistable devices
include semiconductor optical amplifiers (SOA) integrated with Mach-Zehnder Inter-
ferometers (MZI) [99,100], coupled ring lasers [101], and photonic crystal microcavity
structures [24]. However, these designs often suffer from large footprints and rely on
the ability to change the refractive index or gain/absorption within a large specific
region of the laser cavities. This approach generally results in high energy consump-
tion for nonlinear effects to achieve sufficient index tuning or long relaxation times,
leading to limited operational speed. In contrast, feedback Fano lasers change the
laser mirror loss to achieve bistability. We demonstrate that this setup can intro-
duce multiple modes beyond the original Fano mode, enabling bistability between
Fano and FP modes. Utilizing the unique properties of the Fano mirror, effective
control over laser bistability can be achieved by modulating the NC resonance. This
approach might enable rapid flip-flop operations while significantly reducing energy
consumption.

Figure 4.2. (a) Demonstration of hysteresis in a bistable laser during the adjustment of
injection power. (b) Operation of an optical flip-flop, utilizing ”set” and ”reset” pulses to
switch between distinct laser states. Reprinted from [98].

4.3 Platform and design feedback Fano lasers
Figure 4.3 (a) illustrates the structure of the feedback Fano laser based on two-
dimensional photonic crystal (PhC) membranes. This structure can also be adapted
to one-dimensional nanobeams [102–104]. Compared to the ordinary Fano laser dis-
cussed in Chapter 2, which has a waveguide (WG) closed at one end and open at the
other, the feedback Fano laser presented here has its WG closed on the left-hand-side
(LHS) and partially blocked on the right-hand-side (RHS). Such reflectors can be
realized via photonic band gap effects as discussed in Subsection 3.5.1. Embedded
within the WG is the active medium, comprising either quantum dot or quantum
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well structures, implemented using buried heterostructure (BH) nanotechnology (see
Subsection 3.5.1). The chosen LHS WG length ensures destructive interference be-
tween the field from the side-coupled nanocavity (NC) and the WG-propagating field,
making the LHS part of the device identical to a standard zero NC detuning Fano
laser [30]. Conversely, the additional reflection mirror on the RHS forms an external
feedback cavity. This configuration results in a coupling of FP longitudinal modes
and the narrowband Fano resonance mode from the NC. Figure 4.3(b) demonstrates
this phenomenon, depicting the internal resonance enhancement factor Air, which is
the ratio of the input field intensity to the field intensity circulating within the cavity.
For a FP cavity with mirror reflection coefficients r1, r2, and cavity length L, Air is
given by [105]:

Air = 1
|1 − r1r2e−2ik(ω)L|2

(4.1)

In a passive Fano cavity, the reflection coefficient r2 is replaced by a Fano mirror
rF . For the feedback Fano cavity, r2 is substituted with a composite mirror rCMR

(detailed in Subsection 4.4.2). Both Fano and FP modes can coexist in the feed-
back Fano cavity, as illustrated in the bottom panel of Figure 4.3(b). Note that the
presence of gain material can induce shifts in resonance mode frequencies due to the
amplification of the feedback field, affecting their interference with the original field.
These modes might become active lasing modes, depending on their threshold gains
and the laser’s initial state.

4.4 Analysis of modes

4.4.1 Lasing condition of feedback Fano lasers

In contrast to the weak feedback scenario, strong feedback cannot be simply calcu-
lated by considering a single external cavity round-trip of the original output signal;
resonance with the external cavity should also be considered. The eigenmodes of the
laser can be identified using the transmission matrix (T-matrix) approach [52]. The
overall T-matrix Ttot for the feedback Fano laser is the product of five individual
T-matrices as shown in Figure 4.3(a):

Ttot = TLM TLW GTF TRW GTRM (4.2)

Here, the subscripts LM and RM denote the LHS and RHS mirrors, LWG and RWG
denote the LHS and RHS WGs, and F denotes the Fano mirror. The structure of
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Figure 4.3. (a) Schematic of the feedback Fano laser realized in a 2D photonic crystal
slab. A nanocavity (NC) of H1 type (one missing air hole) is side-coupled to a closed line-
defect waveguide (WG). The active region is highlighted in light yellow. For transmission
matrix analysis, the device is divided into five distinct components. (b) Comparison of the
internal resonance enhancement factor Air across different cavity types: Fabry–Pérot (FP)
cavity shown in blue, Fano cavity in red, and feedback Fano cavity in yellow, as a function
of normalized frequency detuning. Here, r1 = r2 = −0.9 and L = 5.37µm. The Fano
mirror reflection coefficient rF and the composite Fano mirror rCMR are calculated using
the parameters listed in Table 4.1.

each T-matrix is as follows:

TLM = 1
tL

(
1 −rL

−rL 1

)
TLW G =

(
e−ik(ω,N)L1 0

0 eik(ω,N)L1

)
TF = 1

tF (ω)

(
1 −rF (ω)

rF (ω) t2F (ω) − r2
F (ω)

)
TRW G =

(
e−ik(ω,N)L2 0

0 eik(ω,N)L2

)
TRM = 1

tR

(
1 rR

rR 1

)
(4.3)
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where rL(tL) and rR(tR) are the reflection (transmission) coefficients of the LHS and
RHS mirrors, respectively. L1 and L2 are the lengths of the LHS (Fano laser cavity)
and RHS (external feedback cavity) of the WG, respectively, and ω denotes the mode
frequency. The Fano mirror’s reflection and transmission coefficients are defined in
Equations 2.9 and 2.10. The wavenumber k(ω,N) is given by Equation 2.13 with
consideration of the linewidth enhancement factor α:

k(ω,N) = n

c
ω − i

2
((1 − iα)Γgn(N −N0) − αi) (4.4)

The matrix Ttot can then be transformed into a scattering S-matrix, the poles of
which determine the eigenmodes of the laser [52]. These poles correspond to the
lasing oscillation conditions. The overall S-matrix shares a common denominator
T11 between each element, which simplifies the calculation of the pole. Therefore,
the oscillation condition of a feedback Fano laser can be reformulated as follows (see
Appendix A):

e2ik(ω,N)L1rLrF (ω) + e2ik(ω,N)L2rRrF (ω)
+ e2ik(ω,N)(L1+L2)rLrR

(
t2F (ω) − r2

F (ω)
)

= 1
(4.5)

The first and second terms in Equation 4.5 can be interpreted as the propagation
factors when the field in the LHS and RHS WGs encounters the corresponding mirrors
and the Fano mirror. The third term describes the coupling between the field traveling
in the entire WG and the NC. Using Equation 4.5, we can calculate the oscillation
frequency ω and corresponding threshold carrier densities N for all possible lasing
modes.

4.4.2 Composite Fano mirror
The concept of a ”composite mirror” (CMR) in a feedback Fano laser system is a
useful approach for simplifying and understanding the laser’s dynamics [52]. By
viewing the RHS components of Equation 4.3 (TF ,TRW G and TRM ) as a single
entity, the feedback Fano laser can be thought of as a laser having a composite mirror
on its RHS. The reflection coefficient for this CMR is given by (see Appendix B):

rCMR (ω) = rF (ω) + rRt
2
F (ω) e2ik(ω,N)L2

1 − rRrF (ω) e2ik(ω,N)L2
(4.6)

This formulation encapsulates the complex interplay between the different compo-
nents on the RHS of the laser. Equation 4.6 indicates that rCMR combines the
ordinary Fano mirror reflection rF and an effective reflection stemming from the ex-
ternal cavity. When the feedback is weak, i.e. |rR| ≪ 1, the effective reflection term
primarily consists of the numerator, depicting a field undergoing a single external cav-
ity round-trip. When the feedback is large, both the numerator and the denominator
must be considered. Here, the denominator captures the field’s resonance with the
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external cavity, which couples N to the imaginary part of rCMR and thus affects the
phase. Even without the linewidth enhancement factor, the carrier density can influ-
ence the phase of rCMR, and consequently the mode frequency, in a strong feedback
cavity with a gain medium. This effect is due to the resonance-induced amplifica-
tion of the field, which leads to changes in the interference between the original field,
coming mainly from the passive side-coupled cavity, and the feedback field.

Figure 4.4 presents the spectra of reflectance and phase for the ordinary Fano
mirror, passive composite Fano mirror, and active composite Fano mirror (with N =
5N0) under the conditions rR = −0.3 and L1 = L2. The peak reflectance remains
almost unchanged due to the high reflectance of the ordinary Fano mirror (|rF (δ =
0)|2 ≈ 97.5%), but the mirror bandwidth narrowing and the elevation of the floor (far
detuned region without Fano resonance) are observed. Additionally, the composite
mirror reduces the steep phase shift occurring near zero detuning. Fields redshifting
toward the NC frequency acquire larger phase shifts, while those blueshifting toward
the NC frequency acquire smaller phase shifts compared to the ordinary Fano mirror.

Figure 4.4. (a) Reflectance and (b) phase spectra versus normalized frequency detuning
for an ordinary Fano mirror rF (blue lines), a passive composite Fano mirror rCMR (red
lines), and an active composite Fano mirror at N = 5N0 (yellow lines).

4.4.3 Lasing condition and modes in the absence of
intensity-phase coupling

By solving Equation 4.5, we can determine all possible modes of a feedback Fano
laser, including their mode frequency and threshold carrier density, when tuning the
NC frequency through the normalized detuning σc = (ωc − ωc0)/γt. Here, ωc0 is the
original NC frequency where the ordinary Fano laser achieves its lowest threshold gain,
signifying optimal phase matching between the WG round-trip and the Fano mirror.
Here, we consider two cases of low (rR = −0.3) and high (rR = −0.7) RHS mirror
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reflectivity when L1 = L2, as shown in Figure 4.5(a),(b) and (c),(d), respectively (all
the simulation parameters used in this chapter are listed in Table 4.1, unless specified
otherwise). The horizontal dotted lines represent the longitudinal modes of the FP
cavity, created by the LHS and RHS mirrors when the NC is transparent. These
modes exhibit a free spectral range of 20.5γt, as determined by the specific parameters
chosen. According to the threshold gains of the lasing modes, each subplot within
Figures 4.5 (a)-(d) can be categorized into three distinct regions along the σc axis:
the Fano mode region (where the lasing mode is the Fano mode, indicated by blue
shading), the bistability region (characterized by the potential lasing of either the
Fano or the FP mode, indicated by red shading), and the FP mode region (where the
lasing mode is the FP mode, non-shaded).

Within the Fano mode region, where the detuning of the NC frequency approx-
imates zero, two distinct Fano modes emerge, their mode frequencies exhibiting an
almost linear dependence on σc, which means the round-trip phase shifts of these
modes are almost entirely determined by the Fano mirror and follow the NC fre-
quency (see Figure 3.6). Here, FP modes are absent due to the Fano mirror’s high
reflectivity, which effectively divides the WG into two independent cavities. This
high reflectivity confines the optical field to either the LHS or RHS WG, leading to
two frequency-degenerate Fano modes but with different thresholds. The Fano mode
with the higher threshold (and correspondingly lower Q-factor) is the RHS-Fano mode,
with its field mainly localized in the NC and the RHS WG. Conversely, the mode
with a lower threshold (and a higher Q-factor) is the LHS-Fano mode, with its field
primarily concentrated in the NC and the LHS WG. The variation in thresholds stems
from the non-equivalence between rL and rR. Each mode’s Q-factor and the spatial
distribution of the mode power are demonstrated in Figure 4.5(e), calculated using
the multi-section model which will be introduced in Subsection 4.5.1.

The LHS-Fano mode (green lines in Figure 4.5) can be characterized as an optical
field oscillating between the LHS mirror and a composite RHS Fano mirror. This
mode’s narrower mirror bandwidth causes its threshold to increase more rapidly than
that of the ordinary Fano laser (the black dashed line in Figure 4.5(b)) as the abso-
lute NC detuning |σc| increases. On the contrary, the RHS-Fano mode, where the
field oscillates between the RHS mirror and a composite LHS Fano mirror (has the
same form as the RHS composite Fano mirror in Equation 4.6, but with L2 and rR

substituted by L1 and rL), exhibits a decreasing threshold with increasing |σc|. This
decrease is attributed to enhanced light leakage into the LHS WG due to the reduced
reflectance of the central Fano mirror. As a result, the originally lower Q-factor RHS
lasing cavity gains additional amplification from the LHS WG, leading to a reduction
in its threshold.

Within the FP region, ωc is far detuned from ωc0, leading to a decreased re-
flectance of the composite mirror. Under these conditions, the LHS-Fano mode re-
quires a higher threshold gain to counterbalance the increased loss, but the highly
reflective composite mirror cannot fulfill the phase-matching condition. Consequently,
the FP mode replaces the Fano mode as the dominant lasing mode, maintaining phase
matching at the far-detuning background floor of the composite mirror spectrum and
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Figure 4.5. (a), (c) Normalized mode frequency (ω−ωc0)/γt, and (b), (d) the corresponding
laser threshold density N/N0 of the modes as a function of the normalized NC frequency
detuning σc. (a), (b) correspond to rR = −0.3, and (c), (d) to rR = −0.7, with α = 0 in all
cases. The colored lines represent four distinct mode types: LHS-Fano (green), hybrid (light
blue), FP (violet), and RHS-Fano (orange) modes. The horizontal dotted lines represent the
other longitudinal modes of the WG. The black dashed lines represent the Fano mode of the
ordinary Fano laser without feedback as a reference. Three different regions are identified:
FP (non-shaded), bistability (red-shaded), and Fano (blue-shaded) regions. (e) The resonant
wavelengths and Q-factors of each mode in (a) and (b), calculated from the corresponding
mirror loss at the NC detuning of −3γt. Insets in (e) graphically represent the spatial power
distribution of each mode.

remaining unaffected by variations in σc. The dependency of the composite mirror’s
reflectance with increased NC detuning (from 0 to -4.0γt) and the corresponding
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Figure 4.6. Reflection coefficient spectra of the LHS composite Fano mirror rCMR as the
NC frequency redshifts from 0 to -4.0γt. The blue lines show the reflectance (right axis),
while the red lines show the phase (left axis). The black dashed lines show the propagation
phase shift in the LHS WG. In the first three subplots, the solid green circles marking the
intersections signify the solutions of the LHS-Fano mode that satisfy both phase matching
and loss-gain balance conditions. In the fourth subplot, the solid violet circle marks the FP
mode solution. The dashed circles represent the solutions that satisfy phase matching but
not the loss-gain balance conditions.

lasing mode is depicted in Figure 4.6.
Besides the Fano and FP domains, two intermediate bistability regions exist where

four modes are concurrently displayed. Due to the reduced reflectivity of the compos-
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ite mirror, the LHS-Fano mode’s threshold increases rapidly with increasing |σc| and
eventually vanishes at some point, determining the boundary between the FP and
the bistability region. In these regions, an ”intermediate” or hybrid mode bridges
the gap between the FP and LHS-Fano modes. This mode’s spatial field distribution
spans both the WG and the NC (see Figure 4.5(e)). With a larger detuning relative
to the NC frequency, this hybrid mode exhibits a higher threshold than the LHS-
Fano mode. However, this hybrid mode is unstable (as demonstrated in the stability
investigation in Appendix C) and prevents sustained lasing. In contrast, both the FP
and LHS-Fano modes are stable, thus characterizing the bistability region. As shown
in Figure 4.5, the lasing FP mode extends over both the FP and bistability regions,
touching the edges of the Fano region. Conversely, the lasing Fano mode spans the
Fano region and overlaps with the FP mode within the bistability region.

4.4.4 Lasing conditions and modes with intensity-phase coupling

As discussed in Section 4.1, intensity-phase coupling is a notable phenomenon in
semiconductor lasers, characterized by the linewidth enhancement factor α. Here,
we explore the variations in the modes of feedback Fano lasers when α is present.
For the case where α = 0, as detailed in Subsection 4.4.3, the threshold curves
display symmetry around zero NC detuning (σc = 0). This symmetry arises from the
Lorentzian shape of the Fano mirror reflectance. However, when α is non-zero (e.g.,
α = 2, a typical value for semiconductor InGaAsP quantum well lasers), an additional
phase shift induced by carrier-index coupling (see Equation 4.4) alters the dynamics.
This results in a blueshift of the Fano and hybrid modes frequency (illustrated in
Figure 4.7(a)-(d)), introducing asymmetry in the curves. The presence of intensity-
phase coupling α can lead to multiple solutions even in ordinary Fano lasers, as
indicated by the black dashed line in the figure. Among these solutions, the mode with
higher frequency tends to be unstable. The interplay between the phase-matching
condition, given by arg {rL} + arg {rF (ω)} + 2L1nω/c − αΓgn(N − N0)/2 = 2mπ
(where m is an integer), and the gain-loss balance condition, results in not just the
primary solution, the typical Fano modes frequency (ω ∼= ωc), but also an alternative
solution. This alternative solution represents the hybrid mode in the feedback Fano
laser framework. As σc increases, with an increase in N , the mode frequency ω needs
to shift more than in the α = 0 case for mode switching to occur. Consequently, a
larger α-value broadens the bistability region, as seen in Figure 4.7(a)-(d).

The feedback intensity, characterized by the reflectivity of the RHS mirror rR, is
also important in the functionality of the feedback Fano laser. When |rR| is increased,
for instance, to 0.7, as shown in Figures 4.5(c), (d) and 4.7(c), (d), there is a noticeable
shrinking in both the Fano and bistability regions. This shrinking is attributable
to the further narrowing of the bandwidth of the composite mirror (similar to the
behavior seen in high-gain scenarios, as demonstrated in Figure 4.4).

A detailed analysis presented in Figure 4.7(e) highlights how the bistability range
(represented by a black line) and the associated output power contrast vary as a
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function of rR for α = 2. Here, the output power contrast is calculated as the ratio
between the mode with higher optical output power (LHS-Fano mode for the LHS
output and FP mode for the RHS output) and the mode with lower output power (FP
mode for the LHS output, and LHS-Fano mode for the RHS output) at the lowest
threshold point within the bistability region. In this figure, the power contrast of
the LHS mirror output is depicted by a red line, while that of the RHS output is
illustrated by a blue line.

Note that mode switching is only feasible when the normalized NC frequency
detuning σc exceeds the boundaries of the bistability range, as discussed in Subsection
4.5.2. Therefore, as |rR| increases, the energy required for mode switching decreases.
However, Figure 4.7(e) shows that the power contrast diminishes with an increase in
|rR|, primarily due to the escalating output power of the FP mode. This reduction
in power contrast is a significant concern as it increases the device’s vulnerability
to noise-induced bit-flip errors [52]. This highlights the need to select an optimal
mirror reflectivity to enhance both the reliability and energy efficiency of the flip-flop
operation.

4.4.5 Influence of external cavity length

Another critical parameter affecting the bistability is the external cavity length L2.
Variations in L2, potentially due to fabrication inaccuracies, can impact the round-
trip phase in the external cavity, thereby affecting the bistability range. Figure 4.8
shows the dependence of the threshold carrier density and the mode frequency of
the lowest threshold mode on σc and L2. In the scenario where the laser operates
in the LHS-Fano mode (i.e., σc ≈ 0), the field in the RHS WG is relatively weak.
Consequently, alterations in L2 have a minimal impact on the lasing mode, as can
be observed in the middle sections of Figures 4.8(a) and (b). Since the Fano laser
frequency exhibits a blueshift with the NC frequency blueshift (see Subsection 3.4.1),
while it redshifts as L2 increases (as shown in the phase variation of the composite
mirror with L2 in Figure 4.10(a)), lasing phase matching conditions for the Fano laser
can be satisfied in the lower-left and upper-right areas of Figures 4.8(a) and (b). In
contrast, in the upper-left and lower-right regions, the phase-matching condition fails
to be satisfied, resulting in the laser jumping to the FP mode. The bistability regions,
enclosed by red curves in the figures, appear between these two areas. Notably, the
size of these bistability regions decreases as the difference |L2 −L1| increases (L1 set
to a constant length as in the previous calculations).

The contour plots in Figure 4.8 provide an assessment of the bistability’s robust-
ness against variations in L2. Moreover, it is found that stronger intensity-phase
coupling can enhance the robustness of the bistability region against L2 fluctuations.
For instance, when α = 0, the tolerance for variations in L2 that allow the system
to remain in the bistability region, for L1=5.73 µm at σc = −3, is approximately 10
nm, demanding high fabrication precision. However, when α increases to 2, while the
bistability region initially on the blue side (σc > 0 when α = 0) vanishes, the region
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Figure 4.7. (a), (c) Normalized mode frequency (ω−ωc0)/γt, and (b), (d) the corresponding
laser threshold density N/N0 of the modes as a function of the normalized NC frequency
detuning σc. (a), (b) correspond to rR = 0, and (c), (d) to rR = −0.7, with α = 2 in all
cases. The colored lines represent the distinct modes as in Figure 4.5. (e) Bistability range
(left axis) and power contrast between the mode with a higher output power and the mode
with a lower output power (right axis) as a function of the RHS mirror reflectance |rR|2.
The power contrast is calculated for the NC detuning, where the LHS-Fano mode has the
lowest threshold.
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Figure 4.8. The lowest threshold modes as a function of RHS WG length offset, L2 − L1,
and NC detuning σc with L1 fixed at 5.37 µm. (a), (c) show the oscillation frequencies, and
(b), (d) show the corresponding threshold carrier density. (a), (b) are under the condition
of α = 0, and (c), (d) are for α = 2. The areas enclosed by the red curves represent the
bistability regions. The green cross corresponds to the bottom row panels in Figure 4.9(a)
and (b).

initially on the red side (σc < 0 when α = 0) blueshifts and expands (as seen in
Figure 4.8(c) and (d)). This expansion indicates that the bistability can be preserved
even with large deviations in L2 up to 25 nm.

Figure 4.9(a) shows how the bistability region vanishs when the RHS WG length
gradually increases. A unique phenomenon occurs at a specific length of the RHS
WG, as plotted by the red curve in Figure 4.9(a) and (b), corresponding to the green
cross in Figure 4.8(b). Here, the hybrid mode merges with FP and LHS-Fano modes.
This convergence creates, for a certain detuning, an infinite number of points that
fulfill the oscillation condition, allowing for a seamless transition between FP and
LHS-Fano modes. The primary mechanism behind this phenomenon is the phase
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Figure 4.9. Variations in the lowest threshold modes with minor RHS WG length L2
adjustments, shown for (a) mode frequency and (b) threshold carrier density. The red
curves in the bottom row panels represent the critical length at which the bistability region
vanishes, corresponding to the green cross in Figure 4.8(b). (c) The threshold carrier density
variations of modes when L2 is shorter (left panel) or longer (right panel) than L1 corresponds
to a WG phase shift of -4π or +4π.
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”flattening” of the composite mirror. Assuming a constant carrier density N , a slight
extension of the RHS WG can significantly flatten the composite mirror phase curve
on one side of the spectrum, as shown in Figure 4.10(a). Conversely, an increase in
N can counterbalance this flattening, as shown in Figure 4.10(b), leading to multiple
combinations of ω and N that satisfy the lasing condition. Despite the absence of
a mode jump, this transition is accompanied by a large variation in spatial power
distribution. This smooth transition could bypass transient relaxation oscillations,
with a potential for rapid optical switching, which is particularly beneficial in optical
communication systems where fast switching speeds are crucial.

A notable observation is the cyclical re-appearance of bistability, correlating with
the RHS WG length, occurring when the phase shift of the field propagating over the
extended cavity reaches 2π manifolds, as shown in Figures 4.9(c). This behavior is
expected in standard passive structures, as completing a full oscillation cycle (modulo
2π) ensures the propagation phase remains unchanged. However, note that excessively
increasing the WG can lead to a decline or even the complete elimination of the
bistability region. In the case of an elongated external active WG, the optical field
passes a longer distance through the gain medium, resulting in a lower lasing threshold.
As previously mentioned, this causes a flatter phase curve of the composite mirror,
which in turn can eliminate the bistability.

Figure 4.10. Reflection coefficient spectra of the LHS composite Fano mirror rCMR for (a)
different external cavity lengths L2 (where N = N0) and (b) different value of the carrier
density N (where L2 = L1) The NC detuning σc is set to -5. The solid lines represent the
reflectance (right axis), and the dashed lines represent the phase. The black dotted lines are
the propagation phase shift in the LHS WG.
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4.5 Numerical simulations of feedback Fano lasers

4.5.1 Multi-section approach for feedback Fano lasers
The T-matrix approach is useful in identifying steady-state cavity modes but falls
short of capturing the dynamic lasing behavior. Referencing Subsection 2.3.3, we
can expand the multi-section model to accommodate feedback Fano lasers with non-
uniform carrier distributions. Here, the WG is divided into 2M discrete sections.
Each section, indexed as m = 1, 2...M + 1,M + 2, ...2M + 2 from the LHS mirror to
the RHS mirror, is illustrated in Figure 4.11. We calculate the temporal evolution of
fields using a series of plane wave propagation equations:

S+
m (t+ τd) =

{
rLS

−
1 (t+ τd) (m= 1)

S+
m−1 (t) exp (ik (ω,Nm−1(t)) vgτd) (2 ≤ m ≤ M + 1) (4.7)

S−
m (t+ τd) = S−

m+1 (t) exp (ik (ω,Nm+1(t)) vgτd) (1 ≤ m ≤ M) (4.8)

S+
m (t+ τd) =

{
S+

m+1 (t) exp (ik (ω,Nm+1(t)) vgτd) (M+2 ≤ m ≤ 2M + 1)
rRS

−
2M+2 (t+ τd) (m= 2M+2)

(4.9)
S−

m (t+ τd) = S−
m−1 (t) exp (ik (ω,Nm−1(t)) vgτd) (M + 3 ≤ m ≤ 2M + 2)

(4.10)

For the central two sections, m = M + 1 and M + 2, located adjacently on either side
of the NC, we denote S±

M+1 and S±
M+2 alternatively as S±

nl and S±
nr respectively. The

field dynamics at this point is described by the coupled mode equations:

S−
nl(nr) (t) = −iS+

nr(nl) (t) + √
γcAc (t) (4.11)

dAc (t)
dt

= − (iδ (ω) + γt)Ac (t) + i
√
γcS

+
nl (t) + i

√
γcS

+
nr (t) (4.12)

The out-coupling power through the LHS WG (RHS WG) end is PL(R) = |tL(R)|2|S−
1(2M+2)|

2.
Moreover, the carrier rate equation for each section is given by:

Nm (t+ τd) = (Nm (t) − Cd) exp
(

−
(

1
τc

+ Cn +D′
)
τd

)
+ Cd (4.13)

where Cn and Cd are defined as:

Cn = vggn

σ0
(∣∣S+

m (t) |2+
∣∣S−

m (t) |2
)
d

Vd
(4.14)

Cd =
Rp + CnN0 + D

d2 (Nm+1(t) +Nm−1(t))
1
τc

+ Cn +D′ (4.15)

Note that D′ = 2D/d2 at 2 ≤ m ≤ 2M + 1 and D′ = D/d2 at m = 1, 2M + 2 at
the WG boundary with the section length d = L1/M . All other parameters have the
same definitions as in Subsection 2.3.3.
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Figure 4.11. Schematic of the multi-section model for a feedback Fano laser. The WG is
divided into 2M + 2 sections. The central two sections, m = M + 1, and M + 2, are located
adjacently on either side of the NC. The light yellow region represents the gain material.

4.5.2 Steady-state solutions

To calculate the steady-state behavior of the laser for varying NC frequency, we
gradually vary the parameter σc, crossing from negative to positive values and then
reversing the process. The steady-state solutions are extracted from the dynamic sim-
ulations (using the multi-section approach), when the turn-on relaxation oscillations
are damped out. When tuning σc, the initial conditions for each dynamic simula-
tion are set to be the steady-state solutions from the prior calculation, incorporating
a memory effect of the system’s past state into the model. Here, the carrier diffu-
sion rate is assumed to be large, setting the diffusion coefficient D to the limit-value
Dlim = d2/(2τd) (see Subsection 2.3.3), section number M = 20, RHS mirror reflec-
tivity rR = 0.3, pumping rate Rp = 20Rth, cavity length L1 = L2 and linewidth
enhancement factor α = 2. As shown in Figure 4.12(a), the steady-state solutions
derived from the multi-section dynamic model are remarkably matched with the solu-
tions calculated from the lasing oscillation conditions (Figure 4.7(b)). When the NC
frequency is blueshifting, the laser retains in the FP mode until σc = 6. A sudden
transition to the LHS-Fano mode occurs as the reflectivity of the Fano mirror becomes
high enough (the LHS-Fano mode will always dominate over the RHS-Fano mode be-
cause of the lower threshold). Conversely, when the NC frequency is redshifting, the
laser stays on the LHS-Fano mode until σc = 0.5, and then transits to the FP mode.
This transition point differs from that of the blueshift, leading to a hysteresis loop
and indicating the bistability.

Further analysis explores the scenario when the diffusion rate is more realistic.
With D set to Dreal = 6.027 × 10−4 m2/s, carriers are inclined to recombine at or
near their initial location. As a result, the carrier density within the RHS WG remains
higher than in the LHS WG due to the decreased optical field for the LHS-Fano mode
(refer to Figure 4.13(b)). A lowered D leads to more pronounced carrier localization
in the RHS WG, thereby enhancing the gain there. This increased gain compensates
for the reduction in the Fano mirror loss, causing the reflectance of the composite
mirror to have less variation when tuning σc. Consequently, lasing in the LHS-Fano
mode is maintained over a broader NC detuning range, with reduced variations in
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Figure 4.12. Stead-state solutions extracted from dynamic simulations using the multi-
section approach for (a) a diffusion coefficient set at the limit-value D = Dlim = d2/(2τd)
and (b) a realistic diffusion coefficient D = Dreal = 6.027 × 10−4 m2/s. Parameters are
fixed at M = 20, rR = −0.3, Rp = 20Rth, L1 = L2, and α = 2. Blue circles are solutions
corresponding to a blueshift of the NC frequency (scanning from lower to higher values),
while red circles are solutions corresponding to a redshift of the NC frequency (scanning
from higher to lower values). The carrier density displayed in the first-row panel of (b)
corresponds to the midpoint of the LHS WG.
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threshold and power throughout the bistability region, as shown in Figure 4.12(b).

Figure 4.13. The spatial distributions of the carrier density and optical power along the
WG for (a) D = Dlim, σc = 3 and (b) D = Dreal, σc = 1. The spatial origin (0µm) is
aligned with the LHS mirror. Blue lines represent the FP mode, and red lines represent
the LHS-Fano mode. Black dashed lines represent the LHS-Fano mode as a reference when
α = 0 and σc = 3.

4.5.3 Dynamics and modulation of feedback Fano lasers

4.5.3.1 Flip-flop operations

Next, we investigate the dynamic response of the laser when σc is modulated in time.
Such a modulation scheme can be implemented by changing the refractive index of
the NC as introduced in Section 3.3, leading to a flip-flop operation between two
lasing states, as shown in Figure 4.14(a). Here, the pumping rate Rp is set to 40Rth.
The carrier diffusion coefficient D is set to Dlim and α is set to be 0. The initial NC
detuning σc is set at −3, which is in the middle of the bistability region indicated by
the red shaded areas in Figures 4.5(a) and (b)). Upon initiation, the laser operates
in the LHS-Fano mode, characterized by lower relaxation oscillation frequencies [32]
and fast damping rate [32]. A modulation pulse with a Gaussian shape is applied
to the NC at t = 1.2 ns, causing a redshift of the NC detuning σc to −5, making it
cross the left boundary of the bistability region (σc = −3.6), as shown in the first-row
panel of Figure 4.14(a). The laser then transits from the LHS-Fano mode to the FP
mode, characterized by a slower damping rate and faster relaxation oscillation. The
laser remains locked in the FP mode even when the detuning reverts to the initial
value (e.g., at t = 1.5 ns). Subsequently, at t = 2.4 ns, another modulation pulse
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is applied, causing σc to blueshift to -1, which crosses the right boundary of the
bistability region (σc = −2.1), driving the laser back to the LHS-Fano mode. This
series of control pulses demonstrates the dynamic bistability in the feedback Fano
laser system.

The simulation is also performed under realistic conditions with D = Dreal and
α = 2, shown in Figure 4.14(b). Here, σc is initially set at 1 and tuned from -4
to 6 accordingly. The flip-flop action is still observed. As demonstrated in Figure
4.12(b), when α is non-zero, and D is reduced to a realistic value, the carrier density
for the LHS-Fano mode is maintained at a lower level across the entire bistability
range (e.g., for N ∼= 2 ranging from σc = -2 to 5). A larger extinction ratio can
be attained during the mode-switching compared to the case with zero α and fast
diffusion (Figure 4.14(a)). The lower panels of Figures 4.14(a) and (b) show the time
evolution of the output power from the LHS mirror (the second row, red lines) and the
RHS mirror (the third row, blue lines). The time evolution of the output power from
both ends of the WG exhibits opposing trends due to a stronger LHS WG field for the
LHS-Fano mode compared to the FP mode. In contrast, the RHS WG exhibits an
inverse field strength relation in these two modes (see Figure 4.13). Such an intrinsic
anti-correlation between the power levels from the different ports distinguishes the
feedback Fano laser from other optical flip-flop devices [24, 99, 101]. This feature
makes it possible to construct a shift register by interconnecting the signal from the
anti-correlation port to the subsequent flip-flop in a series arrangement [106].

4.5.3.2 Dependence on the characteristics of triggering pulses

As mentioned, the modulating pulse must surpass certain threshold values (bistability
region boundaries) to enable mode switching, imposing requirements on both the
temporal width and amplitude of the modulating pulse. The laser state will remain
unchanged if the modulating pulse peak power is below these threshold values. When
the pulse exceeds the threshold, the laser requires a certain duration to alter and
stabilize the carrier density level. From the simulations of the switching dynamics
(Figure 4.14), one can find the shortest pulse width (full width at half maximum,
FWHM) necessary for triggering the mode switching. As seen in Figure 4.15, the
minimum FWHM for triggering the Fano-to-FP mode transition (represented by red
dots) varies with the pumping power and tends to be longer than that needed for
the FP-to-Fano transition (blue dots). This difference is due to the higher threshold
of the FP mode, meaning that the carrier population needs time to accumulate to
a higher level. Consequently, the minimum FWHM of the triggering pulse for the
Fano-to-FP process shows the opposite relation with the pumping power. In contrast,
the transition from the FP to Fano mode involves a decrease in average carrier density.
This process relies on stimulated emission to reduce the carrier population. which is
more rapid than increasing the population. This process resembles the dynamics of
a Q-switching as illustrated in Figure 3.1. The laser state transition completes only
after the pulse generated by the sudden increase of the cavity’s Q-factor has been
entirely released. The trailing edge of this pulse is primarily governed by the photon
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Figure 4.14. Simulation of dynamic flip-flop operation of the feedback Fano laser for (a)
D = Dlim with α = 0, and (b) D = Dreal, α = 2. In (a), the NC detuning σc starts at -3,
redshifts to -5 at t = 1.2 ns, then blueshifts to -1 at t = 2.4 ns. In (b), the NC detuning
σc starts at 1, redshifts to -4 at t = 1.2 ns, then blueshifts to 6 at t = 2.4 ns (first-row
panels, violet lines). Black dashed lines mark the corresponding bistability region boundary.
Subsequent panels show the LHS output power (second-row panels, red lines) and the RHS
output power (third-row panels, blue lines). The bottom row panels show the carrier density
at the midpoint of the entire WG for (a) (yellow line), and at both the midpoints of the
LHS WG (yellow solid line) and the RHS WG(yellow dashed line) for (b).
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lifetime, which depends on mirror loss and cavity length rather than the pumping
rate [79]. Consequently, the minimum FWHM for triggering the FP-to-Fano process
is much shorter than that for the Fano-to-FP process and shows minimal sensitivity
to changes in the pumping rate.

Figure 4.15. Minimum pulse width (FWHM) required to trigger the mode switching as
a function of normalized pumping rate Rp/Rth, with other parameter settings same as in
Figure 4.14(a). Red dots represent the Fano-to-FP mode process, and blue dots represent
the FP-to-Fano mode process.

4.5.3.3 Energy consumption estimation of triggering pulses

As indicated, the minimum FWHM of the triggering pulse is expected to depend on
the cavity mirror loss and therefore should be affected by the NC detuning σc. Figure
4.16(a) depicts the minimum pulse FWHM as a function of σc. Here, σc is initially set
at -3 with the parameters used in Figure 4.14(a) and will be later tuned to the values
exceeding the bistability boundaries (σc = −3.6 and −2.1). As seen in Figure 4.16(a),
the minimum FWHM of the triggering pulse is inversely related to the modulation
amplitude. Once the bistability boundary is surpassed, the minimum pulse FWHM
decreases with the increased modulation amplitude for both Fano-to-FP and FP-to-
Fano processes. The reduction in pulse width approaches a lower boundary where
the Fano mirror is either fully transparent (for the Fano-to-FP process, red curve)
or entirely blocked (for the FP-to-Fano process, blue curve). In the former case, the
build-up of carriers is not hindered by stimulated emission from the field trapped
inside the Fano cavity. In the latter case, the Fano mirror effectively halves the FP
cavity’s length, decreasing the photon lifetime. Under these conditions, the laser
functions either as a ’pure’ FP laser or a Fano laser, enabling a mode build-up time
shorter than a laser with a semi-transparent mirror. Figure 4.16(a) shows that the
lower limits of the triggering pulse width for both processes fall below 50 ps, which
is considerably faster than previous photonic crystal optical flip-flop devices [24],
requiring several nanoseconds to deplete a significant number of excited carriers.

Next, we estimate Energy requirements for the triggering pulse that shifts the NC
frequency are estimated. We assume the NC is illuminated by an external source,
which modulates the NC resonant frequency via the refractive index change due to
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free carriers generated by two-photon absorption (as discussed in Subsection 3.3.1).
Typically, this effect can only result in a resonance blueshift [82] but not the reverse
redshift. However, by designing the NC with an initial red detuning σi outside the
bistability region and then applying a bias to re-enter this region to the detuning
value σb, one can still realize mode switching for both processes. For instance, the
cold cavity detuning is σi = −5, and a constant NC shift of 2γt is applied so that the
detuning is biased to σb = −3. Mode switching is achieved by applying a triggering
pulse or turning off the bias to cross both sides of the bistability region. The bias
power Pb can be estimated through Equation 3.2, yielding |σb − σi| γt = KcarNc, and
through Equations 3.8 and 3.10 when the time variation of carrier can be set to zero at
steady-state, givingGT P A(Pb/γcp)2 = Nc/τc , withGT P A = KT P AVT P A/(2ℏω′V 2

F CA)
representing the two-photon absorption coefficient. The carrier density inside the NC
is Nc, and γcp signifies the total coupling rate for the external modulation mode,
leading to a coupling Q-factor of Qcp = ω′/(2γcp), where ω′ is the modulation mode
frequency. This estimation holds well when the switching speed is much slower than
the carrier decay rate, which is a good approximation for an NC with an ultra-small
mode volume, which accelerates the carrier diffusion, leading to a lifetime of only a
few picoseconds [48, 107, 108]. Furthermore, we assumed that a higher-order mode
of the NC, distinct from the Fano mode, is excited to efficiently modulate the NC
without affecting the original Fano laser system. The higher-order mode exhibits
weak coupling to the WG, allowing the NC to maintain a large Qcp [38]. The bias
power is then expressed by:

Pb =
√

|σb − σi| γtγ2
cp/(KcarGT P Aτc) (4.16)

and the energy cost for the triggering pulse [109]:

Ep ≈
√

∆Tγtγ2
cp/(KcarGT P A)

(√
|σc − σi| −

√
|σb − σi|

)
(4.17)

Here, ∆T is the pulse width. We chose Qcp = 104 and VF CA = 0.108 µm3, which are
reasonable values for an H1-type photonic crystal NC [110].

Figure 4.16(b) shows the energy cost of the triggering pulse for the FP-to-Fano
process, starting with an initial NC detuning of σi = −5 and an after-bias detuning of
σb = −3. The bias power, as shown in Figure 4.16(c), is in the range of milliwatts and
increases monotonically. The bias power for the parameters we used is approximately
0.18 mW for |σb − σi| = 2.

Figure 4.16(b) shows a trade-off between the switching pulse width and the ab-
solute detuning σc caused by the pulse. The most energy-efficient point is the NC
detuning shift around 0.5γt (σc = −1.5) from the bistability region’s boundary, where
the lowest switching energy is observed to be 2.8 fJ/bit. The energy consumption
may be further reduced by increasing the Q-factor or reducing the NC’s mode volume
since a higher Q/V ratio increases the field strength and thereby the optical nonlin-
earities within the NC [48]. For instance, a tenfold increase in Qcp could reduce the
pulse energy to 0̃.28 fJ/bit, and the bias power to around 16 µW. Although additional
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Figure 4.16. (a) Triggering pulse width as a function of normalized NC detuning σc, with
the same parameters used in Figure 4.14(a). The red line represents the Fano-to-FP process,
while the blue line represents the FP-to-Fano process. The black dashed line marks the
initial NC detuning before applying the triggering pulse. (b) Corresponding triggering pulse
energy for the FP-to-Fano process in (a), with the assumption of employing an H1-type
photonic crystal nanocavity where free carrier effects induce the detuning. Here, the initial
detuning is set at σi = −5, and then biased to σb = −3. (c) Bias power as a function of
|σb − σi|, with the black dashed line indicating the bias setting used in (b).

power is required for laser pumping, this can be reduced to sub-microwatt levels by
employing nanolasers [7].



74 4 Fano lasers with active feedback

4.6 Comparison to nanolasers with two coupled
cavities

This section compares a two coupled NC system [111], which can also generate fast
mode switching with low energy consumption, to the feedback Fano laser, an NC-
WG coupled system. In the NC-WG system, the two states – the LHS-Fano and the
FP mode – both show stability within the optical bistability region in the numerical
dynamic simulations. Here, we analytically analyze the stability of the two coupled
NC and the NC-WG coupled systems.

Consider a system comprising two coupled NCs, each containing active material.
For simplicity, we assume that both NCs are identical, characterized by identical
resonance frequencies, gain materials, transparency carrier densities, and loss rates.
The dynamics of each nanocavity within the coupled system can be described using
the temporal coupled-mode theory [54]:

dAc1(t)
dt

= −(iδ(ω) + γt)Ac1(t) + iγcAc2(t) +
√
g′

nn(N1 −N0)Ac1(t) (4.18)

dAc2(t)
dt

= −(iδ(ω) + γt)Ac2(t) + iγcAc1(t) +
√
g′

nn(N2 −N0)Ac2(t) (4.19)

with the carrier rate equations:
dN1(2)(t)

dt
= Rp −

N1(2)(t)
τc

− g′
nn|Ac1(2)(t)|2(N1(2)(t) −N0) (4.20)

Here, Ac1 and Ac2 are the amplitudes of the fields inside the first and second NC,
respectively. The parameter γt is the total decay rate, which is the sum of the
coupling rate γc between the two cavities and any additional decay rate arising from
other loss mechanisms. The parameter g′

nn is the gain coefficient for a two coupled NC
system, which has a positive value. The time derivative term in Equation 4.20 can be
adiabatically eliminated when the pumping rate approaches the laser threshold [52],
producing an approximate solution:

N1(2) = τcRp

1 + τcg′
nn|Ac1(2)(t)|2

+
τcg

′
nn|Ac1(2)(t)|2

1 + τcg′
nn|Ac1(2)(t)|2

N0 (4.21)

In the near-threshold region, we can assume τcg
′
nn|Ac1(2)(t)|2 << 1, leading to the

approximation N1(2) = τcRp − τc
2Rpg

′
nn|Ac1(2)(t)|2. Substituting it into Equation

4.18 and 4.18, we have:
dAc1(t)
dt

= −(iδ(ω) + γt)Ac1(t) + iγcAc2(t)

+
√
g′

nn(τcRp − τc
2Rpg

′
nn|Ac1(t)|2 −N0)Ac1(t)

= (−iδ(ω) − γt +
√
g′

nnτcRp −
√
g′

nnN0)Ac1(t)
− τc

2Rpg
′3/2
nn |Ac1(t)|2Ac1(t) + iγcAc2(t)

(4.22)
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and

dAc2(t)
dt

= (−iδ(ω) − γt +
√
g′

nnτcRp −
√
g′

nnN0)Ac2(t)

− τc
2Rpg

′3/2
nn |Ac2(t)|2Ac2(t) + iγcAc1(t)

(4.23)

Here, we consider the anti-symmetric mode that can exist in two states suitable
for bistable operation: one with high Ac1 and low Ac2, and the other with low
Ac1 and high Ac2. An anti-symmetric mode function can be defined as ψ(t)φ(r) ≡
Ac1(t)φ1(r) − Ac2(t)φ2(r) with the anti-bonding relation Ac1(t) = −Ac2(t), the non-
overlap relation

∫
φ1(r)φ2(r)dr = 0 and the normalization condition

∫
φ(r)dr = 1.

Here, φ(r) is the space-dependent complex amplitude. As such, we can express |ψ(t)|2
as 2|Ac1(t)|2 or 2|Ac2(t)|2 (see Appendix D.1). By subtracting Equations 4.22 and
4.23 and taking an integration over the spatial domain, we have the anti-symmetric
mode evolution equation:

dψ(t)
dt

= (−iδ(ω) − γt +
√
g′

nnτcRp −
√
g′

nnN0)ψ(t) − τc
2Rpg

′3/2
nn

2
|ψ(t)|2ψ(t) − iγcψ(t)

= −i(δ(ω) + γc)ψ(t)+(
√
g′

nnτcRp − γt −
√
g′

nnN0)ψ(t) − τc
2Rpg

′3/2
nn

2
|ψ(t)|2ψ(t)

(4.24)

Equation 4.24 is the Stuart-Landau equation [112]. In this equation, the real part
of the linear term has a positive coefficient when

√
g′

nnτcRp −
√
g′

nnN0 > γt, and a
negative coefficient in the cubic term, indicating a supercritical Hopf bifurcation [113].
The laser oscillates between two eigenstates, one characterized by Ac1(t) > Ac2(t) and
the other by Ac1(t) < Ac2(t). This behavior emerges when the field’s out-coupling
rate is slower than the field’s amplification rate. Consequently, the field that escapes
from the first NC is coupled in the second NC and amplified before it is fed back into
the first NC. This dynamic leads to a perturbation of the equilibrium, resulting in
oscillations between the two asymmetric modes.

For the feedback Fano laser, we assume L1 = L2 = L and rL = −1, and simplify
Equation 4.12 by substituting 4.7 and 4.11, thereby decoupling the traveling wave
amplitude S± from NC field evolution equation, making it solely dependent on Ac(t):

dAc (t)
dt

= − (iδ (ω) + γt)Ac (t) + γc

[
i(rL + rR)e2ik(ω,N)L + 2rLrRe

4ik(ω,N)L

1 + rLrRe4ik(ω,N)L

]
Ac(t)

(4.25)
When the laser operates in the LHS-Fano mode with mode frequency ωs and carrier
density Ns, ωs close to the NC frequency ωc, i.e. δ(ωs) → 0, leading to rF (ωs) ≈ i,
and therefore exp (2iksL) ≈ i and exp (4iksL) ≈ −1 with ks = k(ωs, Ns). We can
then linearize Equation 4.25, getting a perturbation equation (see Appendix D.2):

d∆Ac (t)
dt

= (γc − γt)∆Ac (t) + 2GL|As|γc∆N(t) (4.26)
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Here, As is the amplitude of the field at steady state, and G = 1
2 Γgn is the imaginary

part coefficient of the wavenumber. Applying a similar approach to the carrier rate
equation with the condition Ns ≈ N0, we derive (see Appendix D.2):

d∆N(t)
dt

= −∆N(t)
τc

− g′
nlγc|As|2∆N(t) (4.27)

where g′
nl is the gain coefficient associated with S−

nl, which has a positive value. We
then have the differential equation for the perturbed amplitudes ∆Ac(t) and carrier
density ∆N(t):

d

dt

(
∆Ac(t)
∆N(t)

)
= JLF

(
∆Ac(t)
∆N(t)

)
(4.28)

with the Jacobian matrix:

JLF =
(
γc − γt 2GL|As|γc

0 −(1/τc + g′
nlγc|As|2)

)
(4.29)

From this matrix, we can straightforwardly get the eigenvalues λ1 = γc − γt and
λ2 = −(1/τc + g′

nlγc|As|2). Notably, both eigenvalues are negative (γt is a bit larger
than γc), indicating the stability of the LHS-Fano mode.

Alternatively, if the laser operates in the FP mode, we get the corresponding
small-signal dynamical equation for the FP mode :

d

dt

(
∆Ac(t)
∆N(t)

)
= JF P

(
∆Ac(t)
∆N(t)

)
(4.30)

The corresponding Jacobian matrix is (see Appendix D.2):

JF P =

(
−(ζ1 − 1)γt −2|As|GL(ζ1 − 1) δ2(ωs)

γt

−2κγc|As|(Ns −N0) −( 1
τc

+ κγc|As|2)

)
(4.31)

where ζ1 = (1 + |rR|)/(2
√

|rR|), and the coefficient κ is:

κ = gnl
′
(

1
2
δ2(ωs)
γt

2

√
|rR|(ζ1 − 1) + |rR|

)
+ gnr

′

(
1
2
δ2(ωs)
γt

2
1√
|rR|

(ζ1 − 1) + 1
|rR|

)
(4.32)

Since ζ1 ≥ 1, the trace of JF P is negative. Additionally, because the NC energy is
very small for the FP mode, the term associated with |As|2 can be neglected, resulting
in a positive determinant of JF P , which implies that the FP mode is stable. This
stability analysis of the FP mode in the feedback Fano laser system indicates that
these lasers can avoid oscillation as in lasers with two coupled cavities.
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4.7 Experimental results and observations

Experiments were conducted on a feedback Fano laser, although the evidence of bista-
bility had not yet been obtained. However, some observations can be explained with
the feedback Fano laser model.

We investigated a feedback Fano laser sample comprising a line-defect WG side-
coupled to an L7 NC, based on a two-dimensional indium phosphide (InP) photonic
crystal (PhC) slab with an embedded layer of InGaAsP/InAlGaAs quantum well as
the gain medium, as shown in Figure 4.17. This sample is similar to the configuration
described in Subsection 3.5.1. The distinction is the gain medium extends along the
entire WG until the grating coupler (GC). The grating coupler here not only acts
as the port for signal collection and pump light injection but also functions as an
external reflector, transforming the device into a Fano laser with feedback. The L7
NC is designed to have a resonance frequency near 1550 nm for its fundamental mode.
A series of samples were fabricated with adjusted PhC’s hole radii to span guiding
mode frequencies from 1530 to 1570 nm, aiming for optimal phase matching between
the WG and NC.

The cavity length of the Fano laser, corresponding to the LHS WG length in the
feedback Fano model, measures approximately 5.37 µm. The distance from the NC
to the GC, corresponding to the RHS WG, is about 20 µm. We began by character-
izing the lasing spectrum of the device, using a 1480 nm continuous wave laser for
pumping, directed at the grating coupler via a micro-photoluminescence setup [96],
as illustrated in Figure 3.12. The C-shaped grating coupler, designed for 1480 nm, ex-
hibits approximately 40% reflectance at 1550 nm, as determined by finite-difference
time-domain (FDTD) simulations. Since the pump wavelength is significantly de-
tuned from the resonance frequency of the NC, the Fano mirror will not impede the
pump, ensuring uniform carrier pumping across the WG.

Figure 4.17. Schematic of the feedback Fano laser sample. The blue circles are the air
holes, forming the photonic crystal structure. The violet rectangle marks the region of the
quantum well structure.
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4.7.1 Emission spectra and laser L-L curves

Figure 4.18(a) shows the emission spectrum for a sample illuminated with a 1480
nm pump. The optical spectrum analyzer (OSA) used has a resolution limit of 0.02
nm. We observe multiple emission peaks between 1538 and 1542 nm. The peak
at 1540.44 nm is identified as the Fano mode as it is the only mode detected when
out-coupling signals are collected from directly above the NC. The other peaks are
probably higher-order FP modes originating from the photonic crystal structure [5];
they could also be defect modes or Anderson localized modes [114]. This sample
shows a very close wavelength difference between the Fano mode and the FP mode
nearest to it (within 0.5 nm), providing an opportunity to observe bistability. Here,
we focus on the Fano mode and the adjacent FP mode (termed as the 1st FP mode),
positioned immediately next to the Fano mode at a peak wavelength of 1540.75 nm.
The corresponding light-in versus light-out (L-L) curve for both the Fano and the
1st FP modes is shown in Figure 4.18(b). Under uniform 1480 nm pumping, the
1st FP mode exhibits a typical S-shaped curve, signifying a lasing threshold (the
OSA’s noise floor covers the part below the threshold). Conversely, the Fano mode
does not display this behavior. It operates solely within the amplified spontaneous
emission region, showing a linear increase in output power when the other FP modes
are present. A typical S-shaped lasing threshold curve for the Fano mode becomes
apparent when the Fano laser cavity (LHS WG) is pumped with a 980 nm laser in
the absence of the 1480 nm pump, as shown in Figure 4.18(c). This suggests that
when FP modes are present, the Fano mode lasing is somehow suppressed.

4.7.2 Characterization of optical-induced thermal modulation

Given that the femtosecond pulse source applied in Section 3.5 offers pulses too short
for the system to reach its steady state, and broadening the femtosecond pulse would
result in inadequate peak power, we turn to use thermal modulation. Here, we employ
a 980 nm continuous wave laser source, which has photon energy marginally below the
InP bandgap energy, enabling two-photon absorption and efficient light-to-thermal
energy transfer while minimizing direct linear absorption (though linear absorption
still occurs in the area with quantum well structure) for an unwanted pumping effect.
We characterized the thermal-induced wavelength shift of feedback Fano lasers by
measuring the emission spectra dependence on temperature. This measurement is
performed on another sample that, after several months, had degraded to a non-lasing
state. However, their thermal characteristics are similar.

The device’s temperature was adjusted by placing it on a platform connected
to a temperature controller, ensuring a precision of 0.01 K. The data presented in
Figure 4.19(a) shows the wavelength against temperature for Fano and FP modes,
consistently showing a linear increase at a rate of 0.104 nm/◦C, indicating uniform
heating across the device by the temperature controller. The decrease in wavelength
observed between 22 to 24 ◦C is attributed to mode hopping. Due to the absence
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Figure 4.18. (a) Emission spectrum of the feedback Fano laser. The peak at 1540.44 nm
is identified as the Fano mode and the adjacent peak at 1540.75 nm is termed as the 1st
FP mode. (b) L-L curve for the Fano mode and the 1st FP mode under a 1480 nm pump
through the grating coupler. (c) L-L curve for the Fano mode when vertically pumped with
a 980 nm laser atop the LHS WG.

of active material, simply illuminating the NC with the modulation light proved
insufficient for inducing the necessary index shift. Therefore, we directed a 980 nm
laser at the midpoint atop the RHS WG to induce temperature changes in the sample.
Though this might alter the refractive index and consequently the effective cavity
length of the external cavity, it has been shown that variation of the external cavity
length does not significantly affect the modes’ frequency when the NC detuning is not
too large (see Figure 4.8). The measurements of the optical-thermal characteristics
under the injection of the 980 nm laser in Figure 4.19(b) reveals a wavelength shift
for the Fano mode at a rate of 0.00453 nm/mW, correlating to a temperature increase
of 0.0436 ◦C/mW. Additionally, an output power increase of 0.09457 mW/mW (980
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nm) was observed. Since altering the external cavity length also does not significantly
affect the modes’ lasing threshold(see Figure 4.8), it is likely that this output power
variation is a result of an additional pumping effect produced by the 980 nm laser.

Figure 4.19. (a) Emission peak wavelengths of the Fano mode and the adjacent FP mode
(1st FP mode) versus temperature. Temperature control is achieved with a precision of 0.01
K. The black dashed line represents a linear fit of the initial six data points for the Fano
mode before the occurrence of mode hopping. (b) Variations in the wavelength and peak
power of the Fano mode in response to the input power of a 980 nm laser. Dashed lines
indicate fitted curves representing the optical-thermal response characteristics.

4.7.3 Pumping spot position and its influence on excited modes
The influence of non-uniform pumping becomes significant when directing a small-
diameter beam at the WG. The location of the pumping spot is crucial for deter-
mining which modes are excited. We utilize the multi-section approach to simulate
a symmetric feedback Fano laser under non-uniform pumps, considering a realistic
diffusion rate, Dreal, and assuming α = 0. A pump with a finite diameter of 3 µm is
centered on the midpoints of the LHS WG and the RHS WG, respectively. We apply
a pumping power of 100 Rth for the LHS WG, while for the RHS WG, the power is set
at 100, 128, and 130 Rth, corresponding to the right to the left column in Figure 4.20.
With the NC detuning σc set to 3, we position the laser within the bistable region
(refer to Figure 4.5(b)). When both WGs receive equal pumping power, the Fano
mode with the normalized frequency value near 3 emerges as the dominant lasing
mode, as seen from the Fourier transform spectrum (the bottom-row panels in Figure
4.20(a) and (b)). Upon increasing the RHS pumping power, the Fano mode becomes
unstable at a certain threshold, showing fluctuations in output power and the NC
internal energy (Figure 4.21(b)). Beyond this threshold, the NC energy decays, lead-
ing to the dominance of the FP mode (Figure 4.20(c)). This suggests that almost
no coexistence of Fano and FP modes occurs in a symmetric feedback Fano laser. A
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Figure 4.20. Simulation results for symmetric feedback Fano lasers with dual pumping
on the LHS and RHS WGs, with RHS pumping rates of (a) 100 Rth, (b) 128 Rth, and (c)
130 Rth. The LHS pumping rate is fixed at 100Rth, with an NC detuning of σc = 3. The
beam diameter for each pump is set at 3µm. The top-row panels show the carrier density
spatial profile, with the origin at 0µm corresponding to the LHS mirror. The second-row
panels show the spatial distribution of the intracavity power. The third-row panels show the
temporal dynamics of the NC energy. The bottom-row panels show the Fourier transform
spectra. In the spectra of (a) and (b), the mode with a normalized frequency value close to 3
is identified as the Fano mode. However, in the spectrum of (c), the Fano mode disappears,
and FP modes appear.

non-uniform pump with stronger power on the RHS may compensate for the large
loss of the external cavity and excite the FP mode. However, this compensation can
also stem from the extension of the external cavity and the gain medium. In further
simulations shown in Figure 4.21, where we gradually increase the external cavity
length with a uniform pump, we use a low pumping rate R = 10Rth and set σc = 0.
For a symmetric structure, the laser stabilizes in the Fano mode. However, as L2
extends to 9.40 µm, multiple FP modes appear. When L2 goes even higher to 12.08
µm, the Fano mode is suppressed, and multiple FP modes appear. This simulation
provides insights into our experimental findings: In a feedback Fano laser with an
asymmetrical design, the extended external cavity that incorporates additional gain
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can lead to the dominance of FP modes, which in turn suppresses the Fano mode.

Figure 4.21. Simulation results for asymmetric feedback Fano lasers with uniform pumping
with RHS WG length of (a) 5.3 µm, (b) 9.4 µm, and (c) 12.1 µm. The pump rate is set at
10Rth, with an NC detuning of σc = 0. The Fano mode in the bottom-row panels exhibits
a normalized frequency value of 0.

We then measured the sample with a 980 nm pump atop the LHS WG and the
1480 nm uniform pump from the GC to simultaneously excite the Fano and FP modes.
Figure 4.22(a) shows the spectral variations with increasing 980 nm pump power,
revealing a redshift in the Fano mode, while the 1st FP mode remains unshifted. As
shown in Figures 4.22(b) and (c), a sudden increase and subsequent decrease in power
marks the overlapping and subsequent separation of the Fano mode and the 1st FP
mode. The separation indicates that the laser does not stabilize in the FP mode after
the overlap, and hence, no bistability is observed in this sample. This preliminary
sample based on two-dimensional PhC might have complicated effects such as slow
light [5], band-edge lasing [115], and Anderson localization [114], making it difficult
to differentiate various modes and effectively excite the Fano mode. Additionally,
the suspension slab structure results in mechanical instability, making it difficult
to control the laser operating in the bistability region. Future experiments could be
conducted on a symmetric feedback Fano laser based on a one-dimensional nanobeam
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structure [102,116], which could avoid challenges such as mechanical instability, slow
light-induced band-edge lasing and the difficulty in identifying multiple high-order
modes [104], thereby enabling more precise control on the Fano mode.

Figure 4.22. (a) Emission spectra of the feedback Fano laser with the 980 nm pump atop
the LHS WG and the 1480 nm uniform pump from the grating coupler. The spectra demon-
strate the overlap and separation of the Fano mode and the 1st FP mode with increasing
980 nm pump power. (b) Variations in the wavelength of the Fano mode and the 1st FP
mode as a function of 980 nm laser power. (c) The output power of the Fano mode as a
function of 980 nm laser input power.



84 4 Fano lasers with active feedback

Parameter Symbol Value
Original NC frequency ωc0 1.215 × 1015 Hz

NC coupling Q Qc 500
NC vertical scattering Q Qv 105

NC internal loss Q Qi 86000
WG internal loss αi 10 cm−1

LHS mirror reflection coefficient rL -0.9
Phase and group indices n, ng 3.5

Confinement factor Γ 0.01
Differential gain gn 5 × 10−16 m−2

Transparency carrier density N0 5 × 1021 m−3

Carrier lifetime τc 0.28 ns
Cross-section of WG mode A 1.05 × 10−13 m2

LHS WG length L1 5.37 µm
Threshold pumping rate Rth 3.325 × 1031 m−3s−1

Free carrier dispersion coefficient Kcar 1.95 × 10−12 m3s−1

Two-photon absorption coefficient βT P A 2.4 × 10−10 m/W
Effective two-photon absorption mode volume VT P A 2.1 × 10−19 m3

Table 4.1. Simulation parameters used in Chapter 4.



CHAPTER5
Stochastic simulation

of semiconductor
nanolasers

5.1 Introduction

The preceding chapters focus on lasers, despite being designed with micro to nanometer-
scale structures, operating with a significant number of carriers and photons, which
allows the dynamic equations to be solved by ignoring the shot noise of photon and
carrier numbers due to the small relative fluctuation compared to their mean val-
ues. However, more refined dynamics equations become essential as we approach the
lasing threshold, where nanolasers operate with only a few intra-cavity photons or
carriers. This is particularly important for lasers employing quantum dots as the
gain medium, where the reduced number of emitters necessitates a more detailed
and accurate approach to model their behavior [117]. Moreover, pursuing benefits
such as reduced power consumption [7] and high modulation speeds [118] leads to
a continuous reduction in the physical size and alters certain fundamental proper-
ties of lasers. For instance, reducing the available number of cavity modes increases
the proportion of spontaneous emission photons channeled into lasing modes [119].
In this case, the β-factor, described in Equation 2.2, gains importance. Figure 5.1
shows the laser intra-cavity photon number (proportional to the laser output power)
against the pumping rate for different β values. Notably, as β increases, the kink
in these curves becomes less pronounced, and the lasing threshold is less clearly de-
fined. As β approaches 1, the curve nearly flattens, suggesting the laser can become
almost ”thresholdless [120].” This is an example of how microscopic quantum effects
can affect the macroscopic behavior of lasers.

When the average number of photons in the cavity is low, spontaneous emission
becomes crucial; under such conditions, photon noise can substantially influence the
laser dynamics. A standard method to introduce stochastic noise sources into the con-
ventional semiconductor laser model is incorporating Langevin noise, denoted as Fi(t)
[52]. The correlation function for such noise is given by ⟨Fi(t)Fj(t− τ)⟩ = Sij · δ(τ),
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Figure 5.1. Photon number np as a function of total pumping rate γpn0 for different β-
factors. Here, the product of the total number of emitters n0 and the β-factors is fixed at
300. The data presented in this figure is calculated using Equation 5.2 at steady state.

where Sij represents the correlation strength and δ(τ) is the Dirac delta function.
The noise spectrum of laser intensity can be analyzed by utilizing the relationship
between the correlation function and spectral density, described by Wiener–Khinchin
theorem [52]. However, the Langevin equation is based on continuous variables. This
formulation overlooks the inherent discrete nature of photons and carriers charac-
terized by the Poisson processes [121]. For systems with large average values, the
Poisson process with discrete variables can be approximated as Gaussian distribu-
tion with continuous variables [122], validating the Langevin equation’s assumptions.
However, as the size of the laser decreases, this approximation might no longer hold.
Additionally, when the numbers of photons and carriers are near zero, Fi(t) can
potentially yield negative values, leading to unphysical results. Therefore, a more
appropriate approach to simulate the dynamics of nanolasers is to employ a discrete
stochastic model [123–125].

In a discrete stochastic model, the evolution of carriers and photons is computed
event by event. Each event alters the carrier number, ne, or the photon number,
np. The occurrence of these events is dictated by the Poisson process, capturing the
probabilistic and random nature of quanta. By implementing this model, the inherent
shot noise is considered in calculations and revealed in the statistical properties of
the photon number, which is important for quantum optics applications. The next
section will introduce and delve into two discrete stochastic algorithms: the Fixed
Time Increment method (FTI) and Gillespie’s First Reaction Method (FRM) [125].
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5.2 Stochastic laser rate equations

5.2.1 Fixed time increment method (FTI)

An intuitive approach to numerically solve the laser rate equations by iteration is
to update the system’s parameters with fixed time intervals, simulating the laser
dynamics with differential rate equations. Consider a laser consisting of carriers with
two energy levels located within the cavity and interacting only with a single mode.
These carriers can either be in the ground or the excited state, with the total number
of carriers being n0. Several events can alter the number of excited carriers ne, or the
number of photons np within the laser, including stimulated emission, spontaneous
emission, re-absorption (photon absorption by carriers in the ground state before
exiting the cavity), cavity-loss (the loss of photons from the cavity through mirror
loss), pumping, and background decay (non-radiative recombination or emission into
non-lasing mode). The average rates of each event are listed in Table5.1 [124].

Event Symbol ax Average rate
Stimulated em. ast γrnenp

Spontaneous em. asp γrne

Re-absorption ara γr(n0 − ne)np

Cavity-loss ac γcnp

Pumping ap γp(n0 − ne)
Background decay abg γbgne

Table 5.1. Average rate and the symbols used for each event type in the laser rate equations.

Here, γr is the rate at which a carrier is emitted into the lasing mode. The ratio
of γr to the total carrier decay rate γt is defined as the spontaneous emission β factor,
signifying the proportion of spontaneous emission photons emitted into the lasing
mode:

β = γrne

γtne
= γr

γt
= γr

γr + γbg
(5.1)

with γt = γr+γbg, and γbg being the background decay rate for a carrier. According to
Einstein’s relation [126], absorption would have the same rate as stimulated emission,
meaning it also has the rate γr. The term γc is the cavity loss rate for a photon, and
γp is the pumping rate for a carrier. Note that here, we consider the possibility of
photons undergoing re-absorption before exiting the cavity [127]. Also, we consider
the pumping saturation due to the Pauli blocking principle [128]. This effect is
less likely present in semiconductor lasers that utilize bulk gain materials, whose
continuous band structure provides more available excited states. However, this effect
becomes essential when investigating lasers with gain materials having two-level states,
such as quantum dot lasers.



88 5 Stochastic simulation of semiconductor nanolasers

According to Table 5.1, the laser rate equations with discrete variables can be
expressed as [124]:

dnp

dt
= asp + ast − ara − ac

= γrne + γr(2ne − n0)np − γcnp

(5.2)

dne

dt
= ap − asp − ast + ara − abg

= γp(n0 − ne) − γr(2ne − n0)np − γtne

(5.3)

Now, we can iteratively solve the differential laser rate equations using the FTI
algorithm. The procedure is outlined as follows [125]:

1. Initialization: Set initial values for np and ne at time t = 0.
2. Rate Calculation: For each event type x, calculate its corresponding average

rate, represented as ax.
3. Drawing the number of events occurring: Utilize the Poisson distribution to

determine the number of times each event x occurs during the time interval dt. The
mean value for the Poisson distribution is given by axdt.

4. Renewal: Update the values of ne and np accordingly and adjust the time from
t to t+ dτx.

With this procedure, the iterative rate equation can then be written as:

np,i+1 = np,i + psp + pst − pra − pc (5.4)

ne,i+1 = ne,i + pp − psp − pst + pra − pbg (5.5)
Here, i is the current calculation step index, and px is the occurrence times of the
event x, which is drawn following the Poisson distribution.

A critical factor in maintaining the accuracy of the model is the selection of a
suitable time increment, denoted as dt. Ideally, 1/dt should be significantly faster
than the rate of the fastest occurring event in the system. This ensures that the
number of events drawn remains either one or zero for each event. If the number of
events drawn exceeds one in a single iteration, the changes in ne and np resulting from
each event will overlap, leading to a deviation from the ideal Poisson process. To avoid
this issue, one can alternatively fix the ”fractional time increment,” ft. By adjusting
the time increment to dt = ft/amax during each iteration, where amax represents
the fastest event rate, we ensure that the iteration rate consistently remains much
faster than the rate of any event throughout the simulation. This adjustment adapts
to changes in the event rate as the simulation progresses. The influence of ft on
the event occurrence number can be examined by considering P (X ≤ k), which is
the probability that the drawn number of events occurring is less than or equal to a
certain value k. This probability can be calculated using the cumulative distribution
function of the Poisson distribution:

P (X ≤ k) = e−λ
k∑

j=0

λj

j!
(5.6)
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where λ is the average value of the Poisson distribution. In Figure 5.2, the dependence
of P (X ≤ 1) on ft is demonstrated. Notably, to ensure P (X ≤ 1) surpasses 90%, ft

should be kept below 50%. By decreasing ft to just 1%, P (X ≤ 1) can rise to nearly
99.995%. However, it is essential to find a balance since an excessively small ft will
lead to a considerable increase in computation times.

Figure 5.2. (a) The probability that the drawn number of events is less than or equal to
one, P (X ≤ 1), as a function of the fraction time increment, ft. (b) detailed zoom-in view
of (a), focusing on the range of ft from 0 to 10%.

5.2.2 Gillespie’s first reaction method (FRM)
FTI algorithms can sometimes lead to ambiguities in the order of event occurrences
[125]. This issue arises when multiple events occur within a single time step. For
instance, at a given time t, there are ne(t) excited carriers. If spontaneous emission
happens before stimulated emission, the spontaneous emission rate would be γrne(t),
and the subsequent stimulated emission rate would be γr(ne(t) − 1)np(t). Conversely,
if stimulated emission precedes spontaneous emission, the rates would be γrne(t)np(t)
for stimulated emission and γr(ne(t) − 1) for spontaneous emission. However, in FTI,
if both spontaneous and stimulated emissions happen within the same time interval
from t to t + dt, the algorithm counts the number of excited carriers available for
both events as ne(t), introducing deviations from the actual physical process. Such
deviations become more pronounced when the time step size increases, resulting in
the number of event occurrences exceeding one. To circumvent this problem, an
alternative approach known as the first reaction method can be employed. Daniel T.
Gillespie first introduced this method in quantum chemistry simulations [129]. FRM
algorithm adopts a different approach compared to the method of drawing the number
of events within a time step. FRM identifies the first occurring event by estimating
the waiting time for each possible event and then selecting the one with the shortest
duration. The calculation procedure for the FRM is outlined as follows [125]:
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1. Initialization: Set initial values for np and ne at time t = 0.
2. Rate Calculation: For each event type x, calculate its corresponding average

rate, represented as ax.
3. Drawing waiting times of events: For each event x, calculate tentative waiting

times τx using the formula τx = −log(rx)/ax, where rx is a randomly generated
number between 0 and 1.

4. Determine the occurring event: Identify the event with the shortest waiting
time, τx.

5. Renewal: Update the values of ne and np accordingly and adjust the time from
t to t+ dτx.

The tentative time τx is the duration required for the event to occur. It is derived
from the ”reaction probability density function” Px(τ). The term Px(τ)dτ represents
the probability for the event x that its next reaction will occur in the period (t +
τ, t+ τ + dτ). Here, Px(τ) is the product of the probability P0(τ) — the probability
that event x remains fixed between (t, t + τ) and axdτ — the probability of event
x do occur between (t + τ, t + τ + dτ). It can be recognized that P0(τ) is just the
cumulative distribution function of the Poisson distribution when k = 0; therefore,
P0(τ) = e−axτ [129]. Consequently, we have:

Px(τ)dτ = axe
−axτdτ (5.7)

By randomly picking a number between 0 and 1, we can get a random sampling from
the cumulative distribution function of Px(τ), and therefore obtain the tentative
waiting time τx = −log(rx)/ax following the distribution Px(τ) [129] . The iterative
rate equation in this method becomes:

np,i+1 = np,i

{
+1 x = sp, st
−1 x = c, ra

(5.8)

ne,i+1 = ne,i

{
+1 x = p, ra
−1 x = sp, st, bg

(5.9)

This method would either increase or decrease ne and np each iteration, avoiding the
mix-up of event orders like in the FTI method.

5.2.3 Computational efficiency analysis: FRM vs. FTI
In FRM, the time step for each iteration varies because each drawn waiting time τx

is different. This poses a difficulty when attempting to take the ensemble average
(the average over multiple trials). Due to the varying lengths of time steps in each
iteration, the recorded values of photon and carrier numbers from various trials do not
align on the same time points. One potential solution is to first take time averages for
each individual trial and then calculate their average. However, this method is limited
to systems in stationary states and is not applicable to cases where the system state
is not stable over time. Another way to address this issue is to do resampling. This
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method generates new data points that have the same time intervals, with the value of
each new point determined based on the nearest preceding old data point. Note that
the resampling interval is chosen to be no larger than the smallest τx encountered
in the raw data to avoid losing resolution in the resampled data. However, while
resampling can normalize the time intervals of the data, it significantly increases the
size of the dataset to an unpredictable extent. In contrast, FTI algorithm offers an
inherent advantage in terms of data alignment when a fixed time increment dt is used
(Note that using fixed fractional time increments would still give varying lengths
of time intervals). The trade-off with the FTI algorithm, however, is the potential
ambiguity in the order of event occurrences, as mentioned earlier.

Figure 5.3. (a) Computation time required for a single draw as a function of the average
event rate ax, compared between the Poisson and uniform distributions. Here, the data is
an average taken over 300 trials. (b) Total computation time for a single simulation trial
using both the FTI and FRM algorithms, plotted against the fractional time increment ft.
The simulated duration is 1ns. The inset depicts the corresponding variations in data length.
The parameters used for this simulation are n0 = 200, γp = 5 × 1010 s−1, and β = 0.1.

When comparing FTI and FRM, FRM exhibits better computational efficiency,
particularly when the event average rates of events are not excessively high. A key
factor contributing to this difference lies in the methods each employs for generating
random numbers. The process of drawing a number following the Poisson distribution,
as utilized in the FTI algorithm, is more time-consuming than the approach of drawing
a number from a uniform distribution between 0 and 1, as utilized in the FRM
algorithm.

Figure 5.3(a) shows the computation time against the event average rate ax for
both the Poisson distribution and uniform distribution (For all the simulations pre-
sented in this chapter, we set γt = 1010 s−1, γc = 1011 s−1, unless specified otherwise).
The time required for drawing from the Poisson distribution is longer than that for
a uniform distribution and tends to increase with the event rate. This significantly
affects the total computation time..
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Figure 5.3(b) shows how the total computational time for a single simulation trial
using FTI varies with the fractional time increment ft. When ft is changed from
1% to 10%, there is a 90% reduction in computation time (from 30 to 3 seconds).
The inset in this figure illustrates the relation between data length (which can be
equated to the number of iterations) and ft, revealing a trend that is similar to the
computational time. As seen, FRM consistently outperforms FTI in terms of memory
efficiency until ft exceeds 40%, and in terms of computational time until ft exceeds
80%, where FTI already largely deviates from the ideal Poisson process. Further
analysis demonstrates FRM’s superior efficiency across various pumping rates [125].

5.2.4 Stochastic simulation of a time-varying pump rate
In situations where the external pump varies in time, accurately sampling the pump-
ing rate function, γp(t), over time becomes crucial. For FTI with a constant dt,
capturing the time-varying characteristics of γp(t) is straightforward, as long as dt is
small enough to reflect the pump source’s variations accurately. However, this task
becomes more challenging in FRM (or in FTI with a fixed ft). In these methods,
time intervals between events vary based on event rates. When the pumping rate is
close to zero, both ne and np are typically low, leading to longer drawn time intervals.
This extended duration can miss the finer variations in the pumping source (or any
other external time-varying parameters).

One solution to this problem is to impose an upper limit on the time step, denoted
as dtlim. If the drawn dt surpasses dtlim, the values for ne and np are carried over from
the previous step, but the time is updated as t → t+ dtlim. This approach prevents
large time steps, particularly during periods of near-zero pumping. It proves especially
beneficial when examining the turn-on transient dynamics of lasers. Figure 5.4 shows
the impact of using dtlim on simulation results. In Figure 5.4(a), the gradual increase
of the sampling signal from a triangular signal pump source is lost due to the large
time leaps caused by the low initial pumping rate. However, by setting dtlim to 10−12

seconds, as shown in Figure 5.4(b), the sampled signal closely follows the pattern of
the original signal, thereby preserving the dynamics of the modulated pump.

5.3 Dynamics of nanolasers near threshold

5.3.1 Photon burst phenomenon
When the laser crosses the lasing threshold, there is a transition region from in-
coherent spontaneous emission to coherent stimulated emission. Historically, this
transition was conceptualized as a mixture of coherent and incoherent photons. With
increasing pumping power, the proportion of stable coherent photons grows faster
than incoherent photons, ultimately predominating in the lasing field. Under this
model, photon statistics are thought to be represented by a superposition of both the
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Figure 5.4. Demonstration of the effect of setting a time step limit dtlim with a time-
varying pumping source. (a) Without applying dtlim, the initial rising ramp of the sampled
pumping signal is lost, leading to a zero value of photon number. (b) Results with setting
dtlim = 10−11 s, showing improved signal sampling that captures the dynamic changes in
the pumping rate. The parameters used for this simulation are n0 = 200 and β = 1. A
small bias of γp0 = 107 s−1 is added to the time-varying pump to prevent the time step from
being infinitely large.

Poisson and Bose-Einstein distributions [130]. This transition is difficult to observe in
macroscopic lasers due to the extremely narrow transition zone [39]. However, when
lasers are miniaturized, an increased β-factor broadens this lasing transition region,
as depicted in Figure 5.1. Certain experiments have detected a unique phenomenon
called ”photon bursts,” marked by coherent pulses immersed within an incoherent
photon background in this transition region [39]. This observation is supported by
phenomena like oscillations in the second-order time-delayed autocorrelation function
g(2)(τ), fluctuating above and below unity [131]. These oscillations indicate ampli-
tude fluctuations in the coherent pulses. Additionally, direct observations of sharp
intensity spikes have been recorded [131]. Notably, the appearance of superther-
mal statistics, where g(2)(0) > 2, an unexpected behavior during the thermal to the
Poisson transition, has been measured in micro vertical-cavity surface-emitting lasers
(VCSELs) [132]. Stochastic simulations have also observed the photon bursts phe-
nomenon for quantum well lasers [133], which can not predicted by the conventional
differential laser rate equations [39].

Photon bursts can be attributed to the excessive accumulation of carriers before
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coherent emission. When the cavity lacks photons, the probability of excited carriers
undergoing stimulated emission is significantly low. Despite some small fluctuations,
these excited-state carriers rarely relax into photons, leading to a continuous accumu-
lation of carriers to a high level. When the high carrier number eventually leads to
a high spontaneous emission rate, a cascade of stimulated emission can be initiated,
releasing a coherent pulse. This mechanism is like an intrinsic Q-switching, where
energy stored in carriers is rapidly released due to an abrupt change in the stimu-
lated emission rate. After the pulse release, the low pumping power hinders the rapid
re-pumping of carriers and prevents them from generating stable coherent photon
emissions. As a result, the laser returns to a state of low photon number, thereby
restarting the cycle. This phenomenon is even apparent in intermediate low-β lasers
(β in the range of 0.01 to 0.1). In these lasers, the proportion of spontaneous emis-
sion into the lasing mode is not that large, leading to photon pulses occurring less
frequently but tend to be much stronger and broader than those in high-β lasers, as
shown in Figure 5.5. Notably, high-β lasers can exhibit larger relative fluctuations
near the threshold, as evidenced by the relation δnp/⟨np⟩ ≃ β1/4 [134]. This rela-
tionship is derived from differential laser rate equations considering the contributions
from spontaneous emission. However, small signal stability analysis [52] reveals that
high-β lasers typically have more negative eigenvalues, which means that any fluctu-
ations in photon or carrier numbers tend to decay more rapidly [39]. This implies
that, despite more frequent and large relative fluctuations, high-β lasers still exhibit
intrinsic stability that exceeds low-β lasers.

Figure 5.5. Demonstration of photon burst phenomenon using stochastic simulation for
(a) β = 0.03 with total pumping rate γpn0 = 4 × 1013 s−1, (b) β = 0.3, γpn0 = 6 × 1012

s−1, and (c) β = 1, γpn0 = 3 × 1012 s−1. The blue dashed lines denote the average value of
either carrier or photon number after t = 0.5 ns. These simulations were conducted using
FRM algorithm.

5.3.2 Turn-on transient dynamics of nanolasers
While photon bursts offer the potential for ultra-low power self-pulsing and observing
superthermal light emission, their inherent randomness poses limitations for certain
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applications, such as imaging techniques [135]. Inspired by this phenomenon, we
sought to explore the dynamics of small lasers under a near-threshold pumping pulse.
In this study, we utilized FRM to simulate the behavior of a laser with pulse pump-
ing. Figure 5.6, serves as an illustrative example, showing the temporal changes in
the pumping signal and the corresponding photon number. To align with practical
applications, we consider the signal received by a photon detector. Note that the
statistical properties differ between intra-cavity and out-coupled photons [136]. The
detector’s integration time is set at one femtosecond. Although this duration is con-
siderably shorter than the response times of the fastest available detectors (on the
order of picoseconds [137]), extending it further would result in losing pulse details.
The pump signal has the shape of a square pulse, turned on at 0.1ns and sustained
for various durations. We define a specific range for the output pulses to exclude the
influence of signal tails before and after the square pumping pulse on photon number
statistics. The initial laser turn-on delay signals and the relaxation tails after the
pump turn-off will be discarded, as these sections generally exhibit unwanted near-
zero photon numbers. In Figure 5.6, the horizontal line indicates the cutoff level used
to define the pulse range, with vertical lines marking the corresponding cutoff time
points. To define the pulse period precisely in the presence of significant noise, we
only consider time intervals where the photon number exceeds the defined cutoff sig-
nal level. This level is set at 5% of the peak photon number, rounded to the nearest
integer. This period extends until the pump is turned off and the photon number
falls below this cutoff threshold for the first time.

Figure 5.7(a), (b), and (c) show the autocorrelation function g(2)(0) as a function
of pulse width at three distinct pumping rates close to the lasing threshold with β
values of 0.03, 0.3, and 1. The autocorrelation function g(2)(0) can be calculated
by [138]:

g(2)(0) = 1 +
〈
δnp

2〉− ⟨np⟩
⟨np⟩2 (5.10)

where ⟨np⟩ is the average photon number, and ⟨δnp
2⟩ is the variance of photon number.

Ensemble averaging is used here since long-time averages can not be taken for short
pulse pumping. Each point in the figure represents an average of 10 trials. Dashed
lines represent the steady-state g(2)(0) under time-invariant pumps. As expected,
every curve approaches the time-invariant pumping steady-state solutions as the pulse
width expands. This is attributed to the decreasing influence of the pulse’s rising
and falling edges over its entire pulse duration. With the increasing pumping power,
there is a noticeable decline in g(2)(0), particularly for shorter pulses. This observation
suggests that the statistical properties during the transient rise and fall edges are more
sensitive to the pumping power than the steady-state behavior. Notably, even when
the steady-state g(2)(0) is below 2, shorter pulses can still yield superthermal light
emissions, concluding that the rising and falling edge might contribute significantly
to superthermal emission. Remarkably, low-β lasers can exhibit higher g(2)(0) values
for short pulses compared to their higher-β counterparts (for example, comparing the
blue lines in (b) and (c), which have the same g(2)(0) for DC pumping but different
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Figure 5.6. Illustration of pulse signal extraction methodology. The upper panel shows
a square-pulse, time-varying pumping source. The lower panel shows the photon number
signal received by the detector, with an integration time of 1 fs. In the lower panel, the
horizontal line marks the 5% maximum photon number cutoff level, while the two vertical
lines mark the corresponding cutoff time points. The region of the signal for recording is
highlighted in light red.

g(2)(0) variation for pulse pumping.). This could be due to the rapid rise and fall
processes under near-threshold pumping, mimicking the photon burst phenomenon
with superthermal statistics [132], which are more pronounced in lower-β lasers.

Figure 5.7(d), (e), and (f) show the g(2)(0) curves with the lowest pumping rates,
replicated from panels (a), (b), and (c) (left axis), and their corresponding total
photon number of the output pulses (right axis) as a function of the pump pulse width.
Note that the g(2)(0) curves in Figure 5.7(d) and (e) traverse from a superthermal
(g(2)(0) > 2) to a subthermal (g(2)(0) < 2) region as pumping pulse width increases.
For the pulses with the same width (for example, comparing the pulses in (d) and (e)
where g(2)(0) = 2 and pulse width is 0.4), lasers with a lower β can emit more energy
per pulse, as indicated by the total photon number detected. This finding suggests
that lasers with a near-unity β might not always be the optimal choice for generating
high-power superthermal light pulses. However, using macro-lasers with very low β
values might also be less suitable, as the superthermal region associated with photon
bursts could be considerably narrowed or even vanish [39].
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Figure 5.7. Variation of the autocorrelation function g(2)(0) with respect to pumping pulse
width at different pumping rates. Panels (a) to (c) show the changes in g(2)(0) for β values
of 0.03, 0.3, and 1, respectively. Each data point is the result of an average of 10 trials.
Dashed lines indicate the steady-state g(2)(0) under time-invariant pumps. Panels (d), (e),
and (f) show the relationship between g(2)(0) (blue lines, left y-axis) and the total photon
number for each output pulse (red lines, right y-axis) as a function of pumping pulse width.
The g(2)(0) curves correspond to the blue lines in panels (a), (b), and (c), respectively. Here,
the product n0β is fixed at 300.
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5.3.3 Monitoring spontaneous and stimulated emission photons in
stochastic simulations

Near the lasing threshold, there is a notable transition from the dominance of spon-
taneous emission photons to stimulated emission photons. To gain a deeper under-
standing of this transition, it would be beneficial to monitor both spontaneous and
stimulated emission photons simultaneously. The previously discussed stochastic sim-
ulation model can track only the total photon number np, as characterized by the
”one-pool model.” However, to concurrently monitor the spontaneous emission photon
number np,sp, and stimulated emission photon number np,st, a ”two-pool model” can
be constructed by creating two separate reservoirs for spontaneous and stimulated
emission photons. This modification involves not just the spontaneous and stimulated
emission events but also re-absorption and cavity loss events, both of which also af-
fect photon numbers. The average rates for re-absorption and cavity loss can be split
to operate on the two separate reservoirs, spontaneous and stimulated emission, as
follows:

ara,sp(st) = γr(n0 − ne)np,sp(st)

ac,sp(st) = γcnp,sp(st)
(5.11)

Using FRM as an example, the iterative equations for this two-pool model are formu-
lated as follows:

np,sp,i+1 = np,sp,i

{
+1 x = sp
−1 x = csp, rasp

np,st,i+1 = np,st,i

{
+1 x = st
−1 x = cst, rast

(5.12)

and the total photon number is np,i = np,sp,i + np,st,i.
Figure 5.8(a) shows the temporal evolution of ne, np,sp, and np,st using the two-

pool model for a laser with a β = 0.03. Note that this evolution pattern differs
from that generated by the one-pool model, as shown in Figure 5.8(b), even when
the same seed for the random number generator is used. This observation raises a
consideration: the act of splitting the photon reservoir into two pools might inadver-
tently introduce non-physical effects, especially considering that photons, according
to quantum theory, are indistinguishable. However, further analyses, as presented
in Figure 5.9, reveal that both the average photon number ⟨np⟩ and the variation of
g(2)(0) as functions of the pumping rate exhibit remarkable similarities between the
two models. This resemblance is evident for β = 0.03 (Figure 5.9(a) and (c)) and
β = 0.3 (Figure 5.9(b) and (d)) in the near-threshold region. Additionally, higher-
order statistical measures such as variance, skewness, and kurtosis also closely align
in both models (see Appendix E), thereby confirming the capability of the two-pool
model to generate reliable simulation outcomes comparable to the one-pool model.
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Figure 5.8. Temporal evolution of the carrier number ne and photon number np for a laser
characterized by β = 0.03. Comparisons are drawn between (a) the two-pool model and (b)
the one-pool model. In (a), the blue and red lines denote the stimulated and spontaneous
emission photon numbers, respectively, while in (b), the red line denotes the total photon
number. Here, the product n0β is fixed at 300. An identical random number generator seed
is used for both simulations.

5.3.4 Comparative analysis: FTI vs. FRM in the near-threshold
region

As discussed in Subsection 5.2.3, FTI introduces deviations from the Poisson process,
prompting interest in investigating its influence on statistical quantities. By com-
paring simulation results with analytical solutions, we can gain insights into these
deviations. Analytically, the average photon number ⟨np⟩ can be derived from the
steady-state solution of Equations 5.3 and 5.2, and the autocorrelation function g(2)(0)
is related to ⟨np⟩ and its variance ⟨δnp

2⟩ as in Equation 5.10. The variance, derived
from the rate equations with Langevin noise, is given by [52]:

〈
δn2

p

〉
= 1

Γ

[(
1 + Γ2

ee

ω2
R

)
Dpp +

Γ2
pe

ω2
R

Dee + 2ΓpeΓee

ω2
R

Dpe

]
(5.13)

where [124]

2Dpp = γc ⟨np⟩ + γr ⟨ne⟩ + γrn0 ⟨np⟩
2Dpe = −γrn0 ⟨np⟩ − γr ⟨ne⟩
2Dee = γp (n0 − ⟨ne⟩) + γt ⟨ne⟩ + γrn0 ⟨np⟩

(5.14)
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Figure 5.9. Comparative analysis of the one-pool (blue lines) and the two-pool (red lines)
models. (a) and (b) show the dependence of the average photon number ⟨np⟩ on the total
pumping rate for β= 0.03 and 0.3, respectively. (c) and (d) show the dependence of the
average photon number g(2)(0) on the total pumping rate for β= 0.03 and 0.3, respectively.
Here, the product n0β is fixed at 300. Each data point is the result of an average of 30
trials.

and

Γee = γp + γt + 2γr ⟨np⟩
Γep = γr (2 ⟨ne⟩ − n0)
Γpe = γr (2 ⟨np⟩ + 1)
Γpp = γc − γr (2 ⟨ne⟩ − n0)

Γ = Γee + Γpp

ω2
R = ΓeeΓpp + ΓpeΓep

(5.15)

Figure 5.10 compares the relative deviations in photon number ∆⟨np⟩/⟨np⟩ (Figure
5.10(a)) and deviations in autocorrelation function ∆g(2)(0) (Figure 5.10(b)) between
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analytical and simulation results for both FTI and FRM algorithms, plotted against
the pumping rate. For FTI, the time interval condition is set to ensure P (X ≤ 1) >
99%.

In the observed results, FRM exhibits larger photon number deviations than FTI,
particularly at low pumping rates and higher β. In this regime, noisy spikes are
present when average photon numbers are near zero. The assumption that Langevin
noise is symmetrically distributed about the average value is less valid when the pho-
ton number approaches zero. FRM algorithm considers only one event per iteration.
When photon or carrier numbers reach zero in a given step, the algorithm excludes
any subsequent event that could further decrease these numbers in the next step.
Conversely, the FTI algorithm mixes the effects of all events within a single time
step. This approach allows for the occurrence of events in larger numbers than the
photon or carrier numbers, potentially resulting in photon or carrier numbers falling
below zero. For instance, if the photon number np(t) is one at time t, the cavity-loss
event could occur twice during the period dt due to its non-zero average rate. Al-
though the photon number after this iteration step, np(t + dt), cannot be negative,
the cavity-loss event can cancel out the effects of, for example, stimulated emission,
resulting in a smaller increase in the photon number. Therefore, FTI is closer to the
analytical model assumption that Langevin noise can be both positive and negative,
even when the average value is near zero. As seen from Figure 5.10, the discrepancy
between the results from the FRM and analytical solutions diminishes as the pumping
rate increases due to the average photon numbers moving away from zero. Further
evidence of this trend is provided in Figure 5.11, which shows the fraction of time in
which np exceeds its average ⟨np⟩ during the whole simulated time for β = 1. The
data shows that in FTI simulation, the fraction approaches closer to 50% compared
to FRM under the same pumping rate, suggesting a more balanced probability of the
photon number being either above or below its average. As the pumping intensifies,
both methods exhibit a trend of converging toward 50%, owing to the decreased prob-
ability of the photon number reaching zero. The autocorrelation function ∆g(2)(0)
also shows convergence towards the analytical solutions (where ∆g(2)(0) = 0) as the
pumping rate increases for both methods. It is observed that FRM yields negative
deviations of g(2)(0) from the analytical model, especially at low pumping rates. This
trend can be understood by Equation 5.10, which indicates that a larger average
photon number results in a lower g(2)(0). In FRM, as shown in Figure 5.10(a), there
are notable positive deviations in ⟨np⟩ at low pumping rates. This positive devia-
tion of photon number subsequently results in the negative deviation of g(2)(0). As
observed, in the near-threshold region characterized by large relative fluctuations in
photon number and an average photon number nearing zero, there are notable devia-
tions in the average photon number,⟨np⟩, and g(2)(0) when comparing the analytical
model and FTI with the more realistic FRM simulation. These discrepancies are
especially pronounced in high β lasers with an extended lasing transition region.
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Figure 5.10. Comparison between stochastic simulation and analytical solutions for (a)
the relative deviation in photon number ∆⟨np⟩/⟨np⟩, and (b) the deviations in the autocor-
relation function ∆g(2)(0). The blue lines represent the results from FTI, while the red lines
represent the results from FRM. The black lines mark the zero deviation point, perfectly
matching the analytical solutions. The results are organized according to different β values,
with 0.03 in the upper row, 0.3 in the middle row, and 1 in the lower row. Here, the product
n0β is fixed at 300. Each data point for FRM is averaged over 30 trials. For FTI, each
point is averaged over 10 trials due to longer computational time, using a time increment of
dt = 8 × 10−15 s.
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Figure 5.11. Percentage of the signal exceeding its average value for β = 1. The blue
line shows the results from FTI, and the red line shows the results from FRM. The black
dashed line at 50% indicates an equal distribution of the photon number above and below
its average value.
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CHAPTER6
Conclusion

This thesis represents an exploration of the dynamics and applications of photonic
crystal Fano lasers, advancing the understanding through theoretical and experimen-
tal investigations. Key highlights include the experimental demonstration of energy-
efficient pulse generation in Fano lasers, as well as the development of a mathematical
model and a refined simulation algorithm for Fano lasers with feedback. The research
presented here opens up a route for future innovations in laser technology.

In Chapter 2, we develop an algorithm for simulating Fano lasers. This algorithm
divides the laser cavity into multiple sections, allowing for taking the carrier diffu-
sion into account and enhancing the temporal resolution of the field evolution. We
investigate the relationship between the number of sections and the pumping rate for
maintaining numerical stability. The convergence of laser variables with increasing
section numbers and the deviation from steady-state oscillation conditions solutions
due to non-uniform carrier distribution is analyzed. The comparison of our new
multi-section approach with previous analytical solutions assuming uniform carrier
distribution reveals a notable discrepancy, which indicates the deviation of previous
calculations from realistic cases. Additionally, we conduct a comparative analysis of
laser dynamics during relaxation oscillations, employing various numerical simulation
approaches. This study offers a more precise tool for simulating the behavior of Fano
lasers. While more realistic models such as logarithm gain dependence on carrier
density in quantum well lasers and pumping saturation can be considered [52], this
simple model still offers valuable insights into the dynamics of Fano lasers.

In Chapter 3, our research delved into nanocavity refractive index tuning methods,
particularly focusing on the free carrier effect and the thermal effect on Fano lasers.
Q-switching and cavity-dumping mechanisms explain the pulse generation observed
during nanocavity frequency tuning. The experimental results, demonstrating similar
pulse shapes to the simulation predictions, validate our theoretical model and high-
light the energy efficiency of pulse generation in Fano lasers compared to equivalently
sized Fabry-Pérot lasers. Although the modulation in this study is achieved through
an external ultra-short pulse laser, the potential for electrical modulation of nanocav-
ities is promising. This advancement could pave the way for compact, integrable, and
modulable on-chip Fano lasers in the future.

Chapter 4 proposes a novel Fano laser configuration with an active feedback cav-
ity. Unlike previous weak feedback systems, where the feedback field only slightly
perturbs the dominant lasing mode, this device exhibits various modes arising from
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the interplay between the original Fano laser and the external cavity. The coexistence
of Fano and Fabry-Pérot modes under specific nanocavity detuning and bistability
is observed, opening up possibilities for creating compact, energy-efficient flip-flop
devices using feedback Fano lasers. The analytical comparison between nanolasers
with two coupled cavities and our waveguide-nanocavity systems reveals our system’s
stability, avoiding the mode oscillations observed in two coupled nanocavities lasers.
Experimental characterization of a sample with a feedback Fano laser structure was
conducted. However, this prototype sample did not observe bistability as predicted
in our model. This may be because the sample was designed and fabricated before
the theoretical model was developed. Therefore, the sample does not meet the spe-
cific conditions our model predicts as necessary for achieving bistability. Looking
forward, we are optimistic that newly designed samples, more closely adhering to the
theoretical guidelines, will successfully demonstrate the bistability properties.

Chapter 5 shifts focus to the stochastic simulation of nanolasers, going beyond
the semi-classical approach used in previous chapters. This research aims to catch
up with the future development of nanolasers towards lower power and fewer emit-
ters. We revisit two stochastic approaches, the fixed time increment method and
Gillespie’s first reaction method, to examine their characteristics and computational
efficiency. A key area of focus is the behavior of nanolasers in near-threshold regions.
In this region, our simulations successfully capture the photon burst phenomenon
previously observed in quantum well lasers [39]. This phenomenon is reproduced in
our simulations using quantum dot laser configuration, considering effects such as
photon recycling and pumping block effects. The statistical properties observed in
the simulations reveal deviations from analytical solutions in the near-threshold re-
gions, which are attributed to the photon bursts causing large fluctuations in photon
and carrier numbers. Moreover, we investigate the photon statistical properties of
pulses generated through gain tuning near the threshold. This study might shed light
on ultra-low power pulse generation, potentially paving the way for advancements in
energy-efficient optical communication technologies.
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APPENDIXA
Derivation of

feedback Fano laser
oscillation condition

To determine the lasing mode frequencies and threshold carrier densities of a feedback
Fano laser, we calculate the pole of the scattering matrix (S-matrix), S, which cor-
responds to the threshold for lasing [52]. The pole can be determined by identifying
the root of the denominator of the S-matrix elements. The S-matrix can be expressed
in terms of the transmission matrix (T-matrix), T, as follows [52]:

S = 1
T11

[
T21 detT
1 −T21

]
(A.1)

Equation A.1 shows that all elements of the S-matrix share a common denomina-
tor, T11. The overall T-matrix of the feedback Fano laser, Ttot, is obtained by se-
quentially multiplying the matrices in Equation 4.3 as TLM TLW GTF TRW GTRM .
Consequently, we can express T11 as:

T11 = e−i(k(ω,N)L1+k(ω,N)L2)

tF (ω) tLtR

(
1 − e2ik(ω,N)L1rF (ω) rL − e2ik(ω,N)L2rF (ω) rR

+e2i(k(ω,N)L1+k(ω,N)L2)rLrR

(
r2

F (ω) − t2F (ω)
) )
(A.2)

To find the poles of the S-matrix, we set the numerator of T11 to zero, resulting in
the following equation:

e2ik(ω,N)L1rLrF (ω) + e2ik(ω,N)L2rRrF (ω)
+e2ik(ω,N)(L1+L2)rLrRt

2
F (ω) − e2ik(ω,N)(L1+L2)rLrRr

2
F (ω) = 1 (A.3)

This derivation leads to Equation 4.5 in the main text, which defines the lasing
oscillation condition for a feedback Fano laser.
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APPENDIXB
Derivation of the

composite Fano mirror
The lasing condition for the LHS-Fano mode can be alternatively seen as the condi-
tion for the field circulating without loss in a cavity composed of the LHS mirror,
with reflection coefficient rL, and the RHS composite Fano mirror, with reflection
coefficient rCMR:

rLrCMR (ω,N) e2ik(ω,N)L1 = 1 (B.1)

The RHS composite Fano mirror is composed of the Fano mirror, the RHS WG, and
the RHS mirror. Its reflection coefficient can be calculated using the T-matrix. The
overall T-matrix of the RHS composite Fano mirror, TCMR, is given by:

TCMR = TF TRW GTRM = eik(ω,N)L2

tF (ω) tR

[
TCMR,11 TCMR,12
TCMR,21 TCMR,22

]
(B.2)

where the elements are defined as:

TCMR,11 = 1 − e2ik(ω,N)L2rF (ω) rR

TCMR,12 = −e2ik(ω,N)L2rF (ω) + rR

TCMR,21 = rF (ω) + e2ik(ω,N)L2rR

(
t2F (ω) − r2

F (ω)
)

TCMR,22 = rF (ω) rR + e2ik(ω,N)L2
(
t2F (ω) − r2

F (ω)
) (B.3)

Consequently, the RHS composite Fano mirror reflection coefficient rCMR can be
obtained by:

rCMR =
TCMR,21

TCMR,11
= rF (ω) + rRt

2
F (ω) e2ik(ω,N)L2

1 − rRrF (ω) e2ik(ω,N)L2
(B.4)

which leads to Equation 4.6 in the main text.
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APPENDIXC
Stability investigation

of modes in feedback
Fano lasers

The stability of each mode in a feedback Fano laser can be numerically evaluated by
observing the time evolution from its steady state. Utilizing the lasing oscillation con-
dition (Equation 4.5), we can calculate the spatial distribution of the field amplitude
for each mode based on their mode frequency and threshold carrier density. This
distribution is subsequently used as the initial condition for the dynamic evolution
equations of the laser to examine mode stability.

First, we consider the carrier density rate equation at steady state (assuming
uniform carrier density without diffusion):

Rp − Ns

τc
−

Γvggn

(
σnl (ωs, Ns) |S−

nl|2 + σnr (ωs, Ns) |S−
nr|2

)
A (L1 + L2)

(Ns −N0) = 0 (C.1)

Here, ωs and Ns are the steady state mode frequency and threshold carrier density for
each mode derived from Equation 4.5. The parameter σnl(nr)(ωs, Ns) is the photon
number-intensity parameter (ratio of total photon number to intensity) with respect
to S−

nl(nr), which can be derived as follows [56]:

σnl(ωs, Ns) = I (t)∣∣S−
nl(t)

∣∣2 =
σ0
∫ L1

0 |S+(z, t)+S−(z, t)|2dz∣∣S−
nl(t)

∣∣2 (C.2)

Here, σ0 = 2ϵ0nng/(ℏωs), and I(t) is the total photon number within the WG. The
terms S+(−)(z, t) are the complex amplitude of the field propagating forward (back-
ward) toward the NC, dependent on spatial coordinate z along the WG. Setting z = 0
at the point beneath the NC, we then have the relation:

S± (z, t) = S±
nl(t)e±ik(ω,N)z (C.3)

and
S−

nl(t) = rCMRS
+
nl(t) (C.4)
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Substituting Equation C.3 and C.4 into C.2, we get:

σnl (ωs, Ns) = σ0 ∫L1
0

(∣∣∣∣ 1
rCMR

eik(ωs,Ns)z + e−ik(ωs,Ns)z

∣∣∣∣2
)
dz

= σ0

(
e2G(Ns)L1 −1

2G(Ns) + 1−2G(Ns)L1
2G(Ns)|rCMR|2 + i(e−i2β(ωs)L1 −1)

2β(ωs)rCMR
+ i(1−ei2β(ωs)L1)

2β(ωs)rCMR
∗

) (C.5)

where G (Ns) = 1
2 (Γgn(Ns −N0) − αi) is the imaginary part, and β(ωs) = ωsn/c

is the real part (assume linewidth enhancement factor α = 0) of the wavenumber
k(ωs, Ns). The parameter σnr can be derived in the same way by replacing S±

nl with
S±

nr, L1 with L2, and the RHS composite mirror with the LHS composite mirror.
Next, to obtain the relation between S±

nl and S±
nr, we use the definition of the

Fano mirror T-matrix TF : [
S+

nl

S−
nl

]
= TF

[
S−

nr

S+
nr

]
(C.6)

By dividing S−
nl on both sides and using the relation rCMR = S−

nl/S
+
nl, we have:[

S−
nr/S

−
nl

S+
nr/S

−
nl

]
= T−1

F

[
r−1

CMR

1

]
(C.7)

where T−1
F is the inverse matrix of TF . The amplitude S−

nr in Equation C.1 can
be eliminated and solved to determine S−

nl as a function of ωs and Ns. The field
amplitudes at other sites in the WG, S±

m, and within the NC, Ac can then be obtained
using Equations 4.7 and 4.11.

Using S±
m, Ac, and Ns as the initial conditions of the multi-section dynamic equa-

tions, we can examine the stability of each mode. Figure C.1 shows the temporal
evolution of energy inside the NC, ENC , and normalized carrier density, N/N0, for
each mode when NC detuning σc = −3. As seen, the hybrid mode and RHS Fano
mode eventually transfer to the LHS-Fano mode, having the same ENC and N values.
On the other hand, the FP mode, though exhibiting some oscillation, stabilizes with-
out transitioning to other modes. This result confirms the stability of the LHS-Fano
and FP modes.
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Figure C.1. Evolution of nanocavity (NC) energy and carrier density for various modes
in a feedback Fano laser. (a) NC energy ENC and (b) carrier density N are tracked for the
RHS Fano mode (yellow lines), FP mode (violet lines), hybrid mode (light blue lines), and
LHS-Fano mode (green lines). The simulation is conducted at a pumping rate Rp = 20Rth

and an NC detuning of σc = −3. The RHS Fano and hybrid modes eventually transfer to
the LHS-Fano mode, while the FP mode remains stable.
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APPENDIXD
Detailed derivation of
the analytical relation

between feedback
Fano lasers and

nanolasers with two
coupled cavities

D.1 Relation between the anti-symmetric mode
function and the nanocavity complex amplitude

In Section 4.6 of the main text, we use two variables, Ac1(t) and Ac2(t), to describe
the complex amplitude located in the first and the second nanocavity of a two coupled
cavities nanolaser. We then define an anti-symmetric function as:

ψ(t)φ(r) ≡ Ac1(t)φ1(r) −Ac2(t)φ2(r) (D.1)

with the anti-bonding relation:

Ac1(t) = −Ac2(t) (D.2)

Here, φ(r) is the space-dependent complex amplitude. Since the φ1(r) and φ2(r) are
located in different NCs, we have the non-overlap relation:∫

φ1(r)φ2(r)dr = 0 (D.3)
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with two coupled cavities

and the normalization condition: ∫
φ(r)dr = 1 (D.4)

Given these relations, Equation D.1 can be rewritten as:

|ψ(t)|2 = |ψ(t)|2
∫

|φ(r)|2dr

=
∫

|Ac1(t)φ1(r) −Ac2(t)φ2(r)|2dr

=
∫ (

|Ac1(t)|2|φ1(r)|2 + |Ac2(t)|2|φ2(r)|2 −Ac1(t)φ1(r)Ac2
∗(t)φ2

∗(r) − C.C.
)
dr

= |Ac1(t)|2 + |Ac2(t)|2

= 2|Ac1(t)|2 = 2|Ac2(t)|2

(D.5)

By subtracting Equations 4.22 with 4.23 and substituting Equation D.5 into them,
we derive Equation 4.24 in the main text.

D.2 Derivation of the Jacobian matrix for the FP Mode
and the LHS-Fano mode

For the feedback Fano laser, substituting Equations 4.7 and 4.11 into Equation 4.12
and under the assumptions L1 = L2 = L and rL = −1, we can simplify and derive
the NC field evolution equation dependent only on Ac(t) as presented in Equation
4.25 in the main text:

dAc (t)
dt

= − (iδ (ω) + γt)Ac (t) + γc

[
i(rL + rR)e2ik(ω,N)L + 2rLrRe

4ik(ω,N)L

1 + rLrRe4ik(ω,N)L

]
Ac(t)

(D.6)
We can then linearize Equation D.6 to obtain the perturbation equation around the
steady state mode frequency ωs and carrier density Ns:

d∆Ac (t)
dt

=
[
γc2|rR|e4iksL − iγc(1 + |rR|)e2iksL

1 + |rR|e4iksL
− (iδ(ω) + γt)

]
∆Ac(t)

+

[
−γc2GL|As|e2iksLi(1 + |rR| + 4i|rR|e2iksL − |rR|e4iksL − |rR|2e4iksL)

(1 + |rR|e4iksL)2

]
∆N(t)

(D.7)

Here, ks = k(ωs, Ns) and As are the wavenumber and the NC field amplitude at
steady state, respectively.
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For the LHS-Fano mode at steady state, δ(ωs) is close to zero and rF (ωs) ≈ i.
Then, according to the oscillation condition rLrF (ωs) exp(2iksL) = 1, we derive:

exp (2iksL) ≈ i (D.8)

and
exp (4iksL) ≈ −1 (D.9)

Substituting Equations D.8 and D.9 into D.7, we obtain:

d∆Ac (t)
dt

= (γc − γt)∆Ac (t) + 2GL|As|γc∆N(t) (D.10)

which is Equation 4.26 in the main text.
The rate equation for carriers in the WG can be expressed as:

dN(t)
dt

= Rp − N(t)
τc

−
(
g′

nl|S−
nl(t)|

2 + g′
nr|S−

nr(t)|2
)

(N(t) −N0) (D.11)

where g′
nl and g′

nr are the gain coefficients associated with S−
nl and S−

nr, respectively.
Assuming that the round-trip time in the system is much shorter than the timescales
for variations in the field and carrier density, we can utilize Equation 4.11:

S−
nl(nr) = −iS+

nr(nl) + √
γcAc (D.12)

and Equation 4.7 for Snl(nr) at steady state:

S+
nl = S−

nlrLe
2iksL

S+
nr = S−

nrrRe
2iksL

(D.13)

to obtain the equation depends solely on S−
nl and Ac:

S−
nl = 1 − irRe

2iksL

1 + rLrRe4iksL

√
γcAc = 1 + i|rR|e2iksL

1 + |rR|e4iksL

√
γcAc (D.14)

and the equation depends solely on S−
nr and Ac:

S−
nr = 1 − irLe

2iksL

1 + rLrRe4iksL

√
γcAc = 1 + ie2iksL

1 + |rR|e4iksL

√
γcAc (D.15)

By substituting Equations D.14 and D.15 into Equation D.11 and using the Equations
D.8 and D.9, Equation D.11 becomes:

dN(t)
dt

= Rp − N(t)
τc

− g′
nl(N(t) −N0)γc|Ac|2 (D.16)

We can similarly linearize the carrier rate equation D.16:

d∆N(t)
dt

= −∆N(t)
τc

− 2g′
nlγc|As|(Ns −N0)∆Ac(t) − g′

nlγc|As|2∆N(t) (D.17)
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with two coupled cavities

For the LHS-Fano mode at steady state, Ns ≈ N0, Equation D.17 simplifies to:

d∆N(t)
dt

= −∆N(t)
τc

− g′
nlγc|As|2∆N(t) (D.18)

which is Equation 4.27 in the main text.
For the FP mode at the steady state, the lasing condition becomes:

rLrRtF
2(ω

s
) exp (4iksL) = 1 (D.19)

Incorporating the Fano mirror transmission from Equation 2.10 and taking the square
root yields: √

|rR|( δ(ω) − iγv

iδ(ωs) + γt
)e2iksL = ±1 (D.20)

Given that exp(2iksL) must achieve value i when δ(ωs) → 0 for the Fano mode (see
Equation D.8), only the positive solution is physically valid. We then have (assume
γv ≈ 0):

e2iksL = 1√
|rR|

(i+ γt

δ(ωs)
) (D.21)

In the FP mode, the mode frequency detunes from the NC frequency by several
linewidths, γt. We can assume γ2

t /δ
2(ωs) ≪ 1, leading to:

e4iksL ≈ 1
|rR|

(−1 + i
2γt

δ(ωs)
) (D.22)

Substituting Equations D.21 and D.22 into Equation D.7, we derive:

d∆Ac (t)
dt

=
[
(2 − ζ1)γc − γt − i

(
(ζ1 − 1)γcδ(ωs)

γt
+ δ(ωs)

)]
∆Ac(t)

+

[
2|As|GL(ζ1 − 1)

γc

(
γt

2 − δ2(ωs)
)

γt
2 − i4|As|GL(ζ1 − 1)γcδ(ωs)

γt

]
∆N(t)

(D.23)

With γc ≈ γt in a low loss NC, Equation D.23 simplifies further as:

d∆Ac (t)
dt

= [−(ζ1 − 1)γt − iζ1δ(ωs)] ∆Ac(t)

+
[
−2|As|GL(ζ1 − 1)δ

2(ωs)
γt

− i4|As|GL(ζ1 − 1)δ(ωs)
]

∆N(t)
(D.24)

where ζ1 = (1 + |rR|)/(2
√

|rR|).
Substitute Equations D.21 and D.22 into Equation D.14, we obtain:

S−
nl =

1 −
√

|rR| + i
√

|rR| γt

δ(ωs)

i 2γt

δ(ωs)

√
γcAc (D.25)
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and therefore

|S−
nl|

2 =
(

1
4
δ2(ωs)
γt

2 (1 −
√

|rR|)
2

+ |rR|
)
γc|Ac|2

=
(

1
2
δ2(ωs)
γt

2

√
|rR|(ζ1 − 1) + |rR|

)
γc|Ac|2

(D.26)

Also, for the Equation D.15:

S−
nr =

1 − 1√
|rR|

+ i 1√
|rR|

γt

δ(ωs)

i 2γt

δ(ωs)

√
γcAc (D.27)

and therefore

|S−
nr|2 =

(
1
4
δ2(ωs)
γt

2 (1 − 1√
|rR|

)
2

+ 1
|rR|

)
γc|Ac|2

=

(
1
2
δ2(ωs)
γt

2
1√
|rR|

(ζ1 − 1) + 1
|rR|

)
γc|Ac|2

(D.28)

Using Equation D.26 and D.28, the linearized carrier rate equation becomes:

d∆N(t)
dt

= −∆N(t)
τc

− 2κγc|As|(Ns −N0)∆Ac(t) − κγc|As|2∆N(t) (D.29)

with the coefficient κ:

κ = gnl
′
(

1
2
δ2(ωs)
γt

2

√
|rR|(ζ1 − 1) + |rR|

)
+ gnr

′

(
1
2
δ2(ωs)
γt

2
1√
|rR|

(ζ1 − 1) + 1
|rR|

)
(D.30)

Combined with the Equation D.24, we can construct the Jacobian matrix for the real
part component:

JF P =

(
−(ζ1 − 1)γt −2|As|GL(ζ1 − 1) δ2(ωs)

γt

−2κγc|As|(Ns −N0) −( 1
τc

+ κγc|As|2)

)
(D.31)

which is Equation 4.31 in the main text.
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APPENDIXE
Comparison between

one-pool and
two-pool stochastic

models
This chapter shows the additional results of the comparison between the one-pool and
two-pool stochastic models discussed in Subsection 5.3.3. We examine the higher-
order statistical quantities such as variance, skewness, and kurtosis of the photon
number probability distribution function (PDF). Skewness is the third order of the
standardized moment, measuring the asymmetry of the PDF [139], and kurtosis is
the fourth order of the standardized moment, measuring how often the outliers occur
in the distribution [139]. These additional analyses are presented in Figure E.1.

The results demonstrate that besides the average photon number and the auto-
correlation function discussed in the main text, higher-order statistical quantities as
functions of the pumping rate also reveal similarities between the two models. This
observation suggests that the two-pool model can have a high resemblance in photon
statistics to the one-pool model.
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Figure E.1. Comparative analysis of the one-pool (blue lines) and two-pool (red lines)
models in terms of higher-order statistical quantities. (a) and (b) show the cases for β = 0.03,
and β = 0.3, respectively. The top panels show variance, the middle panels show skewness,
and the bottom panels show kurtosis. Here, the product n0β is fixed at 300. Each data
point is the result of an average of 30 trials.
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