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A B S T R A C T

Network softwarization has significantly evolved since programmable data planes became topical in academia
and industry. Programming Protocol-Independent Packet Processors (P4) is a language to define packet
forwarding behavior. Forwarding devices that are programmed with the P4 language support a flexible way
to define headers, parse graphs, and data plane logic. However, extending the data plane with additional
functionalities has an impact on packet data plane latency. For this reason, this paper analyzes the key factors
that affect data pane latency to packets processed by the Tofino-based target (Tofino Native Architecture
(TNA)), which can be considered the de facto production-ready and P4-programmable Application-Specific
Integrated Circuit (ASIC). Our work first provides an extensive set of latency measurements and, afterwards, it
includes a set of data plane latency predictions using the model derived from the latency results and machine
learning (ML) algorithms. We demonstrate that the PCA-lasso polynomial (PLP) obtains the best results among
the algorithms tested. The best-case results show that PLP obtained an accuracy of 98.22% prediction accuracy
when considering the parser, deparser, and the control block for traffic running at 10 G/s (SFP+) and 100 G/s
(QSFP28). To the best of our knowledge, this is the first work that provides such a comprehensive profiling,
including a method to predict data plane latency in production-grade Tofino ASIC-based switching hardware,
which could be leveraged to yield accurate latency values prior to investment and deployment.
1. Introduction

Society is experiencing an enormous, technology-driven step for-
ward in services and applications. Communication systems thus face
a great challenge, as they must keep pace with the requirements that
services impose, such as real-time transmission or massive data rates.
Furthermore, the diversity of new services has caused an unavoidable
need for flexible networks.

In this scenario, Software-Defined Networking (SDN) [1] flour-
ished as an alternative to traditional network systems, facilitating
network evolution. Additionally, new perspectives and possibilities
have arisen with the emergence of Data Plane Programming (DPP) [2,
3] and the Programming Protocol-Independent Packet Processors (P4)
language [4]. While, SDN promotes independence from vendor-specific
technologies and interfaces by implementing a logically centralized
control plane, DPP complements SDN as it provides additional flexi-
bility at data plane level by defining the packet processing behavior. In
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fact, the P4 language is used to define the packet processing pipeline
and create custom algorithms and functions to handle traffic, resulting
in both tailored control and data planes.

While flexibility is essential to modern networks, performance must
not be overlooked. In fact, the requirements of currently deployed ap-
plications are becoming more stringent and focused on specific perfor-
mance indicators. For example, in the industrial sector, response time
may be crucial, mainly due to the need for manufacturing processes
to send status messages and receive action messages in near-real-time.
Processing systems designed to support DPP and, more specifically, the
P4 language, can be implemented in multiple targets, such as (i) soft-
ware switches (Behavioral Model version 2 (bmv2) Simple Switch tar-
get [5], T4P4S and DPDK), (ii) SmartNICs (Netronome Agilio [6], Pen-
sando Distributed Services Card (DSC) [7]), (iii) field-programmable
gate array (FPGA) boards (NetFPGA [8]), or (iv) Application-Specific
vailable online 9 February 2024
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Fig. 1. V1Model [14] (top) and PSA [15] (bottom) architectures.
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Integrated Circuits (ASICs) (Tofino [9] and Tofino 2 [10]). The pro-
grammable software switches, even if they are low-cost and partic-
ularly flexible, might present limitations in high-performance proto-
types. Therefore, delay, processing capabilities, and load optimization
should be carefully studied and optimized to fulfill performance re-
quirements in designing packet processing programs. Nevertheless, few
works provide a thorough study of production-grade programmable
switch pipelines and the effect of key parameters in data plane latency
such as packet format, program composition, parsing and deparsing
blocks, etc. The effect of these parameters could become pivotal in
pipelines that rely on data plane modularity [11,12]. Since modules
include a considerably large set of P4 constructs, it is vital to predict
the modules’ influence on data plane latency to fulfill the requirements
of each use case.

Accordingly, the purpose of the paper is threefold. First, (i) it ana-
lyzes the data plane latency behavior of Tofino-based P4 switches (APS
BF2556X-1T [13]), as they represent the hardware target that might
potentially obtain better performance results for production networks.
Once the analysis is presented, (ii) the paper provides a comparison of
data plane latency for the traffic running via interfaces configured as
10 Gb (SFP+) compared to 100 Gb (QSFP28). In addition, the paper
creates a model and compares it with several machine learning (ML)
algorithms to predict its data plane latency. Finally, (iii) the paper lists
important use cases that can benefit from deploying a system that pre-
dicts the expected data plane latency. To the extent of our knowledge,
it is the first work that tries to provide such a comprehensive analysis.
Our main objective is that our study serves as a reference profile of the
P4 Tofino-based switch.

The paper is organized as follows. Section 2 describes the back-
ground of SDN, data plane programming, and the relevance of P4-
related concepts in this paper. Section 3 reviews the research context
that motivate this work and that establishes its present relevance.
Section 4 explains the methodology used, and it reviews the theory
behind the data plane measurements performed in our evaluation; the
test results for the parser/deparser and the control block are presented
in Section 5. Section 6 develops, from these results the relevant regres-
sion models to be analyzed. Section 6.3 presents the different machine
learning algorithms used to predict data plane latency; subsequently,
these predictions are compared in Section 7. To end, Sections 8 and 9
discuss and conclude the paper, respectively.

2. Background

2.1. Software-Defined Networking (SDN) and P4 language

In 2008, McKeown et al. [16] published a Data Control Plane Inter-
face (DCPI) protocol (also referred to as southbound interface protocol)
15
named OpenFlow. The publication of this work triggered a revolution in
networking, in which SDN became a key topic of research. OpenFlow
and the SDN architecture [17] defined a logically centralized control
plane that communicates with the data plane (OpenFlow switch) us-
ing the OpenFlow protocol to install flow rules and collect network
statistics, among other control actions. With the logical centralization
of the control plane, new path calculation algorithms and network
deployments arose, changing the de facto distributed networking de-
ign. As the OpenFlow specifications advanced [18], some missing
eatures became evident [19]. The limitations fostered the creation of
data plane programming language named P4 [4]. The advent of P4

riggered what could be called the second generation of SDN, in which
ata plane programming fostered a new design based on centralized
nd local programmable control [20] as a key component in network
oftwarization.

Currently, P4 [4] is the most popular language to program the data
lane. Since its first version (𝑃 414 [21]), the most extended P4 version
s 𝑃416 [22]. The language comprises key terms within the core library
nd additional constructs, known as externs, defined by architecture-
ependent libraries. The externs are used to describe library elements
ike counters, meters, registers, or checksum computation functions (to
ame a few).

.2. Data plane target architectures

The device used in this paper is programmed using the Tofino Native
rchitecture (TNA) [23] (more in Fig. 2). Architectures represent a
esign feature that creates an abstraction of the pipeline, associating
he P4 language with a P4 target. Architectures also define the pro-
rammable blocks of the pipeline and the interfaces that represent a
ontract between the developers and the devices. Individual manu-
acturers can model their target’s programmability, exposing only the
rogrammable parts of the pipeline. The V1Model [14], used in the
mv2 Simple Switch target [5], and the Portable Switch Architecture
PSA) [15] are two well-known architectures in the P4 developer
ommunity.

In Fig. 1, both architectures share blocks that perform analogous
unctionalities. The similarities and differences between models de-
end, generally, on the programmable blocks and the extern defini-
ions. Still, both architectures in Fig. 1 share elements like the parser,
atch-action units (also named control block in this paper), and de-
arser blocks. While a few differences exist, the block organization is
rimarily similar in the V1Model and PSA.

The parser defined in the architecture is responsible for establishing
he state machine in control of header extraction. In other words, it
atches packet bits into typed representations [24]. The match-action
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Table 1
Summary and comparison of the relevant publications in Related Work.

Publication Features Latency modeling

Target Architectural
blocks

Precision Testing
methodology

Testing tools Tested speeds Fitting algorithm Prediction Test case

Dang et al.
[26]

bmv2 Parser
control block
(action table)

millisecond NIC
timestamps
(MoonGen)

MoonGen [28] 10 Gbps N/A N/A N/APISCES microsecond

P4FGPA +
Xilinx SDNet

nanosecond FGPA-based custom
packet generator

Hardware
simulation

Harkous et al.
[29]

Netronome
Agilo CX
SmartNIC [6]

Parser/deparser
control
(headers tables)

microsecond
NIC timestamps
(MoonGen) MoonGen [28] 10 Gbps

Data interpolation
+ target profile
vector

Accuracy:
94%

L3_fwd,
L3_fwd+firewall,
VxLAN_Decap

NetFPGA-SUME
(Xilinx Virtex
XC7V690T) [8]

T4P4S + DPDK

Scholz et al. [31] T4P4S + DPDK
(Intel Xeon
E5-2640)

Baseline
parser/deparser
Control (multiple
table properties)

microsecond NIC
Timestamps
(MoonGen)

MoonGen [28] 10 Gbps
(+ packet
duplication)

CPU
performance
model
(linear regression,
multiple fitting
algorithms)

Model is stated
but not tested

N/A

Tofino 1
(Delta
ET-X064FFRRB)

Parsing/deparsing
resource cost for
table entries and
key width.

nanosecond ASIC
resource
usage model

N/A N/A

Franco et al. Tofino hardware
switch [9]

Parser/deparser,
Ingress control

nanosecond Data plane
timestamps

Anritsu
MT1000A Network
Master Pro [30]

10 100 Gbps Both linear
and nonlinear
fitting:
SLP, PLP,
kNN, RF

Accuracy:
96%

Enterprise,
data center,
edge, service
provider,
INT, Big
Union
Fig. 2. Architecture [23] and timestamps available as metadata (𝑇0 to 𝑇5) [26,27]
and timestamps used only for clarification purposes (𝑇𝐼𝑃 , 𝑇𝐼𝐶 , 𝑇𝐸𝑃 , 𝑇𝐸𝐶 ) in the switch
architecture.

units or control blocks specify the packet processing logic using tables
and actions (among other constructs). Finally, the deparser assembles
the packet structure [25], using a developer-defined header order.

2.3. Data plane language compilers

In addition, the P4 compiler is a key element when programming
a P4 target. The official compiler for the P4 programming language is
p4c. It provides a standard frontend and midend that can be used with
a target-dependent backend. For instance, the bmv2 Simple Switch uses
the V1Model. p4c-bm2-ss is the backend included in the p4c compiler
to be used with the bmv2 Simple Switch target. Similarly, targets based
on the NetFPGA, Pensando DSC, or the Tofino ASIC feature their own
P4 compilers. Manufacturers distribute these compilers along with the
necessary architecture-specific libraries (see Table 1).

3. Related work

Packet parsers usually represent a bottleneck in high-speed net-
works due to their complexity, as argued by Gibb et al. [28]. The
authors introduce the design principles for packet parsers, pointing out
the difference between fixed and programmable parsers, and providing
16
several tips for an optimal design of programmable parsers. The liter-
ature shows a range of approaches to measure the performance of P4
programmable hardware and software devices.

For instance, Dang et al. [29] presents a benchmark designed to
identify the key features and metrics of P4 compilers, regardless of the
P4 target. Platform-agnostic and platform-specific benchmarks and ar-
tificial programs and workloads are presented to evaluate the essential
P4 operations in several P4 targets. This method does not consider the
whole target but treats the P4 operations in isolation, which may not
indicate the actual performance if different devices are analyzed.

In an experimental analysis, Harkous et al. [30] measure the latency
of packets through the P4 pipeline using a basic set of P4 constructs.
They carry out four experiments that include multiple scenarios, con-
sidering modifications in header fields, binary or arithmetic operations,
the number of parsed headers, and the addition of tables. They also
propose a packet delay estimation method, which is then validated with
realistic network functions. They perform their tests using a Netronome
Agilio SmartNIC [6] as a P4 target and packet flows of up to 10 Gb/s
using the MoonGen [31] traffic generator. They conclude that changing
one or more header fields does not increase latency, as the headers are
written entirely when a single field is modified.

In a following paper, Harkous et al. [32] continue the P4 pipeline
latency estimation study previously presented. This paper analyzes
additional parameters that might increase latency, using 75 different
pipelines and implementing them in 3 different targets: NetFPGA-SUME
card, Netronome SmartNIC, and T4P4S DPDK-based software switch.
In addition to repeating their previous experiments, they also study
header addition copying and removal. Results show essential differ-
ences among the targets, as in the case of parsed headers. Parsing more
headers increases the latency in devices such as Netronome SmartNIC
and the NetFPGA, whereas in T4P4S, this process does not introduce
additional latency. This is because all parsed headers are copied to the
memory in a single operation, and the headers’ size does not impact
latency. Authors conclude that different targets respond differently
to P4 constructs, depending on the parameters added, removed, or
modified.

In contrast to Harkous et al. [30] [32], we study and compare
the packet processing latency of P4 pipelines at speeds of 10 Gb/s
and 100 Gb/s, using a purpose-specific traffic generator named Anritsu
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MT1000A Network Master Pro [33]. Moreover, we consider a hardware
switch that includes the Tofino ASIC, covering the most widespread
P4-programmable ASIC in the market.

Scholz et al. [34] focus on performance modeling of P4-programmab
devices, aiming at the impact of match-action tables on the latency,
throughput, and resource consumption of P4 programs. The authors
cover two different target platforms — a general-purpose CPU-based
target (extensively) and an ASIC target (minimally) — and elaborate
performance and resource models. Their method consists of building a
baseline model by executing a minimal P4 program and later measuring
the differences due to adding match-action tables regarding the number
of tables, size, and match type. The core of the work is focused on
the highly dynamic nature of CPU targets, leading to throughput and
latency models in different scenarios. The paper identifies the main
limiting factors when using P4 targets, such as L3 cache misses and
the lack of specialized hardware like Ternary Content-Addressable
Memory (TCAM). For the ASIC target analysis, the authors emphasize
the minimal impact that P4 program complexity has on latency (in
the nanosecond range) and, hence, focus their work on elaborating a
resource consumption model for the utilization of static random-access
memory (SRAM) and TCAM resources. However, authors only aim at
match-action tables, and parser or deparser blocks are not considered.
In addition, the paper mainly focuses on the T4P4S [35] software
target, and the latency impact at the nanosecond range is marginal,
which we thoroughly analyze in this paper.

Having the latency measurements, latency modeling has also been
studied in some publications in order to analyze the latency data.
Among the literature, linear regressions are a common-used method to
fit the latency data and analyze the data features. For instance, Scholz
et al. [34] apply the least squares curve fitting for the packet rate
later to derive the cycles per packet for exact match entries. Harkous
et al. [30] also leverage a modeling method to predict the latency in
different network test cases. In particular, they design a target-profile
vector to structure the blocks and make the linear fitting based on
it. However, most of these authors use software switches, which are
affected by vastly different factors compared to hardware switches.
For instance, it is common to use timestamps collected at the NIC to
measure the software switch data plane latency. Besides, the software
switches rely on a general-purpose CPU, which does not guarantee
the same performance and consistency as ASICs do [32]. Measuring
the processing latency by a CPU might, in some cases, be affected by
additional CPU tasks, I/O, and delays unrelated to packet processing.
As long as data plane timestamps are available, profiling a hardware
switch guarantees consistency across architecture blocks with a lower
standard deviation. Nonetheless, latency measurement presents a non-
linear tendency in some of these results, and the presented regression
might not be enough to fit such a performance in order to make
accurate predictions. In this case, ML algorithms can be beneficial.

Regarding this last aspect, a few researchers have investigated
the use of ML for latency analysis in other scenarios. For example,
Qianet al. [36,37] introduce the support vector regression method to
study the latency performance of Network-on-Chip systems. In addition,
ML (specifically linear regression and random forest models) is used
by Wang et al. [38] to predict computation performance variables,
such as latency, on a fog computing manufacturing scenario. Yet,
ML algorithms have not been applied for efficient data plane latency
analysis. In order to fill this gap, we bolster our analysis with ML
algorithms to model and predict the data plane latency based on the
features described in the following sections.

3.1. Summary of contributions

The main contributions of this article can be summarized into four
pillars:

• We provide an extensive analysis of the Tofino ASIC, not yet
17

investigated in any related work.
• We study packet processing latency of P4 pipelines at faster
speeds than literature (10 Gb/s and 100 Gb/s).

• Additionally, our latency modeling not only involves the match-
action tables, but also the parser, control and deparser blocks of
the Ingress pipeline.

• Finally, our study comprises an ML-based prediction algorithm to
extend our results to further scenarios.

4. Data plane measurements

This section describes the measurement methodology followed to
test the latency in the data plane for packets processed by a Tofino P4
programmable switch. Our method focuses on calculating the latency
experienced by packets at various blocks in the TNA architecture
model [23], namely: the parser, the control block (match-action units),
and the deparser. This process is compatible with the resources on
the match-action unit (MAU). However, might not trust the latency
values as they change often, that is why we need further testing. Even
though the current paper only focuses on the TNA architecture, some
observations also apply to similar architectures like the PSA. However,
the paper is based on Tofino-specific building blocks, including time
measurements, metadata, or externs.

This paper defines data plane latency as the end-to-end delay experi-
nced by a packet along the pipeline, measured at ingress port (𝑇0) and
gress deparser (𝑇5). More precisely, it is the time difference between
5 and 𝑇0 (𝑇5−𝑇0) as defined in Fig. 2. Understanding how the possible

packet features and P4 statements affect each architecture model block
if the time is strictly calculated end-to-end is not trivial. Besides, calcu-
lating data plane latency using the last and first timestamps complicates
data plane predictability. Therefore, taking the entire set of available
data plane timestamps is complicated, but the current section offers a
thorough explanation of how each block eventually affects end-to-end
pipeline latency.

Following the widespread methodology to measure data plane la-
tency mentioned in Section 3, our paper relies on using data plane
timestamps instead of timestamps measured at the NIC. These times-
tamps are the means for a model that, afterwards, will help predict
the latency (Section 6). The TNA switches leveraged in this paper offer
timestamping information available to the P4 programming language
(as metadata fields). As depicted in Fig. 2, the pipeline exposes a set of
timestamps (𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5) that can help determining the latency
experienced at each block. The rest of the timestamps (𝑇𝐼𝑃 , 𝑇𝐼𝐶 , 𝑇𝐸𝑃 ,
𝑇𝐸𝐶 ) were added for clarification purposes in the figure. For instance,
if the goal is to create a model that tries to predict the control block
latency, then that is equivalent to predicting (𝑇𝐼𝐶 − 𝑇𝐼𝑃 ). However,
(𝑇𝐼𝐶 and 𝑇𝐼𝑃 ) are not available to the programmer, so the process of
predicting the latency of the control block will be based on calculations
made with the available timestamps (𝑇2 and 𝑇1), which is done keeping
certain code parts static across tests.

As indicated in Fig. 2, the data plane latency can be calculated as the
difference between the first and last pipeline timestamps (𝐿 = 𝑇5−𝑇0): It
can be further described as the sum of all the data plane block latencies,
as follows:

𝑇5 − 𝑇0 =
4
∑

𝑖=0
𝐿𝑇𝑖→𝑇𝑖+1 =

𝐿𝑇0→𝑇1 + 𝐿𝑇1→𝑇2 + 𝐿𝑇2→𝑇3 + 𝐿𝑇3→𝑇4 + 𝐿𝑇4→𝑇5

(1)

Among the terms listed in Eq. (1), 𝐿𝑇1→𝑇2 and 𝐿𝑇4→𝑇5 refer to pro-
grammable blocks in the pipeline, named ingress and egress pipelines,
respectively. Since no timestamp is exposed by the target’s architecture
within ingress and egress pipelines, Fig. 2 includes a few additional
labels to separate each of the three blocks (𝑇𝐼𝑃 , 𝑇𝐼𝐶 , 𝑇𝐸𝑃 , 𝑇𝐸𝐶 ). Thus,
𝐿𝑇1→𝑇2 and 𝐿𝑇4→𝑇5 are defined as follows:
𝐿𝑇1→𝑇2 = (𝑇𝐼𝑃 − 𝑇1) + (𝑇𝐼𝐶 − 𝑇𝐼𝑃 ) + (𝑇2 − 𝑇𝐼𝐶 ) (2)
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𝐿𝑇4→𝑇5 = (𝑇𝐸𝑃 − 𝑇4) + (𝑇𝐸𝐶 − 𝑇𝐸𝑃 ) + (𝑇5 − 𝑇𝐸𝐶 ) (3)

As depicted in Fig. 2 and Eq. (2), 𝑇𝐼𝑃 and 𝑇𝐼𝐶 define a timestamp at
the end of the ingress parser and the ingress control block, respectively.
Similarly, 𝑇𝐸𝑃 and 𝑇𝐸𝐶 define the end of the egress parser and the
egress control block, respectively. These timestamps are not available
to the programmer, but they help to define the start and end of each
block from the ingress and egress pipeline.

Actually, this paper focuses on calculating the parser and deparser
latency (together as one value) and the control block separately. This
allows parser and deparser block programming and latency calculation,
independent of how tables and actions are handled. This method also
calculates control block latency, irrespective of how the packet is
parsed.

According to Eq. (2), the ingress parser and deparser latency are
defined and calculated as (𝑇𝐼𝑃 − 𝑇1) + (𝑇2 − 𝑇𝐼𝐶 ). The ingress control
block latency at the ingress pipeline refers to the (𝑇𝐼𝐶−𝑇𝐼𝑃 ) expression.

In order to build consistent experiments, when testing an architec-
tural block, we assume that additional static code is necessary for other
architectural blocks (the ones that are not under test).

4.1. Parser and deparser

When this paper refers to parser and deparser latency, it does not
refer to the specific hardware entity in the ASIC responsible for header
identification or header extraction/assembly. Instead, this paper refers
to the architecture blocks that abstract the group of elements in charge
of parsing and deparsing headers, which could encompass several hard-
ware entities such as header identification, header extraction, buffering,
and memory I/O as stated by Gibb et al. [28]. More precisely, the paper
refers to the parser and deparser as the blocks defined as such in Fig. 2.

To find a correlation across different tests, the logic of the control
block is kept static. In other words, the code does not change across
tests that show the influence of the parser and deparser in data plane
latency.

The ingress/egress controls remain statically programmed across all
tests related to the parser and deparser latency. Therefore, the latency
difference across tests can directly be associated with the additional
P4 code added to the parser and deparser. The latency is calculated as
𝑇2−𝑇1 and 𝑇5−𝑇4 in the ingress and egress pipelines, respectively. The
control block’s only purpose is to collect timestamps, which are, across
all tests, deparsed as a header.

4.2. Control block

As in the parser and deparser case, the latency in the control block
(ingress or egress) is calculated by keeping the parser and deparser code
static across the tests. When the control block latency is calculated, the
same headers are parsed and deparsed, so no changes are made to the
parser or deparser from the baseline test to the last one. The data plane
code that changes across tests employs different types of table keys,
number of keys, number of entries in the table, and actions. The tests
that try to define the features in the control block latency will always
have a baseline test. The baseline is established by assigning a static
egress port (no table is used); this is the action that shows the lowest
latency impact on packets that can be associated with the control block.

As in Section 4.1, the latency regarding the control blockis calcu-
lated using the same timestamps: 𝑇2 − 𝑇1 and 𝑇5 − 𝑇4 for both ingress
and egress blocks, respectively. Since the parser and deparser remain
static across tests, the latency time differences are only associated with
the control block.
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Fig. 3. Testbed setup and traffic treatment. The network tester generates packet
streams and sends them to the switch under test (S1). This switch processes the
packet and sends them to the sampling switch (S2). Finally, the collector captures
and processes the timestamps of the packet as the last switch encapsulates the sampled
packets.

4.3. Packet features and model sections

While other research papers [30,32] have followed a performance
estimation for SmartNICs, software switches, and FPGAs, in this paper,
we focus on providing a similar model to predict data plane latency
in a switch based on a programmable ASIC (Tofino). Our tests are de-
signed to measure the latency performance of a programmable pipeline
under different load conditions and considering packets with different
features (e.g., packet length, number of headers, etc.), which will help
in understanding and predicting the performance of the programmable
data plane.

4.4. Testbed and equipment

The testbed used for this study consists of four entities, as seen in
Fig. 3. First, the traffic is generated by the Anritsu Network Master Pro
MT1000A [33], which supports several interfaces in order to generate
traffic for the switch under test. Notably, the tester generates up to 10
Gbit/s and 100 Gbit/s traffic using the SFP+ and QSFP28 interfaces
from the traffic generator. The tester is directly connected to the
first P4-programmable switch (APS BF2556X-1T [13]) that will collect
timestamps in every test. This switch is responsible for processing
packets and collecting in-band data plane timestamps. Once the packet
is sent to the egress port, it holds the original headers and payload, and
all the timestamps collected en route through the pipeline, regardless
of whether the measurements relate to the ingress or egress part. This
way, timestamp collection remains consistent across all tests in this
paper. The reason for adding a second switch (also an APS BF2556X-
1T) is to ensure that packet sampling and encapsulation are executed
only in S2 without affecting the performance and latency of S1 (switch
under test). Since packet sampling and encapsulation require additional
processing, this process shall not affect the first switch. Accordingly, it
does not affect the timing results in any way. Lastly, a UDP collector
receives the sampled packets and exports relevant statistics based on
the in-band timestamps.

The traffic from the test results and predictions in Sections 6 and
7 follows the treatment depicted in Fig. 3. The traffic received at
the switch under test (via SFP+ or QSFP28 interfaces) is processed,
and timestamps are appended. The second switch samples the traffic,
sending 10 million packets to the collector in each test, regardless
of the port configuration. It applies a 10% and 1% traffic sampling
to the input traffic running via 10G (SFP+) and 100G (QSFP28) port
configurations, respectively.

5. Identifying key packet and data plane features

While data plane latency can be measured and tested for the ingress
and egress pipeline, this paper focuses only on the ingress pipeline,
which is conceptually similar to the egress one. Since both are ar-
chitecturally equivalent (i.e., comprising a parser, a control block,
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Fig. 4. Each figure shows a different per-packet-size latency trend when extracting
headers of 2, 5, 10, and 20 bytes per state (Ethernet + 10 states). Ports are configured
as 10G.

Fig. 5. Each figure shows a different per-packet-size latency trend when extracting
headers of 2, 5, 10, and 20 bytes per state (Ethernet + 10 states). Ports are configured
as 100G.

and a deparser), we do not consider egress pipeline latency (𝐿𝑇4→𝑇5 )
n our calculations. The depicted timestamps and latency values are
lways expressed as nanoseconds unless stated otherwise. Similarly, the
atency measured in the ingress pipeline and plotted in the following
ections refers to the average one calculated from each test so the
odels will also predict the average latency (arithmetic mean).
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Fig. 6. Ingress latency in regard to (a) packet size (100 to 1400 bytes) and (b) header
size extracted for traffic size running at 10G via SFP+ (blue) and 100G via QSFP28
(red).

The data plane latency experienced by packets traversing different
parser graph paths, or matching against different tables, is variable.
For instance, not all packets with the same headers experience the
same latency. Considering this variability, the timestamps of 10 million
packets are processed on each test to ensure the statistical validity of
the results. From a superficial perspective, a packet can be modeled as
a set of features like header types or total packet size. Therefore, the
latency results from a function of those features, which is later analyzed
in Section 6. Second, additional factors like data plane programming
constructs can also contribute to the data plane latency, such as the
parse graph structure, number of parse states, etc. Third and finally,
configuration parameters of forwarding devices can also be determining
factors. The following sections further explain the effects of the features
mentioned in this paragraph.

5.1. Packet size

This paper shows that packet size is a determining feature. When
measuring ingress pipeline latency (𝐿𝑇1→𝑇2 ), the time experienced by
packets varies when packet size changes, as shown in Figs. 4 and
5. From the two figures mentioned before, Fig. 6(a) decouples the
packet size influence from header parsing and deparsing. This latency
increases linearly, which is a key factor in Section 6.

5.2. Parse states and extracted header size

As shown in Figs. 4 and 5, parse states do not seem to show a
different latency increment in most cases. However, when ports are
configured as 10G, packets larger than 1000 bytes show non-linear
results. When parsing in this configuration, packets are parsed, and a
few regressions show a non-linear latency increment is observed when
more than five parse states are used. Therefore, the number of parse
states and the extracted header size must be considered.

5.3. Tables and keys

The test conducted show that the increment of the number of
matched tables has a linear impact on the latency in both EXACT and
LPM match types (see Figs. 7(a) and 11(a)). In the EXACT match,
the increment of latency is between one and three nanoseconds when
we increment the key length or the number of entries (Figs. 8(a) and
10(a)). The LPM match shows a similar increment of latency when

increasing the key length (see Fig. 11(a)).
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Fig. 7. Ingress latency using 8, 16, and 32-bit exact key match tables using 300, 800,
and 1300-byte packets running at 10G (a) and 100G (b).

5.4. Actions

The performed tests only consider one type of action (set output
port), which could make the model less accurate to predict data plane
latency when other types of actions are used. However, the validation
data set includes additional actions that have not been trained, such
as modifying a header, writing registers, or arithmetic operations, to
check the accuracy of the model in such cases.

5.5. Port configuration

As mentioned in the previous section, our preliminary tests show a
higher latency for packets traversing the data plane at ports configured
as 10G compared to 100G. Besides, Fig. 4 shows a non-linear latency
increment, which demonstrates that the behavior is different in a few
cases. It is essential to mention that when a figure or section states
that a test was performed with ports configured at 10G, it means that
the traffic generator worked at a rate nearly equal to 10 Gb/s (specif-
ically, 9.5 Gb/s). The same applies to 100G (95 Gb/s). This difference
accommodates new headers being appended to packets from the switch
under test (S1) to the sampling switch (S2). And because the test
design accommodates new headers added (timestamps), it is necessary
to adjust the initial rate used for testing to prevent packets from being
dropped. Similarly, we will accommodate that the timestamps are being
added to the switch under test (S1). We will always understand that the
extra time for timestamp addition exists but will always be accounted
for, no matter which test.

6. Modeling data plane latency

The traffic features analyzed in the previous section allow the au-
thors to examine and evaluate which models can be used to predict data
plane latency. The preliminary results show linear latency progressions
and a few non-linear results in parser and deparser tests at 10G ports.
In order to achieve high accuracy, our research has considered several
methods that can fit and predict the latency, such as linear regression
(LR) and PCA-lasso-polynomial (PLP), which are later compared to the
time measured in this section. In particular, we present a linear regres-
sion model derived from the results of the parser and deparser tests
(Section 6.1) and also control block tests (Section 6.2). The additional
ML algorithm (PLP) used for comparison are described in Section 6.3.
All the test performed can be reproduced with the shared from the
official Git repository [39].
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6.1. Ingress parser and deparser

In the tests, each parse state considers only one header extraction.
Most ingress latency results in 10G and 100G port configurations
present linear increments with the number of parser states. Therefore,
we present a linear regression-based prediction model for the parser
and deparser block, and the control block, which are presented in dif-
ferent sections. We then compare the linear regression model prediction
(combining the parser, deparser, and control blocks) to three additional
ML algorithms in Section 7.

As seen in Fig. 2, the latency regarding the ingress pipeline includes
three main parts, which refer to the parser, control block, and deparser.
In this section, we focus only on the ingress pipeline because, as men-
tioned earlier, the egress pipeline is functionally equal to the ingress
one, as both blocks share the same type and number of architectural
blocks.

First, the ingress parser and deparser are modeled in one function,
as observed in Eq. (4) (𝐿𝑃𝐷 = 𝐿𝑃 + 𝐿𝐷). As observed in Figs. 4
and 5, the baseline latency (Ethernet header parsing, 𝑥 = 0) starts
at a different latency unit (y-axis value). It means that the influence
of the packet size is a factor on its own (introduced as 𝐿𝐵 below)
and can be decoupled from the latency influenced by the parser and
deparser, and also the control block. As seen in Figs. 4 and 5, in
most tests, the increment of latency per header extraction is linear.
Besides, the influence of extracting the Ethernet header is considered
to be our baseline. Therefore, the equation used in the current section
(Section 6.1) and Section 6.2 to model the ingress pipeline latency is:

𝐿𝑇1→𝑇2 = 𝐿𝐵 + 𝐿𝑃𝐷 + 𝐿𝐶 (4)

where:

𝐿𝐵 is the baseline latency influenced by the packet size when Ethernet
is extracted.

𝐿𝑃𝐷 is the latency influenced by the ingress parser and deparser
(i.e., headers extracted and deparsed).

𝐿𝐶 is the ingress control block latency.

The previous equation joins the parser and deparser latency as 𝐿𝑃𝐷
nd considers 𝐿𝐶 as the control block latency. When modeling, the 𝐿𝑃𝐷
atency, 𝐿𝐶 is constant across all tests, and vice versa when modeling
𝐶 . It is necessary to mention that 𝐿𝐵 (latency influenced by packet

ize) affects the total pipeline latency results collected in Sections 6.1
nd 6.2.

The parser and deparser tests comprise a total of 616 tests using 77
ifferent pipelines, shown in Fig. 4/ Fig. 5 to Fig. 11(a)/ Fig. 11(b). The
est results show, primarily, that traffic running at 10G and 100G port
onfigurations experience a linear incremental trend as packet size and
eader size are increased. We separated their calculations to analyze
he influence of the packet size and the header size (along with parse
tates) as independent terms.

Fig. 6(a) (10G, blue) and Fig. 6(a) (100G, red) express the linear
egression of the ingress pipeline latency experienced by packets as

function of packet size. In this figure, the packet size feature is
ecoupled from any latency influenced by the parser and deparser.

Analyzing the results from Fig. 6(a) (10G, blue), the regression line
f the latency as a function of the packet size (𝐿𝐵), results in the model

shown in Table 2 Eq. (1).
Additionally, the regression line in Fig. 6(b) (10G, blue) regarding

the extracted header size per parse state is expressed as shown in
Table 2 Eq. (2). When it comes to the latency in 100G, based on
Fig. 6(a) (100G, red), the linear regression of the latency as a function
of the packet size (𝐿𝐵), results in the model shown in Table 2 Eq. (3).
The regression line in Fig. 6(b) (100G, red) regarding the extracted
header size per parse state is express as shown in Table 2 Eq. (4).



Computer Communications 218 (2024) 14–30D. Franco et al.

a
t

Fig. 8. Ingress latency: 8, 16 and 32-bit keys, 1300-byte packets and traffic running
at 10G (a) and 100G (b).

6.2. Ingress control block

In terms of the control block, the key features that we consider in
our tests and that could affect the data plane latency are the same in
both ingress and egress (e.g., tables, actions, etc.). For these reasons,
we aim to measure the latency at the ingress control block, focusing
on the number of tables, table key size, number of table keys, or table
key type, to name a few. This section only considers one type of action
in our test measurements. However, the model prediction validates its
performance, in Section 7, using different types of actions associated
with each test case (e.g., header modifications, register interactions,
etc.) as described in Table 5.

The complete test set described and plotted in the following sections
comprises 628 tests and 130 different pipelines. The same number of
headers with a consistent size are extracted in all the tests. We first
extract Ethernet, IPv4, and UDP headers, followed by four custom
headers that include fields of size 2𝑛.

We consider several table features in the control block: {number of
tables across tests, table key size, table keys, number of entries and table key
match types (exact and longest prefix match (LPM))}. The action remains
consistent across tests, and it is executed when the table is matched.
The action assigns an output port for the packet.

In the tests depicted above in Fig. 7(a) and Fig. 7(b), we compare
three different packet sizes (300, 800, and 1300 bytes) with an 8, 16,
and 32-bit single exact matching key, matching against 1 to 10 tables.
Fig. 7(a) and Fig. 7(b) show a comparison of the results for 10G and
100G port configurations, respectively. The regression lines in Fig. 7(a)
show different coefficients. 8-bit table key results experience a lower
latency compared to 16 or 32-bit table key results (which are similar).
The results of the 100G (Fig. 7(b)) case are more consistent, and the
regression lines still show a similar difference. In all our tests, we
consider significant differences when they exceed one nanosecond. In
this case, matching approximately two to three tables show a difference
larger than 1 ns in both 10G and 100G cases. This means that the
key size must be considered as a relevant feature when modeling the
function to estimate the latency. Still, the regression lines are very
similar across results that used different sizes of packets. At this point,
we could estimate that packet size does not influence the control block.
As mentioned in the previous section, it is a key feature that influences
data plane latency and can be decoupled from parsing, deparsing, and
control block-specific functions.

Fig. 8(a) (10G) and 8(b) (100G) show a specific case extracted from
the previous figures, using 1300-byte packets. These figures show the
ingress latency from 0 to 10 tables for 10G and 100G port configu-
rations. The results show that 32-bit and 16-bit key tables experience
around half a nanosecond higher latency per table than 8-bit key
tables. Fig. 8(a) shows scattered and inconsistent results (compared
to the 100G figure) across table increments without a clear per-table
21
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Fig. 9. Comparing multiple 32-bit exact match keys based on Figs. 8(a) and 10(a)
running at 10G (a) and 100G (b).

Fig. 10. Latency differences with 1, 1 K, 10 K, and 100 K, single 32-bit entry tables
running at 10G (a) and 100G (b).

increment of latency. However, an increment exists when a regression
line is calculated since the results show an increment when matching
ten tables compared to none.

As seen in Fig. 9(a) and Fig. 9(b), when multiple exact keys are
used, the regression results are similar to those of 8-bit single key tests.
Surprisingly, 2 or 3 exact match keys experience slightly lower latency
than the results of 32-bit single-key tests. More tests might be needed
to confirm or deny these results.

Additional tests with EXACT rules showed that the number of
entries declared and inserted for tables could affect the final latency
to a certain extent. Fig. 10(a) and Fig. 10(b) compare the latency
experienced by packets that matched 32-bit single key tables with 1,
1 K, 10 K, and 100 K entries. The difference between most of the
measurements in both figures is equal to or lower than 0.7 ns. The
declared tables with the highest number of entries do not necessarily
experience higher latency measurements than tables with fewer entries.
This demonstrates that packets do not experience a higher latency when
more rules are inserted.

Drawing on all the tests in the current section, the prediction model
shows the latency increment per table for different exact matching key
sizes. As explained in the previous section, 𝐿𝐵 was already modeled.
Although 𝐿𝐵 influences the data plane latency, it is possible to solely
model 𝐿𝐶 . Therefore, 𝐿𝐶 can be modeled in this first equation with
10G and 100G configured ports as shown in Table 2 Eqs. (5) and (6).

When multiple keys are tested in our evaluation (see Section 7), the
model for the 8-bit single key (𝑘 = 8) has to be used (since the results
show a similar latency evolution). That is 0.492 ⋅ 𝑡 and 0.607 ⋅ 𝑡 for 10
nd 100G port configurations, respectively. When keys larger or equal
o 16 bits are evaluated, the model calculated for 16 or 32-bit keys

𝑘 = 16, 32) is used.
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Table 2
Summary of the equation for the different modeled blocks using the linear regressions where 𝑝 is the packet size, 𝑃𝑆𝑛 is the 𝑛th parse state, ℎ𝑛 is the size of the extracted 𝑛th
header at the 𝑛th parse state, 𝑡 is the number of tables and 𝑘 is the matching key size (𝑘 ∈ [8, 16, 32]). A Subsection in the Appendix includes a generalized equation.

Port (GB) Base latency(𝐿𝐵) Ingress parserand deparser latency (𝐿𝑃𝐷) Key type Ingress control latency (𝐿𝐶 )

10 0.237 ⋅ 𝑝 + 152.42 (1) ∑𝑛
1 𝑃𝑆𝑛 =

∑𝑛
1 0.221 ⋅ ℎ𝑠𝑛 + 2.886 (2) EXACT 𝑓 (𝑡, 𝑘) =

{

0.492 ⋅ 𝑡, 𝑘 = 8
0.601 ⋅ 𝑡, 𝑘 = 16, 32

(5)

LPM 𝑓 (𝑡, 𝑘) =

{

0.692 ⋅ 𝑡, 𝑘 = 8
0.887 ⋅ 𝑡, 𝑘 = 16, 32

(7)

100 0.056 ⋅ 𝑝 + 143.441 (3) ∑𝑛
1 𝑃𝑆𝑛 =

∑𝑛
1 0.105 ⋅ ℎ𝑠𝑛 + 1.431 (4) EXACT 𝑓 (𝑡, 𝑘) =

{

0.607 ⋅ 𝑡, 𝑘 = 8
0.685 ⋅ 𝑡, 𝑘 = 16, 32

(6)

LPM 𝑓 (𝑡, 𝑘) =

{

0.749 ⋅ 𝑡, 𝑘 = 8
0.896 ⋅ 𝑡, 𝑘 = 16, 32

(8)
Fig. 11. Ingress latency for 8 (green), 16 (blue), and 32-bit (red) LPM keys, matched
up to 10 tables. The results are divided into traffic running at 10G (a) and 100G (b).

In addition to exact match results, we have also tested LPM key-type
tables. As the previous tests suggested, Fig. 11(a) (10G) and Fig. 11(b)
(100G) show similar results to those found in Fig. 7(a) and Fig. 7(b).
The difference between the 8-bit key size and the 16 and 32-bit key
size is similar in both figures. Besides, Fig. 11(b) (100G) shows stable
results with a clear increment in latency as more tables are matched. In
fact, the latency appears to be equally scattered for 10G tests in exact
and LPM-match key types.

Observing the results in the tests at Fig. 11(a) (10G) and Fig. 11(b)
(100G), the following model has been created to predict latency results
involving tables with LPM keys. Table 2 equations (7) and (8) refer to
the 10G and 100G cases respectively.

Table 2 summarizes the models for every block that is used to
predict the average data plane packet latency in Section 7.

6.3. ML prediction algorithms and use case definition

The results allow building a linear regression (LR) model as listed
in Table 6, but the preliminary validation of the model shows less
accuracy when more states with larger header sizes are parsed per state
(e.g., the curve presents a non-linear increment when the packet size
is longer than 800 bytes with the parser of 10G in Fig. 4). ML regres-
sion model is trained and tuned to predict the non-linear relationship
between the packet features and latency, to be compared with the LR
model proposed in the previous section.

PCA-lasso-polynomial (PLP) regression: Observing the experi-
mental data, we realized that a few regressions seen in Fig. 4 show a
non-linear relationship between the extracted header size, parser states,
and packet size. For instance, there is a non-linear regression when:
packet size is larger than 800 bytes (see Table 2 Eq. (1), 𝑝 > 800),
parse states are larger than 5 (see Table 2 Eq. (2), 𝑛 > 5), and when
header size is larger than 5 bytes (see Table 2 Eq. (2), ℎ > 5). To fit
22
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Fig. 12. Application scenario of prediction model.

these cases, a quadratic polynomial (polynomial of degree 2) regression
is applied to fit the non-linear data.

Besides, our preliminary tests show that not all features have the
same importance for latency prediction, and the potential correlation
among the features can affect the prediction results. Therefore, prin-
cipal component analysis (PCA) and Lasso regularization are applied
to reduce the feature dimensionality and collinearity issues to avoid
overfitting [40].

Among the model parameters, one of the key parameters that
affects the PCA performance is the number of feature dimensions to
keep n_components after the dimensionality reduction. One of the key
parameters that affect the lasso performance is the coefficient alpha on
the L1 regularization.

By introducing the PCA and Lasso, the polynomial regression can
be more robust when polynomial features are correlated.

The PLP model is trained similarly to the LR algorithm. The training
process is done separately to model the latency in parser and deparser
and the control block based on datasets. A dataset is collected for
model training and evaluation with the features summarized in Tables 7
and 8 in Appendix. This dataset is collected and sampled from 10
million packets at the second switch in the testbed. The Python library
sklearn [41] is used for the ML models. The trained model is saved in
the file system and can later be easily loaded for latency prediction. The
key parameters of the well-trained PLP model are listed in Table 3.
6.4. Model deployment and use case

The LR and PLP model can be applied for latency prediction as
demonstrated in Fig. 12. In this scenario, we consider the latency-
critical applications as the use case. The programmable ASICs can be
applied for use cases like latency-critical applications to optimize the
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Fig. 13. 7 different cases tested (TC1, TC2, TC3, TC4, TC5, TC6A, TC6B). The green-colored parse states represent the path followed when extracting the parser’s headers in
ach use case. The last graph includes two colored parse graph paths, representing two different tests for the same parser. The test cases are based on the ones proposed by Gibb
t al. [28].
Table 3
Key Parameters in each ML Model.

Model Parameter Parser and
deparser

Ingress control
block

PLP
PCA n_components 10 20

lasso alpha 650 0.0005

polynomial degree 2 2

network performance and meet the stringent latency requirement [42].
For example, if a latency-critical application requires a specific latency
metric (step ①), the developer has to optimize the current P4 code (step
②) to achieve the performance. Typically, the developer can only know
the performance after compiling the code on the hardware switch, but
further tests would require verification. Such a procedure entails the de-
veloper testing the code on the hardware switch frequently. Given that
the developer has an extended P4 program as an extra design added
to the current P4 program for optimization and the load conditions as
pipeline policies and conditions, with the prediction model introduced
into this process, the developer can send the extended P4 program (step
③) and the corresponding pipeline policies and conditions (step ④) to
he predictor with the well-trained regression model. The predictor will
end back an estimated latency performance to the developer (step ⑤),

and the developer can improve the P4 code based on that. When the
P4 code can achieve a satisfying latency performance, it is then ready
to be run on the hardware switch (step ⑥).

Based on this application scenario, the prediction method can bring
convenience to the hardware development process. It reduces the fre-
quency of hardware verification and spares the hardware access limi-
tation. It is beneficial, especially for those still at the prototyping stage
and unwilling to purchase high-performance and expensive equipment.
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7. Model validation

7.1. Parser and deparser predictions

After creating a model to determine parser and deparser latency
(Section 6), it is necessary to test it with actual scenarios.
Gibb et al. [28] present an in-depth parser design study that identifies
parser design principles and discusses its trade-offs. We define the parse
graphs in Fig. 13 on top of the ones found at Gibb’s publication. Our
parse graph includes an additional test case that parses the In-band
Network Telemetry (INT) headers. To describe a few examples, TC2
includes virtualization headers like VXLAN or GRE that are typically
used in data centers. Test cases like TC3 or TC4 are considered to
be cases that label the traffic with the MPLS headers, such as in
service provider networks or routing devices at the network edge. TC5
includes INT shim, meta and metadata headers, typically used when
processing data plane telemetry in INT-MD mode. The actual parse
graph traversed and measured in each test case is colored in green
and has been randomly picked out of all the end-to-end possibilities.
Fig. 13(f) has an additional parse graph traversed in blue. The reason
for testing, first, parser-only cases is that we can measure whether
the selected features are enough to predict the latency that affects the
parser and deparser latency alone. Later, the control block is added to
the prediction validation in order to validate the pipeline entirely. In
our tests, 𝐿𝑇0→𝑇1 , 𝐿𝑇2→𝑇3 and 𝐿𝑇3→𝑇4 remain consistent. However, the
queuing latency (𝐿𝑇2→𝑇3 ) could be further studied, since it could be
modeled. However, queuing latency is consistent across all tests in this
paper, so it imposes no influence when modeling ingress latency.

As seen in Table 4, we combine 10G and 100G tests, with a total
of 7 cases (Case 1 to Case 6A/B). The tests were designed with ran-
dom packet sizes, and as mentioned, parse graphs were also chosen
randomly. The cases presented vary from 2 to 7 parse states (without
considering the first Ethernet parse state). The majority of the packet
sizes (300, 700, 900, 1100, and 1300 bytes—excludes 200 and 600)
and header sizes (4, 8, 12, 14, and 40 bytes—excludes 20 bytes) are
different from the ones trained in Section 6.
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Table 4
Parser and deparser features for each test case.

PARSER FEATURES
PACKET SIZE STATES STATE 1 STATE 2 STATE 3 STATE 4 STATE 5 STATE 6 STATE 7
Packet size
(bytes)

Number Ext. header
(bytes)

Ext.
header
(bytes)

Ext.
header
(bytes)

Ext.
header
(bytes)

Ext.
header
(bytes)

Ext.
header
(bytes)

Ext.
header
(bytes)

Test case 1 600 4 Metadata + 14 4 4 40 8
Test case 2 900 4 Metadata + 14 20 8 8 14
Test case 3 700 5 Metadata + 14 4 4 4 4 14
Test case 4 1300 6 Metadata + 14 4 4 4 4 4 20
Test case 5 1100 7 Metadata + 14 20 20 4 12 8 8
Test case 6A 200 4 Metadata + 14 20 4 4 14
Test case 6B 300 2 Metadata + 14 40 8
7.2. Control block predictions

In addition to the parser and deparser tests, the control block
latency is the missing part that defines ingress pipeline latency and the
end-to-end latency (since we do not consider egress pipeline latency
in our tests). In this test, we use the linear regressions (noted as LR)
described in Section 6.2, comparing the results to the PLP. Testing the
ingress control block aims to propose cases that use tables and keys
from the parsed headers. TC1 and TC6A have followed a similar table
key and actions to the ones tested in Section 6.2. Other test cases (TC2,
TC3, TC4, TC5, TC6B) have incorporated additional statements (header
modification, register writing, etc.) that were not measured and are
used as training features. The goal is to assess how much the untrained
additional statements affect the latency prediction. This could be used
as a future step in further testing to achieve a more precise latency
prediction.

Table 6 shows the results for ingress pipeline latency, which is
characterized by a dynamic packet size and the parser, control and
deparser. Considering the 7 test cases and merging 10G and 100G cases,
the PLP algorithm predicts the ingress latency with the highest certainty
(98.22%). The linear regressions detailed in Section 6 achieves the
second-best prediction results (certainty of 97.49%).

8. Discussion

8.1. Results and comparison

In this paper, we perform a latency profiling study of the Tofino P4
programmable ASIC-based hardware, and to further extend this analy-
sis, a regression model is proposed based on the test results from the
parser, deparser and control blocks. We have selected several relevant
features for the relevant architecture blocks and obtained the results of
the tests and trained several ML algorithms to compare their predictions
against the LR model. This could serve as a reference for predicting the
performance of latency-constrained application based on this type of
common P4 target. To this purpose, our comparison in Table 6 shows
that the PLP model obtains the best results overall, when predicting
the parser, control and deparser latency. PLP is also the algorithm that
obtains results with the slightest discrepancy. PLP achieves several re-
sults within the 1 ns error we defined in the beginning. And still achieve
the 1% error accuracy in most of the results. We believe this happens
because of the combination of algorithms (PCA-lasso-polynomial) that
creates a more complex model that better accommodates the training
data and adapts to verify untrained tests for the 10G results. We also
believe that the 100G results are almost the same for every algorithm,
having improvements in the decimals.

We observe in Table 6 that most predictions are worse when non-
tested P4 statements in control blocks are validated (like header mod-
ifications or registers). It means that further tests are needed to un-
derstand other P4 statements, especially for 10G results. Still, our PLP
predictions results show an accuracy rate of 98.22% across multiple
use cases, demonstrating that, even when new features are added to
24
test cases, our models achieve accurate latency predictions. In addition,
we achieve higher accuracy compared to state-of-the-art estimation
methods, such as Harkous et al. [32], whose authors can estimate the
packet forwarding latency with an accuracy of around 94% for T4P4S,
Netronome SmartNIC, and NetFPGA-SUME. Moreover, our methodol-
ogy for measuring the packet processing latency is more accurate as
it uses the internal timestamps inside the ASIC instead of measuring
timestamps at the traffic generator using RTT-based estimations as
shown Harkous et al. [32] or Scholz et al. [34]. v

It is necessary to mention that the LR model performs second-best
in the results. The proposed model is derived directly from the figures
shown in Section 6. It demonstrates that the behavior, in terms of
latency prediction, can be expressed as a linear model and achieve
accurate predictions. The linear behavior of the data plane latency
and consistency of the traffic running at QSFP28 ports shows that
the performance of the ASIC is suitable for use cases in production
environments. Using the SFP+ interfaces will achieve, in a few cases,
non-linear latency results that deteriorate the performance of traffic
forwarding in production environments.

On the other hand, regarding the results observed in Fig. 4, our
a analysis suggests that the non-linear results are not a consequence
of the P4 parser or deparser, nor is it affected by the ASIC behavior.
Instead, the non-linear results seem to be caused by the gearbox of
the switch when the port configuration is set to 10G (using SFP+
interfaces). The non-optimal behavior when configuring ports at 10G
is confirmed in Fig. 7(a) and Fig. 9(a). It is possible to observe that
the latency results point to a non-linear regression both in parsing and
deparsing cases but also in a few control block tests (see Fig. 8(a),
Fig. 10(a) and Fig. 11(a)). The 100G results as observed in Fig. 9(b)
point to a clear linear incremental trend of the experienced latency.

8.2. Use cases and applications

Finally, this paper shows a nanosecond-scale prediction accuracy.
While it might seems excessive for certain applications, some other
ones like Precision Time Protocol (PTP) standard [43], Time Sensitive
Networking (TSN) [44], or CPRI and evolved CPRI (eCPRI) [45].

PTP is used to provide sub-microsecond time synchronization, a
requirement for enabling deterministic communications [46]. It stan-
dardizes several types of clocks, including the Transparent Clock (TC),
which corresponds to a device that neither provides a clock source nor
updates their own, but is still capable of propagating PTP messages
between end devices while adjusting the messages for its residence
time. Hence, nanosecond-accurate latency estimation facilitates the
implementation of a TC in the Tofino-based P4 switch without the need
for timestamping.

Time-aware traffic shaping is a cornerstone feature of TSN and
it involves the computation of a gate-based time schedule and its
coordination across the network in order to enable bounded frame
delivery times. Verticals such as industrial and automotive often have
tight latency requirements in the order of few microseconds [47]. To

accurately synchronize the time slots for the different types of traffic
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Table 5
Control block features per test case. NM states for no match. NA states for no action. OP states for only output port. OP+MF states for output port + modify field. OP+AO+2 ⋅MF states for output port + arithmetic operation + 2 modify field
operations. MF states for only modify field. REG states for register (write).

CONTROL BLOCK FEATURES
TABLE 1 TABLE 2 TABLE 3 TABLE - ACTION TYPES (Num. tables as T - Num. actions as A)

Key size
(bits) / Type

Table size
(entries ins.)

Key size
(bits) / Type

Table size
(entries ins.)

Key size
(bits) / Type

Table size
(entries ins.)

NM NA OP OP+MF OP+AO
+2MF

MF REG

Test case 1 48 / exact
16 / exact

64 128 / exact
128 / exact

10 K 128 / LPM
16 / exact

1 K 1T - 1A 1T - 1A 1T - 1A

Test case 2 32 / exact
32 / exact
16 / exact
16 / exact

5 K 1T - 1

Test case 3 20 / exact 20 K 1T - 1A
Test case 4 20 / exact 1 K 128 / LPM 1 K 1T - 1A 1T - 1A
Test case 5 32 / exact

32 / exact
50 4 / exact 1 K 1T - 1A 1T - 3A

Test case 6A 48 / exact
48 / exact

5 K 32 / exact
24 / exact

1 K 1T - 1A 1T - 1A

Test case 6B 128 / LPM 30 K 32 / exact 1.5 K 1T - 1A 1T - 1A
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Table 6
This table shows parser+control+deparser results (Ingress block). The actual and real latency is expressed as ‘‘Measured (ns)’’ (first column) and it is defined in nanoseconds, within the ‘‘Real time’’
column. One can also observe the ‘‘1 ns limit (%)’’ and ‘‘1% limit (%)’’ columns, next to the ‘‘Measured (ns)’’ one. Both columns express the 1 ns error and also the 1% error. The rest of the columns
(LR, PLP) are predictions. The ingress pipeline latency results shown by the Linear Regressions (LR) are explained in Section 6. PLP states for PCA-lasso-polynomial. One can also observe that adding
the value in the column ‘‘Precision (%)’’ and the one in the ‘‘Deviation (%)’’ (in all predictions), we get a 100. The results that are lower (or equal) than 1% are expressed in yellow ( ). Those
that are both lower (or equal) than 1% and also 1 ns, are expressed in light blue ( ). Finally, we express the combined results (ALL CASES) in green color ( ).

Parser+Control+Deparser test - Ingress Latency
Real time Linear Regression (LR) PCA-lasso-polynomial (PLP)

Port speed
(G)

Measured
(ns)

1 ns limit
(%)

1% limit
(%)

Prediction
(ns)

Precision
(%)

Deviation
(%)

Prediction
(ns)

Precision
(%)

Deviation
(%)

Test case 1 (TC1) 10 313.926 0.318 3.139 318.926 98.408 1.592 312.486 99.542 0.458
Test case 1 (TC1) 100 189.082 0.528 1.890 188.751 99.825 0.175 183.847 97.231 2.769
Test case 2 (TC2) 10 376.01 0.265 3.760 388.886 96.576 3.424 383.294 98.063 1.937
Test case 2 (TC2) 100 199.254 0.501 1.992 204.945 97.143 2.857 199.074 99.909 0.091
Test case 3 (TC3) 10 326.292 0.306 3.262 339.825 95.853 4.147 334.191 97.579 2.421
Test case 3 (TC3) 100 187.358 0.533 1.873 193.041 96.967 3.033 195.574 95.614 4.386
Test case 4 (TC4) 10 472.113 0.212 4.721 487.497 96.742 3.258 470.235 99.603 0.397
Test case 4 (TC4) 100 224.233 0.445 2.242 229.189 97.789 2.211 226.932 98.796 1.204
Test case 5 (TC5) 10 425.988 0.235 4.259 447.049 95.055 4.944 431.486 98.709 1.291
Test case 5 (TC5) 100 215.226 0.465 2.152 221.355 97.151 2.848 208.468 96.860 3.140
Test case 6A (TC6A) 10 220.597 0.453 2.205 220.781 99.916 0.083 219.937 99.702 0.298
Test case 6A (TC6A) 100 161.946 0.617 1.619 164.830 98.218 1.781 163.071 99.305 0.695
Test case 6B (TC6B) 10 244.301 0.409 2.443 240.09 98.279 1.721 250.212 97.580 2.420
Test case 6B (TC6B) 100 173.441 0.576 1.734 168.212 96.985 3.014 167.527 96.591 3.409

10G 97.262 2.738 98.682 1.318
100G 97.726 2.274 97.758 2.242

ALL CASES 97.494 2.506 98.221 1.779
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Table 7
Summary of dataset details: parser block.

Feature Data type Range Description

Port config
(Gb)

Integer [10, 100] Port rate

Extracted
header size
(Byte)

Integer [2, 5, 10, 20] Size of the header to
be extracted in the
parser

Extracted
header times

Integer 0–10 Number of times
when header
is extracted

Packet size
(Byte)

Integer [100, 200,
400, 600,
800, 1000,
1200, 1400]

Total size of packet

Latency (ns) Float 140-540 Latency obtained
from timestamps

across a TSN network, being able to estimate the delay introduced in
the device with sub-microsecond accuracy is critical for implementing
synchronous traffic shaping. This work could constitute an starting
point for its implementation in Tofino-based P4 targets.

The CPRI and eCPRI specifications for transport networks including
5G impose some tight requirements on latency to the most critical
traffic, which is 100 microseconds [45]. One the one hand, TSN can
be used in Ethernet-based fronthaul networks [48] as well as to enable
a converged Xhaul network [49]. On the other hand, some works have
explored P4-based transport networks [50]. Thus, nanosecond-accurate
latency estimation in Tofino-based P4 switches could have applicability
in this line.

9. Conclusion

The current paper describes a detailed study on how data plane
latency would vary with different features programmed in a pro-
grammable Tofino-based switch. This paper introduces a reproducible
and extensible methodology to process the data plane latency that
packets experience and verify the paper’s results. Compared to the
related work, our P4 programs collect in-band timestamps for later
latency measurements. Traffic running on SFP+ (∼10Gb/s) and QSFP28
(∼100 Gb/s) interfaces are separately tested. The paper studies how
different port speeds might affect latency performance. A dataset is
collected with different block features configured in parser, deparser
and control block.

To model the latency performance, we present and discuss lin-
ear regressions and ML algorithm PLP to perform data plane latency
predictions. The regressions calculated from test results serve as the
baseline to illustrate how latency would vary with different functions
programmed in the pipeline. ML algorithm is used to accommodate the
non-linear regressions observed in some measurements. Six common-
used test cases are presented to test the model prediction results in
order to evaluate the model’s performance. The results show that linear
regression-based calculations and PLP achieves an 98.22% of accuracy.
It shows that the PLP algorithm can predict, more accurately, new
control blocks.

With the prediction method proposed in this work, the researchers
can evaluate their design without the ASIC-based hardware. This work
highlights how latency prediction can be applied in designing and ver-
ifying time-critical applications. The test results open future research
possibilities, suggesting that a new test design should accommodate
new features included in the validation of the model but not considered
in the training process (like multiple field modifications or register in-
teractions). In addition, researchers could extend the work by modeling
egress pipeline latency. While it is conceptually the same block as the
ingress pipeline, the models that define the egress pipeline might differ
27

from those presented in this paper. 𝑡
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ppendix

eneralized formula

Eqs. (5) and (6) show the generalized formula for 10G and 100G
espectively.

For 10G:

52.42 + 0.237 ⋅ 𝑝 +
𝑛
∑

1
0.221 ⋅ ℎ𝑠𝑛 + 2.886 +

0.492 ⋅ 𝑡𝑒 + 0.601 ⋅ 𝑡𝑒′ + 0.692 ⋅ 𝑡𝑙 + 0.887 ⋅ 𝑡𝑙′ (5)

For 100G:

43.441 + 0.056 ⋅ 𝑝 +
𝑛
∑

1
0.105 ⋅ ℎ𝑠𝑛 + 1.431+

0.607 ⋅ 𝑡𝑒 + 0.685 ⋅ 𝑡𝑒′ + 0.749 ⋅ 𝑡𝑙 + 0.896 ⋅ 𝑡𝑙′

(6)

where:

𝑡𝑒 is the number of exact tables with 𝑘 ∈ [8]

𝑡𝑒′ is the number of exact tables with 𝑘 ∈ [16, 32].

𝑡𝑙 is the number of LPM tables with 𝑘 ∈ [8]
𝑙′ is the number of LPM tables with 𝑘 ∈ [16, 32].
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Table 8
Summary of dataset details: control block.

Feature Data type Range Description

Number
of tables

Integer 1–10 Number of M+A
tables in control block

Match type Integer [0, 1] Type of match:
Exact/LPM

Key size Integer [8, 16, 32] Size of the key in
M+A tables

Number
of keys

Integer [1, 2, 3] Number of keys in
M+A tables

Number
of entries

Integer [1, 1000, 10000,

100000]

Number of entries in
M+A tables

Port config
(Gb)

Integer [10, 100] Port rate

Latency (ns) Float 0–10 Latency obtained from
the timestamps

Fig. 14. Explanation of the box plot that is part of one of the 100G parser (Test case
2).

Dataset

Tables 7 and 8 show the summary of dataset details for parser and
control blocks respectively.

Ingress block latency in 10G and 100G traffic

See Figs. 14–16.

Notation list

Table 9 depicts the notation list for this paper.
28
Fig. 15. Explanation of the 10G Ingress pipeline.

Fig. 16. Explanation of the 100G Ingress pipeline.

Table 9
Notation of the architecture.

Notation Definition

𝑇𝑖 The 𝑖th timestamp exposed by the target
𝐿 Latency
𝑇𝐼𝑃 Timestamp at the end of ingress parser
𝑇𝐼𝐶 End of ingress control block
𝑇𝐸𝑃 End of egress parser
𝑇𝐸𝐶 End of egress control block
𝐿𝑃 Parser latency
𝐿𝐶 Control block latency
𝐿𝐷 Deparser latency
𝐵𝐿 Base latency associated with the packet size
𝐿𝑃𝐷 Latency comprising the parser and deparser
𝑝 Packet size
𝑝min Supported minimum packet size
𝑝max Supported maximum packet size
𝑃𝑆𝑛 The 𝑛th parse state latency
ℎ𝑛 The 𝑛th header size extracted at 𝑛 parse state
ℎmin Supported minimum header size to extract
ℎmax Supported maximum header size to extract
𝑘 Matching key size
𝑡 Number of tables
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