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A B S T R A C T

Electric vehicles (EVs) have been highly favoured as a mode of transportation in recent years.
EVs offer numerous benefits over traditional fuel-based vehicles, particularly in terms of the
environmental impact. Although electric vehicles offer several advantages, there are certain
restrictions that limit their usage. One of the significant issues is the uncertainty in their
driving range. The driving range of EVs is closely related to their energy consumption, which
is highly affected by exogenous and endogenous factors. Since those factors are unpredictable,
uncertainty in EVs’ energy consumption should be considered for efficient operation. This paper
proposes a two-stage adaptive robust optimization framework for the electric vehicle routing
problem. The objective is to minimize the worst-case energy consumption while guaranteeing
that services are delivered at the appointed time windows without battery level deficiency.
We postulate that EVs can be recharged on route, and the charging amount can be adjusted
depending on the circumstances. A column-and-constraint generation based heuristic algorithm,
which is coupled with variable neighbourhood search and alternating direction algorithm, is
proposed to solve the resulting model. The computational results show the economic efficiency
and robustness of the proposed model, and that there is a tradeoff between the total required
energy and the risk of failing to satisfy all customers’ demand.

1. Introduction

Over the last two decades, the transportation sector has rapidly grown. For instance, the number of registered vehicles in the
US has increased by over 43% in the last 20 years (from 1990 to 2019) (see Statista, 2021). However, this rapid growth also brings
some adverse effects, especially environmental problems. The United States Environmental Protection Agency (US EPA) reported
that the transportation sector accounts for the most significant portion (29%) of the total greenhouse gas (GHG) emissions in the
US for 2019 (US EPA, 2021). Also, Ge et al. (2020) reported that the transportation sector is one of the fastest-growing sources of
GHG emissions, which has grown by 79% from 1990, and it is 16.2% of total global GHG emissions in 2019. Consequently, the
interest in green vehicle routing has increased to overcome the environmental challenges facing the transportation sector.

In the recent decade, electric vehicles (EVs) have become the main interest of the transportation sector as a future mode of
transportation because of their various benefits: cutting down on oil dependency, carbon dioxide (CO2) emission reduction, less
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noise, and utilization of renewable energy (Bradley and Frank, 2009; Sioshansi and Denholm, 2009; Sundström and Binding, 2010;
Yi and Bauer, 2017). Indeed, the number of EVs on the world’s roads increased from 17,000 in 2010 to more than 10 million in
2020, and this number is rapidly growing worldwide (IEA, 2021). Additionally, many leading companies, such as UPS, FedEx, and
Walmart, have deployed EV fleets in their operations (Winston, 2018). However, despite several benefits of EVs and their growing
penetration, EVs still have critical issues limiting their usage. One issue is their limited driving range compared to conventional
vehicles fuelled by gas or diesel. Other problems include the scarcity of the charging infrastructure and the long recharging time.
Therefore, a more careful routing plan is needed to overcome EVs’ limited driving range, especially for commercial EVs.

The driving range of EVs depends on the vehicle’s battery capacity and its efficiency. Many factors relate to the vehicle’s energy
onsumption efficiency, such as vehicle-, environmental- and driver-related factors, and several prediction models were proposed to
orecast EV’s energy consumption depending on those factors (Zhang et al., 2020; Basso et al., 2021). However, reliable forecasts of
he EV’s energy consumption may not be possible since many factors that impact an EV’s energy consumption have a high degree
f uncertainty or unpredictability. One of the major factors that affect EV’s energy consumption efficiency is temperature. The
emperature directly impacts the battery performance, but it also relates to the auxiliary heating and cooling of the vehicle. Cold
r hot days make people use the air conditioning or heating system to cool or heat their vehicles respectively. The net effects of
emperature and the resulting auxiliary power demand can decrease the EV’s driving range by up to 40% compared to its maximum
otential range (Yuksel and Michalek, 2015). Furthermore, even if the temperature can be precisely predicted, the EV’s performance
ould be 32% higher or less than the expected driving range of that temperature depending on other factors, such as wind speed,
olling resistance, terrain, driver habits, trip length and start conditions (Yi and Bauer, 2017; GEOTAB, 2020). Therefore, to operate
Vs efficiently, the uncertainty in EVs’ energy consumption should be considered.

This paper aims to formulate and solve an optimization model for a practical delivery service system in which EVs are used for
ransporting products to customers, and all routes are guaranteed to withstand any realization of energy consumption uncertainties.
o deal with uncertainty, we adopt an adaptive robust optimization framework (Ben-Tal et al., 2004) with time windows, partial
echarge, and energy consumption rate uncertainty (AR-EVRPTWPR). It extends the electric vehicle routing problem with time
indows and partial recharge (EVRPTWPR) proposed by Keskin and Çatay (2016) by considering the energy consumption rate
ncertainty. The AR-EVRPTWPR is formulated as a two-stage adaptive robust problem and solved by means of a column-and-
onstraint generation framework (CCG) (Zeng and Zhao, 2013; Yu et al., 2022). Since the CCG decomposes the model into a master
roblem and subproblem, we apply the Variable Neighbourhood Search–Tabu Search (VNS-TS) metaheuristic (Schneider et al.,
014) and Alternating Direction (AD) algorithm (Konno, 1976) to solve the master problem and subproblem, respectively. The
roposed solution method is a heuristic and is a modification of the classical CCG as it incorporates VNS-TS and AD. Additionally,
he standard CCG solves the subproblem when the master problem finds an optimal solution. However, to accelerate the convergence,
he proposed approach solves the subproblem whenever VNS-TS finds a robust feasible solution to the master problem. Once a robust
easible solution for the current master problem is found, AD solves the subproblem to detect if this current solution violates any
cenario not considered in the master problem. Decision variables and constraints are generated for the detected violated scenario
rom the subproblem and added to the master problem and as a result the VNS cost function is adjusted to take the violated scenario
nto account. The proposed method is applied to test instances of Schneider et al. (2014) to show the performance of the approach.
hus the contribution of this paper is three folds: (1) formulating an adaptive robust EVRPTWPR with energy consumption rate
ncertainty, (2) using a customized CCG framework to solve the proposed problem, where the VNS-TS approach is used to solve
he multi-scenario EVRPTWPR master problem and an AD is used to solve the subproblem. As VNS-TS has not been used before
o solve multiple scenarios for this problem, we propose a new cost function to account for the multiple constraints related to the
ifferent scenarios. Additionally, since solving the VNS-TS at each iteration is expensive we adopt a ‘‘warm starting’’ strategy where
he VNS-TS continues from the previous solution to find a new robust feasible solution once a new scenario is added, finally (3)
resenting computational results and analysis to compare the deterministic and the ARO approach.

The remainder of this paper is organized as follows. Section 2 presents a literature review of related work. Section 3 provides the
athematical formulation of AR-EVRPTWPR. The proposed solution methods are presented in Section 4. In Section 5, computational

xperiments are conducted for the proposed AR-EVRPTWPR. Finally, conclusions and future research directions are drawn in
ection 6.

. Literature review

Since 1959, when (Dantzig and Ramser, 1959) first proposed the vehicle routing problem (VRP), VRP has been extensively
tudied for its variants and solution methods (Eksioglu et al., 2009; Toth and Vigo, 2014; Braekers et al., 2016). The objective of
RP is to find a set of routes for a fleet of vehicles that minimizes the total travel distances while it starts from the depot, visits a
iven set of customers, and returns to the depot. Recently, the green vehicle routing problem, a variation of VRP, has been widely
tudied due to the negative effects of transportation on the environment. A comprehensive review of green vehicle routing problems
an be found in Demir et al. (2014), Lin et al. (2014), Bektaş et al. (2019).

The electric vehicle routing problem (EVRP) is a variation of the VRP where EVs are integrated into the distribution operations.
onrad and Figliozzi (2011) propose a capacitated recharging VRP with customer time windows. Schneider et al. (2014) consider
n E-VRPTW, an EVRP with time windows and recharging stations. EVs’ batteries can be recharged at recharging stations, and
nly full recharge is allowed. The E-VRPTW was extended to consider partial recharge by Felipe et al. (2014), Keskin and Çatay
2016), and Schiffer and Walther (2017). Hiermann et al. (2019) considered a fleet mix with several types of vehicles. Cortés-Murcia
2

t al. (2019) regarded the recharging time as an idle time and allowed for servicing the customers by walking from the recharging
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Table 1
Summary on the literature of electric vehicle routing problem with recharging stations.

Paper Time
windows

Recharging
strategy

Recharging
function

Source of uncertainty Modelling approach

Conrad and
Figliozzi (2011)

Fixed
(parameterized)

Fixed constant Deterministic Mixed Integer
Nonlinear Programming
model

Felipe et al. (2014) Partial & multiple
technologies

Linear function Deterministic MILP model

Schneider et al.
(2014)

Full Linear function Deterministic MILP model

Keskin and Çatay
(2016)

Partial Linear function Deterministic MILP model

Montoya et al.
(2017)

Partial Piecewise
linear function

Deterministic MILP model

Schiffer and
Walther (2017)

Partial Linear function Deterministic MILP model

Cortés-Murcia
et al. (2019)

Partial Linear function Deterministic MILP model

Froger et al.
(2019)

Partial & multiple
technologies

Piecewise
linear function

Deterministic MILP model

Hiermann et al.
(2019)

Partial & multiple
technologies

Piecewise
linear function

Deterministic MILP model

Pelletier et al.
(2019)

Partial Linear function Energy consumption Robust optimization model

Basso et al. (2021) Partial Linear function Energy consumption Two-stage model
with chance constraints

Lee (2021) Partial Non-decreasing
Concave function

Deterministic Mixed Integer
Nonlinear Programming
model

Basso et al. (2022) Full Linear function Customer requests &
Energy consumption

Markov Decision
Process Model

Froger et al.
(2022)

Partial &
Multiple speeds

Piecewise
linear function

Deterministic MILP model

Zang et al. (2022) Partial Piecewise
linear function

Deterministic MILP

Current work Partial Linear function Energy consumption Two-stage adaptive
robust optimization model

station while the EV is recharging. The recent trend in EVRP considers a nonlinear recharging process. The battery recharging rate
varies depending on the remaining battery capacity. Thus, the recharging function is represented as a nonlinear function (Pelletier
et al., 2017). Typically, the nonlinearity is approximated using a piecewise linear charging function (Froger et al., 2022, 2019;
Montoya et al., 2017; Zang et al., 2022). Other work directly considers the nonlinear recharging function postulated as a concave
and non-decreasing function (Lee, 2021).

The above studies consider deterministic parameters, i.e., the expected or average value of energy consumption, travel time,
emand, and recharging time. Thus, a solution obtained from a deterministic EVRP would be very vulnerable to variations in
he parameters. Some stochastic variants of EVRP have been proposed to deal with the uncertainty in EVRP, such as considering
tochastic waiting times at recharging stations (Keskin et al., 2019, 2021), stochastic customer requests, and stochastic energy
onsumption (Basso et al., 2022). Also, a robust optimization model is proposed by Pelletier et al. (2019) to take into account energy
onsumption uncertainty in capacitated EVRP. Basso et al. (2021) applied a probabilistic Bayesian machine learning approach to
redict energy consumption and modelled the problem as an EVRP with chance-constrained partial recharging.

Adaptive (or adjustable) robust optimization (ARO) is a branch of robust optimization (RO), which recently has an increased
ange of applications (Yanıkoğlu et al., 2019). ARO allows a subset of decision variables to adapt against uncertainty scenarios
n the uncertainty set. Comprehensive studies of the ARO approach can be found in various applications including power system
peration (Bertsimas et al., 2012; Wang et al., 2013; Lorca and Sun, 2014). Also, ARO has been applied for inventory routing
roblems (Agra et al., 2018). To the best of our knowledge, there has not been any research considering energy consumption
ncertainty in EVRP using an ARO approach. In the context of EVRP, energy consumption uncertainty was considered in Pelletier
t al. (2019), Basso et al. (2021), and Basso et al. (2022). Pelletier et al. (2019) adopt the RO approach that only considers the
orst energy consumption. Basso et al. (2021) account for chance constraints with energy consumption prediction through machine

earning techniques. Additionally, Basso et al. (2022) consider stochastic customer requests and stochastic energy consumption for
he dynamic stochastic EVRP (DS-EVRP), and the DS-EVRP is modelled as a Markov Decision Process. Table 1 summarizes the related
orks on EVRP with recharging stations and highlights the different assumptions used (presence of time window constraints, use
f fixed or partial charging, and type of recharging function).
3
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The RO approach usually provides a conservative solution, and the solution quality of the chance constraints approach highly
epends on which distribution function is used. However, ARO generally provides a less conservative solution than the classical
O approach because ARO separates decision variables into two groups: here-and-now and wait-and-see decisions. Here-and-
ow decisions should be determined before the uncertainty realization, but wait-and-see decisions can adapt to the uncertainty
ealization. This ARO’s characteristic is similar to the nature of the EV routing problem under consideration. Each EV’s route should
e planned at least a day ahead to have the schedule of the EV delivery fleet, but the recharging amount can be decided while on
oute based on the operating situation. Therefore, ARO approach is more suitable to consider uncertainties in routing problems.
lso, the solution quality of the ARO approach does not depend on the distribution function like the chance-constrained approach.

nstead, the ARO approach requires more simple statistics, such as mean and variance. Thus, the ARO approach does not depend
n estimating the precise distribution which might not be possible in some applications.

The main contributions of this paper are twofold. The first is to introduce and formulate an adaptive robust optimization model
f a delivery routing problem where a fleet of EVs needs to visit a given set of customers regardless of any realization of energy
onsumption scenario within the uncertainty set. The second is to solve the resulting two-stage adaptive robust model efficiently
nd for that we propose a decomposition solution framework based on CCG approach. Additionally, we show the performance of
he proposed methodology on a set of test instances taken from the literature.

. EVRPTWPR formulations

In this section, we describe the motivation for developing an adaptive robust EVRPTWPR with energy consumption rate
ncertainty and then present its mathematical formulation. We first describe the deterministic EVRPTWPR model and then formulate
he adaptive robust EVRPTWPR with energy consumption rate uncertainty (AR-EVRPTWPR). Both models are mixed-integer
rogramming problems. A brief explanation of adopting the adaptive robust optimization is provided.

.1. Deterministic EVRPTWPR formulation

We use a similar representation of the deterministic EVRPTWPR model as the one presented in Keskin and Çatay (2016) and
ollow a similar notation (as shown in Table 2). The EVRPTWPR model in Keskin and Çatay (2016) minimizes the total travel distance
hile satisfying all customers’ demands within the time windows. The EVs’ energy consumption is proportional to the travel distance.
inear recharging function is considered and partial recharge is allowed at recharging stations; all recharging stations are assumed
o be homogeneous. We note that the battery recharging function is assumed to be a linear function to avoid challenges that could
rise from the nonlinear recharging function once embedded in an ARO framework. In this work, we deal with a different objective
unction since we consider an energy consumption rate uncertainty. Thus instead of minimizing the total travel distance, we propose
o minimize the total amount of recharging en routes. Since we consider the energy consumption rate as the uncertain parameter,
inimizing the consumed energy is more appropriate than minimizing the total travel distance. For example, there could be a route
roviding a shorter travel distance but requiring more energy. We note that if there is no energy consumption rate uncertainty and
nder the same assumptions in Keskin and Çatay (2016), the optimal solution of our deterministic model provides the same total
ravel distance compared to the EVRPTWPR model with the objective function of minimizing the total travel distance. It is evident
s the recharging amount is directly related to the travel distance for the deterministic model. Also, we note that we here use a
hree-index model for the ease of implementing the solution methods introduced in Section 4. Thus, for the deterministic model,
e follow a similar three-index model formulation to the one used by Lin et al. (2021). The deterministic model with time window

onstraints and partial recharging is formulated as the following mixed-integer linear programming model:

min
∑

𝑘∈𝐾

∑

𝑖∈𝐹0

𝑝𝑖𝑘 (1a)

s.t.
∑

𝑘∈𝐾

∑

𝑗∈𝑉𝑁+1 ,𝑖≠𝑗
𝑥𝑖𝑗𝑘 = 1 ∀𝑖 ∈ 𝑃 (1b)

∑

𝑖∈𝑉0 ,𝑖≠𝑗
𝑥𝑖𝑗𝑘 −

∑

𝑖∈𝑉𝑁+1 ,𝑖≠𝑗
𝑥𝑗𝑖𝑘 = 0 ∀𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾 (1c)

∑

𝑗∈𝑉𝑁+1

𝑥0,𝑗,𝑘 ≤ 1, ∀𝑘 ∈ 𝐾 (1d)

𝜏𝑖𝑘 + (𝑡𝑖𝑗 + 𝑠𝑖)𝑥𝑖𝑗𝑘 − 𝑙0(1 − 𝑥𝑖𝑗𝑘) ≤ 𝜏𝑗𝑘 ∀𝑖 ∈ 𝑃0, 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (1e)

𝜏𝑖𝑘 + 𝑡𝑖𝑗𝑥𝑖𝑗𝑘 + 𝑔𝑖 ⋅ 𝑝𝑖𝑘 − (𝑙0 + 𝑔𝐵)(1 − 𝑥𝑖𝑗𝑘) ≤ 𝜏𝑗𝑘 ∀𝑖 ∈ 𝐹 , 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (1f)

𝑒𝑗 ≤ 𝜏𝑗𝑘 ≤ 𝑙𝑗 ∀𝑗 ∈ 𝑉0,𝑁+1, 𝑘 ∈ 𝐾 (1g)

0 ≤ 𝑢𝑗𝑘 ≤ 𝑢𝑖𝑘 − 𝑞𝑖 ⋅ 𝑥𝑖𝑗𝑘 + 𝐶(1 − 𝑥𝑖𝑗𝑘) ∀𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (1h)

0 ≤ 𝑢0𝑘 ≤ 𝐶 ∀𝑘 ∈ 𝐾 (1i)

0 ≤ 𝑦𝑗𝑘 ≤ 𝑦𝑖𝑘 − (ℎ𝑖𝑗 ⋅ 𝑑𝑖𝑗 )𝑥𝑖𝑗𝑘 + 𝐵(1 − 𝑥𝑖𝑗𝑘) ∀𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (1j)

0 ≤ 𝑦 ≤ 𝑦 + 𝑝 − (ℎ ⋅ 𝑑 )𝑥 + 𝐵(1 − 𝑥 ) ∀𝑖 ∈ 𝐹 , 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (1k)
4

𝑗𝑘 𝑖𝑘 𝑖𝑘 𝑖𝑗 𝑖𝑗 𝑖𝑗𝑘 𝑖𝑗𝑘 0 𝑁+1
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𝑦𝑖𝑘 + 𝑝𝑖𝑘 ≤ 𝐵 ∀𝑖 ∈ 𝐹0, 𝑘 ∈ 𝐾 (1l)

𝑥𝑖𝑗𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (1m)

𝑝𝑖𝑘 ≥ 0 ∀𝑖 ∈ 𝐹0, 𝑘 ∈ 𝐾, (1n)

where 𝑅, 𝐹 , and 𝐾 denote the sets of customers, recharge stations, and vehicles, respectively, and 𝑉 ∶= 𝑅∪𝐹 , 𝑉0 ∶= 𝑉 ∪{0}, 𝑉𝑁+1 ∶=
𝑉 ∪ {𝑁 + 1}, and 𝐹0 ∶= 𝐹 ∪ {0} where 0 and 𝑁 + 1 denote the initial depot and the end depot, respectively. We note that EVs are
allowed to re-visit recharge stations. Thus, the set 𝐹 is defined as 𝐹 = {𝑁 +2,… , 𝑁 +1+𝑁𝐹,𝑁 +2+𝑁𝐹,… , 𝑁 +1+𝜈+𝑁𝐹 }, where
𝑁𝐹 and 𝜈 are the number of recharging stations and the number of allowed re-visits, respectively. Decision variable 𝑥𝑖𝑗𝑘 is the
binary decision of travel of arc (𝑖, 𝑗) by vehicle 𝑘, 𝑢𝑗𝑘 is the load level decision of vehicle 𝑘 at vertex 𝑗, 𝜏𝑗𝑘 and 𝑦𝑘𝑗 specify the service
start time and battery level when the vehicle 𝑘 arrives at vertex 𝑗, respectively, and 𝑝𝑗𝑘 is the battery recharging amount decision
of the vehicle 𝑘 at the vertex 𝑗. Parameters 𝐶,𝐵, and 𝑔𝑖 are the load capacity, battery capacity, and recharging rate, respectively,
and ℎ𝑖𝑗 is the energy consumption rate on arc (𝑖, 𝑗). Also, 𝑒𝑗 and 𝑙𝑗 are the earliest and latest service start time at vertex 𝑗. The
details of sets, variables, and parameters used in this paper are summarized in Table 2. The objective (1a) minimizes the amount
of the recharging en routes. Constraints (1b) ensure that all customers are satisfied by one single EV. Constraints (1c) correspond
to the flow conservation for each vertex, where the number of incoming and outgoing flows should be the same. We add constraint
(1d) to enforce that each vehicle should be dispatched at most once. Constraints (1e) and (1f) enforce arcs’ time feasibility leaving
from a vertex in 𝑅0 and 𝐹 , respectively. We note that a linear recharging process is assumed in (1f). Constraints (1g) ensure the
time windows of each vertex. Constraints (1h) and (1i) enforce the demand fulfilment of all customers, and load level should be
nonnegative and cannot exceed the vehicle’s capacity. Constraints (1j) and (1k) enforce that the vehicle’s battery charge level is
always non-negative. Constraints (1l) state that the vehicle’s battery charge level departing vertex 𝑗 should be larger than its battery
charge level when it arrives and cannot exceed its battery capacity.

3.2. AR-EVRPTWPR formulation

In this section, we propose an ARO model for EVRPTWPR with energy consumption rate uncertainty. We assume that energy
consumption rate realization would be different depending on arc (𝑖, 𝑗). Thus ℎ𝑖𝑗 , which is the energy consumption rate on arc (𝑖, 𝑗),
is an uncertain parameter in the proposed model.

The motivation for adopting the ARO approach is related to the nature of recharging decisions. First, the drivers usually decide
whether to recharge or not, depending on how much of the vehicle’s driving range remains. Thus, the recharging decision can
be adjustable depending on the circumstance. Second, as highlighted in Section 1, many factors can increase or decrease the EVs’
energy consumption rate. In practice, it is difficult to forecast in advance which factors will affect the EVs’ energy consumption rate
realization, and a plan for the recharging station visit could be useless. Therefore, for efficient EV fleet operation, the recharging
decision should be regarded as adaptive on uncertainty realization and not scheduled in advance. Since the classical RO approach
deals with the uncertainty of data by finding a robust solution immunized against all possible scenarios in a predefined set (Ben-Tal
et al., 2004; Bertsimas et al., 2011), it is not appropriate to the nature of the recharging decisions in EVRP. On the other hand, the
ARO approach allows some decision variables to be varied to deal with the different uncertainty realizations. Specifically, in the
ARO approach, decision variables are categorized into two groups, non-adaptive and adaptive decision variables. The non-adaptive
decisions are assumed to be decided before any uncertainty realization and should be feasible for all possible uncertainties, the same
as the classical RO approach. However, adaptive decisions are made after the uncertainty realization. For these reasons, we apply
the adaptive robust optimization approach for the EVRPTWPR in our work.

In this paper, we focus on the AR-EVRPTWPR. Therefore, instead of presenting the RO-EVRPTWPR, we refer the reader
to Gounaris et al. (2013) and Munari et al. (2019). AR-EVRPTWPR is formulated as a two-stage adaptive robust model. To apply a
two-stage ARO approach to the EVRPTWPR with energy consumption rate uncertainty, the decision variables should be categorized
into two groups, which are non-adaptive (or here-and-now) and adaptive (or wait-and-see) variables. The former non-adaptive decisions
should be made before uncertainty realization. However, the latter adaptive decisions are made after the uncertainty realization. The
three-index EVRPTWPR has five types of decision variables: 𝑥𝑖𝑗𝑘, 𝜏𝑖𝑘, 𝑢𝑖𝑘, 𝑦𝑖𝑘, and 𝑝𝑖𝑘. Among these variables, 𝑥𝑖𝑗𝑘 and 𝑢𝑖𝑘 are clearly
non-adaptive variables. The route for each vehicle should be decided before the trip, and energy consumption rate uncertainty is not
considered. There are several reasons for also including the charging station visit in the first stage, one is methodological and the
other is related to the implementation of the model in practice. On the methodological side, if part of EVs’ routes is assumed to be
adaptive, then the model would contain binary adaptive decisions which introduce a substantial computational difficulty. Another
point is if only the sequences of customers are fixed, it can increase the total travel distance in case of visiting charging stations
was a decision in the second stage. Also in practice, drivers prefer to have a fixed route for the next day, thus if they do not know
the charging stations they need to charge at, the route is not known in advance which might be a problem from an operational
practical side.

Variables 𝑝𝑖𝑘 are adaptive variables as they are impacted by the uncertainty of the energy consumption rate. We note that
the other two decision variables 𝜏𝑖𝑘 and 𝑦𝑖𝑘 are determined via the energy consumption realization. Therefore, they are adaptive
variables. Adaptive decision variables are represented as a function of the uncertain parameter 𝒉, where 𝒉 is the vector of energy
consumption rate at all arcs. Therefore, adaptive variables 𝑝𝑖𝑘, 𝜏𝑖𝑘, and 𝑦𝑖𝑘 are represented as 𝑝𝑖𝑘(𝒉), 𝜏𝑖𝑘(𝒉), and 𝑦𝑖𝑘(𝒉), respectively.
5

Since we consider a two-stage AR-EVRPTWPR, we postulate that the realizations of the uncertain energy consumption rates are
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Table 2
Summary of notation.

Sets

0, 𝑁 + 1 Initial depot and end depot
𝑃 Set of customer vertices 𝑃 ∶= {1, 2,… , 𝑁}

𝑃0 𝑃0 ∶= 𝑃 ∪ {0}

𝐹 Set of recharge station vertices
𝑉 Set of customers and recharge stations vertices 𝑉 ∶= 𝑃 ∪ 𝐹

𝑉0 𝑉0 ∶= 𝑉 ∪ {0}

𝑉𝑁+1 𝑉𝑁+1 ∶= 𝑉 ∪ {𝑁 + 1}

𝑉0,𝑁+1 𝑉0,𝑁+1 ∶= 𝑉 ∪ {0, 𝑁 + 1}

𝐹0 𝐹0 ∶= 𝐹 ∪ {0}

 Set of arcs  ∶= {(𝑖, 𝑗) ∣ 𝑖 ∈ 𝑉0 , 𝑗 ∈ 𝑉𝑁+1 , 𝑖 ≠ 𝑗}

𝐾 Set of homogeneous vehicles
 Set of possible energy consumption rate scenarios
 Set of routes. For convenience, we call ‘‘route ’’ instead of ‘‘the set of routes ’’

Variables

𝑥𝑖𝑗𝑘 Binary decision variable for the arc (𝑖, 𝑗) travelling by vehicle 𝑘.
𝑢𝑗𝑘 Nonnegative continuous decision variable for the remaining load level when the vehicle 𝑘 arrives at vertex 𝑗

𝜏𝑗𝑘 Continuous decision variable for the service start time of the vehicle 𝑘 at vertex 𝑗

𝑦𝑗𝑘 Nonnegative continuous decision variable for battery charge level when the vehicle 𝑘 arrives at vertex 𝑗

𝑝𝑗𝑘 Nonnegative continuous decision variable for battery recharging amount of the vehicle 𝑘 at vertex 𝑗

Parameters

𝑑𝑖𝑗 Distance of arc (𝑖, 𝑗)

𝑡𝑖𝑗 Travel time of arc (𝑖, 𝑗)

𝑞𝑗 Demand of customer 𝑗

𝑠𝑗 service time of customer 𝑗

𝑒𝑗 , 𝑙𝑗 Earliest and latest start time of customer 𝑗

𝐶 Vehicle capacity
𝐵 Vehicle battery capacity
𝑔𝑖 Recharging rate at station 𝑖

ℎ𝑖𝑗 Energy consumption rate on arc (𝑖, 𝑗)

𝑁𝐹 Number of recharge stations
𝜈 Number of allowed re-visits

simultaneously revealed. This assumption could be reasonable since some exogenous factors, such as temperature, could be estimated
reasonably well at the beginning of the day. We note that minimizing the worst energy recharging amount is equivalent to
minimizing the worst energy consumption value. Based on this observation, we formulate the AR-EVRPTWPR as follows:

min max
𝒉∈

∑

𝑘∈𝐾

∑

𝑖∈𝐹0

𝑝𝑖𝑘(𝒉) (2a)

s.t.
∑

𝑘∈𝐾

∑

𝑗∈𝑉𝑁+1⧵{𝑖}
𝑥𝑖𝑗𝑘 = 1 ∀𝑖 ∈ 𝑃 (2b)

∑

𝑖∈𝑉0⧵{𝑗}
𝑥𝑖𝑗𝑘 −

∑

𝑖∈𝑉𝑁+1⧵{𝑗}
𝑥𝑗𝑖𝑘 = 0 ∀𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾 (2c)

∑

𝑗∈𝑉𝑁+1

𝑥0,𝑗,𝑘 ≤ 1, ∀𝑘 ∈ 𝐾 (2d)

𝜏𝑖𝑘(𝒉) + (𝑡𝑖𝑗 + 𝑠𝑖)𝑥𝑖𝑗𝑘 − 𝑙0(1 − 𝑥𝑖𝑗𝑘) ≤ 𝜏𝑗𝑘(𝒉) ∀𝒉 ∈  , 𝑖 ∈ 𝑃0, 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (2e)

𝜏𝑖𝑘(𝒉) + 𝑡𝑖𝑗𝑥𝑖𝑗𝑘 + 𝑔𝑖 ⋅ 𝑝𝑖𝑘(𝒉) − (𝑙0 + 𝑔𝐵)(1 − 𝑥𝑖𝑗𝑘) ≤ 𝜏𝑗𝑘(𝒉) ∀𝒉 ∈  , 𝑖 ∈ 𝐹 , 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (2f)

𝑒𝑗 ≤ 𝜏𝑗𝑘(𝒉) ≤ 𝑙𝑗 ∀𝒉 ∈  , 𝑗 ∈ 𝑉0,𝑁+1, 𝑘 ∈ 𝐾 (2g)

0 ≤ 𝑢𝑗𝑘 ≤ 𝑢𝑖𝑘 − 𝑞𝑖 ⋅ 𝑥𝑖𝑗𝑘 + 𝐶(1 − 𝑥𝑖𝑗𝑘) ∀𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (2h)

0 ≤ 𝑢0𝑘 ≤ 𝐶 ∀𝑘 ∈ 𝐾 (2i)

0 ≤ 𝑦𝑗𝑘(𝒉) ≤ 𝑦𝑖𝑘(𝒉) − (ℎ𝑖𝑗 ⋅ 𝑑𝑖𝑗 )𝑥𝑖𝑗𝑘 + 𝐵(1 − 𝑥𝑖𝑗𝑘) ∀𝒉 ∈  , 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (2j)
6

0 ≤ 𝑦𝑗𝑘(𝒉) ≤ 𝑦𝑖𝑘(𝒉) + 𝑝𝑖𝑘(𝒉) − (ℎ𝑖𝑗 ⋅ 𝑑𝑖𝑗 )𝑥𝑖𝑗𝑘 + 𝐵(1 − 𝑥𝑖𝑗𝑘) ∀𝒉 ∈  , 𝑖 ∈ 𝐹0, 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (2k)
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0 ≤ 𝑦𝑖𝑘(𝒉) + 𝑝𝑖𝑘(𝒉) ≤ 𝐵 ∀𝒉 ∈  , 𝑖 ∈ 𝐹0, 𝑘 ∈ 𝐾 (2l)

0 ≤ 𝑝𝑖𝑘(𝒉) ∀𝒉 ∈  , 𝑖 ∈ 𝑉0,𝑁+1, 𝑘 ∈ 𝐾 (2m)

𝑥𝑖𝑗𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑁+1, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾, (2n)

where 𝜏(𝒉), 𝑦(𝒉), 𝑝(𝒉) denote the functional form of the adaptive decision variables for energy consumption rate scenario 𝒉. In other
words, 𝜏, 𝑦, and 𝑝 are determined for the energy consumption rate scenarios 𝒉. The objective (2a) minimizes the worst recharging
amount for all energy consumption rate realization 𝒉 ∈  . Constraints with only non-adaptive decision variables, such as (2b)–(2c)
and (2h)–(2i), are the same as the constraints (1b)–(1e) and (1h)–(1i), respectively. All of the constraints that contain adaptive
decision variables become a robust constraint, such as (2e)–(2g) and (2j)–(2m). Constraints (2e)–(2g) and (2j)–(2m) enforce arcs’
time feasibility, time window, non-negative battery charge level, and bounds of the battery charge level for any energy consumption
rate realization 𝒉 ∈  . For the uncertainty set  , we consider the following budget uncertainty set:

 ∶=

{

𝒉 ∈ R|| ∶
∑

𝑎∈

|ℎ𝑎 − ℎ̄𝑎|

ℎ̂𝑎
≤ 𝛤 , ℎ𝑎 ∈ [ℎ̄𝑎 − ℎ̂𝑎, ℎ̄𝑎 + ℎ̂𝑎],∀𝑎 ∈ 

}

, (3)

where  ∶= {(𝑖, 𝑗) ∶ 𝑖 ∈ 𝑉0,𝑁+1, 𝑗 ∈ 𝑉0,𝑁+1, 𝑖 ≠ 𝑗} is the set of arcs, ℎ̄𝑎 is the expected energy consumption rate of arc 𝑎, ℎ̂𝑎 ∶= 0.1× ℎ̄𝑎,
nd 𝛤 is the ‘‘budget of uncertainty’’ (Bertsimas et al., 2012). The uncertainty set (3) assumes that the energy consumption rate
s realized within a certain range. The cardinality constraint limits the total deviation of uncertain energy consumption rates from
heir expected values.

Compared to the deterministic model (1), the model (2) is still a mixed-integer programming problem. However, model (2) has
min–max objective function and adaptive decision variables are represented in a function of uncertain parameters. The min–max
bjective function cannot be handled directly, and the expression of adaptive decision variables is closely related to the tractability
f the model (2). Thus, the presented model (2) is hard to solve using standard methods. In the following section, we introduce a
olution framework to solve the proposed model given in (2).

. Solution methods

The AR-EVRPTWPR formulation presented in problem (2), depicts a two-stage structure. The first-stage variables are non-
djustable and the second-stage variables are adjustable based on the first stage. In particular, the first stage finds the route and load
evel decision immunized against all possible uncertainty realization 𝒉 ∈  . In the second stage, the decision should be adaptive
o any uncertainty realization 𝒉 ∈  , and provide a minimum worst-case cost. To simplify the notation, we present the compact
atrix form of problem (2) as follows with matrices and vectors shown in bold:

min
𝒙,𝒚(⋅)

max
𝒉∈

𝒃⊤𝒚(𝒉) (4a)

s.t. 𝑨𝒙 ≤ 𝒅 (4b)

𝑭𝒚(𝒉) ≤ 𝒇 ∀𝒉 ∈  (4c)

𝑮(𝒉)𝒙 +𝑯𝒚(𝒉) ≤ 𝒈 ∀𝒉 ∈  , (4d)

where the vector 𝒙 is the vector of non-adaptive decision variables, including the route and load level decisions. The vector 𝒚
s the vector of adaptive decision variables, including the arrival time, battery energy level, and battery charge level decisions.
he functional form 𝒚(𝒉) represents that 𝒚 is fully adaptive to any uncertainty realization 𝒉 ∈  . Constraint (4b) includes route-
elated constraints (2b)–(2d) and vehicle’s cargo level-related constraints (2h) and (2i). Constraint (4c) contains (2g), (2l), and (2m).
onstraint (4d) couples the non-adaptive and adaptive decisions, including (2e), (2f), (2j), and (2k).

We note that the energy consumption rate uncertainty in AR-EVRPTWPR is column-wise, so robust constraints cannot be dualized
o obtain a robust counterpart and thus obtain a single-stage. Several solution methods were proposed to solve this type of problem,
uch as Benders decomposition with cutting planes algorithm (Bertsimas et al., 2012; Wang et al., 2013), linear decision rule
pproximation (Ben-Tal et al., 2004, 2005; Dehghan et al., 2017), and column-and-constraint generation method (Zeng and Zhao,
013). Using the linear decision rule, e.g., an affine policy approximation for the adaptive decision variables, is not suitable for
he AR-EVRPTWPR in this case because it increases the number of decision variables and the resulting problem easily becomes
ntractable. The remaining potential solution methods for the AR-EVRPTWPR are the Benders decomposition approach and the
olumn-and-constraint generation method. Both methods are very similar since they decompose the problem into a master and
ubproblem, and iteratively solve them until the master problem provides a robust optimal solution for all uncertainties. The only
ifference between them is the type of constraints that are added to the master problem. In the column-and-constraint generation
CCG) method, a copy of the variables and the constraints of the original model are added to the master problem. On the other
and, single or multi-Benders cuts are added to the master problem in the Benders decomposition approach. For the AR-EVRPTWPR,
he master problem of the CCG method can be formulated as an EVRPTWPR with multiple energy consumption rate scenarios. The
esulting formulation has the advantage of evaluating time window and battery capacity violations using existing methods such as
he ones presented by Schiffer and Walther (2018) and Cortés-Murcia et al. (2019). Thus, in this work we adopt a similar approach
o the CCG introduced in Zeng and Zhao (2013) to solve the AR-EVRPTWPR.
7
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4.1. Column-and-constraint generation framework

We first introduce the master problem and subproblem of the CCG method. Formulation (4) is equivalent to the following model:

min
𝒙,𝜂

𝜂 (5a)

s.t. 𝑨𝒙 ≤ 𝒅 (5b)

𝜂 ≥ min
𝒚∈𝜴(𝒙,𝒉)

𝒃⊤𝒚 ∀𝒉 ∈  , (5c)

where 𝜴(𝒙,𝒉) = {𝒚 ∶ 𝑭𝒚 ≤ 𝒇 ,𝑮(𝒉)𝒙 + 𝑯𝒚 ≤ 𝒈} is the set of feasible arrival time, load level, battery level, and battery charge
level for a given fixed route 𝒙 and an energy consumption 𝒉. Since the uncertainty set  is a polytope,  in constraint (5c) can
be replaced by the set of its extreme points, denoted by ext( ) (Bertsimas et al., 2012; Zeng and Zhao, 2013). We note that the set
ext( ) has a finite number of energy consumption rate scenarios. Therefore, problem (5) can be written as follows:

min
𝒙,𝜂,𝒚𝑠

𝜂 (6a)

s.t. 𝑨𝒙 ≤ 𝒅 (6b)

𝜂 ≥ 𝒃⊤𝒚𝑠 ∀𝑠 ∈ 𝐼(ext( )) (6c)

𝒚𝑠 ∈ 𝜴(𝒙,𝒉𝑠) ∀𝑠 ∈ 𝐼(ext( )), (6d)

where 𝐼(ext( )) is the index set of scenarios in the set ext( ), 𝒚𝑠 is the decision variable 𝒚 at scenario 𝑠, and 𝒉𝑠 is the energy
onsumption scenario of 𝒉 for the 𝑠th scenario in the set ext( ). We note that variable 𝒚 and the associated constraint set are
epeated as much as the number of scenarios in the set ext( ). The number of constraints and variables in (6) is around |ext( )|
imes that of the deterministic EVRPTWPR model, and is thus intractable. To obtain a tractable way to solve this problem, we adopt
n iterative approach where CCG starts from the relaxed master problem (RMP), which has a subset of the set ext( ) in problem
6). This RMP can be defined as the EVRPTWPR with multiple scenarios of the energy consumption rate. We refer to this problem
s [RMP(̄ )], where ̄ ⊆ ext( ). Let (𝒙∗, 𝜂∗) be the optimal solution of the current [RMP(̄ )]. The details of the solution method
or solving the [RMP(̄ )] are described in Sections 4.2 and 4.4.

The next step identifies the worst-case scenario �̃� that defines the largest objective function value of the subproblem with a fixed
∗ and is not in ̄ . The subproblem, [SP(𝒙∗)], is defined by fixing the non-adaptive decision 𝒙. Thus, [SP(𝒙∗)] is stated as follows:

max
𝒉∈

min
𝒚

𝒃⊤𝒚 (7a)

s.t. 𝑭𝒚 ≤ 𝒇 (7b)

𝑯𝒚 ≤ 𝒈 −𝑮(𝒉)𝒙∗ ∀𝒉 ∈  . (7c)

We note that 𝒉 ∈  is used in problem (7) instead of 𝒉 ∈ ext( ) since the optimal solution 𝒉∗ is an extreme point of the
olyhedron  (Zeng and Zhao, 2013). The subproblem [SP(𝒙∗)] detects the worst-case scenario �̃� that defines the largest amount
f consumed energy for a fixed 𝒙∗. There could be a scenario that makes the current solution 𝒙∗ infeasible. To guarantee the
easibility of the subproblem (7), slack variables could be added to constraints (7b) and (7c). Then, the corresponding objective
erms of slack variables should be added to the objective function (7a). The details of a model including the slack variables and
he proposed solution approach are described in Section 4.3. If the optimal value of the subproblem (7), 𝜁∗, is bigger than 𝜂∗, then
he detected scenario �̃� is added to the set ̄ , and new variables and constraints corresponding to �̃� are generated and added to
RMP(̄ )]. The size of the RMP grows with every iteration. The overall CCG framework for solving AR-EVRPTWPR is summarized
n Algorithm 1. We note that the Algorithm 1 terminates only when 𝜁∗−𝜂∗ < 𝛿. The convergence tolerance 𝛿 should be nonnegative
nd sufficiently small since it can impact the solution quality. For the computational results, we set 𝛿 to 0.001. In the following
ections, we illustrate solution methods for [RMP(̄ )] and [SP(𝒙∗)]. Due to their computational complexities, both models are
olved using heuristic methods and the performance of the proposed solution framework is demonstrated in Section 5.

Algorithm 1 Column-and-Constraint Generation Framework

1: ̄ ← {�̄�}
2: 𝒙 ← InitialSolution(̄ )
3: RobustFeasibility ← False
4: while –RobustFeasibility do
5: 𝒙∗, 𝜂∗ ← [RMP(̄ )]
6: 𝜁∗, �̃� ← [SP(𝒙∗)]
7: if 𝜁∗ − 𝜂∗ ≥ 𝛿 then
8: ̄ ← ̄ ∪ {�̃�}
9: else

10: RobustFeasibility ← True
8
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4.2. Solution methods for the master problem

As we have seen in the previous section, [RMP(̄ )] is formulated as an EVRPTWPR model with multi-energy consumption
rate scenarios. We refer to this problem as a multi-scenario EVRPTWPR. Since the route and load level decisions are non-adjustable
variables, they should satisfy all scenarios in the given uncertainty set ̄ . However, the arrival time, battery energy level, and battery
charge level decisions can vary to deal with the different scenarios. We can easily infer that the multi-scenario EVRPTWPR is more
challenging to solve than the single-scenario one. To deal with this computational challenge, we adopt one of the solution methods
for solving the single-scenario EVRPTWPR, which is a hybrid variable neighbourhood search and tabu search (VNS-TS) metaheuristic
with an annealing mechanism similar to the one used in Schneider et al. (2014). Such a solution method has the advantage of
combining diversification and intensification features, which are key ingredients in the design of metaheuristics (Gendreau and
Potvin, 2010). The diversification operators are the VNS shaking step (which can generate solutions structurally distant from the
incumbent one) and the annealing mechanism (which can accept to move the search to an unimproved neighbour solution). The
intensification operator relies on the tabu search metaheuristic that is applied to try to improve the solution provided by the VNS
shaking step. The diversification features are able to explore new regions of the solution space, whereas the intensification operator
is able to deeply investigate promising regions of the solution space. The combination of intensification/diversification features has
been employed successfully in various VRP problems (e.g., Coindreau et al. (2019)).

In the following sections, we describe the VNS approach in detail, where all constants and variables in the corresponding violation
functions are represented in the time unit. Thus, with abuse of notation, ℎ𝑠𝑖𝑗 ← 𝑔 × ℎ𝑠𝑖𝑗 × 𝑑𝑖𝑗 represents the time needed to recharge
the consumed energy on an arc (𝑖, 𝑗) for scenario 𝒉𝑠, and 𝐵 ← 𝑔 × 𝐵 denotes the time needed to recharge the vehicle fully.

4.2.1. Preprocessing, generalized cost function, and initial solution
For computational efficiency, we exclude infeasible arcs as done by Schneider et al. (2014) and Schiffer and Walther (2018).

The infeasibility of arc (𝑢, 𝑣) is determined by the following preprocessing constraints:

𝑢, 𝑣 ∈ 𝑃 ∧ 𝑞𝑢 + 𝑞𝑣 > 𝐶 (8a)

𝑢 ∈ 𝑉0, 𝑣 ∈ 𝑉𝑁+1 ∧ 𝑒𝑢 + 𝑠𝑢 + 𝑡𝑢𝑣 > 𝑙𝑣 (8b)

𝑢 ∈ 𝑉0, 𝑣 ∈ 𝑉 ∧ 𝑒𝑢 + 𝑠𝑢 + 𝑡𝑢𝑣 + 𝑠𝑣 + 𝑡𝑣,𝑁+1 > 𝑙0 (8c)

𝑢, 𝑣 ∈ 𝑃 ∧ ∀𝑖 ∈ 𝐹0, 𝑗 ∈ 𝐹𝑁+1 ∶ ℎ𝑖𝑢 + ℎ𝑢𝑣 + ℎ𝑣𝑗 > 𝐵 (8d)

𝑢, 𝑣 ∈ 𝑉0,𝑁+1 ∧ ℎ𝑢𝑣 > 𝐵. (8e)

Constraints (8a)–(8c) identify infeasibility based on load capacity and time window violations. Constraints (8d) and (8e) identify
infeasibility due to the battery capacity as discussed in Schneider et al. (2014) and Schiffer and Walther (2018), respectively. All
infeasible arcs satisfying any of constraints (8) are removed from the arc set 𝐴. Additionally, at every CCG iteration, we remove
infeasible arcs satisfying (8d) and (8e) when a new scenario is added to the set ̄ .

As is commonly done, we allow infeasible solutions during the search. The approach of Schneider et al. (2014) considers
the sum of the total travelled distance, total load capacity violation, time window violations, battery capacity violation, and the
diversification penalty. Schiffer and Walther (2018) consider the total recharging time, time window violation, and battery capacity
violation. Cortés-Murcia et al. (2019) evaluate the cost function as the sum of the time spent at recharging stations, time window
violation, and battery capacity violations. In our approach, we define the generalized cost for a route  as follows:

𝐺𝐶() = max
𝑠∈𝐼(̄ )

{

∑

𝑘∈𝐾

∑

𝑖∈𝐹
𝑝𝑠𝑖𝑘 + 𝛼

(

𝑇𝑊 𝑠() + 𝐹𝐿𝑠()
)

}

+ 𝛽𝐹𝑅(), (9)

where 𝑝𝑠𝑖𝑘, 𝑇𝑊
𝑠(), and 𝐹𝐿𝑠() represent the energy recharged at station 𝑖 of vehicle 𝑘, time window violation of route , and

battery capacity violation of route  for the 𝑠th scenario in set ̄ , respectively. Function 𝐹𝑅() is the load capacity violation of
route . All violation terms 𝑇𝑊 , 𝐹𝐿, and 𝐹𝑅 are scaled by the weighting factors 𝛼 and 𝛽. These factors are initialized by (𝛼0, 𝛽0),
are dynamically updated during the search, and limited between a given lower bounds (𝛼min, 𝛽min) and upper bounds (𝛼max, 𝛽max).
We note that route  is said to be feasible for a scenario 𝑠 if 𝑇𝑊 𝑠() = 0, 𝐹𝐿𝑠() = 0, and 𝐹𝑅() = 0 and robust feasible for ̄ if
route  is feasible for all scenarios 𝑠 ∈ 𝐼(̄ ).

To calculate the violations of the time window and battery capacity, we use the corridor-based penalty approach introduced
n Schiffer and Walther (2018) and Cortés-Murcia et al. (2019). The time window and battery capacity violation are calculated as
ollows:

𝑇𝑊 𝑠() =
∑

𝜌∈

{

∑

𝑣∈𝜌
max

{

min
{

𝑎min
𝑠,𝑣 , 𝑎

max
𝑠,𝑣

}

− 𝑙𝑣, 0
}

}

∀𝑠 ∈ 𝐼(̄ ) (10a)

𝐹𝐿𝑠() =
∑

𝜌∈

{

∑

𝑣∈𝜌
max

{

𝑎min
𝑠,𝑣 − 𝑎max

𝑠,𝑣 , 0
}

}

∀𝑠 ∈ 𝐼(̄ ), (10b)

where 𝜌 denotes the route of a given vehicle, 𝑎min
𝑠,𝑣 is the earliest allowed service start time at a vertex 𝑣 for scenario 𝒉𝑠 ∈ ̄ , and

𝑎max
𝑠,𝑣 is the earliest service start time at a vertex 𝑣 if as much energy as possible is recharged at recharging stations visited before

reaching 𝑣 for scenario 𝒉𝑠 ∈ ̄ . Readers can refer to Schiffer and Walther (2018) and Cortés-Murcia et al. (2019) for additional
9

details.
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The load capacity violation of a route 𝜌 is calculated as follows:

𝐹𝑅() =
∑

𝜌∈
max

{

∑

𝑣∈𝜌
𝑞𝑣 − 𝐶, 0

}

. (11)

e note that the load capacity violation is calculated in (1) for any case where the route  is updated (Schneider et al., 2014;
chiffer and Walther, 2018; Cortés-Murcia et al., 2019).

We construct an initial solution using the approach in Lin et al. (2021). We first choose an arbitrary point and calculate all
ngles between the depot, this random point, and all the customers. All customers are sorted in ascending order of the angle value.
hen, a customer is iteratively inserted into an active route at the position causing the smallest energy consumption increment.
he route becomes inactive when any customer insertion causes a violation in the time window or battery capacity, and another
oute is activated to insert the remaining customers. The number of available employed vehicles is given as a parameter. If there
till remain any unrouted customers and no more routes can be activated, the remaining customers are inserted into the last route
isregarding any time window and batter capacity violation.

.2.2. Variable neighbourhood search and tabu search components
The variable neighbourhood search (VNS) was proposed by Mladenović and Hansen (1997) for the travelling salesman problem,

nd several other research followed and proposed some variations (e.g., Bierlaire et al., 2010; Schneider et al., 2014; Cortés-Murcia
t al., 2019; Thevenin and Zufferey, 2019; Lin et al., 2021). From the provided literature, it was shown that the VNS can find
ear-optimal solutions, and sometimes optimal solutions, for the EVRPTWPR, and more generally for highly complex optimization
roblems. Next, we extend the VNS-TS approach proposed by Schneider et al. (2014) to solve the master problem, [RMP(̄ )], which
s a multi-scenario EVRPTWPR. The VNS approach proceeds as follows: given a current solution , a neighbouring solution ′ is
enerated by a cyclic-exchange operator. It selects a random number 𝑛𝑟 of routes from . An arbitrary length of consecutive vertices
s chosen to form an exchange block. These blocks are reversed and transferred between selected routes. The neighbouring solution
′ defined by the exchange of blocks could be feasible or not.

In line with other work on VNS (e.g., Thevenin et al., 2017), a tabu search (TS) is used for a local search strategy to improve
he neighbouring solution ′. For each VNS iteration, TS is run for 𝑛𝑡𝑎𝑏𝑢 iterations, and it provides a new set of routes ′′. If the
′′ is an improving solution compared to , then  is replaced by ′′. However, even if the ′′ is not an improving solution, it

an be accepted depending on the acceptance criteria based on simulated annealing (SA) (Kirkpatrick et al., 1983). Specifically,
he non-improving solution ′′ is accepted with a probability of 𝑒(𝐺𝐶()−𝐺𝐶(′′))∕𝑇 , where 𝑇 is temperature of annealing phase.
emperature 𝑇 is initialized by 𝑇0 to accept non-improving solution ′′ with the probability of 50% when 𝐺𝐶(′′) is 𝛥𝑆𝐴 worse
han 𝐺𝐶(). For every VNS iteration, the temperature linearly decreases. We apply the same parameter settings used by Lin et al.
2021).

In line with the VRP neighbourhood search structures proposed in the literature (see for example Golden et al., 2008),
ix operators are applied to the solution ′, such as 2-opt∗, exchange-intra, exchange-inter, relocate-intra, relocate-inter, and
tationInRe. Each operator has its own tabu set. The best none-tabu move is chosen. The move is said to be superior if the resulting
olution has a lower cost function value or is a robust feasible solution with fewer employed vehicles. The operators that are applied
re described as follows.

• 2-opt∗: Select two routes 𝜌𝑖 and 𝜌𝑗 , and split them into two partial routes, i.e., 𝜌𝑖 → 𝜌1𝑖 , 𝜌
2
𝑖 and 𝜌𝑗 → 𝜌1𝑗 , 𝜌

2
𝑗 . Then, construct two

new routes such as 𝜌𝑛𝑒𝑤𝑖 ← 𝜌1𝑖 + 𝜌2𝑗 and 𝜌𝑛𝑒𝑤𝑗 ← 𝜌1𝑗 + 𝜌2𝑖 .
• Exchange-intra: Select two vertices 𝑖 and 𝑗 from a route 𝜌 = ⟨0,… , 𝑖−, 𝑖,… , 𝑗−, 𝑗,… , 𝑁 + 1⟩. Then, exchange the positions of

them, such that 𝜌𝑛𝑒𝑤 = ⟨0,… , 𝑖−, 𝑗,… , 𝑗−, 𝑖,… , 𝑁 + 1⟩.
• Exchange-inter: Select a vertex 𝑖 from route 𝜌𝑖 and a vertex 𝑗 from route 𝜌𝑗 . Exchange the positions of them, such that
𝜌𝑛𝑒𝑤𝑖 = ⟨0,… , 𝑖−, 𝑗, 𝑖+ … , 𝑁 + 1⟩ and 𝜌𝑛𝑒𝑤𝑗 = ⟨0,… , 𝑗−, 𝑖, 𝑗+ … , 𝑁 + 1⟩.

• Relocate-intra: Select vertices 𝑖 and 𝑗 from route 𝜌. Delete 𝑖 from 𝜌 and reinsert it after 𝑗, such that 𝜌𝑛𝑒𝑤 =
⟨0,… , 𝑖−, 𝑖+,… , 𝑗, 𝑖, 𝑗+,… , 𝑁 + 1⟩.

• Relocate-inter: Select a vertex 𝑖 from route 𝜌𝑖 and a vertex 𝑗 from route 𝜌𝑗 . Delete 𝑖 from 𝜌𝑖 and reinsert it after 𝑗 of 𝜌𝑗 , such
that 𝜌𝑛𝑒𝑤𝑖 = ⟨0,… , 𝑖−, 𝑖+,… , 𝑁 + 1⟩ and 𝜌𝑛𝑒𝑤𝑗 = ⟨0,… , 𝑗, 𝑖, 𝑗+,… , 𝑁 + 1⟩.

• stationInRe: Select an unassigned station vertex and insert it into the route or remove a station vertex in the route.

Note that, 𝑖− and 𝑖+ represent the preceding and succeeding vertices of the vertex 𝑖. Each operator considers all possible vertices
nd positions. Then, the best move is chosen, and the removed edges by this best move are stored in the corresponding operator’s
abu set. Each operator cannot consider the reinsertion of an edge if the edge is in its tabu set. Every edge in the tabu set has its
abu tenure which is randomly chosen from a range of

[

𝑛min
𝑡𝑎𝑏𝑢, 𝑛

max
𝑡𝑎𝑏𝑢

]

, where 𝑛min
𝑡𝑎𝑏𝑢 and 𝑛max

𝑡𝑎𝑏𝑢 are parameters that will be tuned in the
computational results.
10
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4.3. Solution method for the subproblem

Recall subproblem [SP(𝒙∗)] presented in Section 4.1. We add slack variables 𝒘 = (𝒘1,𝒘2) and their objective term 𝜿⊤𝒘 as given
in the problem below:

max
𝒉∈

min
𝒚

𝒃⊤𝒚 + 𝜿⊤𝒘 (12a)

s.t. 𝑭𝒚 ≤ 𝒇 +𝒘1 (12b)

𝑯𝒚 ≤ 𝒈 −𝑮(𝒉)𝒙∗ +𝒘2, (12c)

where 𝒘 = (𝒘1,𝒘2) and 𝜿 = (𝜿1,𝜿2) are the vector of slack variables and their objective coefficients, respectively. As mentioned in
Section 4.1, slack variables are added to guarantee the feasibility of [SP(𝒙∗)]. Since the subproblem (12) has a bilevel structure, it
cannot be solved directly. We note that the inner minimization problem is a linear programming problem, and it can be dualized
as a maximization problem. Then, the resulting problem can be represented as follows:

max
𝒉,𝝀,𝝋

𝝋⊤(𝑮(𝒉)𝒙∗ − 𝒈
)

− 𝝀⊤𝒇 (13a)

s.t. − 𝝀⊤𝑭 − 𝝋⊤𝑯 ≤ 𝒃⊤ (13b)

𝟎 ≤ 𝝀 ≤ 𝜿1 (13c)

𝟎 ≤ 𝝋 ≤ 𝜿2 (13d)

𝒉 ∈  , (13e)

where 𝝀 and 𝝋 are the dual multipliers of the constraints (7b) and (7c), respectively, and vectors 𝜿1 and 𝜿2 are the subvectors of 𝜿 for
𝒘1 and 𝒘2, respectively. Note that the dualized subproblem (13) is a bilinear optimization problem with a bilinear term 𝝋⊤𝑮(𝒉)𝒙∗

in the objective function. Since the bilinear terms only exist in the objective function and its feasible region can be separated for
(𝝀,𝝋) and 𝒉, thus problem (13) is a separable bilinear program. The optimal solution of problem (13) consists of the extreme point
of the polyhedron {(𝝀,𝝋) ∶ −𝝀⊤𝒇 − 𝝋⊤𝑯 ≤ 𝒃⊤, 𝟎 ≤ 𝝀 ≤ 𝜿1, 𝟎 ≤ 𝝋 ≤ 𝜿2} and the extreme point of the uncertainty set  . Therefore,
we can solve subproblem (13) using the alternating direction (AD) algorithm proposed by Konno (1976). The AD algorithm always
converges to a Karush–Kuhn–Tucker (KKT) point of problem (13) (Lorca and Sun, 2014). The AD algorithm iteratively solves two
problems; one is (13) with a fixed 𝒉 and the other is the same problem (13) with a fixed (𝝀,𝝋). Details are summarized in Algorithm
2.

Algorithm 2 Alternating Direction (AD) Algorithm

1: �̃� ← �̄�
2: 𝐿𝐵 ← 0, 𝑈𝐵 ← ∞
3: while 𝑈𝐵 − 𝐿𝐵 < 𝜀 do
4: 𝐿𝐵 ← max(𝝀,𝝋)∈𝛱 𝝋⊤(𝑮(�̃�)𝒙∗ − 𝒈

)

− 𝝀⊤𝒇 and let (𝝀∗,𝝋∗) be its optimal solution
⊳ 𝛱 ∶= {(𝝀,𝝋) ∶ (13b)–(13e)}

5: 𝑈𝐵 ← max𝒉∈ 𝝋∗⊤(𝑮(𝒉)𝒙∗ − 𝒈
)

− 𝝀∗⊤𝒇 and let 𝒉∗ be its optimal solution
6: �̃� ← 𝒉∗

7: 𝜁∗ ← 𝑈𝐵

4.4. Proposed solution framework

In the previous sections, we introduced the different components of our approach: the CCG method, the VNS-TS algorithm, and
he AD algorithm. The general CCG method iteratively solves the relaxed master problem to optimality and detects a scenario
efining the worst violation. In other words, multi-scenario EVRPTWPR has to be solved several times, and the size of the
roblem increases as the CCG iteration number increases. Therefore, we can easily infer that our multi-scenario EVRPTWPR suffers
omputational difficulties compared to the single-scenario EVRPTWPR. To avoid computational intractability, we propose to solve
he relaxed master problem until a robust feasible solution is obtained from the VNS-TS approach and then solve the subproblem
o obtain a violated scenario. Thus we do not wait for the VNS-TS to terminate to solve the subproblem as that is time consuming.

Thus, the proposed solution method starts from an uncertainty set with only a nominal energy consumption rate scenario
̄ = {�̄�}. The VNS-TS algorithm is used to find a robust feasible route for ̄ . If any robust feasible route is found, then the
ubproblem is solved to detect a scenario defining the worst violation. The detected scenario is added to the uncertainty set ̄ .
nce a scenario is added, the current robust feasible route can be infeasible or have a higher cost. As a result, the VNS-TS continues

rom the previous solution to find a new robust feasible route for the updated uncertainty set or to improve the current route.
he stopping criteria of the VNS-TS algorithm is that route  should be robust feasible for the uncertainty set ̄ and that the
ap between the value of the generalized cost function 𝐺𝐶() and the objective value of the subproblem is less than a predefined
hreshold. We summarize the proposed algorithm in Algorithm 3.
11
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Algorithm 3 Proposed Algorithm Based on CCG framework

1: ̄ ← {�̄�}
2: 𝑖 ← 0
3: 𝑈𝐵 ← ∞
4: 𝑥 ← InitialSolution(̄ )
5: while True do
6: 𝑥′ ← cyclic-exchange(𝑥)
7: 𝑥′′ ← TabuSearch(𝑥′)
8: if 𝐺𝐶(𝑥′′) ≤ 𝑈𝐵 then
9: 𝑖 ← 0

10: 𝑥 ← 𝑥′′

11: if 𝑥′′ is robust feasible for ̄ then
12: 𝜁∗, �̃� ← AlternatingDirection(𝑥′′)
13: if 𝜁∗ − 𝐺𝐶(𝑥′′) < 𝛿 then
14: 𝑥′′ is the best robust feasible solution for  → Terminate Algorithm
15: else
16: 𝑈𝐵 ← 𝐺𝐶(𝑥′′)
17: ̄ ← ̄ ∪ {�̃�}
18: else if acceptSA(𝑥, 𝑥′′) then
19: 𝑥 ← 𝑥′′

20: if 𝑥′′ is robust feasible for ̄ then
21: 𝜁∗, �̃� ← AlternatingDirection(𝑥′′)
22: if 𝜁∗ − 𝐺𝐶(𝑥′′) < 𝛿 then
23: 𝑥′′ is the best robust feasible solution for  → Terminate Algorithm
24: else
25: 𝑖 ← 𝑖 + 1
26: if 𝑖 > 𝑛𝑓𝑒𝑎𝑠 then
27: No robust feasible solution → Terminate Algorithm

Instead of using the VNS-TS algorithm to find the best solution for the multi-scenario EVRPTWPR which might require several
terations, we use the VNS-TS approach to obtain a robust feasible route for the uncertainty set ̄ and generate a new violated
cenario to obtain an updated [RMP(̄ )]. This decreases the computational requirements of the proposed method.

We note that Algorithm 3 guarantees to find a robust feasible solution for AR-EVRPTWPR (2). This can be achieved in two cases:
hen a robust optimal solution is found or when a robust feasible solution is found. The former is evident. A robust optimal solution
∗ of [RMP(̄ )] provides a lower bound on AR-EVRPTWPR since an uncertainty set ̄ is a subset of the uncertainty set  . We note
hat the subproblem [SP(𝒙∗)] provides an upper bound. Thus, a robust optimal solution 𝒙∗ of [RMP(̄ )] is a robust optimal solution
f AR-EVRPTWPR when the stopping criterion at Step 14 or 23 in Algorithm 3 is satisfied. In the latter case, even if Algorithm 3
ails to find a robust optimal solution for [RMP(̄ )], an obtained solution 𝒙′′ is still a robust feasible solution for [RMP(̄ )]. This
olution is not a lower bound on AR-EVRPTWPR, but since we have slack variables 𝒘 in [SP(𝒙′′)], and their objective coefficients
re relatively huge (e.g., 𝜅 is set as 10000 for each entry), any violation caused by infeasibility gives a large objective value of
SP(𝒙′′)]. Thus, a satisfaction of the stopping criterion at Step 14 or 23 denotes that a robust feasible solution 𝒙′ of [RMP(̄ )] is
lso a robust feasible solution for AR-EVRPTWPR. In other words, Algorithm 3 can be terminated with a robust feasible solution
f AR-EVRPTWPR even when [RMP(̄ )] and [SP(𝒙′′)] are not solved optimally. We note that since we are using a heuristic we
annot guarantee the optimality of the resulting solution, however from Section 5 we can show that the proposed approach has
igh-quality robust solutions for this problem.

. Computational experiments

This section presents extensive computational results to illustrate the performance of the proposed AR-EVRPTWPR solution
pproach. We first show the results related to the proposed Algorithm 3 for the AR-EVRPTWPR. Then, Monte-Carlo simulation
ests are conducted to evaluate the economic impact and robustness of the routes obtained from the ARO model compared to that
f the deterministic model.

The AR-EVRPTWPR is first applied to small-sized instances of Schneider et al. (2014) to demonstrate the quality of solutions
btained using our algorithm. We compare these results with the ones obtained from the commercial solver CPLEX. Next, we generate
id-sized instances to show the computational capability of our algorithm. These mid-sized instances are generated as follows. We

andomly pick 20, 30, and 40 customers from the large-sized instances of Schneider et al. (2014). Then, we solve the created
id-sized instances using the VNS-TS metaheuristic five times, and the visited stations in the shortest route are chosen to be the

echarging stations for these instances. We note that this instance generation is similar to how (Schneider et al., 2014) generated
he small-sized instances.
12
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Table 3
Comparing CCG using CPLEX with the proposed approach.
𝐼𝑛𝑠𝑡. CCG with CPLEX Proposed Algorithm 3

𝑛𝑣 𝑤𝑜𝑟𝑠𝑡 𝑑𝑖𝑠𝑡. 𝑡(𝑠) 𝑖𝑡𝑒𝑟. 𝑛𝑣 𝑤𝑜𝑟𝑠𝑡 𝑑𝑖𝑠𝑡. 𝑡(𝑠) 𝑖𝑡𝑒𝑟. 𝑔𝑎𝑝𝑤(%) 𝑔𝑎𝑝𝑑 (%)

C101C5 2 277.47 257.75 219.89 3 2 277.47 257.75 0.48 7 0 0
C103C5 1 190.02 176.12 4.10 5 1 190.02 176.12 0.39 9 0 0
C206C5 1 269.36 250.28 2121.17 10 1 269.36 250.28 0.73 8 0 0
C208C5 1 179.88 164.34 205.35 10 1 179.88 164.34 0.41 7 0 0
R104C5 2 148.00 137.25 171.68 4 2 148.00 137.25 0.34 5 0 0
R202C5 1 154.66 143.29 216.54 7 1 154.66 143.29 0.39 8 0 0
R203C5 1 193.13 179.06 81.97 2 1 193.13 179.06 0.32 9 0 0
RC105C5 2 260.58 241.30 118.29 6 2 260.58 241.30 3.79 107 0 0
RC108C5 2 274.38 253.93 13.79 4 2 274.38 253.93 0.40 4 0 0
RC204C5 1 191.99 176.40 70.67 11 1 191.99 176.40 0.38 5 0 0
RC208C5 1 189.42 173.57 12.53 10 1 189.42 173.57 1.13 14 0 0

C101C10 3 415.82 393.56 9024.16 5 3 415.82 393.56 46.63 67 0 0
C104C10 2 304.25 287.84 10800* 5 2 290.21 273.93 22.02 56 −4.61 −4.83
C202C10 2 266.88 251.95 10800* 5 2 267.21 252.05 24.88 50 0.12 0.04
C205C10 2 245.18 231.97 10800* 5 2 245.18 231.97 67.99 120 0 0
R102C10 4 275.96 262.93 10800* 5 4 275.96 262.93 2.67 7 0 0
R201C10 2 240.19 228.41 7226.32 4 2 240.19 228.41 26.79 78 0 0
RC108C10 T 3 378.71 357.23 13.74 58 – –
RC201C10 2 385.67 363.53 10800* 7 2 377.27 355.89 15.99 91 −2.18 −2.10
RC205C10 T 2 391.42 368.99 1.56 4 – –

C103C15 T 3 396.16 380.14 98.80 56 – –
C106C15 T 3 378.75 361.53 73.58 75 – –
C202C15 T 3 394.48 377.95 217.01 131 – –
C208C15 2 322.30 306.25 10800* 5 2 318.04 300.55 28.02 54 −1.32 −1.86
R102C15 T 5 456.66 441.13 648.25 372 – –
R105C15 T 4 368.63 353.93 74.28 57 – –
R202C15 T 3 401.33 386.28 138.33 113 – –
R209C15 2 420.43 403.51 10800* 5 2 322.07 307.68 65.97 61 −23.40 −23.75
RC103C15 T 4 416.26 397.75 114.84 72 – –
RC108C15 T 3 399.11 378.35 26.81 61 – –
RC202C15 T 3 418.01 397.20 382.40 237 – –
RC204C15 2 432.52 412.47 10800* 5 2 327.65 310.81 69.22 38 −24.25 −24.65

The following sections show that considering uncertainty could provide significantly different results than the deterministic model
ith a small change in the energy consumption rate. For instance, the simulation results show that the routes from the deterministic
odel are infeasible in many cases, but the proposed ARO model shows higher feasibility even for small 𝛤 values.

5.1. Experimental setup

For the computational experiments, all considered models and algorithms are implemented in Python and performed on a server
with an Intel Xeon Silver 4114 CPU. CPLEX 20.1.0 is used as the optimization solver.

For the parameter settings, all CPLEX parameters are kept to the default values. The convergence tolerance for the CCG framework
is set as 𝛿 = 0.001. The objective coefficient vector 𝜿 of the subproblem is set as 10000 for each entry. Since the objective value of the
subproblem can be huge in the case of infeasibility, the stopping criterion for the AD algorithm is set as (𝑈𝐵−𝐿𝐵)∕𝐿𝐵 < 0.0001. For
the VNS-TS algorithm, the number of VNS iterations is limited to 𝑛𝑓𝑒𝑎𝑠 = 500 for all sizes of instances. The penalty parameters (𝛼, 𝛽)
re set to (𝛼0, 𝛽0) = (10, 10), (𝛼𝑚𝑖𝑛, 𝛽𝑚𝑖𝑛) = (1, 1) and (𝛼𝑚𝑎𝑥, 𝛽𝑚𝑎𝑥) = (5000, 5000). The penalty parameters (𝛼, 𝛽) increase or decrease by
.2 times every two continuous infeasible and feasible VNS iterations, respectively. For the simulated annealing based acceptance
riteria, 𝛥𝑆𝐴 is set to 10. For the tabu search, the lower and upper bounds of tabu tenure are set as 𝑛𝑚𝑖𝑛𝑡𝑎𝑏𝑢 = 15 and 𝑛𝑚𝑎𝑥𝑡𝑎𝑏𝑢 = 30,
espectively.

A set of homogeneous EVs is considered, where each EV has a battery capacity 𝐵 equal to 77.75 and a load capacity 𝐶 of 200.
n this case, a set of homogeneous recharge stations is considered, where the recharging rate 𝑔𝑖 is 1.0 for all 𝑖 ∈ 𝐹 . In addition, the
xpected energy consumption rate ℎ̄𝑎 is set to 1.0 for all arcs. We note that all these values are the same as the small-sized instances
f Schneider et al. (2014). In addition, we allow each vehicle to re-visit the same recharging station at most once (i.e., 𝜈 = 1).

.2. Computational results

The computational performance of the proposed Algorithm 3 is reported in Table 3. We compare CCG using CPLEX with
lgorithm 3 in terms of solution time and quality for small-sized instances of Schneider et al. (2014). For CCG with CPLEX, the RMP

s solved to optimality using CPLEX for each CCG iteration, and the AD algorithm solves the subproblem as presented in Algorithm
13

. The computational time is limited to 10,800 CPU seconds for both the CCG with CPLEX and for Algorithm 3 and 𝛤 is set to
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Table 4
Results for mid-sized instances.
𝐼𝑛𝑠𝑡. Deterministic model ARO model

𝑛𝑣 𝑑𝑖𝑠𝑡. 𝑛𝑣 𝑤𝑜𝑟𝑠𝑡 𝑑𝑖𝑠𝑡. 𝑡(𝑠)

C101C20 4 466.63 4 483.50 466.82 284.34
C103C20 4 381.83 4 399.85 383.25 292.53
C206C20 2 412.79 2 445.18 425.61 233.35
C208C20 2 376.61 2 491.58 472.31 205.88
R104C20 4 337.26 5 378.64 364.36 187.87
R105C20 6 505.07 7 568.12 549.28 230.75
R203C20 2 260.26 2 273.78 262.94 164.60
RC105C20 8 654.70 8 685.80 664.26 232.39
RC108C20 6 520.83 6 569.25 546.25 1065.22
RC204C20 2 410.26 4 428.56 409.91 174.72

C101C30 5 739.64 5 772.66 750.45 5739.58
C104C30 4 459.00 4 476.02 460.69 750.46
C202C30 3 516.28 3 548.84 530.79 761.65
C205C30 3 539.84 3 560.57 540.56 463.27
R102C30 7 604.75 8 603.36 585.64 1214.53
R103C30 8 740.98 9 790.43 774.16 4715.54
R201C30 3 567.26 3 626.90 609.70 4953.61
R203C30 3 404.22 3 434.10 417.03 1099.81
RC102C30 10 904.62 11 1031.00 999.94 5916.7
RC205C30 4 629.98 4 663.83 644.97 947.61

C103C40 5 685.23 5 729.52 712.29 2868.03
C202C40 4 516.01 4 548.24 534.29 3935.44
C208C40 4 524.94 4 539.22 525.31 4084.10
R102C40 11 917.60 12 968.35 947.42 2479.40
R105C40 10 821.08 11 905.94 887.3 932.01
R202C40 4 570.40 4 600.98 585.45 1179.85
R209C40 4 499.92 4 515.84 503.04 3194.52
RC108C40 10 874.35 11 955.82 933.09 3858.94
RC202C40 4 834.36 5 761.95 741.65 2759.23
RC204C40 4 598.25 4 622.11 605.76 1534.38

6. We note that there are four small-sized instances where the robust feasible solution does not exist for the given uncertainty set
(ℎ̂𝑎 = 0.1ℎ̄𝑎, ∀𝑎 ∈  and 𝛤 = 6). There is one in the 5-customer instance (i.e., R105C5) and three in the 10-customer instance
i.e., R103C10, R203C10, and RC102C10).

In Table 3, column ‘‘𝐼𝑛𝑠𝑡.’’ represents the instance’s name, and the last value in each instance’s name represent the number of
ustomers (i.e., 5, 10, and 15). Column ‘‘𝑛𝑣’’ denotes the number of employed vehicles. Columns ‘‘𝑤𝑜𝑟𝑠𝑡’’ and ‘‘𝑑𝑖𝑠𝑡.’’ records the
orst-case energy consumption and the total distance of routes, respectively. Column ‘‘𝑡(𝑠)’’ reports the total CPU time in seconds.
olumn ‘‘𝑖𝑡𝑒𝑟.’’ represents the number of CCG iterations at the end of the used methods. Finally, columns ‘‘𝑔𝑎𝑝𝑤’’ and ‘‘𝑔𝑎𝑝𝑑 ’’
epresent the increment of Algorithm 3 compared to the results of the CCG with CPLEX in terms of worst-case energy consumption
nd the total distance of routes, respectively. Let 𝑤1 and 𝑤2 be the worst energy consumption of solution from CCG with CPLEX
nd CCG with the proposed Algorithm 3, respectively. The 𝑔𝑎𝑝𝑤 is calculated as (𝑤2 −𝑤1)∕𝑤1. Similarly, let 𝑑1 and 𝑑2 be the travel
istance of the solution from CCG with CPLEX and with the proposed Algorithm 3, respectively. Then, 𝑔𝑎𝑝𝑑 = (𝑑2 − 𝑑1)∕𝑑1. Both
f them are reported in percentage. The ‘‘10800*’’ in the 𝑡(𝑠) column denotes that the algorithm fails to terminate within the time
imit. For these cases, we report the results of the best robust feasible solution found. Finally, ‘‘T’’ indicates that the algorithm fails
o find any robust feasible solution within the time limit.

Results in Table 3 show the proposed Algorithm 3 is promising to solve the AR-EVRPTWPR. The CCG framework using CPLEX can
olve all of the instances with 5-customers. On the other hand, it can find robust feasible solutions for 7 out of the 9 instances with 10
ustomers and fails to find any robust feasible solution for most instances with 15 customers. However, Algorithm 3 can find robust
easible solutions for all small-sized instances within a reasonable computational time. Except for only one instance (i.e., C202C10),
he proposed Algorithm 3 finds robust optimal or near-optimal solutions. Also, it can provide better solutions compared to the robust
easible solutions that the CCG with CPLEX finds within the time limit. For instance, the best robust feasible solution found by the
roposed Algorithm 3 has 24.65% shorter travel distance (at RC204C15) than the solution provided by the CCG with CPLEX, and
he computational time was only 69.22 s.

Table 4 reports the computational results for mid-sized instances. Column ‘‘Deterministic model’’ represents the number of
mployed vehicles and travel distances when energy consumption rate uncertainty is not considered. Column ‘‘ARO model’’ denotes
he results of AR-EVRPTWPR consisting of the number of employed vehicles, worst-case energy consumption, travel distance, and
omputational time. For the uncertainty set, the 𝛤 is set to 6 and ℎ̂𝑎 = 0.1ℎ̄𝑎, ∀𝑎 ∈ . The computational time limit is set to 10,800
PU seconds.

Table 4 illustrates that the proposed Algorithm 3 can solve all mid-sized instances within the time limit. The computational time
ncreases as the instance’s size increases, and most of the computational time is less than two hours. Results in Table 4 also show
14
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Table 5
Simulation results — Normal distribution considering correlation.
𝐼𝑛𝑠𝑡. 𝑛𝑣 𝛤 Avg. Std. Max Min Feasibility(%)

C103C40 5 0 739.31 76.06 1181.19 654.88 37.8
5 6 735.72 41.18 923.20 679.99 54.0
5 12 715.40 15.11 887.35 682.68 97.2

C202C40 4 0 526.05 29.45 716.56 493.75 79.6
4 6 534.63 8.03 590.34 510.83 99.4
4 12 553.94 7.60 577.61 528.94 100

C208C40 4 0 524.56 6.93 548.57 505.15 100
4 6 524.96 7.11 548.14 503.18 100
4 12 530.86 7.07 555.14 510.39 100

R102C40 11 0 1050.95 184.36 2124.14 854.53 24.2
12 0 1043.61 156.06 1901.64 867.58 27.2
12 6 986.83 80.95 1430.77 878.82 53.6
12 12 968.18 60.97 1341.97 879.75 59.1

R105C40 10 0 901.28 110.71 1600.49 767.45 29.0
11 0 911.00 116.12 1701.84 772.83 28.7
11 6 907.21 55.27 1327.24 827.66 68.9
11 12 911.10 45.08 1173.85 841.42 70.9

R202C40 4 0 606.05 55.75 903.26 547.75 49.0
4 6 587.89 13.56 703.34 562.71 93.7
4 12 589.04 14.36 724.95 559.99 94.6

R209C40 4 0 500.48 8.91 593.97 476.77 98.2
4 6 503.43 8.17 585.27 480.85 98.8
4 12 524.19 7.97 619.76 499.61 99.4

RC108C40 10 0 979.76 131.23 1559.45 816.64 26.0
11 0 1025.77 158.27 1769.91 827.88 19.8
11 6 958.80 65.32 1316.57 860.96 63.4
11 12 1006.53 60.99 1356.31 911.71 67.7

RC202C40 4 0 922.03 104.96 1407.59 796.82 25.2
5 0 747.21 57.38 1073.74 687.80 71.0
5 6 742.94 15.60 908.80 706.06 95.2
5 12 761.68 10.00 789.06 726.57 100

RC204C40 4 0 602.43 18.87 752.61 574.57 90.1
4 6 605.92 8.31 653.53 577.83 99.5
4 12 615.79 7.88 660.27 593.01 99.5

that the routes become more conservative than the deterministic ones. In most cases, the travel distances increase. Also, in some
instances, the required number of vehicles is higher than the deterministic model. The increased travel distances and employed
EVs can be interpreted as follows: to withstand the energy consumption rate uncertainties, the employed vehicles should visit more
recharging stations or fewer customers than in the deterministic case.

From the results of Tables 3 and 4, we can demonstrate that the proposed Algorithm 3 is able to find a robust feasible solution
hat is close to the robust optimal solution. Furthermore, the computational time is reasonable for instances with 40 customers.

.3. Economical impact and robustness

This section studies the economic efficiency and robustness of the ARO model by conducting Monte-Carlo simulation tests for
0-customer instances. We generated a set of 1000 energy consumption rate scenarios using three probability distributions: normal
istribution (ND), uniform distribution (UD), and normal distribution considering correlation (NDC). For ND and UD, the energy
onsumption rate of arc 𝑎, ℎ𝑎, is sampled from the normal distribution with 𝜇 = ℎ̄𝑎, 𝜎 = 0.1ℎ̄𝑎 and the uniform distribution with

the range [0.9ℎ̄𝑎, 1.1ℎ̄𝑎], respectively. For NDC, Lee et al. (2012) assume that customers in congested areas tend to have more travel
time than customers in other areas. Similarly, we postulate that arcs located close to one another have similar energy consumption
rate uncertainty. Thus, ℎ𝑎 is defined as ℎ̄𝑎 + ℎ̄𝑎(𝑧𝑖 + 𝑧𝑗 ), where 𝑧𝑎 follows 

(

0,
( 0.1
2
√

2

)2
)

for all arcs 𝑎 ∈ .
Since deterministic or robust routes can be infeasible for some scenarios, we use the generalized cost function 𝐺𝐶() in (9) to

valuate the route’s costs. In the simulation tests, 𝛼 and 𝛽 in the generalized cost function 𝐺𝐶() are set to (10, 10). For example, if
oute  is feasible for scenario 𝑠1, its cost will be the electric energy needed to complete EVs’ travel (i.e., 𝐺𝐶() =

∑

𝑘∈𝐾,𝑖∈𝐹 𝑝𝑖𝑘).
However, if route  is infeasible for scenario 𝑠2, its cost will be the sum of required energy and penalties (i.e., 𝐺𝐶() =
∑

𝑘∈𝐾,𝑖∈𝐹 𝑝𝑖𝑘 + 10 × (𝑇𝑊 𝑠2 () + 𝐹𝐿𝑠2 () + 𝐹𝑅())).
Tables 5, 6, and 7 report the simulation results for NDC, ND, and UD, respectively. Column ‘‘𝛤 ’’ represents the considered value

of budget uncertainty value in Eq. (3). A model with 𝛤 = 0 denotes the deterministic model. Columns ‘‘Avg.’’ and ‘‘Std.’’ represent
the average route’s costs and the standard deviation of the route’s costs. Columns ‘‘Max’’ and ‘‘Min’’ represent the largest and smallest
route’s cost among 1000 scenarios. To show how the budget of uncertainty affects the robustness, we report the results of two ARO
15
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Table 6
Simulation results — Normal distribution.
𝐼𝑛𝑠𝑡. 𝑛𝑣 𝛤 Avg. Std. Max Min Feasibility(%)

C103C40 5 0 807.6 138.81 1583.96 648.69 23.4
5 6 762.5 76.78 1155.82 671.94 47.5
5 12 723.73 36.21 1018.05 678.69 85.8

C202C40 4 0 543.15 58.65 870.45 491.49 67.6
4 6 538.24 20.94 710.38 505.69 91.4
4 12 554.42 13.36 697.6 526.54 98.1

C208C40 4 0 524.72 8.79 558.58 494.28 99.7
4 6 525.38 8.85 552.52 492.43 99.9
4 12 531.57 8.90 558.28 498.27 100

R102C40 11 0 1181.63 207.84 2177.63 883.31 5.3
12 0 1138.62 178.29 2034.79 886.22 9.8
12 6 1036.07 112.16 1665.16 906.9 31.3
12 12 1013.62 96.04 1473.5 904.82 34.3

R105C40 10 0 989.18 148.65 1705.83 779.64 10.2
11 0 995.98 152.66 1719.47 777.5 11.4
11 6 952.12 92.38 1466.38 845.67 39.7
11 12 953.44 84.52 1456.37 851.42 40.2

R202C40 4 0 632.53 87.68 1068.21 543.23 43.1
4 6 606.42 52.02 942.59 556.72 70.8
4 12 597.37 34.08 835.21 550.43 81.6

R209C40 4 0 508.47 33.24 766.05 475.85 88.5
4 6 509.58 29.94 744.6 474.47 92.4
4 12 527.35 19.69 766.51 494.48 94

RC108C40 10 0 1067.62 172.8 2013.18 838.98 12.6
11 0 1129.68 187.01 2153.56 854.94 6.5
11 6 1018.84 117.12 1588.53 881.13 32.7
11 12 1077.39 122.02 1783.43 937.13 35.4

RC202C40 4 0 1027.29 182.75 2045.43 786.35 12.3
5 0 792.86 115.78 1383.88 674.52 53.7
5 6 758.73 53.58 1215.99 694.5 79.3
5 12 766.68 24.19 963.26 719.13 91.8

RC204C40 4 0 617.84 49.19 936.13 564.66 71.8
4 6 607.79 16.35 784.17 575.47 95.8
4 12 616.74 16.25 838.54 581.63 97.1

models with 𝛤 = 6 and 𝛤 = 12 and compare them with the deterministic model. In addition, there are some cases where the ARO
odel employs more EVs. For those instances and to have a fair comparison, we also report the results of a deterministic model

hat uses the same number of EVs.
The results in Tables 5, 6, and 7 show the following. First, a route from the ARO model has a higher chance of being completed

ithout battery capacity issues. For all probability distributions, the ARO models’ results indicate higher feasibility than the
eterministic model. For instance, in the case of C103C40 and uniform distribution, the deterministic model is only feasible at
5.4%. Still, the ARO model with 𝛤 = 12 is feasible for most scenarios except two. Also, even if the ARO model’s feasibility is low,

it is at least 2.2 times higher than the deterministic model (as seen for R102C40 instance in Table 5) and reaches 6.5 times (for
the same R102C40 instance in Table 6). Second, the results of the deterministic model show higher volatility than ARO models. We
can see that the ARO models show a lower std for all cases, and its magnitude ranges from 1.1 (R209C40 in Table 5) to 13.2 times
(RC202C40 in Table 7). The high value of the std can be interpreted as the insecurity of the route. In other words, there could be
more risk of failure to complete servicing customers or risk of paying more charging costs than expected. The ARO models with
𝛤 = 12 usually have lower std values than the ARO models with 𝛤 = 6. Lastly, more employed EVs cannot guarantee robustness.
For instances R102C40, R105C40, RC108C40, and RC202C40, ARO models employ one additional EV to find their robust solution.
Except for the instance of RC202C40, the other three instances show that the deterministic model provides similar results whether
an additional EV is employed or not. In RC202C40, even if additional EVs can provide a more robust route, the results are still worse
than the ARO model. For instance, a route employing 5 EVs of the deterministic model shows 71% feasibility and 57.38 MWh for
std, but a route of the ARO model with 𝛤 = 12 shows 100% feasibility and 10 MWh for std (see Table 5).

To provide additional managerial insights, we choose one mid-sized instance (C103C40) and illustrate the route of each model
in terms of the amount of electricity charging en route, travel ending times, and idle times. We first visualize the routes of the five
EVs for three cases in Fig. 1, where 𝑆𝑖 represents a recharging station, and 𝑆0 is the depot. Fig. 1(a) represents the EVs’ routes of
the deterministic model (𝛤 = 0), and Figs. 1(b) and 1(c) represent the routes of ARO models with 𝛤 = 6 and 𝛤 = 12, respectively.
We can observe that each EV visits slightly different customers and stations for each model. In all three models, the total number
of visited stations is the same. However, the number of visited customers for each EV is different for each model. For instance, for
the deterministic model, the five EVs visit 7, 9, 9, 7, and 8 customers in order of EV1 to EV5. On the other hand, for the ARO
16
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Table 7
Simulation results — Uniform distribution.
𝐼𝑛𝑠𝑡. 𝑛𝑣 𝛤 Avg. Std. Max Min Feasibility(%)

C103C40 5 0 739.03 67.78 1036.19 665.46 35.4
5 6 735.61 39.17 916.03 689.3 56.4
5 12 714.83 7.08 768.01 692.08 99.8

C202C40 4 0 523.72 22.90 676.86 501.50 80.9
4 6 534.14 5.28 551.46 516.01 99.8
4 12 553.49 5.32 572.52 537.16 100

C208C40 4 0 524.81 5.06 539.40 511.50 100
4 6 525.50 4.94 541.52 509.99 100
4 12 531.12 5.06 547.28 516.28 100

R102C40 11 0 1019.24 90.88 1390.84 893.74 12.2
12 0 1018.97 84.91 1451.93 910.17 16.6
12 6 981.84 52.09 1210.18 921.16 47.5
12 12 959.03 34.7 1141.24 916.99 60.7

R105C40 10 0 884.93 69.17 1213.68 799.75 21.8
11 0 895.02 73.81 1231.86 804.69 22.7
11 6 900.52 32.26 1083.69 866.46 72.2
11 12 904.2 24.07 1047.31 873.99 77.4

R202C40 4 0 598.56 43.49 799.6 552.54 51.9
4 6 586.39 8.18 692.99 568.61 97.3
4 12 587.54 7.65 660.87 569.93 97.7

R209C40 4 0 500.09 6.42 587.13 484.23 99.5
4 6 503.14 6.34 592.08 489.24 99.5
4 12 523.94 5.18 542.28 505.40 99.9

RC108C40 10 0 963.13 88.27 1337.97 847.89 18.7
11 0 1009.42 97.87 1524.18 864.14 12
11 6 946.31 31.76 1163.8 907.45 70.9
11 12 998.57 32.13 1153.84 954.78 70.3

RC202C40 4 0 912.81 93.49 1320.14 805.52 25.3
5 0 746.75 51.55 1034.57 700.84 70
5 6 742.9 11.6 836.07 716.96 95.1
5 12 761.85 7.09 782.61 737.85 100

RC204C40 4 0 600.61 12.34 714.16 580.96 92.3
4 6 605.94 5.87 625.34 589.74 99.9
4 12 615.61 5.67 631.65 598.37 100

models with 𝛤 = 6 the number of customers for each EV is: 6, 8, 9, 7, and 10 customers and for 𝛤 = 12 there are: 8, 8, 9, 7, and 8
ustomers.

Figs. 2, 3, and 4 illustrate the box plots of the total recharging amount en routes, the average travel ending time, and the average
dle time, respectively. We use the data from the simulation results presented in Tables 5, 6, and 7. For each model, only the feasible
cenarios are used for the box plot. Fig. 2 shows that the total recharging amount en route increases as 𝛤 increases. Since we report
nly feasible scenarios, Fig. 2 can also be interpreted as the total recharging time. It means that routes from ARO models have more
ime flexibility for recharging than the deterministic ones. Thus, ARO models show higher feasibility than the deterministic model
see Tables 5, 6, 7). Fig. 3 shows that the average end-travel time of EVs decreases as 𝛤 increases. It denotes that routes of ARO
odels spend less time on the road than the deterministic model. Fig. 4 shows the average idle time of EVs. Average idle time also

ends to decrease as 𝛤 increases. Additionally, we note that there might be scenarios in which EVs visit charging stations and do not
se them which might result in unnecessary energy consumption. For uniform distribution (UC) and normal distribution considering
orrelation (NDC), this does not happen. This means that EVs always visit and use charging stations when needed. However, for
ormal distribution, this case occurs. For 𝛤 = 6, the EV visits a charging station but does not use it in one scenario among 475
cenarios. The amount of wasted energy is 11.87 MWh. For the ARO model with 𝛤 = 12, the EV visits a charging station but does not
se it in two scenarios among 858 scenarios. The average amount of wasted energy is 21.87 MWh. The frequency of this happening
s relatively low but it is worth investigating in future research. With the results of Figs. 3, and 4, we can demonstrate that the
RO model can provide a route that utilizes EV fleets more efficiently. More precisely, a route from the ARO model can charge
ore electricity en route, may spend less time waiting for the next visit, and may complete the service earlier than the deterministic
odel.

. Conclusion

This paper presents an adaptive robust model for the electric vehicle routing problem with time window and partial recharging
hen the energy consumption rate exhibits uncertainty. We postulate that recharging decision can be made after the uncertainty

ealization to complete an EV’s travel without any time window violation or negative battery level. Since recharging decisions can
17
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Fig. 1. EV routes — Instance of C103C40.

Fig. 2. Total recharging amount (MWh).
18
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Fig. 3. Average travel ending time (min.).

Fig. 4. Average idle time (min.).

affect other decisions, such as service start time and battery level at each vertex, the proposed model is formulated as a two-stage
adaptive robust problem. A solution method based on the column-and-constraint generation framework has been proposed to solve
our model in a reasonable computational time.

Small and mid-sized instances are used to demonstrate the advantage of the proposed model. Numerical results show the
economic efficiency and robustness of the proposed model. Robust routes from our model may require more electrical energy
compared to the deterministic model. However, they are more secure and reliable than the routes given by the deterministic model.
In the adaptive robust model, there is a tradeoff between the expected amount of electricity charged and the robustness of routes.
Decision makers can decide the proper tradeoff they need to consider to optimize their operations.

Additional features of the AR-EVRPTWPT model are worth investigating, such as using a nonlinear recharging function that
leads to more realistic charging operations and accounting for the idle time at a given charging station in case of not charging. We
will also look into developing an exact method for the proposed model to guarantee optimality. Additionally, extensive sensitivity
analysis for the adaptive robust model with various uncertainty sets can be considered. As we mentioned in Section 5.3, uncertainties
in the real world could be highly correlated. Furthermore, depending on the structure of the uncertainty set, there could be other
relevant approaches to consider. Lastly, the time-variant uncertainty of energy consumption rate can be considered as future work.
For example, when different EVs travel the same arcs but at different hours, each EV may have a different energy consumption rate.
Therefore, introducing a time factor has practical significance since it could reflect more practical operations.
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