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Abstract 

In the last few decades, the continuous growth of travel demand increased urban traffic congestion. The situation demands an 
efficient way of handling resources like roads and vehicles. Parallelly, the advancement of technology proposed more innovative 
forms of shared mobility, such as flexible pods. These autonomous, modular vehicles possess the unique capability to 
autonomously merge and split during their journeys, facilitating en-route transfer of passengers. Formulating a precise 
mathematical model that comprehensively captures the intricacies of such a complex system is quite challenging. This paper 
introduces an alternative approach rooted in Reinforcement Learning that circumvents the need for a predetermined mathematical 
model. Instead, it enables the system to learn its dynamics through interactions with the environment. The primary goal of this 
research is to acquire an optimized passenger transfer policy. The experimental findings indicate that the transfer-based pod 
service outperforms private taxi services and Demand Responsive Transport services, boosting vehicle utility by 18% and 8%, 
respectively. Remarkably, the pod service achieves these gains with only one-third of the vehicles required for private taxis and 
13% fewer vehicles than the Demand Responsive Transport service. However, it’s important to note that the transfer-based pod 
service does result in a modest increase in passenger travel time, ranging from 2% to 13%. Therefore, the transfer -based pod 
service offers a promising opportunity to alleviate traffic congestion while accepting a compromise on passenger travel times. 
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1. Introduction 

Urban transportation and mobility are facing challenges due to the increasing traffic. Its impact on the 
environment, economy, and social life is also significant. The European Commission report shows that European 
cities are affected by traffic-related productivity loss, higher road transportation, and fuel costs. Congestion is mainly 
located in and around urban areas and costs nearly EUR 100 billion, nearly 1% of the EU’s GDP, annually 
(Christidis et al., 2012). The congestion issues are also prevalent in other developed and developing countries 
(Bashingi et al., 2020). Among the different transport options, public transport provides a cheaper, environment-
friendly service as it efficiently uses vehicle space and serves many passengers at the same time. Hence, it reduces 
the chance of traffic congestion. However, public transport generally takes longer travel time than private transport 
and compromises passengers’ travel comfort. 

Demand Responsive Transport (DRT) combines the features of public and private transport services and offers a 
demand based shared flexible mobility service. DRT service improves mobility, especially in low-demand areas 
where public transport is not frequent. However, the DRT vehicles are bound to visit all the drop-off locations 
corresponding to their pick-ups. The flexible modular pods1 can overcome this limitation of DRT by allowing en-
route transfer. First, the pods pick up passengers from pickup locations. Then while traveling, based on the 
opportunity, pods can join on the city roads to facilitate passenger transfer. Finally, the pods split to reach 
corresponding drop-off locations. The characteristics of modularity and en-route transfer can optimally utilize 
vehicle capacity, and hence, it can also cut down travel cost and traffic. It also avoids the hop-on, hop-off hassles 
and corresponding transfer time. 

Researchers proposed different mathematical modeling to represent the pod’s mobility. Guo et al. (2017) 
proposed an analytical stochastic and dynamic model to optimize transit service switching. Chen et al. (2020); Dai et 
al. (2020) designed the modular transits considering vehicle dispatch headway and capacity as decision variables. 
Zhang et al. (2020) considered pods only to serve the first and last miles. Here, the pods connect local passengers to 
long-distance transport services. Dakic et al. (2021) developed an optimization model that determines the optimal 
service frequency at which the conventional and modular buses should dispatch. Few other research (Chen and Li, 
2021; Shi and Li, 2021; Gong et al., 2021; Pei et al., 2021; Hannoun and Men´endez, 2022) investigated the use of 
pods with a variable capacity to achieve optimal operations. Unlike previous mathematical formulations, this work 
proposes a model-free RL-based approach that learns system dynamics by interacting with the environment. 

In the last few years, the model-free approach of RL has become popular and applied in many fields. Some 
research related to passenger pickup and dropoff service have already shown that RL provides an effective way to 
learn the system dynamics (Oda and Joe-Wong, 2018; Al-Abbasi et al., 2019; Singh et al., 2021; Haliem et al., 2021) 
without developing mathematical models. MOVI (Oda and Joe-Wong, 2018) used a distributed model-free approach 
to address the passenger pickup and drop-off problem. Here, Deep Q-Network (DQN) based framework is used to 
learn optimal dispatch policy. DeepPool (Al-Abbasi et al., 2019), extended MOVI framework to allow ridesharing of 
passengers. Later, Multi-Hop Ridesharing (MHRS) is proposed, where passengers can take multiple hops to reach 
their final drop-off locations (Singh et al., 2021). Other research used a similar model-free approach to combine 
passenger and good delivery (Manchella et al., 2021b) and to incorporate the pricing model in the system (Haliem et 
al., 2021; Manchella et al., 2021a). Observing the effectiveness of the model-free RL approach that determines 
optimum dispatch policy, we decided to use it for transfer-based pod’s mobility. 

While designing en-route transfer-based passenger transport, deciding when a pod should consider transferring its 
passengers is crucial. A random transfer decision may increase the pod’s travel distance, passenger travel time, and 
transport complexity. Hence, this work aims to determine in which circumstance a transfer could be beneficial and 
when a pod should travel independently without any passenger transfer. This work aims to analyze pods’ mobility, 
developed based on the model-free RL framework, and compare it with private transport (taxi) service and transfer 
free ridesharing (DRT) service in terms of fleet utility, travel distance, and passenger travel time. Accordingly, this 
paper aims to contribute the following – 

 

 
1 NEXT IS NOW, www.next-future-mobility.com, accessed June 2022 
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• Development of model-free RL framework that represents pods’ mobility and passenger transfer. 
• Double Deep Q-Networks (DDQN)-based decision model to determine transfer policy; and 
• Implementation of RL-based pod’s mobility for passengers’ pickup and dropoff. 
 
This section provides background and motivation for this work and covers the existing literature on the pod’s 

mobility and application of RL in passenger pickup and drop-off problems. Section 2 presents the framework and the 
components of our proposed methodology. The implementation of the framework and the experimental details are 
presented in Section 3. An analysis of the results and the key insights are presented in Section 4. Section 5 concludes 
the paper. 

2. Methodology 

This section represents the framework of the transfer policy of modular pods. The pods are considered agents in 
the RL framework. Although the pods can serve both static and dynamic demands, we considered pods to serve 
dynamic travel demands in this work. Hence, the pods are not dispatched beforehand predicting the future demand; 
instead, pods are dispatched based on travel requests. It implies that the pods’ movement is dynamic, and their 
joining and transfer are opportunistic. A pod is inactive while waiting for passengers and active while traveling to 
pick up, drop off, or transfer passengers. Fig. 1 represents the block diagram of the pod’s transfer-based ridesharing 
strategy. In this work, we assumed that a pod could transfer passengers only once on a trip. 
 

 

Fig. 1. Modular pod’s ridesharing framework 

 
1. Demand matching module - Initially, all the pods are inactive and distributed throughout the network. 

The passengers can raise trip requests at any instance of time. The trip requests are matched and 
assigned to the nearest available pods having capacity. 

2. Route planning - After the first assignment of the requests, a pod creates its optimal route plan to pick 
up and drop off the assigned passengers. Then as per the plan, the pod performs all assigned pickups and 
becomes Ready to decide its action. 

3. Decision of an action - The action could be either selecting another pod to transfer the passengers or 
retaining and dropping them off per the route plan. During the training, this action is decided based on 
the ϵ-greedy policy. As per ϵ-greedy policy, with |1−ϵ| probability, a pod selects the best action using 
DDQN, and with ϵ/|A| probability, it selects a random action where |A| is the total number of actions. 
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a) Transfer candidate selection - A ready pod p may have several pods in the option to join and 
transfer passengers. Still, some pods are more promising than others in obtaining benefits or 
rewards. Those pods are termed candidate pods CP for that ready pod p. The candidate pods CP 
are identified from inactive pods and among other ready pods whose drop-off locations are 
similar to p’s drop-off locations. 

b) State - The pod p’s and the candidate pods CP’s current location and drop-off locations, 
occupancy, travel time consumed, and active/inactive status are used to create the state 
information. This state information is fed to DDQN. 

c) DDQN - DDQN is the implementation of the Double Q-Learning (DQN) with a Deep Neural 
Network. The policy of selecting an action is learned using the DDQN. We used DDQN as 
DQN resolves the action value overestimation problem. 

d) Action - A decision to transfer or retain passengers can be made randomly, or DDQN is used to 
make the best decision in a given state. The outputs of the DDQN are the actions, i.e., the Q-
values of the candidate pods for transferring passengers and the Q-value for retaining the 
passengers. 

e) Reward - Based on the action corresponding reward is calculated. In this work, we considered 
the reward as a function of the number of passengers served, passengers’ travel time, 
passengers’ waiting time, number of passenger transfers (hops), pod’s trip distance, and pod’s 
utility, i.e., pods’ occupancy, and the number of active/idle pods involvement. Among these 
reward components, the number of passengers served and pods’ occupancy have positive 
impacts, and all other components have negative impacts that act as penalties in the system. In 
this work, we considered only a single transfer allowed in the trip of a pod. Hence, when we 
decide to transfer passengers, we recalculate the routes of the pods and calculate the reward 
components based on the new route. If the decision is to retain passengers, the reward is 
calculated based on the previous route plan. We calculated the reward as a linear weighted 
combination of the reward components. 

f) Replay memory buffer - It stores experiences (state, action, reward, and next-state), then a 
random subset of these experiences is used to train the DDQN. Experience replay makes the 
training process fast, stable, and efficient. 

 

3. Experimental Design 

The proposed pod’s ridesharing approach is implemented in a spatio-temporal virtual environment. We developed 
a Python simulator that replicates real-life passenger pick-up and drop-off scenarios. We used a centralized unit to 
maintain the pods’ parameters, such as current location, availability, status, and occupancy. The simulator tracks the 
incoming trip request at each time step and assigns the requests to the available pods. The decision module decides 
the actions of all the ready pods. Based on the decision, pods perform actions, and the pods’ parameters are updated 
in the central unit. The pods aim is to maximize the reward while learning the environment using the RL approach. 

We used the New York City taxi data for the simulation that contains real taxi trip requests. We extracted trip 
requests of the Manhattan area and its surroundings during May, 2016. The area is discretized into 10 x 10 grids for 
easy route calculation. Pod’s current locations, pickup-dropoff locations, and transfer points are mapped to the grid 
representation. We used exact latitude-longitude locations to compute the travel time. To serve this area, 1000 pods 
are appointed, and each pod can carry a maximum of four passengers. The trip request gets rejected if no pod is 
available within a seven-kilometer radius. 

A ready pod’s transfer action is limited to one of the shortlisted pods, or it can also decide to retain its passengers. 
The decision can is taken randomly or as per the recommendation of DDQN. To learn the environment using the 
DDQN, we used 21 days of trip data. Each day’s data contains approximately 150,000 trip request data. The ϵ value 
decays from 1 to 0.001 during the learning. The ready pods decide their action in each iteration, and the 
corresponding reward is calculated. After completing the learning process, we evaluated the transfer-based pod’s 
ridesharing service with the next 7 days trip data. We compared the pod’s ridesharing approach with the private taxi 
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service and ridesharing DRT service without transfer. We use the terms pod and vehicle interchangeably in the 
continuation of the article. The term pod is explicitly used in the context of transfer-based ridesharing, and the term 
vehicle is used in the general context. 

4. Results and Discussion 

To evaluate the pod’s ridesharing service, we used four metrics - vehicle occupancy-ratio, vehicle in use, vehicle 
travel distance ratio, and passenger travel time ratio. The comparison of pod’s ridesharing service with taxi service 
and without transfer DRT service is shown in Fig. 2. 
 

 
(a) Occupancy-ratio       (b) Vehicles in use 

 
(c) Travel distance ratio      (d) Travel time ratio 

Fig. 2. Comparison between transfer-based pod service, private taxi service, and without transfer DRT service. 

a) Occupancy-ratio - This metric is defined as the ratio of passenger occupancy multiplied by the trip time 
with that occupancy and vehicle capacity multiplied by the total trip time. Here, the occupancy can vary 
from one to four. Fig. 2a represents the hour-wise occupancy-ratio for the transfer-based pod’s ridesharing 
service, without transfer DRT service, and taxi service. It shows that, on average, the occupancy-ratio of 
transfer-based pod service is 18% higher than the private taxi service and 8% higher than the DRT service. 
That indicates the transfer-based pod service. utilizes the vehicle space more efficiently compared to the 
other two services. The occupancy-ratio of taxi service is almost linear throughout. The occupancy-ratio of 
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the pod service and DRT service are similar to the taxi service during the nighttime, 12 am to 6 am, as there 
are fewer options for ridesharing and transfer. However, the occupancy-ratio improves from 7 am to 11 pm. 

b) Vehicles in use - This metric represents the average number of vehicles used per hour. Fig. 2b shows that 
the area can be served by approximately one-third of the vehicles used in taxi service by allowing 
ridesharing, either DRT or pod-based service. The figure also shows that the pod’s transfer-based service 
can reduce around 13% of vehicle usage compared to the DRT service, specially during rush hours. 

c) Vehicle travel distance ratio - The travel distance of a vehicle indicates the distance that a vehicle travels to 
pick up and drop off all the passengers in trips. We represent this metric as a ratio. Here, the transfer Vs 
taxi travel distance ratio represents the ratio of all vehicles’ travel kilometers while using the transfer-based 
pod’s service with respect to the taxi service. And the transfer Vs DRT travel distance ratio represents the 
distance ratio while using the transfer-based pod’s service with respect to the DRT service. A ratio value 
lower than one indicates that the transfer-based service performs better. Fig. 2c shows that the pods travel 
6% less distance on average than the vehicles used in taxi service. The transfer-based service saves the 
vehicles’ travel distances while serving the passengers. But, sometimes, pods need to travel some extra 
distances to facilitate the transfer operation. As a result, the total average travel distance of pods and DRT 
vehicles becomes equivalent. 

d) Passenger travel time ratio - A passenger’s travel time is the duration of a passenger’s pick up till the 
passenger’s drop off. This metric is also represented as a ratio. The transfer Vs taxi travel time ratio 
represents the ratio of passengers’ travel time while using the transfer-based pod service with respect to the 
taxi service. And the transfer Vs DRT travel time ratio represents the time ratio while using the transfer-
based pod’s service with respect to the DRT service. Fig. 2d shows that passengers’ travel time increases 
while using the pod service by 14% on average compared to the taxi service and 2% compared to the DRT 
service. 

 

5. Conclusion 

This research studied a new ridesharing approach of modular, flexible pods that allow en-route transfer of 
passengers while traveling. This work used modular pods for passenger pick-up and drop-off service and analyzed 
their impact. We proposed the RL-based framework to represent the pod’s mobility and aimed to learn the pod’s 
optimum transfer policy. During training, the pods learned when and to which pod, passengers can be transferred to 
maximize the reward. Finally, the transfer-based pick-up and drop-off service is compared with the private taxi 
service and without transfer DRT service. 

The experimental results show that the transfer-based pod service would reduce congestion by efficiently 
utilizing the vehicle space and reducing the number of vehicles on the road, especially during rush hours. On the flip 
side, the transfer-based pod service increases passengers’ travel time which may require compensation like, 
adjustment of the travel fare or providing an incentive to the passengers. Regarding vehicles’ travel distance, the 
performance of transfer-based pod service and without transfer DRT service is equivalent. Therefore, policymakers 
need to adapt a more appropriate service on a case-by-case basis. The service should be chosen based on the 
objective, like reducing congestion or travel time or improving travel comfort. 

The transfer-based pod service is a futuristic concept, and the real-time decision to transfer the passenger to 
another pod has practical and operational implications. The primary idea is to inform passengers regarding their 
upcoming transfers through the mobile app. This research limits its scope to propose a model-free approach to 
represent the pod’s movement and optimize the transfer operations. As a performance metric, this research has 
considered vehicle occupancy-ratio, number of vehicles in use, vehicle travel distance ratio, and passenger travel 
time. In future research, we aim to represent the pod’s service using a mathematical optimization model and analyze 
the pod’s mobility with additional metrics like passenger waiting time, number of transfers, and vehicle trajectory. 
Our future research also aims to implement and analyze complex scenarios like pod’s multi-transfer operations. 
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