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A B S T R A C T   

The current world energy system is still heavily dependent on fossil resources (non-renewable and depletable). 
Anaerobic digestion (AD) has been pointed out as a great strategy for waste and wastewater management while 
producing biogas that can be upgraded to biomethane. Mathematical models can provide insights into under
standing and analyzing important aspects of any process, while minimizing experimental effort, risk, and cost. 
However, modeling as means to predict, control, and optimize the performance of biological processes on pilot or 
higher scale is rather scarce. The so-called “BioModel” and Anaerobic Digestion Model No. 1 (ADM1) are well- 
known model frameworks to understand, characterize, and simulate the anaerobic digestion (AD) processes. 
Multiple amendments, modifications, and additions occurred during the past years in both frameworks. There
fore. the present article aims to review the most relevant updates made to these models and enlighten the 
perspectives on the role of kinetic modeling in bio-based gas production. The potential of the existing highly 
efficient AD models to serve as a basis to develop, predict, and finally support the biogas and bio-methanation 
processes at a higher scale is discussed.   

1. Introduction 

The IPCC has recently disseminated the urgent need for a decrease in 
the worldwide temperature by 1.5 ◦C to alleviate the current and future 
generations from the adverse impacts on ecosystems [1]. To achieve this 
goal, it is pivotal that the industries will adopt and implement net-zero 
emissions strategies as soon as possible and no later than 2050. For 
example, the European Union (EU) aims to reduce GHG emissions by 
55% by 2030 and establish Europe as climate-neutral by 2050 [2]. While 
it is anticipated that new technologies will be needed in the long term to 
establish carbon neutrality, the existing solutions will contribute to 
fulfilling the short-term targets. 

For instance, the gas sector is planned to act as a bridge toward the 
new green era and considering the current market and geo-political 
situation, the importance of natural gas as an energy carrier is 
recently highlighted for securing the domestic and affordable energy 
supply [3]. To promote the sustainable gas production and consump
tion, Denmark as a pioneer country – as of June 2023, the amount of 
biogas produced through AD and integrated into the natural gas grid has 

surpassed 39% [4] –targets to have 100% green gas on the grid by 2030 
to avoid energy insecurities in the future [5]. 

The growth of global biofuel production is highly driven by policies 
encouraging energy security and the reduction of carbon emissions. 
Despite increasing attention to the biofuel sector, biogenic emissions are 
in parallel increased. To open the road for a sustainable utilization of 
biofuels, CO2 credits, and taxation are key parameters for greenifying 
the gas sector. In the long run, similar incentives can boost the green
ification of intensively carbon-emitting industries (e.g. cement, lime, 
and steel industries). Released carbon has to be better utilized and 
biomethanation can be a game-changer herein. Biomethanation can be 
either applied after AD to couple the biogenic CO2 with H2 or upgrade 
syngas/pyrolysis gases that are enriched in CO:CO2:H2 or in general, 
being exploited in CO2 emitting industries [6,7]. Nowadays, more than 
1000 biomethanation plants are operating in the EU and the overall 
number is following an increasing trend. While the industrial sector is 
already producing more than 32 TWh of green gas by 2021, it is aimed 
that it could substantially enlarge the production to 370 TWh by 2030 
and reach 1170 TWh by 2050 [8]. Hence, there is huge potential for 
expanding the biomethanation process. 
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Nomenclature 

Abbreviations 
AD Anaerobic Digestion 
ADM1 Anaerobic Digestion Model No. 1 
AGR – IC Anaerobic Granular Reactor – Internal Recirculation 
COD Chemical Oxygen Demand 
CSTR Continuously Stirred Tank Reactor 
EU European Union 
FAN Free Ammonia Nitrogen 
FBA Flux Balance Analysis 
GHG Greenhouse Gas 
HRT Hydraulic Retention Time 
IPCC Intergovernmental Panel on Climate Change 
ODE Ordinary differential equation 
PABR Periodic Anaerobic Baffled Reactor 
RMSE Root Mean Square Error 
SAO Syntrophic Acetate Oxidizers 
STR Solid Retention Time 
TWh Terawatt hour 
UASB: Upflow Anaerobic Sludge Blanket Reactor 

UASB–AF, Upflow Anaerobic Sludge Blanket – Anaerobic Filter 
VFA Volatile Fatty Acids 
VS Volatile Solids 

Notations 
C Carbon 
CO2 Carbon Dioxide 
CH4 Methane 
HCO3

− : Bicarbonate 
HxPO3− x

4 : Phosphate 
HxS2− x: Sulphite 
H2 Hydrogen 
H2S Hydrogen Sulphide 
K+ Potassium 
KI,NH3 Ammonia Inhibition Parameter 
N Nitrogen 
Na+ Sodium 
Porganic,P Organic phosphorus 
S Sulphur 
SH+ Hydrogen Ion 
SO2−

x Sulfate  

Fig. 1. Keywords co-occurrence network analysis using VOSviewer software.  
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Table 1 
Summary of studies having ADM1 as the basis model framework to capture CH4 output in a relevant environment or higher scale of operation.  

Reference Feedstock Volume, 
m3 

Reactor 
type 

Temperature, 
◦C 

Simulated 
parameters 

Model extensions and 
modifications 

Data analysis Outcome 

[27] Primary and 
secondary sewage 
sludge 

− 0.16 
− 0.8 

2-stage 
CSTR 

35 and 55 Biogas (m3/d) CH4 

(%), CO2 (%), H2 

(%), Propionate 
(kgCOD/m3), 
Acetate (kgCOD/ 
m3) 

Two-stage AD and 
benchmark 
implementation to 
eliminate numerical 
discrepancies. 

Parameter 
estimation 

Successful parameter 
estimation and 
adequate prediction 

[28] Liquid manure and 
fodder for cows 

3.5 STR 38 Biogas (Nm3/d), 
CH4 (%), CO2 (%), 
H2 (%), Propionate 
(mgCOD/L), 
Acetate (mgCOD/ 
L) 

Inflow fractionation  Able to predict biogas 
production and 
energy yield 

[29] Piggery manure and 
biowaste 

− 2 of 50 
− 2 of 91 

4- 
chamber 
scheme 

Mesophilic Biogas (L/d), pH Calibrated kinetic 
parameters  

Appropriate for 
process design, 
optimization and 
predictions at serial 
reactors 

[30] 1:1 primary and 
secondary sludge 

10800 CSTR Mesophilic CH4 (m3/d), CO2 

(m3/d), pH, TVFA 
(mg/L), TCOD (kg/ 
m3) 

Stoichiometric 
coefficients expressing 
nitrogen release by the 
biomass decay process 

Minimizing the 
sum of the squares 
between 
measurements and 
model values 

Measurements agreed 
well with calculated 
model results 

[31] Grass silage 0.0312 2-stage 
CSTR 

37 Biogas (L/d), CH4 

(L/d), CH4 (%), 
TVFA (mg/L), TS- 
VS (%), pH 

The liquid phase, gas 
phase, and acid-base 
equations to 
implement 2-stage AD  

Good accuracy with 
experimental data 

[32] A blend of pig 
manure, wine, and 
gelatine 

1.0 UASB–AF Mesophilic Biogas (m3/m3/d), 
CH4 (%), CO2 (%), 
H2 (ppm), NH4

+

(M), COD (g/L), 
Acetate (M), pH, 
HCO3

− (M) 

Addition of soluble 
fermentable substrates 
and calibration of 
acetoclastic ammonia 
inhibition  

Successful validation 
for implementing new 
soluble substrates 

[33] Maize silage 0.24 and 
0.5 

2-stage Mesophilic Biogas (L/d, L/ 
kgVS), CH4 (%), 
CO2 (%), H2 (ppm), 
pH, Acetate (mg/ 
kg), Propionate 
(mg/kg) 

Estimated kinetic 
parameters 

Residual sum of 
squares and 
estimation of 
parameter 
uncertainty 

Confidence regions 
showed that the upper 
limits of the single 
hydrolysis rate 
constants were not 
bounded 

[34] Anaerobic sludge 
from cesspit 

0.8 USAB Mesophilic Biogas (m3/d & 
m3/m3), CH4 (L/ 
gCOD), pH, 
Effluent (kgCOD/ 
m3), Acetate (g/L) 

Modeling sludge 
retention increases the 
external recycle  

Average experimental 
data were within 10% 
of the simulated 
values 

[35] Municipal solid 
waste, grease trap 
sludge, and ley crop 
silage 

4000 CSTR Mesophilic Biogas (Nm3/d), 
pH 

Parameters estimation Index of agreement 
and normalized 
root-mean-square 
deviation 

Good fit for biogas 
and NH4–N. Low VFA 
and pH prediction 
accuracy 

[36] Primary sludge 6750 CSTR Mesophilic COD (g/L), CH4 

(m3/d), Alkalinity 
(mg/L), VFA 
(gCOD/L) 

Calibrated kinetic 
parameters  

Default parameter can 
adequately 
characterize the 
sludge-based AD 
without the need for 
excessive 
experimental data 

[37] Wastewater from 
industries producing 
pharmaceutical and 
enzymatic products 

1963 AGR – IC 35 CH4 (m3/d), CO2 

(m3/d), H2S (m3/ 
d), VFA (kgCOD/ 
m3), pH, COD (kg/ 
m3), SO4 (kgS/m3), 
NHX (kgN/m3), 
HXPO4

3–X (kgP/m3) 

The fate of P and S 
compounds, 
physicochemical and 
ethanol reactions 

Residual sum of 
squares 

Relative mean error of 
13–15% 

[38] Mixed primary and 
secondary sludge 

10000 CSTR Mesophilic COD (kg/m3), CH4 

(m3/d), Alkalinity 
(mg/L), pH 

Calibrated 
stoichiometric and 
kinetic parameters 

Minimizing the 
root mean square 
error between 
experimental and 
model data 

Measurements agreed 
well with calculated 
model results 

[39] A mixture of animal 
wastes 

0.077 PABR 35 Biogas (L/L/d), 
COD (g/L), Acetic 
acid (g/L), 
Propionic acid (g/ 
L), Butyric acid (g/ 
L) pH, VSS (g/L), 

Describe biomass 
retaining in the PABR  

Adequate prediction 
considering the 
increased Solids vs 
Hydraulic Retention 
Time 

(continued on next page) 
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However, the wider implementation is challenging because it is 
associated with some issues and constraints. For example, the produc
tion costs of biomethane are more expensive than natural gas [9] and 
especially, H2 prices negatively affect process sustainability [10]. 
Moreover, operating strategies and proper reactor design can signifi
cantly increase CH4 production capacity [11] that per se needs high gas 
inlet flows. However, increased proximity to gaseous feedstocks and 
especially, to cheap and green H2 can fluctuate based on electricity 
prices [12]. Thus, the microbiome should be capable of adapting to 
rapid gas-loading changes. 

Nevertheless, control strategies to predict the microbiome’s ability to 
shift toward high production capacities are not yet exploited in an 
operational environment. Despite most of the research work has been 
focused on improving the lab-scale biomethanation, the technological 
readiness level of biomethanation was lately increased. Indeed, a num
ber of groups around the world have already demonstrated the imple
mentation of the biogas upgrading technology at a pilot-scale [13–17]. 
However, the published studies were mainly focused on the imple
mentation of the process at a higher scale highlighting either the CH4 
production capacities or revealing insights on the microbial commu
nities. On the contrary, modeling as means to predict, control and 
optimize the performance of gas fermentation on pilot or higher scale is 
rather scarce. Indeed, kinetic models were mainly applied to gas fer
mentations in lab-scale tests [18–20]. Pilot or higher scale studies were 
mainly putting attention on modeling the AD processes using liquid/
solid waste streams for biogas production. AD is a rather established 
technology and so, different model structures were evolved due to the 
need for predicting the process performance of digesters fed with agri
cultural or municipal wastes/wastewater. Due to the fact that AD sys
tems are fed with inlets of alternating composition, at non-steady 
loading rates along with seasonal variations; there was a need to develop 
tools that can be useful for the plant operators in order to design feeding 
strategies, alleviate process instabilities and retain high system effi
ciency [21]. On this topic, BioModel and ADM1 are well-known model 
frameworks to understand, characterize, predict, and optimize AD pro
cesses. Multiple amendments, modifications, and additions occurred 
during the past years in both frameworks. Specifically, ADM1 was 
markedly improved –supported by the IWA Specialist Group on 
Modelling and Integrated Assessment –and utilized at different scales of 
operations from lab-to full-scale applications. On the other hand, Bio
Model has mainly been used in describing AD process at a lab-scale. 
Hence, fundamental knowledge was generated over the years from 
both model frameworks and the basic understanding of the AD process 
was improved. 

This article aims to provide an overview of the two most used 
multistep dynamic AD models, namely ADM1 (for higher-scale appli
cations) and BioModel (for lower-scale applications), and their role and 
amendments in supporting process development and decision-making in 
the bio-based gas production sector. A review of past practices, along 
with the benefits, barriers, opportunities, and challenges of introducing 
kinetic modeling to processes established at relevant scales is presented. 
Also, two case studies are simulated using the BioModel to explore its 
potential for higher-scale applications. Overall, it is discussed how these 
existing high-fidelity AD models can provide a basis to develop, predict, 
and finally support biogas and biomethanation processes at a larger 
scale. 

2. Review methodology 

Exploiting the Scopus database during the periods of 2010–2022, a 
sum of 154 articles was collected using the following keywords: biogas, 
biofuel, methane, and modeling. The relevant keywords analysis was 
conducted in the VOSviewer software. A minimum number of occur
rences of a keyword was set to be 20 and subsequently, a network 
visualization was generated (Fig. 1). The color and size show the cluster 
and the occurrence frequency of keywords, respectively; while the lines 
connecting the circles indicate the links among keywords. Based on 
keywords, the collected articles were clustered as follows: 1) AD, bio
fuels, biogas, and methane (red cluster); 2) conditions, process param
eters, and characteristics (green cluster); 3) engineering perspectives 
including reactors and modeling (blue cluster). The main keywords 
included AD, biogas, and biomethane production, and the impact of 
modeling to simulate and optimize AD reveals a trend for research and 
also, the need for further development in the area. 

The keywords co-occurrence show that mathematical modeling of 
AD processes is still a small part of all the research focused on this area. 
This fact can be explained by a number of reasons, the main one being 
the difficulty in finding researchers who are simultaneously interested in 
biological processes and well-versed in mathematics and coding. 
Furthermore, graduate students tend to consider laboratory experiments 
more important than data analysis or learning writing skills [22] and 
often have fears and difficulties in learning a computer progamming 
language [23]. However, this scenario is bound to change, since there is 
a rising interest in advanced information technologies, artificial intel
ligence, and machine learning models which can make sense out of the 
increasing amount of data collected and provide reliable process 
monitoring and forecasting [24]. 

3. ADM1 applications on pilot- and full-scale case-studies 

The initial ADM1, published in 2002 included 26 dynamic state 
variables, 8 implicit algebraic variables, and 32 dynamic concentration 
state variables implemented as differential equations [25]. Due to the 
need for reduced impreciseness and the complexity of the AD process, 
multiple attempts have been made at adding process reactions, state 
variables, stoichiometry-based relations, and kinetic parameters [26]. 
Compared to other complex model frameworks, ADM1 has been used to 
an increased extent in the literature for modeling and simulation of 
processes at pilot- and full-scale, respectively (Table 1). 

Blumensaat and Keller [27] extended ADM1 applicability to a 
two-stage AD process, applying C and N balance checking. ‘Bench
marking’ implementation was used to validate the model accuracy 
developing a customized procedure to limit the range of estimated pa
rameters. Testing procedures revealed the need to better close the bal
ances of inorganic C and N released from biomass decay to avoid 
discrepancies between content in the biomass and availability in the 
feedstock. While the model accuracy was validated at two-stage pilot 
AD, they communicated the need for basic research on closing the 
inorganic C and N balances, and further validate model agreement with 
measurements. 

While ADM1 is a model framework that is based on COD, research 
attempts have revealed the need for improved inlet characterization 
when recalcitrant substrates are used [27]. Lübken et al. [28] examined 
the usage of VS instead of COD and Weender analysis along with Van 

Table 1 (continued ) 

Reference Feedstock Volume, 
m3 

Reactor 
type 

Temperature, 
◦C 

Simulated 
parameters 

Model extensions and 
modifications 

Data analysis Outcome 

[41] Glucose and syngas 
from straw pyrolysis 

6.0 Up-flow Mesophilic CH4 (L/d), H2 (L/ 
d), CO (L/d) 

Modified Gas-liquid 
transfer process 

ANOVA, 
sensitivity, and 
confidence interval 
analysis 

High prediction 
accuracy with R2 

values above 0.86  
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Soest for the determination of carbohydrates, proteins, and fats. The 
improved inflow fractionation could better capture the biogas produc
tion trend using cattle manure and energy crops for different feeding 
intervals. As mentioned, ADM1 was built on a COD basis and focused on 
the AD of sewage sludge. The authors decided to use a VS basis in their 
study due to their experimental methodology and the usage of manure. 
The improved simulation was achieved because of the better influent 
characterization and not due to the change of basis. To improve the 
numerical accuracy of the model using different substrates, the need for 
calibrating the degradation and decay rates was highlighted [29]. 
Especially, the calibration of the coefficients for disintegration and 
decay rate for sugar degraders and the half-saturation constant for sugar 
was markedly different than the default parameters. The research 
highlighted the need for proper parameter estimation when ADM1 is 
used to describe the degradation of agricultural waste. 

However, sludge characteristics can vary during reactor operation 
challenging ADM1 predictability. To minimize limitations from sludge 
variability, dynamic data from 150 days of operation of a full-scale AD 
plant was used to calibrate the ADM1 with a focus on N and C mass 
balances [30]. After calibration, the dynamic data of 215 days were used 
to validate the simulations of the modified ADM1. The amendments 
included the consideration of the inorganic nitrogen coming from 
biomass decay and the relevant stoichiometric coefficients. Calibrating 
the sensitive parameters (e.g. hydrolysis constants, uptake rates for 
sugar and selected VFA degraders, half-saturation constants for sugar 
and acetate degraders, yield coefficient for H2-fueled archaea) led to 
improved model predictions. 

Thamsiriroj and Murphy attempted to simplify the 2-stage AD of 
grass silage [31]. The initial differential system in ADM1 contained 32 
and 3 equations in the liquid and gas phases, respectively. Thus, a 
2-stage CSTR system demanded solving 70 ODEs. To reduce complexity 
to 60 equations, the number of variables and associated equations were 
decreased having only SH+ (mole H+ L− 1) as the sole state variable in the 
acid-base processes. 

In another case study, the degradation of soluble fermentable or
ganics (such as ethanol, glycerol, or lactate) was considered and fol
lowed glucose-equivalent reactions, while only the acetoclastic KI,NH3 
was modified compared to the original ADM1 values [32]. Co-digestion 
of liquid pig manure, wine, and gelatin was simulated showing that the 
applied methodology can be followed to implement more easily 
degradable substrates in ADM1. It is noteworthy that a pilot-scale UASB 
was used for biogas production. In such a system, intense recirculation 
secures a complete mixture in the liquid phase and thus, the modified 
ADM1 version was mainly used to explain the process outcome. 

Carbohydrates contribute to a huge fraction of the lignocellulosic 
waste streams and in a modified ADM1 version of Lübken et al. [33], 
sugars in maize silage were split up into slowly and readily degradable 
fractions. A two-parameter analysis was used to define hydrolysis rate 
constants. Despite the model having a good compromise between model 
complexity and predictive abilities, a variation in VFA content was 
detected. Also, it is known that mono-digestion of lignocellulose can 
lead to low bioenergy production due to a shortage of trace elements. It 
was revealed that modeling attempts towards the understanding of the 
micro-nutrient impact on microbial activities are missing in the 
literature. 

Data from a UASB pilot reactor was also used in another study [34]. 
To avoid discrepancies and better describe the process, the external 
recycle was increased to achieve a higher STR than the HRT. Thus, 
feedstock composition that can vary over time and SRT were the only 
calibrated variables keeping the rest of values according to the litera
ture. The calibrated version lead to less than 10% deviation between 
practical and simulated data. 

Nordlander et al. [35] compared the simulation output variables 
with data obtained from full-scale plant monitoring. To define the initial 
conditions, the plant was simulated for 5000 simulation days using an 
average of the input data. To improve the accuracy of the full-scale 

co-digestion plant, the hydrolysis rate coefficients were determined for 
all main substrates. Then, a sensitivity analysis was conducted to define 
the extra kinetic parameters that should be adjusted. While the AMD1 
output was improved after calibration, the need for more frequent and 
better substrate characterization was revealed. Improved substrate 
characterization frequently can highly affect the prediction of the biogas 
process. In a comparative study, the ADM1 was calibrated using data 
from 200 days obtained from a sludge-based digester [36]. Nine kinetic 
parameters were calibrated by minimizing the sum of the squares of the 
weighted deviations between practical data and simulations. The model 
outcome was validated on long-term and dynamic operation data 
showing the good capability of predicting methane output. 

The scalability of ADM1 was also assessed in data obtained from an 
anaerobic granular reactor with internal recirculation simulating a flow 
reactor model consisting of CSTR in series [36]. ADM1 was upgraded 
with the fate of SO2−

x /HxS2− x fractions and HxPO3− x
4 /Porganic,P profiles 

and adding inhibition factors for ethanol degraders. H2 uptake rates or 
H2-degraders and Ks for acetate were modified to capture the competi
tion between sulfate-reducing bacteria and methanogens. C and S bal
ances showed satisfactory average deviations, a suitable explanation of 
gas-liquid mass transfer, and competition among bacteria and archaea 
for the same substrates. Despite the acceptable numerical accuracy, in
hibition by VFAs and long-chain fatty acids was not considered. 
Furthermore, increased minerals in the inlet will subsequently increase 
the formed precipitates that will compete for space with the micro
biome. Thus, more efforts are needed to address the observed 
limitations. 

Similar to previously applied approaches in the literature, Ozgun 
calibrated the most sensitive parameters and then, validate the data at 
long-term operation (>1 year) of full-scale AD of sludge [38]. It was 
concluded that alkalinity can be used as a fast indicator to control AD 
due to its high sensitivity and a more dynamic profile than pH. Some 
discrepancies were observed in methane output and were attributed to 
sludge composition. Thus, the need for improved and regular inlet 
characterization was shown again. 

To expand the usage of ADM1 at different reactor systems (i.e. 
PABR), Michalopoulos et al. [39] included a parameter to describe the 
difference between SRT and HRT. The examined pilot-scale PABR was 
operated at alternating feeding rates. The kinetic parameters were 
estimated at a specific period while the established model was used to 
validate a separate experimental phase as advised earlier [25]. The 
trends of VS, VFA, and pH had a satisfactory agreement with the 
experimental data. Some deviations were attributed due to inaccuracies 
between sampling time and switching periods. Overall, it was concluded 
that the model could predict the performance of a system operated at 
different SRT and HRT. 

To account for the intracellular microbial activity Weinrich et al. 
[40] augmented the ADM1 by coupling the standard kinetic model to 
FBA models of specific methanogenic species, namely, M. barkeri and 
M. maripaludis. In the original ADM1, a yield coefficient is necessary to 
describe the impact of microbial activity on substrates and products. 
This is unnecessary in the coupled model for those steps which FBA 
models replace. Thus, their respective yield coefficients are no longer 
required as they are implicitly encoded in the topology of the species’ 
metabolic network. The coupled model was tested in steady state and 
dynamic conditions when changing a constant feed of maize silage from 
continuous to pulsed feeding. The final average methane production 
remained very similar for both the standard ADM1 and the augmented 
ADM1 with FBA while both the initial response of the methanogenic 
population at the onset of pulsed feeding as well as its dynamics between 
pulses deviates considerably. In contrast to standard ADM1, the coupled 
model described the intracellular metabolic pathway activity in much 
higher detail. Overall, the augmented ADM1 with FBA models can 
provide a convenient tool to interpret time series data from operational 
biogas plants, explore theoretically possible maximal yields and process 
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efficiency, identify early warning signals of reactor failure, and test 
intervention strategies to avoid costly reactor breakdowns. Finally, a 
recent study extended the application of ADM1 to the co-fermentation of 
glucose with syngas [41]. The major modification included a detailed 
description of the gas-liquid mass transfer mechanism. Moreover, inhi
bition terms were added on butyrate/propionate/acetate degraders and 
acetoclastic/hydrogenotrophic archaea to describe CO inhibition at high 
partial pressures. The model was calibrated in lab data and validated at a 
6 m3 pilot-scale reactor. The modified version matched well the 
composition of CH4 and H2, while some discrepancies were observed for 
CO leading to decreased accuracy compared to the lab tests. The main 
reasons for deviations were primarily attributed to the composition of 
the fed gas (e.g. H2S) and the simplification of the microbiome compo
sition in the model. Nevertheless, the performance was well-captured 
indicating that the upgraded model can be used to forecast the perfor
mance and thus, optimize the syngas biomethanation. 

4. Advances of BioModel 

Historically, a dynamic model describing the AD of organic sub
strates was developed in 1993 by Angelidaki et al. [42] having as initial 
scope to describe ammonia inhibition. The initial model included 12 
chemical compounds, 1 enzymatic hydrolytic step, and 4 bacterial steps. 
Subsequently, model complexity was enhanced to improve the 
description of the AD process focusing on diverse co-digestion strategies, 
process inhibition, and gas fermentation. It differs from the ADM1 in two 
main aspects: (i) it expresses substrate compositions in terms of volatile 
solids (which is considered more accurate in cases of organic wastes with 
a high concentration of solids) as opposed to the use of COD in the 
ADM1; (ii) it uses Monod-type growth kinetics as the reference for 
calculating conversions, instead of the substrate uptake rates (with im
plicit biomass growth) used in the ADM1. Despite these differences, 
however, the two models work largely the same [43], which points to 
their good interchangeability. 

Despite BioModel being mainly validated in lab-scale experimenta
tion, its applicability to full-scale data was also proved in one of the first 
studies. Specifically, the BioModel was first modified to incorporate 19 
chemical compounds, 2 enzymatic processes for carbohydrates and 
proteins, and 8 microbial groups [44]. Initially, the numerical accuracy 
of the upgraded model was calibrated and validated during the 
co-digestion of manure with lipids or protein in lab-scale reactors. 
Subsequently, the performance of a full-scale plant operating under 
co-digestion of manure with lipids was also validated. The real-life data 
were fitted quite well, while some discrepancies were attributed to 
non-proper mixing of the reactor when the model considers a 
fully-mixed system. 

Kovalovszki et al. [45] extended the BioModel applicability in 
co-digestion strategies by examining diverse substrates (i.e. manure, 
grass, food and garden waste, and sludge). Moreover, a detailed sys
tematic methodology was developed and applied to estimate a general 
set of parameters for the co-digestion of a wide range of organic sub
strates and waste. The numerical accuracy was improved after applying 
the parameter estimation methodology and it was shown that a general 
set of 13 model parameter values can be used as starting point for 
diverse case studies. 

Driven by the need for developing efficient power-to-X technologies, 
there was a significant progress lately in the field of biomethanation 
using external H2. Lovato et al. [46] attempted to explain the phenom
ena of gas-liquid mass transfer and broaden the applicability to the 
in-situ biogas upgrading process. Indeed, the corresponding dynamic 
mass balance equations for H2, CO2, and CH4 were upgraded considering 
the gas-liquid mass transfer mechanism, describing that the net transfer 
between the gas and liquid phases is determined by the concentration 
gradient, with the rate of transfer determined by the mass transfer co
efficient and the surface area across which the mass transfer takes place. 
The BioModel has been extended with the hydrogenotrophic pathway 

and validated with two case studies showing the sensitivity to the H2 
injection rate. 

Continuing the work on H2-fueled communities, the SAO were 
consequently added to the model [47]. Specifically, the added H2 can be 
channeled through homo-acetogenesis towards acetate accumulation 
which could be oxidized by SAO. To describe the dynamic interactions 
between acetoclastic and hydrogenotrophic archaea, the SAO group was 
also considered. Despite the methane and VFA trends were captured by 
the amended version, a big deviation was observed between the 
experimental and simulated butyrate concentrations. As explained, the 
accumulated butyrate should be originated from lactose fermentation (i. 
e. occurred in the first stage of the system) since cheese whey 
by-products were co-digested and also, from the high acetate levels 
which could have inhibited the syntrophic butyrate oxidizers. 

An extra add-on to the BioModel was associated with metals’ inhi
bition. Initially, an extra function was added to model the non- 
competitive inhibition of Na+ to the acetoclastic methanogens during 
the co-digestion of saline substrates [48]. The Na+ inhibition constant 
was estimated by fitting data from batch experiments and was then used 
as initial values to simulate continuous mode AD. The model indicated 
process dynamicity in qualitative trend and the incorporation of more 
microbial groups (e.g. propionate degraders) would be needed to ach
ieve more accurate outcomes. 

Apart from sodium, the effect of potassium as extra trace metal on AD 
performance was assessed [49]. In accordance with previous approaches 
to model the impact of metals, a non-competitive function on aceto
clastic methanogens was introduced to fill this literature gap. The in
hibition constant was estimated using data from the AD of municipal 
biopulp and sludge with an excess of potassium. The predicted methane 
generation was slightly lower compared to the experimental data. The 
finding was attributed to microbial adaptation to the new conditions 
highlighting the need for more research work in this area. 

Kovalovszki et al. [50] examined the adaptation of the AD micro
biome to temperature fluctuations. The function followed Arrhenius’ 
principle and was based on the fact that a potential temperature increase 
can boost growth rates. However, the growth declines beyond an opti
mum value due to the denaturation of intracellular proteins. Adaptation 
time constants were added for the microbial groups implementing a 
delay function to model the impact on methanogens due to their higher 
sensitivity compared to bacteria. The modified multistep dynamic AD 
model had an improved qualitative indication of the performance of AD 
reactors facing temperature fluctuations. The work can serve as the basis 
for simulating the adaptation of microbial communities in other vari
ables (e.g. pH, ammonia). 

Furthermore, the impact of oxygen on the degradation of recalcitrant 
lignocellulosic substrates was also modeled [51]. The hydrolysis of 
wheat straw was modeled incorporating first-order kinetics adding a 
rate constant for the presence of O2, while a non-competitive inhibition 
term was added to describe inhibition. The modified BioModel followed 
the trend of CH4 generation and could describe the process in an 
approximate matter. Nevertheless, the amended version could not be 
used to design a clear strategy for establishing micro-aerobic conditions 
for increasing methane generation. Aerobic uptake can increase the 
redox levels stressing the methanogens and increasing the CO2 levels in 
the biogas. More experimental data are needed to define the optimal 
levels, calibrate the BioModel and validate the accuracy. 

As an inspiration for the microbial growth-modulating temperature- 
effect function, the prediction of Na+ inhibition was further improved by 
adding a dynamic mathematical function to implement the adaptation of 
acetoclastic methanogens to the inhibitor [52]. Thus, the Na+ inhibition 
constant was expressed as a function consisting of a long-term adapta
tion and a short-term dynamic growth response. The thresholds of 
adaptation to Na+ were estimated in an AD system co-digesting mac
roalgae with manure and were further estimated and validated in a 
second case study using the same substrates. Through the applied 
methodology, error measures (i.e. mean error and weighted absolute 
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percentage error) were decreased and the simulations reached a good 
agreement with the experimental data. Towards further improvement, a 
deeper taxonomic characterization of the microbiome –for example, the 
existence of halotolerant methanogens in the inoculum –could enhance 
the accuracy of the simulations. 

With a focus on microbial communities, Lovato et al. [53] attempted 
to describe the effect of invaded microbes to alleviate ammonia inhibi
tion in AD reactors. SAO was added as an extra native microbial group. 
Native and bioaugmented groups were considered to have the same 
functions but different growth characteristics (e.g. growth rates, inhi
bition tolerance). To tackle ammonia inhibition, the importance of 

having a culture enriched in hydrogenotrophic methanogens was 
revealed. When added at high abundance, SAO can jeopardize the re
covery of acetoclastic methanogens consuming most of the accumulated 
acetate. While the microbiome stress due to acetate is initially 
decreased, SAO can subsequently proliferate and consume more acetate 
for H2 production. Thus, the biogas process is negatively affected in the 
long term. Overall, kinetic characteristics and composition of bio
augmented culture were crucial parameters to predict adequately the 
experimental trends. 

Despite one of the first BioModel versions was applied in full-scale 
data, its applicability was not deeply validated and highlighted 

Fig. 2. Experimental data (markers) and Biomodel simulation (continuous lines) of pilot-scale AD reactor fed with municipal biopulp. Process demonstration in 
Avedøre WWTP [54]. 

Fig. 3. Experimental data (markers) and Biomodel simulation (continuous lines) of pilot-scale trickle bed reactor fed with biogas and H2. Process demonstration in 
Lemvig Biogas plant [13]. 

P. Tsapekos et al.                                                                                                                                                                                                                               



Renewable and Sustainable Energy Reviews 197 (2024) 114413

8

through the years. To evaluate the numerical accuracy and applicability 
of the recent versions, simulations were conducted in the present study 
exploiting data from recently published pilot-scale experiments [13,54]. 
Regarding the first case study, Fig. 2 shows the simulations’ outcome of 
a 500 L AD reactor treating biopulp from municipal bio-waste for 220 
days [54]. Biogas and methane productivity and pH were well predicted, 
with RMSE under 20%. The trend for total volatile fatty acids prediction 
was also well simulated, however, there are notably two periods of 
instability that were not comprehended by the model: (i) the first 25 
days of operation, which comprised the adaptation of the inoculum to 
the substrate and operational conditions - this kind of phenomena is not 
currently described by the BioModel and (ii) a malfunction of the 
heating system from day 53–69 which increased VFA concentration due 
to temperature fluctuations and facility maintenance during days 
108–115. The metabolic intermediates decreased when the operation 
returned to normal and the stabilization was predicted by the model. 
Several operational modifications of the organic loading rate, which 
caused the fluctuations seen in the top graph of Fig. 2, were also 
correctly simulated. 

Fig. 3 shows the experimental data and process simulation of a 68 L 
trickled bed reactor whose objective was to promote the ex-situ bio
methanation of biogas from a previous reactor with H2 from an external 
supply [13]. Digestate was also fed to the system to provide nutrients for 
the enriched consortium. Methane content in the outlet biogas and pH 

were remarkably well predicted, with RMSE below 12%. Total VFA 
simulation presented an error of 27%, but with a correct trend 
throughout the 82-day experiment. The amendments performed in the 
BioModel for gas-to-liquid (and vice-versa) transfer have proven to be 
robust to model in-situ and ex-situ biogas upgrading scenarios 
consistently. 

Volatile intermediate acids prediction with very small deviations is 
still challenging. This is because there are a number of minor metabolic 
routes that are not covered by any model due to the increased 
complexity added to coding and computational time. However, they still 
exist and cause discrepancies. A few examples are the lactic acid 
degradation into propionate and acetate, ethanol degradation to acetate, 
and hexanoic, succinic, and malic acids degradation. This type of pre
diction could benefit from machine learning models that use data from 
full-scale plants. Nonetheless, the updated and extended BioModel 
(Table 2) replicates the dynamic behavior of the aforementioned vari
ables well, making it a powerful tool for improved process design and 
selection of operational conditions. 

Overall, the current BioModel has been updated with gas-to-liquid 
(and vice-versa) mass transfer mechanism, kinetic parameters and 
biochemical reactions for SAO and hydrogenotrophic pathways, and 
microbial adaptation to temperature and salinity. As “add-on” amend
ments, there is the biogas upgrading module, which covers in-situ and 
ex-situ biomethanation, and the bioaugmentation module. 

Table 2 
Summary of amendments in BioModel to simulate AD process.  

Ref. Feedstock Volume, 
L 

Reactor type Temperature, 
◦C 

Simulated 
parameters 

Model extensions and 
modifications 

Data analysis Outcome 

[44] Manure and 
industrial 
wastes 

4 of 
200000 

CSTR 55 CH4 (L/L/d), pH, 
VFA (g/L), FAN 
(g/L), Acetate 
(g/L), Propionate 
(g/L) 

Calibration to better 
describe lipid- and 
protein-rich waste  

Sufficient accuracy 
prediction during periods 
of critical changes 

[45] -Manure and 
meadow grass 
-Sludge, food, 
and garden 
waste 

− 3.5 
− 7.5 

CSTR Mesophilic and 
Thermophilic 

Biogas (L/L/d), 
CH4 (L/L/d), 
TVFA (g/L), NH4

+

(g-N/L) 

Parameter sensitivity 
analysis and 
estimation 
methodology 

Stepwise parameter 
sensitivity analysis 

Improved simulation 
accuracy at dissimilar 
case-studies 

[46] Cheese whey 
and manure 

− 1.0 
− 1.8 

CSTR 55 Biogas (L/L/d), 
CH4 (L/L/d), 
CH4 (%), CO2 

(%), H2 (%), pH, 
TVFA (g/L) 

Addition of 
hydrogenotrophic 
methanogenesis 
Addition of H2 in the 
gas feed for 
biomethanation 

Latin Hypercube 
Sampling method for 
sampling. Sensitivity 
analysis through Partial 
Rank Correlation 
Coefficient method 

Biogas content and H2 

uptake predictions with 
deviations below 10% 
compared to 
experimental data 

[47] H2, cheese 
whey 
permeate and 
waste powder 

3.0 2-stage CSTR 55 CH4 (L/L/d), H2 

(L/L/d), Butyric 
acid (g/L), TVFA 
(g/L) 

Incorporation of 
syntrophic acetate 
oxidizers  

CH4 and TVFA changes 
were well-captured at 
single- and two-stage 
reactor 

[48] Biopulp and 
macroalgae 

7.5 CSTR 55 CH4 (L/L/d), 
TVFA (g/L), pH 

Non-competitive 
inhibition of Na+

Unveil the impact of Na+

inhibition on aceticlastic 
methanogenesis 

[49] Biopulp and 
sludge 

1.8 CSTR  CH4 (L/L/d), 
Acetic acid (g/L), 
Propionic acid 
(g/L), pH 

Non-competitive 
inhibition of K+

Coefficient of 
determination and root 
mean square error 

Accurately predict the 
impact of K+ inhibition 
on AD process 

[50] -Manure 
-Manure and 
meadow grass 

− 0.7 
− 1.8 

CSTR  CH4 (L/L/d), 
TVFA (g/L) 

Implement a microbial 
temperature- 
dependent function 

Root mean square error Attractive tool for 
simulating AD processes 
facing temperature 
variations 

[51] Wheat straw 0.2 Batch 54 CH4 (NmL/gVS) First-order aerobic 
hydrolysis equation for 
complex 
carbohydrates 

Minimization of square- 
error between the model 
output and experimental 
values 

Qualitative indication of 
O2 impact in the AD 
process 

[52] Manure and 
macroalgae 

1.8 CSTR 54 CH4 (L/L/d), 
TVFA (g/L), pH 

Microbial adaptation 
to salinity 

Mean error and 
weighted absolute 
percentage error 

Reveal the potential 
existence of 
methanogens’ tolerant to 
salinity 

[53] -Cattle 
manure 
-Glucose 

− 1.8 
− 0.35 

-CSTR 
-Sequencing 
batch reactor 

37 CH4 (L/L/d), 
TVFA (g/L), pH 

Alleviation of 
ammonia inhibition 
through 
bioaugmentation 

Mean error, weighted 
absolute percentage 
error and mean absolute 
percentage error 

Efficient and quick tool 
for examining different 
bioaugmentation 
approaches  
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5. Conclusions and perspectives 

This review summarizes the application of the most commonly-used 
model frameworks as means to validate and optimize the AD processes. 
With the ongoing modifications over the years, both ADM1 and Bio
Model have proved their potential to be used as a practical and multi- 
purpose simulation tool in a wide range of applications at pilot- or 
full-scale. In general, high accuracy was achieved in most studies be
tween experimental and model outcomes. 

The various applications can provide hints and guidance to overcome 
barriers related to modeling. For example, the ADM1 is a powerful tool 
to predict the performance of wastewater-based AD and alleviate po
tential challenges, set the room for a better understanding of gas 
fermentation, and describe the fate of cations and anions that could 
promote the formation of precipitates inside the digested. To be noted 
that the above-mentioned solutions were applied in pilot- or full-scale 
case studies. On the other hand, BioModel was mainly used to 
describe lab tests and provide hints about common challenges or prac
tices such as ammonia and cations inhibition, bioaugmentation, co- 
digestion, and adaptation to temperature fluctuations. To highlight 
BioModel’s potential for implementation at a higher scale, two recently 
published pilot tests were successfully simulated herein. It is indicated 
that case studies of higher technological readiness levels can be also 
favored by this model framework. 

The examined modeling frameworks have a great potential to 
expand the role of gas for Power to X and specifically, support the recent 
advances in the biomethanation area. To meet this target, high accuracy 
of experimental measurements is mandatory to succeed in close fits 
between the observed and simulated data. Proper characterization of 
feedstock, tools that can handle both gaseous and recalcitrant residual 
resources, and also, online measurements can further contribute to 
reducing the uncertainties. However, there are obvious gaps in the 
literature related to case studies focusing on gas fermentation. Limited 
research works are focused on the description of biological methanation 
at pilot- or full-scale using mathematical models and computational 
tools. Biomethanation using raw biogas and syngas fermentation are 
research hotspots that need further simulation and modeling efforts. 
Moreover, the impact of H2S in the archaeal composition is not yet 
deeply modeled, while it is suggested that S compounds can have a 
positive or negative impact based on the concentrations. Furthermore, 
accurate measurements of CO2 and H2 concentrations in the liquid or gas 
phase are rarely available in the pilot- or full-scale plant operation due to 
the high cost of reliable experimental sets. Nevertheless, this imposes the 
need to account for reliable real time monitoring sensors. As highlighted 
FBA models can be incorporated in both modeling frameworks to gain 
more insights and detailed predictions on the intracellular activity of 
microbial species which are compatible with experimental measure
ments on enzyme synthesis activity or abundance, and metabolites in
teractions with specific microbial community members. This 
information has become available with unexampled detail through 
experimental advances in meta-transcriptomics, meta-proteomics, and 
metabolomics. Thus, it is paramount to account for reliable measure
ments that can highly improve model calibration and contribute to 
better predictions of methane production capacities during the pilot- or 
full-scale plant operation. 

Last but not least, to verify the application range of these modeling 
frameworks -when these are updated with the addition of new amend
ments, and mechanisms, -it is a must to perform (i) a global sensitivity 
analysis of model inputs (e.g., influent composition) to model pre
dictions including key performance metrics of the models (COD, total 
nitrogen, ammonia, TVFA, biogas productivity, etc.), and (ii) a global 
uncertainty analysis to propagate parameter and measurement uncer
tainty on model predictions, for subsequent optimization and scale-up 
studies. 
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