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A B S T R A C T

Acoustic emission (AE) is the transient elastic waves within a solid material caused by the rapid release of
localized stress energy such as the formation of cracks when a material is subject to mechanical loading.
This study investigates AE-signals generated from internal manufacturing flaws embedded in both a 14.3 m
and a 31 m long wind turbine blade when they are under cyclic loading in a full-scale structural test. We are
particularly interested in the spatial origin of these signals to localize damage within the structure. We perform
spatial analysis on the frequency and energy of AE-signals and their positions in an industrial-scale blade. We
find that, while tracing AE-signals back to the embedded manufacturing faults is straightforward, the acoustic
wave properties are inconsistent throughout different test phases, which challenges the correlation between
acoustic wave properties to the damage location. More reference test data should be collected to establish these
correlations. This study provides insights into better utilizing AE-data for reliable structural health monitoring
of wind turbine blades.
. Introduction

Maintenance of wind turbines is a costly affair, in particular if these
urbines are offshore where it is time consuming and expensive to get
o. Difficult weather conditions also make maintenance more costly
nd can hinder access for long periods of time. This necessitates good
tructural health monitoring that allows remote detection of damage
rowth and other maintenance issues before a team is dispatched to
ake further investigations and possible repair [3]. Early detection

f errors and the replacement of regular, and potentially unnecessary,
nspections with predictive maintenance also greatly reduce costs [4,5].
his can be done both with passive and active systems [6], active being
ecording while applying an acoustic source, passive being recording
ithout one.

We are particularly interested in exploratory analysis of acoustic
mission (AE) data from existing projects where a 14.3 m blade and

31 m blade, both with embedded artificial defects, were tested
hile being monitored by AE-sensors and as damage evolved from

he artificial defects. AE-signal processing is a well-established method
or recognizing damage growth and can be used as input for other
ethods to predict the lifetime of a number of materials and wind

urbine blades in general [7–9]. These are often performed in con-
rolled laboratory experiments to map out the signatures of damages

∗ Corresponding author.
E-mail address: admi@dtu.dk (A. Mielke).

to materials and structures. One of the great advantages of AE-signals
is that the technology can be used on many different materials and is
non-destructive.

Contribution of this paper
AE-signal processing has already been combined with spatial anal-

ysis, see for instance [10] and references therein, but the contribution
of this paper is the combination of AE-data with spatial analysis in a
full-scale test setting. Specifically, we analyze the frequency and energy
of AE-signals and their positions compared to known faults. We do this
for two different blades and compare the findings. The combination of
frequency and energy is an established technique for finding damage
signatures [11,12], but by including the estimated spatial location of
the event, we gain more information than with frequency and energy
alone. We also use the location to look at the parameters pairwise
and distinguish between fault-related events and noise. Additionally,
we indirectly gauge how close to the fault an AE-sensor has to be to
pick up a characteristic signal. Importantly, we look at a full blade as
opposed to coupons [11], as acoustic signals are probably different for
industrial-scale blades and coupons.

Structure of the paper
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Fig. 1. Photo of the 14.3 m blade. Spar cap laminates are embedded with four resin inserts to create wrinkles during the manufacturing of the blade. (Both photos are also
published in [1].) (a) The overview of four wrinkles with embedded resin inserts in the spar cap. (b) A close-up of Wrinkle 3.

Fig. 2. Experimental setup of the 31 m long wind turbine blade under full-scale fatigue loading with AE sensors attached close to the delamination area.
Source: Photo is also published in [2].
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Fig. 3. Strain gauge output from one complete loading block, with the calibration and
main fatigue loading sections indicated.

The paper is organized as follows. In Section 2, we describe the
experimental setup and how the AE-data was gathered. In Sections 3
and 4, we go into details about how localization contributes to the
analysis and how two different sensors may pick up different param-
eters from the same event. Then, in Section 5, deal with the data
analysis, especially the connections between position, frequency, and
energy over time, and compare blades of two different lengths. Finally,
we discuss the results and make suggestions for future experiments in
Section 7.

2. Basic experimental setup

2.1. Wrinkles in 14.3 m blade

Acoustic emission (AE) sensors are used to monitor the health
of two wind turbine blades. The test loading of the 14.3 m blade
was completed at the Large-Scale Test facility (LSF) at DTU Wind,
RisøCampus between 24 March and 6 April 2021. It was manufactured
by Olsen Wings [13] in Odder. Although based on a standard Olsen
Wings product, the blade was a special manufacture that included four
specifically designed embedded wrinkle defects along the spar cap, see
Fig. 1. These defects would initiate and grow delamination damage
when the blade was dynamically loaded.

A ground-based biaxial fatigue exciter mounted at 𝑅 = 5.2 m on
the blade was used to apply controlled dynamic forces and push the
blade into oscillation. Forces can be applied in a blade flap- or edge-
direction, or as a combination of the two. 9 AE-sensors were attached
at various points: Two close to the root, and the rest distributed around
the embedded wrinkles, see Fig. 4. (Note that the two sensors close to
the root are not included on the figure as they are not relevant for our
analysis.)

During the fatigue test, wrinkles caused delamination which further
grew with the increase of fatigue cycle numbers. Acoustic emission sig-
nals were collected throughout the test campaign, divided into fifteen
time blocks. Each block would begin with a set of calibration loadings.
The first calibration set would consist of pure flap-load, this would
be followed by a set of pure edge-load, and the final calibration set
would be biaxial loading. After this calibration set was completed and
checked for performance response, the main block of biaxial loading
takes place. This biaxial fatigue loading would consist of approximately
10,000 cycles and take about 75 min to complete. This process (three
calibration loadings followed by a 10,000 cycle main loading) would
complete one loading block in the test series, see Fig. 3. The calibration
data has not been used in our analysis.

The flap- and edgewise excitation frequencies were 2.3 Hz and
4.6 Hz respectively and the flapwise loading was at all times higher
3

than the edgewise loading. It should be noted that there are two
blades manufactured with identical artificial defects but they are tested
differently. The one used in this study is tested as described above, but
under different load scenarios from the one in [1]. The AE-system used
for monitoring the test was a Sensor Highway III [14] from Physical
Acoustics using PK15I sensors [15].

Analysis of the same experiment and data set, but without the
localization can be found in [12]. We here look into the advantages
and challenges of spatial analysis for this experiment. That is, if we
pair up sensor hits based on whether they could have originated from
the same location, we can attribute a more precise spatial component
to the event which can both help identify and locate a fault.

2.2. Plydrop defect in 31 m blade

Acoustics emission data from a 31 m full-scale wind turbine blade
with intentionally embedded severe plydrop defect at 25 m in the
spar cap is also collected. The embedded defect triggered delamination
growth in the spar cap when the blade is subject to constant cyclic
loading for a total number of 320,000 cycles, see Fig. 2. Acoustic
emission around the defect was detected by four sensors of the same
type as above, attached to the outer surface of the blade. The AE
sensors were placed at radius R = 23.95 m, 24.65 m, 25.35 m, and
26.05 m from the root of the blade in a linear array along the suction
side spar cap. The following set up conditions and hit parameters were
specified in the acquisition file. The set-up file for the sensors for the
dynamic structure test specified a detection threshold of 45 dB (with a
12 dB gain). Timing parameters were Peak Definition Time 200 μs, Hit
Definition Time 800 μs, Hit Lockout Time 1000 μs, and Max Duration of
500 ms. The detailed test setup can be found in [2].

3. The dataset and localization method

As digitizing the analog signal directly would require too high
sample rate to be practical, a number of wave parameters are saved
instead, see Fig. 5 for an illustration and explanation of these. The
variables are of course highly correlated. For instance, the average
frequency is found through the duration of a pulse and the number of
threshold crossings. That is, frequency has perfect (though not linear)
correlation with a combination of duration and the number of threshold
crossings. When performing a principal component analysis, i.e., an
eigenvalue decomposition of the covariance matrix to see which linear
combinations of parameters contribute the most to the data, it is clear
that the physical parameters can be reduced greatly. However, as we
would like to keep the interpretation intact, we continue with the
physical parameters.

A post-processing is made on the sensor hits to determine the likely
event origin, see Fig. 6. This firstly involves pairing of the hits. The idea
is that an event will emit a signal in two different directions, and by
pairing two hits we can find the original location. Very few (<0.1%) of
the sensor hits have more than one possible partner in adjacent sensors
within the travel time of a sound wave. There is therefore very little
ambiguity in the pairing. However, a lot of hits are discarded (∼90%)
because no partner is found. As the scale of time-differences between
two pairs is significantly larger than the travel time between sensors, it
is unlikely that the loss comes from different hits overlapping. It is also
clear that the loss happens more frequently in the later blocks, which
suggests that fewer events reach two sensors, see Fig. 7.

For completeness, we briefly go through the mathematics of this
localization. Let us assume we have two hits at times and locations
(𝑡1, 𝑥1) and (𝑡2, 𝑥2) that we know correspond to the same event at (𝑡0, 𝑥0).
Let us for simplicity assume that 𝑥2 ≥ 𝑥0 ≥ 𝑥1, that is, that the event
happens between the two AE-sensors. We may then write

(𝑡2 − 𝑡0)𝑣 = 𝑥2 − 𝑥0 (1)

(𝑡1 − 𝑡0)𝑣 = 𝑥0 − 𝑥1
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Fig. 4. Schematic of the 14.3 m blade with the AE-sensors marked. The large blue block indicates the attachment of the blade exciter, and the smaller red blocks indicate the
faults. CH1 and CH2 are outside the plot on the left.
Fig. 5. Illustration of the variables that are recorded for each event. The amplitude
is the height of the event, the count is the number of threshold crossing, the rise is
the time from first crossing to highest point, and the duration is the time from first to
last threshold crossing. The energy is calculated from an approximation of the wave
envelope (MARSE).

Fig. 6. Illustration of how the acoustic events are registered by the AE-sensors and
subsequently how the event position is estimated. By pairing the hits based on time
difference, dT, and assuming a value of the speed of sound, the measured hits can be
traced back to find the original event. The dashed lines indicate that pulses are heavily
dampened in the medium and therefore hardly ever are picked up by more than the
two adjacent sensors.

where using 𝑣 ≈ 2 km/s for the 14.3 m blade and 𝑣 ≈ 2.5 km/s for the
31 m blade as the average speed of sound in the medium gives a good
approximation for initial sensor tests where the blade is struck to test
4

the localization. This leads us to

𝑥0 =
𝑥2 + 𝑥1

2
− 𝑣

𝑡2 − 𝑡1
2

𝑡0 =
𝑡2 + 𝑡1

2
−

𝑥2 − 𝑥1
2𝑣

(2)

So the event time and place are based on the deviation from the
corresponding means. (Note that the sign of 𝑡2 − 𝑡1 determines whether
𝑥0 is larger or smaller than the midpoint.) See Fig. 7 for a plot of
these locations and times, and Fig. 13 in Appendix for comparison
between the time, location, and either MARSE energy or frequency.
Most of the faults are faintly visible in the data. However, there are
clear discontinuities across channels, and some intervals have very few
points. This suggests that part of the signal is stopped before reaching
another sensor. Note that a uniform and constant speed of sound in the
medium is an approximation, and some discrepancy between the actual
source and the localized source may occur.

4. AE-event properties

The damping we indicate in Fig. 6 is directly observable in the data
by plotting the differences in measurements for the first and second
sensors in the pair as a function of the time difference between the
hits. The time difference is of course proportional to the difference in
distance traveled, see Fig. 8 for this plot. Specifically, the amplitude
difference increases as a function of difference in distance, which
indicates that the waves are quite dampened. This is also why we do
not see the events on more than two sensors. Ideally, we would like to
have several observations of the same event, but with the current setup
this has not been possible.

While it is possible that the damping affects the localization ac-
curacy, the fact that several of the faults are observable as areas of
increased point density in Fig. 7 suggests that this is a minor effect.

Notice also in the same figure that the MARSE energy has the same
behavior as amplitude, which is natural as they are positively corre-
lated. The differences for the time parameters rise and duration also
increase with the time differences between hits, so the wave packets are
both shorter and weaker. However, the frequency is symmetric, which
suggests that this information is preserved on average.

5. Wave parameters versus location

We would like to have some observable that can work as a proxy
for the fault sizes and give us the approximate location of the fault.
It seems that frequency is the best-suited for this, see Figs. 9 and 10.
Though somewhat noisy, it is clear that the faults are visible as peaks
of higher frequencies, apart from simply being an area of more events.

For the energy, there is a bulk of small values along with a group
of outliers that moves further away over time for the 14.3 m blade.
However, the outliers are also present in the interval between Channels
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Fig. 7. The time and location (𝑡, 𝑥) of each event in the paired data for the 14.3 m blade. That is, each acoustic event that the pairing and localization algorithms find is plotted
to illustrate the development over time. The speed of sound is set to 𝑣 = 2 km/s. The dotted vertical lines indicate blocks. We see a clear thinning of points in the later blocks,
possibly because the signal from an event only reaches one sensor and is therefore discarded. The known faults are also plotted, along with the width for those of which that
have known widths. Most of the faults are faintly visible in the data apart from Wrinkle C, which is hidden beneath a DIC measurement layer. We also see that wrinkle B was
most critical with most damage growth. The cluster below Wrinkle C is likely some outside source of consistent noise, such as wires or a loose piece of material inside the blade.

Fig. 8. Comparison of difference of variables for first and last triggered sensor, 1 denoting the first sensor and 2 the second, i.e. 𝑣𝑎𝑟1 − 𝑣𝑎𝑟2. Note that all variables but the
frequency are asymmetric, indicating that they are dampened over distance. They are all plotted as a function of the time difference 𝑑𝑇 , which is proportional to the difference
in distance traveled.



Measurement 231 (2024) 114661

6

A. Mielke et al.

Fig. 9. Location versus frequency and energy for block 8 of the 14.3 m blade as an example. (The other blocks are qualitatively similar, though the energy outliers move further
away over time.) Where rows and columns coincide, we have plotted histograms of the given variable, and where they differ, we have plotted scatter plots of the two variables.
The faults have been marked on the position plots as dashed lines, and the data points are colored by interval between channels. For the scatter plots, both transpositions are
included, such that the comparison with the histograms (note that they are on log-scale) can easily be made for all variables.
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Fig. 10. Location versus frequency and energy for the 31 m blade. The single fault has been illustrated on the position plots with a dashed line, and the data points are colored
by interval between channels. Where rows and columns coincide, we have plotted histograms of the given variable, and where they differ, we have plotted scatter plots of the
two variables. For the scatter plots, both transpositions are included, such that the comparison with the histograms (note that they are on log-scale) can easily be made for both
position and frequency.

Fig. 11. The energy in each part of the frequency spectrum as a function of time for each interval for the 14.3 m blade. The color (blue to yellow) indicates the MARSE energy
on log scale. The black horizontal lines indicate the average frequencies found for different types of damages in [16], where the reference levels are micro-cracking (Ref Lev 1),
delamination (Ref Lev 2), matrix cracking (Ref Lev 3), and fibre matrix debonding (Ref Lev 4). These are for different materials and setups, so we do not expect a one-to-one
correspondence, but they are included to guide the eye.
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Fig. 12. The energy in each part of the frequency spectrum as a function of time for each interval for the 31 m blade. The color (blue to yellow) indicates the energy on log scale.
The black horizontal lines indicate the average frequencies found for different types of damages in [16], where the reference levels are micro-cracking (Ref Lev 1), delamination
(Ref Lev 2), matrix cracking (Ref Lev 3), and fibre matrix debonding (Ref Lev 4). These are for different materials and setups, so we do not expect a one-to-one correspondence,
but they are included to guide the eye. We see that there is no pattern around 50–60 kHz as in Fig. 11. It should also be noted that the color scale for the 31 m blade has a
lower maximum than the 14.3 m blade.
5 and 6 (the second from the left), which does not have a wrinkle. The
actual interval that stands out regarding energy is the middle one (the
one between Channels 6 and 7), but Wrinkle B is present there.

The noise around the frequency indication does not seem to be
present when looking at the larger blade. The 31 m blade was tested
for a shorter period of time (only one block), but the separation is
much clearer, compare Figs. 9 and 10. The reason for this is most
likely that the eigenmodes of the longer blade have longer wavelengths,
which make the fault stand out more in the higher frequency domain.
Note also how the less clear connection between frequency and MARSE
energy, visible in Fig. 12, can be seen here in Fig. 10 as well.

However, looking at the data in terms of frequency versus energy
over time in different channel intervals, the placement of indicators
is still more ambiguous than we would like. Although the energy of
different frequency bands is a good indicator for which sensors have
a fault next to them [12], the actual origin of the signal is much less
clear, see Fig. 11 for the 14.3 m blade. It shows the frequency as a
function of time with the MARSE energy as the color and different
reference levels from coupons in [16]. There are also damage patterns
available in [17], but these mostly lie outside the interval of frequencies
we observe. We see that, although a damage-like pattern occurs, a lot
of the signal seems to come from the interval CH5-CH6, which does
not have an embedded fault. That is, if we associate the energy and
frequency with a localized event rather than a sensor-hit, we find that
the interval without any faults still has a larger amount of energy in the
delamination and micro-cracking frequency range. Also, note that this
signal is absent for the 31 m blade, see Fig. 12. This may be because
the damage type is different. The overall scale of the energy is also
smaller for the 31 m blade than the 14.3 m blade. It is possible that this
is caused by a micro-cracking signal appearing throughout the entire
blade.

The band of events around 50–60 kHz with higher energy that can
be seen in Fig. 11 is also faintly visible in the frequency/position plots
in Fig. 9.

6. Discussion

Looking at Fig. 7, it is clear that we are able to trace the positions of
the events to the embedded faults throughout the test. The only excep-
tion is Wrinkle C, which is hidden beneath a digital image correlations
measurement layer.
8

However, when relating the wave parameters to the position, things
become less clear in the energy regime, but more clear in the frequency
regime, as can be seen in Figs. 9–12. High frequency seems related to
the development of faults and correlates with the positions of the em-
bedded defects, whereas high energy is related to a particular frequency
band.

Although the interval between CH5 and CH6 contains no faults, it
exhibits a lot of the properties associated with damage, such as high-
energy events at the 50 kHz band, to an even greater extend than the
other intervals. It is possible that the cracking is more pronounced in
smooth areas (i.e. intervals without defects) or that the signal from the
wrinkles is reflected in different places.

7. Conclusion and outlook

We have analyzed acoustic emission data from two different wind
turbine blades with particular emphasis on the localization of the
events. We find that the distribution of positions is consistent with the
embedded faults and that the damping of the signal over distance is
directly observable. We find that high frequency is directly relatable to
the fault location, but we have difficulties relating the other acoustic
wave properties to the expected locations.

As the main difficulty with the current dataset is ambiguity, the
suggestion for future improvement of the experimental setup is having
more references. The simplest reference would be a spatial calibration
at the beginning of each block. By striking the blade at known positions
to excite waves in the kHz-regime, it could be confirmed whether or not
the pulses can propagate to sensors on both sides, thus keeping track of
any loss through damping. Note that AE-sensors are easy to trigger, so
simply knocking on the blade with a knuckle or a hammer is enough.
We suggest equidistant strikes along the blade with at least a couple of
strikes in each sensor interval. If a certain section is found to dampen
the signal, it also allows extra sensors to be set up on either side of the
area and minimize the loss from it. This is of course impractical to do on
a wind turbine in service, but it would help the physical understanding.

Additionally, but more costly, having a reference blade with no
manufactured faults for comparison would improve understanding of
the baseline. Testing more type of blades to characterize fault types
based on AE-signal would also be a natural next step. This would also
allow test of environmental factors such as temperature and humidity.
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Fig. 13. Plot for the 14.3 m blade of time versus position with frequency (top) and MARSE energy (bottom) on the color axis, both on log-scale. There seems to be a signal of
higher frequency along the faults, especially at Wrinkle B, whereas the MARSE energy is much more spread out. Note that Fig. 9 looks at Block 8 of this plot.
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Appendix. Energy and frequency as functions of time and position

For completeness, and to give context to Fig. 9, we also show the
dependence of the MARSE energy and frequency for the 14.3 m blade as
a function of position and time for the whole run, see Fig. 13. There the
wrinkles are visible as bands of slightly increased frequency, whereas
the MARSE energy is spread out over the entire blade.
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