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Abstract 

DeepLoc 2.0 is a popular w eb serv er f or the prediction of protein subcellular localization and sorting signals. Here, we introduce DeepLoc 
2.1, which additionally classifies the input proteins into the membrane protein types Transmembrane , Peripheral , Lipid-anchored and Soluble . 
L e v eraging pre-trained transformer-based protein language models, the server utilizes a three-stage architecture for sequence-based, multi-label 
predictions. Comparativ e e v aluations with other established tools on a test set of 4933 eukary otic protein sequences, constructed f ollo wing 
stringent homology partitioning, demonstrate state-of-the-art perf ormance. Notably, DeepL oc 2.1 outperforms existing models, with the larger 
P rotT5 model e xhibiting a marginal adv antage o v er the ESM-1B model. T he w eb serv er is a v ailable at ht tps://services.healthtec h.dtu.dk/services/ 
DeepLoc-2.1 . 
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ntroduction 

embrane proteins are essential for a wide range of cellular
unctions. These functions range from assisting the cell in me-
iating communication through signaling pathways to facili-
ating the transportation of macromolecules and maintaining
on gradients across membranes ( 1 ). For these reasons, mem-
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brane proteins often pose as targets in drug discovery, high-
lighting their biological importance for proteomics research
( 2 ,3 ). 

On a high level, membrane proteins can be categorized
into three major classes: peripheral membrane proteins, trans-
membrane proteins and lipid-anchored proteins ( 1 ). This
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categorization of a protein into one of these classes often pro-
vides insight into its functionality and biological properties.
Similar to the task of predicting the subcellular localization of
eukaryotic proteins, which was the aim of DeepLoc 2.0 ( 4 ),
having access to tools that can accurately determine the mem-
brane association of a protein in addition to its subcellular
localization is highly useful from a medical and biotechnolog-
ical standpoint. 

In DeepLoc 1.0, a binary membrane classification was
included in the server’s output, where a protein would be
predicted as either membrane-bound or soluble ( 5 ), but
in DeepLoc 2.0, this functionality was not included. With
DeepLoc 2.1, we not only reinstate the capability of predict-
ing membrane proteins, but expand it considerably by also
distinguishing between the three types of membrane proteins.
Due to the high similarity between these multi-label prediction
tasks, the models developed for the prediction of membrane
association have been built upon a similar data structure and
model architecture. We use sequence-based embeddings from
the ProtT5 ( 6 ) and ESM-1B protein language models ( 7 ) and
implement the same model architecture used by DeepLoc 2.0,
performing interpretable attention pooling over sequence em-
beddings with discrete cosine transform regularization. 

Various homology and machine learning-based tools exist
for the prediction of membrane protein types. The majority
of these tools can be categorized as homology-based mod-
els, that utilize sequence alignment to search for gene ontol-
ogy (GO) terms within a database of experimentally anno-
tated proteins to reach a conclusion about the membrane as-
sociation of a query protein. This property often poses the
limitation of homology-based models as high-quality exper-
imental annotations of proteins are often expensive and la-
borious. Additionally, the databases used for searching GO-
terms must be continuously updated to ensure acceptable ac-
curacy of the models as novel proteins and functionality are
discovered. 

Among the tools that have gained the most attention for the
task of predicting membrane protein types are Mem-ADSVM
( 8 ), MemPype ( 9 ) and MemType-2L ( 10 ). Mem-ADSVM is
a multi-label homology-based predictor that uses a support
vector machine to infer its membrane type predictions exclu-
sively based on the GO-terms of homologous accession num-
bers from a compact database named ProSeq-GO ( 8 ). The
MemPype server is a multi-class predictor developed for eu-
karyotic proteins. The server provides two outputs, i.e. one
that is solely based on various machine learning tools and
sequence-based inference along with a seperate homology-
based output that acts to support the prediction of the ML-
based output. The ML-based sequence profiling uses multiple
other tools for the prediction of signal peptides, GPI-anchors,
and transmembrane domains to arrive at a decision about
the membrane type of the query protein ( 9 ). MemType-2L
is another multi-class predictor that utilizes sequence similar-
ity ( 10 ). Instead of searching for homologous sequences using
alignment-based methods, it represents known proteins us-
ing a pseudo position-specific scoring matrix (Pse-PSSM) and
performs k -nearest neighbor classification on a Pse-PSSM en-
coded query protein. 

We propose a multi-label prediction tool that relies purely
on sequence-based predictions utilizing the advances made in
recent years using transformer-based protein language models
( 11–13 ). DeepLoc 2.1 builds upon the same template archi-
tecture as the previous DeepLoc models for the prediction of
subcellular localization. The architecture is defined by three 
stages. Firstly, a pre-trained protein language model is used 

to create a feature representation for each amino acid in the 
sequence ( 6 ,7 ). Secondly, the feature representation is passed 

to an attention-based pooling stage, which generates a single 
representation for the entire sequence. Lastly, the attention- 
based representation is passed to a classifier that predicts the 
membrane type labels. 

Web server 

The web server of DeepLoc 2.1 enables the prediction of the 
four membrane protein types, Peripheral membrane protein ,
Tr ansmembr ane protein , Lipid-anchored protein , Soluble pro- 
tein ( i.e. non-membrane ), along with the original output of the 
DeepLoc 2.0 web server that includes prediction of ten sub- 
cellular locations and nine sorting signals of a query protein.
Additionally, an attention plot of the sequence is provided.
Like its predecessor, DeepLoc 2.1 is free and publicly avail- 
able with no login requirements. Input to the server is pro- 
vided in FASTA format and the server takes a maximum of 
500 sequences per submission. The predicted membrane pro- 
tein types are displayed in a table highlighted with shades of 
green for positive labels. The intensity of the green color in- 
dicates the certainty of the predicted label to be a true label 
relative to the threshold value for a positive label for the given 

membrane protein type, similar to DeepLoc 2.0. DeepLoc 2.1 

will always infer at least one positive label for its membrane 
type prediction, which implies that if the model did not pre- 
dict any positive label, the inferred membrane protein type will 
be the one closest to its associated threshold value. Figure 1 

showcases an example output of the web server. Estimates of 
prediction times are provided in Supplementary Table S1 . 

Data 

We curated a dataset with experimental evidence for mem- 
brane protein type labels containing 25 240 eukaryotic pro- 
tein sequences from the UniProt database ( 17 ). All data were 
extracted from UniProt release 2022_10 and were filtered us- 
ing the following criteria: Eukaryota (eukaryotes) [2759], not 
fragments, > 40 amino acids and any experimental assertion.
From this data the sequences can be categorized into one 
or multiple of the following four membrane protein types: 
Peripher al , Tr ansmembr ane , Lipid-anchor and Soluble (for 
non-membrane association). Details of the curation process 
are given in Supplementary Section 1 and Supplementary 
Tables S2 and S3 . 

This dataset was split into five partitions using Graph- 
Part ( 18 ), with a maximum global sequence identity of 30% 

between sequences in different partitions, as measured by 
Needleman–Wunsch alignments. Four of these partitions were 
used for 4-fold cross-validation, while the last partition in- 
cluding 4933 sequences was used solely for testing (see Table 
1 ). Supplementary Table S4 shows a detailed description of 
the label distribution of membrane protein types between all 
partitions. 

DeepLoc 2.1 o v erview 

The DeepLoc 2.1 methodology for predicting the type of 
membrane protein has three stages that builds upon the 
pipeline developed for DeepLoc 2.0. The first stage involves 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
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Figure 1. An example display of the predictions from the web server. All results from the tables can be downloaded as a comma-separated file (CSV) at 
the top of the page, which includes the predictions for the subcellular localization, membrane protein type and sorting signals. The attention plot and 
attention values can be downloaded separately. The predicted subcellular localization, membrane protein type and sorting signal labels are listed, along 
with prediction score tables. The predicted locations and membrane protein types in the tables are highlighted in green, with the intensity of the color 
indicating the cert aint y of the prediction. If none of the scores surpasses the threshold, the label closest to its threshold is selected. Ele v ated v alues in 
the logo-like plot indicate important regions in the sequence for the subcellular localization prediction, potentially corresponding to sorting signals. This is 
intended as a general guideline, and for a more in-depth and precise analysis of these signals, specialized tools like SignalP ( 14 ), TargetP ( 15 ) or NetGPI 
( 16 ) can be emplo y ed. 

Table 1. The composition of the held-out test set 

N 

Total 4933 
Single-label 4493 
Multi-label 440 
Peripheral 426 
Transmembrane 1516 
Lipid anchor 122 
Soluble 3312 
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reating per-position representations, extracted from a pre-
rained transformer-based protein language model for each
mino acid in a query protein. During the development of
eepLoc 2.1, four protein language models were assessed
nd compared for predicting membrane protein types. These
ncluded three models of the Evolutionary Scale Modeling
roject from Meta ( 7 ,19 ), ESM-1B-650M (used for DeepLoc
.0 and referred to as ESM-1B), ESM-2-650M and the largest
odel from this project, the ESM-2-15B. Furthermore, we

valuated the performance of the ProtT5-XL-Uniref50, re-
erred to as ProtT5, from the ProtTrans project ( 6 ), also used
or DeepLoc 2.0. However, only ESM-1B and ProtT5 models
re included in the DeepLoc 2.1 web server because no distinct
mprovements were observed for the membrane protein type
predictions with the newer ESM-2 protein language models
( 19 ) compared to the previous ESM-1B model. The decision to
only include these models was made to maintain compatibil-
ity with the existing DeepLoc 2.0 pipeline, which utilizes the
ESM-1B and ProtT5 model so that only a single per-position
representation for a query protein needs to be computed for
the subcellular location and membrane protein type predic-
tion tasks. 

The per-position embeddings of a sequence of length L
undergo attention pooling to compute a single representa-
tion vector for the whole sequence. Attention pooling al-
lows the model to focus on regions in the sequence that are
important for localization prediction, such as hydrophobic
transmembrane stretches or lipid anchor sites. The prediction
of attention weights is regularized using a Discrete Cosine
Transform (DCT) prior to yield more interpretable attention
patterns ( 20 ). 

Finally, the attention-pooled representation vector is passed
to a linear layer that outputs a probability for each label. The
loss function used for training the models is a weighted fo-
cal loss function ( 21 ). Additionally, a probability threshold
value is computed for each label independently by optimiz-
ing Matthews’ Correlation Coefficient (MCC) on the training
data. As opposed to other accuracy metrics, the threshold op-
timization using the MCC-score better accommodates label
imbalance ( 22 ). 
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Table 2. Performance metrics of the DeepLoc 2.1 models, ESM-1B and 
ProtT5 

Count ESM-1B ProtT5 

Accuracy 4933 0.87 0.88 
Subset acc. 4933 0.79 0.80 
Jaccard 4933 0.83 0.84 
F1 micro 4933 0.88 0.89 
F1 macro 4933 0.74 0.75 
Predicted / true 5280 1.06 1.06 

MCC per location 
Peripheral 426 0.37 0.39 
Transmembrane 1516 0.95 0.94 
Lipid anchor 122 0.63 0.66 
Soluble 3312 0.80 0.82 

Specificity per location 
Peripheral 426 0.89 0.89 
Transmembrane 1516 0.99 0.98 
Lipid anchor 122 0.98 0.99 
Soluble 3312 0.88 0.89 

Sensitivity per location 
Peripheral 426 0.58 0.61 
Transmembrane 1516 0.96 0.96 
Lipid anchor 122 0.75 0.66 
Soluble 3312 0.93 0.93 

Precision per location 
Peripheral 426 0.33 0.35 
Transmembrane 1516 0.97 0.95 
Lipid anchor 122 0.55 0.67 
Soluble 3312 0.94 0.94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Comparing performance metrics of the Mem-ADSVM server, a 
multi-label homology-based predictor for all four types of membrane as- 
sociativity, to the MCC threshold optimized models of DeepLoc 2.1. The 
test set contains 803 samples from partition V that were included in the 
UniProtKB database after 2014 

Count 
Mem- 

ADSVM ESM-1B ProtT5 

Accuracy 803 0.80 0.89 0.91 
Subset acc. 803 0.77 0.83 0.85 
Jaccard 803 0.69 0.86 0.86 
F1 micro 803 0.81 0.90 0.91 
F1 macro 803 0.61 0.75 0.76 

MCC per location 
Peripheral 46 0.23 0.31 0.37 
Transmembrane 228 0.69 0.92 0.92 
Lipid-anchor 17 0.50 0.76 0.74 
Soluble 558 0.59 0.83 0.83 
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Details of the DeepLoc 2.1 implementation and training are
given in Supplementary Section 2 and Supplementary Table 
S5 , and the model architecture is illustrated in Supplementary 
Figure S1 . 

Results and discussion 

The two models developed for DeepLoc 2.1, employing the
ESM-1B (high-throughput) and the ProtT5 (high-quality) pro-
tein language models demonstrate nearly identical perfor-
mance across the assessed metrics seen in Table 2 when eval-
uated on the test set (Table 1 ). The larger model, ProtT5, ap-
pears to have a marginal edge over the ESM-1B across the ma-
jority of the performance metrics. Considering the MCC for
the different labels it can be seen that ProtT5 is slightly less
prone to inferring wrong predictions for the Peripheral and
Soluble labels. These two classes exhibit a significant biochem-
ical overlap, posing a challenge for the models to effectively
differentiate between them, and for this purpose the larger
model seems to possess a marginal advantage. 

To establish a baseline, the models were evaluated against
an alignment-based baseline, utilizing MMSeqs2 ( 23 ) for se-
quence alignment. Positive labels for each specific sample were
deduced based on the true labels of the sequence with the
highest alignment score in any other partition. A compari-
son between the findings in Table 2 and the baseline results,
described in Supplementary Section 3 and Supplementary 
Table S6 , reveals that the models significantly outperform
these baseline predictions, indicating that simple homology-
based models lack the contextual depth necessary for accurate
predictions. 
To evaluate the performance of DeepLoc 2.1 we have 
compared our model to the Mem-ADSVM, MemPype and 

MemType-2L methods, which are all established servers for 
the task of predicting the membrane association of a protein.
As mentioned, all of these servers are homology-based to a 
certain extent, which has led us to construct different sub-sets 
of our test set in order to achieve a fair comparison, with as 
little overlap as possible between the test set and the database 
used by the various models. More details on this can be found 

in Supplementary Section 4 and Supplementary Tables S7 , S8 

and S9 . Additionally, some of the models that have been in- 
cluded for comparison have different output characteristics.
Both MemPype and Memtype-2L are single-label multi-class 
predictors, which implies that we have excluded all multi-label 
samples for comparison with these models. To retrieve single- 
label predictions for our models, we applied the softmax ac- 
tivation function to the raw outputs of the models that were 
trained for multi-label prediction. 

Model comparison 

As seen in Table 3 , all performance metrics indicate a consid- 
erable advantage in favor of the protein language models em- 
ployed by DeepLoc 2.1. The only metric where Mem-ADSVM 

demonstrates a performance approaching that of DeepLoc 2.1 

is in terms of subset accuracy. The reason for this lies in the de- 
cision making mechanism of the Mem-ADSVM server, where 
if a protein has been predicted as soluble the model will not 
proceed to make any further predictions. Due to the biochem- 
ical overlap between the soluble and peripheral class coupled 

with the significant sample imbalance, where soluble proteins 
are eight times more abundant than peripheral proteins in 

the dataset, a decision mechanism, such as that employed by 
Mem-ADSVM, could potentially exhibit a bias towards the 
majority class. However, this characteristic of Mem-ADSVM 

contradicts its assertion of being a multi-label predictor, par- 
ticularly in light of the fact that a majority of the multi-label 
samples emerge from the soluble and peripheral classes (refer 
to Supplementary Section 1 for further details on the dataset 
and label distribution). 

Comparing our models to the MemPype server also shows 
a considerable advantage for DeepLoc 2.1 across all reported 

metrics (see Table 4 ). As the MemPype server is a single-label 
predictor and additionally does not distinguish between sol- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae237#supplementary-data
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Table 4. Comparing performance metrics of the MemPype server, a 
single-label membrane-type predictor for eukaryotic proteins with three 
types of membrane associativity, to the MCC threshold optimized models 
of DeepL oc 2.1. T he test set contains 4431 samples from partition V, con- 
stituted by eukaryotic single-label samples, and multi-label samples posi- 
tiv e f or the peripheral and soluble class (see Supplementary Section 4 for 
construction of the test set) 

Count MemPype ESM-1B ProtT5 

Accuracy 4431 0.87 0.97 0.97 
Jaccard 4431 0.79 0.95 0.95 
F1 macro 4431 0.72 0.83 0.85 

MCC per location 
Peripheral / soluble 3042 0.75 0.94 0.94 
Transmembrane 1369 0.76 0.95 0.95 
Lipid-anchor 56 0.43 0.54 0.59 

Table 5. Comparing performance metrics of the MemType-2L server, a 
single-label predictor for all four types of membrane associativity, to the 
MCC threshold optimized models of DeepLoc 2.1. The test set contains 
4414 single-label sequences with a length abo v e 50 amino acids 

Count MemType-2L ESM-1B ProtT5 

Accuracy 4414 0.78 0.92 0.93 
Jaccard 4414 0.67 0.87 0.88 
F1 macro 4414 0.53 0.71 0.72 

MCC per location 
Peripheral 183 0.22 0.26 0.30 
Transmembrane 1337 0.69 0.95 0.95 
Lipid-anchor 53 0.22 0.63 0.63 
Soluble 2841 0.60 0.86 0.87 
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ble and peripheral membrane proteins, we decided to con-
truct a merged class for samples that had true positive labels
or the peripheral and / or soluble class and recorded a correct
rediction of the merged class if one of the two classes was
orrectly predicted. 

A comparison of the DeepLoc 2.1 models against the
emType-2L model shows superior performance of the mod-

ls based on the transformer protein language models for ev-
ry metric recorded (see Table 5 ). Relatively low MCC scores
re observed for the single-label case of peripheral membrane
roteins, and here the performance of the MemType-2L model
pproaches that of the DeepLoc 2.1 models. This can be at-
ributed to the fact that the DeepLoc 2.1 models appear to
e biased towards the soluble class when constrained to make
nly single-label predictions. This assertion is supported by
he data presented in Table 2 , where the sensitivity score for
he peripheral class of proteins is notably low. According to
he definition of sensitivity, this suggests a significant number
f false negative labels are predicted for the peripheral class.
onversely, Table 2 indicates a rare occurrence of false pos-

tives for the peripheral class, as evidenced by the specificity
or this class being comparable to that of the soluble class for
he DeepLoc 2.1 models. 

onclusion 

n addition to the already existing DeepLoc 2.0, used for pre-
icting the subcellular localization of eukaryotic proteins, we

nclude state-of-the-art prediction of the membrane associa-
ion of a query protein. The models developed for prediction
of membrane-association build upon the same methodology
as DeepLoc 2.0, utilizing transformer protein language mod-
els, and we show that these purely sequence-based models out-
perform every other available tool for membrane protein type
predictions. 

Data availability 
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// services.healthtech.dtu.dk/ services/ DeepLoc-2.1/ . 
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