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Dark-field X-ray microscopy (DFXM) is a full-field imaging technique that non-

destructively maps the structure and local strain inside deeply embedded crys-

talline elements in three dimensions. In DFXM, an objective lens is placed along

the diffracted beam to generate a magnified projection image of the local

diffracted volume. This work explores contrast methods and optimizes the

DFXM setup specifically for the case of mapping dislocations. Forward

projections of detector images are generated using two complementary simu-

lation tools based on geometrical optics and wavefront propagation, respec-

tively. Weak and strong beam contrast and the mapping of strain components

are studied. The feasibility of observing dislocations in a wall is elucidated as a

function of the distance between neighbouring dislocations and the spatial

resolution. Dislocation studies should be feasible with energy band widths of

10� 2, of relevance for fourth-generation synchrotron and X-ray free-electron

laser sources.

1. Introduction

Dark-field X-ray microscopy (DFXM) is a novel full-field

imaging technique that non-destructively maps the 3D struc-

ture, orientation and strain fields of deeply embedded crys-

talline elements such as grains or domains (Simons et al., 2015;

Poulsen et al., 2017; Poulsen, 2020). Direct-space images are

formed by placing an X-ray objective lens along the diffracted

beam. The magnification and field of view (FOV) can be

adjusted by changing the optics configuration, with a limit on

the spatial resolution of currently 100 nm. On beamline ID06

of the European Synchrotron Radiation Facility (Kutsal et al.,

2019), DFXM has been used to study domain evolution in e.g.

ferroelectrics (Simons et al., 2018), shape-memory alloys

(Bucsek et al., 2019), metals (Mavrikakis et al., 2019; Ahl et al.,

2020; Hlushko et al., 2020; Dresselhaus-Marais et al., 2021;

Zelenika et al., 2023) and biominerals (Cook et al., 2018). In

2019 the method was transferred to use with an X-ray free-

electron laser (XFEL) (Dresselhaus-Marais et al., 2023), an

approach subsequently applied to image the propagation of

sound waves in diamond (Holstad et al., 2023).

DFXM is conceptually similar to dark-field electron

microscopy in transmission electron microscopy (TEM),

which is used extensively to image local orientation and strain

(Williams & Carter, 1996; Nellist, 2000). In TEM, forward

modelling is often an essential part of the data analysis chain

(Vulovic et al., 2013).

We believe that a similar effort in forward modelling is

required in DFXM to understand contrast, to optimize
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experiments and as part of training and, in particular, to

enable direct coupling to materials and thermomechanical

modelling.

To facilitate this, a geometrical optics formalism for forward

modelling of DFXM images based on micromechanical

models was presented by Poulsen et al. (2021). There the

deformation was expressed in terms of a deformation gradient

tensor field, FðrÞ, with r symbolizing position in space.

Analytical expressions were provided for simplified cases. This

was supplemented by the presentation of Monte Carlo (MC)

code for sampling the 6D direct space–reciprocal space

instrumental resolution function Res and for constructing the

forward model itself. Note that the reciprocal-space part of the

resolution function is typically highly anisotropic (Poulsen et

al., 2018), a fact that has a strong effect on contrast mechan-

isms and which can be used to simplify the simulations.

A complementary wavefront propagation simulation tool

was presented by Carlsen et al. (2022). In this, numerical

simulations of image formation were performed by numerical

integration of the dynamical Takagi–Taupin equations

(Takagi, 1962, 1969; Taupin, 1967) and wavefront propagation.

This tool was validated by comparing simulated images with

experimental data from a near-perfect single crystal of

diamond containing a single stacking-fault defect in the illu-

minated volume.

In this paper we will focus on the prospects of DFXM for

multiscale visualization of individual dislocations and

networks of dislocations (Jakobsen et al., 2019; Porz et al.,

2021; Dresselhaus-Marais et al., 2021; Yildirim et al., 2023). We

first compare the results of both geometrical optics and

wavefront simulations for idealized dislocation boundaries in

order to discuss applicability, while at the same time prime

contrast mechanisms are illustrated by both simulation tools.

Specifically, we simulate DFXM images of edge dislocations in

single-crystal aluminium, using an experimental setup that is

identical to the synchrotron experiment presented by Dres-

selhaus-Marais et al. (2021).

Next we address several issues of key relevance for the

design of experiments, such as spatial resolution and the

suitability of using a beam with a relative energy band width of

10� 3 or 10� 2, of relevance to fourth-generation synchrotron

sources and XFELs. We also present a heuristic solution for

how to extract a map of (components of) the field FðrÞ from

the forward simulated images, thereby closing the loop from a

micromechanical model of a dislocation configuration to

DFXM images and back.

2. Experimental

2.1. Microscopy principles

The geometry of DFXM was presented in detail by Poulsen

et al. (2017). The layout is illustrated in Fig. 1 along with the

laboratory coordinate system (xl, yl, zl). A nearly monochro-

matic and nearly collimated X-ray beam with an average

energy E illuminates the sample. This beam may be condensed

in the vertical and horizontal directions to generate a beam

with a divergence that has dimensions of ��v and ��h,

respectively. In the following we shall assume that the vertical

condensation enables the creation of a line beam impinging on

the sample, characterized by a sub-micrometre vertical beam

height �zl.

The goniometer is designed to access diffraction angles in a

nearly vertical scattering geometry and to probe reciprocal

space only in the immediate vicinity of a given reflection hkl.

In the implementation of DFXM on ID06 at ESRF, this was

achieved by rotating the sample by a combination of the �, !,

� and � rotation stages (Fig. 1). The direction of the diffracted

beam is characterized by the scattering angle 2� and the

azimuthal angle �.

Following Poulsen et al. (2021), we can for the purpose of

these simulations consider a simplified geometry characterized

by perfect alignment, � = �0, ! = 0 (fixed), � = 0 and 2� = 2�0

for the nominal hkl reflection. We assume that during the

experiment, � is scanned (‘rocked’) over a small range centred

around � = 0 and/or � is scanned (‘rolled’) over a small range

centred around � = 0 and/or 2� is changed over a small range

centred around 2� = 2�0. This last scan implies a movement of

the ‘2� arm’ comprising both the objective and the detector.

The optical axis of an X-ray objective is aligned to the

diffracted beam for the nominal hkl value to produce a

magnified image (inverted in both directions) on the 2D

detector. The key attributes of the objective that are important

to this study are the numerical aperture NA and the focal
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Figure 1
The geometry of the dark-field X-ray microscope on ID06 at the ESRF,
shown in the laboratory coordinate system, (xl, yl, zl). The incident beam
is defined by the wavevector k0, while the diffracted beam is defined by
the wavevector kd. The pivot point of the goniometer and sample is
coincident with the intersection of the two optical axes. The vector Q
defines the local scattering vector at a given point (x, y, z) within the
sample, and may be parameterized by the scattering angle 2�, the
azimuthal angle � and the length of the vector |Q|. The value of |Q| is
related to the spacing of the lattice plane being measured dhkl and the
X-ray wavelength � by Bragg’s law. The goniometer is associated with a
base tilt�, an ! rotation around Q and two tilts, � and �. d1 is the distance
from the sample to the entry point of the objective and d2 is the distance
from the exit point of the objective to the detector. CRL denotes the
compound refractive lens. This figure is adapted from Poulsen et al.
(2017).



distance fN. The position and tilt of this objective define the

primary imaging system in DFXM, which is associated with an

object plane inside the sample (at the pivot point of the

goniometer, Fig. 1) and an image plane coinciding with the

plane of the detector. In the line beam configuration of this

paper, the illuminated plane is effectively projected onto the

detector at an angle of 2�. The distance d1 spans from the

object plane to the entry point of the objective and d2 is the

distance from the exit point of the objective to the detector.

The image generated by the objective has an associated

magnification M and FOV and can be subject to vignetting

and depth of focus issues (Poulsen et al., 2017).

During a range of small tilts around the nominal position,

the diffraction condition of the undeformed crystal lattice is

met. This is defined as the strong beam condition. During the

simulations, the rotating stages will bring the sample slightly

outside this diffraction condition, while bringing the disloca-

tion strain fields into the diffraction condition, and this is

defined as the weak beam condition.

2.2. Digital test objects

In this work the phantom or digital test object we shall study

is a simple tilted wall of straight edge dislocations. A dislo-

cation is defined by its Burgers vector b, its line direction t and

the normal to its glide plane n. In a face-centred cubic (f.c.c.)

lattice, these directions align with h110i, h112i and h111i,

respectively. Note that dislocations with the same Burgers

vector but of opposite sign will have oppositely directed line

vectors, which reverses the sign of the displacement field

around the dislocation. For this work we selected one of the 12

symmetry-related systems, the one with b = ½110�, n = [112] and

t = ½111�, as illustrated in Fig. 2. Associated with this we define

an orthonormal dislocation coordinate system by ðb̂; n̂; t̂Þ, as

also shown in the figure. We identify this by the subscript d.

For reference, we provide analytical expressions for the

displacement field and the corresponding deformation

gradient tensor field Fd for one edge dislocation in this

coordinate system in Appendix A. For simplicity, we employ

isotropic elasticity and use aluminium as the model material.

However, the methodology may be extended to include elastic

anisotropy. As illustrated in Fig. 2, we position identical dis-

locations of this type displaced from each other in direction n.

This configuration forms a low-angle grain boundary

normal to the Burgers vector, with a tilt of the lattices about

the line direction and of magnitude � = |b|/g, where g is the

distance between the individual dislocations measured along

the direction of n. It is well known that an infinite wall of edge

dislocations does not exhibit long-range stress fields (Hull &

Bacon, 2011). Here we have added dislocations to the wall

outside the FOV until end effects were avoided, i.e. the wall

may be considered infinite for all subsequent simulations.

2.3. Diffraction formalism

Poulsen et al. (2021) presented a formalism for diffraction

whereby a micromechanical model can be forward projected

to DFXM images. Following this formalism we define a grain

coordinate system, with unit axes x̂g; ŷg; ẑg collinear with [100],

[010] and [001], respectively (see Fig. 2). The rotation matrix

Ud that transforms a direct-space vector r or a reciprocal-

space vector Q from the dislocation system into this grain

system is given by

rg ¼ Udrd; Qg ¼ UdQd; ð1Þ

Ud ¼

b1 n1 t1

b2 n2 t2

b3 n3 t3

0
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where the columns of Ud are the components of the normal-

ized vectors b, n and t.
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Figure 2
The phantom used and its relation to the grain coordinate system (shown
to the left). The tilt boundary on the ð110Þ plane (in blue) consists of
straight edge dislocations, all with Burgers vector b, line direction t and
glide plane normal n in an f.c.c. crystal lattice. g is the distance between
neighbouring dislocations. See the text for further discussion.

Figure 3
The sample system (blue box) with axes (s, y, Q) given by coordinates in
the grain system. Also shown is the laboratory system (xl, yl, zl), rotated
with respect to the sample coordinate system by an angle of � around the
common y axis. A symmetric geometry is defined with diffraction vector
Q = ½111�, (xl, zl) being the scattering plane and the sample surface
normal being along ½101�.



Next we introduce a sample coordinate system, identified by

the subscript s. To ease the two-beam simulations we choose a

symmetric scattering geometry with a ½111� scattering vector

and scattering within the (xl, zl) plane. As illustrated in Fig. 3,

the sample is a slab with surface normal s = ½101�. The sample

is aligned such that the y axis of the laboratory coordinate

system yl is parallel to the crystal direction ½121�. This

geometry implies a rotation matrix from the sample to the

grain coordinate system by

rg ¼ UTrs; Qg ¼ UTQs; ð3Þ

UT ¼

s1 y1 Q̂1

s2 y2 Q̂2

s3 y3 Q̂3
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The sample system is related to the laboratory frame by a

rotation of � � about the y axis,

rs ¼ H rlab; ð6Þ

H ¼

cosð�Þ 0 sinð�Þ

0 1 0

� sinð�Þ 0 cosð�Þ

2

4

3

5: ð7Þ

So all in all, the laboratory frame coordinates are related to

the dislocation frame coordinates by

rlab ¼ H
T

UUdrd: ð8Þ

2.4. Specifics of the microscopy setup

The default geometry in the simulations is similar to that of

the experiment by Dresselhaus-Marais et al. (2021) and the

simulations by Poulsen et al. (2021). Specifically, the sample is

illuminated with a 17.00 keV beam with an energy band width

(FWHM) of �E/E = 1.41 � 10� 4. The use of a condenser

implies that the incident beam has a vertical divergence with a

truncated Gaussian profile. The attenuation through the

condenser lens gives rise to a Gaussian with a width (FWHM)

of ��v = 0.53 mrad, while the physical aperture of the

condenser gives rise to a hard cutoff at �140 mrad. The

corresponding vertical intensity profile of this incident beam is

a Gaussian with an FWHM of �zl = 0.15 mm (Carlsen et al.,

2022). In the yl direction the beam is assumed to be parallel

and homogeneous across our FOV. With diffraction from a

{111} reflection, the scattering angle becomes 2�0 = 17.953�.

The objective is a compound refractive lens (CRL; Snigirev

et al., 2009) with N = 88 Be lenses, each with a radius of

curvature of R = 50 mm, a physical aperture of D = 0.566 mm

and a distance between the centres of neighbouring lenses of

T = 1.6 mm. With geometrical optics we have analytical

expressions for the imaging geometry and acceptance function

of the objective (Poulsen et al., 2017). The results are a focal

length of fN = 192 mm, an X-ray magnificationM = 16.85 and

a numerical aperture (FWHM) of NA = 0.731 mrad.

The 2D detector is placed on a vertical translation stage

positioned at x = 4778 mm downstream from the detector,

giving a total length of the optical path from the centre of

rotation to the detector screen of x secð2�Þ = 5023 mm. The

resulting effective pixel sizes, as measured in the (xl, yl) plane,

are 123.45 and 40.00 nm in the xl and yl directions, respectively.

2.5. Geometrical optics simulations

The forward projection algorithm and experimental setup

used are identical to those presented by Poulsen et al. (2021) in

the ‘simplified geometry’. The simulation code is valid for all

crystal systems and all reflections. The relevant equations for

associating an F field with positions in DFXM images are

Hg ¼ ðFgÞ
� T
� I; ð9Þ

qs ¼ U Hg qhkl; ð10Þ

qi ¼ H qs þ

� � ��

�

��= tanð�0Þ

2

4

3

5

8
<

:

9
=

;
; ð11Þ

with i referring to the imaging coordinate system.

Initially the reciprocal-space resolution function Resq is

estimated by Monte Carlo simulations and found to be a

highly anisotropic disc with the thin direction along the

rocking direction and the diameter of the plate equal to NA

[Fig. 3 of Poulsen et al. (2021)]. Next, the forward model for

simulation of DFXM images is constructed on the basis of

equation (58) in the same paper and using Resq as a look-up

table. The intensity of the simulations involves modelling how

the diffraction from the crystal interacts with the resolution

function of the experimental setup. This interaction is

described mathematically by integrating the product of the

diffraction intensity and the resolution function over both real

and reciprocal space. By defining the integration volume on

the basis of the pixel dimensions, the resulting integrated

intensity represents what is recorded on a specific pixel of the

detector in a DFXM image, as described by Poulsen et al.

(2021).

By default, the intensities are normalized to experimental

data. Specifically, the average intensity at the nominal position

in reciprocal space (and far from any dislocations in direct

space) is set to 100 counts per pixel on the detector. The data

are subject to Poisson noise, while background, read-out noise

and other potential noise terms are neglected. The contrast in

most images presented is displayed with the same colour scale

for direct comparison.

2.6. Wavefront propagation simulations

Carlsen et al. (2022) presented numerical simulations of

DFXM image formation using integration of the dynamical

Takagi–Taupin equations and wavefront propagation. The

simulations involve propagation through both the sample and

the thick lens objective to the detector, and as such they fully
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integrate coherence and dynamical diffraction effects. The

approach was validated by comparing simulated images with

experimental data from a diamond crystal containing a single

stacking-fault defect in the illuminated volume. We here apply

this approach for direct comparison with the geometrical

optics results. Just as for the geometrical optics case described

above, there is no noise introduced and, in the case of a series

of images, the intensities are normalized to that of the strong

beam condition.

Initially, the simulated microscope is focused by optimiza-

tion based on wavefront propagation using the fractional

Fourier transform approach outlined by Pedersen et al. (2018).

The resulting X-ray magnification and working distance from

the sample to the first lens in the CRL areM = 16.85 and d1 =

207.0 mm, respectively – nearly identical to the analytical

results from geometrical optics.

2.7. The q map and centre-of-mass map

For an idealized instrument where the reciprocal-space

resolution function is a delta function, and assuming the

simplified geometry conditions, then varying the tilt angle �

corresponds to probing one direction in reciprocal space qi,1

(Poulsen et al., 2021). Likewise, � and 2� scans correspond to

probing qi,2 and qi,3, respectively. The normalized reciprocal-

space vector qi is linearly related to components of the H field,

cf. equations (9) to (11) above.

Hence, it is natural to seek to condense the information in a

set of (experimental or simulated) DFXM images generated

for a series of � values into a map of qi,1, where each pixel

(corresponding to one voxel in the illuminated layer of the

sample) is represented by one strain value. Likewise, to

represent � and 2� scans in terms of qi,2 and qi,3 maps.

In reality DFXM images are strongly influenced by instru-

mental effects in several ways:

(i) The singularity. The spatial dependence of all tensor

components (for screw or edge dislocations alike) exhibits

inversion symmetry and varies with distance to the core, r, as

1/r. The fact that the microscope has a finite direct-space

resolution implies that regions close to the core of a dis-

location will give rise to contrast in images over a range of �

values (and the same for � and 2�).

(ii) The comparability of the measured strains and the

resolution function. The maximum strain value � at a distance r

from a single dislocation line is �max ’ b/(4�r), where b is the

magnitude of the Burgers vector. With an in-plane resolution

of 100 nm and b ’ 0.3 nm, it appears that the maximum strain

will be �max = 0.3/(4� � 50) = 4 � 10� 4. As we shall explore in

detail below, this is comparable to the angular resolution in the

two directions where the angular resolution function is

dominated by the numerical aperture of the objective.

One application of the forward projection formalism is for a

given F field to simulate a set of DFXM images, compare these

voxel by voxel with experimental data, derive a corresponding

measure of the correlation, and then, in an iterative fashion,

vary the assignment of F in individual voxels and optimize the

correlation. Such a fitting algorithm would be a standard way

of solving the inverse problem but it is computationally heavy.

As an alternative, we present a simpler algorithm, where

(components of) qi are determined directly from DFXM

images. Noting that convolution with a symmetric function

conserves the centre of mass (COM), we specifically propose

to use a COM map. For a (�, �) scan the procedure is as

follows:

(i) For each voxel in the sample the (�, �) intensity map is

derived from the DFXM data.

(ii) The COM coordinates in this (�, �) intensity map are

extracted, corresponding to qi,1 and qi,2, respectively.

The COM map has regularly been used to map domains, e.g.

using the darfix data analysis software developed specifically

for the handling of DFXM data at ESRF (Garriga Ferrer et al.,

2023). We here propose that this procedure may also be

relevant for identifying dislocations. A second map of similar

nature is the FWHM map, which associates each voxel with

the width of the intensity distributions in �, � and/or 2�. The

latter gives information on the local disorder, e.g. dislocation

densities.

3. Results

By default all simulations were performed at a constant

incoming flux to make the contrast directly comparable. In the

following the simulated DFXM images are not shown in

detector coordinates. Instead, the images are shown in terms

of laboratory coordinates (xl, yl) in the illuminated plane in

the sample.

3.1. Strong and weak beam contrast in rocking scans

Results from geometrical optics and wavefront propagation

simulations are directly compared in Fig. 4, illustrating the

contrast obtained during a rocking scan (a scan of the tilt angle

�). In the strong beam case, in Fig. 4(a) we observe the

expected signatures for dynamical diffraction in the wavefront

simulations, e.g. Pendellösung fringes near the entry surface.

However, these effects seemingly do not disturb the contrast

in the vicinity of the dislocations in a detrimental way. For

increasing absolute values of �, the contrast appears more and

more localized in a region close to the core of a dislocation.

Simultaneously, the geometrical optics and wavefront propa-

gation simulations become nearly identical, as seen in

Figs. 4(b)–4(c) and Figs. 4(e)–4( f). This demonstrates the

merit of weak beam contrast and the validity of the geome-

trical optics approach in this limit. For a given exposure time,

the maximum � value at which the dislocation is still visible

constitutes a limit on how close to the core we can probe the

field.

Somewhat arbitrarily, we define the contrast limit by an

average local intensity of 1. In these simulations the limit is

around 1700 mrad, implying a shear strain field of 1.7 � 10� 3.

Additional simulations reveal that factors of 10 and 100 in the

counting statistics improve this limit to 2.7 � 10� 3 and

2.9 � 10� 3, respectively. Note that these strain values corre-

spond to regions with radii of approximately 14, 9 and 8 nm,

respectively. Hence, it appears that we can detect regions that
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are substantially smaller than the in-plane spatial resolution

(defined as the smallest distance between two identical objects

at which they can still be distinguished from each other).

3.2. Strong and weak beam contrast in rolling and 2h scans

The corresponding contrast for a rolling scan (for � = 0) is

shown in Fig. 5. In comparison with the rocking scan the

reciprocal-space function is in this case dominated by the NA

of the objective and does therefore extend beyond 1 mrad.

This is substantially larger than the strain values we can

observe (Section 3.1). Hence, the images are dominated by the

strong beam contrast throughout. Apart from an overall

decrease in intensity, the variation in contrast with � is rather

small. The corresponding contrast for a 2� scan (for � = � = 0)

is shown in Fig. 6. Again, in comparison with the rocking scan

the reciprocal-space function is in this case dominated by the

NA of the objective.

3.3. Effect of the vertical beam height

The diffraction limit implies that the incident beam cannot

at the same time be infinitely small (�zl! 0) and have zero

divergence (��v ! 0). With the existing type of condensers

the minimum vertical beam height is around 150 nm, and this

is the number used as the default in this work. However, in

practice the experimentally determined beam height is

substantially larger. To understand the effect on contrast, in

Fig. 7 we show weak beam images acquired with �zl = 600 nm

and �zl = 1200 nm. Comparing Figs. 7(b) and 7(c) with the

�zl = 150 nm data shown in Fig. 7(a), we see that, with

increasing height, streaks appear in the direction of the

projection of the dislocation line on the sample plane. The

length of this streak (defined by the FWHM) can be

substantial, e.g. 1.5 mm for �zl = 600 nm and 2.5 mm for �zl =

1200 nm.

3.4. Increased energy band width

The resolution function in the direction of a rocking scan is

illustrated in Fig. 8(a) as a function of the energy band width

(assuming a Gaussian energy distribution and a fixed diver-

gence of the incident beam). The resolution function is seen to

be almost identical for band widths of 10� 4 and 10� 3, a

reflection of the fact that the reciprocal-space resolution

functions for these values are dominated by the incoming

divergence. In contrast, the resolution function becomes

approximately 50% wider when changing the band width from

10� 4 to 10� 2.

The corresponding changes in weak beam contrast are

shown in Figs. 8(b)–8(d). Here, increases in incident intensity

of factors of 10 and 100 for 10� 3 and 10� 2, respectively, have

been taken into account (this normalization is described in

Appendix B). Note that all three images represent � values
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Figure 5
Geometrical optics simulations of DFXM images for the same phantom
as used in Fig. 4 but now as a function of varying tilt angle � from 0
(strong beam condition) to 1500 mrad (weak beam condition). The
position of the core of the central dislocation is indicated with a red dot.

Figure 6
Geometrical optics simulations of DFXM images for the same phantom
as used in Fig. 4 but now as a function of varying the scattering angle 2�
from the strong beam condition (�2� = 0) to the weak beam condition
(�2� = 600 mrad). The position of the core of the central dislocation is
indicated with a red dot.

Figure 7
Forward images using � = 300 mrad for a weak beam in a rocking curve to
display the dislocation core with � = 200 mrad for (insets) illuminating the
strain field. Beam heights of (a) 150 nm, (b) 600 nm and (c) 1200 nm. The
colour bar of the images is cut to 50% of the maximum strong beam
intensity.

Figure 4
Sample-space projections of simulations of DFXM images for a phantom
comprising a wall of edge dislocations in aluminium with 4 mm between
the dislocation lines (Fig. 2). The position of the core of the central
dislocation is indicated with a red dot. The tilt angle � is varied from 100
(strong beam condition) to 300 mrad (weak beam condition). (a)–(c)
Wavefront propagation results, displaying a region of interest of the
illuminated sample, with varying tilt angles from 100 to 300 mrad. (d)–( f )
Geometrical optics results for direct comparison with panels (a)–(c). All
images are normalized to the maximum intensity of the strong beam
condition (� = 0).



where the intensity far away from the dislocations has dropped

to 20% of its maximum value [as illustrated by the three

vertical lines in Fig. 8(a)]. Two effects are evident. Firstly, for

the 10� 2 case one needs to go to larger � to obtain the same

weak beam contrast. Secondly, the increased incident flux

improves the counting statistics significantly in both cases.

3.5. Validation of COM map for visualization of dislocations

The phantom presented in Fig. 2 (with g = 4 mm) can be

used as a test of the appropriateness of the heuristic, the COM

map as defined in Section 2.7. Specifically, we consider a

mosaicity scan. Shown in Fig. 9 is a comparison of the

modelled and retrieved versions of the two q components. The

correspondence is excellent. Additional simulations show that

regions closer to the core (with strains of magnitude up to

5 � 10� 4) are reproduced equally well, provided the � and �

ranges are sufficiently wide to include the tails of the distri-

butions. The method also handles models with a larger vertical

beam height well, e.g. the phantoms used in Fig. 7.

3.6. Contrast in a dislocation wall

The specified dislocation configuration is well known to give

rise to a domain wall, separating two domains that are rotated

by an angle � = b/g with respect to each other around an axis

parallel to the dislocation line. Here b is the length of the

Burgers vector and g is the distance between neighbouring

dislocations in the dislocation coordinate system.

In Fig. 10 the contrast in and around the wall is shown as a

function of g. It appears that, with decreasing g, the initial

strong beam region around � = 0 splits into two strong beam

regions, corresponding to a domain in the upper right-hand

part of the DFXM images (with contrast at negative � values)

and another domain in the lower left-hand part (with contrast

at positive � values). At g = 0.25 mm, the misorientation

between the domains is � = 960 � 10 mrad, when calculated as

the distance between the centres of the two peaks of the

magenta curve in Fig. 10(a). In comparison, � = b/g gives � =

1.14 mrad for the same spacing. The lower value obtained in

the DFXM data is due to not probing the full misorientation.

Only the rotation component around the yl axis is probed.

Splitting of the misorientation into a rotation around the yl

axis and a subsequent rotation without a component around

this axis yields a rotation angle around yl of � = 954 mrad. The

correspondence is a testimony to the high angular resolution

of DFXM. As illustrated in Figs. 10(a)–10(d) the individual

dislocations are still visible, provided one changes the � setting

to keep the relative position to the strong beam condition. At

a given spatial resolution the field becomes more and more

confined around the core of the dislocations. This is a well

known effect of the superposition of the fields from the indi-

vidual dislocations for such walls. Eventually, with decreasing

g, contrast is lost due to limitations in spatial resolution.
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Figure 8
(a) Normalized distributions of the reciprocal-space resolution function in the qrock0 direction at different energy band widths (FWHM). (b) A simulated
image with an energy band width of 1.41 � 10� 4 at 300 mrad in the rocking curve, blue dashed line in panel (a). (c) A simulated image with an energy
band width of 1.41 � 10� 3 at 375 mrad in the rocking curve, orange dashed line in panel (a). (d) A simulated image with an energy band width of
1.41 � 10� 2 at 550 mrad in the rocking curve, green dashed line in panel (a). The DFXM images have the same exposure time and colour scale for direct
comparison, with maximum intensities of 100, 815 and 1806 in panels (b)–(d), respectively.

Figure 9
A test of the accuracy of the centre-of-mass map concept based on a
(�, �) scan and using the same phantom as in Fig. 4. (a) The model qi,1

field and (c) the corresponding qi,1 field derived from the COM mapping
of DFXM images. (b) The model qi,2 field and (d) the corresponding qi,2

field derived from the COM mapping of DFXM images.



4. Discussion

4.1. Applications of geometrical optics simulations

In this paper, for reasons of simplicity, the micromechanical

model used in the forward simulation is a simple superposition

of the analytical expressions for individual dislocations.

However, the simulation tool is generally applicable to elastic

or viscoplastic models, e.g. in connection with phase-field

simulations, discrete dislocation dynamics (DDD; Pachaury et

al., 2022) or continuum dislocation dynamics (CDD; El-Azab

& Po, 2020) models. In particular, the forward projection will

support the ambition outlined by Poulsen (2020) of acquiring

an experimental 3D movie of the dislocations and using the

configuration of the first time step as the initial configuration

for a corresponding 3D movie based on simulations. The two

movies can then be compared at tens of millions of points in

space and time, providing a very thorough test of the validity

of the micromechanical model.

In this context, it is an asset that the geometrical optics code

is fast. The code previously detailed by Poulsen et al. (2021)

has been reimagined in Python and extensively optimized,

resulting in significant enhancements in computation effi-

ciency. It is now executable on a standard laptop equipped

with an Intel 11th-generation i7 processor and no GPU,

facilitating swift execution of both the reciprocal-space

component (probing 108 rays for MC simulations) and the

direct-space element of the resolution function (35 million

data points). The former is completed within 45 s, while the

latter is accomplished in less than 3 s. By incorporating addi-

tional vectorization and parallelization techniques or harnes-

sing the superior capabilities of readily accessible server

hardware and GPUs, the simulations can be further fine-tuned

to achieve optimal performance. Hence, with optimization of

the code it will be possible to fit material parameters by

simulating a large set of forward projected images corre-

sponding to different parameter values, and to identify the

parameter where the corresponding image resembles the

experimental one the most. [A similar fitting procedure was

demonstrated in a grain growth study by Zhang et al. (2018)

based on DCT data. There, the comparison of the experi-

mental 3D movie with phase-field simulations led to the

simultaneous determination of 5000 unknown material para-

meters in the case of reduced mobilities.]

The fast generation of images also suggests another appli-

cation of the code: for the generation of large sets of images to

be used for training neural networks, e.g. in connection with

the identification of Burgers vectors and slip systems (Huang

et al., 2023).

The simulations can be repeated for any number of

diffraction vectors such that all components of the displace-

ment gradient tensor field are encoded in the images. In this

paper we have only considered the line beam modality of

DFXM. The geometrical optics code also works without

adaptation for an impinging box beam – implying a projection

geometry – and with a minimum of adaptation for most other

modalities, e.g. where apertures are inserted in the back focal

plane.

4.2. Applications of wavefront propagation software

The relevance of using this code for studies of the effects of

coherence and dynamical diffraction is obvious. The results

shown in Fig. 4 reveal that these effects are not detrimental for

visualizing dislocations. In particular, for weak beam scat-

tering the kinematical approximation is well justified.
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Figure 10
Contrast in the domain wall. Forward simulations of the rocking curve while varying the distance g between neighbouring dislocations: g = 2, 1, 0.5 and
0.25 mm. (a) The integrated intensity across the entire image as a function of rocking angle �. With decreasing g the initial strong beam region around � =
0 splits into two separate regions, corresponding to the two domains separated by the wall. Positions where the integrated intensity has dropped to 20%
are defined by dashed lines. The corresponding DFXM images are shown in the left-hand parts of panels (b) g = 2 mm, (c) g = 1 mm, (d) g = 0.5 mm and (e)
g = 0.25 mm, respectively. Shown in the right-hand parts of the same panels are images at the tail of the intensity distribution, in ‘extreme weak beam
conditions’. The � values are indicated. Corresponding DFXM images for g = 4 mm are provided in Fig. 4.



The code has been verified by comparison with experimen-

tal data for stacking faults in diamond (Carlsen et al., 2022).

4.3. Applications of COM maps and FWHM maps

The aim of the COM map is to condense the information on

strain components embedded in a set of (experimental or

simulated) images into one map, with a ‘best estimate’ of the

strain field in each voxel. For 2D or 3D scans such as (�, �) or

(�, �, 2�) scans the COM map is a vector map. In particular for

the higher-dimensional scans, generation of this map reduces

both memory and time demands and eases visualization.

Optimization of micromechanical models can then potentially

be performed, based on the resemblance of corresponding

experimental and simulated COM maps. However, experi-

mental COM maps are currently, to varying degrees, limited

by coherence and dynamical diffraction effects. In principle,

methods similar to e.g. high-angle annular dark-field TEM can

be applied to reduce such effects. The DFXM community is

currently working on more heuristic methods, including the

use of machine learning. The COM map complements the

association of each voxel with its COM (�, �) values, as calcu-

lated e.g. by darfix, as the software produces the exact same

maps for the forward simulated images from geometrical optics.

In a similar manner, the FWHM map is introduced to

provide a simple way of measuring the strain variation within

each voxel. For higher-dimensional scans it will generate a

vector field. This variation will be a function of the dislocation

density. It can be seen as a rather primitive but fast way of

generalizing the concept of line broadening, well known from

X-ray powder diffraction (Ungar et al., 1984) and grain

mapping (Nisr et al., 2012), to voxel-based mapping. Again the

FWHM maps condense information from many images into

one, and the direct comparison of experimental and simulated

FWHM movies may improve plasticity models.

4.4. Implications for experimental setups

The results for the simple phantoms presented above lead

to several insights and hints for data analysis. In random order,

we note the following:

(i) Strong and weak beams. This work underlines the

opportunities and challenges given by the anisotropic reci-

procal-space resolution function. According to equations

(19)–(21) in the work of Poulsen et al. (2017) we have the

following analytical expressions for the width in the three

directions (FHWM):

�qrock ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð��vÞ
2
þ NA2

q

; ð12Þ

�qroll ¼
NA

2 sinð�Þ
; ð13Þ

�qpar ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þ
2
þ cot2ð�Þð��2

v þ NA2Þ

q

: ð14Þ

Inserting values for the settings used here into equations (12),

(13) and (14), we get the following strain sensitivities, defined

by the HWHM, in the rocking, rolling and 2� directions,

respectively: �1.95 � 10� 4, �1.17 � 10� 3 and �0.49 � 10� 3.

These numbers are in good agreement with the widths in ��,

�� and �2�=2 tanð�Þ, respectively, as observed in the figures

in this paper.

This work also indicates that one may define optimal

settings, say for weak beam contrast, in terms of positions

where the intensity of the undeformed ‘matrix’ is reduced to a

certain percentage, such as 20%.

(ii) Vertical beam height. For most of the reported DFXM

studies from the ESRF, the beam height is 600 nm (Yildirim et

al., 2023). An analysis of simulated DFXM images shows that

the angle of the associated streak with the laboratory axis can

be found within �1�. For well separated dislocations this

information can be used to infer the direction of the dis-

location line (e.g. one gets 3D information despite each image

being only 2D), which in turn can be used for identification of

the active slip systems. However, for complete identification of

the type of dislocation, the variation in position in z must be

included and/or a parameterization of the surrounding field.

(iii) Use at an XFEL. Within the last couple of years DFXM

studies have been performed at several XFELs (Dresselhaus-

Marais et al., 2023). The X-rays emerging from the self-

amplified spontaneous emission process at XFELs have an

intrinsic energy band width of 10� 3. Everything else being

equal, Fig. 8 suggests that this increase in band width will have

a positive influence on contrast. In practice, pre-seeding or

monochromators are often used. Quantitative mapping of

tensor fields using XFEL data is challenging due to coherence

effects and is likely to require more advanced simulation tools.

However, for some studies the geometrical optics code may be

relevant. This is corroborated by the recent simulations and

subsequent experimental DFXM demonstrations of phonon

photography: the visualization of acoustic waves in bulk speci-

mens with sub-picosecond resolution (Holstad et al., 2022, 2023).

(iv) Use of a pink beam. At the time of writing, a fully

dedicated DFXM beamline, ID03, is becoming ready for

commissioning at the ESRF. This will provide the option of

using a pink beam with an energy band width of 10� 2. The

pink beam will radically increase the likelihood of radiation

damage, and it will increase the vertical beam height as the

CRL optics are chromatic. Nevertheless, the factor of 100 in

increased brightness may be favourable for many DFXM

studies of domains as the data acquisition can be faster. For

dislocations, one may worry that the rocking scan contrast is

lost, due to the resolution function in the � direction becoming

larger than or equal to the strains within our resolution

capability. This can for some purposes be overcome by noting

that the centre positions of a peak can be determined to a

precision that is much better than the width of the same peak.

However, as shown in Fig. 8, the signal-to-noise ratio in the

weak beam contrast is improved, despite the fact that images

need to be acquired at larger absolute � values.

(v) A future optics upgrade. This will involve the introduc-

tion of multilayer Laue lenses (MLLs) to replace the CRL

optics (Bajt et al., 2018; Murray et al., 2019). MLLs have been

demonstrated to exhibit an NA that is five times that of

existing CRLs. This, in combination with high manufacturing
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accuracy, implies that the incoming beam height and the

resolution function in the sample plane can both be improved

by a factor of five. With this in mind, we can now apply the

geometrical optics code to explore the effect of a larger NA on

weak beam contrast.

5. Conclusions

Forward simulations by means of (kinematical) geometrical

optics expressions with full inclusion of the direct-space and

reciprocal-space resolution functions have been shown to be a

powerful tool for DFXM studies of dislocations. The

comparison with wavefront propagation validates the

approach in the weak beam limit. The simulations are fast and

versatile and may apply to a range of tasks, including:

(i) Optimization of experimental setups, training, and

exploratory studies of new DFXM modalities.

(ii) Guidance, optimization and validation of micro-

mechanical models such as DDD and CDD models by direct

comparison of simulated and experimental movies.

(iii) Creation of training sets for classification by means of

supervised learning by neural networks.

Varying the experimental parameters shows that the

singularity in the strain field generally favours the visibility of

isolated dislocations provided they can be resolved spatially.

The main limiting factors for DFXM studies of individual

dislocations are therefore the dislocation density and the

spatial resolution.

For orientation mapping of grains and domains, the varia-

tions in orientation are typically larger than the NA of the

objective and the reciprocal-space resolution function can in

general be neglected. For such tasks, it is well known that the

orientation of each voxel is well described by the COM of

local orientations. We have demonstrated here that in the

idealized setting (based on the kinematical limit) the COM

map can also be used to quantify and visualize the field of

strain components around dislocations. The relevance of this

map for experimental data – which may be influenced by

dynamical diffraction effects – needs careful investigation.

In order to provide full transparency and facilitate repro-

ducibility, we have made available as external supplementary

information all the source code and implementation details

used to generate these simulations. For the geometrical optics

simulations, see https://doi.org/10.5281/zenodo.8370255. For

the wavefront propagation simulations, see https://doi.org/10.

5281/zenodo.8370309.

APPENDIX A

Deformation field around a single edge dislocation

For reference, the displacement field ud = (ud,x, ud,y, ud,z)

around a single edge dislocation with the dislocation line

intersecting the origin, the Burgers vector along the x axis and

the line pointing along the z axis is defined by Hirth & Lothe

(1992) as

ud;x ¼
b

2�
tan� 1 yd

xd

� �

þ
xdyd

2ð1 � �Þ ðx2
d þ y2

dÞ

� �

; ð15Þ

ud;y ¼ �
b

2�

1 � 2�

4ð1 � �Þ
ln x2

d þ y2
d

� �
þ

x2
d � y2

d

4ð1 � �Þ ðx2
d þ y2

dÞ

� �

;

ð16Þ

ud;z ¼ 0; ð17Þ

where b is the length of the Burgers vector and � is the Poisson

ratio. In the present example we consider aluminium at

elevated temperature, with b = 3.507 Å and � = 0.334. The

corresponding non-zero components of the deformation

gradient tensor in the dislocation system Fd are

Fd
xx ¼ 1 �

byd

4�ð1 � �Þ

3x2
d þ y2

d � 2�ðx2
d þ y2

dÞ

ðx2
d þ y2

dÞ
2

� �

; ð18Þ

Fd
xy ¼

bxd

4�ð1 � �Þ

3x2
d þ y2

d � 2�ðx2
d þ y2

dÞ

ðx2
d þ y2

dÞ
2

� �

; ð19Þ

Fd
yx ¼ �

bxd

4�ð1 � �Þ

x2
d þ 3y2

d � 2�ðx2
d þ y2

dÞ

ðx2
d þ y2

dÞ
2

� �

; ð20Þ

Fd
yy ¼ 1þ

byd

4�ð1 � �Þ

x2
d � y2

d � 2�ðx2
d þ y2

dÞ

ðx2
d þ y2

dÞ
2

� �

; ð21Þ

Fd
zz ¼ 1: ð22Þ

The corresponding H tensor field as defined by Poulsen et al.

(2021) and the elastic distortion tensor b are

H ¼ F� T � I; ð23Þ

b ¼ � HT ¼ I � F� 1: ð24Þ

APPENDIX B

Incorporating the incident flux in the geometrical optics

simulations

The Monte Carlo code for simulating Resq provides a

normalized distribution; it is not well suited to comparing

intensities in DFXM images across variations in incident beam

parameters such as changes in the energy band width. To

facilitate the comparison in Section 3.4 we scaled the simula-

tions using estimates for the DFXM strong beam intensity

provided by an auxiliary Monte Carlo ray-tracing program.

For each ray the exit beam direction is given by the Laue

condition and subsequently one can deduce the probability of

the diffracted beam being transmitted through the objective.

The results of these simulations are summarized in Table 1.
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Table 1
Monte Carlo simulations to provide an absolute scale for the simulations
performed in Section 3.4.

Energy band width (FWHM) 1.4 � 10� 4 1.4 � 10� 3 1.4 � 10� 2

Relative incident intensity 1 10 100
Transmission (%) 30 26 5.3
Normalized intensity 1 8.6 18

https://doi.org/10.5281/zenodo.8370255
https://doi.org/10.5281/zenodo.8370309
https://doi.org/10.5281/zenodo.8370309
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Ungar, T., Mughrabi, H., Rönnpagel, D. & Wilkens, M. (1984). Acta
Metall. 32, 333–342.

Vulovic, M., Ravelli, R. B., van Vliet, L. J., Koster, A. J., Lazic, I.,
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