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ABSTRACT Understanding the dynamics of biological systems in evolving environ
ments is a challenge due to their scale and complexity. Here, we present a computa
tional framework for the timescale decomposition of biochemical reaction networks to 
distill essential patterns from their intricate dynamics. This approach identifies time
scale hierarchies, concentration pools, and coherent structures from time-series data, 
providing a system-level description of reaction networks at physiologically important 
timescales. We apply this technique to kinetic models of hypothetical and biological 
pathways, validating it by reproducing analytically characterized or previously known 
concentration pools of these pathways. Moreover, by analyzing the timescale hierarchy 
of the glycolytic pathway, we elucidate the connections between the stoichiometric and 
dissipative structures of reaction networks and the temporal organization of coherent 
structures. Specifically, we show that glycolysis is a cofactor-driven pathway, the slowest 
dynamics of which are described by a balance between high-energy phosphate bond 
and redox trafficking. Overall, this approach provides more biologically interpretable 
characterizations of network dynamics than large-scale kinetic models, thus facilitating 
model reduction and personalized medicine applications.

IMPORTANCE Complex interactions within interconnected biochemical reaction 
networks enable cellular responses to a wide range of unpredictable environmen
tal perturbations. Understanding how biological functions arise from these intricate 
interactions has been a long-standing problem in biology. Here, we introduce a 
computational approach to dissect complex biological systems' dynamics in evolving 
environments. This approach characterizes the timescale hierarchies of complex reaction 
networks, offering a system-level understanding at physiologically relevant timescales. 
Analyzing various hypothetical and biological pathways, we show how stoichiometric 
properties shape the way energy is dissipated throughout reaction networks. Notably, 
we establish that glycolysis operates as a cofactor-driven pathway, where the slowest 
dynamics are governed by a balance between high-energy phosphate bonds and 
redox trafficking. This approach enhances our understanding of network dynamics and 
facilitates the development of reduced-order kinetic models with biologically interpreta
ble components.

KEYWORDS kinetic models, timescale decomposition, dynamic-mode decomposition, 
data-driven approach, coherent structures

G rowth and adaptation are hallmarks of all living systems. They are inherently 
dynamic processes that are orchestrated by interacting networks of biochemical 

reactions. Understanding the dynamics underpinning the intricate behavior of biological 
systems has been a major challenge of systems biology. Kinetic models based on 
detailed enzymatic rate laws can capture the complex interactions and dynamics of 
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biological systems (1, 2). However, the application of these models to large-scale 
networks is hindered by numerical challenges and their limited interpretability (3).

Biochemical reaction networks have complex structures. Yet, they often exhibit 
multi-scale and comparatively simple dynamics due to the presence of timescale 
hierarchies (4). Separation of timescales is believed to be an essential feature of highly 
evolved reaction networks, conferring stability and robustness (4, 5). It can lead to 
the modularization of network dynamics and emergence of “independent” functional 
units, both of which underlie the robustness and evolvability of living organisms (5, 6). 
Although our knowledge of the links between biological complexity and functional 
modularization is limited, we can gain a deeper understanding of the structural 
evolution and organization of biochemical reaction networks through systematic studies 
of their timescale hierarchies.

Timescale decomposition is a common approach for analyzing the dynamics of 
complex systems. Several techniques have been developed for biochemical reaction 
networks, most of which fall into two main categories: top-down and bottom-up 
approaches. The first leverages statistical methods and clustering algorithms to identify 
collections of metabolites with correlated concentration trajectories—referred to as 
concentration pools—from experimentally measured time-series data (7, 8). These 
techniques do not rely on evolution equations or kinetic rate laws, although they can 
use numerically generated time-series data furnished by mass-balance equations. They 
can handle large-scale systems of varying complexity but do not mechanistically relate 
concentration pools to the stoichiometric and dissipative structures of reaction networks. 
The second approach determines timescale hierarchies from steady-state eigenvalues 
(9, 10). It hinges on precise formulations of all reaction rates, providing a mechanistic 
association between concentration pools and structural properties of reaction networks. 
Although computations are tractable for large-scale networks, inaccuracies may arise for 
networks with highly nonlinear rate laws where Jacobian spectra are time-dependent.

Dimensionality reduction is a key step of timescale decomposition. Several classes 
of model reduction techniques have been previously developed to reduce the dimen
sionality of complex biochemical reaction networks (11). Trajectory-based techniques 
(12) describe the dynamics of the system without relying on any assumptions about 
timescales, making them well-suited for systems with complex time-dependent patterns. 
However, these techniques can be computationally intensive and sensitive to noise in 
the data, requiring substantial amount of data to accurately capture system dynamics 
(13). Singular perturbation techniques (14, 15) effectively reduce the dimensionality 
by isolating fast and slow dynamics, making them suitable for systems with disparate 
timescales. However, they are challenging to automate, requiring the functional form 
of rate laws and kinetic parameters. Lumping techniques (16, 17) offer simplicity and 
efficiency in model reduction, but how well the reduced model preserves the dynamic 
characteristics of the original system depends on an ad hoc choice of the lumping 
function.

In this paper, we develop a computational framework for the timescale decomposi
tion of biochemical reaction networks (Fig. 1), which leverages the strengths of both 
top-down and bottom-up techniques. This approach, termed dynamic mode analysis 
(DMA), determines the timescale hierarchy of a reaction network from experimentally 
measured or numerically generated time-series data. It can identify concentration pools 
for complex networks with uncharacterized rate laws as reliably as top-down techni
ques. It can also provide a mechanistic description of concentration pools and their 
organization with respect to the energetics and stoichiometry of reaction networks in 
the same way as bottom-up techniques. A key component of DMA is an extension 
of dynamic mode decomposition (DMD) (18–20)—a technique originally developed to 
characterize coherent structures arising in fluid flows—that we introduce to identify 
the dominant exponential decay modes associated with each timescale. We study the 
timescale hierarchies of hypothetical and biological pathways using DMA, showing that 
this approach can reproduce the previously characterized concentration pools of these 
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FIG 1 Overview of DMA. (A) Steady states of biochemical reaction networks are perturbed by introducing concentration or flux disturbances. (B) Concentration 

trajectories x(t) are constructed by integrating transient mass-balance equations. (C) For a general nonlinear system, dynamic modes are ascertained by 

linearizing mass-balance equations in a sliding time window, resulting in a local inhomogeneous linear system. (D) Time-series data are generated by evaluating 

local concentration deviations h at N + 1 equally spaced time points in the interval [t1, t2] that spans the time window. (E) An ODMD developed in this work 

identifies dominant exponential decay modes in the time window from time-series data. (F) The pooling matrix P, defined as the Moore-Penrose inverse (21) of 

the modal matrix Φ, is determined from dominant decay modes. (G) Disparate timescales are identified from dominant eigenvalues. (H) Biologically interpretable 

pools are constructed from the pooling matrix to modularize network dynamics.
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pathways. We also establish a connection between the time-delayed autocorrelation 
matrix—a statistical descriptor used in top-down techniques (8)—and Jacobian spectra, 
demonstrating why this descriptor is a useful metric for concentration-pool classifiers.

RESULTS

We illustrate the application of DMA by analyzing the timescale hierarchies of chemi
cal reaction networks in three case studies. The first two are hypothetical pathways 
that possess key characteristics of typical biological pathways. The last is glycolysis—
a well-studied biological pathway, the concentration pools of which were previously 
characterized (9, 22). We examine this case study to validate our computational 
framework by reproducing some of the known concentration pools of glycolysis and 
their respective timescales and to gain insight into its higher-level organization. Three 
important concepts we encounter in this section are concentration pools, coherent 
structures, and transitory regimes between two consecutive timescales, which are all 
defined in Materials and Methods (see “Concentration pools and coherent structures”).

Toy Model 1

The first case study is Toy Model 1, which is the same pathway examined in Materials 
and Methods (see “Concentration pools and coherent structures” and Fig. S1 and S2). 
It converts a substrate (metabolite 1) into a product (metabolite 2) without energy 
coupling. The substrate and product are energetically equivalent, and all the equilibrium 

constants are of the same order of magnitude (Kjeq = 1 for j = 1 ⋅ ⋅ m); therefore, the 
flux is driven through the pathway by maintaining a gradient between the extracellular 

concentrations x1∗ and x4∗ (Fig. 2A). The boundary reactions (reactions 1 and 5) are 
the rate-limiting steps, and the rate constants of consecutive intracellular reactions are 
separated by two orders of magnitude (Fig. S1C).

Toy Model 1 has a timescale hierarchy due to the separation of rate constants. We 
identified its timescales and their respective concentration pools using DMA (Fig. 2). 
We induced a dynamic response by perturbing x1 and x4, which activated all three 
timescales associated with the rate constants of the intracellular reactions (Fig. 2A and 
B). The successive equilibration of the intracellular flux disturbances partitioned the 
total relaxation time into seven distinct time intervals, corresponding to the three main 
timescales and their transitory counterparts we highlighted previously (Fig. 2B and C). Of 
particular interest are the slowest transients near the steady state. Here, all the intracel
lular metabolites pool together into a single aggregate metabolite with coefficients (1, 1, 1, 1), the concentration of which is controlled by the boundary reactions. Overall, 
the timescales and pooling matrices furnished by DMA for each time interval agreed well 
with our estimates based on the approximate analytical method (“Concentration pools 
and coherent structures”; Fig. 2C).

Furthermore, DMA could accurately characterize the transitory regime between two 
consecutive timescales (“Concentration pools and coherent structures”), identifying the 
disequilibrium and conservation stages associated with the relaxation of each reaction 
(e.g., see the coefficients of x1 and x2 in the first and second pooling maps of interval 
2, characterizing the relaxation of reaction 2). These general characteristics can help 
understand the dynamic responses of more complex reaction networks.

Toy Model 2

The second case study, referred to as Toy Model 2, involves the same pathway as in 
Toy Model 1, but with energy coupling (Fig. S3). It converts a high-energy substrate 
(metabolite 1) into a low-energy product (metabolite 2). The released energy is then 
utilized to convert a low-energy cofactor (metabolite 6) into its high-energy counterpart 
(metabolite 5). The high-energy cofactor drives an uphill step at the beginning (reaction 
2) and is recovered in a downhill step at the end (reaction 4). Thus, it serves a similar 
metabolic function to glycolysis. The cofactors are exchanged with the extracellular 
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environment depending on their concentration gradient across the membrane, and 
so are the substrate and product. As in Toy Model 1, reactions 1 and 5 are the rate-
limiting steps. However, the boundary reactions for the cofactors (reactions 6 and 7) 
have the largest rates. Unlike Toy Model 1, the mass-balance equations for this model 
are nonlinear due to the bilinearity of the mass-action rates for the cofactor-coupled 
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FIG 2 Dynamic mode analysis of Toy Model 1 described in Fig. S1. (A) Visualization of the steady-state solution in a network map. Red arrows indicate 

metabolites with perturbed concentrations. (B) Dynamic response to concentration perturbations. Deviations from the steady-state x − xss and dimensionality ν are plotted along the dynamic trajectory. Dashed lines indicate a transition between two time periods with distinct exponential decay modes, partitioning 

the overall relaxation time into seven characteristic time intervals. (C) Optimal amplitudes, dominant eigenvalues, and pooling matrix for each time interval 

identified in panel B. Black arrows in pool structures indicate parts of the network that are affected the most by the initial perturbation in the corresponding time 

interval. Gradient and uniformly colored envelopes enclose metabolites, the concentration trajectories of which are negatively and positively correlated in the 

corresponding time interval, respectively.
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reactions. In this case study, an interplay between the rate-limiting steps, cofactor 
exchange reactions, and cofactor-coupled intracellular reactions shapes the structure 
of concentration pools.

We analyzed the timescale hierarchy of Toy Model 2 by examining its dynamic 
response to concentration perturbations (Fig. 3A). During the relaxation of the ensuing 
concentration and flux disturbances, DMA identified eight time intervals associated 
with distinct timescales and concentration pools (Fig. 3B and C). In this model, besides 
reaction rates, energy coupling also influences the chronology of reactions by linking the 
equilibration of the cofactor-driven steps. Here, the disequilibrium stages of reactions 2 
and 4 occur on the ~1- to 10-s timescale, and their conservation stages occur on the ~10- 
to 30-s timescale. Once the concentration and flux disturbances of these reactions have 
relaxed, x1 and x3 form two coherent structures with x2 and x4, respectively, giving rise 
to two aggregate variables x12 := x1 + 2x2 and x34 := 2x3 + x4. Next, the disequilibrium 
stage of reaction 3 occurs on the ~100–1,000 s timescale followed by a conservation 
stage that persists until the steady state has been reached. During this conservation 
stage, x12 and x34 pool together, forming a larger coherent structure. Accordingly, the 
slowest transients are characterized by x1 − 4 pooling together into a single aggregate 
metabolite with coefficients (1, 2, 2, 1). As the steady state is approached, the concentra
tion of this aggregate metabolite is controlled by reactions 1 and 5.

Finally, we highlight the important role of cofactors in the dynamics of pathways with 
energy coupling. In this case study, because the cofactor exchange reactions are the 
fastest in the network, they control the short-term responses (t ≲ 30 s), only influencing 
the disequilibrium and conservation stages of reactions 2 and 4. Upon concentration 
perturbation, x5 and x6 become negatively correlated, forming a coherent structure 
almost immediately (t ≲ 1 s). As mentioned above, the long-term responses of Toy Model 
2 are mostly controlled by reactions 1 and 5 near the steady state with minimal effect 
from the cofactors.

Glycolysis

Glycolysis is a central energy-conversion pathway in biology (23). It converts a high-
energy substrate (glucose) into low-energy products (pyruvate and lactate). The energy 
released in this process is then used to produce high-energy cofactors (ATP and NADH) 
(see “Energetics of glycolysis” for details). To generate a sufficient amount of high-energy 
phosphate bonds, it also imports inorganic phosphate (pi). A key step of glycolysis is 
catalyzed by fructose-bisphosphate aldolase, splitting fructose 1,6-bisphosphate into the 
triose phosphates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. This 
step makes the energy stored in the chemical bonds of the pentose ring accessible for 
energy conversion in downstream reactions.

In the third case study, we analyzed the timescale hierarchy of the glycolytic pathway 
in human red blood cells (Fig. 4). We solved a mass-action kinetic model of glycoly
sis using the MASSpy package (model parameters are provided in Data S1) (24) and 
computed its dynamic response to a perturbation in the ATP load (Fig. 4A). Several 
reactions in upper and lower glycolysis are coupled to ATP hydrolysis, so their relaxations 
are tightly linked together. These energy-coupling mechanisms impart an autocatalytic 
structure to the glycolytic pathway, a characteristic of which is oscillatory dynamics (25). 
Interestingly, during the relaxation of the load perturbation, concentration trajectories 
exhibit oscillatory dynamics on timescales ranging from minutes to a day, coinciding 
with the average erythrocyte circulation time and circadian period, respectively (26). 
We analyzed the concentration trajectories using DMA and identified 11 time intervals 
with distinct timescales and concentration pools (seven of which are highlighted in 
Fig. 4B and C). In the following, we highlight a few coherent structures associated with 
these timescales that were characterized previously. A complete list of the dominant 
eigenvalues and their respective pooling matrices for all time intervals is provided in 
Data S2.
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FIG 3 DMA of Toy Model 2 described in Fig. S3. (A) Visualization of the steady-state solution in a network map. Red arrows indicate metabolites with perturbed 

concentrations. (B) Dynamic response to concentration perturbations. Deviations from the steady-state x − xss and dimensionality ν are plotted along the 

dynamic trajectory. Dashed lines indicate a transition between two time periods with distinct exponential decay modes, partitioning the overall relaxation time 

into eight characteristic time intervals. (C) Optimal amplitudes, dominant eigenvalues, and pooling matrix for each time interval identified in panel B. Black 

arrows in pool structures indicate parts of the network that are affected the most by the initial perturbation in the corresponding time interval. Gradient and 

uniformly colored envelopes enclose metabolites, the concentration trajectories of which are negatively and positively correlated in the corresponding time 

interval, respectively.
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The first coherent structure in this case study arises from the relaxation of phos
phoglycerate mutase (PGM) on the ~0.1–100 s timescale, where the concentrations of 
3-phosphoglycerate (3pg) and 2-phosphoglycerate (2pg) become positively correlated. 
Next, the flux and concentration disturbances of phosphoglucoisomerase and PGM 
fully relax on the ~1- to 30-min timescale. Here, the concentrations of glucose 6-phos
phate and fructose 6-phosphate become positively correlated, forming the well-known 
hexose phosphate coherent structure (22). On this timescale, the concentration of 
1,3-bisphosphoglycerate also becomes correlated with those of 3pg and 2pg, lead
ing to a larger phosphoglycerate coherent structure. On the ~10-hr timescale, the 
dynamics of glyceraldehyde phosphate dehydrogenase relax, resulting in glyceraldehyde 
3-phosphate merging with the phosphoglycerate coherent structure. All these coherent 
structures and their respective timescales are consistent with previous studies of the 
glycolytic dynamics using bottom-up approaches (22).

In general, coherent structures associated with slow timescales are more physiolog
ically relevant than those forming on fast timescales (27). Thus, we studied the two 
slowest pools of the glycolytic pathway forming in the last two of the 11 time inter
vals that DMA identified (Fig. 4B, intervals 6 and 7), examining their respective time 
evolutions π1(t) and π2(t) (Fig. 5). Here, π1 and π2 are the pools associated the second 

slowest and slowest timescales, where πi(t) := piTx(t) denotes the representation of 
pool i with respect to concentrations rather than concentration deviations. We found 
that a balance between high-energy phosphate bond and redox trafficking shapes the 
interconnected dynamics of upper and lower glycolysis (Fig. 5), highlighting the coupling 
role of the cofactors.

Finally, we note that the magnitude of the coefficients of the cofactors (AMP, ADP, 
ATP, and inorganic phosphate) in the pooling matrix is the largest across all timescales, 
implying that the glycolytic dynamics are mostly determined by the energetics of 
cofactor interconversions. Importantly, ATP and inorganic phosphate are the high-energy 
cofactors that control the dynamics on the circulation (t ≲ 1 min) and circadian (t ≳ 10
hr) timescales, respectively.

DISCUSSION

Living systems grow and evolve in constantly changing environments, adapting to 
external fluctuations through interconnected networks of chemical transformations. 
Understanding how these dynamics emerge from the underlying molecular processes 
is a major challenge of systems biology. While whole-cell kinetic models offer a thorough 
description of the intricate interactions within biological networks, their sheer scale 
often obscures the fundamental patterns that govern the system-level behavior. Using 
timescale decomposition techniques, we can overcome this limitation by simplifying the 
complex kinetics into a coarse-grained model with biologically interpretable compo
nents. This approach allows us to glean meaningful insights from the model and identify 
critical components that drive the dynamics at the system level.

In this paper, we introduced DMA—a data-driven approach for timescale decompo
sition of chemical reaction networks. This approach characterizes concentration pools 
and coherent structures emerging from network dynamics using time-series data. 
A key component of our computational framework is an extended version of opti
mal DMD (ODMD) (18–20), which we developed to identify characteristic timescales 

FIG 4 (Continued)

pentose ring accessible for the production of high-energy cofactors in downstream reactions. (B) Dynamic response to flux perturbations. Deviations from the 

steady-state x − xss and dimensionality ν are plotted along the dynamic trajectory. Dashed and dotted lines indicate a transition between two time periods 

with distinct exponential decay modes, partitioning the overall relaxation time into seven characteristic time intervals. Dimensionality changes across dashed 

lines but remains the same across dotted lines. (C) Dominant eigenvalues and pooling matrix for each time interval identified in panel B. Gradient and uniformly 

colored envelopes in pool structures enclose metabolites, the concentration trajectories of which are negatively and positively correlated in the corresponding 

time interval, respectively.
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of reaction networks. We showed that the dominant eigenvalues and eigenmodes 
furnished by DMA in any time interval along with dynamic trajectories are determined 
by two important statistical descriptors, namely, the time-delayed autocorrelation and 
covariance. Interestingly, the former was a basis of previous top-down approaches 
for identification of coherent structures in reaction networks (7). Given that timescale 
hierarchies often underlie the formation of dynamical patterns that lead to dimensional
ity reduction, our analysis provides a theoretical basis for why time-delayed autocorrela
tion is an effective metric for statistical analyses of coherent structures.

DMA is a trajectory-based technique that utilizes standard matrix decomposition, 
eliminating the need to numerically solve nonlinear optimization problems. Thus, it is 
robust and applicable to large-scale kinetic models. It identifies coherent structures such 
that they align with a specific exponential decay modes and reflect correlations among 
concentration trajectories, linking them to the dissipative structure of the reaction 
system. Therefore, unlike other trajectory-based techniques, how energy is dissipated 
throughout reaction networks is inferable from the dynamics of coherent structures. 
Nevertheless, the results can still be affected by noise, especially in transitory regimes 
where DMA cannot fully decompose the dominant decay modes if timescales are not 
sufficiently separated. To alleviate the effect of noise, various preprocessing techniques 
can be applied to the data matrices, such as sparsity-promoting low-rank decomposition, 
low-rank projection (solving a generalized form of equation 32), and debiased DMD (13).

We validated the results of DMA for a hypothetical pathway with analytically 
characterized concentration pools. We also reproduced some of the concentration pools 
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FIG 5 Dynamic trajectories of the slowest pools of glycolysis. The characteristic time intervals are identical to those in Fig. 4B. Note that pools π1 and π2 are 

defined with respect to concentrations x rather than concentration deviations χ. Both pools are dominant in interval 6, and π2 is the dominant pool in interval 7. 

The coherent structures of π1 form near the end of interval 6, while those of π2 form in interval 7. The dynamics of these pools are driven by a balance between 

high-energy phosphate bond and redox trafficking. The circle size for each metabolite or aggregate metabolite on the right panel is proportional to its coefficient 

in the respective pooling map.
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and coherent structures of the glycolytic pathway that were determined previously using 
bottom-up approaches (22), further confirming the validity of our approach.

Overall, the outcomes of timescale decomposition are more amenable to biological 
interpretation than the solutions of mass-balance equations. For example, our analy
sis of the glycolytic pathway in human red blood cells indicated two physiologically 
relevant characteristics: (i) glycolysis is mostly a cofactor-driven pathway, the dynam
ics of which are controlled by ATP and inorganic phosphate on the circulation and 
circadian timescales, respectively, and (ii) the slowest dynamics are dominated by a 
balance between high-energy phosphate bond and redox trafficking. By chronologically 
organizing major events along with time evolutions, timescale decomposition could 
provide physiological insights into the dynamics of more complex biological pathways.

More broadly, analyzing the dynamics of whole-cell networks, such as that of human 
red blood cells, using the techniques developed here can elucidate important cellular 
functions associated with coherent structures forming on separate timescales, allowing 
us to uncover the underlying mechanisms governing various physiological processes. At 
the fastest timescales, coherent structures reflect rapid chemical reactions that enable 
essential functions such as oxygen transport and gas exchange, while those forming 
on intermediate timescales reveal the coordination of major subsystems involved in 
energy and redox balance, such as glycolysis and the pentose phosphate pathway. At the 
slowest timescales, coherent structures can explain regulatory processes that maintain 
homeostasis and facilitate cellular adaptation. Therefore, understanding these hierarchi
cal timescales in human red blood cells not only enhances our fundamental knowledge 
of cellular biology but also has implications for diseases such as anemia, malaria, and 
sickle cell disease, where disruptions in these timescales play a critical role.

Quantitative models have been a chief driver of progress in biology in recent years 
(28–30). Kinetic-based (1, 2, 31, 32) and constraint-based (33–38) approaches have been, 
and will likely continue to be, instrumental in these developments. Both approaches 
provide a mechanistic description of cellular functions, but each has its own limitations. 
Kinetic models are generally complex and require numerous parameters that are subject 
to large uncertainties, while constraint-based models are not suitable for predicting 
inherently dynamic phenotypes. The timescale decomposition technique presented in 
this study can bridge the gap between kinetic- and constraint-based modeling by 
furnishing a systematic framework for construction of coarse-grained kinetic models (39–
41) based on intrinsic timescales of biochemical reaction networks. Such reduced-order 
models are more tractable than whole-cell models and can capture essential characteris
tics of biological systems at physiologically relevant timescales.

Personalized medicine is another area where our timescale decomposition technique 
can play a major role. For example, when individual variations of pathological features or 
risk for drug side effects manifest in cellular dynamics, studying the timescale hierarchies 
can help identify the underlying metabolic causes (26). Using kinetic constants as a 
proxy for individual genotypes in these cases, analyzing the patterns in timescales and 
coherent structures allows us to understand and classify disease phenotypes through the 
lens of timescale hierarchies.

MATERIALS AND METHODS

Concentration pools and coherent structures

We first introduce the concept of pools and coherent structures for a case study, 
providing a biological motivation for their definitions. We define these concepts formally 
in the general case in the next section.

Consider a reaction network involving a single linear pathway with four metabolites 
and five reactions. We refer to this reaction network as Toy Model 1 (Fig. S1A). The 
pathway imports metabolite 1 from and exports metabolite 4 into the extracellular 

environment. Here, x1∗ and x4∗ denote the extracellular concentration of metabolites 1 
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and 4, respectively. The rate constants of consecutive reactions in this pathway are 
separated by two orders of magnitude (Fig. S1C), so its dynamics are expected to 
unfold over separate timescales. Dynamic responses to perturbations of steady states 
are ascertained from transient mass-balance equations:

(1)dx
dt = Sv, x = x0 at t = 0,

with x the concentration vector, x0 initial concentration perturbations, S stoichiomet
ric matrix, flux vector, and t time. Upon perturbations, the dynamics of this system 
relax over four time intervals associated with three separate timescales T1 − 3 (Fig. S1B, 
dashed lines). Because of the disparity of rate constants, reactions 1–4 reach their 
steady states consecutively on their respective timescales. As the dynamics of a given 
reaction relax, the concentrations of its substrates and products become correlated 
in the intervals between consecutive timescales. Consequently, trajectories move in a 
low-dimensional space, suggesting that the dynamics can be adequately described with 
respect to metabolite pools with correlated concentrations. This is a general behavior 
that most biochemical reaction networks exhibit, and it is the basis of the definition of 
concentration pools and coherent structures in this section.

To formalize the concept of concentration pools, it is more convenient to express 
concentrations and fluxes relative to their steady-state values. Concentration and 

flux deviations are defined as χ := x − xss and ϑ := v − vss, respectively. Accordingly, 
mass-balance equations can be expressed with respect to these deviation variables:

(2)dχ
dt = Sϑ, χ = χ0 at t = 0.

Assuming mass-action kinetics, reaction rates are expressed with respect to deviation 
variables as follows:

(3a)ϑ1 = − k1−χ1, (3b)ϑ2 = k2+χ1 − k2−χ2, (3c)ϑ3 = k3+χ2 − k3−χ3, (3d)ϑ4 = k4+χ3 − k4−χ4, (3e)ϑ5 = k5+χ4 .
The first pool of Toy Model 1 is associated with the first timescale T1 ∼ O(1/k2+)

with O the order-of-magnitude operator. On this timescale, all flux deviations but ϑ2 are 
negligible. Therefore, ϑ2 ≫ ϑ1, ϑ3, ϑ4, ϑ5, and the mass-balance equations describing the 
dynamics are as follows:

(4a)dχ1
dt = − ϑ2,

(4b)dχ2
dt = ϑ2 .

Eliminating χ1 and χ2, equations 4a and b can be expressed with respect to ϑ2 as 
follows:

dϑ2
dt = − (k2+ + k2−)ϑ2 ⇒ ϑ2(t) = ϑ20exp(μ1t),

where μ1 := − k2+ − k2−, and ϑ20 is the initial condition for the flux deviation of reaction 
2. From this analysis, we derive a more accurate approximation of the first timescale as 
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T1 ∼ − 1/μ1. Substituting the solution of ϑ2 back in equations 4a and 4b, we obtain the 
trajectory of concentration deviations:

(5)
χ1χ2χ3χ4

= ϑ20/μ1
−1
1
0
0ϕ1

exp(μ1t) +
c1c2
0
0

,

where ϕ1 is the eigenmode associated with the first pool in the primal space (see Fig. 
1F) with c1 and c2 the integration constants of equations 4a and 4b. We observe from 
equations 4a and 4b that χ1(t) and χ2(t) are negatively correlated on this timescale. Once 
the dynamics of reaction 2 have relaxed, its flux deviation equilibrates so that

(6)ϑ2 → 0 as t → T2 ⇒ χ2 → K2
eqχ1 and dχ2

dt → K2
eqdχ1
dt ,

with K2
eq := k2+/k2− the equilibrium constant of reaction 2 and T2 the second timescale. 

Note that equilibration here refers to the relaxation of flux disturbances as ϑ2 → 0, which 
is not the same as the equilibration of reaction 2 when v2 → 0.

If the relaxation time of reaction 2 is faster than the second timescale of this system, 

then there is an intermediate timescale Ť1 ∈ [T1, T2] that characterizes the transition 
between the first and second timescales during which reaction 2 equilibrates (see 
Fig. S1B). In this transition period, the flux deviations of reactions 2 and 3 are of the 
same order, so that ϑ2 ∼ ϑ3 ≫ ϑ1, ϑ4, ϑ5. To quantify this transitory period, suppose that ϑ2 = θϑ3 with θ a coefficient that characterizes the transition between the two timescales 
when θ ∼ O(1). Accordingly, the mass-balance equations simplify to

(7a)dχ1
dt = − θϑ3,

(7b)dχ2
dt = (θ − 1)ϑ3,

(7c)dχ3
dt = ϑ3 .

From the asymptotic relation between dχ2/dt and dχ1/dt stated in equation 6, we 

find that equations 7a–7c with θ = θa := 1/(1 + K2
eq) approximate the dynamics in this 

transitory regime when the second timescale of the system is approached. Note that, in 
the transitory interval, the coefficient θ in these equations varies from a large value θ ≫ 1
near the first timescale to its asymptotic value θa near the second timescale. However, we 
treat it as a constant to approximate local solutions of equations 7a–7c in the transitory 
regime. We can eliminate χ2 and χ3 in equations 7b and 7c in the same way as in 
equations 4a and 4b to express the mass-balance equations with respect to ϑ3:

dϑ3
dt = (θ − 1)k3+ − k3− ϑ3 ⇒ ϑ3(t) = ϑ30exp(μ̌1t),

where μ̌1 := (θ − 1)k3+ − k3− and ϑ30 is the initial condition for the flux deviation of 

reaction 3. The timescale associated with this regime is estimated as Ť1 ∼ − 1/μ̌1, and 
the trajectory of concentration deviations is ascertained by integrating equations 7a–7c 
using the solution of ϑ3:
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(8)
χ1χ2χ3χ4

= ϑ30/μ̌1
−θθ − 1
1
0ϕ̌1

exp(μ̌1t) +
c1c2c3
0

,

where c1 − 3 are integration constants. Note that K2
eq = 1 (Fig. S1C) and θa = 1/2 in 

Toy Model 1, implying that χ1(t) and χ2(t) are positively correlated, and, together, they 
are negatively correlated with χ3(t) on this timescale. Finally, we highlight an impor
tant feature of dominant decay modes during the transition between two consecutive 

timescales in relation to the role of kinetic parameters. Consider the timescales T1 and Ť1

of Toy Model 1, for example. Here, the coefficients of χ1 and χ2 in the decay mode ϕ1 only 

depend on their stoichiometric coefficients in reaction 2. However, in the decay mode ϕ̌1, 
they depend on both the stoichiometric coefficients and rate constants k2+ and k2−.

Having qualitatively described how dynamic trajectories become correlated on the 
first timescale, we provide a quantitative representation of the first pool. In this work, 
we define a pool associated with a given timescale as a linear combination of concen
trations, the time-dependent representation of which aligns with the corresponding 
exponential decay. If multiple dominant timescales coexist in a time interval, we require 
the corresponding pools to be dynamically independent. For example, in the transitory 
period outlined above where both exponential decay modes in equations 5 and 8 are 
dominant, the first pool p1 and its transitory counterpart p̌1 are defined as follows:

(9a)p1(t) := p1Tχ(t) = (K2
eq + 1)ϑ20/μ1exp(μ1t) + ℛ1(t), (9b)p̌1(t) := p̌1Tχ(t) = 3ϑ30/μ̌1exp(μ̌1t) + ℛ̌1(t),

where

(10a)p1 := −K2
eq, 1, 0, 0 T, (10b)p̌1 := −1, − 1, 2, 0 T

are normalized vector representations of the pools. On occasion, we also refer to 

these vector representations as pooling maps. Here, ℛ1(t) and ℛ̌1(t) are the residual 
terms approaching a steady-state value at a faster rate than the exponential decay term 
for each pool. Moreover, the timescale associated with each pool is defined as a time 
point beyond which the pool is sufficiently close to its steady-state value (Fig. S2A). For 
example, the timescales of the foregoing two pools are defined as follows:

(11a)T1 := T such that |p1(t) − p1(t → ∞)| < εpC1 ∀t ≥ T, (11b)Ť1 := T such that | p̌1(t) − p̌1(t → ∞)| < εpČ1 ∀t ≥ T .
Here, εp is a tolerance threshold controlling the closeness of pools to their steady-

state values with C1 and Č1 appropriate concentration scales. For example, for p1 and p̌1, C1 = ϑ20/μ1 and Č1 = ϑ30/μ̌1 are reasonable concentration scales.
As noted in previous works, a proper definition of pools should ensure that each 

pool is dynamically independent of other pools in a system when they form on the 
same timescale (22, 27). In top down approaches, such as principal component analysis 
or independent component analysis, orthogonality and independence are equivalent 
concepts (42). However, as discussed at the beginning of this section, a biological 
motivation for introducing the concept of concentration pools is identifying aggre
gate variables that naturally arise in systems with low-dimensional dynamics—a key 
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characteristic of reaction networks with timescale hierarchies. Accordingly, alignment 
with exponential decay modes associated with separate timescales is considered a more 
appropriate notion of independence (18, 22). Since eigenmodes are not necessarily 
orthogonal for a general reaction network, dynamical independence does not imply 
the orthogonality of pools in the concentration space. In this work, we adopt the same 
notion of independence. However, in addition to alignment with exponential decay 
modes, we also require a reciprocal orthogonality between the vector representation 
of the pools and eigenmodes. Here, we present this reciprocal relationship for p1 and p̌1 in the transitory regime between the first two timescales of Toy Model 1, deferring 
the formulation for the general case to the next section. The reciprocal orthogonality 
conditions for the first pool and its transitory counterpart are as follows:

(12a)p1Tϕ̌1 = 0, (12b)p̌1Tϕ1 = 0.
These conditions are motivated by their important geometric and physical interpreta

tions, and they are linked to the concept of flux-concentration duality (43) in chemical 
reaction networks (see “Reciprocal orthogonality conditions for Toy Model 1” and Fig. 
1F).

The transitory regime between two consecutive timescales generally have two 
stages. In the first, the concentrations evolve in a direction corresponding to a maximal 
energy dissipation of the reaction, where the substrate and product concentrations are 
negatively correlated. In the second, the concentrations evolve in a direction associ
ated with the equilibration of the flux disturbance, where the substrate and product 
concentrations are positively correlated. We refer to the first as the “disequilibrium” and 
the second as the “conservation” stages of relaxation for each reaction.

Coherent structure is another concept that we examine in this paper. Its definition, 
which is derived from, but is more restrictive than that of concentration pools, centers 
around correlations among concentration trajectories. As we noted for Toy Model 1, 
the dominant eigenmodes on a given timescale span a reduced concentration space in 
which the dynamics unfold. Accordingly, metabolite coefficients in the pooling maps, 
which are in turn ascertained from the respective eigenmodes, determine metabolites 
the concentrations of which are affected on that timescale. The concentration trajecto
ries of these metabolites remain correlated until the next timescale of the system has 
been reached. For a linear system, such as Toy Model 1, the eigenmodes and their 
respective pooling maps do not vary with time. Therefore, the correlation coefficients 
among metabolites that are present in a pool remain constant. However, in a general 
nonlinear system, the Jacobian matrix and its eigenmodes can vary along dynamic 
trajectories. Consequently, correlation coefficients also become time-dependent, but 
they can plateau in small intervals between the timescales of the system.

For a general nonlinear reaction system, we define a coherent structure as a subset 
of metabolites in a concentration pool, the correlation coefficients of which vary within a 
prescribed tolerance threshold in time intervals between the timescales of the system. To 
make this definition more precise, suppose that metabolites i and j in a reaction system 
are part of a pool that becomes active in the interval T1, T2 , where T1 and T2 are two 
consecutive timescales. Then, for these metabolites to form a coherent structure, their 
concentration trajectories must satisfy

(13)|ρ(xi, xj) − 1 | < ερ,
where ερ is a tolerance threshold controlling variations of correlation coefficients, and 

the correlation function ρ is given by
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(14a)ρ(xi, xj) := E(xixj) − E(xi)E(xj)σ(xi)σ(xj) ,
(14b)E(f) := 1t2 − t1 t1

t2f(t)dt,
(14c)σ(f) := E(f2) − E(f)2 .

Here, E(f) and σ(f) are the expectation and standard deviation of a time-dependent 

function f(t). Moreover, the correlation function is evaluated in the interval t1, t2  in 

which the coherent structure forms, where T1 ≤ t1 < t2 ≤ T2. Note that superscripts of t in equations 14a–14c are indices referring to time-interval bounds and should not 
be confused with exponents. For coherent structures with more than two metabolites, 
equation 13 must be satisfied for all pairwise correlations among the metabolites. 
For linear systems, such as Toy Model 1, concentration pools always form a coherent 
structure because the pooling maps and correlation coefficients are constant along 
dynamic trajectories. Also note that coherent structures can generally span several 
timescales.

Having discussed the concepts of concentration pools and coherent structures 
for the first timescale of Toy Model 1, we follow the same procedure to character
ize concentration pools and coherent structures that form at slower timescales. The 
second pool arises when the dynamics of reaction 3 begin to relax. It is associated 

with the timescale T2 ∼ − 1/μ2 with μ2 := (θa − 1)k3+ − k3−. On this timescale, we have ϑ2 ≃ θaϑ3 ≫ ϑ1, ϑ4, ϑ5, leading to the following expression for the second pool:

(15)p2′(t) := p2′Tχ(t) = K2
eqK3

eq + K2
eq + 1

1 + K2
eq

ϑ30μ2exp(μ2t) + ℛ2′(t),
(16)p2′ := 0, − K3

eq, 1, 0 T .
Here, ℛ2′(t) denotes a residual term that approaches a steady-state value at a faster 

rate than the exponential decay term, so its leading-order term is exp(μ1t). Another 
expression for the second pool can be derived by combining p2′ with pools that form 
on faster timescales than −1/μ2. For example, once the dynamics of reaction 2 have 

relaxed in the transitory interval Ť1, T2 , χ1(t) and χ2(t) become correlated through the 

relationship:

(17)χ2(t) = K2
eqχ1(t) + r1(t),

where r1(t) is a residual, the leading-order term of which is exp(μ1t). Substituting 
equation 17 in equation 15 results in the following:

(18)p2″(t) := p2″Tχ(t) = K2
eqK3

eq + K2
eq + 1

1 + K2
eq

ϑ30μ2exp(μ2t) + ℛ2″(t),
(19)p2″ := −K2

eqK3
eq, 0, 1, 0 T .

A sum-total pool can also be constructed by adding the first two expressions in 
equations 15 and 18, resulting in

(20)p2(t) := p2Tχ(t) = p2′(t) + p2″(t) = 2 K2
eqK3

eq + K2
eq + 1

1 + K2
eq

ϑ30μ2exp(μ2t) + ℛ2(t),
(21)p2 := p2′ + p2″ = −K2

eqK3
eq, − K3

eq, 2, 0 T,
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with ℛ2(t) the sum-total residual term. Note that the leading-order terms of ℛ2′(t), 
ℛ2′′(t), and ℛ2(t) are exp(μ1t). Thus, p2′, p2′′, and p2 can be regarded as three representa
tions of the second pool since they all align with exp(μ2t), exhibiting a similar asymptotic 
behavior for t ≳ T2 (Fig. S2B). Note that the pooling maps for all three representations are 

orthogonal to the second transitory mode that becomes active in the interval Ť2, T3 , so 

they satisfy the reciprocal orthogonality condition:

(22)p2′Tϕ̌2 = p2″Tϕ̌2 = p2Tϕ̌2 = 0,
which is similar to the reciprocal orthogonality condition in equation 12a for the first 

timescale.
The third timescale T3 is associated with the relaxation of reaction 4. The procedure 

for characterizing its concentration pool is similar to that outlined for the second 
timescale (see “Derivation of the third and fourth approximate eigenmodes of Toy Model 
1”). We only highlight the representations of the third pooling map:

(23a)p3′ := 0, 0, − K4
eq, 1 T, (23b)p3″ := 0, − K3

eqK4
eq, 0, 1 T, (23c)p3‴ := −K2

eqK3
eqK4

eq, 0, 0, 1 T, (23d)p3 := p3′ + p3″ + p3‴ = −K2
eqK3

eqK4
eq, − K3

eqK4
eq, − K4

eq, 3 T .
The corresponding pools p3′, p3′′, p3′′′, and p3 exhibit a similar asymptotic behavior for t ≳ T3 (Fig. S2C). As with the second timescale, p3 denotes the sum-total representation 

of the third pooling map.
The dynamics of reaction 4 relax fully once the initial perturbations have propaga

ted throughout the network and reached the boundary reactions. Upon relaxation, all 
flux and concentration disturbances equilibrate toward a steady state on a transitory 

timescale Ť3. On this timescale, which we regard as the fourth timescale of Toy Model 

1 (i.e., T4 := Ť3), all the concentration deviations align with the slowest eigenmode, 
forming a concentration pool containing all the intracellular metabolites. Since this pool 
corresponds to the only dominant eigenmode for t ≳ T4, there are no slower eigenmo
des to evolve into; hence, it needs not satisfy any reciprocal orthogonality conditions. 
Accordingly, the concentration pool associated with the largest timescale is defined as a 
normalized form of the slowest eigenmode. This condition automatically arises from the 
general definition of the pooling matrix—a matrix containing all the dominant pooling 
maps on a given timescale—which will be formalized for a general nonlinear reaction 
system in the next section.

The fourth pool has the following representations (see “Derivation of the third and 
fourth approximate eigenmodes of Toy Model 1”):

(24a)p4′ := 1, 0, 0, 0 T, (24b)p4″ := 0, K2
eq, 0, 0 T, (24c)p4‴ := 0, 0, K2
eqK3

eq, 0 T, (24d)p4⁗ := 0, 0, 0, K2
eqK3

eqK4
eq T, (24e)p4 := p4′ + p4″ + p4‴ + p4‴ = 1, K2

eq, K2
eqK3

eq, K2
eqK3

eqK4
eq T .

The asymptotic profiles of the respective pools p4′, p4′′, p4′′′, p4′′′′, and p4 are similar for t ≳ T4 (Fig. S2D). As before, p4 denotes a sum-total representation.
Lastly, we emphasize that the purpose of the analysis presented here and subsequent 

sections (see “Derivation of the third and fourth approximate eigenmodes of Toy Model 
1”) is to elucidate the connections between concentration pools, timescales, and the 
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equilibration of flux disturbances using approximate methods. This approach is justified 
since a fundamental characteristic of biochemical reaction networks underlying the 
separation of timescales is the presence of vastly disparate rate constants. The solutions 
provided here and in subsequent sections (see “Derivation of the third and fourth 
approximate eigenmodes of Toy Model 1”) are not exact, so the eigenvalues μi estima
ted here should be regarded as approximations of the exact eigenvalues λi. Since Toy 
Model 1 is a linear system, its eigenvalues remain constant along dynamic trajectories. 
Consequently, in any time interval, the exact solution of mass-balance equations can be 
expressed as a linear combination of exponential decay modes with varying amplitudes 
without needing transitory eigenvalues. However, the reason why we encountered the 
transitory eigenvalues μ̌i here lies in our approximation method describing the kinetics 
on a given timescale by the flux of a single reaction, the rate constant of which gives rise 
to that timescale.

Dynamic mode analysis

DMA is a data-driven approach to identify timescale hierarchies of a chemical reaction 
network and characterize its dynamic responses to flux or concentration perturbations 
(Fig. 1). Specifically, this approach aims to compute concentration pools and coher
ent structures that emerge as a reaction network evolves in time from time-series 
data. Although data can be generated from experimental measurements or numerical 
simulations, we only focus on numerical solutions of kinetic models of biochemical 
reaction networks in this paper. We assume that the concentration trajectories of all 
the metabolites in the network of interest are given. The goal is then to identify the 
dominant eigenvalues, dominant eigenmodes, and the respective concentration pools 
algorithmically in any time interval along dynamic trajectories of the network.

The algorithm begins by solving the mass-balance equations (equation 1) for a 
reaction network with n metabolites and m reactions, the steady-state concentrations or 
fluxes of which is perturbed (Fig. 1A). The resulting concentration trajectory x(t) is then 
computed numerically (Fig. 1B). The goal in subsequent steps of DMA is to identify the 
dominant eigenvalues and eigenmodes in a sliding time window spanning the interval [t1, t2] as it moves from t = 0 to t = T∞, where t = T∞ is the total relaxation time—a 
time by which all flux and concentration disturbances have relaxed to within a tolera
ble threshold. To analyze the dynamics in the sliding time window, the mass-balance 

equations are linearized locally around a reference time t⋄ ∈ [t1, t2]:

(25)dh
dt = Jh + a, h = h0 at t = 0,

where

f := Sv, J := ∂f∂x x⋄ = SG, G := ∂v∂x x⋄, a := f(x⋄) .
Here, J is the local Jacobian matrix, x⋄ := x(t⋄) the concentration vector at the 

reference time, and h := x − x⋄ the local concentration deviations. Note that, for a 
general nonlinear reaction network, equation 25 is an inhomogeneous system of 
equations, the solutions of which cannot be expressed with respect to purely exponen
tial decay terms (Fig. 1C). Thus, we recast it into the homogenous system:

(26)dh
dt = Jh, h = h0 at t = 0,
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by introducing a new variable h := h + w, we term the local transformed concentra

tion deviation, where w := J−1a captures the inhomogeneity of equation 25. The general 
solution of equation 26 is written (44) as follows:

(27)h(t) = Exp Jt h0,
where Exp is the exponential map. Since we are only concerned with small perturba

tions of noncritical stable steady states, we assume that ℜe(λ) §lt; 0 along all dynamic 
trajectories. Therefore, J is always nonsingular, so w is a well-defined quantity. Here, 
ℜe( ⋅ ) returns the real part of a complex argument, and λ is the eigenvalue vector of 
the Jacobian. The linearization of mass-balance equations introduced here allows the 
application of top-down timescale decomposition techniques (e.g., DMD) to identify 
timescale hierarchies from time-series data.

In the next step, time-series data are generated from the numerical solution of local 
concentration deviations in the current time window by evaluating h(t) at N + 1 equally 

spaced time points in [t1, t2] (Fig. 1D), compiling their values in two data matrices:

(28a)H0 := |h1|
|h2| ⋯|hN| ∈ ℝn × N,

(28b)H1 := |h2|
|h3| ⋯|hN + 1| ∈ ℝn × N,

where hk := h(tk) is the vector of local concentration deviations evaluated at the kth time point in [t1, t2] with Δt := (t2 − t1)/(N − 1) the gap between consecutive time 

points. The corresponding transformed data matrices H0 and H1 are similarly defined in 

terms of hk. From equation 27, we find the relationship between transformed concentra
tion deviations at two consecutive time points:

(29)hk + 1 = Ahk + ϵk, k = 1 ⋅ ⋅ N, A := Exp JΔt .
Here, ϵk is an error vector associated with the linearization of mass-balance equations. 

It also accounts for the errors arising from numerical simulation (e.g., truncation errors) 
or experimental measurements, depending on how data are generated. Since A is a 
constant matrix, we can write equation 29 in a matrix form:

(30)H1 = AH0 + E,
where E is a matrix of the same size as H0 and H1, containing all the error vectors ϵk.
If mass-balance equations are known, or there are approximation methods to 

estimate w from time-series data, then the dominant eigenvalues and eigenmodes 
of the reaction network in the current time window can be directly determined from H0 and H1 using top-down approaches, such as DMD (18) or ODMD (19, 20). In the 
following, we briefly outline the procedure for ODMD.

To determine the dynamic dimensionality of the system, the singular-value decompo

sition of H0 is computed:

H0 = UΣVT, U ∈ ℝn × ν, Σ ∈ ℝν × ν, V ∈ ℝN × ν,
where ν is the number of singular values that are nonzero to within a tolerable 

threshold εSVD. The columns of U are the proper orthogonal modes (20) of H0, and they 
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span a reduced ν-dimensional subspace of the locally transformed concentration-devia
tion space where the dynamic trajectories lie in the current time window. We refer to 
this subspace as the space of transformed proper orthogonal modes. The projection of A
onto this reduced space is

(31)F = UTAU .
The projected matrix F ∈ ℝν × ν in this equation can be proven to be an upper 

Hessenberg matrix (45). Because F and A are related through a similarity transformation, F contains the dominant eigenvalues of A in the current time window. Errors in equation 
30 are then minimized by solving the optimization problem:

(32)F := arg minF ‖E‖F2 = arg minF ‖H1 − AH0‖F2

to identify a matrix F that best describes the data in H0 and H1, where ‖ ⋅ ‖F denotes 
the Frobenius norm. Substituting A from equation 31 in equation 32, the solution of the 
foregoing optimization problem is ascertained (20) as follows:

(33)F = UTH1VΣ†,
where the superscript † denotes the Moore-Penrose generalized inverse (21). The 

eigenmodes of F are the projections of the dominant eigenmodes of A in the space of 
transformed proper orthogonal modes, and its eigenvalues are the dominant eigenval
ues of A.

In this paper, both F and w are treated as unknowns, so H0 and H1 are not provided 
at the outset. Therefore, in the following, we introduce an extension of ODMD (see Fig. 
S4) to determine the dominant eigenvalues and eigenmodes of the inhomogeneous 
system (equation 25) directly from the time-series data in H0 and H1. We start by 
rewriting equations 29 and 30 in terms of local concentration deviations:

(34)hk + 1 = Ahk + ω + ϵk, k = 1 ⋅ ⋅ N, ω := Aw − w, (35)H1 = AH0 + W + E, W := ω1T,
where 1 is an all-one column vector with N  components. As previously stated, 

because of the inhomogeneous term ω in equation 34 or W in equation 35, DMD 
or ODMD is not directly applicable, although we can show that ω → 0 in the limit 
Δt → 0 (see “Inhomogeneity of evolution equations for local concentration deviations 
and temporal grid size”). Thus, the inhomogeneity can theoretically be eliminated from 
equation 34 by generating an arbitrarily fine temporal grid in the sliding time window. 
However, it is impractical to do so because of the computational costs and additional 
errors it introduces in subsequent steps of the algorithm. Following the same procedure 
as DMD, the singular-value decomposition of H0 is computed:

H0 = UΣVT, U ∈ ℝn × ν, Σ ∈ ℝν × ν, V ∈ ℝN × ν .
As in the previous case, ν reflects the dynamic dimensionality of the system in the 

current time window, and the columns of U are the proper orthogonal modes of H0, 
spanning the local concentration-deviation space. We refer to this subspace as the space 
of proper orthogonal modes. As before, A is expressed with respect to the proper 
orthogonal modes through the similarity transformation:

(36)F = UTAU .

Research Article mSystems

February 2024  Volume 9  Issue 2 10.1128/msystems.01001-2320

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

7 
A

pr
il 

20
24

 b
y 

19
2.

38
.9

0.
17

.

https://doi.org/10.1128/msystems.01001-23


The goal now is to find F and ω such that the errors in equation 35 are minimized. The 
corresponding optimization problem is written as follows:

(37)(F, ω) := arg min(F, ω) ‖E‖F2 = arg min(F, ω) ‖H1 − AH0 − W‖F2 .
This is an unconstrained quadratic program, so its solution can be determined 

analytically (see “Relationship between time-delayed autocorrelation, covariance, and 
local Jacobian spectra” for the proof ):

(38a)F = X̄10X̄0
−1, (38b)ω = h1

av − Ah0
av,

where

(39a)X̄10 := 1N H̄1H̄0
T − h̄1

av h̄0
av T,

(39b)X̄0 := 1N H̄0H̄0
T − h̄0

av h̄0
av T,

and

(40)h0
av := 1N H01, h1

av := 1N H11 .
Note that the barred vectors and matrices denote the representation of their 

unbarred counterparts in the space of proper orthogonal modes. Accordingly,

(41)h̄0
av := UTh0

av, h̄1
av := UTh1

av, H̄0 := UTH0, H̄1 := UTH1 .
Here, h0

av and h1
av are the average of concentration-deviation data in H0 and H1, 

respectively. Moreover, X̄10 and X̄0 are the time-delayed autocorrelation and covariance 
matrices of the time-series data represented with respect to the proper orthogonal 
modes. Note that equation 38a may be regarded as a generalization of the DMD solution 
(equation 33) it approaches to as ω → 0, which in turn occurs when the steady state 
has been attained. We also emphasize that metrics based on time-delayed autocorrela
tion were used in previous top-down approaches along with clustering algorithms to 
identify concentration pools irrespective of the underlying biochemical mechanisms (7, 
8). However, as we highlighted in the previous section, what underlies the formation 
of concentration pools and coherent structures in biochemical reaction networks is 

the presence of timescale hierarchies. Furthermore, the optimal solution F in equation 
38a implies that the time-delayed autocorrelation matrix contains information about 
the local Jacobian spectra. Although the expressions used in previous studies are not 
identical to equation 38a, our analysis demonstrate why time-delayed autocorrelation is 
a useful metric for statistical classifications of concentration pools.

Once F has been computed from equation 38a, the dominant eigenvalues and 

eigenmodes can readily be determined (Fig. 1E). Let Θ̄ΞΘ̄−1 be the eigenvalue decom

position of F with Ξ a diagonal matrix, where the diagonal entries Ξii := μi are the 

eigenvalues of F (not to be confused with the approximate eigenvalues of Toy Model 1 
in the previous section). Then, the columns of Θ := UΘ̄ = θ1 ⋯ θν  correspond to the 
dominant eigenmodes of A in the current time window. Because A and F are related 
through a similarity transformation, μi is also the dominant eigenvalues of A. From 
equation 29, it follows that
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(42)λi = log(μi)
Δt , i = 1 ⋅ ⋅ ν,

with λi the dominant eigenvalues of the local Jacobian matrix J.
The next steps of DMA are similar to those of ODMD (20), but modifications are 

required due to the inhomogeneity of equation 34. Here, we note that the inhomogene
ous term ω can be eliminated by introducing the differential time-series data matrix D := H1 − H0, so that

(43)dk + 1 = Adk + δϵk, k = 1 ⋅ ⋅ N,
where dk := hk + 1 − hk is the kth column of D and δϵk := ϵk + 1 − ϵk. Since equation 

43 is a homogenous system, we can follow the same procedure as ODMD to determine 
the optimal amplitudes associated with the dominant eigenvalues and eigenmodes 
ascertained in the previous step. Let

D = USVT, U ∈ ℝn × ν, S ∈ ℝν × ν, V ∈ ℝN × ν
be the singular-value decomposition of D ∈ ℝn × N and Γ ∈ ℂν × N the Vandermonde 

matrix constructed from the eigenvalues {μ1, ⋯, μν}. Then, the optimal amplitudes α are 
given by (20)

(44)α = L−1q, L := Θ̄∗Θ̄ ∘ ΓΓ∗ , q := diag ΓVSTΘ̄ ,
where an overline denotes the complex conjugate of a matrix, the superscript ∗ denotes the complex-conjugate transpose, and ∘ indicates elementwise matrix 

multiplication. Accordingly, the modal matrix reads

(45)Φ = ΘΔ,
the columns of which ϕi are the dominant eigenmodes of J. Here, Δ ∈ ℂν × ν is a 

diagonal matrix with diagonal entries Δii := αi. Finally, we define the pooling matrix as

(46)P := Φ† .
Note that the pooling maps defined in the previous section correspond to the rows of P. Here, the definition equation 46 ensures that the modal and pooling matrices satisfy 

the reciprocal orthogonality conditions in all time intervals. It is also consistent with 
the relaxation of the slowest eigenmode discussed in the previous section. Recall, we 
defined the pooling map near the steady state corresponding to the slowest mode as a 
normalized form of the slowest eigenmode, which is compatible with equation 46 since 
the Moore-Penrose inverse of a vector yields the transpose of the same vector with a 
normalized length.

The analysis of concentration pools and coherent structures for a given reaction 
system using the approach introduced in this section depend on the initial condi
tions and how they are perturbed. Because the results may vary based on the spe
cific perturbations applied, dependence on initial conditions could be considered a 
limitation. However, we note that these concentration pools and coherent structures 
emerge from the inherent timescales of the system’s dynamics. As a result, the char
acteristics of these structures should, in principle, remain consistent across different 
perturbations. Performing this analysis for a wide range of perturbations can furnish 
a more comprehensive and accurate description of concentration pools and coherent 
structures. Therefore, while the method may seem sensitive to initial conditions, it is not 
inherently limiting.
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Reciprocal orthogonality conditions for Toy Model 1

The physical interpretation of the reciprocal orthogonality conditions equations 12a 
and 12b is connected to the dissipative structure of chemical reaction networks. Since 

the transitory timescale Ť1 that we are concerned with bridges two dynamic regimes 
associated with a fast (T1) and slow (T2) timescale characterizing the relaxation of 
reactions 2 and 3, their respective local eigenmodes represent the equilibration direction 
of these reactions in the concentration space. In particular, the slow eigenmode ϕ2, which 

is the mode that ϕ̌1 converges to when t → T2, aligns with equilibration directions of 
reaction 3:

(47)ϑ3eq = g3Tχeq, 3 = 0, g3 := 0, k3+, − k3−, 0 T,
where χeq, 3 denotes an equilibration direction. Concentration vectors that are parallel 

to this direction leave reaction 3 at its steady state, while those perpendicular to this 
direction maximally change the flux of reaction 3. Therefore, by requiring p1 to be 
orthogonal to ϕ2 in equation 12a, we ensure that, at any time t ∈ [T1, T2] along a 
dynamic trajectory, it points in a direction in the concentration space that maximizes 
the energy dissipation of reaction 3. In contrast, the fast eigenmode ϕ1 aligns with the 
disequilibrium direction of reaction 2 (see chapter 4 of Palsson and Abrams [27]) for the 
definition of disequilibrium pools], where χ1(t) and χ2(t) are negatively correlated. Thus, 
by requiring p̌1 to be orthogonal to ϕ1 in equation 12b, we ensure that it points in a 
direction corresponding to the conservation of metabolites involved in reaction 2 (see 
chapter 4 of Palsson and Abrams [(27] for the definition of conservation pools), where χ1(t) and χ2(t) are positively correlated.

The reciprocal orthogonality conditions in equations 12a and 12b also have an 
important geometric interpretation. For a given time interval along a dynamic trajectory, 
dominant eigenmodes represent the principal directions in a part of the concentration 
space where the dynamics occur. Therefore, if the underlying reaction system in the time 
interval of interest is low-dimensional, the eigenmodes can be viewed as a natural basis 
spanning a reduced concentration space where dynamic trajectories lie. Regarding this 
reduced concentration space as primal space (see Fig. 1F), equations 12a and 12b ensure 
that the vector representation of pools are a natural basis of a corresponding dual space. 
From this standpoint, the pools p1 and p̌1 in Toy Model 1 are scalar quantities defined 
as the inner product of a vector in the primal with another vector in the dual space, the 
algebraic form of which remain invariant with respect to any linear coordinate transfor
mation (46). This geometric interpretation is compatible with the physical interpretation 
of flux-concentration duality in dissipative systems (43). As mentioned above, the vector 
representations of pools are closely related to flux-disturbance relaxation or maximal 
energy dissipation of reactions, so they form a basis for a dual space in which to 
represent flux dynamics naturally. Similarly, eigenmodes constitute a basis for a primal 
space in which to represent concentration dynamics naturally.

Derivation of the third and fourth approximate eigenmodes of Toy Model 1

Here, we provide more details on the derivation of approximate expressions for the third 
and fourth eigenmodes of Toy Model 1 discussed in previous sections. Because the third 

eigenmode ϕ3 arises from the second transitory eigenmode ϕ̌2 in the interval Ť2, T3 , we 

may regard ϕ3 as the limit of ϕ̌2 when t → T3. The second transitory regime occurs in the 

interval Ť2, T3  when reaction 3 equilibrates. In this transition period, the flux deviations 

of reactions 3 and 4 are of the same order, so that ϑ2 ≃ θaϑ3 and ϑ3 ∼ ϑ4 ≫ ϑ1, ϑ5. As with 
the first transitory period, we consider a coefficient β such that ϑ3 = βϑ4 to quantify the 
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transition between T2 and T3 with β ∼ O(1). Accordingly, the mass-balance equations 
simplify to

(48a)dχ1
dt = − θaβϑ4,

(48b)dχ2
dt = (θa − 1)βϑ4,

(48c)dχ3
dt = (β − 1)ϑ4,

(48d)dχ4
dt = ϑ4 .

Eliminating χ3 and χ4, equations 48a–48d is expressed with respect to ϑ4 as follows:

dϑ4
dt = k4+(β − 1) − k4− ϑ4 ⇒ ϑ4(t) = ϑ40exp(μ̌2t),

where μ̌2 := k4+(β − 1) − k4−, and ϑ40 is the initial condition for the flux deviation of 
reaction 4. Substituting the solution of ϑ4 back in equations 48a–48d, we arrive at

(49)
χ1χ2χ3χ4

= ϑ40/μ̌2
−θaβ(θa − 1)ββ − 1
1ϕ̌2

exp(μ̌2t) +
c1c2c3c4

,

where ci are the integration constants. Note that the coefficient β varies from a 

large value to its asymptotic value βa as t → T3. This asymptotic coefficient is in turn 
determined from the equilibrium of Reaction 3

(50)ϑ3 → 0 as t → T3 ⇒ χ3 → K3
eqχ2 and dχ3

dt → K3
eqdχ2
dt ,

with K3
eq := k3+/k3− the equilibrium constant of reaction 3. It follows from equations 50, 

48b, and 48c that

(51)βa = K2
eq + 1K2

eqK3
eq + K2

eq + 1
.

We now can express ϕ3 and μ3 as the limiting cases of ϕ̌2 and μ̌2:
(52)ϕ3 = limt → T3 ϕ̌2 =

−θaβa(θa − 1)βaβa − 1
1

, μ3 = limt → T3 μ̌2 = k4+(βa − 1) − k4− .

The third transitory regime occurs in the interval Ť3, T∞ , where T∞ is a sufficiently 

large time—referred to as the total relaxation time—by which all flux and concentration 
disturbances have relaxed to within a tolerable threshold. This regime is characterized 

by ϑ2 ≃ θaϑ3, ϑ3 ≃ βaϑ4, and ϑ4 ∼ ϑ1, ϑ5. We express the order-of-magnitude balance 
between the flux deviations of reactions 4 and 5 by a coefficient γ such that ϑ4 = γϑ5
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to describe the transitory regime between T3 and T∞ with γ ∼ O(1), simplifying the 
mass-balance equations to

(53a)dχ1
dt = ϑ1 − θaβaγϑ5,

(53b)dχ2
dt = (θa − 1)βaγϑ5,

(53c)dχ3
dt = (βa − 1)γϑ5,

(53d)dχ4
dt = (γ − 1)ϑ5 .

From equation 53d, it follows that

dϑ5
dt = k5+(γ − 1)ϑ5 ⇒ ϑ5(t) = ϑ50exp(μ̌3t),

where μ̌3 := k5+(γ − 1), and ϑ50 is the initial condition for the flux deviation of reaction 
5. Substituting ϑ5(t) from this equation in equation 53a, we obtain the following solution 
for ϑ1(t):

ϑ1(t) = k1−θaβaγϑ50μ̌3 + k1− exp(μ̌3t) − exp( − k1−t) + ϑ10exp( − k1−t),
with ϑ10 the initial condition for the flux deviation of reaction 1. From this solution, 

it follows that the dynamics of ϑ1 in the third transitory regime are described by two 

exponential decay modes of the same order of magnitude (note that k5+ ∼ k1− in Toy 
Model 1; see Fig. S1C). Our goal in the analysis of this transitory regime is to ascertain 
the slowest eigenmode of Toy Model 1 and describe the dynamics near its steady state. 

Therefore, we assume |μ̌3 | < k1− in the remainder of this section, so that the slowest 
timescale is characterized by μ̌3. A similar analysis can be performed for the opposite 
case. Substituting the solutions of ϑ1 and ϑ5 in equations 53a–53d and neglecting the 

faster mode associated with exp( − k1−t), we obtain the dynamic trajectory of concentra
tion deviations:

(54)
χ1χ2χ3χ4

= ϑ50/μ̌3
κ(1 − γ)κ(γ − 1) + 1θaβaγ

(θa − 1)βaγ(βa − 1)γγ − 1ϕ̌3

exp(μ̌3t) +
c1c2c3c4

,

where κ := k5+/k1−. Since the flux deviations of reaction 1 becomes nonnegligible in 
this regime, the equilibration of reactions 2 and 3 is disturbed once again on the third 

transitory timescale Ť3. Therefore, the asymptotic coefficients θa and βa change during 
the secondary relaxation of reactions 2 and 3 as t → T∞. We determine the asymptotic 
value of θ in the third transitory regime from equations 6, 53a, and 53b:

(55)θa = κ(γa − 1) + 1κ(γa − 1)(K2
eq + 1) + 1

,
and of β from equations 50, 53b, and 53c:
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(56)βa = κ(γa − 1)(K2
eq + 1) + 1κ(γa − 1)(K2

eqK3
eq + K2

eq + 1) + 1
.

The coefficient γ varies from a large value to its asymptotic value γa as t → T∞, which 
is ascertained from the equilibrium of reaction 4:

(57)ϑ4 → 0 as t → T∞ ⇒ χ4 → K4
eqχ3 and dχ4

dt → K4
eqdχ3
dt ,

where K4
eq := k4+/k4− is the equilibrium constant of reaction 4. From equations 57, 53c, 

and 53d, we find that

(58)γa + κγa(γa − 1)K2
eqK3

eqK4
eqκ(γa − 1)(K2

eqK3
eq + K2

eq + 1) + 1
= 1,

which is a quadratic polynomial to be solved with respect to γa. As with previous 

cases, ϕ4 and μ4 are the limiting cases of ϕ̌3 and μ̌3, so that

(59)ϕ4 = limt → T∞ ϕ̌3 =
κ(1 − γa)κ(γa − 1) + 1θaβaγa

(θa − 1)βaγa(βa − 1)γaγa − 1

, μ4 = limt → T∞ μ̌3 = k5+(γa − 1) .

Inhomogeneity of evolution equations for local concentration deviations and 
temporal grid size

We show that the discrete form of evolution equations for local concentration deviations 
(equation 34) becomes homogeneous asymptotically for vanishingly small temporal grid 
size, that is, ω → 0 as Δt → 0. We start from the definition of ω in equation 34:

ω := Aw − w .
Substituting the definitions of A and w from previous sections (see “Dynamic mode 

analysis”) in this equation, we have

(60a)ω = Exp JΔt J−1a − J−1a (60b)= I + JΔt + 1
2!J2Δt2 + ⋯ J−1a − J−1a

(60c)= J−1a + IaΔt + 1
2!JaΔt2 + ⋯ − J−1a

(60d)= I + 1
2!JΔt + 1

3!J2Δt2 + ⋯ aΔt .
In equation 60d, the expression enclosed in parentheses is a matrix with a nonzero 

norm. Moreover, the constant vector a is generally nonzero in all sliding time windows, 
and it only approaches zero asymptotically as dynamic trajectories near a steady-state 
solution. It follows that the inhomogeneous term ω approaches zero asymptotically in 
time windows away from the steady state only if an arbitrarily small temporal grid size Δt
is chosen.
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Relationship between time-delayed autocorrelation, covariance, and local 
Jacobian spectra

Here, we prove that F and ω in equations 38a–38b are the solution of the optimization 
problem (equation 37). We begin by expanding the objective:

(61)‖E‖F2 =tr H̄0
TFTFH̄0I + tr W̄TW̄II + 2tr H̄0

TFTW̄III− 2tr H̄0
TFTH̄1IV − 2tr H̄1

TW̄V + ⋯,
where W̄ := UTW, and the dots represent constant terms that do not affect the 

optimal solution of equation 37. As stated before, U can be regarded as a transformation, 
mapping matrices and vectors from the space of proper orthogonal modes into the 

original concentration space, so we may write W̄ = ω̄1T with ω̄ := UTω. In the following, 
we further expand each term in equation 61 to derive expressions that can be readily 
recast into a standard-form quadratic program.

We start from the first term

(62a)I = tr FH̄0H̄0
TFT

(62b)= vec H̄0
TFT T

vec H̄0
TFT

(62c)= Iν ⊗ H̄0
T vec FT T Iν ⊗ H̄0

T vec FT

(62d)= vec FT T Iν ⊗ H̄0
T T Iν ⊗ H̄0

T vec FT

(62e)= vec FT T Iν ⊗ H̄0 Iν ⊗ H̄0
T vec FT

(62f)= vec FT T Iν ⊗ H̄0H̄0
T vec FT ,

where Iν denotes a ν × ν identity matrix, and vec( ⋅ ) vectorizes a matrix by stacking 
its columns on top of one another. Here, we used the cyclic property of the trace in 

equation 62a and applied the identity vec H̄0
TFT = Iν ⊗ H̄0

T vec FT  in equation 62c. 

Expanding the second term, we arrive at

(63)II = vec W̄ Tvec W̄ = Nω̄Tω̄ .
The third term is written as follows:

(64a)III = tr W̄H̄0
TFT

(64b)= vec W̄T T
vec H̄0

TFT

(64c)= ω̄ ⊗ 1 T Iν ⊗ H̄0
T vec FT

(64d)= ω̄T ⊗ 1T Iν ⊗ H̄0
T vec FT

(64e)= ω̄T ⊗ 1TH̄0
T vec FT

(64f)= ω̄T ⊗ N(h̄0
av)T vec FT = N i = 1

ν ω̄i(h̄0
av)Tfi,

where fi is the ith column of FT. Again, we used the cyclic property of the trace in 

equation 64a and the identity vec W̄T = ω̄ ⊗ 1 in equation 64c. Expanding the fourth 

term, we have
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(65a)IV = tr H̄1H̄0
TFT

(65b)= vec H̄0H̄1
T T

vec FT

(65c)= Iν ⊗ H̄0 vec H̄1
T T

vec FT = β̄Tvec FT ,
where

(66)β̄ := Iν ⊗ H̄0 vec H̄1
T =

H̄0ℏℏ̄1, 1H̄0ℏℏ̄1, 2⋮H̄0ℏℏ̄1, ν
with ℏ̄1, i denoting the ith column of H̄1

T. The fifth term is expanded similarly:

(67)V = vec H̄1
Tvec W̄ = i = 1

N h̄1, iT ω̄ = N(h̄1
av)Tω̄ = ρ̄Tω̄,

where h̄1, i denotes the ith column of H̄1, and ρ̄ := Nh̄1
av.

We now can rewrite the optimization problem equation 37 as a quadratic program in 
standard form by substituting the five terms I–V  from equations 62f, 63, 64f, 65c, 66, and 
67 in equation 61:

(68)z := arg minz zTHz − 2bTz .
Here,

(69)H := A BC D , b := β̄ρ̄ , z := vec FTω̄
with

(70)A := H̄0H̄0
T ⋯ 0⋮ ⋱ ⋮0 ⋯ H̄0H̄0

T

ν blocks
∈ ℝν2 × ν2, B := h̄0

av ⋯ 0⋮ ⋱ ⋮0 ⋯ h̄0
av

ν blocks
∈ ℝν × ν2,

B := NBT, C := NB, and D := NIν. The solution of the minimization problem 
(equation 68) is ascertained from the Karush-Kuhn-Tucker conditions (47):

(71)z = H−1b .
To derive compact from expressions for F and ω, the Hessian H is to be inverted 

explicitly with respect to its elements. Since the Hessian in equation 69 is a block matrix, 
we derive its block inverse

(72)H−1 = A# B#
C# D#

using the Schur complement. With respect to the matrix blocks in equation 69, the 
Schur complement of H is written as follows:
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(73)H~ := A − BD−1C = A − NBTB X̄0 ⋯ 0⋮ ⋱ ⋮0 ⋯ X̄0

ν blocks
,

where X̄0 is the covariance of time-series data H̄0 defined in equation 39b. We can 

now express the individual blocks in equation 72 in terms of the Schur complement H~ :

(74a)A# = H~ −1 = 1N
X̄0

−1 ⋯ 0⋮ ⋱ ⋮0 ⋯ X̄0
−1 ,

(74b)B# = − H~ −1BD−1 = − 1N
X̄0

−1h̄0
av ⋯ 0⋮ ⋱ ⋮0 ⋯ X̄0

−1h̄0
av

,
(74c)C# = − D−1CH~ −1 = − 1N

(h̄0
av)TX̄0

−1 ⋯ 0⋮ ⋱ ⋮0 ⋯ (h̄0
av)TX̄0

−1 ,

(74d)
D# = D−1 + D−1CH~ −1BD−1

= 1N
1 + (h̄0

av)TX̄0
−1h̄0

av ⋯ 0⋮ ⋱ ⋮0 ⋯ 1 + (h̄0
av)TX̄0

−1h̄0
av

.
Accordingly, the two parts of the optimal solution z are ascertained separately by 

plugging H−1 from equation 72 into equation 71:

(75a)vec FT = A#β̄ + B#ρ̄, (75b)ω̄ = C#β̄ + D#ρ̄ .
Substituting the inverse blocks from equations 74a and 74b in equation 75a, we 

obtain the first part

(76)vec FT =
X̄0

−1 H̄0ℏℏ̄1, 1/N − h̄0
avℎ̄1, 1avX̄0

−1 H̄0ℏℏ̄1, 2/N − h̄0
avℎ̄1, 2av⋮X̄0

−1 H̄0ℏℏ̄1, ν/N − h̄0
avℎ̄1, νav

with ℎ̄1, iav  denoting the ith component of h̄1
av. From equation 76, one can verify that 

the optimal solution in matrix form is

(77)FT = X̄0
−1X̄01,

where

(78)X̄01 := 1N H̄0H̄1
T − h̄0

av h̄1
av T .

Since X̄0 is symmetric and X̄10 = X̄01
T , the optimal solution F given in equation 38a 

follows from equation 77. Similarly, the second part of the optimal solution is obtained 
by substituting the inverse blocks from equations 74c and 74d in equation 75b:
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(79)ω̄ = h̄1
av − Fh̄0

av,
from which the optimal solution ω given in equation 38b is derived using the 

relationship ω = Uω̄.

Energetics of glycolysis

Overall, glycolysis breaks glucose down into pyruvate and lactate according to

glucose + 2ADP + 2Pi + NAD → pyruvate + lactate + 2ATP + 2H2O + NADH + H+ .
Since glucose carries a higher chemical potential energy than pyruvate and lactate 

combined, as measured by their relative transformed Gibbs free energy of formation 

ΔfG′ ∘  (48), the transformation glucose → pyruvate + lactate is exergonic:

ΔrG′ ∘ = ΔfGpyruvate
′ ∘ + ΔfGlactate

′ ∘ − ΔfGglucose
′ ∘ ≈ − 241 kJ/mol at pH = 7.5,

where ΔrG′ ∘  is the standard transformed Gibbs free energy of reaction. This energy 
drives the synthesis of high-energy cofactors (ATP and NADH) from the low-energy 
counterparts (ADP, Pi, and NAD) through interconversion reactions

ADP + Pi → ATP + H2O ΔrG′ ∘ ≈ 30 kJ/mol at pH = 7.5,
NAD → NADH    ΔrG′ ∘ ≈ 66 kJ/mol at pH = 7.5.

Accordingly, ATP and NADH carry a higher chemical potential energy than ADP + Pi
and NAD in an aqueous environment, respectively. In this sense, ATP and NADH
are regarded as high-energy cofactors with ADP, Pi, and NAD the corresponding 
low-energy counterparts.
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