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Abstract
Selective forces in the environment drive bacterial adaptation to novel niches, choosing the fitter variants in the 
population. However, in dynamic and changing environments, the evolutionary processes controlling bacterial 
adaptation are difficult to monitor. Here, we follow 9 people with cystic fibrosis chronically infected with 
Pseudomonas aeruginosa, as a proxy for bacterial adaptation. We identify and describe the bacterial changes 
and evolution occurring between 15 and 35 yr of within-host evolution. We combine whole-genome sequencing, 
RNA sequencing, and metabolomics and compare the evolutionary trajectories directed by the adaptation of 4 
different P. aeruginosa lineages to the lung. Our data suggest divergent evolution at the genomic level for most 
of the genes, with signs of convergent evolution with respect to the acquisition of mutations in regulatory genes, 
which drive the transcriptional and metabolomic program at late time of evolution. Metabolomics further con
firmed convergent adaptive phenotypic evolution as documented by the reduction of the quorum-sensing mole
cules acyl-homoserine lactone, phenazines, and rhamnolipids (except for quinolones). The modulation of the 
quorum-sensing repertoire suggests that similar selective forces characterize at late times of evolution independ
ent of the patient. Collectively, our data suggest that similar environments and similar P. aeruginosa populations 
in the patients at prolonged time of infection are associated with an overall reduction of virulence-associated fea
tures and phenotypic convergence.
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Introduction
Microbial adaptation to a particular environment is direc
ted by specific selective forces, and each niche represents a 
unique fitness landscape for the infecting bacteria. In this 
scenario, the selection of beneficial mutations that fix 
and expand in the population helps bacteria to successfully 
adapt and persist. Yet, monitoring the occurring adapta
tional events in dynamic natural environments and infer
ring the driving selective pressures remain a challenge, 
due to (i) complex spatial–temporal fluctuating conditions 
(e.g. temperature, pH, osmolality, and nutrient gradients), 
(ii) population dynamics (e.g. prey–predator, mutualistic 
relationship, or pathogenic interactions), and (iii) interking
dom interactions (host–microbe interactions). Genetic var
iations in such bacterial populations have, therefore, been 
difficult to associate with specific adaptive processes, if 

the complex conditions are at least not transiently stable. 
Consequently, mutation acquisition as a proxy for the se
lective pressures is usually insufficient to validate the par
ticular significance of the specific genetic modifications 
(Rossi et al. 2021).

We investigate bacterial adaptation and evolution of 
Pseudomonas aeruginosa (Pa) in the airways of people 
with cystic fibrosis (pwCF) during the progression of col
onization and infection. The CF lung infection model offers 
unique opportunities, as there is extensive within-patient 
follow-up information. CF sputum samples are routinely 
sampled from patient cohorts to diagnose bacterial infec
tion status, and detailed characterization of CF lung dis
ease progression has been well documented (Bhagirath 
et al. 2016; Khan et al. 2019). Considering the complexity 
and dynamics of the human airways, including the particu
lar multispecies microbial communities described in CF 
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airways, we suggest that our findings concerning bacterial 
adaptation in this environment reflect evolutionary pro
cesses occurring generally in many other natural environ
ments (Yang et al. 2011; Damkiær et al. 2013).

Previously, the evolutionary dynamics of a persistent 
and highly successful Pa lineage, DK02, that had disse
minated to more than 40 patients in the Copenhagen 
CF clinic, has been described (Yang et al. 2011), with 
respect to the genomic and phenotypic changes over 
a period of more than 200,000 bacterial generations 
(Yang et al. 2011). The DK02 lineage shows limited in
terpatient diversification, after an initial period of rapid 
adaptation. This is most likely caused by the acquisi
tion of a few regulatory mutations affecting the tran
scriptional profile followed by a period of genetic drift 
with minor transcriptional changes (Yang et al. 2011; 
Damkiær et al. 2013).

This opened the question of whether the DK02 evolu
tionary history could be used as a reference to predict 
the adaptive pathways for other Pa lineages, when adapt
ing toward a state of chronic infections in human airways. 
To address this question, we here investigate the evolution 
of 3 alternative and widespread persistent Pa lineages, 
DK01 (Markussen et al. 2014), DK19 (PA14) (Cramer 
et al. 2011; Mathee 2018), and DK06 (C-clone) (Römling 
et al. 2005; Lee et al. 2020), in comparison with the DK02 
evolutionary pathway. Specifically, we resolved the evo
lutionary history of Pa in the airways of several chronic
ally infected pwCF, as they reflect an adapted population 
to the lung environment. As we have previously shown 
that comprehensive collections of single isolates can in
fer the evolutionary dynamics of a diversified population 
(Sommer et al. 2016), we therefore focus our efforts on 
single isolates and their persistence over extended peri
ods of times (≥15 yr) in different pwCF. The strategy 
has been to correlate the acquired mutations identified 
in the respective genomes with the globally expressed 
transcriptional network in DK02 and the resulting bio
synthetic products. Overall, we document the value of 
using combinations of omic approaches to better under
stand evolutionary dynamics in complex environments.

Results
Within-Patient Genome Evolution: Divergence and 
Convergence of Pa Lineages
To characterize the evolutionary trajectories securing the 
persistence of Pa in pwCF, we investigated a collection of 
Pa clinical isolates sampled longitudinally between 1973 
and 2021 from 9 patients attending the Copenhagen CF 
Clinic (Table 1). We selected lineages based on (i) high 
prevalence in both Danish and international pwCF and 
(ii) with evolutionary histories spanning more than 15 yr. 
The lineages that were selected, DK01 (pwCF, n = 30), 
DK02 (pwCF, n = 35), DK06 (pwCF, n = 9), and DK19 
(pwCF, n = 9), are in the top 10 most-abundant clone types 
from the Copenhagen CF Clinic (supplementary fig. S1, 

Supplementary Material online). Despite the presence of 
a heterogeneous population with high diversity in each 
pwCF, we analyzed single isolates representing the most 
abundant Pa representative of a sputum sample. Indeed, 
we previously spotlighted that single isolates can well 
represent the infecting population of a pwCF, therefore 
allowing us to characterize the adaptive and evolution
ary process of Pa in pwCF (Sommer et al. 2016). For each 
patient, we compared initial isolates (referred to as 
“early”) collected within 2 yr of the diagnosis of chronic 
infection, with isolates collected after 15 yr (DK06 and 
DK19 lineages) and 35 yr (DK02 lineage) (referred to 
as “late”) of infection (Fig. 1a; Table 1). For the DK01 lin
eage, no early isolates were available in our collection, 
and therefore, “intermediate” strains isolated more 
than 10 yr after the onset of chronicity and evolved for 
35 yr in each patient were used (Fig. 1a; Table 1). This col
lection comprises isolates with evolutionary histories es
timated to cover between 35,000 and 150,000 bacterial 
generations (supplementary table S1, Supplementary 
Material online).

Single nucleotide polymorphisms (SNPs) were used as 
phylogenetic markers to reconstruct the evolutionary his
tory of the strains. As previously observed (Marvig et al. 
2015), the genomes grouped primarily according to their 
lineage, suggesting a strong evolutionary contingency 
(Fig. 1b). Since niche specialization depends on the con
stant modulation of the mutation rate (Denamur and 
Matic 2006), we evaluated if the genome-wide mutation 
rates in the lineages differed. Despite significant differences 
in the numbers of generations, neither the synonymous 

Table 1 Overview of Pa sampling from the different CF patients used in 
this study

Isolate Lineage State Date of sampling Years of evolutiona

P01E DK02 Early 1973 0
P01L DK02 Late 03/01/2008 35.0
P02E DK02 Early 1984 0
P02L DK02 Late 07/01/2017 33.0
P03E DK02 Early 1991 0
P03L DK02 Late 26/08/2015 24.6
P04E DK06 Early 04/02/2004 0
P04I DK06 Intermediate 19/02/2020 16.0
P04L DK06 Late 16/03/2021 17.1
P05E DK06 Early 06/09/2006 0
P05I1 DK06 Intermediate 01/01/2014 8.8
P05I2 DK06 Intermediate 16/05/2019 14.0
P05L DK06 Late 12/01/2021 15.7
P06E DK19 Early 04/07/2006 0
P06I DK19 Intermediate 12/09/2017 12.2
P06L DK19 Late 16/03/2021 15.7
P07E DK19 Early 05/04/2006 0
P07I DK19 Intermediate 23/10/2018 13.1
P07L DK19 Late 22/02/2021 15.4
P08I DK01 Intermediate 1984 0
P08L DK01 Late 2009 25.0
P09I DK01 Intermediate 1984 0
P09L DK01 Late 23/06/2016 32.80273973

aThe years of evolution for an isolate within the patient were calculated as the iso
lation date between early and that of intermediate/late isolate.
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nor the nonsynonymous mutation rates were found to 
differ between lineages (Fig. 1c; supplementary table S1, 
Supplementary Material online). Similarly, the mutation 
frequency to rifampicin showed no differences between 
lineages (ANOVA P > 0.05) even though strain DK01L-P08L 
showed increased mutation rate (27-fold) relative to 
PAO1 (supplementary table S2, Supplementary Material
online). Of note, this isolate harbored 2 missense mutations 
in DNA mismatch repair gene mutL, one of the most com
mon causes of a hypermutator phenotype in isolates from 
pwCF (Oliver et al. 2000). In this case, these mutations did 
not cause an overall increase in the genome mutation fre
quency, perhaps due to being just above the phenotype hy
permutator limit (>20-fold). As expected, the minimum 
inhibitory concentrations (MICs) for antibiotics used as pri
mary anti-Pa antibiotics (tobramycin, ciprofloxacin, and 
ceftazidime) increased between pair of early/intermediate 
and late isolates, albeit only a few isolates presented clear 
clinical antibiotic resistance (supplementary table S2, 
Supplementary Material online).

When comparing the introduced genetic changes across 
lineages, we found evidence for both convergent and diver
gent evolution within and between lineages. Among the 

mutated genes identified in the early/intermediate isolates, 
we found ∼15% of these to be shared across the samples 
(supplementary fig. S2a, Supplementary Material online). 
Specifically, all lineages showed convergent acquisition of 
mutations in genes related to (i) virulence pathways (e.g. 
Type II and III secretion apparatus and iron homeostasis), 
(ii) antibiotic resistance (e.g. efflux pumps systems), and 
(iii) motility (supplementary table S3, Supplementary 
Material online). These traits are known to be frequently 
lost after the establishment of chronic Pa infections in 
CF airways (Rossi et al. 2021). When comparing the 
late isolates, ∼32% of the mutated genes were shared 
(supplementary fig. S2a and table S3, Supplementary 
Material online). All late isolates shared mutations in 
(i) several TonB-dependent receptors related to the uptake 
of different molecules, (ii) multiple 2-component sensor 
regulators, and (iii) mutations in components or effectors 
of the Type VI secretion system (supplementary table S3, 
Supplementary Material online). Among the accumulated 
mutations from early/intermediate to late isolates, only 
low percentages (∼2% for DK01 and DK02, 6% for DK06, 
and 24% for DK19) of mutated genes were shared within 
each specific lineage. In contrast, similar categories of genes 
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and biological pathways were shared across the different 
lineages (supplementary fig. S2b and c, Supplementary 
Material online). Overall, our data suggest that early muta
tional patterns show partial convergence at the genomic le
vel, whereas at later stages of infection, there is a strong 
within-patient specialization of the particular isolate/lin
eage (genomic divergence).

The repeated occurrence of pathoadaptive mutations 
suggests convergent mechanisms of adaptation at both 
the genomic and the phenotypic levels (Yang et al. 
2011; Marvig et al. 2015; Dettman and Kassen 2021). 
Interestingly, regulatory mutations show evolutionary conver
gence, either in a lineage-independent manner (fixed in all 
lineages) or with reference to time (early/intermediate → 
late), patient, or lineage (Fig. 1d; supplementary table S4, 
Supplementary Material online). In the case of the 
lineage-independent mutations, missense and/or frame
shift mutations were identified in the genes encoding 
the multidrug efflux pump regulator MexT and in the 
virulence modulator VqsM (Fig. 1d; supplementary 
table S4, Supplementary Material online). Similarly, fpvI 
encoding the sigma factor and master regulator of iron 
homeostasis displayed genetic variations in all DK01, 
DK02, and DK06 isolates. Interestingly, in intermediate 
and late isolates of DK19, mutations were observed in 
the pvdS regulator gene, which belongs to the same regu
latory network as fpvI (Fig. 1d; supplementary table S4, 
Supplementary Material online). The bfmR regulator (in
volved in biofilm maturation, Rhl quorum-sensing [QS] 
system, and active in acute infections) and the algU regu
lator (involved in alginate biosynthesis) show a certain 
degree of convergent evolution being mutated in more 
than half of the isolates. The antisigma factor, mucA, 
which modulates the activity of algU and causes a mu
coid phenotype displayed by several Pa isolates, showed 
time-dependent frameshift mutations in all late isolates 
(supplementary table S5, Supplementary Material online). 
Several additional regulators such as mvfR, lasR, fliA, exsA, 
cdpR, vqsR, rhlR, rpoN, and sphR showed lineage-dependent 
convergence confirming strong evolutionary contin
gency between lineages (Fig. 1d; supplementary table S4, 
Supplementary Material online).

In summary, convergent evolution was observed for 3 
categories of master regulators controlling envelope re
modeling (mucA-algU), iron metabolism ( fpvI and 
pvdS), and QS virulence modulation (lasR, rhlR, vqsM, 
mexT, and bfmR) (Fig. 1d). Our analysis suggests that 
common selective forces drive the acquisition of muta
tions in selected regulatory networks in a patient- 
independent manner. In addition, evolutionary contin
gency selects for lineage-dependent variants favoring 
adaptation to the patients.

Transcriptional convergence of Pa lineages
We previously suggested that the acquisition of several 
regulatory mutations converted DK02 into a lineage highly 
adapted to the human airways (Damkiær et al. 2013). 

Limited transcriptional changes were, indeed, observed 
upon acquisition of mutations affecting the envelope 
(algU), catabolism (rpoN), and QS (lasR-rhlR), even after 
3 decades of infection. To investigate the transcriptional 
impact of the lineage-specific and shared mutations iden
tified in the DK02 lineage, we performed RNA-sequencing 
(RNA-seq) analysis under conditions mimicking the meta
bolic conditions in CF [e.g. Synthetic Cystic Fibrosis 
Medium (SCFM)].

Pearson correlation analysis applied to the expression 
data (normalized reads) showed that except for DK02 
isolates, the transcriptional correlation among the sam
ples was dependent on the time of evolution (early/ 
intermediate → late transition), rather than specific 
for each lineage (Fig. 2). As previously demonstrated 
(Bhagirath et al. 2016), all DK02 isolates showed a strong 
correlation coefficient (Pearson's correlation coefficient  
> 0.95), independent of time of evolution. Moreover, 1 
late isolate from each lineage clustered with the DK02 
transcriptomes suggesting convergent evolution at late 
times after the onset of chronic infection (Fig. 2a). In con
trast, the early isolates of DK19 clustered as a very dis
tinctive class separated from all the samples indicating 
a very distinctive transcriptional profile at early starting 
points (Fig. 2a). A similar result is obtained when com
paring transcriptional profiles using principal compo
nent analysis (PCA). All late Pa strains cluster closer to 
the DK02 strains rather than their specific early strains in
dicating convergent evolution (supplementary fig. S3a, 
Supplementary Material online).

Since the time of evolution (years after the chronic infec
tion was diagnosed) seems to play a major role in shaping 
the lineage phenotype, we compared the transcriptional 
variability to the length of infection by performing PCAs 
on the normalized reads versus time (Fig. 2b). The more evi
dent signature was for DK19, for which the transcriptional 
variability over time (assessed by slope regression, R2 of 
0.95) was 5- to 6-fold higher than that of the other 
lineages—followed by DK06 and DK01, with an R2 of 0.63 
and 0.83, respectively (Fig. 2b). DK02 displayed an R2 and 
slope close to 0, representing essentially no transcriptional 
changes during the lineage evolution (Fig. 2b). In contrast, 
the rest of lineages seem to reflect phenotypic transition 
states directed toward the stable transcriptional state ob
served for DK02 (Fig. 2b).

To illustrate the impact of the specific regulatory muta
tions on the transcriptional network of the DK02 lineage, 
we included 2 PAO1 derivative mutant strains harboring 
the same mutations as the early DK02 isolates. 
Specifically, strain “RegMut” harbors alterations in 
mucA-algT-rpoN, while strain “RegMutΔlasR” harbors 
an additional deletion in lasR regulator (Damkiær 
et al. 2013). Both PCA and Pearson correlation analysis 
showed that such strains represent late transcriptional 
states close to those of the DK02 isolates 
(supplementary fig. S3a and b, Supplementary Material on
line), suggesting that the transcriptional state and stabil
ity seen already in early isolates of DK02 represent an 
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adaptive maximum, which many/all Pa strains attain 
over time after infection of the human airways.

Pathway Selectivity at Late Time Points
To further characterize the transcriptional changes asso
ciated with the late chronic adaptation states, we identi
fied differentially expressed genes (DEGs) in early/ 
intermediate versus late strains and performed enriched 
analysis based on KEGG (Kyoto Encyclopedia of Genes 
and Genomes) / GO (Gene Ontology) pathway / function 
classifications. This provided identification of selective 
outcomes from the fixed mutations and characterization 
of their influence on the directionality of the 

transcriptional program. KEGG and GO enrichment ana
lysis showed that during the adaptive processes, different 
lineages displayed similar enriched pathways and thus, evo
lutionary convergence (Fig. 3a; supplementary fig. S4, 
Supplementary Material online). The lineages converged 
at late time with higher frequency in 3 major features: 
(i) increase in expression of ABC transporters for sulfur 
metabolism, (ii) decrease in expression of QS regulators 
controlling, e.g. cyano-amino acid metabolism and phena
zine biosynthesis, (iii) decrease in expression of certain bio
film biosynthetic genes, (iv) activation of transcriptional 
factors related to siderophore uptake/activation (Fig. 3a; 
supplementary fig. S4, Supplementary Material online).
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Most of these time-associated changes are stably con
served in the DK02 lineage or present a time-dependent 
regulation (e.g. biofilm downregulation), once more sug
gesting that all isolates of the DK02 lineage are fully 
adapted at an early infection stage (supplementary fig. S4, 
Supplementary Material online). Importantly, our data fur
ther suggest that the enrichment of certain mutations at la
ter infection stages may be related to pathway selectivity, 
showing cases of convergent genomic evolution among dif
ferent lineages. Furthermore, depending on the evolution
ary state of the specific isolate, our data highlight the 
strong selective pressure for the modulation of QS, as 
many of the convergent changes are regulated by it (e.g. bio
film, siderophore, and phenazine) (Fig. 3b).

Comparing the transcriptional levels of genes regulated 
by QS in early and late isolates suggests that QS exerts 
strong negative selectivity on late isolates, both in a 
lasR-rhlR mutation-dependent (e.g. P01L and P08L) and 
-independent manner (e.g. P09L) (Fig. 3b) (Hoffman 
et al. 2009). The downregulation of QS may indicate selec
tion for loss of function mutations for the entire pathway 
or modulation of pathway expression. To distinguish be
tween these possibilities and to further investigate the 
changes in the excretion of other important chemical 
compounds, we performed an exo-metabolomic analysis 
of the secreted molecules by these lineages.

Metabolic Distinctions during Different Evolutionary 
Stages
Metabolomic profiles from stationary phase cultures were 
analyzed by means of liquid chromatography coupled to 
MS (LC-MS). The molecular masses obtained were aligned 
and quantified for the different isolates (supplementary 
table S6, Supplementary Material online). Unsupervised 
PCA profiling of the total exo-metabolomes clearly 
documents different outcomes from early (cluster A) 
and late isolates (clusters B and C), except for DK02, 
which once more shows no variation between the differ
ent time points of the isolates (cluster B) (Fig. 4a). 
Cluster A represents bacteria, like PAO1, with normal le
vels of oxo-C12-homoserine-lactone (oxo-C12-HSL), 
2-heptylquinolin-4(1H)-one (HHQ), phenazine, pyocya
nin, and rhamnolipids (Fig. 4c). Clusters B and C show 
reduced or undetectable levels of oxo-C12-HSL, N-butanoyl- 
L-homoserine-lactone (C4-HSL), and HHQ, with a 
concomitant reduction in phenazine, pyocyanin, and 
rhamnolipids (Fig. 4c).

Most isolates showed only small variations in HHQ pro
duction, although statistically significant reductions were 
observed in 1 DK06 late isolate (Fig. 4c). Interestingly, the 
genes controlled by C4-HSL were downregulated in the 
late isolates (Fig. 3b), suggesting that the production of 
this QS molecule does not impact the QS network down
stream, further suggesting that mutations in the central 
QS regulatory genes (lasR-rhlR) might govern (i) the tran
scriptional reduction of the network regulon genes and 
(ii) the modulation of the QS-secreted molecules.

As expected, the PAO1 RegMutΔlasR strain displayed a 
complete depletion of oxo-C12-HSL production (Fig. 4c). 
Moreover, it displayed a metabolome profile in between 
clusters A and B, with 1 to 2 Log10 reduction (200 times) 
in C4-HSL, rhamnolipids, pyocyanin, and phenazines. 
However, this reduction was not as drastic as in many 
strains from cluster B, where the levels of these molecules 
were nondetectable (Fig. 4c).

Since QS is associated with virulence, we tested the in
hibitory properties of these secreted molecules against 
sensitive bacteria, and it was clear that early strains showed 
the highest levels of virulence (cluster A). Moreover, in all 
cases, the late, evolved isolates showed reduced virulence, 
in line with the genomic and transcriptomic information 
(clusters B and C) (Fig. 4b).

There was a high prevalence of some QS-regulated 
molecules but only small variations in the production 
of 4-hydroxy-3-nitroquinolin-2(1H)-one, 2-heptyl-4-hy
droxyquinoline, and other quinolones from different 
lineages at different time points (supplementary fig. S5, 
Supplementary Material online). All strains showed stable 
excretion of the siderophore pyochelin, whereas the ex
cretion of pyoverdine was reduced in some late isolates. 
Increased excretion of the amino acid norleucine was 
seen in the late isolates, whereas reduced excretion was 
observed in the early isolates compared with DK02 
(supplementary fig. S5, Supplementary Material online).

In conclusion, the metabolomics data suggest that 
adaptation of Pa to human airways entails a strong select
ive pressure for loss of virulence-associated molecules (e.g. 
phenazines, pyocyanin, and rhamnolipids) and mainten
ance of several important ecophysiological properties 
(e.g. production of siderophores and quinolones). The 
loss of production of virulence-related molecules and 
modulation of the production of physiologically important 
molecules further suggest different functional roles for 
these families of molecules and, consequently, stringent 
modulation of their QS-mediated regulatory components.

Discussion
We and others have previously documented that bacterial 
colonization and adaptation in the airways of pwCF consti
tute an interesting model for studying microbial evolution 
in complex, dynamic environments (Yang et al. 2011; 
Marvig et al. 2015; Dettman and Kassen 2021). With a spe
cial focus on the environmental bacterium Pa, the process 
of migration from the environment to human airways has 
been monitored by genotyping and phenotyping various 
collections of Pa isolates from pwCF. It has been convin
cingly documented that after years of bacterial coloniza
tion, Pa isolates derived from the patients have gone 
through extensive genetic and phenotypic alterations, 
which eventually result in the conversion of the Pa gener
alist type of organism to one that behaves much more like 
a niche specialist (Marvig et al. 2015).

Here, we follow 4 different lineages from pairs of isolates 
independently evolving in the lungs of different pwCF for 

Espaillat et al. · https://doi.org/10.1093/molbev/msae022 MBE

6

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/2/m
sae022/7608224 by D

TU
 Library user on 18 April 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae022#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae022#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae022#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae022#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae022#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae022#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae022#supplementary-data


periods corresponding to 35,000 to 150,000 bacterial gen
erations. In line with previous results from our lab, we see 
the accumulation of mutations since the persistent infec
tion was established (Fig. 1c; supplementary fig. S2a, 
Supplementary Material online). Perhaps the most import
ant consequence of these mutations is a significant change 
in the genome-wide transcriptional profile for all the 
lineages (except for DK02). Although the strains acquire 
mutations at similar rates, the functional roles of these 
mutations may differ depending on the state of adaptation 
of each specific isolate and on the mutations fixed at earl
ier stages of the infection. Our data further suggest that 
when a lineage has reached an adaptation maximum, 

additional fixation of mutations in regulatory genes (in
cluding additional transcriptional changes) may entail fit
ness costs for the population, and therefore, such mutated 
isolates will be diluted out in the population, also illu
strated by the adaptive evolution of DK02 (Yang et al. 
2011). Notably, limited genomic convergence, shown as 
gradual accumulation of mutations during the evolution 
of the lineages, resulted in high convergence of the tran
scriptional programs. Due to the plasticity and functional 
redundancy of Pa genome, we often see that many genetic 
routes have similar phenotypic impact, i.e. similar global 
transcriptional network. Moreover, mutations that are 
fixed from early stages of colonization may direct the order 
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Fig. 4. Metabolomic distribution in the different samples. a) Unsupervised PCA performed on the total exo-metabolites. Lineages are color coded 
(DK01 red, DK02 blue, DK06, green, and DK19 purple). b) Inhibitory effect of secreted supernatant tested on sensitive bacteria (B. subtilis). 
c) Quantification of relevant metabolite, QS regulators oxo-C12-HSL, C4-HSL, HHQ, phenazine 6-carboxylic acid, pyocyanin, and C10-C10 rham
nolipid. Secreted metabolites from early samples are represented as colored circles and the related late with a dark point. Samples coming from 
the same patient are connected with a line. Lineages dominating each patient are color coded (DK01 red, DK02 blue, DK06 green, and DK19 
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of selection of new mutations in different arrays of genes 
(Marvig et al. 2015). This illustrates cases of evolutionary 
contingency or epistatic interactions necessary to cope 
with the continuously changing environment.

The transcriptional convergence program associated with 
the time of infection occurred in a patient-independent 
manner, suggesting that similar selective pressure dominates 
the human airway environments at late time points. 
Convergence of the transcription and regulatory muta
tional profiles was illustrated by the gain of mutations 
in 18 well-known pathoadaptive loci from Pa, mutated 
across the different analyzed lineages (Marvig et al. 2015) 
(supplementary fig. S6 and table S5, Supplementary 
Material online), and several late isolates presented a 
DK02-like transcriptome. Moreover, mutated genes could 
be grouped into functional categories such as envelope 
modifications, catabolic modulation, biofilm regulation, 
changes on iron response, and antibiotic-resistant genes 
(supplementary fig. S2c, Supplementary Material online). 
When a Pa lineage has entered the airways and developed 
into persistent infection, there is an array of functional mu
tations that need to be introduced in the genome, so the 
population acquires a steady state of transcriptional vari
ation, like that seen for DK02.

One key feature that clearly distinguishes between early 
and late isolates is the downregulation of QS. In the inves
tigated isolates, reduction in QS was associated with muta
tions in the major QS modulators lasR-rhlR (e.g. DK02, 
DK19, and DK01) genes in most of the late isolates or 
through mutations in the virulence modulator gacS/retS 
(e.g. ladS and pprA for DK06). In the DK19 lineage, 1 isolate 
(P07L) had a deletion in lasR with drastic effects on the tran
scriptional program, converting the transcriptome to that 
described for the DK02 lineage (Fig. 1d; supplementary 
fig. S7, Supplementary Material online). But, the lasR-rhlR 
mutation alone could not explain the drastic reduction of 
HSL and virulence-related moieties observed in late isolates 
(e.g. phenazines), as shown for the PAO1 RegMutΔlasR 
strain with a lasR deletion, which shows a reduction of 
QS, less drastic than what is observed in the late isolates. 
It is therefore likely that the mutational profiles acquired 
during persistent infection may comprise loss of function 
mutations within the regulatory networks implicated in 
the modulation of QS.

QS downregulation was observed mainly in isolates, 
which were obtained many years after infection of the pa
tient’s airways (e.g. 1 to 3 decades). This may suggest that 
at early times, QS may be important for the establishment 
of the infection. In fact, reduction of QS is usually asso
ciated with increased probability of persistent infection 
(Hoffman et al. 2009). During the progress of the infection 
in time, the CF airways show biotic and abiotic physiologic
al variations. Usually, there is a dysregulated immune sys
tem (e.g. increase the population of neutrophils and 
immune cells) and changes in the biotic environment in 
the lung, associated with decreases in microbiological di
versity and dominance of 1 or a few opportunistic bacteria 
(Rossi et al. 2021). Moreover, expression of virulence 

factors and QS molecules may be energetically costly, 
and due to fitness pressure, loss-of-function mutations 
are acquired when the population diversity declines. 
Therefore, it is possible that the evolutionary convergence 
observed in the isolates could be related to a similar select
ive force governing the CF lung environment at a late time 
as a response to an ecophysiological variation (Luján et al. 
2022).

Although the production of acyl-homoserine lactone 
and the transcriptional network modulated by AHLs was 
eliminated in most of the late isolates, some 
QS-regulated molecules were synthesized, probably inde
pendently of the QS network. Among the molecules pro
duced by the Pa isolates at late time points, siderophores 
and quinolones could be associated with specific function
al roles of these molecules. For example, siderophores, 
commonly known as metal chelators implicated in iron 
and other metals’ homeostasis, were produced by all the 
isolates, at least 1 type (e.g. pyoverdine vs. pyochelin). 
Moreover, HQNO and other AQNO quinolones are redox 
molecules implicated in the modulation of the immune 
response and virulence factors for other bacterial warfare 
(Lin et al. 2018). It is possible that the selective value of 
AQNOs is related to immune modulation more than to 
virulence, as the more virulent-associated molecules phe
nazines/pyocyanin and rhamnolipids (Glasser et al. 2014) 
showed a drastic decrease with time. In summary, both 
iron homeostasis modulation and probably immune 
modulation may be key features for the adaptation of Pa.

Finally, associating evolutionary data with patient in
formation could be used as a proxy for the development 
of biomarkers to determine the patient's prognosis and/ 
or disease development. We believe that evolutionary 
studies like the one presented here could help pinpoint 
genomic determinants associated with pathway-specific 
selectivity, providing an easier genomic–phenotypic as
sociation. Moreover, it could provide a proper biomarker 
of the infection stages and improve treatment options 
for the patients.

Materials and Methods
Pa CF Isolate Collection, Ethics Approval, and 
Consent to Participate
Clinical isolates were obtained from sputum samples from 
9 pwCF attending or that have attended the Copenhagen 
Cystic Fibrosis Center at University Hospital Rigshospitalet, 
Copenhagen, Denmark. Sputum sampling is part of rou
tine clinical visits in the CF clinic and is not performed 
for the purposes or intent of this research. The use of 
the isolates was approved by the local ethics committee of 
the Capital Region of Denmark (Region Hovedstaden; regis
tration number H-21078844). Isolation and identification of 
Pa from sputum were carried out as previously described 
(Holm et al. 2021). The Pa collection included a pair of iso
lates from each of the patients, 1 taken at the beginning of 
the chronic infection and 1 taken after a period of 15 to 
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40 yr depending on the patient/lineage. The time in which a 
pair of isolates was collected is summarized in Table 1.

Laboratory Bacterial Strains
Pa reference strain PAO1 was used in this study together 
with 2 isogenic mutants (Regmut and RegmutΔlasR) 
previously constructed in the lab associated to DK02 
evolutionary history (Damkiær et al. 2013). Regmut, con
sisted of a triple mutant based on specific mucA-, algT-, 
and rpoN alterations, and RegmutΔlasR included an ex
tra deletion of lasR gene, giving a quadruple mutant 
configuration.

Comparative Genomics
Genomic DNA was extracted and purified from over
night (ON) liquid cultures of bacterial single colonies 
using a DNeasy Blood and Tissue kit (Qiagen). 
Genomic DNA libraries were prepared using a Nextera 
XT DNA Library Prep Kit (Illumina), and libraries were se
quenced on either a MiSeq (69 libraries) or NextSeq 500 
platforms (84 libraries), generating 250- or 150-bp 
paired-end sequencing reads, respectively. Sequencing 
reads were trimmed, and low-quality reads and potential 
contamination from adapters were removed using 
Trimmomatic (v0.35) tool (Bolger et al. 2014). Genomic 
analysis was conducted by BacDist (Gabrielaite and 
Maanmi 2020) to identify genomic variants relative to 
PAO1 reference genome (NCBI: NC_002516.2). BacDist fil
tered mutations to only retain variants with a mapping 
quality of at least 50, a minimum coverage of 10 and a 
minimum fraction of 50% of reads supporting the variant, 
excluding the mutations shared by all isolates (>80% of 
reads supporting the variant) at a given position. 
Variations unique to each clone belonging to the same lin
eage were used to determine potential transmissions and 
to estimate an average evolutionary distance.

Phylogeny Reconstruction of CF Isolates
Evolutionary analyses were conducted in MEGA11 (Tamura 
et al. 2021). For this purpose, concatenated sequences of 
only the SNPs of the 19 CF isolates were aligned to the posi
tions of the nucleotides in the genome of the reference strain 
PAO1. There were a total of 62,987 positions in the final da
taset. The evolutionary history was inferred by using the 
maximum likelihood method and general time reversible 
model (Tamura et al. 2021) and 500 bootstraps were set 
for analysis confidence. The bootstrap tree is shown.

Estimation of Bacterial Evolution Rates
Evolution rates were assessed as the number of SNPs per 
genome size per generation as previously (Yang et al. 
2011). Generation times, assembly size, and estimation of 
bacterial evolution are summarized in supplementary 
table S2, Supplementary Material online. For SNPs, the 
number of missense, stop, and synonymous mutations ac
cumulated between the pairs of early and late isolates was 
used. For the estimation of bacterial generations, we 

calculated the growth rate of each isolate in SCFM media 
that gave us an average doubling time of 140.04 ± 49 min. 
This value was already on the range of previously published 
data from in vivo doubling time ratios (Yang et al. 2008). 
The number of bacterial generations elapsed over time 
was calculated as the sum of generations from the year 
of isolation of the early to the late isolate. As a proxy of 
genome size for each lineage, we assembled the genomes 
of 1 single pair of isolates: for DK01(P09I-P09L), DK02 
(P02E-P02L), DK06 (P04E-P04L), and DK19 (P07E-P07L). 
For this, paired-end reads were assembled into contigs 
using Spades (Bankevich et al. 2012) and quality was eval
uated with QUAST (Gurevich et al. 2013).

Library Preparation and RNA Sequencing
Single colony cultures were grown in SCFM media (inocu
lation with OD600 = 0.05) at 37 °C under shaking conditions 
(200 rpm) to mid-exponential phase (OD600 = 0.35 to 0.5). 
RNA was extracted with RNeasy Mini Kit (Qiagen) accord
ing to the manufacturer's instructions. Transcription 
was blocked by applying RNA Protect Bacteria solution 
(Qiagen). RNA was quality checked using an Agilent 
Bioanalyzer 2100 (Agilent Technologies) (RNA integrity 
number > 9). For all other samples used in this study, 
100 ng of total RNA was used as input for the generation 
of RNA libraries with Illumina Stranded Total RNA Prep, 
Ligation with Ribo-Zero Plus Kit, and following the manu
facturer’s instructions. After quality and size distribution 
check on DNA HS chips on an Agilent Bioanalyzer 2100 
machine, libraries were pooled in equimolar amounts 
and sequenced on an Illumina NextSeq 500 machine. An 
average of 10 to 15 million reads with 2 × 75-bp-long reads 
were obtained per sample. Mapping was performed using 
the PA14 genome as a reference.

Comparative Transcriptomics
Reads were trimmed, and low-quality reads and poten
tial contamination from adapters were removed using 
Trimmomatic (v0.35) tool (Bolger et al. 2014). Reads 
were further processed using SortMeRNA tool (v2.1) 
(Kopylova et al. 2012) to remove reads generated from 
residual rRNA transcripts. As DK19 is the PA14 lineage, 
and to have a better read alignment, reads were mapped 
against UCBPP-PA14 genome (NCBI: NC_008463.1) using 
BWA-MEM algorithm, and duplicated reads were marked 
using Picard tools. Reads mapping on each annotated 
coding sequence were counted using htseq-count v0.7.2 
(Anders et al. 2013) imported and processed in RStudio 
(RStudio Team 2020).

Transcriptional Analysis
Counts were normalized using log2-negative binomial trans
formation performed using the rld transformation function 
contained in the R package DESeq2 (Love et al. 2014) with 
the option blind set as “true.” Normalized counts were used 
to evaluate whole transcriptome similarities using hierarch
ical clustering analysis (HCA), PCA, and k-mean clustering 
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on selected normalized data. HCA was performed using the 
function “pheatmap” in the R package complexheatmap 
(Gu et al. 2016). Pearson's correlation coefficient (cor()) 
was applied on the normalized data as a distance method. 
PCA on normalized reads counts was performed using 
prcomp() function with the scale option set as “false.” 
DEG analysis between transcriptomes was performed using 
the R package DESeq2, considering statistically significant 
genes with a Log2(fold change) ≥ |2| and an adjusted P ≤  
0.01 (Love et al. 2014). DEGs were inspected and functional 
class enrichment was performed using the provided the R 
package ClusterProfiler (Yu et al. 2012) for KEGG and GO 
categories with default settings. The convergent enriched 
pathways, similar up/downregulation for each pair of sam
ples, were evaluated by quantifying the frequency that en
riched categories appear in at least 2 pairs of samples.

Comparative Metabolomics
Single colonies were isolated on Luria Bertani (LB) agar 
plates and transferred to a tube containing 2 mL SCFM +  
GlcNAg medium. This preculture was normalized to 
OD600 = 0.05 using fresh medium and added to a flask. 
Samples were incubated at optimal temperature/shaking 
conditions. Bacterial cultures were isolated to the stationary 
phase when no OD variations were observed, OD600 = 2 
to 3, t = 24 h for early strains and 36 h for late isolates. 
For all the isolates, 2 mL of actively growing bacteria 
were centrifuged (6,000 × g, 10 min), and the supernatant 
and pellet were used for further experimentation. The 
supernatant was 0.22 µm filtered and concentrated on a 
speed vacuum at room temperature. Dried pellets were 
stored at −80 °C. The pellets were concentrated 10 times 
and resuspended 50:50 MQ water:methanol. The samples 
were run on a Vanquish Duo UHPLC binary system 
(Thermo Fisher Scientific) coupled to IDX-Orbitrap Mass 
Spectrometer (Thermo Fisher Scientific, USA). The com
pound separation was achieved in reverse phased using a 
Waters ACQUITY BEH C18 (10 cm × 2.1 mm, 1.7 μm) col
umn equipped with an ACQUITY BEH C18 guard column 
kept at 40 °C and mobile phase consisting of MilliQ water  
+ 0.1% formic acid (A) and acetonitrile + 0.1% formic acid 
(B) at a flow rate of 0.35 mL/min as previously described 
(Kildegaard et al. 2021). The MS acquisition was set in 
positive-heated electrospray ionization mode with a volt
age of 3,500 V acquiring in full MS/MS spectra (data- 
dependent acquisition-driven MS/MS) in the mass range 
of 70 to 1,000 Da. The DDA acquisition settings were as fol
lows: automatic gain control target value was set at 4 × 105 

for the full MS and 5 × 104 for the MS/MS spectral acqui
sition; the mass resolution was set to 120,000 for full scan 
MS and 60,000 for MS/MS events. Precursor ions were frag
mented by stepped high-energy collision dissociation 
using collision energies of 20, 40, and 60. All the analyses 
were carried out in biological triplicates. LC-MS chroma
tograms were aligned and quantified using Mzmine with 
default parameters (Pluskal et al. 2010). Masses were fur
ther processed in R. Missing values were given a 0 value. 

For unsupervised clustering, acquired masses were nor
malized in R with a negative binomial normalization, ap
plying a variant stabilizing normalization inside the 
DESeq2 package (Love et al. 2014), with the option blind 
set as “true.” Molecular masses were confirmed by com
paring retention time to commercial standards (e.g. 
oxo-C12-HSL, phenazines, pyocyanin, and rhamnolipids), 
development of pathways synthetic mutants (e.g. dele
tion pqsABC and pvdI quinolones and pyoverdine, re
spectively), and virtual libraries (e.g. rhamnolipids) 
(Wang et al. 2016). Masses were validated by analyzing 
their fragmentation profile to that previously stored in 
the GNPS Library (Wang et al. 2016). Statistical analyses 
were performed with unpaired Log10 multi-t-test inside 
GraphPad. Differences were considered statistically sig
nificant at P < 0. 05.

Inhibitory Assay
A preculture of Bacillus subtilis was grown ON and normal
ized to OD600 = 0.01. Two hundred microliters of cultures 
were spread to LB agar. The plates were dried and 
Whatman paper discs were attached. Then, 5 µL of the 
concentrated bacteria filtered and concentrated 10 µL 
supernatant was added to the discs. Plates were incubated 
at 37 °C ON. As a positive control, 1,500 µg of ciprofloxacin 
was added (5 µL at 300 µg/mL) and, as a negative control, 
fresh concentrated SCFM medium.

Antibiotic Susceptibility Testing
Microdilution test was carried out as described by the 
EUCAST guidelines (The European Committee on 
Antimicrobial Susceptibility Testing 2023). Briefly, bac
terial isolates were grown ON at 37 °C in Müller–Hinton 
broth. The following day, inoculum was corrected to seed 
5 × 105 CFU/mL in microtiter plates containing serial fold 
dilutions of either ceftazidime, tobramycin, or ciprofloxacin 
using Müller–Hinton broth as diluting media. MIC was cal
culated as the lowest concentration of antimicrobial agent 
that completely inhibited the growth of the organism as de
tected by the unaided eye. The experiment was performed 
in duplicates for each isolate.

Frequency of Mutation to Rifampicin Resistance
Bacterial isolates were grown ON in 3 mL LB medium, and 
then 1 mL was centrifuged at 3,000 rpm for 10 min and re
suspended in 100 μL LB medium. Serial fold dilutions were 
plated on LB plates containing 300 μg/mL rifampin and on 
LB plates without rifampicin. Numbers of CFU were 
counted after incubation at 37 °C for 48 h (24 to 36 h for 
fast growers and 48 h for slow growers). Mutation fre
quency was calculated based on the number of colonies re
sistant to rifampicin in every 108 viable cells (counted on LB 
plates). An isolate was considered a hypermutator if the 
mutation frequency after exposure to rifampin was 20 
times higher than the mutation frequency of the reference 
strain PAO1 (Oliver et al. 2000). Frequencies were deter
mined from 2 independent experiments.
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