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Can biotechnology lead the way toward a sustainable 
pharmaceutical industry?☆

Deniz Etit1, Samir Meramo1, Ólafur Ögmundarson2,  
Michael K Jensen1 and Sumesh Sukumara1

The impact-intensive and rapidly growing pharmaceutical 
industry must ensure its sustainability. This study reveals that 
environmental sustainability assessments have been 
conducted for only around 0.2% of pharmaceuticals, 
environmental impacts have significant variations among the 
assessed products, and different impact categories have not 
been consistently studied. Highly varied impacts require 
assessing more products to understand the industry’s 
sustainability status. Reporting all impact categories will be 
crucial, especially when comparing production technologies. 
Biological production of (semi)synthetic pharmaceuticals could 
reduce their environmental costs, though the high impacts of 
biologically produced monoclonal antibodies should also be 
optimized. Considering the sustainability potential of 
biopharmaceuticals from economic, environmental, and social 
perspectives, collaboratively guiding their immense market 
growth would lead to the industry’s sustainability transition.
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The proliferating and polluting 
pharmaceutical industry
The essentiality of sustainable development as defined 
by the United Nations [1] has become increasingly clear, 
and a sustainable industry is a key part of ensuring it 

[2,3]. Sustainability must include three integrated pillars: 
economic, social, and environmental sustainability [4]. 
Environmental sustainability can be quantified based on 
12 impact categories: climate change (CC), abiotic re-
source use, photochemical ozone formation, ozone de-
pletion, ecotoxicity, human toxicity, acidification, 
eutrophication, land use, water consumption, particulate 
matter formation, and ionizing radiation [5]. Among 
these, CC has been given particular attention to limiting 
global warming below the internationally agreed limit of 
1.5°C [3,6]. In parallel, the importance of comprehen-
sively ensuring the sustainability of all the environ-
mental categories has become clear [7•,8].

The pharmaceutical industry (per unit of product mass) is 
among the most resource-, energy-, and pollution-intensive 
industry sectors [9,10••,11], and the consumption of 
pharmaceuticals has been increasing steadily [12]. In the 
last decade, global per capita pharmaceutical consumption 
in defined daily dose (DDD), as standardized by the 
World Health Organization [13], has shown a steady rise 
with a compound annual growth rate (CAGR) of 2.4% [12]
(Figure 1a). This trend is expected to continue in parallel 
with the aging population and widening global access to 
health care [12,14]. Major bulk chemical industries have not 
followed the same trend, as illustrated by per capita pro-
duction plastics [15–17], fertilizers [18], paper materials [19], 
and cement [20,21] (Figure 1a). The infeasibility of storage, 
recycling, or reuse of pharmaceuticals, also contrasting most 
bulk chemicals, necessitates ensuring the responsible pro-
duction of pharmaceuticals toward a sustainable future. 
Regarding the environmental impact intensity, Figure 1b 
illustrates that the CC impacts of pharmaceuticals are de-
grees of magnitude apart from bulk chemicals, as compared 
by different anesthetic active pharmaceutical ingredients 
(APIs) and bulk plastic types [10••,22].

Reducing dependencies on fossil-based resources and 
often characterized by lower CC impacts, biological 
production routes are considered central to a sustainable 
industry ecosystem [7•]. Accordingly, there has been 
growing investment in exploring bio-based production 
routes to replace traditional alternatives [7•,23••], and    
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novel bio-based processes are being developed in var-
ious industry segments, such as polymers [24], con-
struction materials [25], platform chemicals [26], as well 
as pharmaceuticals [27]. From a scientific perspective, 
methodologically quantifying the impacts of any pro-
duction route is crucial to guide and ensure their sus-
tainability performance [7•,8].

This review presents current reporting on the pharma-
ceutical industry’s sustainability. Biotechnology’s po-
tential for cleaner production is described by analyzing 
the data by production routes. In addition, the bio-
pharmaceutical industry’s status is presented with the 
merits and challenges of biotechnology for sustainable 
production. Guidelines of interdisciplinary collaboration 
are described toward optimally guiding the pharmaceu-
tical industry toward sustainability.

What do we (not) know about the 
sustainability state of the pharmaceutical 
industry?
Assessing the environmental sustainability performance of 
commercial products is necessary to guide product innova-
tion and industries’ transition toward sustainable develop-
ment. Life cycle assessment (LCA) is a scientific tool 
identifying hotspots and trade-offs within a system life cycle 
[28]. Comprehensive LCA studies cover all life cycle stages 
and relevant environmental impact categories; among them, 

CC has been prioritized globally. However, categories such 
as eutrophication, human toxicity, and/or water consumption 
are highly relevant for the pharmaceutical sector to ensure 
that it does not overlook unexpected environmental bur-
dens [29]. Recently, performing LCA of biochemical pro-
duction at early stages has been addressed as an approach to 
shifting biochemical production to a more sustainable in-
dustry [7•]. It involves identifying key environmental hot-
spots, estimating commercial-scale process data for early- 
stage LCA, and using environmental performance outcomes 
to promote more sustainable alternatives. Parallelism could 
be brought to pharmaceuticals, so the authors see an op-
portunity to implement early-stage sustainability assess-
ments to guide the pharmaceutical industry’s sustainability 
transition. From a global perspective, the sustainability 
challenge should be translated into planetary impact quan-
tification to ensure the estimation of humankind’s safe op-
erating space (SOS) before it irreversibly damages the 
biosphere. These limits were provided by the planetary 
boundaries framework [30], where the guidance of phar-
maceuticals should also consider its own SOS.

We analyzed the environmental assessments concerning 
pharmaceuticals in the literature (Table 1) to illustrate the 
present performance of this industry by reporting assessed 
pharmaceutical compounds and LCA impact categories as 
classified by Hauschild et al. [5]. Accordingly, 24 publica-
tions evaluated 36 specified pharmaceuticals, two APIs with 

Figure 1  
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Market and environmental impact trends among different product srgments (a) Indexed market trends for global pharmaceuticals consumption in 
DDDs [12] and plastics [15–17], fertilizers [18], paper materials [19], and cement [20] production in mass per capita (global population data were 
referred to the United Nations [21]). (b) Comparative CC impact of different anesthetic APIs [10••] and different plastic polymers [22].  
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Table 1 

Published environmental impact assessment studies of pharmaceuticals by the compound and studied impact categories. In the compound 
backgrounds, red, blue, and green, respectively, represent synthesis, extraction/semisynthesis, and fermentation production routes 
[10••,11,32-34,38,40,41,42•,54-59,60•,61-67, 68•]. 

Study Compound   Impact Categories [5] Categories

Studied 

(%) 
Climate  
Change

Photochemical  
Ozone 

Formation

Ozone 
Depletion

Abiotic 
Resource 

Use
Ecotoxicity

Human 
Toxicity

Acidification Eutrophication
Land 
Use

Water  
Use

Particulate 
Matter 

Formation

Ionizing
Radiation

 Wang et al. [32] Ibuprofen ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% 
 Sharma et al. (I) [54] Paracetamol ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 92% 
 Sharma et al. (II) [40] Paracetamol ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 92% 
 Pietrzykowski et al.[55] mAb (unspecified) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 92% 
 Cespi et al.[56] Sildenafil ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 92% 
 Amasawa et al.[42](•) Nivolumab ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 83% 

 Güne & engül [38] 

Chlorhexidine   
gluconate 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 83% 
Benzydamine 
hydrochloride 

 Ott et al. (I)[57] Rufinamide ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 75% 
 Ott et al. (II)[58] Confidential API ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 75% 
 Kong et al.[59] Enrofloxacin ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 67% 
 Riazi et al.[60](•) Isostearic Acid ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 67% 
 Alviz & Alvarez[61] Aspirin ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 67% 
 Yang et al.[62] Ciprofloxacin 

hydrochloride ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 67% 
 Harding et al.[63] Penicillin ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 67% 
 Jimenez-Gonzalez[64] Sertraline ✓ ✓ ✓ ✓ ✓ ✓ ✓ 58% 
 Lee et al.[65] 4-d-Erythronolactone ✓ ✓ ✓ ✓ ✓ ✓ ✓ 58% 
 McAlister et al.[66] Morphine ✓ ✓ ✓ ✓ ✓ ✓ 50% 

 Kim et al.[67] 
3 pharmaceutical 
enzymes 
(confidential) 

✓ ✓ ✓ ✓ 33% 

 De Soete et al.[34] Tramadol ✓ ✓ ✓ ✓ 33% 
 Renteria Gamiz et al.[68](•) Infliximab ✓ ✓ ✓ 25% 
 Bunnak et al.[41] mAb (unspecified) ✓ ✓ 17% 

 Parvatker et al.[10](••) 

Lidocaine 

✓ 8% 

Bupivacaine HCl  

Ropivacaine HCl 

Phenylephrine HCl 

Fentanyl 

Ephedrine HCl 

Succinylcholine 

Ondansetron 

Midazolam 

Glycopyrrolate 

Rocuronium bromide 

Epinephrine 

Remifentanil 

Sugammedex 

Ketamine 

Dexmedetomedine 

Hydromorphone 

Morphine 

Propofol 

 Brunet et al.[33] Penicillin ✓ 8% 
 Wernet et al.[11] Confidential API ✓ 8% 
 Frac�on of pharmaceu�cals [31]

 with environmental assessment: 

0.2%
100% 71% 67% 67% 67% 67% 67% 63% 46% 42% 33% 21%

Category Inclusion (%) 
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confidential identities, three unspecified pharmaceutical 
enzymes, and two unspecified monoclonal antibody (mAb) 
production processes. Therefore, considering more than 20 
000 Food and Drug Administartion–approved drugs [31], 
environmental sustainability assessments have only been 
conducted for approximately 0.2% of the existing com-
pounds (Table 1).

Regarding different LCA impact categories (Table 1), only 
the CC category was reported in all (100%) of the found 
publications. Photochemical ozone formation (71%), ozone 
depletion (67%), abiotic resource use (67%), ecotoxicity 
(67%), human toxicity (67%), acidification (67%), and eu-
trophication (58%) were reported in nearly two-thirds of the 
studies. Land use (46%) and water consumption (42%) 
were, respectively, assessed in circa half and two-fifths of the 
studies. Particulate matter formation was considered in one- 
third (33%) of the studies, and ionizing radiation was the 
least considered category (21%). Since the performance of 
different impact categories is not correlated, that is, a pro-
duct’s relatively low impact in one category does not in-
dicate likewise small impacts in other categories, 
consideration of different impact categories is crucial to 
understanding the industry’s sustainability status.

Only one study [32] covered the results of all the environ-
mental impact categories, while three studies exclusively 
reported CC impacts [10••,11,33]. The remaining 19 studies 
reported the outcomes of multiple but not all the impact 
categories. In addition, 23 of the 24 studies considered the 
life cycle stages by the production line (i.e. cradle-to-gate), 
while one study [34] further included the distribution to the 
pharmacies stage (cradle-to-pharmacy gate). Expanding the 
scope of the studies to cover the full life cycle (i.e. cradle-to- 
grave) is essential to optimize the industry holistically, as the 
potential impacts of storage [9,35], use [36], and end-of-life 
[9,36,37] stages have been emphasized for the pharmaceu-
tical industry. Moreover, as illustrated in Figure 1b, the 
magnitude and standard deviation of the reported CC im-
pacts of pharmaceuticals, even in the same drug category as 
anesthetics, vary drastically. Thus, it is necessary to assess 
the compounds individually rather than predicting current 
and future impacts based on existing studies.

Pharmaceuticals feature especially high impacts in ecotoxi-
city [32,38,39], human toxicity [32,38–40], and water con-
sumption [40–42•] categories. Hence, considering these 
categories will be especially important to guide the phar-
maceutical industry toward sustainability. The European 
Commission has recently emphasized the inclusion of the 
ecotoxicity and human toxicity categories in environmental 
assessments [43]. In relation to the planetary boundaries 
framework (vide supra), humanity has transgressed the 
novel entities boundary, which covers ecotoxicity and 
human toxicity categories [44]. Furthermore, fluorinated 
compounds of different bonding types comprise roughly 
20% of all pharmaceuticals [45] due to their certain 

properties (e.g. increased bioavailability, tailored molecular 
steric effects [46]), with production routes potentially indu-
cing per/polyfluoroalkyl substance (PFAS) streams. Though 
the classification of halogenated bonds regarding their con-
sideration as PFAS is under scientific debate [47], environ-
mental assessment studies of them demonstrated 
particularly high ecotoxicity and human toxicity impacts 
[48,49]. In addition to the release of pharmaceuticals into 
water systems during their production phase, unmetabolized 
pharmaceuticals from domestic and hospital use also pollute 
water systems, harmfully affecting the ecosystem quality as 
well as public health [9,50]. Therefore, concerns have been 
emerging about the contamination of water systems by 
pharmaceuticals [50,51], with antibiotics, anti-inflammatory 
drugs, psychiatric drugs, and β-blockers usually reported 
among the most detected products causing harmful con-
sequences, including evolution of antibiotic-resistant bac-
teria and endocrine system dysfunctions in living organisms 
[37,50,51]. Traditional wastewater treatment processes 
usually are not designed to remove these compounds 
[50,51], and environmental assessments indicated that 
pharmaceuticals and personal care products are the major 
contributors to the toxicity of water systems [37]. Improved 
water treatment technologies to clear pharmaceuticals (e.g. 
catalytic oxidation, adsorption, membrane separation) are 
currently under development [50]. Likewise, problems re-
lated to freshwater shortages have been increasingly re-
ported globally [52,53], and freshwater consumption 
planetary boundary has already been detected to be beyond 
the Earth’s carrying capacity in several regions (including 
the Mediterranean, India, North China, California) as well 
[30].

Briefly, it is revealed that not only a minor fraction of 
pharmaceuticals has been environmentally assessed but 
also that the categories, except CC, have not been con-
sistently included in the studies. To have a clear un-
derstanding of the sustainability status of the 
pharmaceutical industry, more pharmaceuticals should 
be assessed, and the assessments should be compre-
hensive, involving all the environmental impact cate-
gories.

The potential of biotechnology for a 
sustainable pharmaceutical industry
Biopharmaceuticals refer to the pharmaceuticals of biological 
origin, produced using engineered host organisms, including 
plants, animals, bacteria, and fungi [69–71]. Regarding their 
development, penicillin production using Penicillium chryso-
genum is considered the first biologically produced pharma-
ceutical on an industrial scale during the mid-20th century 
[23••,72]. The introduction of genetic engineering techni-
ques in the 1970s grew the biopharmaceutical market, a 
noteworthy example being industrial insulin production by 
recombinant Escherichia coli in 1982, the first licensed drug 
manufactured via recombinant DNA technology [23••,73]. 
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Entering the 2000s, biopharmaceuticals production was ac-
celerated by the genomics revolution enabling modeling of 
the metabolic networks [23••,74–76] and further developed 
by advancing synthetic biology [23••,74–76] and metabolic 
engineering [23••,75,76] techniques. More recently and 
based on all these advancements, the longest metabolic 
pathway ever refactored from a plant to a microbial factory 
(Saccharomyces cerevisiae) showcased proof-of-concept micro-
bial production of the two precursors, vindoline and cath-
aranthine, for the semisynthesis of the anticancer drug 
vinblastine [77••,78]. The advancing biotechnologies, to-
gether with the increasing focus on environmentally benign 
production, particularly related to renewable feedstocks that 

bioprocesses are known for, have expanded the bio-
pharmaceutical sector significantly [23••,79•,80].

Pharmaceutical production processes can be classified based 
on the selected feedstock and the processing route (Figure 
2a). Nonrenewable feedstocks originate from fossil-based 
resources, whereas renewable feedstocks include biomass- 
based sources and carbon dioxide, ensuring the recirculation 
of end-of-life carbon in the future feedstock 
[8,23••,27,79•,81,82]. Synthetic pharmaceuticals are pro-
duced from nonrenewable feedstocks via chemical catalysis 
[10••,74,79•]. Extraction refers to extractive purification of 
target molecules from natural resources, mainly plants 

Figure 2  

Current Opinion in Biotechnology

Classification and environmental impact comparison of pharmaceutical production routes (a) Pharmaceutical production routes by feedstock type and 
processing. (b) A Sankey diagram depicting the classification of pharmaceutical production routes found in the reviewed LCA studies. (c) CC impact 
(kgCO2eq/kg) data organized based on mean and range of values provided in the found LCA studies. Completely different processes based on 
different feedstocks [60•] or eventual different products [67] were considered as different data points. In other cases when batch and continuous 
processing is compared [41,42•,65], minor processing alterations involved such as different solvents [61] or different dosage forms [54] in production 
of the same API or different scenarios based on information availability [63], average of the provided results is used as a single data point. The first 
three data sets are based on the processing routes, synthesis (n = 24), extraction/semisynthesis (n = 4), and fermentation (n = 8). The final two data sets 
show the outcomes of the fermentation processes when mAb production routes excluded (n = 5) and solely the mAb production routes (n = 3), 
respectively.
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[66,77••]. In semisynthesis, a natural product, usually a 
plant extract or a microbially produced precursor thereof, is 
chemically converted into the target molecule [60•,76,77••]. 
Chemical routes also usually involve harsh separation and 
purification steps, resulting in toxic outlet streams 
[10••,66,80]. Finally, biopharmaceuticals are biologically 
produced by enzymes in microbial chassis from renewable 
feedstocks [8,79•,80]. Fermentation processes refer to 
growing the host organism (a.k.a. cell factory) producing the 
target compound, while enzymatic biocatalysis refers to the 
usage of purified enzymes in vitro for biocatalysis, offering 
more flexible process conditions by eliminating cell con-
straints [67,79•].

The processing routes of the analyzed sustainability 
studies highlight that 34 of the assessed production 
routes were based on chemical synthesis from materials 
of nonrenewable origin (Table 1; Figure 2b). Four routes 
were based on the extraction of renewable feedstocks, 
three among which were chemically further converted 
into the target compound via semisynthesis. Nine routes 
were based on fermentation-based biomanufacturing 
using cell factories, whereas none of the studies involved 
enzymatic biocatalysis processes utilizing enzymes in 
vitro without the host organism. Provided data by impact 
categories were organized to gain insight into environ-
mental performance by process type. The outcomes re-
garding the CC category are discussed, whereas the data 
were considered insufficient to draw meaningful con-
clusions for the remaining impact categories. According 
to the outcomes (Figure 2c), fermentation-based pro-
cessing was observed to have the highest mean CC im-
pact value of 29 900 kgCO2eq/kg, followed by 
extraction/semisynthesis routes by 710 kgCO2eq/kg and 
chemical synthesis by 351 kgCO2eq/kg. However, it is 
noted that mAbs (nivolumab, infliximab, other un-
specified mAb products) have significantly higher CC 
impacts compared with the remaining fermentation- 
based products (pharmaceutical enzymes, penicillin). 
Therefore, fermentation-based routes are further sub-
grouped as mAb products and the remaining biologics 
(Figure 2c). When mAbs excluded, fermentation routes 
resulted in a lower CC impact than most synthetic/ 
semisynthetic products, with a mean of 20 kgCO2eq/kg. 
The large CC impact of mAb products is also empha-
sized, with a mean of 79 700 kgCO2eq/kg and a range of 
6607–207 000 kgCO2eq/kg. Hence, two preliminary 
conclusions can be obtained from this analysis. First, 
biologically synthesizing pharmaceuticals originating 
from synthesis and extraction/semisynthesis routes can 
be promising for their cleaner production. Second, re-
garding the very high environmental impacts of mAbs, 
also given that mAbs are among the most purchased 
pharmaceuticals [70,83], particular attention should be 
given to developing strategies to optimize their pro-
duction. For instance, substituting animal-sourced ma-
terials in their production media can significantly reduce 

the environmental impacts of mAb production [68•]. 
Similar analyses can be made for the remaining impact 
categories after the collection of the relevant data. For 
instance, as pharmaceuticals tend to have higher en-
vironmental impacts in ecotoxicity and human toxicity 
categories (vide supra), comparing synthetic halogenated 
API production routes with novel biological routes (e.g. 
engineering cell factories capable of utilizing haloge-
nated building blocks or incorporating halogenase en-
zymes into them to produce target APIs from natural 
nutrients [46]) could affect their environmental perfor-
mance with potentially different PFAS flows (e.g. due to 
different reaction efficiency, process control, etc.).

Biopharmaceuticals also offer immense market oppor-
tunities from an economic perspective. The global bio-
pharmaceutical market has grown from $139 billion in 
2012 to $346 billion in 2021 with a CAGR of 10.7% [84]
and been forecasted to reach $975 billion by 2030 with a 
corresponding CAGR of 12.2% [85] (Figure 3a). In par-
allel, the share of biopharmaceuticals in the overall 
pharmaceuticals market has increased from 24% in 2014 
to 33% in 2020, which is expected to reach 41% in 2028 
[84]. Thus, biopharmaceuticals offer enormous potential 
for the pharmaceutical industry’s sustainability transition 
if their growth is systematically directed with a sustain-
ability vision. Moreover, 57.2% of the biotechnology 
sector comprises biopharmaceuticals [86], demonstrating 
their advantage within the sector considering the accu-
mulated knowledge and infrastructure. Regarding com-
mercialization, as recently reported [87], biologically 
refactored specialty chemicals are better positioned to 
reduce production costs compared to commodity che-
micals. Furthermore, biotechnology is most feasible for 
naturally occurring compounds, as the target genes en-
coding biosynthetic enzymes are already found in nature 
[87]. Since around two-thirds of the pharmaceuticals are 
naturally existing products and their derivatives [88], 
biotechnology offers enormous potential to investigate 
and develop manufacturing routes for pharmaceuticals 
with lowered environmental impact. Guidance from a 
commercial perspective would be involving large phar-
maceutical companies in the initial stages of the novel 
biopharmaceutical technology startups, as such involve-
ments are found to be significantly correlated with 
commercial success [89•].

Concerning social sustainability, biological processing 
offers wider accessibility of pharmaceuticals by a de-
centralized and flexible biomanufacturing supply chain, 
especially via independent and trustable microbial re-
factoring routes replacing location-dependent plant ex-
traction processes that are unstable and, 
correspondingly, expensive [9,46,77••,78,90]. From this 
perspective, also accelerated by the shortages during the 
coronavirus disease 2019 pandemic, the pharmaceutical 
industry has been incentivized to prioritize supply 
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security and reliability [78,91,92]. For instance, 
EuroAPI, a Sanofi-initiated firm focusing on substituting 
Europe’s reliance on external supply by fermentation- 
based manufacturing, is expected to dominate the Eur-
opean small molecule API market [91,92]. Quantitative 
sustainability studies in biotechnology have been usually 
limited to economic and environmental aspects. The 
social life cycle assessment (S-LCA) is a tool analogous 
to LCA that assesses the potential impacts of products 
concerning various societal aspects, including local em-
ployment rate, worker well-being, workplace safety, and 
gender wage equality [93]. Recent advances in in-
tegrating social indicators into the product life cycle have 
enabled the social sustainability assessment of biopro-
ducts [94], though, similar to the environmental assess-
ments, tracking the social impacts beyond the 
consumption phase remains a challenge. Thus, con-
sistently integrating social aspects to quantitative sus-
tainability assessments would elucidate the societal 
benefits of individual production routes. The mentioned 
advantages of biopharmaceuticals regarding the three 
pillars of sustainability are summarized in Figure 3b.

An interdisciplinary collaboration for the 
pharmaceutical industry’s sustainability 
transition
As described, biopharmaceuticals are promising con-
sidering various environmental, technical, economic, and 
social aspects. Moreover, the sector is growing ex-
ponentially, and several reasons add to the optimism for 
commercial success. However, a matter of consideration 

in refactoring biosynthesis of pharmaceuticals in cell 
factories, from here to be referred to as “bio-refactoring”, 
is the extensive research and development (R&D) re-
sources required to develop cell factories capable of 
producing the compound in commercially feasible scales 
with competitive prices. This development usually takes 
more than $50 million of financial and 200 person-years 
of labor resources, with the obtainment of the final strain 
after a 5- to 10-year journey, depending on factors, such 
as the complexity of the integrated metabolic pathway 
and compatibilities with the cellular physiology 
[77••,78,95,96]. Therefore, with biological production 
potentially leading the sustainability transition of the 
pharmaceutical industry, collaboration between sustain-
ability and biotechnology experts is essential to utilize 
our limited R&D resources efficiently. Targeting com-
pounds of high impact and bio-refactoring feasibility will 
be crucial, as well as guiding the novel technologies from 
their early stage to ensure their sustainable development 
while advancing in the technological readiness levels.

The collaboration strategy between sustainability and bio-
technology fields can be conceptualized based on the re-
nowned IPAT (Impact = Population × Affluence × 
Technology) equation (Equation 1) [97], with terms in the 
environmental impact context provided in Equation 2. Re-
ferring to market volume for the overall product amount, 
Equation 3 is given. Thus, conceptual Equation 4 is derived 
to quantify the (dis)advantage of a new technology in terms 
of overall environmental impacts. For example, considering 
the global morphine market of 1.16 kt/year [98,99], 

Figure 3  
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Biopharmaceutical market trends and features(a) Global biopharmaceutical market size over time [84,85]. (b) Mentioned sustainability potentials of 
biopharmaceuticals.  
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substituting the extraction-based production 
(2741 kgCO2eq/kg) [66] with synthetic production 
(1506 kgCO2eq/kg) [10••] would potentially reduce the 
global CC impact for this product by around 1.43 MtCO2eq/ 
year. Environmentally assessing biological morphine pro-
duction [100] could quantitatively showcase its difference 
from the chemical production alternatives. Though such an 
environmental impact comparison of chemical and biological 
production of a pharmaceutical is not found in literature, the 
potential is illustrated by biological polymer production that 
is reported to reduce the environmental impacts by 
36–140% among different polymers [24], which would 
translate into up to 4.45 MtCO2eq/year reduction for global 
morphine market as an example case.

= × ×Impact Population Affluence Technology IPAT equation( ) (1) 

= × ×Impact Population
Product

Population
Impact
Product (2) 

= ×Impact Market volume
Impact
Product (3) 

= ×Impact Market volume
Impact
Product

Impact
Productold new (4) 

Accordingly, an interdisciplinary workflow was de-
signed between biotechnology and sustainability ex-
perts (Figure 4). As visualized, the initial step would 
be a market study by sustainability experts to list the 
products based on their market volume. The next 
objective of sustainability experts is assessing the 
pharmaceuticals with the highest market volume. In 
parallel, biotechnology experts would estimate the 
resources (labor, time, financial) for biorefactoring of 
high-volume pharmaceuticals. The subsequent stage 
is the determination of the target compounds to 
biorefactor via active discussion of experts (e.g. 

Figure 4  
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meetings, panels) based on their respective lists of 
highest priority and feasibility. For compounds found 
infeasible to biorefactor, alternative techniques could 
be sought to mitigate their environmental impacts. 
After determining target compounds, novel bio-based 
technologies contributing to the highest positive sus-
tainability impact, that is, ensuring a minimal impact 
as conceptualized with the )( Impact

Product new
term in Equation 

4, should be collaboratively developed. As recently 
demonstrated [101••], process modeling and analysis 
by sustainability experts, based on the data provided 
by biotechnology experts, is key to optimizing new 
technologies during early-stage process development. 
For instance, if nutrient media for the microbial fac-
tory constitute a significant portion of the environ-
mental impacts, research efforts could focus on 
modifying the strain to grow on more sustainable feed 
alternatives. If the usage of certain solvents in down-
stream purification is adding significantly to the overall 
impacts, solvents with lower environmental impacts 
and/or requiring lower quantities (also considering the 
energy for recycling in such cases) could be in-
vestigated [101••]. For energy-intensive processes, 
production locations with cleaner energy grids could 
be considered [101••]. If initial assessments indicate 
poor performance on water consumption, eventual 
facilities with in situ water treatment and corre-
sponding process modifications (e.g. ensuring compa-
tible streams for biological treatment units considering 
toxicity) can be investigated [101••]. If clean-in-place/ 
steam-in-place operations comprise a considerable 
fraction of the overall impact, continuous processing 
[101••] or single-use biomanufacturing technologies 
[102] could improve the process.

Conclusions
The significantly increasing pharmaceuticals consump-
tion necessitates ensuring the sustainability of this im-
pact-intensive industry. Analyzing the existing 
sustainability assessments of pharmaceutical products 
revealed that only a minor fraction of them is explored, 
and the drastic differences in environmental impacts 
necessitate individual assessments. The inclusion of all 
impact categories will be crucial in understanding the 
current sustainability status of the industry, as well as in 
holistically comparing the benignity of different tech-
nologies. Biologically refactoring (semi)synthetic pro-
duction routes promises to optimize the industry in 
terms of several economic, environmental, and social 
sustainability aspects. To efficiently lead the sustain-
ability transition of the industry, bio-refactoring efforts 
can be targeted to pharmaceuticals with high market 
volume, relative feasibility for bio-refactoring, and high 
current environmental impact. Evaluating and enhan-
cing the sustainability performance of novel technolo-
gies in the early developmental stages is key to ensuring 

their highest contribution to the overall sustainability of 
the pharmaceutical industry.
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