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Abstract

Given a specification of Linear-time Temporal Logic inter-
preted over finite traces (LTLf), the reactive synthesis prob-
lem asks to find a finitely-representable, terminating con-
troller that reacts to the uncontrollable actions of an environ-
ment in order to enforce a desired system specification. In
this paper we study, for the first time, the foundations of reac-
tive synthesis for DECLARE, a well-established declarative,
pattern-based business process modelling language grounded
in LTLf. We provide a threefold contribution. First, we de-
fine a reactive synthesis problem for DECLARE. Second, we
show how an arbitrary DECLARE specification can be poly-
nomially encoded into an equivalent pure-past one in LTLf,
and exploit this to define an EXPTIME algorithm for DE-
CLARE synthesis. Third, we derive a symbolic version of
this algorithm, by introducing a novel translation of pure-
past temporal formulas into symbolic deterministic finite au-
tomata.

Introduction
Linear Temporal Logic (LTL) is one of the most widely stud-
ied modal logics for time, and is interpreted over infinite
state sequences (or traces). Since its introduction (Pnueli
1977), LTL has been extensively employed in a variety of
verification and synthesis tasks. While verification aims at
checking the correctness of an LTL specification over a given
dynamic system, synthesis uses an LTL specification to de-
rive a corresponding correct-by-construction program (in the
shape, e.g., of a Mealy or Moore machine, I/O-transducer, or
circuit) that realizes the specification. Extensive research has
been conducted on different synthesis settings, considering
in particular closed and open (also called reactive) systems,
starting from the seminal works in (Harel and Pnueli 1984)
and (Pnueli and Rosner 1989a). In the reactive setting, the
system (referred to as Controller) interacts with its environ-
ment, which, in turn, can affect the behavior of Controller.
Reactive synthesis is hence modeled as a two-player game
between Controller, whose aim is to satisfy the formula, and
Environment, who tries to violate it. The objective of the
synthesis task is then to generate a program indicating which
actions Controller should take to guarantee the satisfaction
of the LTL specification of interest, no matter which actions
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are taken by Environment. This problem was originally pro-
posed in (Church 1962) and solved in (Buchi and Landwe-
ber 1990) for specifications written in Sequential Calculus. It
was then shown to be 2EXPTIME-complete for LTL specifi-
cations (Rosner 1992). The high theoretical complexity and
practical infeasibility of the original approach, based on the
reduction to solving parity games on deterministic parity au-
tomata, inspired the scientific community to search for prac-
tically interesting fragments of LTL for which the synthesis
problem is computationally more amenable.

In a variety of application domains, the dynamics of the
system consist of unbounded, yet finite, traces (De Giacomo,
De Masellis, and Montali 2014). This has led to the intro-
duction of LTLf (De Giacomo and Vardi 2013) – LTL in-
terpreted over finite traces. LTLf has been extensively stud-
ied within AI, formal methods, and Business Process Man-
agement (BPM) (Pesic and van der Aalst 2006; Fionda and
Greco 2018; Maggi, Montali, and Peñaloza 2020; De Gi-
acomo et al. 2022). In particular, extensive progress has
been recently made in LTLf-based synthesis (Camacho et al.
2018; Zhu, Pu, and Vardi 2019; Bansal et al. 2020; Zhu et al.
2020; Giacomo et al. 2022), where the synthesised program
always terminates (differently from the infinite-trace case).
While the finite-trace semantics makes the problem more
amenable to algorithmic optimization, it does not change
the theoretical complexity of the synthesis problem: LTLf
synthesis is 2EXPTIME-complete (De Giacomo and Vardi
2015). The classical LTLf synthesis algorithm requires to:
(i) encode the formula into a nondeterministic automaton
over finite words (NFA); (ii) turn the NFA into a determin-
istic automaton (DFA); (iii) solve a reachability game, in
which Controller tries to force the game to reach a final state
of the automaton. Each of the first two steps requires, in the
worst case, an exponential amount of time in the size of its
input.

In BPM, LTLf is employed to define the semantics of
one of the most well-studied declarative process modelling
languages, namely DECLARE (Pesic, Schonenberg, and
van der Aalst 2007; Montali et al. 2010). DECLARE is a
pattern-based language: constraints are defined based on a
pre-defined set of unary or binary templates, formalized in
LTLf, conjunctively related to each other. A flourishing line
of research focuses on a variety of reasoning and analysis
tasks for DECLARE, ranging from discovery of DECLARE
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specifications from data representing executions of the pro-
cess to offline and run-time verification of DECLARE spec-
ifications (Fionda and Greco 2018; Di Ciccio and Montali
2022; De Giacomo et al. 2022). Moreover, the importance
of studying DECLARE goes beyond BPM. First, DECLARE
is related to software engineering as its templates were orig-
inally derived from a catalogue of temporal properties dis-
tilled in an empirical software engineering study (Dwyer,
Avrunin, and Corbett 1999). Second, as shown in (De Gia-
como, De Masellis, and Montali 2014), such templates can
be used in reasoning about actions as they are alike temporal
patterns used in planning and, in particular, trajectory con-
straints (Bacchus and Kabanza 2000; Gerevini et al. 2009).

Reactive synthesis in this setting comes as a natural prob-
lem that, surprisingly, has never been studied in the litera-
ture. In this paper, we formalize and study the reactive syn-
thesis problem for declarative, DECLARE process specifica-
tions, providing a threefold contribution.

First, we formalize the reactive synthesis problem of
DECLARE, and use an example to illustrate its importance
for the BPM and AI communities. Our reactive synthesis
problem definition is driven by the following consideration.
It is often neglected that processes are typically enacted by
at least two parties: (i) the organization (and its internal re-
sources) responsible for enacting the process, and (ii) ex-
ternal stakeholders taking uncontrollable, constrained deci-
sions on how to progress with the execution. This calls for
a form of assume-guarantee synthesis for DECLARE: given
a declarative specification (assumption) regulating how the
external activities can be executed, together with a declara-
tive specification (guarantee) constraining executions of in-
ternal activities, the goal is to derive a program (orchestra-
tion) indicating how to ensure that the guarantee is respected
under the hypothesis that the external stakeholders behave
by respecting the assumption. We give a naı̈ve, 2EXPTIME
algorithm, that reduces the problem to LTLf synthesis.

Second, we show how to improve the naı̈ve algorithm and
obtain a singly exponential-time algorithm for DECLARE
synthesis. This refined algorithm is based on the observation
that, starting from pure past temporal formulas, it is possible
to build language-equivalent deterministic finite automata of
singly exponential size (Chandra, Kozen, and Stockmeyer
1981; De Giacomo et al. 2021). In particular, we introduce
for the first time a systematic encoding of all DECLARE pat-
terns into linear-size pure-past formulas of LTLf – a proce-
dure that we call “pastification”, following the terminology
in (Cimatti et al. 2021)). As a by-product, this reveals the
following fundamental properties, of independent theoreti-
cal interest: (i) the reactive synthesis problem of DECLARE
is in EXPTIME; (ii) DECLARE is a fragment of LTLf with a
polynomial pastification algorithm, a result that, as we show,
cannot be achieved for full LTLf.

Third, we show a novel translation from pure-past tem-
poral formulas to symbolic, deterministic automata, which
leads to a purely symbolic version of the previous algorithm.
This new version, which exploits the well-known practi-
cal benefits of the symbolic approach (Burch et al. 1992;
McMillan 1993), opens the possibility of applying reactive
synthesis of DECLARE in practice.

The rest of the paper is organized as follows. ?? re-
views the necessary background. ?? defines the reactive
synthesis problem for DECLARE based on the assume-
guarantee paradigm, and shows a naı̈ve approach for solv-
ing it. ?? presents the EXPTIME algorithm for DECLARE
synthesis, based on the pastification of DECLARE formulas
and ?? shows its symbolic version. Conclusions and future
directions follow. Full proofs for lemmas and theorems can
be found in (Geatti, Montali, and Rivkin 2022).

Background
Linear Temporal Logic over finite traces. Given a set Σ
of proposition letters, a formula ϕ of LTLf is defined as fol-
lows (De Giacomo and Vardi 2013):

ϕ := p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ Boolean connectives
| Xϕ | X̃ϕ | ϕ U ϕ | ϕ R ϕ future modalities
| Yϕ | Zϕ | ϕ S ϕ | ϕ T ϕ past modalities

where p ∈ Σ. The future temporal operators X, X̃, U, and
R are called tomorrow, weak tomorrow, until, and release,
respectively. The past temporal operators Y, Z, S, and T are
called yesterday, weak yesterday, since, and triggers, respec-
tively. We use the standard shortcuts: ⊤ := p ∨ ¬p and
⊥ := p ∧ ¬p (for some p ∈ Σ); Fϕ := ⊤ U ϕ (called
eventually), Gϕ := ⊥ R ϕ (called globally), ϕ1 W ϕ2 :=
ϕ1Uϕ2∨Gϕ1 (called weak until), Oϕ := ⊤Sϕ (called once),
and Hϕ := ⊥ T ϕ (called historically). Hereinafter, LTLfP
shall denote the pure-past fragment of LTLf (the fragment
of LTLf without future temporal operators), and |ϕ| shall de-
note the size (the number of symbols) of any formula ϕ.

Formulas of LTLf over the alphabet Σ are interpreted over
finite traces (or state sequences, or words), i.e., sequences
(2Σ)+. We call general finite trace semantics the interpre-
tation under such structures. Let σ = ⟨σ0, . . . , σn−1⟩ ∈
(2Σ)+. Let |σ| = n be the length of σ. With σ[i,j] (for some
0 ≤ i ≤ j < |σ|) we denote the subinterval ⟨σi, . . . , σj⟩
of σ. The satisfaction of an LTLf formula ϕ by σ at time
0 ≤ i < |σ|, denoted by σ, i |= ϕ, is defined as follows:
• σ, i |= p iff p ∈ σi; σ, i |= ¬p iff p ̸∈ σi;
• σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
• σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2;
• σ, i |= Xϕ iff i+ 1 < |σ| and σ, i+ 1 |= ϕ;
• σ, i |= X̃ϕ iff either i+ 1 = |σ| or σ, i+ 1 |= ϕ;
• σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ;
• σ, i |= Zϕ iff either i = 0 or σ, i− 1 |= ϕ;
• σ, i |= ϕ1 U ϕ2 iff there exists i ≤ j < |σ| s.t. σ, j |= ϕ2,

and σ, k |= ϕ1 for all k, with i ≤ k < j;
• σ, i |= ϕ1 S ϕ2 iff there exists j ≤ i s.t. σ, j |= ϕ2, and
σ, k |= ϕ1 for all k, with j < k ≤ i;

• σ, i |= ϕ1 R ϕ2 iff either σ, j |= ϕ2 for all i ≤ j < |σ|, or
there exists i ≤ k < |σ| s.t. σ, k |= ϕ1 and σ, j |= ϕ2 for
all i ≤ j ≤ k;

• σ, i |= ϕ1 T ϕ2 iff either σ, j |= ϕ2 for all 0 ≤ j ≤ i,
or there exists k ≤ i s.t. σ, k |= ϕ1 and σ, j |= ϕ2 for all
i ≥ j ≥ k.

We say that σ is a model of ϕ (written as σ |= ϕ) iff σ, 0 |= ϕ.
The language (of finite words) of ϕ, denoted by L(ϕ), is the
set of traces σ ∈ (2Σ)+ s.t. σ |= ϕ. We say that two formulas
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ϕ, ψ ∈ LTLf are equivalent iff L(ϕ) = L(ψ). If ϕ belongs to
LTLfP (i.e., pure past fragment of LTLf), then we interpret ϕ
at the last time point of the trace, i.e., we say that σ ∈ (2Σ)+

is a model of ϕ if and only if σ, |σ| − 1 |= ϕ.

The DECLARE Language. DECLARE (Pesic, Schonen-
berg, and van der Aalst 2007; Montali et al. 2010) is a lan-
guage for the declarative specification of flexible processes.
We refer to (Montali 2010; Reichert and Weber 2012) for
a thorough treatment of declarative processes and flexibility
in process management. A DECLARE specification consists
of a set of temporal constraints used to implicitly regulate
which traces conform to the process and which do not: a
trace is conforming if it satisfies all the constraints captured
by the specification. Constraints are defined by instantiat-
ing pre-defined templates on a set of actions, i.e., atomic
tasks representing units of work in the process. This can
be extended to boolean combinations of actions (and results
of this paper seamlessly cover such boolean combinations),
but for the sake of simplicity, we keep single actions. Every
template comes also with a graphical notation, supporting
the visual presentation of DECLARE specifications (Pesic,
Schonenberg, and van der Aalst 2007; Montali et al. 2010).

DECLARE assumes that exactly one action can be exe-
cuted at each time point, and that each execution eventually
terminates. Thus, the semantics of DECLARE (De Giacomo,
De Masellis, and Montali 2014) is given by means of LTLf
interpreted over simple finite traces σ = ⟨σ0, . . . , σn⟩ in Σ+

s.t. |σi| = 1 for any 0 ≤ i < |σ|. We indicate this inter-
pretation as simple finite trace semantics. This can be recast
in the general finite trace semantics by adding the follow-
ing LTLf formula (Montali 2010; Fionda and Greco 2018):
simple(Σ) := G(

∨
p∈Σ p ∧

∧
p ̸=q∈Σ ¬(p ∧ q)).

Table 1 shows the catalog of DECLARE templates, in-
dicating template names (with p and q as placeholders for
actions) and their corresponding LTLf formalization under
the simple trace semantics. From now on, with some abuse
of notation, with “DECLARE pattern” we refer to its corre-
sponding formalization in LTLf, and with “DECLARE spec-
ification” to a conjunction of DECLARE patterns.

Finite-State Automata. Since LTLf is interpreted over
finite traces, its automata-theoretic characterization is
grounded in automata over finite words (De Giacomo and
Vardi 2013). Given an alphabet Σ, σ ∈ Σ∗ is a finite word
(or simply a word). We use two representations of automata,
the (classical) explicit-state one, and a symbolic one.

Definition 1. A nondeterministic finite automaton (NFA) A
is a tuple (Σ, Q, I, δ, F ) s.t.: (i) Σ is a finite alphabet; (ii) Q
is a set of states; (iii) I ⊆ Q is the set of initial states;
(iv) δ : Q×Σ → 2Q is the transition relation; (v) F ⊆ Q is
the set of final states. A deterministic finite automaton (DFA)
is an NFA such that |I| = 1 and δ : Q× Σ → Q.

Given an NFA A with set of states Q, with | A | we de-
note |Q|. Given an NFA A = (Σ, Q, I, δ, F ) and a word
σ = ⟨σ0, . . . , σn⟩ ∈ Σ∗, a run π induced by σ in A is a (fi-
nite) sequence of states ⟨q0, . . . , qn+1⟩ ∈ Q∗ s.t. q0 ∈ I and
qi+1 ∈ δ(qi, σi), for any i ≥ 0. A run π = ⟨q0, . . . , qn+1⟩
is accepting iff qn+1 ∈ F . The language of A, denoted as

L(A), is the set of words σ s.t. there exists at least one ac-
cepting run induced by σ in A. Each NFA can be turned into
a language-equivalent DFA of exponential size in the worst-
case (see, e.g., (Hopcroft, Motwani, and Ullman 2001)).
Each language expressible in LTLf can be recognized by an
NFA, whose size is in the worst case exponential in the size
of the formula (De Giacomo and Vardi 2013). Even though
LTLfP has the same expressive power as LTLf (Lichtenstein,
Pnueli, and Zuck 1985), LTLfP admits a construction of
equivalent DFAs of only singly exponential size (since “the
past already happened”, pure-past formulas can be turned
into automata without introducing nondeterminism) (De Gi-
acomo et al. 2021; Cimatti et al. 2021). .

Proposition 1. For any LTLfP formula ϕwith n = |ϕ|, there
exists a DFA A s.t. L(ϕ) = L(A) and | A | ∈ 2O(n).

The drawback of the explicit-state representation of au-
tomata is the required memory, which can be prohibitively
large for analysis tasks such as model checking and reactive
synthesis. The symbolic representation aims at overcoming
this issue by representing automata through Boolean formu-
las (McMillan 1993). In the average case, this representation
can be exponentially more succinct than the explicit one.

Definition 2. A symbolic NFA over the alphabet Σ is a tuple
S = (X ∪ Σ, I(X), T (X,Σ, X ′), F (X,Σ)), where (i) X
is a set of state variables, (ii) I(X) and T (X,Σ, X ′), with
X ′ = {x′ | x ∈ X}, are Boolean formulas that respectively
define the set of initial states and the transition relation, and
(iii) F (X,Σ) is a Boolean formula over X ∪ Σ that defines
the set of final states.

For a symbolic NFA S =(X ∪ Σ, I(X), T (X,Σ, X ′),
F (X,Σ)), | S | denotes the sum of the number of sym-
bols in I , T and F . Symbolic NFAs can also be refined
into symbolic DFAs. A symbolic DFA is a symbolic NFA
such that: (i) its formula I(X) has exactly one satisfy-
ing assignment; (ii) its transition relation is of the form
T (X,Σ, X ′) :=

∧
x∈X(x′ ↔ βx(V )), where βx(V ) is a

Boolean formula with V = X ∪ Σ, for each x ∈ X .
Given a symbolic NFA A =(X ∪Σ, I(X), T (X,Σ, X ′),

F (X,Σ)), a run τ = ⟨τ0, . . . , τn⟩ (for n ∈ N) is a fi-
nite sequence of pairs τi := (Xi,Σi) ⊆ 2X × 2Σ (rep-
resenting the state and input variables that are supposed to
hold at time point i) that satisfies the following two condi-
tions: (i) τ0 |= I(X); (ii) τi, τi+1 |= T (X,Σ, X ′), for each
0 ≤ i ≤ n, when τi is used for interpreting the variables
in X and Σ, and τi+1 is used for interpreting the variables
in X ′. A run τ = ⟨(X0,Σ0), . . . , (Xn,Σn)⟩ is induced by
the word ⟨σ0, . . . , σn⟩ ∈ Σ∗ (for n ∈ N) iff σi = Σi for all
0 ≤ i ≤ n. A run τ is accepting iff τn |= F (X,Σ). A word
σ is accepted by A iff there exists an accepting run induced
by σ in A. The language of A, denoted by L(A), is the set
of all and only the infinite words accepted by A.

Reactive Synthesis of DECLARE
We now recap the realizability and reactive synthesis prob-
lems of LTLf, and then define their DECLARE counterpart.
We then illustrate the main ideas on an example and show
how such problems can be solved using a naı̈ve approach.
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Realizability and Synthesis of LTLf
Realizability (Pnueli and Rosner 1989b) aims at establish-
ing whether, given an LTLf formula ϕ over two sets U and
C of, respectively, uncontrollable and controllable variables,
there exists a strategy which, no matter how the variables in
U are set, chooses the value of the variables in C so that ϕ is
satisfied. Reactive synthesis is the problem of synthesizing
such a strategy (e.g., in the form of a Mealy or Moore ma-
chine (Vardi 1995)) in case the formula is realizable. Here-
inafter, we fix Σ as the union of C and U , with C ∩ U = ∅.

Definition 3. A strategy for Controller is a function s :
(2U )+ → 2C that, for any finite sequence U = ⟨U0, . . . ,Un⟩
of choices by Environment, determines the choice Cn =
s(U) of Controller.

For an infinite sequence of choices by Environment U =
⟨U0,U1, . . .⟩ ∈ (2U )ω , we denote by res(s,U) = ⟨U0 ∪
s(⟨U0⟩),U1 ∪ s(⟨U0,U1⟩), . . .⟩ the trace resulting from re-
acting to U according to s. Realizability is usually modeled
as a two-player game between Environment and Controller,
who try to respectively violate and fulfill the given formula.

Definition 4. Let ϕ be an LTLf formula over Σ. We say
that ϕ is realizable (over finite words) iff there exists a
strategy s : (2U )+ → 2C s.t., for any infinite sequence
U = ⟨U0,U1, . . .⟩ in (2U )ω there exists k ∈ N for which
res(s,U)[0,k] |= ϕ. If ϕ is realizable, reactive synthesis is
the problem of computing such a strategy s.

The baseline algorithm for solving realizability of an
LTLf formula ϕ works as follows (De Giacomo and Vardi
2015): (i) build an NFA for ϕ; (ii) transform the NFA into
a language-equivalent DFAA; (iii) play a reachability game
over A to establish whether Controller can force the game to
reach a final state of the automaton. If this is the case, then
ϕ is realizable, otherwise it is unrealizable. The realizability
problem for LTLf is 2EXPTIME-complete.

Realizability over Simple Traces
We now use the standard realizability problem for LTLf, de-
fined over general finite traces as per Definition 4, as a start-
ing point towards realizability for DECLARE. As an inter-
mediate step, we need to recast Definition 4 by considering
now simple finite traces only, instead of general ones1. This
brings two significant differences. First, in the case of sim-
ple traces, we impose that both players can play only one
proposition letter from their set. Second, we impose a strict
alternation: Environment starts to play at the first time point
and whenever Environment plays at time point i, Controller
plays at time point i+1, unless the play has finished before.

We begin by defining the basic building blocks. A simple
strategy for Controller is a function s : (U)+ → C that, for
every finite sequence of elements in U , determines an ele-
ment in the set C. Let s : (U)+ → C be a simple strategy
and let U = ⟨U0,U1, . . .⟩ ∈ (U)ω be an infinite simple trace
of choices by Environment. We denote by simres(s,U) the
state sequence ⟨U0, s(⟨U0⟩),U1, s(⟨U0,U1⟩), . . .⟩ resulting

1This is, to the best of our knowledge, the first time that the
realizability problem over simple finite traces is defined.

from the alternation between the choices of Environment
and the corresponding choices of s(·). Crucially, for any
k ≥ 0, simres(s,U)[0,k] is a simple finite trace. We then
define realizability over simple finite traces as follows.

Definition 5. Let ϕ be an LTLf formula over the alphabet
Σ. The formula ϕ is realizable over simple finite traces iff
there exists a simple strategy s : (U)+ → C such that, for
any infinite sequence U = ⟨U0,U1, . . .⟩ in (U)ω , there exists
k ∈ N such that simres(s,U)[0,k] |= ϕ.

Strictly alternating game rounds appear as the most nat-
ural choice when dealing with simple finite traces: (i) the
two players cannot play at the same round (this yields non-
simple traces); (ii) allowing players to play for rounds of
unbounded length introduces additional challenges related
to fairness (Zhu et al. 2020). Also, rounds of any bounded
length can be simulated with Definition 5 by adding two
auxiliary variables that model a no-op action of the play-
ers and LTLf constraints that, whenever the round belongs
to one of the players, force the other to choose the no-op
action. Finally, even in the strict alternating case of Defini-
tion 5, introducing no-op actions is conceptually useful as
it allows a player to release control to the other player.

Realizability and Synthesis of DECLARE
We now turn to realizability of DECLARE. We start from the
key consideration that in the case of agents in AI (Zhu and
De Giacomo 2022), as well as in BPM, there is background
knowledge on how Environment operates. In particular, in
BPM the external stakeholders participate to the process in
a constrained way: when it is their turn, they take (arbitrary)
decisions on which next action to trigger but only on the sub-
set of all actions made available by the information system
supporting the enactment of the process (Dumas et al. 2018).

DECLARE hence calls for an assume-guarantee paradigm
to synthesis: Controller guarantees to enforce certain
DECLARE constraints, under the assumption that Environ-
ment satisfies its own set of DECLARE constraints. More
specifically, the realizability problem takes as input two
DECLARE specifications, one for the assumption and the
other for the guarantee, and aims at finding a strategy for
Controller fulfilling all the guarantee constraints, regardless
on how Environment behaves in the space of possibilities
given by the assumption constraints. Environment loses the
realizability game if it violates its assumptions.

Definition 6. Given two DECLARE specifications ϕE (En-
vironment) and ϕC (Controller), the realizability problem of
(ϕE , ϕC) is the problem of establishing whether ϕE → ϕC
is realizable over simple finite traces. Whenever it is so, reac-
tive synthesis is the problem of computing a simple strategy.

Example 2. This assume-guarantee approach to DECLARE
synthesis is also significant as DECLARE employs pre-
defined LTLf patterns, composed conjunctively. By consid-
ering the actual DECLARE templates (cf. Table 1), one can
easily notice that a direct adaptation of LTLf synthesis to
DECLARE would not be a viable approach. This would in-
deed result in a single monolithic DECLARE specification
with actions partitioned into Environment and Controller
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Figure 1: An order handling process in DECLARE, following the DECLARE graphical notation. Rectangles denote actions,
connectors denote constraints. Customer actions and constraints are depicted in orange, those of the seller in blue.

actions, with constraints quickly leading to unrealizability.
For example, constraints solely involving Environment ac-
tivities are unrealizable, unless additional assumptions are
posed on Environment.

The following example shows the benefits of the assume-
guarantee paradigm for reactive synthesis of DECLARE.

Consider a seller that needs to orchestrate an order-to-
delivery DECLARE process, interacting with external cus-
tomers interested in ordering material from the shop. The
customer plays the role of Environment, and the seller that of
Controller. A fragment of this process is shown in Fig. 1. The
process actions are partitioned into those of the seller (e.g.,
ship order) and of the customer (e.g., pay). Both the
Environment assumption (in orange) and Controller guaran-
tee (in blue) contain constraints referring solely to actions of
the customer or seller as well as constraints linking actions
of both parties.

The specification does not cover the order creation and
selection of items by the customer, which is assumed to be
already completed when the process is enacted. The process
then executes as follows. The customer can register their ad-
dress (regaddr ), pay for the created order (pay), or request
its cancellation (reqCancel ). Whenever an order is paid,
the customer has to eventually register their address, un-
less this has been already done (resp-existence(open ,
regaddr )); further address registrations can be performed
to update the address data. The payment occurs in a single
installment (absence2(pay)), and can be performed only
if the customer has not previously issued a request for order
cancellation (neg-succession(reqc, pay)).

The seller can ship the order and handle full cancella-
tion (cancel ) or partial refund (refund ). It also has a no-op
action (skip) to return control to the customer. The seller’s
portion of the process is regulated by the following con-
straints. Full and partial cancellations are mutually exclu-
sive ((not-coexistence(cancel , refund )). Full cancel-
lation can be chosen only if the order has not been shipped
(neg-succession(ship, cancel )), while partial refund
only for shipped orders (precedence(cancel , refund )).

Finally, there are constraints mutually relating the ac-
tions of the two parties, and that must be assigned to the
assumption or the guarantee depending on their contrac-

tual nature. For example, as part of the Environment as-
sumption, the customer agrees that they will not change
the delivery address anymore once the order is shipped
(neg-succession(ship, regaddr )).

Obverse that the seller can indeed synthesize a strategy to
orchestrate the process. It works as follows. If the customer
pays, the seller needs to wait for the registration of the ad-
dress unless this was already done. Once both activities are
executed, the seller ships. Upon a cancellation request, the
shop reacts as follows: if the order has not been shipped yet,
it is canceled, otherwise it is partially refunded.

To solve realizability and reactive synthesis from
DECLARE specifications, we resort to a reduction to real-
izability and synthesis of LTLf over general finite traces.
To do so, we first need to introduce two LTLf formulas
simpleEnv(U) and simpleCon(C)) to enforce that the game
of the play is a simple trace and to force, respectively, Envi-
ronment to play at even time points, and Controller to play
at odd ones. Technically:

simpleEnv(U) :=
∨
u∈U

u ∧ G
( ∨
u∈U

u→ (
∧
u ̸=u′

∈U

¬(u ∧ u′)∧

X̃(
∧
u∈U

¬u ∧ X̃
∨
u∈U

u))
)

simpleCon(C) :=
∧
c∈C

¬c ∧ G
(∧
c∈C

¬c→ X̃(
∨
c∈C

c∧∧
c̸=c′
∈C

¬(c ∧ c′) ∧ X̃
∧
c∈C

¬c))
)

Note the role of the weak tomorrow operators in
simpleEnv(U) and simpleCon(C), which ensure that the
game can stop at any moment. By carefully employing these
two formulas, we obtain the following reduction.
Lemma 3. Let ϕE and ϕC be two DECLARE specifica-
tions over the set of actions Σ. It holds that (ϕE , ϕC) is
realizable in the sense of Definition 6 iff the LTLf formula
simpleCon(C) ∧ ((simpleEnv(U) ∧ ϕE) → ϕC) is realiz-
able in the sense of Definition 4.

We can then tackle DECLARE realizability by construct-
ing the LTLf formula from Lemma 3, then feeding it into
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classical algorithms for LTLf realizability (De Giacomo and
Vardi 2015). The same applies to reactive synthesis as well.
Such algorithms, however, have a 2EXPTIME complexity.

Applications of reactive synthesis for DECLARE. As it
has been discussed in (Geatti, Montali, and Rivkin 2023),
realizability (and synthesis tasks) are crucial for refined
(declarative) process specifications consisting of two parts:
one internal (orchestrator/Controller) and one external (ex-
ternal participant/environment). While the interface between
such parts is implicitly embedded into the binary DECLARE
patterns including actions of both Controller and Environ-
ment, there is no guarantee that such collaborative specifi-
cation is actually executable. This is where realizability can
be used to check the implementability of the specification
(that is, verify whether the controller can execute the process
guaranteeing the constraints from the specification, provided
that Environment satisfies its assumptions) and eventually
obtain an orchestration mechanism – a strategy witnessing
the implementability. Such a strategy provides a specific be-
haviour for Controller ensuring that, whenever the environ-
ment behaves in accordance to the assumptions in the spec-
ification, the resulting reactions yield a simple process trace
that satisfies the guarantees.

In practice, reactive synthesis comes in handy when
collaborating stakeholders (executing a single-organization
process and its external clients, or an inter-organizational
process) prefer to specify interfaces of their processes in-
stead of exposing the entire process models and trying to
achieve explicit solutions on the cost of multiple and time-
consuming process integration sessions. Like that, the feasi-
bility of the proposed interface together with its implemen-
tation strategy can be outsourced to the reactive synthesis
framework discussed in this paper.

Efficient Reactive Synthesis for DECLARE

In this section, we give a more efficient algorithm for the
realizability problem of DECLARE that works in singly ex-
ponential time. It is based on two steps: (i) a (linear) encod-
ing of any DECLARE specification into an equivalent LTLfP
formula; (ii) construction of a singly-exponential DFA (re-
call Proposition 1) to be used as a reachability game arena.

Pastification for DECLARE

The first step of our algorithm is called pastification – trans-
formation of a DECLARE specification into an equivalent
one that uses only past temporal operators. W.l.o.g., in this
section, we assume general finite trace semantics.

Definition 7. Let ϕ be a DECLARE specification over the
alphabet Σ. A pastification of ϕ, denoted as past(ϕ), is a
formula of LTLfP over Σ s.t., for any finite trace σ ∈ (2Σ)+,
it holds that σ, 0 |= ϕ ⇔ σ, |σ| − 1 |= past(ϕ)

We show that every DECLARE pattern can be pastified
into a formula with size linear in the size of the input.

Theorem 4. For each pattern in Table 1, let ϕ (resp., ψ) be
the formula in the second (resp., third) column. It holds that
ψ = past(ϕ) and |ψ| ∈ O(|ϕ|).

Algorithm 1 synth -DECLARE
Input:Σ = C ∪ U , environment specification ϕE , controller speci-
fication ϕC

1: ψSimpleCon ←− past(simpleCon(C))
2: ψSimpleEnv ←− past(simpleEnv(U))
3: ψE ←− past(ϕE)
4: ψC ←− past(ϕC)
5: A ←− build-DFA(ψSimpleCon ∧ ((ψSimpleEnv ∧ ψE)→ ψC))
6: s←− realize-and-extract(A)
7: if s has been found then
8: return s;
9: else

10: return unrealizable.
11: end if

The same theorem directly generalizes to full DECLARE
specifications, i.e., to any conjunction of patterns.

It is worth pointing out the following property of Defini-
tion 7: since the formula X̃(⊥) is true iff it is interpreted at
the last time point of a (finite) trace, Definition 7 amounts to
require that the formula ϕ ↔ F(X̃(⊥) ∧ past(ϕ)) is valid.
We also checked the correctness of the pastification of each
DECLARE pattern ψ by checking the validity of formulas of
the previous type with the BLACK tool (Geatti et al. 2021;
Geatti, Gigante, and Montanari 2021), by reducing the va-
lidity checking of ψ to the satisfiability checking of ¬ψ.

To check realizability, we require the two formulas from
Lemma 3. We show that they are also linear-size pastifiable.

Lemma 5. There exist two linear-size pastifications of
simpleEnv(U) and simpleCon(C).

We remark that the property of admitting a polynomial-
size pastification is very rare. As a matter of fact, it is im-
possible for full LTLf to have such a feature, because real-
izability of LTLfP is an EXPTIME-complete problem (Ar-
tale et al. 2023b), while realizability of LTLf is 2EXPTIME-
complete. While it is known that LTLf with only X as tem-
poral operator admits a polynomial-size pastification (Maler,
Nickovic, and Pnueli 2005), considering also the F operator
makes the pastification exponential (Artale et al. 2023a).

A Singly Exponential-Time Algorithm
We rely on ?? to obtain the next central result.

Theorem 6. DECLARE realizability is in EXPTIME.

The proof is given by Algorithm 1, which shows an
EXPTIME procedure for DECLARE realizability. Starting
from (ϕE , ϕC), the algorithm applies pastification to all
subformulas of ϕ = simpleCon(C) ∧ ((simpleEnv(U) ∧
ϕE) → ϕC), obtaining an equivalent pure-past formula
past(ϕ). By Theorem 4 and Lemma 5, | past(ϕ)| is lin-
ear in |ϕE | and |ϕC |. Procedure build-DFA then builds a
DFAA that has a singly exponential size with respect to |ϕ|,
and that recognizes the language of such pure-past formula
(see (De Giacomo et al. 2021) for details on this procedure).
Finally, the realize-and-extract procedure solves a reach-
ability game (De Alfaro, Henzinger, and Kupferman 2007)
on A to determine whether Controller can force reachability
of a final state in the automaton (see (Jacobs et al. 2017) for
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Pattern LTLf formalization Pastification (past(·))

existence(p) F(p) O(p)

absence2(p) ¬F(p ∧ XF(p)) H(p→ ZH(¬p))

choice(p, q) F(p) ∨ F(q) O(p ∨ q)

exc-choice(p, q) (F(p) ∨ F(q)) ∧
¬(F(p) ∧ F(q))

O(p ∨ q) ∧
(H(¬p) ∨ H(¬q))

resp-existence(p, q) F(p)→ F(q) H(¬p) ∨ O(q)

coexistence(p, q) F(p)↔ F(q) (H(¬p) ∨ O(q)) ∧
(H(¬q) ∨ O(p))

response(p, q) G(p→ F(q)) q T (¬p ∨ q)

precedence(p, q) (¬q)W (p) H(q → O(p))

succession(p, q) G(p→ F(q)) ∧
(¬q)W (p)

p T (¬p ∨ q) ∧
H(q → O(p))

alt-response(p, q) G(p→ X((¬p) U q)) (p ∨ q)T (¬p) ∧H(q → Z(q T ((p ∧
¬q)→ Z(q T ¬p))))

alt-precedence(p, q) ((¬q)W p) ∧
G(q → X̃((¬q)W p))

H(q → O(p)) ∧
H((q ∧ ¬p)→
Z(p T (q → (p T (¬p)))))

alt-succession(p, q) G(p→ X((¬p) U q)) ∧
((¬q)W p) ∧
G(q → X̃((¬q)W p))

past(alt-response(p, q)) ∧
past(alt-precedence(p, q))

chain-response(p, q) G(p→ X(q)) ¬p ∧ H(Y(p)→ q)

chain-precedence(p, q) G(X(q)→ p) H(q → Zp)

chain-succession(p, q) G(p↔ X(q)) past(chain-response(p, q)) ∧
past(chain-precedence(p, q))

not-coexistence(p, q) ¬(F(p) ∧ F(q)) H(¬p) ∨ H(¬q)

neg-succession(p, q) G(p→ ¬F(q)) H(¬p) ∨ (¬q) S (p ∧ ¬q ∧ ZH(¬p))

neg-chain-
succession(p, q)

G(p→ X̃(¬q)) ∧
G(q → X̃(¬p))

H(Y(p)→ ¬q) ∧
H(Y(q)→ ¬p)

Table 1: DECLARE templates, their LTLf formalization and pastification. Grey cells are a contribution of this paper.

more details on this procedure): if this is the case, then ϕ is
realizable and a strategy s can be extracted, otherwise ϕ is
unrealizable. The proof concludes by observing that reacha-
bility games can be solved in PTIME in the size of the input
automaton (De Alfaro, Henzinger, and Kupferman 2007).

We remark that, for a realizable pair of DECLARE speci-
fications, Algorithm 1 synthesizes a strategy for Controller.

At this point, one may wonder whether it could be possi-
ble to obtain a lower complexity bound for DECLARE syn-
thesis. However, this task is far from being trivial. In fact, it
suffices to look at the DECLARE consistency problem (i.e.,
checking whether a DECLARE specification is satisfiable),
that is subsumed by the DECLARE synthesis problem, stud-
ied in (Fionda and Greco 2016; Fionda and Guzzo 2019).
These works only demonstrate NP-hardness for DECLARE
consistency, but never investigate its completeness. The lack
of the completeness result is due to the fact that DECLARE
is not closed under Boolean operations (except for the con-
junction), which makes it difficult to devise reductions from
classical PSPACE-complete or 2EXPTIME-complete prob-

lems, like the tiling problem where disjunctions are key to
encode the correct alignment of tiles (van Emde Boas 1996).

Symbolic Reactive Synthesis for DECLARE

We show now a new algorithm for building linear-size, sym-
bolic DFAs starting from (the pastification of) DECLARE
specifications. Such DFAs are then used to obtain a sym-
bolic algorithm for DECLARE realizability. This allows to
exploit efficient, performance-tuned tools for solving reach-
ability games that have emerged in the last decade (Jacobs
et al. 2017), an essential step towards practical feasibility.

Symbolic DFAs for pure past LTLf formulas
Our approach comprises two steps. Given a DECLARE spec-
ification ψ: (i) we obtain a linear-size pastification past(ψ)
as described in ?? ; (ii) we build a linear-size, symbolic DFA
S that recognizes the language of past(ψ). The second step
is carried out through a novel encoding of general LTLfP
formulas into symbolic DFAs.
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Let ϕ be a LTLfP formula over the alphabet Σ. In the fol-
lowing, we describe how to build a symbolic DFA S(ϕ) =
(X∪Σ, I(X), T (X,Σ, X ′), F (X,Σ)) s.t. L(S(ϕ)) = L(ϕ)
and | S(ϕ)| is linear in |ϕ|. We first define the closure of ϕ.

Definition 8. The closure of a LTLfP formula ϕ over the
alphabet Σ, denoted as C(ϕ), is the smallest set of formulas
satisfying the following properties:
1. ϕ ∈ C(ϕ), and, for each subformula ϕ′ of ϕ, ϕ′ ∈ C(ϕ);
2. for each p ∈ Σ, p ∈ C(ϕ) if and only if ¬p ∈ C(ϕ);
3. if ϕ1 S ϕ2 (resp., ϕ1 T ϕ2) is in C(ϕ), then Y(ϕ1 S ϕ2)

(resp., Z(ϕ1 T ϕ2)) is in C(ϕ).

State variables. We denote by CY(ϕ) (resp., CZ(ϕ)) the
set of formulas of type Yϕ1 (resp., Zϕ1) in C(ϕ). For each
formula ψ in CY(ϕ) ∪ CZ(ϕ), we introduce a state variable
xψ that tracks the truth of ψ over any run of the automaton:

X := {xψ | ψ ∈ CY(ϕ) ∪ CZ(ϕ)}

Formula for the initial states. I(X) describes the ini-
tial states as the formula setting all variables xψ s.t. ψ is
in CY(ϕ) (resp., ψ is in CZ(ϕ)) to false (resp., to true):

I(X) :=
∧

xψ.ψ∈CY(ϕ)

¬xψ ∧
∧

xψ.ψ∈CZ(ϕ)

xψ

This forces each formula of type Yϕ1 (resp., of type Zϕ1)
to be false (resp., true) at the first state. Note that there is
exactly one satisfying assignment to I(X).

Formula for the transition relation. T (X,Σ, X ′) is the
conjunction of formulas for the transition relation of each
state variable x ∈ X , that we shall define. We first define a
normal form for LTLfP formulas tailored to our needs.

Definition 9. Let ϕ be a LTLfP formula over Σ. Its stepped
normal form, denoted by snf(ϕ), is defined as follows:

snf(ℓ) = ℓ where ℓ ∈ {p,¬p}, for p ∈ Σ

snf(⊗ϕ1) = ⊗ϕ1 where ⊗ ∈ {Y,Z}
snf(ϕ1 ⊗ ϕ2) = snf(ϕ1)⊗ snf(ϕ2) where ⊗ ∈ {∧,∨}
snf(ϕ1 S ϕ2) = snf(ϕ2) ∨ (snf(ϕ1) ∧ Y(ϕ1 S ϕ2))

snf(ϕ1 T ϕ2) = snf(ϕ2) ∧ (snf(ϕ1) ∨ Z(ϕ1 T ϕ2))

Given an LTLfP formula ϕ, ground(ϕ) is the formula ob-
tained from ϕ by replacing each formula of type Yϕ1 (resp.,
Zϕ1) with the state variable xYϕ1

(resp., xZϕ1
). Let xψ be a

variable in X , with ψ := ⊗(ψ1) for some ⊗ ∈ {Y,Z} and
ψ1 ∈ C(ϕ). We use ground(·) and snf(·) to define the transi-
tion relation of x⊗(ψ1) as x′⊗(ψ1)

↔ ground(snf(ψ1)). Intu-
itively, x′⊗(ψ1)

is true at time point i+1 iff ground(snf(ψ1))

is true at time point i. For every ψ1, the transition relations
for xYψ1 and xZψ1 are the same: the value of these state vari-
ables differs only in the initial state. In fact, the Y and Z
operators have the same non-initial time point semantics.

Formula for final states. The final state formula F (X,Σ)
captures states in which ϕ holds. Encoded as F (X,Σ) :=
ground(snf(ϕ)), it reflects that every trace reaching, at time
point i, a state satisfying F (X,Σ), is forced to satisfy ϕ at i.

All in all, S(ϕ) = (X∪Σ, I(X), T (X,Σ, X ′), F (X,Σ))
is indeed a symbolic DFA, since: (i) formula I(X) has ex-
actly one satisfying assignment; (ii) formula T (X,Σ, X ′) is
of the form

∧
x∈X(x′ ↔ βx(V )), where βx(V ) is a Boolean

formula over V (= X ∪ Σ), for each x ∈ X . The next theo-
rem demonstrates the correctness of our procedure.

Theorem 7. For any DECLARE model ϕ, the automaton
S(ϕ) is s.t.: (i) S(ϕ) is symbolic DFA; (ii) L(S(ϕ)) = L(ϕ);
(iii) | S(ϕ)| ∈ O(|ϕ|).
Example 8. Consider the precedence(a, b) DECLARE
pattern. Its pastification is φ := H(b → O(a)) (cf. Table 1),
and the corresponding DFA is as follows:

q1

start

q2 q3

¬a ∧ ¬b

a ¬a ∧ b
⊤ ⊤

To obtain the symbolic automaton S(φ) for φ, we first
compute its stepped normal form: snf(φ) = (b → (a ∨
YO(a))) ∧ Z(φ). Since the formula is not expandable any-
more, we proceed by defining the set X of state variables as
{xYO(a), xZ(φ)}. The initial and final state formulas of S(ϕ)
are I(X) = ¬xYO(a) ∧ xZ(φ) and F (X, {a, b}) = snf(φ).
The transition relation T (X, {a, b}, X ′) consists of the two
formulas x′YO(a) ↔ snf(O(a)) and x′Z(φ) ↔ snf(φ).

Comparison with existing approaches. Our encoding is
simpler than the one in (Cimatti et al. 2021; Geatti 2022),
since it does not use any counter bit, and largely reduces
the number of state variables. For example, in (Cimatti et al.
2021) a state variable is used for each subformula of the ini-
tial formula, while here we introduce a state variable only
for those of the form Yϕ or Zϕ. Moreover, using the no-
tion of stepped normal form, the proofs of correctness of
our approach are a lot more succinct and easy to understand
with respect to those form (Cimatti et al. 2021; Geatti 2022).
Clearly, an experimental evaluation needs to be done in or-
der to compare the performance of the two approaches.

Symbolic DECLARE Realizability
We combine DECLARE pastification and the encoding of
LTLfP formulas into linear-size, symbolic DFAs, to ul-
timately obtain a symbolic version of Algorithm 1 for
DECLARE realizability and synthesis. It works as follows.
The first step (i.e., pastification) is the same as in Algo-
rithm 1. Once a pure-past formula ϕ is obtained, the algo-
rithm encodes it into a DFA S(ϕ), following the procedure
described before. Realizability is then decided by solving a
symbolic reachability game over S(ϕ), following (De Al-
faro, Henzinger, and Kupferman 2007; Jacobs et al. 2017).
Differently from classical reachability games, this symbolic
version can be solved efficiently through manipulation of the
Boolean formulas that define S(ϕ), by computing the strong
preimage of the transition formula until a fixpoint is reached.

We remark that, since the organization of the Synthe-
sis Competition (Jacobs et al. 2017, 2019) (SYNTCOMP),
many optimized tools have been proposed to solve reach-
ability games over symbolic deterministic automata, like,
for instance, SafetySynth (Jacobs et al. 2019) and
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Demiurge (Bloem, Könighofer, and Seidl 2014), that have
reached outstanding performance. Using these tools as back-
ends for solving reachability games has thus the potential of
making DECLARE reactive synthesis used in practice.

Conclusions
We have introduced realizability and reactive synthesis
for DECLARE, a well-established declarative, pattern-based
business process modelling language grounded in LTLf.
We have shown that DECLARE enjoys the key prop-
erty of polynomial-size pastification, using it to provide a
singly exponential-time algorithm, which contrasts with the
2EXPTIME-completeness of realizability for full LTLf. No-
tably, by considering the similarity of DECLARE patterns to
trajectory constraints in planning (De Giacomo, De Masel-
lis, and Montali 2014), and exploiting their pure-past encod-
ing shown in (De Giacomo, Favorito, and Fuggitti 2022), our
approach seamlessly carries over such temporal patterns.

We also provided a fully symbolic version of the previous
algorithm, which constitutes a solid basis for the practical
applicability of the approach. In fact, since the organization
of the SYNTCOMP (Jacobs et al. 2017), many optimized
tools have been developed to solve symbolic reachability
games, at the core of our symbolic procedure.

We foresee three main lines of future work. First, it is in-
teresting to study algorithmic optimizations (by taking into
account, e.g., the structure of DECLARE patterns), ranking
of strategies and tighter complexity upper bound of the pro-
posed synthesis procedure. Second, we intend to perform
a large-scale experimental evaluation of our symbolic pro-
cedure, using different symbolic reachability game solvers
and contrasting it with explicit approaches. Third, we intend
to study if and how our results carry over different reason-
ing tasks, such as DECLARE monitoring and automated dis-
covery from execution data, which employ automata-based
techniques at their core (Di Ciccio and Montali 2022).
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ral Logics Over Finite Traces with Uncertainty. In Proc. of
AAAI 2020, 10218–10225. AAAI Press.
Maler, O.; Nickovic, D.; and Pnueli, A. 2005. Real time
temporal logic: Past, present, future. In Proc. of FORMATS
2005, 2–16. Springer.
McMillan, K. L. 1993. Symbolic model checking. In Sym-
bolic Model Checking, 25–60. Springer.
Montali, M. 2010. Specification and verification of declar-
ative open interaction models: a logic-based approach.
Springer Science & Business Media.
Montali, M.; Pesic, M.; van der Aalst, W. M. P.; Chesani, F.;
Mello, P.; and Storari, S. 2010. Declarative specification and
verification of service choreographiess. ACM Trans. Web,
4(1): 3:1–3:62.
Pesic, M.; Schonenberg, H.; and van der Aalst, W. M. P.
2007. DECLARE: Full Support for Loosely-Structured Pro-
cesses. In Proc. of EDOC 2007, 287–300. IEEE Computer
Society.
Pesic, M.; and van der Aalst, W. M. P. 2006. A Declarative
Approach for Flexible Business Processes Management. In
Proc. of BPM, LNCS, 169–180. Springer.
Pnueli, A. 1977. The temporal logic of programs. In Proc.
of SFSC, 46–57. IEEE.
Pnueli, A.; and Rosner, R. 1989a. On the Synthesis of a
Reactive Module. In Proceedings of POPL’89, 179–190.
ACM Press.
Pnueli, A.; and Rosner, R. 1989b. On the synthesis of an
asynchronous reactive module. In Proc. of ICALP, 652–671.
Springer.
Reichert, M.; and Weber, B. 2012. Enabling Flexibility in
Process-Aware Information Systems - Challenges, Methods,
Technologies. Springer.
Rosner, R. 1992. Modular synthesis of reactive systems.
Ph.D. thesis, PhD thesis, Weizmann Institute of Science.
van Emde Boas, P. 1996. The Convenience of Tilings. 1–33.
Vardi, M. Y. 1995. An Automata-Theoretic Approach to Fair
Realizability and Synthesis. In Proc. of CAV, LNCS, 267–
278. Springer.
Zhu, S.; and De Giacomo, G. 2022. Act for Your Duties but
Maintain Your Rights. In Kern-Isberner, G.; Lakemeyer, G.;
and Meyer, T., eds., Proc. of KR 2022.
Zhu, S.; Giacomo, G. D.; Pu, G.; and Vardi, M. Y. 2020.
LTLf Synthesis with Fairness and Stability Assumptions.
In Proc. of AAAI 2020, 3088–3095. AAAI Press.
Zhu, S.; Pu, G.; and Vardi, M. Y. 2019. First-Order vs.
Second-Order Encodings for LTLf -to-Automata Transla-
tion. In Proc. of TAMC 2019, LNCS, 684–705. Springer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17425


