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Fluid efflux from the brain plays an important role in solute waste clearance. Current
experimental approaches provide little spatial information, and data collection is limited
due to short duration or low frequency of sampling. One approach shows tracer efflux
to be independent of molecular size, indicating bulk flow, yet also decelerating like
simple membrane diffusion. In an apparent contradiction to this report, other studies
point to tracer efflux acceleration. We here develop a one-dimensional advection–
diffusion model to gain insight into brain efflux principles. The model is characterized
by nine physiological constants and three efflux parameters for which we quantify prior
uncertainty. Using Bayes’ rule and the two efflux studies, we validate the model and
calculate data-informed parameter distributions. The apparent contradictions in the
efflux studies are resolved by brain surface boundaries being bottlenecks for efflux. To
critically test the model, a custom MRI efflux assay measuring solute dispersion in
tissue and release to cerebrospinal fluid was employed. The model passed the test with
tissue bulk flow velocities in the range 60 to 190 �m/h. Dimensional analysis identified
three principal determinants of efflux, highlighting brain surfaces as a restricting factor
for metabolite solute clearance.

advection–diffusion | glymphatics | MRI

The rapid metabolism of the brain requires similarly rapid clearance of decayed proteins
and metabolites to prevent waste accumulation. The sleep duration of mammals scales
with their brain metabolism (1, 2), and sleep drives metabolite clearance while the brain’s
extracellular space is enlarged (3). The enlargement of the extracellular space during sleep
may facilitate greater advection (bulk flow) of solutes out of the brain (4). However,
whether bulk flow through tissue contributes to clearance is debated.

Two efflux assays provide the current state-of-the art efflux data but also pose two
apparent contradictions (Fig. 1). In the classical efflux assay by Cserr et al. (5), radiolabeled
tracers were infused into rat brains and their masses measured in whole brains harvested
at 1, 4, 18, and 28 h after injection. Large and small tracers were found to clear from
the brain with the same exponential decay rate, leading many to conclude that efflux
was independent of molecular size and therefore primarily driven by bulk flow, rather
than inherently size-dependent diffusion. However, in each case, the rate of efflux also
decelerated in a very similar fashion to first-order transport kinetics, or simple diffusion
across a membrane. The relative contribution of diffusion could not be determined
from those early experiments. Replication studies by Groothuis et al. found the same
single exponential decay but at a five times faster rate (6). The difference is likely due
to choice of anesthetics, with ketamine-xylazine causing faster efflux than pentobarbital,
but the pharmacological mechanism for this difference has not been clearly identified.
The recent efflux assay by Pla et al. (7), which uses ketamine-xylazine anesthesia, sought
to improve temporal resolution and the amount of data gathered per animal. Here,
the tracer-molecule DB53 was infused in the mouse brain, and its concentration in the
blood was quantified in each animal over the following 2 h (7). Since DB53 is trapped in
blood by albumin, this measurement reflects total brain efflux by any route. The efflux
accelerated throughout the observation period, in contrast to the slowing efflux observed
when quantifying tracer efflux by harvesting the brains of multiple rats at increasing
durations after tracer injection. To our knowledge, these two apparent contradictions in
the experimental approach to determining brain efflux are so far unexplained.

Here, we seek to investigate whether the apparent contradictions can be resolved by
modeling of brain solute transport as a combination of bulk flow and diffusion in a
brain in which the surface membrane covering the brain acts as a barrier for export. This
idea arose from the mathematical requirement that boundary conditions are specified
for solving the transport differential equations. As we show below, such a surface layer
would be a bottleneck for efflux which could explain the long-term slowing of efflux,
while potentially allowing diffusion on the short time-scale to cause early acceleration
of the tracer efflux concentration. Additionally, the difference between pentobarbital
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Fig. 1. Overview over previously published brain efflux assays used here. Two published tracer efflux assays by Cserr et al. (5) (Top row) and Pla et al. (7)
(Middle row) provide the inspiration and validation for the one-dimensional model proposed here. Cserr et al. infused radiolabeled tracers into rat brains and
measured tracer mass in cerebrospinal fluid (CSF) and whole brains harvested at 1, 4, 18, and 28 h (5). Large and small tracers were found to clear the brain at
the same rate, indicating bulk flow efflux, but the rate decelerated over time, pointing to diffusive efflux. Pla et al. infused DB53 (0.96 kDa) in the mouse brain
and quantified its accelerating concentration using fluorescence enhancement in the blood over the next 2 h, where it is trapped independent of efflux route
by its strong binding with albumin (7).

and ketamine-xylazine anesthesia may reflect differential effects
on the surface layer permeability. After validating that this model
can represent the classical efflux data reported by Cserr et al.
as well as the newer efflux data by Pla et al., we develop a
custom in vivo efflux assay that provides the necessary spatial
and temporal resolution to critically test the importance of
brain surfaces in solute clearance. We finally extend the model
to include endogenous waste production and the fundamental
criteria for effective clearance. Based on the combination of data
and quantitative modeling, bulk flow likely contributes to brain
clearance and brain surface membranes likely play a previously
unrecognized role in restricting solute clearance.

1. Mathematical Method: A Global Model of
Brain Net Molecular Transport
We aim to construct a simple mathematical representation
of fluid transport through the brain, its main cerebrospinal
fluid compartments, and the blood, in order to account for
the spread of endogenous and tracer molecules. Inspired by
volume averaging techniques (8), we assume the tissue to be
an unconsolidated homogeneous porous medium with diffusion
and Darcy flow of solutes. Thinking first of the brain as a ball with
ventricles in the center, we limited the average advection to the
radial axis, orthogonal to the brain surface, and assumed spherical
symmetry (Fig. 2A). Simplifying even further, we unfold the ball
and model the brain as a simple slab in order to better capture the
relatively large ventricular surface area compared to superficial
surface area (Fig. 2B). These simplifications sacrifice realism
of the spatially and temporally varying fluid field and reduces
the model relevance to a time-scale of at least minutes (beyond
relevant oscillations and pumping) and a length scale of at least

tens of microns (beyond the resolution of perivascular spaces for
example). The point is not to investigate tissue anatomy, but the
net transport of molecules in particular across the brain surface,
and our one-dimensional model represents the essential feature
of depth between surfaces as well as both diffusive and bulk flow
transport.

Since tracers move faster in cerebrospinal fluid than in tissue
(21), we reasoned that as an approximation, we can assume
rapid mixing in control volumes representing the ventricles and
the subarachnoid spaces, on either side of the tissue slab. We
therefore parameterized a boundary consisting of interaction with
cerebrospinal fluid through a narrow membrane with diffusion
Dm. The presumed single-cell layer is narrow (length Lm), and we
can assume the concentration profile to reach steady state rapidly
here and enforce conservation of mass in the net flux. Though
conceived as a diffusivity, the Dm parameter is rather an effective
permeability parameter of the surface membrane including effects
of both pore space and transmembrane pathways.

We parameterize transport across the blood–brain barrier as
well as endogenous production using reaction terms, as has been
done before (8). With this extension, we can investigate the
role of advection and diffusion for endogenously produced waste
products. We also couple the subarachnoid space to the blood
compartment using simple first-order kinetics. This disregards
details of whether the transport outside the brain parenchyma
goes directly into veins or indirectly via the lymphatic vessel but
gives a parsimonious description of parenchyma efflux.

The resulting mathematical model (Eqs. 2–5) depends on 12
parameters of which nine have been measured with reasonable
reliability (Table 1). We therefore quantify our uncertainty on
the remaining three parameters to complete the model. The
effective diffusion parameter is uncertain but has a strong prior
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A

B

Fig. 2. One-dimensional and lumped advection–diffusion model of global brain solute transport. (A) In the murine brain, fluid flow is proposed along
coronal radii (white arrows), with flow (light blue arrows) along vasculature and interstitial diffusion (cross-arrow) in the extracellular space (teal). Molecular
concentrations and transport are averaged over small tissue volumes (cubes) which are taken to be homogeneous porous media with tortuous diffusion (8)
and Darcy flow. Bulk flow along vasculature (blue arrows) is taken to primarily run between ventricles and the subarachnoid space surface in the coronal
section (white arrows), where solutes mix rapidly and are transported to blood. (B) This biology is reduced to three control volumes representing ventricles,
subarachnoid space (SAS), and blood and a one-dimensional advection–diffusion–reaction model, oriented along the average bulk flow directions. From tissue
parenchyma (pink), molecules diffuse over surface membranes (green, not to scale) to either ventricles or subarachnoid space compartments, each with rapidly
mixing cerebrospinal fluid, and are then taken to blood with first-order mass transport kinetics. Endogenous production and transport across the blood–brain
barrier is evenly distributed in the tissue (as reaction terms; see Eqs. 2–5). Constants and parameter descriptions are listed in Table 1.

from empirical work (22) and recent advanced modeling with
precise human geometries indicate that it is constant across the
brain (23). Advection in the tissue has not been measured, so
we put a normal prior on this parameter centered on zero.
Finally, the diffusion through surface membranes has very little

Table 1. Model parameters
Description Symbol Mouse Rat

ECS volume fraction
[0− 1]

� 0.2 (3) 0.2 (9)

Brain depth [mm] L 2.0 (10) 3.0 (11)
Surface area [mm2] S 52 (12) 142 (12)
Surface layer depth
[mm]

Lm 0.01 (13),
Fig. 5

0.01 (13),
Fig. 5

BBB efflux (Cserr)
[h−1]

kp 0 (14) 0 (14), [0.432
(5)]

CSF volume [mm3] Vc 36 (15) 370 (15)
Blood volume [mm3] Vb 1490 (16) 10,200 (17, 18)
SAS efflux [mm2h−1] Ql 20 (19) 200∗
Ventricle reflux
[mm2h−1]

Qr 3.6 (20) 36∗

Average velocity
[mm h−1]

v 0.0 0.0

Membrane diffusion
[mm2h−1]

Dm 0.25 0.25

Effective diffusion
[mm2h−1]

D 0.46 (9) 0.46 (9)

Of the 12 parameters required for the model, eight were determined from the literature,
one was determined from our histology (Lm), and three were considered uncertain (v , Dm ,
and D). The table lists our prior expected values in boldface for the uncertain parameters
(Materials andMethods), while our data-informed estimates are in Figs. 3 and 4. A * indicates
the cerebrospinal fluid flow rates for the rat were scaled from the mouse data by the ratio
of their cerebrospinal fluid volumes.

prior knowledge, and we assign a uniform prior from zero
to the expected tissue diffusion. Via Bayes’ theorem, we can
then approximate the posterior (here: data-informed) probability
distributions for the uncertain parameters.

To summarize, our model of global brain molecular transport
is a probabilistic one-dimensional advection–diffusion–reaction
equation with boundaries to ventricular and subarachnoid
space cerebrospinal fluid and blood compartments (Fig. 2 and
Eqs. 2–5). When coupled with data observation models, we can
update our priors in light of data and estimate the full data-
informed probability distributions of our uncertain parameters
and evaluate whether the model validly represents these datasets
with those parameters.

2. Results
2.1. The Global Brain Solute Transport Model Fits the Two In
Vivo Efflux Assays. To test the validity of the model for global
efflux from the brain we first implemented an analysis of the
classical efflux study in the Cserr dataset (5). In this study,
radiolabeled tracers of 0.9, 4, and 69 kDa were injected into rat
brains, and masses measured in the entire brain and cerebrospinal
fluid four times over the following 30 h (5). The model posterior
predictions are all close to the data (Fig. 3 B and C and
SI Appendix, Fig. S1 and Movies S1–S3). Cerebrospinal fluid
concentrations are slightly overestimated at 15 h post injection,
but otherwise very close to the prediction mean. The model may
underestimate cerebrospinal fluid clearance in this case, since the
discrepancy is larger at the late time points but in better agreement
earlier on when transport from the brain is more important. For
each tracer, the estimated effective diffusion coefficient stayed
close to its own strong prior, whereas estimates of membrane
permeability and velocity overlapped between the tracers (SI
Appendix, Fig. S1). In spite of minor discrepancies, the model fits
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A B

C D

Fig. 3. Data-informed parameter distributions and model predictions agree with both rat and mouse in vivo efflux datasets. (A) Both efflux datasets rely on
intrastriatal injections. (B) There is considerable overlap on data-informed probability distributions for the effective diffusion parameter D in the Cserr and Pla
datasets with prior knowledge based on diffusion assays (9) (shown here is Cserr’s PEG-900 tracer, see SI Appendix, Fig. SI 1 for PEG-4000 and albumin). Based
on the Cserr efflux study, surface membrane permeability Dm estimates are smaller than in the Pla dataset and the model is unable to distinguish the direction
of bulk flow, but prefers a speed of 0.3 mm/h. The data-informed probability distribution for bulk flow based on the Pla study overlaps zero, with 95% of the
probability mass between −0.47 mm/h and 0.83 mm/h. Compared to the prior (black, shown on restricted interval) the data-informed distributions are more
precise. (C) There is considerable overlap with the longer duration efflux data on remaining tracer mass in rat brain and cerebrospinal fluid (CSF) from the Cserr
study. (D) Mouse total brain content and blood concentrations from the Pla et al. study agree with data-informed model predictions. Blue lines: mean posterior
prediction, blue shadow: one SD from mean.

these datasets of total brain efflux and cerebrospinal fluid content
of tracers in the 30 h following intrastriatal infusion in rats. This
is particularly interesting because the model here concurs with
the observation by Cserr et al. that at this long time-scale, efflux
essentially reduces to a single exponential decay rate, in spite of
its spatial organization and large variations in molecular size.

At a much shorter time-scale but with an approach that allows
kinetic analysis in individual mice, the recent Pla dataset inves-
tigated efflux of DB53 (0.96 kDa) from intrastriatal infusion to
the blood. This dataset includes tracer distribution shortly after
infusion, providing us with good initial conditions for efflux
modeling. The authors here found the tracer concentration in
the blood to accelerate at early times, contradicting the single
exponential decay rate found by Cserr for longer time-scales,
in spite of the tracers being of the same size (Fig. 3D and
Movie S4). The model predictions agree with the measured
blood concentrations and brain tracer mass measurements. The
largest discrepancy is in the earliest phase, where experimental
tracer arrives earlier in the blood than in the model, something
which could be due to a slightly too narrow initial spread or
underestimated transport in cerebrospinal fluid.

The discrepancies between model prediction and data are
therefore small and the model captures both the single decay
rate over long times found by Cserr et al. and the accelerating
efflux at early times found by Pla et al. The apparent contradiction
between these two datasets is resolved by the surface membrane
boundary conditions: As is especially evident in Movies S1–S3,
tracers diffuse within the brain faster than across the surface
membranes. The lack of overlap in the data-informed probability
distributions for surface diffusivity, Dm, may be due to the
differential effects of ketamine-xylazine versus pentobarbital

anesthesia, where the latter leads to a more restrictive membrane
in the Cserr datasets (SI Appendix, Fig. S1).

Since an extensive experimental literature quantifies effective
diffusion on tracers in the brain, we have prior data about our
parameter D and our posterior estimates should therefore stay
on this prior (see e.g. refs. 8, 9, 22). This is doubly so since
large and small tracers are indistinguishable in the data. For each
of the datasets, we calculated the Stokes–Einstein diffusion and
used the corrections for extracellular space volume fraction and
interstitial tortuosity found by Nicholson et al. (8, 22), including
measurement variance, to set our expected D (Materials and
Methods). The prior effective diffusion distribution is close to
the posterior distributions for each of the tracers used by Cserr
(SI Appendix, Fig. S1). This confirms that our model concurs
with the large literature on interstitial diffusion measurements.

2.2. Either Bulk Flow or Open Surfaces Are Required for Efflux
in the Efflux Assays without Spatial Resolution. In view of the
agreement between data and data-informed model predictions as
well as prior and data-informed diffusion parameter estimates,
we can next evaluate the entire data-informed probability
distribution for the surface membrane (Dm) and bulk flow
parameters (v). The surface membrane diffusivityDm is estimated
to be much smaller than the interstitial diffusivity D in especially
the Cserr data but also in the Pla data. The bulk flow speed with
maximum data-informed probability is 0.3 mm/h in the Cserr
data though the direction cannot be inferred. In the Pla data bulk
flow cannot be identified, with 95% of the probability mass being
between −0.32 mm/h and 0.54 mm/h. The joint probability
distribution between bulk flow and surface diffusivity indicates
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that slower bulk flow requires faster surface transport in order to
fit the data (SI Appendix, Fig. S2).

2.3. Validation with Real-Time In Vivo MRI. The uncertainty
remaining in the data-informed parameter estimates is likely due
to the lack of spatial resolution in the efflux assays. We therefore
adapted the efflux assay by Pla et al. and the fast dynamic contrast-
enhanced MRI developed by Stanton et al. (21) to improve
spatiotemporal resolution. Briefly, gadobutrol (0.6 kDa) was
infused in mouse striatum under ketamine-dexmedetomidine
anesthesia and frames were captured every 6 min (Materials
and Methods). By quantifying tracer concentration along a
straight line in the coronal section, we generated spatiotemporal
measurements corresponding to the tissue model (Fig. 4A). This
setup let us image blood–brain barrier-constrained tracer through
the mostly closed skull (14).

The data-informed model predictions align with the mea-
surements (representative example in 4 B–G, each recording
in SI Appendix, Figs. S3–S9 and Movie S5). In the ventricles,
where dependence on parameter values is large, the predictions
undershoot the measurements. Still, qualitatively and quanti-
tatively, the measured concentrations within the brain agree
with the data-informed predictions (Fig. 4 C–G). Additionally,
the data-informed distribution on effective diffusion concurs

with our strong prior knowledge (Fig. 4B). We performed
parameter robustness analyses for each recording by replacing
each physiological constant with a normal prior before parameter
estimation and found no substantial differences though improved
fits to data (Materials and Methods and SI Appendix electronic
materials). In sum, the model is able to represent the tracer
evolution in this custom efflux assay.

Based on the measurements of tracer kinetics inside the closed
skull, the surface membrane diffusion and bulk flow parameters
now have more precise data-informed probability distributions
(Fig. 4B). The surface permeability is estimated in the same range,
but a bit greater than the estimate based on the Pla dataset, and
there is approximately no interaction with bulk flow (SI Appendix,
Fig. S10). The surface membranes are therefore also an efflux
bottle-neck in this case. The data-informed bulk flow estimate
is within the broad range from the Pla-based estimates but here
rejects zero advection since all of the sampled probability mass
reflects proper flow.

2.4. Boundaries Consist of Multiple Differentially Organized
Cell Layers. The microscale boundaries are beyond MRI reso-
lution for in vivo imaging, but with histological methods, we can
map the territories neighboring the ventricles and subarachnoid
spaces. The model averages out the specific transport character-

A

B C

D

F

G

E

Fig. 4. Real-time in vivo solute kinetic measurements in the closed skull. (A) In this custom efflux assay, we infused gadobutrol (0.6 kDa) in mouse striatum and
measured tracer concentration in seven regions of interest on the coronal plane. Representative stills taken during the 2 h after tracer infusion with regions
of interest illustrated. (B) The posterior effective diffusion coefficient aligns with priors. The membrane diffusion coefficient is similar to estimates based on
the Cserr and Pla datasets. The estimated velocity component is small but nonzero with maximum probability of 0.16 mm/h. Due to information in the data,
the data-informed distributions for Dm and v are each narrow on a small interval under the prior (in black, shown partly). (C–G) The model data-informed
predictions (blue) fit the custom MR measurements of tracer at seven regions of interest (D) after intrastriatal infusion seen across time (E and F ) and over the
brain depth (G) (representative example, see each recording in SI Appendix, Figs. S3–S9).
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istics of these important zones, so to clarify the interpretation of
the model, we require a clear picture of their anatomy. In Fig. 5,
we show a coronal section of a mouse brain in the same plane
as those imaged with MRI, but stained with markers of glial
cells and aquaporins. At the macroscopic scale, panel b shows
gaps corresponding to vessels oriented along the modeled axis
in the cortex, corresponding to our hypothesis that transport
primarily occurs along this axis in the cortex. On the ependymal
(inner) surface, a single-cell layer is visible after staining with
Aquaporin-4 (AQP4) (Fig. 5C ). Staining with Glial Fibrillary
Acidic Protein (GFAP) reveals the extensive stem cell niche of
the anterior horn (Fig. 5C ). On the outer surface (glia limitans)
a much thicker zone is strongly positively stained for AQP4
and to a lesser degree GFAP (Fig. 5D) (24). The glial endfeet
layer at the outer surfaces shows a marked GFAP staining.
These molecular differences between inner and outer surfaces are
likely to have different consequences for transport, something
which will require advances in imaging resolution to investigate
in vivo.

The model presented here takes the primary bottleneck for
large scale transport from the brain to ventricles to be a 10 μm
layer of interweaved GFAP and AQP4 expressing astrocyte
processes (24, 25), corresponding to our choice of the Lm
parameter (see Fig. 5C, green arrowheads and bar and Table 1).
The large subependymal zone, which houses stem cells and
likely severely controls transport, covers a sizeable fraction of
the ependyma (Fig. 5C ). (While our model reflects this using
the parameter re, see methods, this ratio cannot be determined
within MRI resolution but should be a future experimental
target). It has recently been reported that a specialized subtype
of astrocytes cover the glia limitans superficialis in a layer 0.01
to 0.03 mm thick, with unclear coverage of the ventricles (26).

For the purpose of minimalist modeling, we have found that
averaging over inner and outer surfaces provides a sufficient
description of concentration of our small inert tracer, but this
should not be taken to indicate that the boundaries are similar
with respect to other transport processes.

2.5. Bulk Flow and Surface Openness Both Substantially Reduce
Endogenous Brain Waste in the Stable State. Since the ultimate
purpose of these investigations is to understand the fundamental
aspects of global molecular clearance of metabolites, we extended
the model to include endogenous waste solutes by using a
production rate p as has been done before (8) and performed a
dimensional analysis (Materials and Methods). A main advantage
of a nondimensionalized model is that the results can be
extrapolated, as long as the nondimensional parameter groups
are scaled accordingly. When waste is rapidly cleared from the
cerebrospinal fluid and blood, the model can be reduced to three
(nondimensional) parameters. One is the Péclet number, which
is the ratio of bulk flow to diffusive transport over the length of
the brain, Pe = vL

D . Another is the relative surface membrane
transport, specifically the ratio of diffusive flux across the surface
membrane to that within the brain,  = �Dm

Lm /D
L (adjusted for

extracellular space volume fraction �). The last is the relative
clearance over the blood–brain barrier compared to interstitial
diffusion, � = kpL2/D. Being mostly interested in the case
when the clearance across the blood–brain barrier is low, we
continue our analysis with � = 0.1 (other choices yield similar
results). The total brain content of endogenously produced waste
in the steady state is now a function of the Péclet number and
the relative surface membrane transport  , see Fig. 6. Both make
significant contributions to waste clearance, in this model.

A

B

C

D

Fig. 5. Histological staining of the coronal section and boundary zones. (A) The modeled axis in the coronal section was identified with HE staining of a mouse
brain. (B) Along the axis from outer to inner surfaces, staining for AQP4 and glia cells (with GFAP) shows gaps for vessels oriented along our hypothesized
main direction of transport (arrowheads). (C) The ependyma of the inner surface shows attenuated ependymal cells positive for AQP4, with an additional layer
corresponding to the stem cell niche revealed by GFAP. The roughly 10 μm layer most strongly stained for GFAP is taken to be the transport bottleneck (green
arrowheads and bar). (D) The outer surface between the brain and subarachnoid space features a glia limitans zone of AQP4 staining about 25 μm wide, but a
much narrower GFAP-positive single cell layer. HE, hematoxylin and eosin; GFAP, glial fibrillary acidic protein; AQP4: aquaporin-4.

6 of 12 https://doi.org/10.1073/pnas.2318444121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 T
E

C
H

N
IC

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

D
E

N
M

A
R

K
 o

n 
A

pr
il 

19
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

19
2.

38
.9

0.
17

.



Fig. 6. Steady-state brain content of endogenously produced waste solutes
varies considerably with both relative advection (Pe) and surface membrane
permeability (). In the nondimensionalized model, the total brain content
(labeled waste) is a function of three nondimensional parameters, when
endogenously produced waste is assumed to rapidly clear from blood and
cerebrospinal fluid. One reflects clearance across the blood–brain barrier
and we here set that low (� = 0.1) to investigate clearance when the blood–
brain barrier route is ineffective. The remaining two parameters are the Péclet
number (Pe) (ratio of advection to diffusion) and  , which is the relative surface
membrane transport. The parameters estimated with MRI from Fig. 4 give
(Pe, ) = (0.6,0.4) and are shown with a black + while the rest of the MRI
datasets are in gray. In this region, stable waste concentrations are somewhat
more sensitive to relative surface transport than to advection.

This analysis allows a quantitative and model-based extrap-
olation to human brain waste clearance. Take a small waste
solute like gadobutrol with effective diffusion D ≈ 0.5 mm/h,
similar to the small tracers discussed above, and a distance
of 10 mm. Then, the most precise estimate of velocity from
above (0.24 mm/h) implies a Péclet number of Pe ≈ 5.
From this level, increases in advection will cause considerable
reductions in brain waste content (along horizontal movement
from between Pe = 1.0 and Pe = 10.0 in Fig. 6). Brain
waste content falls by 45% when the Péclet number doubles
from 5 to 10. Naturally, larger waste products will be more
sensitive to advection. For example, 70 kDa peptides (such as
immunoglobulins) would have diffusion coefficients smaller by
roughly factor

( 70
0.6
)1/3
≈ 5 implying Pe = 25. Compared to the

small metabolite, bulk flow would cause a larger reduction at 80%
of the stable state content. Similarly, increasing the openness of
the surface membranes independently lowers brain waste content.
This model therefore indicates that bulk flow through tissue can
make a considerable contribution to waste clearance and that
experimental characterizations of the surface membranes should
be a key priority for research in global molecular transport in the
brain.

3. Discussion
We have attempted in this study to contain two apparent contra-
dictions in the published brain efflux literature by constructing
a simple mathematical model of brain waste accumulation and
clearance. A putative restrictive surface membrane layer resolved
the contradictions: If the surface layer is efflux rate-limiting, then
diffusion within the brain will spread solutes evenly within the
brain faster than they can be cleared, leading to the established
exponential decay rate even for tracers of varying sizes and in
spite of necessary contributions from bulk flow. A short period
immediately following tracer infusion in the brain still allows

early efflux measurements to accelerate, before settling down to
long-run exponential slowing. The model passed testing with two
previously published datasets (5, 7). To experimentally validate
the model, we developed an assay that allowed minimally invasive
real-time imaging of tracer dispersion with improved spatial
and temporal resolution. The MRI-based assay had sufficient
spatial resolution to estimate the rate-limiting diffusion across the
surface membrane. The analysis validated the model, including
the proposition that the surface membrane is efflux rate limiting.
Finally, when modeling local waste production and clearance,
we found that such clearance effectively depends on three
nondimensional numbers. One is the relation of bulk flow to
diffusion (the Péclet number). Another is the relative clearance
across the blood–brain barrier (compared to diffusion within the
brain). The final is the ratio of characteristic diffusive speeds
across the brain compared to across the surface membrane.

The simplicity of the model allows translation to other studies.
To predict patterns of efflux of a given endogenous molecule
of interest, other researchers can calculate the corresponding
nondimensional numbers for their case, plug the result into
Eq. 9 and compare with Fig. 6. In pharmacokinetic studies, the
brain and other tissues are often reduced to single compartments
and the present model gives quantitative bounds on when
such reductions can be justified. A characteristic time-scale for
diffusion of solute in the brain is T = L2/D, or 8 h for a small
solute at roughly 1 kDa in a brain segment with depth 2 mm,
based on our estimates. Due to the rate-limiting boundaries, inert
solutes homogenize faster than this within the brain (Movies
S1–S3). Therefore, most solutes may be taken to mix well in
this brain within a few hours, even when they cannot cross the
blood–brain barrier. Since interstitial diffusion is likely faster than
transport across surface membranes, efflux on longer time-scales
will then essentially be characterized by surface permeability. This
goes some way toward explaining why classical studies such as
Cserr’s (5) found that a single exponential rate could explain
efflux of tracers with large size-differences: Their tracers likely
all mixed within the brain faster than they were transported
out. Our lumped approach may contribute to identifying valid
tissue boundary conditions because approaches containing many
anatomical and geometrical details instead risk sensitivity to errors
in estimates of shape.

Because of the uncertainty about how to interpret brain clear-
ance data, we chose to estimate the entire posterior probability
distribution of the estimated model parameters. Compared to the
more common point estimates which give only a single number
value for parameters, typically due to maximum likelihood
estimation or averaging methods, the advantage of estimating
the entire posterior probability distribution is particularly clear
when this distribution is bimodal. For example, the model
interprets the Cserr dataset as implying an average speed of
roughly 0.3 mm/h, but is unable to select a preferred direction
of flow. The average estimate from this posterior is therefore
near 0, and averaged point estimates run the risk of missing that
this average holds little probability mass. Maximum likelihood
methods would select one of the two modes, but miss the other.
To our knowledge, uncertainty quantification of global brain
transport has been reported before only by Croci et al. (23).
These authors investigated uncertainty in effective diffusion on
3-dimensional gadobutrol transport in the human brain and used
a stylized flow field similar to the one-dimensional flow applied
here. No formal parameter estimation was conducted, but the
authors argue that allowing for uncertainty in diffusion does
not obviate the need for a convective flow field to replicate
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the experimental results. In our model, the global balance of
advection to diffusion with Péclet numbers near 1 suggest that
small tracers in the brain will be effluxed both via ventricles and
subarachnoid spaces in spite of the unidirectional advection.

Simultaneous estimation of advection and diffusion across the
brain are rare in the literature. Modeling of infusion-pump-driven
flows is useful for the purpose of the nonphysiological pressures
encountered in those situations but has not addressed non-
pump-driven flows (27, 28). Theoretical modeling of perivascular
pathways as hydraulic networks propose that the volume flow rate
is relatively uniform (29, 30), which corresponds to the constant
velocity modeled here. Specific estimates of bulk flow velocity
range from 0.0, in a report based on extracellular conductivity
measured in postmortem neuropil reconstructions (31), to 3.0
mm/h, in a report based on advection–diffusion simulations
of small tissue segments containing periarterial and perivenous
spaces (32). However, these approaches investigated local rather
than global transport and lacked spatial measurements of global
transport. Global modeling efforts which have included all three
spatial dimensions, but excluded direct estimation of bulk flow,
found that diffusive transport would require unrealistically large
diffusion parameters to replicate experimental results (33, 34).
The study by Valnes et al. (33) highlighted the challenge of
correctly modeling boundary conditions, but did not attempt
to fit such transport rates directly. Surface effects were also not
included in the 3-dimensional advection–diffusion model fitted
to human brain data by Vinje et al. (35), but their average velocity
range of 0.18 to 0.24 mm/h during sleep is very similar to our
results.

Among the limitations of this work is perhaps most im-
portantly the heavily stylized reduction of the geometry to a
single dimension forcing the velocity to be a constant average,
and the volume-averaging which lumps vascular, perivascular,
and interstitial spaces together. Additionally, the assumption of
rapid mixing in cerebrospinal fluid is strained since transport
from one end of the skull to the other takes nearly half an
hour (21). However, blood flow in the capillary bed has been
successfully modeled using the homogeneous media assumption
(36). This work is therefore well complemented by the larger
and more accurate anatomies used in computational models
of specific individual brains, which find similar magnitudes of
advection (33, 34). In particular, uncertainty quantification of
diffusion and advection also indicates in those larger geometries
that advection is necessary for accounting for human tracer data
(23). Future work could include a spatial dimension for the
subarachnoid and ventricle compartments. The permeability of
perivascular astrocyte endfoot barriers was recently estimated by
Koch et al. (37), and their estimated “diffusion membrane factor”
lies between 500 and 6000 m−1. In this work, the comparable
number is the relative surface diffusivity Dm/D (≈ 0.01) divided
by the membrane length Lm, giving Dm/D/Lm ≈ 103 m−1, in
agreement with Koch et al.

Additional limitations include the absence of specified pressure
gradients to drive the advective speed and that the model
cannot distinguish how much of its average advection is due to
perivascular flows versus flows in the interstitium. The averages
applied here do not contribute to determining whether the
flows are pulsatile or steady. For example, while we chose our
prior for the effective diffusion based on data from microscopic
experiments done over the course of seconds, dispersive effects
due to flow oscillations more rapid than our 5 min MR recording
rate would inflate our diffusion estimates (35). Still, based on
the work presented here, microscopic (32), macroscopic (34), or

lumped-parameter models (30) may be more justified when their
average tissue advective speed is in the range 0.08 to 1.5 mm/h.
Our parameter estimates should be considered specific to the
experimental setups for their respective datasets, including the
choice of anesthesia. The Groothuis replications can be used
in future validations, but it should be noted that those results
confirm the qualitative patterns of the Cserr study, and that
disentangling the blood–brain barrier-transport of those tracers
from brain surface transport may be statistically difficult.

One remaining question is what the cellular basis is for the
surface membranes. It is known that the pial or ependymal
membranes covering the brain surfaces and the ventricular walls,
respectively, do not form complete coverage and that the cells are
loosely connected by gap junctions (38). Thus, it is questionable
whether pial or ependymal cells can form membranes that act
as size-dependent filters to restrict solute efflux from the brain
parenchyma. It is more likely that astrocytic processes physically
assemble into the surface barrier. Border-forming glia-limitans
astrocytes are positioned directly below the pial and ependymal
cells and form a roughly 10 μm layer of heavily interweaved
GFAP and AQP4 expressing processes (Fig. 5) (25). The stem
cell niche on the lateral anterior horn does not cover the more
posterior sections, where transport is thus likely easier. It is
interesting to note that the ependyma is more tightly sealed
in the fetus than in the adult (39–41). We propose that a
key function of glia limitans is to act as a barrier that prevent
efflux of extracellular matrix proteins in an analogous function
to the collagen-rich membranes that surround peripheral organs.
Without a barrier, the extracellular matrix would constantly leak
into the surrounding cerebrospinal fluid. For example, hyaluronic
acid is abundantly present in the central nervous system and
poorly anchored (38). The importance of glia limitans astrocytes
is illustrated by the fast formation of new borders by reactive
astrocytes that effectively isolate the damaged and inflamed tissue
from the surrounding healthy parenchyma (25).

In this study, we synthesized brain clearance assays from mice
and rats containing apparent contradictions into a unifying
mathematical model, which resolved contradictions with the
proposition that a brain surface membrane limits efflux. We
then validated the model in a custom in vivo real-time efflux
MRI-assay which is the first to measure the necessary spatial
tracer transport within and out of brain tissue. The model’s
nondimensional form enables formal model-based extrapolations
and indicates that either the brain surface is relatively permeable
to diffusion or bulk flow contributes to clearance of metabolites
with low blood–brain barrier permeability.

4. Materials and Methods

4.1. Animals and Drugs. Allexperimentsreceivedapproval fromDanishAnimal
Experiments Inspectorate. The C57BL/6J mice (Janvier Labs, Le Genest Saint-Isle,
France) were 9 to 14 wk old at the time of the experiment. All animals were
group-housed (up to 5 mice/cage) with ad libitum access to food and water,
temperature (22 ± 2 °C), and humidity-controlled (55 ± 10%) environment
with a 12/12 h light/dark cycle.

4.2. Intrastriatal Cannulations. Intrastriatal cannulations were performed as
described by Pla et al. (7). For every animal, the cannulation took place one week
before MRI. First, the animals were anesthetized with isoflurane for general
anesthesia and injected with lidocaine (1 mg/ml, s.c.) locally at the surgical site,
and carprofen (5 mg/kg) and buprenorphine (0.05 mg/kg) subcutaneously for
local analgesia. After exposing the skull, a burr hole was drilled in the skull
0.2 mm lateral and 0.6 mm posterior from the bregma, using a dental drill
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(Tech2000, RAM Digital Microtorque). Subsequently, an MRI-compatible nylon
cannula (0.45 mm outer diameter, Bilaney Consultants, UK) was inserted into the
striatum 3.25 mm ventrally from the skull surface and secured using standard
dental glue and cement.

4.3. MRI. All mice were put in prone position in the 9.4 T MRI preclinical
scanner(BioSpec94/30USR,Paravision6.0.1software,BrukerBioSpin,Ettlingen
Germany). The MRI was performed using room-temperature volumetric Tx/Rx
resonator (40-mm inner diameter) and 1,500 mT/m gradient coil (BFG6S,
Bruker), in mice anesthetized with a mixture of ketamine (75 mg/kg) and
dexmedetomidine (1 mg/kg). An MR-compatible remote monitoring system (SA
Instruments, NY, USA) was used to maintain body temperature at 37 ± 0.5
Celsius with a thermostatically controlled waterbed along with monitoring of
respiratory rate. The protocol consisted of T2-weighted 3D-CISS morphological
reference acquired with 100μm isotropic spatial resolution (TR/TE 4/2 ms, Nex 1,
FA50°,FOV19.2×19.2×16mm,Matrix192×192×160,maximumintensity
projection of 4 orthogonal phase encoding directions), and subsequent DCE-MRI
with a T1W-3D-fast low angle shot (3D-FLASH) sequence (TR/TE 7.1/1.5 ms, FA
10°, FOV 19.2 × 19.2 × 16mm, Matrix 192 × 192 × 160). Each 3D-FLASH
volume was acquired in 6 min, and T1-enhancing contrast agent gadobutrol
(20 mM; Gadovist, Bayer Pharma AG, Leverkusen, Germany) was infused into
the striatum (0.1 μL/min for 10 min, total infusion volume = 1 μL) after the first
3 baseline 3D-FLASH volumes acquired (i.e., 18 min). The scanning continued
over 20 measurements (120 min).

4.4. Image Processing. All 3D-CISS volumes were calculated in few steps using
in-house preprocessing pipeline. For each animal, both 3D-TrueFISP volumes ac-
quired with four orthogonal phase encoding directions and DCE FLASH volumes
were motion-corrected and spatially normalized with Advanced Normalization
Tools (ANTs) (reference: B. B. Avants et al., A reproducible evaluation of ANTs
similarity metric performance in brain image registration. Neuroimage 54,
2033–2044 (2011). doi: https://doi.org/10.1016/j.neuroimage.2010.09.025;
pmid: 20851191). Motion-corrected 3D-CISS image was computed as a
maximum intensity projection, resulting in an image of almost completely
removed banding artifacts. DCE FLASH volumes were then coregistered to
the 3D-CISS volumes. To normalize the CSF signal in each time series, their
voxel intensities were subjected to Gaussian normalization using the first 3D-
FISP volume. The resulting images were smoothed with a 3 × 3 × 3 voxels
kernel of [0.2, 1, 0.2] weights for along each axis, to reduce the influence
of possible artifacts after automatic affine registration and subtraction of the
baseline volume.

4.5. Histology. Complete series of serial paraffin sections of the entire forebrain
of C57BL/6J mice were available from a previous study (42). For ordinary
histology and immunocytochemistry, coronal sections from the relevant region
were processed according to standard protocols (see ref. 42) and incubated
overnight at 4 °C with the anti-AQP4 primary antibody AVIVA Systems Biology
(OABB01958); 1:3000 following antigen retrieval in citrate buffer, pH 6 and
the anti-GFA-P primary antibody Dako (Z0334); 1:10000 following antigen
retrieval in TEG buffer, pH 9. diluted in 10% goat serum and washed with TBS.
For bright field light microscopy analysis, the REALTM EnVisionTM Detection
System, Peroxidase/Diaminobenzidine+ (DAB+) rabbit/mouse, (K5007, Dako,
Glostrup, Denmark) was used for detecting the primary antibodies. The detection
reagent consists of a dextran backbone coupled to peroxidase and polyclonal
secondary antibody molecules. The sections were washed with TBS, followed by
incubation for 10 min with the DAB+ solution. Sections were counterstained
with Mayer’s hematoxylin, dehydrated in graded alcohols, and cover-slipped
with Pertex mounting medium.

4.6. Global Glymphatic Model. The application of the advection–diffusion
equation with first-order reaction kinetics for blood–brain barrier transport has
been previously described (8). In brief, we average solute concentrations c in
the brain over small volumes containing 20% extracellular space taken to be
homogeneous media through which solute is transported with effective diffusion
coefficient D and superficial velocity v. The effective diffusion coefficient depends
on tortuosity and extracellular space volume fraction (9), but we do not attempt

to resolve this relationship for this work. Brain tissue is three-dimensional, but
perivascular spaces penetrate at right angles to the brain surface and since
these may be the main solute highways, we consider only transport along the
axis in the radial direction of these channels which are roughly the shortest,
straight lines between subarachnoid spaces and ventricles. Originally, we used
a spherical geometry for the brain with an inner sphere representing ventricles.
This emphasized our assumption that solute transport is on average symmetrical
on the plane orthogonal to penetrating perivascular spaces. However, the ratio of
ventricular surface area to superficial surface area required by a spherical model
seems a distortion of the relatively large ventricular areas. We therefore moved
to a slab geometry in which the four sides of the three-dimensional cuboid
parallel to the main axis have symmetrical boundary conditions, resulting in
our formulation of the advection–diffusion equation on a straight line between
ventricle and subarachnoid space (Fig. 2 and Eq. 2a).

The tissue boundaries require special attention, something which we find has
been lacking in existing modeling (though see ref. 43). It is currently unknown
how permeable the surface membranes are. We chose to let a fraction re of the
surfaces be a single-cell layer, in which we assume pure Fick’s diffusive flux Jm,
and a fraction 1 − re to be open fluid space, in which advection and diffusion
combines in the flux Jp. Since these surface layers are narrow, we can assume a
rapid steady-state concentration profile with Dirichlet boundary conditions and
calculate the resulting combined flux over such a membrane and open space,
J = reJm + (1 − re)Jp. To satisfy mass conservation, this surface flux must
equal the flux on the border of the tissue, vc−D ∂

∂ l c = J. We therefore get Robin
boundary conditions for the advection–diffusion–reaction Eq. 2b–2c. Since re
is challenging to separate from Dm in parameter identification from data, we
limit the investigations here to the case re = 1, corresponding to complete
coverage of the surface cell layer. The steady-state concentration in a narrow
layer of diffusion with Dirichlet boundary conditions is linear, so the flux through
it is everywhere

Jm(l) = Jm = � Dm
Lm

Δc, [1]

whereΔc is the difference between extracellular concentration c/� and external
concentration cc or cv , and � is the extracellular volume fraction of the tissue.
This is because the membrane flux occurs only through the surface not occluded
by cells (neurons, astrocytes) and due to a concentration difference which scales
the flux.

As with earlier models, we assume that the blood–brain barrier is
homogeneously distributed in tissue and use first-order solute exchange with
the blood compartment, in which the solute concentration is cb, with rate kp
(8). We add a production term p to investigate the effect of diffusion and
advection of locally produced waste products, as has been done before (8). This
completes the formulation of the central advection–diffusion–reaction model,
Eqs. 2a–2c.

∂

∂ t
c(l, t) = D

∂2

∂ l2
c(l, t)− v

∂

∂ l
c(l, t) + p− kp[c(l, t)− cb(t)], [2a]

∂

∂ l
c(0, t) = D−1[vc(0, t)− reJm(0) + (1− re)Jp(0)], [2b]

∂

∂ l
c(L, t) = D−1[vc(L, t)− reJm(L) + (1− re)Jp(L)]. [2c]

The two tissue surfaces interact with rapidly mixed solute in cerebrospinal
fluid in ventricles (subscript v) with concentration cv and in subarachnoid spaces
(subscript c) with concentration cc . The net production of cerebrospinal fluid
also sets the net volume throughput from ventricles to subarachnoid spaces
and onward to blood, Ql , (via unspecified efflux routes). A small backflow from
subarachnoid space to ventricles, Qr , is included. Given the surface area S we can
now calculate in- and efflux of solute mass m to these control volumes, and with
Vc and Vv being the subarachnoid space and ventricular volumes respectively,
we also have their concentrations. This parameterization with a single surface
area S requires the whole brain slab to have similar tracer concentrations at a
given depth l. Last, the control volume for blood (subscript b) receives exactly
the mass crossing the blood–brain barrier and from the subarachnoid space. This
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completes the state space of the model Eqs. 2–5, which conserves mass (which
accumulates in blood).

∂

∂ t
mv = Vv

∂

∂ t
cv = −SJ(0)− Qlcv − Qr(cv − cc), [3]

∂

∂ t
mc = Vc

∂

∂ t
cc = SJ(L)− Qlcc + Qr(cv − cc), [4]

∂

∂ t
mb = Vb

∂

∂ t
cb = S

∫ L

0
kp[c(l, t)− cb(t)]dl + Qlcc. [5]

To solve the system, we implemented a numerical solution scheme in Julia (44)
using DifferentialEquations.jl (45) and checked that all simulations respected
total mass conservation (SI Appendix, Fig. S11).

To get a nondimensionalized model and find nondimensional parameter
groups, we scaled lengths with L, time with L2/D, and concentrations by p/kp.
This allows rephrasing the model for the brain domain along the axis ` over
time � with nondimensional concentrations C and nondimensional parameter
groups Pe = vL/D, � = kpL2/D, and  = � Dm

Lm
/ D

L :

∂

∂�
C =

∂2

∂`2
C − Pe

∂

∂`
C + �(1 + Cb − C), [6]

∂

∂`
C(0, �) = Pe C(0, �)−  (Cv − C(0, �)), [7]

∂

∂`
C(1, �) = Pe C(1, �)−  (C(1, �)− Cc). [8]

The steady-state situation, where ∂
∂� C = 0, is then a second-order inhomoge-

neous differential equation if solute is rapidly cleared from cerebrospinal fluid
and blood (Cv = Cc = Cb = 0). This problem was solved using Maple
(version 2020.1) to give the analytical solution in Eq. 9.

C = 1−
eax
(

ebPeC + C eb + ebPe2
− ebPe − 2 eb2

− CPe + C − Pe2
− Pe + 22

)
2C eb + 2 eaC − 2 eb2 + 2 ea2 − 2 eb� + 2 ea�

−

2 ebx
(

eaCPe + eaC 2 + eaPe 2 + ea3 + eaPe� + ea� + Pe2 − 3
− Pe� + �

)
(Pe + 2 + C)

(
C eb + eaC − eb2 + ea2 − eb� + ea�

) . [9]

For this equation, we used the simplifications a = (Pe+
√

Pe + 4�)/2 and
b = (Pe−

√
Pe + 4�)/2 to reduce the expression. By integrating the solution

over the brain domain, we find the total brain content of the (nondimensional)
solute as a function of Pe, �, and  . Notice that the scaling of concentrations
with p/kp results in waste concentration scaled such that local steady state with
respect to blood–brain barrier efflux has (nondimensional) concentration 1.

4.7. Measurement Model, Priors, and Posterior Estimation. Our approach
to estimating the posteriors follows that of Gelman et al. (46). We expect
measurements y to be correct on average, but due to measurement and model
errors, the experimental observations will be distributed around the model
predictions ŷ. We take the error distribution to be normal N (ŷ, �2

m), with an
error�m about which we only know that it will be less than some om, learned from
the particular measurement set m, so that om has a uniform prior distribution
U(0, om). With the errors taken to be independent, we can now formalize the
probability of making a particular set of observations ym(I, tj), where m refers
to the measurement variable, j counts the J measurement time-points and I is
the initial condition. Let y(I, t) be all the measurements for brevity and let �2

represent all noise terms. The model predictions ŷ likewise depend on initial
condition I and time t, but also our parameters. In sum, we assume that the
measurements are normally distributed around the model predictions:

Pr
(

y(I, t)|ŷ(I, t, D, Dm, v), �2
)

=

M∏
m=1

J∏
j=1

N
(

ŷ(I, tj, D, Dm, v), �2
m

)
,

[10]

where ŷ solves the model Eqs. 2–5. We note that this approach models
prediction errors as arising from measurement noise rather than model error.
4.7.1. Setting cautious priors. Our prior hypotheses on the D, Dm, and v
parameters vary considerably. Strong priors are set on D, which have a thorough
history of theoretical and empirical investigations (9). We calculate the median
effective diffusion constants�D by correcting the Stokes–Einstein pure diffusion
estimate, DSE, for tortuosity� = 1.7, to get�D = DSE/�2 (22). We take the log
of the true effective diffusion constant to be normally distributed around log�D
with its prior variance �2

D = 0.52, set to roughly fit the reported variance in

measurements of � (9)*: log D ∼ N (log�D, �2
D). We use conservative priors

on the advective velocity v, since its magnitude is debated. With its mean on
0 mm/h and a variance of �v = 1 mm/h, 99% of the probability mass for v is
smaller than the upper limit estimated by Ray et al. (50 μm/min = 3 mm/h)
(32) and we are agnostic about the direction of flow before learning from the
data. Finally, the diffusion through the tissue surface membrane, Dm, has little
prior information: It may be similar to that of the tissue itself (Dm ≈ D), or
these cells could reasonably make Dm 100 times smaller (Dm ≈ 10−2D). For
this reason, we use a uniform prior on Dm, allowing it to be between 0 and
Dm = 1 mm2/h ≈ 2D, so Dm ∼ U(0, Dm). The parameters for uncertainty
quantification are summarized in Table 2.

Two notes on these priors: We do not represent population variation in the
parameters, and assume constant velocity throughout the experimental time-
periods. Estimating population variation is possible in our chosen data sources
with multiple animals, but since their mean measurements were found to be
representative, we chose to limit this analysis accordingly. Variation in average
advective velocity is quite possible in especially experiments of long duration
(e.g., 30 h in Cserr et al.), but again we restrict this analysis to the case of constant
velocity.

To summarize, our independent priors are

�2
m ∼ U(0.0, om)

log D ∼ N (log�D, �2
D)

Dm ∼ U(0, Dm)

v ∼ N (0, �2
v ).

Table 2. Parameters for uncertainty quantification
and Bayesian parameter estimation
Parameter Dataset Value Units

�v all 1.0 mm/h
�D all 0.46 mm2/s
�D all 0.5 1
Dm all 1.0 mm2/h
obm Pla 1.0 μg
obl Pla 0.01 μg/mL
obm Cserr 20.0 % infused mass
oc Cserr 4.0 % infused mass

*We silently drop the units through the log-transformation.
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4.7.2. Estimation of the posterior. The product of our likelihood and our prior
gives the joint posterior probability distribution for our parameters of interest
D, Dm, and v, as well as our observation deviation �2. The denominator is
constant and sampling the numerator is therefore sufficient. We sample the
numerator with the No U-Turn Sampler provided in the Turing library (with
standard acceptance rate 0.65) which normalizes out the denominator and
converges to the posterior distribution (47); see Eq. 11. The second equality
follows from our assumption of independence between the parameters and
measurement variance. The proportionality follows from the denominator being
constant, and we have used Pr(�2

m) = om
−1 (and avoided subscripts on �2

when not indexing over measurement method). Due to numerical instability
issues with very small and very large values of D, we truncate the priors D to
[0.01, 20] mm2/h and v to [−2, 2] mm/h and examine the posterior chains (SI
Appendix, Figs. S12 and S22) to check the quality of posterior sampling.

Pr(D, Dm, v, �2
| y, I, t, om, �2

D , Dm, �2
v ) =

Pr(y | t, I, D, Dm, v, �2) Pr(D, Dm, v, �2
m | om, �2

D , Dm, �2
v )

Pr(y)

=
Pr(y | t, I, D, Dm, v, �2) Pr(D|�D, �2

D) Pr(Dm|Dm) Pr(v|�2
v ) Pr(�2, | om))

Pr(y)

∝

 M∏
m=1

J∏
j=1

N (ŷm(I, tj, �, D, Dm, v), �2
m)

 M∏
m=1

om
−1

×

(
N (log�D, �2

D)U(0, Dm)N (0, �2
v ).
)

[11]

4.7.3. Parameter robustness analysis. To examine to what extent the results
are sensitive to the nine physiological constants (Table 1), we simultaneously
replaced each with a normal distribution centered on its expected value with a
SD at 10% of this value and truncated by factor 10 below and above. Performing
the posterior sampling in otherwise the same way as above, we found that

this procedure allows the model a qualitatively better fit to the data, see the
accompanying code repository.
4.7.4. Data parsing, implementation, and other notes. All code necessary to
replicate these results is publicly available in ref. 48, in the form of a Julia
package using in particular the DifferentialEquations.jl and Turing.jl libraries
(44, 45, 47).

In order to set the initial condition for the model simulations, we took the
initial concentration profile from the measurements by Pla (7). From the several
Pla recordings, we chose the median.

We assumed the volume of cerebrospinal fluid, Vc , to be roughly evenly split
between ventricles and the remaining subarachnoid space. Model predictions
on concentration profiles are not very sensitive to this parameter (analyses not
presented here).

Data, Materials, and Software Availability. Code and MRI profiles data have
been deposited in Zenodo (https://doi.org/10.5281/zenodo.10582168) (49).

ACKNOWLEDGMENTS. We thank Dan Xue for contributions to figure design
and Pernille S. Froh for excellent help with the histology.

1. V. M. Savage, G. B. West, A quantitative, theoretical framework for understanding mammalian
sleep. Proc. Natl. Acad. Sci. U.S.A. 104, 1051–1056 (2007).

2. J. Cao, A. B. Herman, G. B. West, G. Poe, V. M. Savage, Unraveling why we sleep: Quantitative
analysis reveals abrupt transition from neural reorganization to repair in early development. Sci.
Adv. 6, eaba0398 (2020).

3. L. Xie et al., Sleep drives metabolite clearance from the adult brain. Science 342, 373–377
(2013).

4. J. H. Thomas, Theoretical analysis of wake/sleep changes in brain solute transport suggests a flow of
interstitial fluid. Fluid. Barr. CNS 19, 1–5 (2022).

5. H. Cserr, D. Cooper, P. Suri, C. Patlak, Efflux of radiolabeled polyethylene glycols and albumin from
rat brain. Am. J. Physiol.-Renal Physiol. 240, F319–F328 (1981).

6. D. R. Groothuis et al., Efflux of drugs and solutes from brain: The interactive roles of diffusional
transcapillary transport, bulk flow and capillary transporters. J. Cereb. Blood Flow Metab. 27, 43–56
(2007).

7. V. Pla et al., A real-time in vivo clearance assay for quantification of glymphatic efflux. Cell Rep. 40
(2022).

8. C. Nicholson, Diffusion and related transport mechanisms in brain tissue. Rep. Progr. Phys. 64
(2001).

9. E. Syková, C. Nicholson, Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340
(2008).

10. Aifb science, Allen mouse brain atlas [p56, coronal] (2011).
11. L. Swanson, Brain Maps: Structure of the Rat Brain (Elsevier Academic Press, 2004).
12. P. Blinder, A. Y. Shih, C. Rafie, D. Kleinfeld, Topological basis for the robust distribution of blood to

rodent neocortex. Proc. Natl. Acad. Sci. U.S.A. 107, 12670–12675 (2010).
13. A. J. Jiménez, M. D. Domínguez-Pinos, M. M. Guerra, P. Fernández-Llebrez, J. M. Pérez-Fígares,

Structure and function of the ependymal barrier and diseases associated with ependyma
disruption. Tissue Barr. 2, e28426 (2014).

14. E. Van Vliet, W. Otte, J. Gorter, R. Dijkhuizen, W. Wadman, Longitudinal assessment of blood-brain
barrier leakage during epileptogenesis in rats. a quantitative MRI study. Neurobiol. Diseas. 63,
74–84 (2014).

15. R. Rudick, D. Zirretta, R. Herndon, Clearance of albumin from mouse subarachnoid space: A
measure of CSF bulk flow. J. Neurosci. Methods 6, 253–259 (1982).

16. N. Kaliss, D. Pressman, Plasma and blood volumes of mouse organs, as determined with
radioactive iodoproteins. Proc. Soc. Expe. Biol. Med. 75, 16–20 (1950).

17. L. Wang, Plasma volume, cell volume, total blood volume and fcells factor in the normal and
splenectomized sherman rat. Am. J. Physiol.-Legacy Content 196, 188–192 (1958).

18. H. B. Lee, M. D. Blaufox, Blood volume in the rat. J. Nuclear Med. 26, 72–76 (1985).
19. G. Liu et al., Direct measurement of cerebrospinal fluid production in mice. Cell Rep. 33, 108524

(2020).

20. R. O. Tuura, C. Volk, F. Callaghan, V. Jaramillo, R. Huber, Sleep-related and diurnal effects on brain
diffusivity and cerebrospinal fluid flow. NeuroImage 241, 118420 (2021).

21. E. H. Stanton et al., Mapping of CSF transport using high spatiotemporal resolution dynamic
contrast-enhanced MRI in mice: Effect of anesthesia. Magnet. Reson. Med. 85, 3326–3342
(2021).
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