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Review 

Combining enzyme and metabolic engineering for 
microbial supply of therapeutic phytochemicals☆ 

Maxence Holtz, Carlos G Acevedo-Rocha and Michael K Jensen   

The history of pharmacology is deeply intertwined with plant- 
derived compounds, which continue to be crucial in drug 
development. However, their complex structures and limited 
availability in plants challenge drug discovery, optimization, 
development, and industrial production via chemical synthesis 
or natural extraction. This review delves into the integration of 
metabolic and enzyme engineering to leverage micro- 
organisms as platforms for the sustainable and reliable 
production of therapeutic phytochemicals. We argue that 
engineered microbes can serve a triple role in this paradigm: 
facilitating pathway discovery, acting as cell factories for 
scalable manufacturing, and functioning as platforms for 
chemical derivatization. Analyzing recent progress and outlining 
future directions, the review highlights microbial 
biotechnology’s transformative potential in expanding plant- 
derived human therapeutics’ discovery and supply chains. 
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Introduction 
Natural products and their derivatives play an important 
role in pharmacology, with an estimation that between 
1981 and 2019, more than half of approved small- 

molecule drugs were based on natural product scaffolds  
[1]. Plants in particular produce a wide diversity of 
bioactive secondary metabolites, including important 
chemical scaffolds, such as alkaloids, terpenoids, and 
phenolics, which have been used for millennia to treat 
human pathologies [2,3]. 

Although their effectiveness and necessity for human 
health are undeniable, supplying safe, efficient, and 
sufficient amounts of active pharmaceutical ingredients 
based on therapeutic phytochemicals for the manu-
facturing of medicines is a major challenge. In most 
cases, plant bioactives display structures considerably 
too complex for cost-efficient manufacturing via total 
chemical synthesis, and thus, supply chains still rely on 
extraction from plant materials, optionally followed by 
chemical derivatization [4]. As an example, the antic-
ancer drugs irinotecan and topotecan are currently pro-
duced chemically from the plant-extracted alkaloid 
camptothecin in a semisynthetic process [5]. Extraction 
from plants is, however, made difficult by low metabolite 
accumulation in planta, difficulty in cultivating certain 
plants at large scale, slow growth, presence of multiple 
structurally closely related metabolites in raw starting 
materials, as well as inefficient and energy-consuming 
extraction processes [2,4]. Additional climatic and poli-
tical variations destabilize the supply chains of ther-
apeutic phytochemicals leading to frequent shortages of 
essential medicines [6]. To give an example, for the 
anticancer alkaloids vinblastine and vincristine 500 kg 
and 2 tons, respectively, of dried Madagascar periwinkle 
Catharanthus roseus leaves are necessary to obtain 1 g of 
product [7]. Total chemical synthesis is not feasible at 
industrial scale owing to the highly complex structure of 
these drugs containing multiple stereocenters [8]. Plant 
extraction–based supply for these essential leukemia 
medicines leads to 20–100.000 $/kg price, and shortages 
have been recurring over the last years [7,9]. 

Over the last 20 years, metabolic engineering of micro-
bial cell factories has emerged as an alternative manu-
facturing route for therapeutic phytochemicals, 
promising to be more decentralized, sustainable, scal-
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able, and therefore more reliable by fermentation of 
relatively cheap feedstocks. This was first illustrated in 
the pioneering work by Ro et al. for the construction of a 
yeast cell factory producing artemisinic acid, a precursor 
of the antimalarial medicine artemisinin [10,11]. Their 
final optimized strain produced > 25 g/l of artemisinic 
acid from glucose and was licensed to the pharmaceu-
tical company Sanofi for commercialization [12]. Since 
then, tremendous technical progress has been made in 
omics-based plant pathway discovery, tools for genetic 
engineering in microbes, and enzyme engineering, 
which has fostered a multitude of seminal metabolic 
engineering studies on the production of therapeutic 
phytochemicals with clinical relevance [13–19]. 

In this review, we focus on recent efforts in the con-
struction and optimization of microbial cell factories to 
produce and derivatize plant bioactives. Although we 
aim to cover different product chemical families, parti-
cular attention is given to alkaloids due to their high 
pharmacological importance. 

Engineering microbes as biosynthetic pathway 
discovery platforms 
The first critical factor to assess when starting a meta-
bolic engineering project aiming at producing a ther-
apeutic phytochemical is the knowledge on the 
biosynthetic pathway needed to produce it. While pro-
gress has been made in applying and integrating mul-
tiomics methods in plants to identify candidate genes in 
a pathway of interest [20,21], efficient discovery of bio-
synthetic pathways is hampered by limitations in both 
the screening throughput of gene candidates encoding 
biosynthetic pathway enzymes and the limited accessi-
bility of complex pathway intermediates. The three 
main methods employed are (1) in planta testing by 
transient gene expression in Nicotiana benthamiana 
leaves, (2) in vitro assays of purified proteins, and (3) 
yeast metabolic engineering (Figure 1). 

Through Agrobacterium tumefaciens–mediated transfection, it 
is possible to co-express as well as downregulate multiple 
gene candidates in N. benthamiana, and if necessary, co- 
infiltrate pathway substrates followed by assessment of 
production profiles by high-resolution liquid chromato-
graphy tandem mass spectrometry (LC-MS/MS) or nuclear 
magnetic resonance. Recently, the biosynthetic pathway 
for the neurotoxic alkaloid strychnine from the poison fruit 
Strychnos nux-vomica was uncovered with this method [22]. 
Using combinatorial testing of candidate genes selected 
based on spatial- and co-expression transcriptomic analysis 
as well as putative enzyme function, the authors identified 
the nine enzymes responsible for strychnine, brucine, and 
diaboline biosynthesis from geissoschizine [22]. 

In vitro enzymatic assays performed with purified pro-
teins obtained from heterologous hosts (usually 

Escherichia coli or Saccharomyces cerevisiae) are another way 
to obtain information on plant biosynthetic pathways. 
Such an approach makes detailed biochemical char-
acterization accessible, including information on kinetic 
parameters, substrate, cofactor preference, regio-/stereo- 
selectivity as well as potential inhibitors. With this ap-
proach, the biosynthesis of quinine, the antimalarial, and 
bitter flavoring alkaloid was investigated by Trenti et al. 
using purified proteins produced both in E. coli and S. 
cerevisiae, resulting in the discovery of three enzymes of 
the pathway: an alcohol dehydrogenase (CpDCS), an 
esterase (CpDCE), and an O-methyltransferase 
(CpOMT1) from red cinchona Cinchona pubescens [23]. In 
vitro experiments combined with site-directed muta-
genesis can also shed light on the structure-to-function 
relationships of enzymes of interest especially regarding 
catalytic activity, specificity, and stability. The stereo-
specificity of various medium-chain dehydrogenase/re-
ductase from C. roseus enabling the production of 
different stereochemical profiles of bioactive hetero-
yohimbine alkaloids was carried out this way [24]. After 
resolving the crystal structures of the specialized tetra-
hydroalstonine synthase CroTHAS1 and its promiscuous 
heteroyohimbine synthase homolog CroHYS, producing 
three different products, the authors conducted point 
mutations and loop grafting between the two enzymes 
gaining insight into their catalytic mechanism and the 
structural determinants controlling their stereo-
selectivity. It should be noted that the adoption of in 
vitro assays, compared with in vivo studies, often is 
limited by the price and availability of intermediates in 
plant biosynthetic pathways used as substrates for 
testing candidate enzymes. 

Engineered yeast can also be leveraged as platforms for 
pathway elucidation. High-throughput engineering 
methods, either based on CRISPR-Cas9 genomic in-
tegration or plasmid-based screening, hold the promise 
to increase the speed of enzyme discovery. Yeast can be 
engineered to produce de novo complex and rare inter-
mediates through refactoring of long pathways, which is 
tedious, or even impossible, when using N. benthamiana 
assays [25]. In addition, yeast usually presents less me-
tabolic crosstalk compared with tobacco plants, which 
contain many endogenous hydroxylases and glycosyl-
transferases [25,26]. This was exemplified recently by 
the discovery of 20 new enzymes involved in the bio-
synthetic pathway of tropane alkaloid biosynthesis in 
coca plant Erythroxylum coca employing a yeast platform 
engineered for the overproduction of the precursor 
spermidine [25]. Their sequential and combinatorial 
yeast engineering approach complemented by in vitro 
and in planta assays provides an excellent illustration of 
the complementarity of the methods currently adopted 
for pathway discovery. Other examples were recently 
provided by the Kampranis laboratory combining yeast 
and tobacco platforms to elucidate the biosynthesis of a 
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neuromodulatory ginkgolide terpenoid in Ginkgo biloba  
[27] and antiobesity compound celastrol from Tripter-
ygium wilfordii [28]. 

With respect to engineered microbial cells for pathway 
discovery, it is worth mentioning that the throughput of 
microbe-based pathway discovery is today still largely 

Figure 1  

Current Opinion in Biotechnology

General workflow for elucidating plant biosynthetic pathways. (a) Medicinal plants of interest are subjected to multiomics analysis to select a library of 
candidate pathway genes. These candidates are tested by expression in either tobacco leaves, in vitro enzymatic assays, or yeast. (b) Comparison of 
these three plant candidate gene screening methods (for each criterion, + = poor, ++ = medium, and +++ = good). Choice of method mainly depends 
on the throughput required and accessibility to complex pathway intermediates. (c) Examples of the structure of some therapeutic phytochemicals 
whose biosynthetic pathways have recently been fully or partially elucidated. These examples and corresponding references are detailed in the 
main text.   
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limited by the price of DNA synthesis. As this cost is still 
set to decrease in the coming years [29], we envision the 
possibility of ordering hundreds to thousands of codon- 
optimized gene fragments at large scale, cloning them in 
expression vectors using automatable techniques such as 
Golden Gate Assembly [30] and therefore reaching 
genome scale–level screening of particular enzyme 
classes from medicinal plants. 

Combining metabolic and enzyme engineering for cell 
factory optimization 
With fully elucidated biosynthetic pathways from plants 
available, the first prototypic microbial cell factories can 
be built and tested. Given the magnitude of the en-
gineering work required to refactor and optimize long 
plant secondary metabolism pathways, most studies rely 
on industrial biotechnology workhorses E. coli and S. 
cerevisiae, both of which benefit from highly developed 
synthetic biology toolboxes, fast growth, well-character-
ized metabolisms, easy handling, and scalable cultivation 
setups. For heterologous expression of biosynthetic 
pathways for phytochemical production, yeast is cur-
rently the preferred choice, thanks to its eukaryotic cell 
architecture shared with plants, enabling complex post- 
translational protein modifications, compartmentalized 
metabolism, as well as expression of endomembrane- 
anchored enzymes such as cytochrome P450s that are 
prevalent in plant secondary metabolism [31–33]. Im-
portantly, the choice of chassis organism depends on the 
compound family (e.g. derived from shikimate mevalo-
nate pathways), the type of enzymes (e.g. membrane 
capacity for P450 enzymes), and cofactors involved, as 
well as potential toxicity of pathway intermediates or 
products. 

The first proof-of-concept strains obtained upon re-
factoring the prototype pathway usually produce low ti-
ters in the µg/l to low mg/l range [2]. Strain optimization 
to achieve commercially relevant titer, rate, and yield 
(TRY) is a time-consuming procedure that involves 
several years of costly consecutive engineering rounds  
[34–36] (Figure 2a). Coming back to the previous vin-
blastine example, technoeconomic analysis concluded 
that high titer > 1 g/l was required for rentability of yeast- 
based tabersonine (vinblastine precursor) and 10–50 mg/l 
for yeast-based vinblastine supply, meaning subsequent 
strain improvement still needs to be carried before 
reaching a competitive minimal selling price on the 
market [9]. This type of analysis is important to carry in 
the early stages of process development to identify the 
target strain TRY to reach for industrial application. 

An important parameter to solve when refactoring plant 
biosynthetic pathways in microbial cells is to increase 
and balance the supply of precursors and cofactors. This 
includes overexpression of endogenous genes, deletion 
of competing pathways, regulator engineering, as well as 

transplant of superior heterologous pathways modules 
(Figure 2b). Chen et al. combined these methods in S. 
cerevisiae to improve caffeic acid and ferulic acid pro-
duction, important precursors for bioactive plant phe-
nolics [37]. Upon using feedback-insensitive shikimate 
enzyme variants and deleting competing pathways to 
optimize precursor p-coumaric acid supply, they found 
that redox and methyl-transfer cofactors suborganelle 
distribution compromised the natural product biosynth-
esis and engineering cofactor colocalization led to the 
production of 5.5 g/l caffeic acid and 3.8 g/l ferulic acid in 
glucose fed–batch fermentation. Examples of platform 
strains producing significant amounts of the different 
plant natural product precursors are widely available in 
the literature (Table 1). Speeding up this precursor 
supply optimization will entail significant effort to in-
crease the size of the libraries of designs, including the 
use of metabolic modeling pipelines as well as involve-
ment of automated biofoundries to build and test strains 
in high-throughput. This was illustrated recently by the 
presentation of Amyris’s automated scientist named 
Lila, used to design and optimize both E. coli and S. 
cerevisiae cell factories producing 454 different target 
molecules [35]. Using a design of experiment frame-
work, Lila carried out combinatorial strain designs for 
every target compound by sampling various combina-
tions of promoter, terminator, enzyme homolog, N- 
terminal truncations, codon optimization, genomic in-
tegration site, copy number of pathway, and competing 
pathway knockout. Using their high-throughput strain 
engineering, fermentation, and analytical chemistry 
platforms, the authors built and tested > 32 000 strains 
and reached impressive performances for many com-
pounds, including the first > 1.5 g/l naringenin producer 
from glucose, paving the way to industrial flavonoid 
production for health applications. 

In addition to precursor supply challenges, the activity 
profiles of the enzymes involved in therapeutic phyto-
chemicals pathways often greatly limit cell factory per-
formance. These enzymes originate from plant secondary 
metabolism and have neither evolved to support high 
fluxes, nor been optimized in terms of resource efficiency  
[46]. Other challenges arise because of their heterologous 
expression, especially in terms of stability, making en-
zyme screening and engineering a cornerstone of phyto-
chemical-producing cell factory optimization (Table 2). 
One common strategy aimed at mitigating this issue is to 
screen libraries of enzyme homologs for each reaction step 
to identify the best performing enzyme. This strategy was 
widely used in the refactoring of the 30-enzymatic step 
biosynthetic pathway for anticancer drug vinblastine in 
yeast [7]. In particular, for the step catalyzed by stricto-
sidine-β-d-glucosidase (SGD), a gateway enzyme for the 
production of monoterpene indole alkaloids (MIAs), 46 
homologs from different plants were assessed. The best 
performing candidate, RseSGD from Rauwolfia serpentina, 
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was used as a basis for further rational engineering 
through domain swapping, and the best variant used in 
the final production strain enabled > 100-fold higher MIA 
titers compared with CroSGD from vinblastine-producing 
C. roseus [47]. 

Plants use natural products for specialized functions, such 
as defense against predation and drought, and thus spa-
tiotemporally regulate their production [48]. This in-
cludes compartmentalizing individual enzyme reactions 
or modules of enzyme cascades in distinct subcellular 
compartments as exemplified recently for vinblastine  
[49]. Therefore, consideration of subcellular localization is 
also necessary for the functional expression of plant en-
zymes in heterologous hosts. Cytochrome P450s, for ex-
ample, usually need to be localized to the endoplasmic 
reticulum membrane with their reductase to be functional  
[7,50]. Some enzymes might require specific biochemical 
environments to be functional, to go back to the previous 
SGD example, this enzyme has been shown to localize in 
the nucleus in plants. Zhang et al. observed that in yeast 
too, the only active homologs were the ones located in the 
nucleus. Addressing enzymes in different organelles using 
known tags in yeast can also be used to increase the 
production of target compounds. Recently, toxic effects of 

cytosolic expression of norcoclaurine synthase (NCS) in S. 
cerevisiae, the enzyme that catalyzes the first committed 
step in benzylisoquinoline alkaloids (BIAs) biosynthesis, 
were observed [32]. Through localizing this enzyme in 
the peroxisome and increasing peroxisome capacity, in-
creased norcoclaurine titers and growth rates were ob-
tained. Improving the spatial proximity of enzymes in a 
pathway through the construction of fusion enzymes or 
use of scaffolding platforms is another strategy to promote 
metabolic channeling. Production of α-ionone, a violet 
fragrance terpene with multiple bioactivities, was im-
proved > 2.5-fold in E. coli by fusing the last two enzymes 
of the pathway lycopene ε-cyclase (LcyE) and carotenoid 
cleavage dioxygenase 1 (CCD1) [51]. By doing so, they 
increased accessibility of CCD1 to its hydrophobic sub-
strate ε-carotene produced by membrane-anchored en-
zyme LcyE while decreasing side product formation due 
to CCD1 promiscuity. This strategy was also applied to 
kaurenoic acid 13α-hydroxylase (KAH) and ent-kaurene 
oxidase (KO), two cytochrome P450s and their reductase 
CPR1 to improve production of the sweetener rubusoside 
in yeast. The best design involving the fusion enzyme 
KAH-GGGGS3-trCPR1 and a scaffolding peptide tag 
construct KO-RIDD/KAH-RIAD yielded an eightfold 
increase in precursor steviol titer over the base strain [52]. 

Figure 2  

Current Opinion in Biotechnology

Strategies for optimization of microbial cell factories for producing plant natural products. (a) Obtaining cell factories that meet commercial TRY is a 
long and costly process involving both metabolic and enzyme engineering campaigns. (b) Common approaches include rewiring host metabolism to 
optimize precursor supply, screening for superior enzyme homologs, altering enzyme localization, and engineering key bottleneck enzymes.   
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Structure-guided rational or semirational engineering of 
bottleneck enzymes is another common approach to 
optimize microbial cell factories for phytochemical pro-
duction [53]. Production of anticancer ginsenoside Rh2 
was improved over 900-fold in yeast by combining 
semirational engineering of glycosyltransferase UGT51 
based on a crystal structure, with deletion of a product- 
degrading enzyme and increased cofactor supply [54]. 
While experimentally determined protein structures are 
not available for all enzymes, recent improvements in 
structure prediction, in particular, Alphafold 2 [55], are 
expected to have a positive impact on structure-guided 
engineering of key enzymes to increase therapeutic 
phytochemicals production in heterologous microbes. 
This computational approach was exemplified recently 
by d’Oelsnitz et al, who used an Alphafold2-generated 
structural model to carry out machine learning–guided 
semirational engineering of norbelladine 4-O-methyl-
transferase (Nb4OMT) involved in Amaryllidaceae alka-
loids production. Using an engineered biosensor for 
screening, they identified a variant with 60% improve-
ment in product titer, 17-fold reduced remnant sub-
strate, and threefold lower off-product regioisomer 
formation in E. coli [56]. 

Alternatively, directed evolution is still widely applied to 
increase biocatalytic activity or alter the specificity of 
plant enzymes in micro-organisms. This approach en-
compasses a multitude of library preparation methods that 
are used in iterative cycles of gene mutagenesis, expres-
sion, and selection [57]. However, since gene libraries 
often have a very large size, and finding improved variants 
is difficult, the main challenge is to develop reliable high- 
throughput screening methods. To address this issue, 
promiscuity of genetically encoded biosensors based on 
prokaryotic allosteric transcription factors (aTFs) can be 
exploited to develop cheap and semiquantitative readouts 
to approximate accumulation of natural product titers (e.g. 
by increase of fluorescence). This approach was adopted 
by d’Oelsnitz et al. who evolved the multidrug-resistance 
regulator, RamR from Salmonella typhimurium to sense 
different BIAs with important therapeutic activities [58]. 
Using a double negative selection/positive screening ap-
proach in E. coli, variants with high selectivity for their 
cognate BIA were obtained. With one of these engineered 
sensors, the authors evolved the O-methyltransferase 
GfOMT1 from Glaucium flavum to become more pro-
miscuous, allowing the production of pharmaceutically 
important tetrahydropapaverine (THP) by methylating 
norcoclaurine at four different positions. Their work il-
lustrates well how evolution-guided promiscuity en-
gineering can yield synthetic metabolic pathways 
bypassing unknown or difficult-to-express enzymes. 

While aTF-based biosensors are one feasible option, we 
argue that other approaches harnessing specific bioactivities 
of therapeutic phytochemicals could be considered as T
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alternative screening methods. This is particularly relevant 
for compounds targeting G protein–coupled receptors [59] 
as many of these human receptors have been functionalized 
in yeast and linked to a fluorescence output [60–63]. Other 
types of bioactivities such as protein inhibition could also be 
leveraged to develop high-throughput assays. For example, 
the inhibition of human protein tyrosine phosphatase 1B 
(PTP1B) was linked to the expression of an antibiotic re-
sistance gene in E. coli with a genetic circuit used to select 
for variants of the promiscuous terpene synthase γ-humu-
lene synthase (GHS), producing inhibitory terpenoids from 
a directed evolution library [64]. Finally, certain plant sec-
ondary metabolites exhibit stress-protecting bioactivities, 
which can be exploited in Adaptive Laboratory Evolution 

(ALE) experiments to increase microbial production. ALE 
was applied to optimize yeast cell factories producing β- 
carotene and β-caryophyllene, two antioxidant terpenoids 
yielding threefold and fourfold respective improvements 
after cultivation for 20 days in oxidative conditions [65,66]. 

By integrating metabolic and enzyme engineering, it be-
comes possible to design and tailor entire biosynthetic 
pathways, optimize enzyme kinetics, and overcome lim-
itations associated with natural enzymatic systems. At 
every stage of the optimization process, we envision that 
novel technological advancements will be crucial in accel-
erating the optimization of cell factories producing ther-
apeutic phytochemicals. Examples include integration of 

Figure 3  

Current Opinion in Biotechnology

Microbial cell factories as platforms for the derivatization of bioactive plant natural products. (a) Natural product producing strains bearing native plant 
pathways can be exploited to generate new-to-nature derivative libraries by feeding pathway precursor analogs and relying on pathway enzyme 
promiscuity. These strains can also be further engineered to express tailoring enzymes to decorate natural products. (b) The workflow to employ 
microbial cell factories as phytochemical derivatization platforms includes strain and enzyme optimization, fermentation, and downstream processing 
to yield panels of analog compounds that can be evaluated subsequently for bioactivity and improved pharmacological properties.   
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machine learning to design superior strains and enzymes, 
use of automated robotic platforms for large-scale strain 
building and fermentation optimization, as well as appli-
cation of microfluidics and high-throughput screening 
based on LC-MS. 

Bioengineering for new-to-nature natural product 
derivatives 
Classical drug discovery pipelines usually involve 
finding a small-molecule ‘hit’ against a particular target, 
that is then optimized in a medical chemistry campaign, 
and the structural analogs screened for superior phar-
macodynamic and pharmacokinetic properties [77]. De-
veloping a library of analogs for plant therapeutics can be 
chemically challenging due to their complex structures, 
and the lack of regio- and stereo-selectivity of available 
synthetic chemistry processes [78]. Microbial cell fac-
tories can serve as a platform for the generation of such 
libraries of bioactive natural products based on biocata-
lysis in microbial hosts expressing highly specific en-
zymes (Figure 3a). One method is to feed modified 
precursors in microbe cultivations and rely on the pro-
miscuity of pathway enzymes to accept these altered 
substrates. This approach was widely used to produce 
halogenated alkaloids, including noscapine [17], ber-
berine [79], alstonine, and serpentine [80]. 

Metabolic engineering in microbial hosts also opens the 
possibility of expressing tailoring enzymes and gen-
erating scaffold modifications de novo. Tailoring enzymes 
of interest include halogenases, methyltransferases, oxi-
doreductases, and glycosyltransferases. For instance, 
bacterial flavin-dependent halogenases were recently 
expressed in S. cerevisiae cell factories allowing the in-
troduction of chlorine and bromine atoms in bioactive 
plant MIA scaffolds. In addition to significantly altering 
the ligand’s pharmacological properties on their own, 
such halogen modifications could also be used as che-
mical handles for specific chemical cross-coupling 
leading to a nearly infinite diversity of analogs [81]. By 
expressing and engineering the methyltransferase 
SpSodMT from Serratia plymuthica in yeast, Ignea et al. 
demonstrated the production of 10 different non-
canonical C16 prenyl diphosphate terpenoid precursors  
[71]. These were further converted by terpene synthases 
and optionally oxidized by a cytochrome P450 yielding 
an array of 28 different new-to-nature terpenes with 16 
carbon atoms. Natural terpenes have a vast diversity of 
medical uses, and studies like these hold the promise of 
finding new hit-to-lead bioactive scaffolds. 

It is worth noting that producing such derivatives in 
microbes entails important enzyme screening and pro-
miscuity engineering work (Figure 3b). The analogs 
then must be produced through fermentation, purified, 
and assayed for their bioactivities. As the possibilities for 
enzymatic derivatization are vast, it is important to try to 

rationalize the types of analogs targeted, especially using 
Quantitative Structure Activity Relationships methods 
commonly employed by medicinal chemists [82]. 

Conclusions 
In conclusion, tremendous progress has recently been 
made in refactoring plant biosynthetic pathways in 
micro-organisms. We strongly believe that microbes 
provide value for the bioactive plant natural product 
field, including as platforms for biosynthetic pathway 
discovery, as cell factories for manufacturing, and aiding 
drug discovery by creating novel, pharmacologically 
improved analogs of plant natural products that are 
challenging to produce chemically. Metabolic en-
gineering in such microbial hosts is deeply inter-
connected with enzyme discovery and engineering, 
through the screening of enzyme homologs and mutants 
with increased activity, altered subcellular localization, 
and different promiscuity profiles either to bypass un-
known enzymatic steps in a pathway or to allow the 
production of non-natural analogs. 

Current challenges include the cumbersome and ex-
pensive means to elucidate biosynthetic pathway en-
zymes for a significant number of therapeutically 
relevant phytochemicals whose biosynthesis is still un-
documented. Future research should focus on the in-
tegration of multiomics data and well-informed 
candidate gene selection methods. Examples of break-
through technologies include single-cell metabolomics 
and transcriptomics technologies [83–85], 3D genome 
topology analysis using proximity-by-ligation Hi-C se-
quencing [83,86], or machine learning–based selection of 
gene candidates [87]. Another important bottleneck 
once prototypic microbial cell factories for the produc-
tion of therapeutic phytochemicals have been built, is 
the long and costly optimization process for industrially 
relevant TRY levels. Derisking the strain engineering 
‘Valley of Death’ [88] will require to increase in the 
throughput of screening of naturally diverse and en-
gineered pathway and enzyme variants, including mo-
lecular and metabolic network modeling tools and 
automated strain building and phenotyping platforms. 
Integration of Life Cycle Analysis and Techno-Eco-
nomic Analysis can prove instrumental in defining strain 
performance objectives and designing the fermentation 
process in the early project stages [9]. Once performance 
objectives are met at laboratory scale, up-scaling fer-
mentation processes and developing efficient down-
stream processing methods are other major challenges 
that must be addressed to ultimately make microbial 
production of plant therapeutics commercially relevant. 
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