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We formulate and implement the Variational Quantum Eigensolver Self Consistent Field (VQE-SCF) algorithm in
combination with polarizable embedding (PE), thereby extending PE to the regime of quantum computing. We test
the resulting algorithm, PE-VQE-SCF, on quantum simulators and demonstrate that the computational stress on the
quantum device is only slightly increased in terms of gate counts compared to regular VQE-SCF. On the other hand,
no increase in shot noise was observed. We illustrate how PE-VQE-SCF may lead to the modeling of real chemical
systems using a simulation of the reaction barrier of the Diels-Alder reaction between furan and ethene as an example.

I. INTRODUCTION

Quantum computers are expected to enable the solution of
many computational problems that are intractable on classical
high-performance computers. The probably most often men-
tioned example is quantum chemistry, i.e., the solution of the
electronic Schrödinger equation.1 Quantum chemists have al-
ways been very receptive to advances in computer technology
to improve the performance of quantum chemistry programs,
devising theories and algorithms that could take advantage of
the new hardware.2 Not surprisingly, since the first (proof-
of-principle) application of a quantum computing algorithm
for computational chemistry problems in 2005,3 the interest
of the quantum chemistry community in the development of
quantum chemistry methods on quantum processing units has
been steadily growing, and almost exploded during the last
five years in concomitance with the advances on the hard-
ware site. Setting out from different angles and perspectives,
a number of recent comprehensive reviews discuss the current
state of affairs concerning the development of theories, meth-
ods, and algorithms that aim at performing quantum chem-
ical calculations on both near-term noisy intermediate-scale
quantum (NISQ) devices and early/far-future, fault-tolerant
ones.4–11 As of today, potential quantum advantage has only
been demonstrated for model systems, though.11

The current paradigm for calculations on NISQ devices is
to employ a hybrid quantum-classical approach,12 where only
parts of the quantum chemical calculation are actually car-
ried out on the quantum computer, while the remaining parts
are run on classical CPU- or GPU-based computers. The cal-
culations carried out on the QPUs mostly involve evaluating
expectation values over a Hamiltonian or other quantum me-
chanical operators. Often a Variational Quantum Eigensolver

(VQE) algorithm4,13–16 is employed in this step.

Within the realm of quantum chemical methods for NISQ
devices, the majority of the published work concerning wave-
function ansätze focuses on some variants of unitary cou-
pled cluster (UCC) theory.12,14,16 It is believed14 that UCC
methods intrinsically are, or can be made, more easily multi-
configurational than the traditional coupled cluster ones.17–19

This is a very important aspect as several interesting chemi-
cal problems, especially within life sciences, pertain to large
and complicated multiconfigurational systems, the properties
and chemistry of which stand little chance of being accurately
described by classical computers.6 Approaches like complete-
active space self-consistent field (CASSCF),20–22 complete-
active space configuration interaction (CASCI)23 or density
matrix renormalization group (DMRG),24 which all involve
a full configuration interaction type wavefunction within the
space of the chemical relevant orbitals, are typically used to
treat molecular systems with multiconfigurational character
on classical computers, but quickly hit the ceiling of what can
be handled in terms of size of the relevant active space. There-
fore, exploring the possibility of performing CASSCF/CI cal-
culations using quantum processors is natural.25–27

However, most of chemistry and all of biochemistry hap-
pen in solution. Furthermore, the current most accurate ap-
proach to model the reactions catalyzed by enzymes is to treat
the active site with some quantum chemical method and de-
scribe the protein environment using some molecular mechan-
ics model, i.e., the hybrid QM/MM approach. For quantum
chemical simulations on classical computers, many methods
for treating solvent or environment effects have been devel-
oped and implemented, ranging from simple continuum sol-
vent models like the polarizable continuum model (PCM)28

to an explicit treatment of solvent molecules or the frag-
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2

ments of molecules in the environment via the Polarizable
Embedding (PE) model.29,30 For calculations on quantum
computers, on the other hand, only simple approaches such
as the PCM method31 and point-charge embeddings32 have
so far been implemented in combination with VQE calcu-
lations of ground state energies. More sophisticated quan-
tum embedding schemes33 could potentially be applied to
include solvation effects, although a practical demonstration
has yet to be reported. In this work, we present, therefore,
an implementation of the PE model for quantum comput-
ers in combination with the Adaptive Derivative-Assembled
Problem-Tailored Ansatz Variational Quantum Eigensolver
self-consistent field approach (ADAPT-VQE-SCF),27 and il-
lustrate its performance for ammonia in water and for the
Diels-Alder reaction of furan with ethene in water.

II. THEORETICAL SUMMARY

In the following, we outline the theoretical background for
our novel developments. This theoretical summary is split
into three parts: first, we introduce the polarizable embedding
model; second, the working equations from the variational
quantum eigensolver self-consistent field method are briefly
discussed; and third, we show how to integrate the PE model
with the ADAPT-VQE-SCF scheme.

A. Polarizable Embedding

The Polarizable Embedding29,30 (PE) model divides a to-
tal molecular system into a smaller quantum region and an
environment. The quantum region is described using an ac-
curate quantum chemistry model, whereas the environment is
represented semi-classically through multipoles and polariz-
abilities. The parameters describing the embedding potential
are generated by dividing the environment into small frag-
ments and carrying out individual quantum-chemical calcu-
lations for each of them to obtain atomic-based multipoles
and polarizabilities using a multi-center multipole expansion.
The multipoles and polarizabilities represent the permanent
and induced charge density of the fragments in the environ-
ment, respectively. The partitioning of the system in QM and
polarizable MM regions is graphically illustrated in Figure 1.

The effects of the environment on the quantum region are
included by constructing an effective Hamiltonian

Ĥeff = Ĥvac + v̂PE (1)

where Ĥvac represents the regular (isolated) Hamiltonian for
the quantum region without the presence of the environment.
The operator v̂PE is the PE operator, which describes the po-
tential from the environment. The PE operator is further di-
vided into an electrostatic and an induction (polarization) term

v̂PE = v̂es + v̂ind (2)

where the electrostatic operator, v̂es, describes the potential
from the permanent charge distributions of the N environment

FIG. 1. The QM/MM partitioning in the PE model. A complete sys-
tem is divided into QM and MM subsystems, where the QM part is
described through an accurate quantum chemical method. The en-
vironment is divided into smaller fragments, described by an atomic
multi-center multipole expansion and atomic polarizabilities.

sites

v̂es =
N

∑
s=1

K

∑
|k|=0

(−1)|k|

k!
M(k)

s V̂ (k)
s,el (3)

written using a multi-index notation,34 i.e., k runs over the
Cartesian components of the multipole moment tensors. Here,
M(k)

s are the multipoles on expansion site s, i.e., it is the k’th
components of the atomic charge, dipole and quadrupole mo-
ment of site s. The operator V̂ (k)

s,el gives a derivative of the
electric potential at site s, and is defined as

V̂ (k)
s,el = ∑

pq
t(k)pq (Rs)Êpq (4)

where Êpq = â†
pα âqα + â†

pβ
âqβ is the singlet one-electron ex-

citation operator,17 and the potential derivative integrals are

t(k)pq (Rs) =
∫

φ
∗
p(r)∇

k
(

1
|r−Rs|

)
φq(r)dr . (5)

The induction operator, v̂ind, originates from the polarized
charge distribution of the environment, described by induced
dipoles, and it is defined as

v̂ind =−
N

∑
s=1

µ
ind
s (Ftot)V̂ (1)

s,el . (6)

The induced dipoles µ ind
s are generated in response to the total

electric field (Ftot) at the polarizable site s, which is the sum of
fields from the electrons and nuclei in the quantum region, the
permanent multipole moments in the environment, as well as
other induced dipoles in the environment. The operator V̂ (1)

s,el
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3

gives the electric field from the electrons at a polarizable site s.
The induced dipoles entering the expression for the induction
operator are derived from

µ
ind
s (Ftot) = αsFtot(Rs) = αs

(
F(Rs)+ ∑

s′ ̸=s
T(2)

ss′ µ
ind
s′

)
, (7)

where F(Rs) is the electric field at site s from the nu-
clei, electrons, and permanent multipole moments, and
T(2)

ss′ is a dipole–dipole interaction tensor.35 Equation (7)
leads to a set of coupled equations which can be for-
mulated as a linear system of equations by introducing
a column vector containing the induced dipoles µ ind =(
µ ind

1 ,µ ind
2 , . . . ,µ ind

N
)T , and one containing the electric fields

F = (F(R1),F(R2), . . . ,F(RN))
T . The induced dipole mo-

ments may formally be obtained as the solution of

µ
ind = BF , (8)

where B is the (3N ×3N) classical response matrix

B =


ααα

−1
1 −T(2)

12 . . . −T(2)
1N

−T(2)
21 ααα

−1
2

. . .
...

...
. . . . . . −T(2)

(N−1)N

−T(2)
N1 . . . −T(2)

N(N−1) ααα
−1
N



−1

. (9)

In practice, the induced dipoles can be obtained by either ex-
plicitly constructing the response matrix and directly solving
Equation (8) by conventional means or by iterative schemes
when an explicit construction is not computationally feasible
due to the potentially large dimensions of the environment.
The induced dipoles depend on the fields exerted by the elec-
tron density of the quantum region, which in turn depends on
the induced dipoles through the induction operator, and it is
thus required to use a self-consistent scheme in which the
induced dipoles are updated in every quantum mechanically
self-consistent-field cycle. Such a scheme finally leads to a
mutual relaxation of the quantum wavefunction/density and
the induced dipoles of the environment.

B. Variational Quantum Eigensolver Self-Consistent Field

The following account of the variational quantum eigen-
solver self-consistent field (VQE-SCF) presents the most im-
portant expressions from Fitzpatrick et al.27 The molecular
spin-free full (non-relativistic) electronic Hamiltonian, Ĥ, is
the starting point for the VQE-SCF approach

Ĥ = ∑
pq

hpqÊpq +
1
2 ∑

pqrs
gpqrs

(
ÊpqÊrs −δqrÊps

)
(10)

with the one- and two-electron integrals, respectively,

hpq =
∫

φ
∗
p (r) ĥ φq (r)dr (11)

gpqrs =
∫

φ
∗
p (r1)φ

∗
r (r2)r−1

12 φq (r1)φs (r2)dr1dr2 . (12)

The set of functions φp represents an orthonormal molecular
orbital (MO) basis, i.e.,

〈
φp
∣∣φq
〉
= δpq. In the framework of

VQE-SCF, the wavefunction is parameterized by orbital ro-
tation coefficients, κpq, and unitary qubit rotation angles, θi.
The parameterized wavefunction takes the form,

|Ψ(κ,θ)⟩=U (κ)U (θ) |0⟩ (13)

with |0⟩ being the reference state. The orbital rotation param-
eterization takes the same form as in the conventional multi-
configurational self-consistent field (MCSCF) methods,17

U (κ) = exp(κ̂) (14)

with the anti-hermitian orbital rotation operator being

κ̂ = ∑
p>q

κpq
(
Êpq − Êqp

)
. (15)

The parameterization of the unitary qubit rotation angles is
where the VQE-SCF differs from the conventional MCSCF.
In conventional MCSCF, the wavefunction is usually parame-
terized with configuration interaction (CI) linear-combination
coefficients or, in unitary form, by the state-transfer operator.
Instead, to target a quantum computer, the parameterization
uses unitary qubit rotation angles. This parameterization takes
the form

U (θ) = ∏
i

exp
(
iθiP̂i

)
(16)

with P̂i being strings of Pauli operators. The ground state en-
ergy is determined by minimization with respect to both the
orbital rotation coefficients and the unitary qubit rotation an-
gles,

E = min
θ ,κ

〈
0
∣∣U† (θ)U† (κ) ĤU (κ)U (θ)

∣∣0〉 . (17)

The choice of specific unitary qubit rotation parameters in
the ansatz follows the ADAPT approach and can be either
ADAPT-VQE36 or qubit-ADAPT-VQE.37

C. PE-VQE-SCF

The following briefly outlines how to integrate the VQE ap-
proach with PE. In the PE-VQE-SCF model, instead of mini-
mizing the energy with respect to the molecular Hamiltonian,
as in Eq. (10), we minimize it with respect to the free-energy
in solution

EPE = min
θ ,κ

〈
0
∣∣U† (θ)U† (κ) ĤPEU (κ)U (θ)

∣∣0〉 (18)

where the Hamiltonian is defined as

ĤPE = Ĥeff − 1
2

v̂ind. (19)
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For the VQE-SCF algorithm, the effective Hamiltonian
needs to be decomposed into Pauli strings. The underlying
fermionic operators in the operators V̂ (k)

s,el and F̂s,el, Eq. (3) and
Eq. (6), respectively, are the singlet single excitation opera-
tors Êpq. In the gas-phase, this corresponds to the following
decomposition of the Hamiltonian

Ĥvac(κ) = ∑
i

ci(κ)P̂i , (20)

where ci(κ) is the weight of the Pauli strings from the decom-
position and P̂i is a unique Pauli string. After introducing the
PE environment, the decomposition of the Hamiltonian be-
comes

ĤPE (κ,Ftot) = ∑
i

c̃i(κ,Ftot)P̂i, (21)

which is similar to eq. (20), but with modified expansion co-
efficients c̃i. Crucially, these weights depend on electric fields
from the polarizable environment instead of just the orbital
rotation parameters.

Due to the induced dipoles in the environment, the PE
Hamiltonian is non-linear in the wavefunction parametriza-
tion. This leads to a double-SCF algorithm where the
wavefunction parameters and the induced dipoles are itera-
tively minimized, thereby leading to a computational over-
head within PE compared to calculating the corresponding
molecule in a vacuum.

Construct

Update

Do quantum 
measurements

VQESCF
Initial orbitals

Check convergence

Solve induced 
dipoles

PE

PE-VQESCF

Classically computed

FIG. 2. Flow chart of the PE-VQE-SCF algorithm. In this flow chart
D is the one-electron reduced density matrix.

The algorithmic approach underlying the PE-VQE-SCF
methods is illustrated in Figure 2. In this figure, the overall
structure of the PE-VQ-SCF algorithm can be seen. The blue
box shows the SCF loop that holds together the PE model and
the VQE-SCF procedure. The yellow box shows what the PE
library handles, with input and output. Finally, the green box
illustrates the VQE-SCF algorithm. It can be seen that the PE
library provides the PE contribution to the Hamiltonian, which
is then used to solve the VQE-SCF problem. The VQE-SCF
procedure provides a density matrix to the PE library that is
needed to solve for the PE contribution (the induced dipoles).
This cycle is continued until convergence is achieved.

III. COMPUTATIONAL DETAILS

The VQE-SCF calculations were run using AURORA,38

with PySCF39,40 as the backend for the orbital optimization

and CPPE41 as the induced dipole moment solver for the
PE model. For the ammonia systems (as described below),
ADAPT-VQE was used as the ansatz for the VQE-SCF calcu-
lations. The VQE-SCF calculations were optimized according
to the algorithm described in Fitzpatrick et al.27 Furthermore,
to simulate the probabilistic nature of the measurement out-
come of a quantum computer, we used Adaptive Information-
ally complete generalized Measurements (AIM) implemented
as positive operator valued measurements (IC-POVMs)42,43

from the AURORA package. As we use informationally com-
plete POVM for the estimation of physical observables Ō with
a finite set of measurement outcomes (very much like Monte
Carlo sampling), the estimation of these observables comes
with a statistical error originating from the finite number of
samples S considered and has the expected scaling σŌ ∼ 1√

S
.

This scheme not only allows us to simulate the shot noise of
the measurements but also to convert the AIM outcomes into
estimates of different observables27,44,45 needed for the pro-
posed PE-VQE-SCF method.

All calculations performed on the ammonia systems uti-
lized the aug-cc-pVTZ46,47 basis set for the quantum region
(ammonia), and the loprop-aug-cc-pVTZ48 basis set for the
calculation of the atomic multipole moments and atomic po-
larizabilities within the PE region. The active space comprised
6 electrons in 6 spatial orbitals, and was picked on the basis
of MP2 natural orbital occupation numbers.

To illustrate the PE-VQE-SCF approach further, the reac-
tion profile for the Diels-Alder reaction between furan and
ethene (reactant) to form (1R,4S)-7-oxabicyclo[2.2.1]hept-2-
ene (product) was simulated using the nudged elastic band
(NEB) method.49,50 The reactant and product structures were
placed in a sphere of 40 water molecules using the Packmol51

program. To ensure that the two structures were as similar
as possible for the following NEB calculation, the geometry
of the two structures was minimized using CAM-B3LYP52-
D3BJ53,54/6-31G*55–57 using Terachem58–60 (version 1.95A)
for energies and gradients with shared solvent coordinates,
i.e., we minimize the sum of the energies of the solvated
reactant and product structures with respect to the coordi-
nates of the reactant, the coordinates of the product, and the
coordinates of the water (shared between the solvated reac-
tant/product structures). The minimization was done in carte-
sian coordinates with a custom Python script using SLSQP61

from SciPy.62 The NEB path was generated from these start-
ing structures with Terachem with CAM-B3LYP-D3BJ/6-
31G*. We used a "free-end" NEB with 25 NEB images and
an NEB spring constant of 0.01 a.u.. The (PE-)VQE-SCF
calculations of the reaction profile were performed using the
6-31G* basis set and an active space consisting of 6 elec-
trons in 6 spatial orbitals, and was picked on the basis of
MP2 natural orbital occupation numbers. The ADAPT ap-
proach was used in all molecular examples to find a suitable
parametrized quantum circuit describing the multiconfigura-
tional wavefunction within the considered active spaces.
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IV. RESULTS

The result section is structured into two parts. In part A, we
aim to test the implemented polarizable embedding strategy in
relation to regular VQE-SCF. Our focus in this respect will be
on important parameters regarding the efficiency of quantum
devices, e.g., gate count and simulated shot noise. For this in-
vestigation, we will use a chemical model system consisting
of ammonia solvated in water, and we will monitor the above-
mentioned parameters as a function of the number of water
molecules included in the calculation. All water molecules
will be described using the polarizable embedding potential,
whereas ammonia will be considered at the QM level of the-
ory. In part B, we illustrate the PE-VQE-SCF approach for
the simulation of a reaction coordinate profile of a Diels-Alder
reaction, taking directly into account the effects of solvation.
We include all the solvating water molecules in the polariz-
able embedding description. We note that we use a limited
number of snapshots in the PE calculations in these examples.
In general, statistical sampling of the solvent configurations,
for example, sampled from a molecular dynamics trajectory,
is needed for realistic computational applications.

A. Ammonia

In this section, we will consider ammonia using PE-VQE-
SCF as a test system to access key performance parameters
related to the VQE-SCF algorithm.

0 10 20 30 40
# waters

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Re
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tiv
e 

cn
ot
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ou

nt
, #c

no
t PE

#c
no

t va
c

FIG. 3. Relative CNOT count with respect to ammonia in isolation
(no polarizable embedding) as a function of the number of water
molecules in the polarizable embedding potential. The different col-
ors represent different snapshots of water configurations.

In Figure 3, the number of required CNOT gates as a func-
tion of the size of the PE region (increasing number of water
molecules) relative to the corresponding energy calculation
of ammonia in isolation is shown. Five different snapshots
have been considered in order to avoid any bias towards just a
single solvent configuration. From Figure 3, we observe that
adding the PE model to the system, on average, will slightly

increase the gate count of the calculation compared to the cor-
responding calculation of ammonia in isolation. On average,
the gate count is increased by 16% when using the PE model
for this system. Using ADAPT-VQE, it is to be expected that
a larger gate count will appear when including the environ-
ment in the system since the wave function will be more com-
plicated (e.g., lack of point-group symmetry) than the wave
function describing the system in isolation. However, as fur-
ther observed from Figure 3, we do not observe a systematic
increase in the CNOT count when increasing the size of the
embedding part of the system, and the increase in the number
of water molecules does not lead, on this basis, to a system-
atic upward trend regarding the complexity of the underlying
circuit.

211 212 213 214 215 216

# Shots

57.4

57.2

57.0

56.8
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 [H
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PE-CASSCF
PE-VQESCF
CASSCF
VQESCF

FIG. 4. Mean energy and shot noise indicated as plus/minus the stan-
dard error. Dashed curves represent the energy, while the full lines
represent the error interval. Orange color refers to VQE-SCF while
blue color represents PE-VQE-SCF. In total 46 water molecules were
included in the PE region.

In Figure 4, we inspect the mean energy and the simulated
shot noise as a function of the number of sampling shots for
either VQE-SCF or PE-VQE-SCF. It is immediately clear that
the energy of the PE-VQE-SCF calculations is lower than the
corresponding energy of the VQE-SCF calculation. This is
expected since the PE model will add terms to the Hamilto-
nian that will decrease the total energy of the system, i.e., the
solvating water will stabilize the ammonia molecule. As ex-
pected, the sampling error reduces with an increasing number
of shots for either VQE-SCF or PE-VQE-SCF, and the solu-
tions converge towards the classically computed CASSCF and
PE-CASSCF results. It is further observed that the noise de-
creases roughly at the same rate for VQE-SCF and PE-VQE-
SCF upon increasing the number of shots. On this basis, it is
concluded that adding the embedding term to the molecular
Hamiltonian does not negatively affect how many shots are
needed to obtain reliable energies within the PE-VQE-SCF
framework.
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B. Reaction curve

Next, we consider in this section the ability of the PE-VQE-
SCF approach to model real applications showcased based on
the Diels-Alder reaction between furan and ethene.

FIG. 5. Calculated reaction profile of the Diels-Alder reaction be-
tween furan and ethene based on either VQE-SCF (blue line) or PE-
VQE-SCF (orange line).

In Figure 5, the reaction profile of the furan-ethene Diels-
Alder reaction is calculated based on either VQE-SCF or PE-
VQE-SCF and is shown with respect to the reactant energies
obtained in either VQE-SCF or PE-VQE-SCF, i.e., E −E0. In
these calculations, furan and ethene are included in the QM
part of the system, while all water molecules are described
using the embedding potential. From Figure 5, we observe a
decrease in the calculated barrier upon inclusion of the water
solvent, and further, we observe a stabilization of the prod-
ucts. Both these observations, i.e., reduction of the reaction
barrier and stabilization of the products, are caused mainly by
dipolar stabilization of the chemical reactive part of the sys-
tem due to the presence of the polar (water) environment. The
specific reduction of the reaction barrier is around 0.015 au,
corresponding to 9.4 kcal/mol, and the presence of the wa-
ter environment thereby represents an important part of the
chemical system.

V. CONCLUSION

In this work, we have formulated and implemented the
VQE-SCF algorithm in combination with polarizable embed-
ding, thereby enabling hybrid quantum-classical simulations
on quantum devices. The resulting algorithm, PE-VQE-SCF,
has been tested on simulators, where we show that the com-
putational stress on the quantum device is not significantly
increased, neither in terms of gate count nor in terms of addi-
tional shot noise, upon extending VQE-SCF to PE-VQE-SCF.
We have further showcased our PE-VQE-SCF implementa-
tion by calculating the Diels-Alder reaction barrier between
furan and ethene. We conclude that PE-VQE-SCF represents

a robust computational quantum computing strategy for mod-
eling larger and extended chemical systems. Further work will
address the ability to use PE-VQE-SCF to tackle biological
challenges and extend the computational framework to excited
states and molecular property calculations.
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