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ABSTRACT: This paper presents Maud, a command-line application
that implements Bayesian statistical inference for kinetic models of
biochemical metabolic reaction networks. Maud takes into account
quantitative information from omics experiments and background
knowledge as well as structural information about kinetic mechanisms,
regulatory interactions, and enzyme knockouts. Our paper reviews the
existing options in this area, presents a case study illustrating how Maud
can be used to analyze a metabolic network, and explains the biological,
statistical, and computational design decisions underpinning Maud.
KEYWORDS: Bayesian inference, kinetic models of cell metabolism, multiomics integration, ordinary differential equations,
regulatory anlaysis

1. INTRODUCTION
A kinetic model of cellular metabolism aims to express what is
known about a cellular process in the form of an in silico
representation of the underlying network of chemical reactions.
Kinetic models can be used to improve production of target
molecules, determine regulatory networks,1 and identify
potential drug targets.2,3 However, the use of kinetic models in
practice is hindered by their dependence on noisy and uncertain
information sources. Quantitative in vivo measurements of
chemical abundances and in vitro measurements relating to
kinetic parameters, both contain vital information but are
notoriously inaccurate.4−6 Practically useful kinetic modeling
therefore requires a principled statistical approach that
encompasses multiple possible model parametrizations.
Bayesian statistical inference can combine the structural

information implicit in kinetic models with knowledge about
metabolic parameters and information from omics measure-
ments.7,8 However, kinetic models pose serious computational
challenges for Bayesian inference.9,10

The scope of a kinetic model is defined by a stoichiometric
matrix, S, in which rows represent metabolites, columns
represent reactions, and matrix elements sij represent the
stoichiometric coefficient of metabolite i in reaction j. The
change in metabolite concentrations is

= · ·C
t

S v C
d
d (1)

where C represents a vector of metabolite concentrations, v is a
vector of reaction rates, and μ is the growth rate. The second
term represents dilution due to cell growth.

In a kinetic model, the rates, v, are expressed as a function of
the enzyme concentrations, E, the metabolite concentrations, C,
and a set of parameters θ

=v f C E( , , ) (2)

The parameters must include sufficient boundary concen-
trations and fluxes to solve.1

It is common to assume a pseudosteady state for metabolites,
i.e., the rate of fluxes toward any metabolite is much greater than
the rate of change in concentration, v C

t
d
d
. Moreover, the

dilution effect is assumed to be minimal, μ·C ≪ v ⃗ (true unless
the concentration is very high). Finally, the enzyme concen-
tration is assumed to be constant for the period considered and
hence part of the parameters.
Given these assumptions and a set of values for θ, a set of

steady-state metabolite concentrations and fluxes can be found
by solving for C the following algebraic equation

· =S f C( ; ) 0 (3)

In a fermentation context,3 captures the rapid kinetics inside
the cell, while another set of ODEs would be used to describe the

Received: November 1, 2023
Revised: February 12, 2024
Accepted: March 19, 2024
Published: April 5, 2024

Research Articlepubs.acs.org/synthbio

© 2024 The Authors. Published by
American Chemical Society

1205
https://doi.org/10.1021/acssynbio.3c00662

ACS Synth. Biol. 2024, 13, 1205−1214

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

D
T

IC
 N

A
T

L
 T

E
C

H
 I

N
FO

R
M

A
T

IO
N

 C
T

R
 o

n 
A

pr
il 

30
, 2

02
4 

at
 1

0:
59

:5
9 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/page/virtual-collections.html?journal=asbcd6&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Teddy+Groves"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicholas+Luke+Cowie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lars+Keld+Nielsen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.3c00662&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00662?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00662?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00662?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00662?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.3c00662?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/asbcd6/13/4?ref=pdf
https://pubs.acs.org/toc/asbcd6/13/4?ref=pdf
https://pubs.acs.org/toc/asbcd6/13/4?ref=pdf
https://pubs.acs.org/toc/asbcd6/13/4?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acssynbio.3c00662?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


external substrate and product concentrations, which could act
as boundary parameters to.3

In the context of kinetic modeling, Bayesian inference is
appealing because it allows uncertainty to be represented
appropriately without sacrificing mechanistic accuracy. Meas-
urement uncertainty can naturally be represented in a Bayesian
measurement model, whereas the prior model can represent
quantitative uncertainty about kinetic parameters. Finally,
kinetic rate laws can be represented in Bayesian data generation
models with arbitrarily high fidelity. See Gelman et al.11 for more
details about Bayesian inference and Gelman et al.12 for a
discussion of practical Bayesian workflow.
Another advantage is that Bayesian inference problems are

well-posed, even when not all parameters are strongly identified.
Sloppy parameter models in which measurable quantities are
sensitive to combinations of parameters but not to individual
marginal parameter values are ubiquitous in models of biological
systems.9,13 The parameter correlation structure represents the
set of potential models that describe the observed data. As we
demonstrate later, capturing this correlation structure is difficult
outside of a fully Bayesian context.
Previous Bayesian kinetic models have either sacrificed

mechanistic accuracy or attempted to fit realistic kinetic models
using obsolete or unreliable computational methods.
The most popular algorithm for fitting Bayesian statistical

models is Markov Chain Monte Carlo (MCMC). Modern
MCMC algorithms enable exploration of high-dimensional
posterior distributions, have robust failure diagnostics,14 and can
incorporate fast numerical solvers, thereby making inference
feasible for Bayesian kinetic models. Nonetheless, the kinetic
modeling literature reports an aversion to MCMC, rooted
mainly in concerns about sampling time and the presumed
difficulty of implementing the required statistical model.7,15 We
are only aware of two recent attempts to implement a Bayesian
kinetic modeling approach using MCMC. Stapor et al.16 fitted
detailed kinetic models using relatively inefficient MCMC
algorithms that do not scale well to high dimensional parameter
spaces, limiting the scope of modeling. Conversely, St. John et
al.17 utilizes an efficient sampling algorithm but uses
approximate kinetics, namely, lin-log kinetics,18 limiting the
scope of interpreting parameters and inferring cellular behavior
in experimental conditions outside the reference data set.
There have also been efforts to implement Bayesian inference

for kinetic models without the use of MCMC. Examples of

alternative inference methods include variational inference,17

rejection sampling, and approximate Bayesian computation7 and
Laplace approximation, in which the Fisher information matrix
is used to calculate a normal approximation around the
maximum a posteriori parameter configuration8,15,16,19 Non-
MCMC-based Bayesian kinetic models suffer from a lack of
reliable diagnostic tools for verifying that their results
approximate the target posterior distribution. This is a problem
because realistic kinetic models tend to induce highly correlated,
non-Gaussian, joint probability distributions.9,16

Our application Maud provides a Bayesian kinetic model that
combines biologically realistic mechanistic accuracy�including
accurate rate laws, post-translational modification, and thermo-
dynamics�with fast, robust MCMC sampling using adaptive
Hamiltonian Monte Carlo. Further, Maud is a general-purpose
application that can be used to fit a wide range of Bayesian
kinetic models.

2. RESULTS AND DISCUSSION
To demonstrate our application’s capabilities, we used Maud to
analyze an artificial data set based on the human methionine
cycle. We generated this data set using Maud, by simulating
measurements for a set of training and validation conditions
based on plausible parameter values. Next, we performed
posterior inference for the training measurements and a
prediction for both training and validation measurements.
We investigated Maud’s sensitivity to missing measurements

by comparing the results of fitting a full data set with an
intentionally incomplete data set. To demonstrate why a full
Bayesian approach is preferable to an approach based on a
Laplace approximation of the posterior distribution, we
compared the results of analyzing a representative metabolic
network using both methods.
Finally, we dug into our results to find out what our full data

set methionine model learned about the contributions of
different regulatory factors to the flux through GNMT, an
important reaction. This analysis illustrates how Maud can be
used to generate actionable insights into metabolismwithout the
need for further statistical analysis.
The methionine cycle, illustrated in Figure 1, is a fundamental

pathway in human metabolism, whose intermediate metabolites
participate in a variety of mechanisms that must compete for the
same resources. Due to this competition, as well as the fact that
all the functions occur simultaneously, the methionine cycle is

Figure 1.Methionine cycle as modeled, with the solid black lines representing the reactions, the green lines representing allosteric interaction, and the
red lines representing allosteric inhibition. The bold fonts are the reaction names and the regular font represents the metabolites.
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highly regulated, with 6 known allosteric effectors.20−22 This
complex regulation means that quantitative modeling of the
methionine cycle requires a detailed kinetic model: this is why
we chose it as a case study for Maud.

2.1. Data Set and Model Specification. The simulated
data set and underlying kinetic model that we used for our
analysis can be found at https://github.com/biosustain/
Methionine_model/tree/main/data/methionine and is de-
scribed in Supporting Information Section 3.
We constructed a kinetic model of the methionine cycle in

Maud’s format using the description in Korendyaseva et al.22

The ordinary differential equation system describing this model
is

[ ] = + +

[ ] =

[ ] = +

[ ] =

[ ] =

t
v v v v v

t
v v v

t
v v v

t
v v v v

t
v v

d met
d

d amet
d

d ahyc
d

d hyc L
d

d 5mthf
d

Influx PROT MAT MS BHMT

MAT GNMT METH

GNMT METH AHC

AHC CBS MS BHMT

MTHFR MS (4)

After specifying the qualitative aspects of the kinetic model,
we selected parameter values to use as ground truth by Monte
Carlo sampling using a previous model of the methionine cycle
as a starting point (see Saa and Nielsen7 for this model).
We used these parameters to simulate steady states in a range

of plausible experimental conditions, again using Saa and
Nielsen7 as a starting point. These steady states were then used
to generate simulated measurements by using the measurement
model.
For enzyme and metabolite concentration measurements, we

specified a standard deviation of 0.1 on a natural logarithmic
scale, corresponding to approximately 10% measurement error.
For each reaction measurement, the measurement standard
deviation was approximately 10% of the simulated value.
These measurement error specifications are somewhat

optimistic considering the many sources of variation and
uncertainty affecting quantitative proteomics, metabolomics,
and fluxomics analyses, but are a reasonable first approximation
to a realistic set of measurements.
For our main model run, we assumed that all metabolite and

enzyme concentrations were measured and that there was a
reaction measurement for each of the network’s free fluxes.
The simulated experiments and measurements were split into

a training and a validation data set in a way that achieved a large
difference in flux between the two categories. This was done to
evaluate whether the fitted model is able to extrapolate to
conditions well outside the training data set rather than merely
interpolating between the training data without necessarily
learning the system.
We constructed inputs in Maud’s format for each of the

analyzed data sets, based on the scenario that the true kinetic
model was known except for parameter values, which needed to
be inferred from the training data and priors. These inputs can
be found at https://github.com/biosustain/Methionine_
model/tree/main/data.

2.2. Posterior Inference. The prior distributions and
corresponding true parameter values used in our case study are
shown in Supporting Information Section 3.2. They were chosen
to reflect a plausible pre-experimental information state. In 7
cases, the marginal prior distribution for a parameter disagrees
with the true parameter values used to generate the data; a
similar situation is likely to occur in practice due to in vivo vs in
vitro measurement differences.
Running standard diagnostic checks indicated that the

samples we generated were from the target posterior
distribution. The improved R̂ statistic14 for every variable of
interest was within 2% of 1, indicating appropriate mixing within
and between Markov chains. Additionally, the number of
effective samples was high, indicating that we generated enough
posterior samples to support inferences about the bulk of the
distributions of the sampled parameters. Furthermore, we
observed no postwarmup divergent transitions, indicating that
the sampler was able to transform the log-posterior distribution,
avoiding any regions with excessive curvature that might inhibit
exploration via HMC.
Posterior predictive checking indicated that our model

achieved a good fit to the simulated reaction and metabolite
concentration measurements, as shown by the graphs in the top
row of Figure 2.
Analysis of the posterior distributions for the kinetic

parameters indicated that these are highly correlated. The
marginal posterior distributions for most kinetic parameters did
not shrink significantly compared to the corresponding marginal
prior distributions, even though these parameters’ joint
posterior distribution contained enough information to make
accurate out of sample predictions. In some cases, there were
two-dimensional correlations such as the one shown in the
bottom left of Figure 2; in this case, the marginal distribution of
the two parameters is roughly banana-shaped. More commonly,
however, two-dimensional pair plots were insufficient to reveal
the underlying correlation structure, as seen in the bottom-right
plot in Figure 2, which shows two marginally independent
parameters.
These results show that Maud can achieve an adequate fit to a

realistic pathway-sized data set. This was achieved without fixing
the marginal values of the kinetic parameters: the information
required to make good predictions was contained in the
correlation structure of the joint posterior distribution. This
finding is consistent with previous analyses of biological systems
that found they are “sloppy”, that is, sensitive to parameter
combinations rather than marginal parameter values, with
important combinations, scales, and regions of sensitivity being
difficult to ascertain in advance.9,23

The question naturally arises whether the crucial high-
dimensional parameter correlations are linear or nonlinear. This
is relevant to the question of model performance as linear
correlations are easier to correct for. A linearly correlated
posterior space would also be easier to summarize. We address
this question in the next section.

2.2.1. Comparison with Laplace Approximation. This
current case study illustrates the type of kinetic model and
data set that Maud can fit. The model we analyzed has 10
reactions, 5 state variables, and 212 parameters. Generalizing
from our ability to fit this model in a reasonable time using
Maud, we expect that Maud can be used to fit realistic Bayesian
models of approximately the same size but not, for example,
genome-scale kinetic models. To fit larger models, faster steady-
state solving methods or alternative inference algorithms will be
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required. The Laplace approximation, in which the Fisher
information matrix is used to calculate a normal approximation
around the maximum a posteriori parameter configuration, is a
popular strategy for generating approximate posterior samples
while avoiding a full MCMC approach.
Using the recently implemented Laplace approximation in

Stan, we were unable to generate approximate posterior samples
for our main methionine cycle case study using the Laplace
approximation, as the algorithm could not recover from solver
failures caused by unrealistic parameter configurations. This is

not an inherent issue of the Laplace transformation but
highlights some of the challenges around solving3 for real
problems.
In order to assess the potential use of the Laplace

approximation, we made a comparison for a simpler model.
This input can be found at https://github.com/biosustain/
Methionine_model/tree/main/data/example_ode. MCMC
sampling for this simpler model yielded 800 samples in 625
min, while Laplace sampling yielded the same number of
samples in only 1 min. The diagnostics indicated that our

Figure 2. Marginal posterior distributions from our main model run. (Top left) Comparison of posterior predictive intervals with simulated flux
measurement values. All the fluxmeasurements are within the predictive intervals, indicating a good fit. (Top right) Comparison of posterior predictive
intervals with simulated concentration measurement values. These also show a good fit. (Bottom left) Pairwise marginal posterior distribution for two
correlated parameters, namely, KmAHC1,hcys‑L andKm

AHC1 hcysa . (Bottom right) Pairwise marginal posterior distribution for two uncorrelated parameters,
namely, KmMAT3,atp and KcatMAT3.
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algorithm was able to find the maximum a posteriori parameter
configuration, approximate the Hessian, and use these quantities
to generate approximate posterior samples. The results can be
found at https://github.com/biosustain/Methionine_model/
tree/main/results.
Comparing the samples generated using each method shows

that the Laplace approximation does not provide a good
approximation to the true posterior distribution in this case
(Figure 3). As can be seen from the top left plot, the total log

probability density is clearly different and this was confirmed by
a test of the equality of two empirical univariate distributions
(Kolmogorov−Smirnov, p = 1.7 × 10−65).
The difference between the Laplace approximation output

and the true posterior distribution manifests not only in the
parameter space but also in the measurement space for both
training data (upper right) and validation data (lower left). The
lower log likelihood values indicate that the modeled and
measured values are further away and that the Laplace
approximation yielded significantly worse predictions than the
true posterior, even for the training data.
To further explore why this is the case, we compared samples

from the true posterior and the Laplace approximation for the

pairwise marginal distributions of two Michaelis−Menten
constants KmA,r1 and Kcatr1 (Figure 3, bottom right). This
comparison demonstrates that the Laplace method is not able
to capture the correct relationships between parameters’
distributions.
This result shows that MCMC, while slower than the Laplace

approximation, is required for posterior inference in this case.
We expect that the Laplace method will produce worse
approximations the more complex the target model. Since the
approximation is already unacceptable for our simple test model,
we recommend that Maud users use MCMC sampling in
preference to Laplace approximation if possible when fitting
realistic Bayesian kinetic models.
Our results here also provide circumstantial evidence that the

parameter correlations in Bayesian kinetic model posteriors tend
to be nonlinear, as a posterior with only linear correlations
would likely be more germane to Laplace approximation. A
conclusion that we drew from this analysis was that the results of
fitting our model cannot be summarized simply, for example, by
fitting a multivariate normal distribution to the posterior draws.
We therefore recommend that Maud users store the full set of
MCMC drawings rather than use such an approximation. This
does not preclude the possibility that there is an alternative,
more compact, way to summarize the results of Bayesian kinetic
model inference; we leave research into this topic to future work.

2.3. Effect of Missing Metabolite Concentration
Measurements. To gain insight into our model’s robustness
to missing measurements, we also performed a model run with
the same 6 experimental data sets, but with measurements of the
metabolite S-adenosyl-L-homocysteine, or “ahcys” removed.
Since ahcys regulates three enzymes in the methionine cycle,
including one enzyme, which is also thermodynamically
regulated, we expected the removal of these measurements to
yield interesting results.
Comparing model runs with and without the ahcys measure-

ments showed that Maud can produce sensible results, even
from incomplete metabolomics data.
As might be expected, the model with missing measurements

did not correctly infer the missing ahcys concentrations (Figure
4). Nonetheless, the remaining measured metabolites were still
well predicted, suggesting that information about the network is
still preserved despite the missing measurements. Comparison
of flux measurements in both models also indicated that
removing the ahcys measurement did not result in a catastrophic
model failure.
The missing measurements did affect Maud’s ability to infer

parameter values correctly (Figure 4, lower left). The model
with full metabolomics learned the true value for the displayed
dissociation constant despite this value being far from the mean
of the corresponding marginal prior distribution. In contrast, the
model with missing measurements stayed in the neighborhood
of the prior.
This result is reassuring because not having access to all

measurements is a common situation in multiomics studies. For
instance, measuring all metabolites in a pathway can be
infeasible because of limitations of mass spectrometers,
availability of standards, column effects, and compartmentaliza-
tion. However, provided that sufficient information is available
from other sources, our approach can produce sensible results
from incomplete metabolomics data.

2.4. Application to Regulatory Understanding. To
demonstrate how Maud’s output can be used to yield useful
metabolic insights, we used the results of our case study to

Figure 3. Graphical comparison of approximate posterior samples
generated using Laplace sampling (blue-green) with posterior samples
generated usingMCMC(dark gray). (Top left) The two sets of samples
clearly have different marginal distributions for the overall log
probability variable, indicating that the Laplace samples do not
accurately approximate the target distribution. (Top right) The
distribution of marginal posterior predictive log likelihood values for
training data flux measurements shows that the Laplace method tended
to yield much worse predictions compared with the true model (lower
log likelihood values indicate that the modeled and measured values are
further away). (Bottom left) The Laplace method also tended to
produce worse flux predictions for held-back test measurements.
(Bottom right) The marginal joint distribution of two parameters: KmA,r1
and Kcatr1 . The Laplace method is not able to track the correct joint
distribution for this pair of parameters. This is unsurprising given that
the target distribution has position-dependent scales, which are difficult
for a linear approximation to capture.
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explain why the flux of the enzyme GNMT is higher in data set 1
than in data set 12 (Figure 5). GNMT is an irreversible enzyme
that is homotropically activated by its substrate, competitively
inhibited by its product, and heterotropically inhibited by 5,10-
methylenetetrahydrofolate (mlthf). The complex regulation
makes it the ideal test case to elucidate regulatory changes.
Regulation can be separated into enzyme abundance,

allostery, and saturation, and we can plot the marginal posterior
distribution of the ratio of the corresponding regulatory
component in data set 1 compared with data set 12 (Figure 5,
right panel). A positive value indicates that the component was
increased in data set 1 relative to data set 12, with 0 indicating no
difference. The probability, according to our model, of the
component acting in each direction is given by the relative area
under the curve on each side of the zero point.

Our model correctly inferred that saturation and allosteric
effects were the main drivers of regulation between the two data
sets in this case, with the curves for each component aligning
with the ground truth shown in red.
Importantly, this form of analysis takes into account all

modeled sources of uncertainty, including uncertainty about the
measured values of the flux in each data set. Our result shows
that Maud could be used in this realistic case not only to explain
an observed difference in fluxes but also to provide a reasonable
judgment as to the explanation’s robustness.

3. METHODS
Maud is a command line application implementing Bayesian
inference for a wide range of realistic kinetic models. Maud is

Figure 4. Results of removing concentration measurements for the metabolite ahcysc from our case study data set. (Top) Comparison of metabolite
concentration residuals between the full measurement data set (blue-green) and the missing-data data set (gray), displayed on natural logarithmic
scale. The missing-data model was unable to estimate the withheld ahcysc concentrations. (Bottom Left) The marginal posterior distribution for the
Michaelis constant Km

AHC1,ahcysc in each model, alongside the true parameter value used to generate both data sets. The true value is recovered by the
complete-data model but not by the missing-data model. (Bottom Right) The distribution of total log-likelihood for out-of-sample flux measurements
in both models. There is a significant overlap between the two distributions, suggesting that removing the ahcysc measurement did not cause
catastrophic prediction failure. However, overall, the complete-data model tended to make better predictions.
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written in Python,24 designed for use on Windows, macOS, and
Linux, is pip installable from the Python Package Index as
maud-metabolic-models, documented at https://
maud-metabolic-models.readthedocs.io and actively developed
and maintained at https://github.com/biosustain/Maud/.
To use Maud, a user must first collate appropriate input

information, represent it in files with Maud’s required formats
(see the Supporting Information section on input format).
Maud’s command line interface provides commands for
inference via a range of algorithms including adaptive
Hamiltonian Monte Carlo as well as commands for simulation
and making out-of-sample predictions. Results are stored in files
using a structured, interoperable format.
As well as parameter values, Maud also performs inference for

derived quantities including the components of the regulatory
decomposition described below in,5 log likelihoods, simulated
measurement values, and metabolic control analysis coeffi-
cients.25

In the rest of this section, we describeMaud’s kinetic model at
a high level and discuss Maud’s statistical model, implementa-
tion, and how it solves the crucial steady state problem. Further
details about Maud’s kinetic model can be found in the
Supporting Information.

3.1. Kinetic Model.Maud’s kinetic model decomposes into
factors

= · · · ·F C k( ; ) enzyme reversibility saturation allosterycat
(5)

Each of the terms on the right-hand side of5 is a function of C
and θ. This idea is taken from Noor et al.26 The terms usefully
gather physically meaningful and conceptually distinct factors
contributing to the reaction fluxes. The enzyme captures the
effect of enzyme concentration, kcat that of enzyme efficiency,
reversibility quantifies thermodynamic effects, saturation the
effect of enzyme availability, and allostery the effect of post-
translational modifications.
We used the model of enzyme saturation from Liebermeister

et al.27 and the generalized Monod−Wyman−Changeux model

of Allosteric regulation introduced in28−31 and used more
recently in Matos et al.32 To capture the effect on enzyme
activity of coupled phosphorylation and dephosphorylation
processes, we developed a new mathematical model inspired by
the generalized MWCmodel of allosteric regulation. Full details
of all mathematical aspects of Maud’s kinetic model can be
found in Supporting Information Section 2.

3.2. Statistical Model. Maud used MCMC to perform
posterior inference on a Bayesian statistical model. This section
introduces these topics and then describes exactly what kind of
Bayesian statistical model Maud uses.

3.2.1. Bayesian Inference. Bayesian statistical inference
analyzes data by constructing a mathematical model with the
following three components:

• A measurement model or “likelihood” that probabilisti-
cally describes how likely any possible measurement set is
given the true values of the measured quantities, i.e. a
probability density function × [ ]l: 0, 1 where
is the set of all possible measurement sets and is the set
of all possible true measurable values.

• A deterministic process model that describes the
measured quantities in terms of unknown, possibly
unobserved parameters θ, i.e. a function >d: .

• A prior model that probabilistically describes how likely
any possible set of parameter values is, without
considering any information included in themeasurement
model, i.e. a probability density function π: θ → [0, 1].

Together these components determine a joint probability
function that encapsulates the Bayesian statistical model, i.e. a
function × [ ]p: 0, 1 such that for any θ and y, p(θ, y) =
π(θ)l(y|θ). Substantive questions about the implications of the
assumptions implicit in the model components can be
formulated in terms of this joint density function.
In particular, questions about what the model implies, given a

particular measurement set, y can be formulated in terms of the
conditional probability density function p|y:θ → [0,1]. Bayes’s

Figure 5. Illustration of how analyzing a system with Maud can yield actionable insights into the underlying metabolic network. (Top Left) Schematic
of the regulatory interactions associated with the enzyme GNMT1. Dashed green lines represent allosteric activation, dashed red lines indicate
allosteric inhibition, and solid red lines represent competitive inhibition. (Bottom Left) Comparison of marginal posterior distributions forGNMT flux
in data sets 1 and 2. (Right) Log-scale ratios of the regulatory elements defined in ref 5. Note that the reversibility and kcat components are excluded:
this is because this reaction was modeled as irreversible, and kcat was modeled as constant across data sets. These plots identify why flux in data set 12 is
higher than in data set 1: the flux increase is due to allostery and saturation with no control from enzyme concentration changes.
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theorem guarantees that this conditional density is proportional
to the product of the prior and likelihood, i.e., p|y(θ) ∝ π(θ)
l(y|θ) see (ref 11, Ch 1) for an extended discussion of the theory
of Bayesian statistical inference.
The principal computational challenge for Bayesian statistical

inference is to approximate the values of integrals of the joint
density function conditional on a known measurement assign-
ment y, also known as the posterior distribution. For most
nontrivial statistical models, the posterior distribution cannot be
integrated analytically, so numerical approximation is required.
MCMC is a popular method for addressing this problem, which
uses a Markov chain with known properties to generate samples
from a target probability distribution that can be used to perform
Monte Carlo integration. Hamiltonian Monte Carlo makes it
possible, given an appropriate choice of hyperparameters, to
efficiently generate samples from even a high-dimensional
continuous posterior distribution by calculating the gradients of
the log-scale joint density function. Adaptive Hamiltonian
Monte Carlo, as used by Stan, uses a range of well-tested
methods to tune these hyperparameters, allowing efficient
MCMC for high-dimensional posterior distributions with
minimal user input.
Alternatives to MCMC for numerically approximating

integrals over posterior distributions include grid sampling
(11, Ch. 10), rejection sampling (11, Ch. 10), importance
sampling,33 and distributional approaches including variational
inference and Laplace approximation (11, Ch. 13).
The Laplace approximation is of particular interest because, as

mentioned above, this has been used for approximate Bayesian
inference in a similar context toMaud. Laplace approximation of
a posterior distribution works by first finding the mode of the
posterior distribution, i.e., the “maximum a posteriori”
parameter configuration with the highest posterior density.
Next, the second derivative of the posterior distribution at this
point is found and used to generate a normal distribution that
either approximates the target distribution or can in turn be used
to generate such an approximation.
Maud employs adaptive HamiltonianMonte Carlo to perform

posterior inference for a Bayesian statistical model, where the
process model is the kinetic model described above. The next
two subsections describe Maud’s prior and measurement
models.
3.2.2. Prior Model. Maud’s prior model includes unknown

parameters corresponding to quantities in the kinetic model that
are assumed to be unknown, other than steady-state metabolite
concentrations and fluxes, which are derived from the values of
other parameters by solving the steady-state problem. See Table
1 in this paper’s Supporting Information for a description of all
these parameters and their dimensions.
Except for metabolites’ standard condition Gibbs energy

changes of formation, Maud uses independent normal prior
distributions for parameters that can in principle be both
negative and positive. For parameters that are constrained to be
positive, Maud et al. use independent log−normal distributions.
Formation energy parameters have a multivariate normal prior
distribution. Location, scale, and covariance parameters for all
these prior distributions can be selected freely by the user.
3.2.3. Measurement Model. Maud’s measurement model

considers three types of measurement: metabolite concentration
measurements, enzyme concentration measurements, and flux
measurements, represented by vectors yconc, yenz, and yflux,
respectively.

All measurements are specific to an experimental condition;
that is, a case where the true state of the network, including
knockouts, boundary conditions, and state variables as well as
kinetic and thermodynamic parameters, can safely be assumed
to be the same. Maud’s statistical model allows for arbitrarily
many experimental conditions and for any measurable quantity
to be measured any number of times in any condition.
Metabolite and enzyme measurements are intended to

represent the results of quantitative metabolomics and
proteomics experiments. The likelihood functions for such
measurements are

y yLN(ln , )i i i
conc conc conc

(6)

y yLN(ln , )i i i
enz enz enz

(7)

Both equations are log−normal generalized linear models
with a standard link function (the natural logarithm ln) and
known standard deviation σconc. The use of this measurement
model is motivated by the consideration that concentrations are
constrained to be non-negative, so the measurement model
should avoid assigning positive probability mass to negative
metabolite concentration values. In addition, we expect the
precision of most metabolomics and proteomics experiments to
be roughly proportional to the true value of the measured
quantity, which supports a measurement model with constant
coefficient of variation. The measurement standard deviations
σconc and σenz are assumed to be known exactly for the sake of
simplicity; plausible values can be elicited by considering the
likely coefficient of variation of the measuring apparatus. Our
measurement model improves on analyses of metabolomics and
proteomics data that assume a regression model with normally
distributed errors, whether explicitly using a standard linear
model or implicitly using ordinary least-squares fitting.
Flux measurements, representing the results of quantitative

fluxomics analyses, are modeled using a likelihood function from
a standard linear regression model.8 Flux measurements can be
obtained from isotope labeling experiments using metabolic flux
analysis, for example, as described in (Young 2014). When
entering flux measurements, it is important only to specify
measurements for a network’s free fluxes, as the values of some
steady state fluxes in a metabolic network are constrained by
others, with the result that dependent fluxes cannot typically be
measured separately. If measurements of multiple dependent
fluxes are entered, information will inappropriately be double
counted.

y yLN(ln , )i i i
flux flux flux

(8)

The use of independent measurement models for metabolite,
enzyme, and flux measurements carries an implicit assumption
that there are no systematic correlations in the measurement
errors. This choice was motivated by simplicity; it would be
better to use a model with potentially correlated measurements.
Similarly, it would be preferable to include measurement errors
as model parameters, thereby avoiding possible bias due to
incorrect assessments of the measurement accuracy. However,
we chose to use a simpler measurement model to avoid the
complexity and potential fitting issues that these changes would
entail.
Finally, the reader may wonder why Maud uses a linear

regression model for reaction flux measurements even though
this creates the potential for erroneous double counting and
requires nontrivial upstream modeling, as intracellular fluxes
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typically cannot be measured directly. Instead, fluxes are
typically inferred from isotope labeling experiments using
metabolic flux analysis: see Dai and Locasale34 for more about
this method. Ideally, Maud’s measurement model for fluxes
would extend from fluxes to the results of potential labeling
experiments, thereby removing the need for upstream analysis
and avoiding any double counting. This option has not yet been
pursued, again for the sake of simplicity.

3.3. Implementation.Maud uses the Python library click35

to implement a command line interface. The command line
interface loads input files as Python dictionaries, which are
parsed using the Python library toml36 and then validated and
converted into structured MaudInput objects using Pydantic.37

Maud’s statistical model is implemented in the probabilistic
programming language Stan38 and accessed using the interface
cmdstanpy.39 For posterior sampling, Maud uses MaudInput to
create an input file for Stan and then triggers posterior sampling
using adaptive Hamiltonian Monte Carlo. See Betancourt40 for
more about this algorithm.
When sampling is complete, Maud converts to the output into

the standard format InferenceData using the Python library
arviz41 and saves it as a json file, along with some information for
debugging. This format allows for easy checking of MCMC
diagnostics including divergent transitions, effective sample size,
and the improved R̂ statistic proposed in Vehtari et al.14

3.4. Solving the Steady-State Problem. Maud’s param-
eters are connected with measurable quantities via the steady-
state equation.3 Posterior sampling using adaptive Hamiltonian
Monte Carlo requires repeatedly solving3 and finding the
gradients of its solution with respect to all model parameters.
This must be done numerically, as analytic solutions are not
available for realistic kinetic models.
The speed at which this problem can be solved is tightly

coupled with the size and complexity of metabolic network that
can practically be modeled. See Timonen et al.42 for more about
considerations involved in this kind of modeling.
To solve3 and find its gradients, Maud uses a hybrid method

involving two numerical solvers from the SUNDIALS suite:43

CVODES and IDAS via their interface from Stan. The hybrid
method follows that proposed by Margossian44 and involves
numerically evolving the ODE system for a short period of time
and then using the difference between the evolved and starting
concentrations as the target for a numerical algebra solver.
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