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Abstract

Classification of multivariate observations into two or more populations based
on a mixture of categorical and continuous variables, is a problem that is often
solved by transforming variables to be all either continuous or categorical and then
applying a classification method. We deal with the problem of classification of ob-
servations into two populations with binary and continuous variables using the ratio
of two decomposable tree-structured conditional Gaussian (CG) densities as classi-
fication rule, where the tree structure and density for each population are estimated
independently. The simplicity of CG densities with tree structure alleviates the
problem of the need of large sample sizes, whereas the decomposability property
ensures the existence of analytic expressions of the maximum likelihood estimators
of the CG distribution and the use of a modified version of the Kruskal’s algorithm
to find the minimum spanning tree for the structure estimation. Since the selection
of features often improves the classification performance of some methods, a step-
wise procedure based on the cross-entropy loss is also proposed. We compare the
empirical performance of the proposed method with that of other methods, classical
and modern, using test error rates for a real data set and for simulated samples of
different sizes from a CG density in each population. The empirical performance of
the method in the real data was four among various methods. In the simulation,
the proposed method was able to recover the structure of the CG densities from
which the samples were generated and produced the lowest error rate; it was also
observed that the error rates for all the methods were substantially larger than the
population Bayes error for small sample sizes. The results suggest that the ratio of
two CG densities with a tree structure is a good method, sufficiently fast compu-
tationally, worth considering for the classification of observations with mixtures of
variables.
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∗Departamento de Matemáticas, Facultad de Ciencias, UNAM, Av. Universidad 3000, Circuito Exte-
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1 Introduction

The use of mixed graphical models (MGMs) for the classification of mixed data based on a
set of categorical and continuous variables has been studied in Statistics since the 1970’s.
There are various other models and methods for classification that have been known for
some time, like discriminant analysis in its different forms, parametric, non-parametric,
linear and non-linear, and logistic discrimination. More recently, a surge of algorithmic
methods has become popular for a data-driven approach to classification, such as random
forests, neural networks, and lately, deep neural networks.

When dealing with numerical covariates or features, most classification methods ap-
ply. On the other hand, when all covariates are categorical, not all classification methods
apply directly, as is the case of linear and quadratic discriminant analysis although they
are often nonetheless successfully used. For a set of measurements that consist of categor-
ical and continuous variables, some methods become more difficult to apply, particularly
those based on probabilistic graphical models. Although the theory for graphical models
for a mixture of variables has been successfully developed, see e.g. Lauritzen (1996, Ch.
6), and some algorithms for model identification and model estimation exist, the use of
these models in practical applications is still somewhat limited due to scarce availability
of software. Note, however, that some software has been available for some time, see e.g.
Højsgaard et al. (2012, Ch. 5) and Scurati (2017).

MGMs, aimed at modelling mixtures of categorical and continuous variables, can be
used in the context of classification of multivariate observations. The idea of using these
models together with the conditional Gaussian (CG) distribution for classification is not
new. The location model introduced by Olkin and Tate (1961), an instance of a ho-
mogeneous MGM, was used by Krzanowski (1975, 1980, 1994) for discrimination and
classification, though it has not been broadly used due to the large sample size required
for its estimation. Edwards (2000, Sec. 4.7) has also showed the application of MGMs
for classification using a single MGM in discriminant analysis.

A full MGM has a large number of parameters and demands a large number of obser-
vations for its estimation, and selecting a more parsimonious model requires the identifi-
cation of the graph, which is challenging if not infeasible. For this, some simplifications
or modifications of the model have been proposed by restricting the graph structure or
modifying the distribution of the variables. One approach is to consider a simplified CG
distribution; for example, Lee and Hastie (2015) propose a model based on a homoge-
neous CG distribution with no interactions other than pairwise interactions, whereas in
Cheng et al. (2015) the model includes higher-order interactions. Another approach is
to consider MGMs with neighbourhood selection for graph identification and where the
conditional distribution of each variable given the rest is a member of the exponential
family, Chen et al. (2015) and Yang et al. (2014); or Yang et al. (2018), where the
conditional distribution of each variable is modeled with a generalized linear model. A
different approach is to consider latent Gaussian copula models, as in Fan et al. (2017)
for binary and continuous variables, and recently by Göber et al. (2024) for more general
categorical variables and continuous.

In this work, we consider an MGM associated with decomposable trees; this implies
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a CG distribution with no interactions other than pairwise interactions, as in Lee and
Hastie (2015), but without the restriction of homogeneity and with a subset of all pair-
wise interactions. An MGM with a decomposable tree graph is a simple decomposable
graphical model that requires a much smaller sample size for its estimation and for which
there exists an efficient algorithm for identifying the graph structure. Tree-structured
models for classification in the pure discrete case have already been used by Chow and
Liu (1966); these authors showed that a multinomial distribution with a tree structure
could approximate the distribution of a multinomial distribution of discrete variables.

Following the idea of the use of the location model and tree-structured models, we
propose using tree-structured MGMs for classification with the ratio of two CG distribu-
tions as the classification rule. We call this method tree-structured discriminant analysis
(CG-tree). We compare the empirical performance of the proposed method with that of
other methods for the case of two populations and a set of binary and continuous vari-
ables, using estimated classification error rates. We apply the methods to a real data set
and to simulated datasets generated from a heterogeneous CG distribution with a path
as the graph structure. We applied linear, nonlinear and algorithmic methods, including,
linear, modified linear, naive and quadratic discriminant analysis, logistic regression with
and without pairwise interactions, k nearest neighbour, support vector machines, random
forests, neural networks and deep neural networks with variable selection in the recent
platform LassoNet.

The paper is organized as follows. Section 2 states the classification problem, details
the MGM and the CG density, and presents the proposed method. Section 3 specifies the
alternative classification methods used. Section 4 presents the empirical results based on
estimated error rates in a real and two simulated datasets. Finally, section 5 gives some
concluding remarks.

2 Methodology

2.1 Classification problem

We consider the problem of classification between two well-defined populations or classes
of observations, Π1 and Π2, on the basis of a mixture of p binary and continuous variables
measured on a sample of observations from each class. Let C ∈ {1, 2} be the class variable
and x = (x1, . . . , xp) the random vector of p variables of which q are binary i = (i1, . . . , iq)
and r are continuous y = (y1, . . . , yr). Let π1 = P (C = 1) and π2 = P (C = 1) be the
prior probabilities that an observation belongs to class Π1 and Π2, and P (C = 1|x) and
P (C = 2|x) be the posterior probabilities, respectively.

For the classification of the observations we consider the Bayes classification rule with
equal misclassification costs. This corresponds to choosing the class with the highest pos-
terior probability P (C|x), see e.g. Welch (1939). That is, assign an observation to Π1 if

P (C = 1|x) > P (C = 2|x). (1)

If one assumes that x has a density function fC(x|C) = fC(x) in population C = 1, 2,
the Bayes rule (1) is equivalent to assigning an observation to Π1 if
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log
(
f1(x)/f2(x)

)
− log(π2/π1) > 0. (2)

This rule is optimal in the sense that minimizes the overall error rate or probability
of misclassification

P (e) = π1P (2|1) + π2P (1|2), (3)

where P (i|j) denotes the probability of assigning an observation from population Πj to Πi.

2.2 Mixed graphical models

MGMs, as considered in this work, were introduced by Lauritzen and Wermuth (1989).
These models are based on the CG distribution and are used to model mixtures of vari-
ables, discrete and continuous, by combining hierarchical log-linear models for the discrete
variables with Gaussian graphical models for the continuous variables. They are specified
as follows.

Consider a set V of p variables partitioned as V = ∆ ∪ Γ, where ∆ = {i1, . . . , iq} is
a set of q discrete variables and Γ = {y1, . . . , yr} a set of r continuous variables. Each
discrete variable ij ∈ ∆ takes a finite set of categories Iij , which without loss of generality
we assume Iij = {0, 1}, the product space I =

∏q
j=1 Iij is the table of cells or values that

the vector of discrete variables i takes, and y ∈ Rr. In an MGM, the vector of variables
x = (x1, . . . , xq+r) = (i, y) = (i1, . . . , iq, y1, . . . , yr) has a CG density f that satisfies the
Markov properties (Lauritzen, 1996, p. 32) with respect to an undirected marked graph
G = (V,E).

Conditional Gaussian (CG) distribution

The density of a CG distribution is expressed as the product of two densities

f(x) = f(i, y) =p(i)f(y|i), (4)

where p(i) = P (x∆ = i) > 0 corresponds to a positive multinomial distribution and
f(y|i) to a Gaussian density N

(
µ(i),Σ(i)

)
for each i ∈ I, |I| = 2q. The density f(i, y)

can be expressed in terms of its canonical
(
g(i), h(i), K(i)

)
, its moment characteristics(

p(i), µ(i),Σ(i)
)
, or a mixture of them like

(
p(i), h(i), K(i)

)
, see Lauritzen (1996, ch. 6);

these are related as:

µ(i) = K(i)−1h(i), (5)

Σ(i) = K(i)−1,

p(i) = (2π)r/2 det(K(i))−1/2 exp
{
g(i) + h(i)tK(i)−1h(i)/2

}
.

Models for which Σ(i) = Σ, ∀ i ∈ I, are called homogeneous, else heterogeneous.

Notice that in general the moment characteristics in the MGM are not independent of
each other and are restricted according to the model’s associated graph G, see Lauritzen
(1996, Theorem 6.11).

Decomposable MGMs
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An MGM is decomposable if its associated marked graph is decomposable. An undi-
rected marked graph is decomposable if and only if it is triangulated and does not contain
any path between two non-adjacent discrete vertices passing through only continuous
vertices (Lauritzen, 1996, p. 11). In the pure discrete or continuous case only the first
condition applies.

When the graph G with p vertices is decomposable, there are two properties that
ensure certain factorizations of the density: a) there exists a perfect numbering of the
cliques of G, C1, ..., Ck, and associated separators S1, ..., S

∗
k , 0 ≤ k∗ < k ≤ p, and b) there

is a perfect directed version of G, where the vertices can be chosen such that discrete
variables are numbered before the continuous ones, see Lauritzen (1996, p. 18).

Using these properties, the density f(i, y) can be factorized in terms of weak marginal
densities involving the variables in the cliques and separators only (Lauritzen, 1996, p.
188), or alternatively, in terms of conditional distributions as in Bayesian Networks as
follows.

f(i, y) = p(i)(2π)−r/2 det(Σ(i))−1/2 exp{−(y − µ(i))tΣ(i)−1(y − µ(i))/2} (6)

=
k∏

j=1

f[Cj ](xCj
)

f[Sj ](xSj
)

(7)

=
∏
j∈V

f(xj | xpaj), (8)

where the weak marginal f[A](xA) of f over the set A is a CG density (Lauritzen, 1996, p.
162) and f[∅] = 1; xpaj denotes the parents of variable xj defined as the variables, if any,
that are connected with an arrow from xpaj to xj in the corresponding perfect directed
version of G.

Notice that i) f[A](xA) in general is not the marginal density fA(xA), although they both
have the same moment characteristics, ii) when xj is continuous, f(xj | xpaj) is a Gaus-
sian distribution with the mean and variance depending on the variables in xpaj , and iii)
continuous variables cannot be parents of discrete variables.

The maximum likelihood estimator of the density also factorizes as

f̂(i, y) =
k∏

j=1

f̂[Cj ](xCj
)

f̂[Sj ](xSj
)
, (9)

=
∏
j∈V

f̂(xj | xpaj), (10)

where each estimated factor, f̂[A](xA) or f̂(xj | xpaj), is based on marginal data only. See
Lauritzen (1996, p. 188) and Lindskou et al. (2021). This factorization allows to estimate
f(i, y) through its estimated factors only, without calculating the estimated parameters(
p̂(i), µ̂(i), Σ̂(i)

)
.

Decomposable MGMs with tree structure
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An MGM with a decomposable tree or forest graph Gτ (V,Eτ ) is one of the simplest
decomposable MGMs. A tree graph is a connected graph without cycles, and a forest is
a graph that has no cycles. When the tree (forest) is decomposable, the expression (7)
factorizes as

f(i, y) =
∏
j∈V

f[xj ](xj)
∏

(j,k)∈Eτ

f[xj ,xk](xj, xk)

f[xj ](xj)f[xk](xk)
, (11)

where f[xj ,xk](xj, xk) is a CG distribution involving only two variables xj and xk; and the
alternative factorization in (8) is such that each xpaj corresponds to only one variable at
most.

In this case, the maximum likelihood estimators of the density factors in (11) exist
provided that the sample size for each factor is equal to or larger than two for each in-
volved cell value, see Lauritzen (1996, Proposition 6.20).

For example, consider 10 variables, q = 4 binary and r = 6 continuous, (i, y) =
(i1, . . . , i4, y1, . . . , y6) with i ∈ I =

{
(0, 0, 0, 0), (0, 0, 0, 1), . . . , (1, 1, 1, 1)

}
, |I| = 24 = 16

and y ∈ R6. Figure 1 shows four decomposable graphs: 1a) a decomposable tree, 1b)
a forest, 1c) the empty graph, and 1d) the complete graph. For each graph, its density
f(i, y) can be factorized respectively as below, where b) and c) are homogeneous whereas
a) and d) can be either homogeneous or heterogeneous:

a) f(i, y) = p(i1)
∏4

j=2 p(ij | ij−1)f(y1 | i4)
∏6

j=2 f(yj | yj−1).

b) f(i, y) = p(i1)
∏4

j=2 p(ij | ij−1)f(y1)
∏6

j=2 f(yj | yj−1).

c) f(i, y) =
∏4

j=1 p(ij)
∏6

j=1 f(yj).

d) f(i, y) = p(i)f(y | i).

(a) (b) (c) (d)

Figure 1: Some examples of decomposable graphs associated with f(i, y): a) One single
path (tree), b) Two unconnected paths (forest), c) Empty graph (forest) and d) Complete
graph.

2.3 Discriminant analysis and graphical models

Considering two populations Π1 and Π2, and a mixture of binary and continuous variables,
x = (i, y) = (i1, . . . , iq, y1, . . . , yr), ij ∈ {0, 1}, j : 1, . . . , q, and y ∈ Rr. We assume that x
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follows an MGM with density fGC(i, y) and associated graph GC = (V,EC) in population
ΠC, C ∈ {1, 2}. The graph GC = (V,EC) imposes some restrictions on the parameters(
pC(i), µC(i),ΣC(i)

)
, for i ∈ I and C ∈ {1, 2}.

Using the Bayes rule in (2) with the densities fG1(i, y) and fG2(i, y) is a method that
allows a reduction in the number of parameters by restricting the graph structures or by
imposing equalities on the parameters. In fact, Krzanowski (1975) proposed this method
with a common complete graph G1 = G2 = G and with Σ1(i) = Σ2(i) = Σ using a
smoothed method for parameter estimation. Later, Krzanowski (1994) considered the
case with ΣC(i) = ΣC, C = 1, 2, and Σ1 ̸= Σ2. In these cases, the structure of the graph is
already identified as the complete graph, but the number of parameters is so large that
their estimation demands a large number of observations. Perez-de-la-Cruz and Eslava
(2016, 2019) proposed a discriminant analysis rule based on tree-structured graphical
models in the pure continuous and discrete case, respectively.

The use of MGMs with a graph other than the complete or the empty graph, on the
one hand, diminishes the number of parameters to be estimated; on the other, it imposes
the problem of the identification or estimation of the graph which in general is not an
easy task.

In practice, both the structure of GC and the density fGC(i, y), for each C ∈ {1, 2},
should be estimated or learned. When restricting the structure of the graph to decom-
posable trees or forests, the structure of each GτC can be learned using the factorization
in (11) and a modified version of Kruskal’s algorithm for finding the maximum weight
spanning decomposable tree or forest (Edwards et al., 2010). Then, each density fτC(i, y)
can be estimated using the maximum likelihood estimators of the factors in (10). The
availability of these methods to estimate the structures and densities is attractive from
the computational point of view.

Tree-structured discriminant analysis

We propose a discriminant analysis rule as the Bayes rule given in (2) with two tree-
structured decomposable CG densities, fτ1(i, y) and fτ2(i, y). That is, assign an observa-
tion x = (i, y) to population C = 1 if

log
(
fτ1(i, y)/fτ2(i, y)

)
> log

(
π2/π1

)
, (12)

for i ∈ I with | I |= 2q and y ∈ Rr.

The estimation of expression (12) is done by estimating each of the two densities
separately to obtain:

log
(
f̂τ1(i, y)/f̂τ2(i, y)

)
> log

(
π̂2/π̂1

)
, (13)

where for each density, both the graph structure and the density are estimated as follows.
The graph structure of GτC is learned using function minForest in the package gRapHD
(Abreu et al., 2010) to obtain the decomposable tree (forest) that maximizes (minimizes)

the likelihood (BIC). Then, each estimated density f̂τC(i, y) is computed with function
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bn.fit in the package bnlearn (Scutari, 2017) using the maximum likelihood estimated fac-
tors in (10). The estimated population sizes π̂1 and π̂2 are the relative sample size of each
population.

Notice that there are two options for estimating each decomposable graph: a tree,
which is learned by maximizing the likelihood, or a forest, which is learned by minimizing
the BIC. Here we use either two trees or two forests in the expression (13) corresponding
to two estimated rules denoted as CG-tree and CG-forest.

The proposed rule in (12) considers the use of the p variables x = (x1, . . . , xp), however
selecting some of the variables might improve the predictive accuracy. Since for any non-
empty subset of the p variables, x∗, estimating Gτ∗1

and Gτ∗2
, as well as the corresponding

fτ∗1 (x
∗) and fτ∗2 (x

∗), is computationally fast and f̂τ∗C (x
∗) can be used to estimate P (C|x∗)

for each observation in the sample as:

P̂ (C|x∗) =
f̂τ∗C (x

∗)π̂C

f̂τ∗1 (x
∗)π̂1 + f̂τ∗2 (x

∗)π̂2

, (14)

a backward step procedure based on the cross-entropy loss is also implemented and applied
for variable selection. The selected models are denoted as CG-tree-step when applied to
a CG-tree model, and CG-forest-step when applied to a CG-forest.

The performance of the proposed rule in (12) is compared with that of some alternative
classification methods using simulated and real data.

3 Alternative classification methods

We give a brief note about each of the different classification methods used for comparing
the performance of the tree-structured discriminant analysis.

Discrimination assuming normal populations. If one assumes that x is a vector of
continuous variables with a multivariate Gaussian density on each population, N

(
µ1,Σ1

)
and N

(
µ2,Σ2

)
, the rule in expression (2) is the quadratic discriminant function or rule

(QDA). Assuming Σ1 = Σ2 = Σ, the quadratic reduces to a linear function (LDA). In ad-
dition to these two, we tried the LDA2 which corresponds to LDA based on the enlarged
set of variables {x1, . . . , xp, x1x2, . . . , xp−1xp}, and a penalized version of LDA, LDA-pen,
as in Witten and Tibshirani (2011).

Logistic discrimination. Logistic regression can be used for classification when vari-
ables are both binary and continuous. It estimates the posterior probabilities P (C =
1|x) = exp(β0 + β1x1 + ... + βpxp)/[1 + exp(β0 + β1x1 + ...+ βpxp)] and P (C = 2|x) =
1 − P (C = 1|x) for the Bayes discriminant rule (1). In this study we used logistic re-
gression model in five forms: with main effects only, {x1, . . . , xp}, and adding pairwise
interactions, {x1, . . . , xp, x1x2, . . . , xp−1xp}, denoted as LOG and LOG2, respectively. In
each case we used its regularized version with the l1 metric corresponding to lasso (LOG-
lasso and LOG2-lasso). We also applied a selection of variables using the backward step
method with the BIC criterion, LOG2-step. The model LOG2 was applied but produced
unstable results due to the large number of parameters and small data sets: the estimated
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coefficients of the model were numerically too large, and these produced results with a
large difference between test and training errors (low ability to generalize).

Naive Classifier. The naive classifier assumes independence among the p variables
(i1, . . . , iq, y1, . . . , yr) in each population distinguishing between categorical and continu-
ous variables. This classifier can be obtained considering a CG density with the empty
graph on each population, e.g. Figure 1c).

Support vector machines. Support vector machines (SVM) is a model that predicts the
class identity of the observations by finding linear or non-linear boundaries in the feature
space using kernels; this prediction is not based on class probabilities, see for example
Cortes and Vapnik (1995). We used SVM using the standarized variables and reported
results for the linear (SVM-lin) and the polynomial of degree 2 (SVM-poly2) kernels.

k-nearest neighbour. This nonparametric method estimates the posterior probability of
membership of each observation to each of the populations, P (C = c|x). The observation
is assigned to the class or population with the highest estimated posterior probability.
These probabilities are estimated using the proportions associated with each population
when considering the k nearest neighbours, 1 ≤ k < n, which are obtained using a dis-
tance measure on the predictor’s values between the new and each of the n observations
in the training sample. The larger the k, the smaller the error is at a price of a higher
variance. We applied this method using the Euclidean distance and the standardized
variables, and a tuned value of k (k-nn). We also applied k-nn with the Gower distance
though it did not improve the results given when using the Euclidean distance.

Random forests. This methodology combines decision trees with the bootstrap method.
It is used as a classifier, often successfully and with computational efficiency. It can be
applied to data with both binary and continuous variables and can additionally provide a
measure of the importance of each of the variables in terms of classification performance.
Random forests are not invariant to transformations of the covariates. We applied the
method tuning the number of fitted trees and the number of variables allowed to partic-
ipate on each split, using the Gini index, and letting the trees to grow to the maximum
possible considering that the minimum number of observations at each terminal node was
one (Rand-forest).

Deep Neural networks and LassoNet. Neural networks including Deep neural networks
(DNN) are powerful black-box predictors that can perform very well in different fields,
like computer vision, image recognition, and language modelling, where large data sets are
generally available, Agarwal et al. (2021). They can also be used for small-medium tab-
ular data, though the large number of parameters involved in the model will often overfit
the training set, and this makes it a challenge to learn a reasonable architecture and a
good fit when the number of observations is small. Variable selection methodology for
DNN has already been suggested and implemented, for example, LassoNet by Lemhadri
et al. (2021), LocalGLMnet by Richman and Wuthrich (2023), and Weight predictor
network with feature selection by Margeloiu et al. (2023). Their implementation is based
on DNN algorithms already implemented. We fitted or learned DNN using Keras, and
DNN with variable selection using LassoNet.
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Table 1 lists the methods applied to the real and simulated data.

Classification Method Name Classification Method Name

Methods with no interactions Methods with pairwise interactions

Linear discriminant analysis LDA Tree-structured discriminant CG-tree
Penalized LDA LDA-pen Forest-structured discriminant CG-forest
Naive Naive Step reduced Tree-structured disc. CG-tree-step
Logistic regression LOG Step reduced Forest-structured disc. CG-forest -step
Logistic lasso LOG-lasso Step reduced Logistic with pairwise int. LOG2-step
SVM with linear kernel SVM-lin Logistic lasso with pairwise int. LOG2-lasso

Quadratic discriminant analysis QDA
LDA with pairwise interactions LDA2
SVM with polynomial kernel SVM-poly2

Algorithmic methods Deep neural networks

K nearest neighbour k-nn Deep neural networks DNN
Random forests Rand-forest DNN with variable selection LassoNet

Table 1: Classification methods used to compare the performance of the tree-structure
discriminant analysis.

4 Empirical comparison

We considered a real data set and two simulated data to compare the empirical perfor-
mance of the proposed rule with that of other classification methods.

Assessment of the classification methods. Two aspects determining how well a method
will perform are its ability to produce a small test error and to generalize, this is to pro-
duce a small difference between the test and the training error.

Preprocessing of the data. Most of the methods used in this work are scale-dependent,
and no single transformation works well with all of them. For the methods: k-nn, DNN
and LassoNet, the data were standardized to have mean zero and variance one on each
variable. Software used for applying methods like penalized LDA, SVM and logistic re-
gression with lasso, do internally standardize all the variables. For the real data set,
variables four to six were transformed with the logarithm due to the large difference in
variances among the continuous variables.

Misclassification errors. For the real data set, the test and training errors were calcu-
lated by randomly splitting the data into two parts, 90% for training and 10% for testing
the models, repeating the splitting B times. For the simulated data, B samples of size
n ∈ {50, 100, 1000}, were simulated for training and of size n = 1000 for testing the
methods. For all the methods B = 1000, except for DNN and LassoNet, where B = 50
and B = 100, respectively. Additional computational details are given in Appendix C.
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4.1 Real data

The data set has been previously analyzed by Krzanowski (1975) in the context of classi-
fication and discrimination of mixtures of variables, and earlier in Armitage et al. (1969)
for the prognosis in advanced breast cancer. The data comprises 186 individuals who
underwent ablative surgery for advanced breast cancer between 1958 and 1965 at Guy’s
Hospital, London. In 99 cases the treatment was considered to be either successful or
intermediate, and in 87 as a failure. The former set will be treated as population Π1 and
the latter as Π2. The dataset has six continuous and three binary variables.

The results of classifying the observations are presented in Figure 2. The test and train-
ing error rates for each and for both populations are given in Table 5 in the Appendix B.
Figure 2 shows test and training errors in two groups, group one shows methods with no
interactions (linear), and group two comprises methods with interactions, nonparametric
or algorithmic, and deep learning methods (nonlinear). They show the following.

a) The proposed method, CG-tree-step, had an error of 33.2%, 2.3 percentage points
higher than the lowest and 9.1 lower than the highest. The CG-forest-step, not shown in
the figure, had 1.2 percentage points higher than CG-tree-step.

b) Methods with no interaction terms had errors that range from 37.8 for the logistic
regression to 42.3 for the penalized linear discriminant rule. The lowest value was similar
to the four largest in the nonlinear methods (k-nn, Rand-forest, QDA and CG-tree).

c) Nonlinear methods had errors that varied from 30.9 for the step reduced logistic re-
gression up to 38.6 for the CG-tree rule.

d) Considering nonlinear methods, those with variable selection performed better than
without (LOG2-step, LOG2-lasso, CG-tree-step, CG-forest-step).

e) Linear methods had, on average, an error four points larger than nonlinear methods,
39.3 vs 35.1; their lowest error rate was seven points higher than the lowest obtained by
the nonlinear methods, 37.8 vs 30.9.

f) The two computer-intensive methods, DNN without and with variable selection (Las-
soNet), did not perform the best. We note that relatively little hyperparameter tuning
was performed on these methods, and a more exhaustive hyperparameter optimization
might have improved their performance.
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Figure 2: Breast cancer dataset with nsuccess = 99 and nfailure = 87. Estimated test and
training error rates. Values averaged across 1000 random training-test data splits, except
for DDN and LassoNet with 50 and 100 data splits, respectively. The data splits were
done within each group in proportions (9/10, 1/10). Labels of the horizontal axis appear
in Table 1

4.2 Numerical simulations

We generated samples from a heterogeneous CG density under two settings for each pop-
ulation Π1 and Π2.

The CG-density has a single path as in Figure 1a) as associated graph and satis-
fies the Markov properties according to its graph, where the binary variables follow a
multinomial distribution p(i) = p(i1, i2)p(i2, i3)p(i3, i4)/(p(i2)p(i3)), and the continuous a
Gaussian distribution N

(
µ(i), K(i)−1) within each cell i with a tridiagonal concentration

matrix K(i) as in (15) in Appendix A.

In one setting, the CG densities for the two populations have equal marginal means,
equal marginal variances and different covariances, such that the difference between the
distribution of the two populations lies on their covariances, and a second setting where
both distributions have different marginal means and covariances. Specifically, the two
settings are as follows.

I. The two CG densities fτ1 and fτ2 have equal marginal means, equal marginal variances
and different marginal covariances. That is, E1(xj) = E2(xj) and V1(xj) = V2(xj), j =
1, ..., 10, and Cor1(xi, xi+1) > 0, ∀ i ∈ {1, . . . , 9} and Cor2(xi, xi+1) < 0, ∀ i ∈ {1, . . . , 9}.

II. The two CG densities fτ1 and fτ2 have different marginal: means, variances and co-
variances.
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The specifications of the parameter values for CG densities involved in the simulations
are given in Table 2 in Appendix A.

An approximation to the value of the Bayes error in (3) was computed using 50,000
generated observations per population in each setting. For setting I, this value was 20.1%
and for setting II, 20.2%.

The results of the simulation study are shown in Figure 3. Test and training error
rates for both settings appear in Tables 6 and 7 in the Appendix B.

I. Two Populations where both have equal marginal means and marginal variances. In this
setting, methods that include only main effects and no interactions will not discriminate
between the two populations. The test error rate in all cases is around 50% as expected.

Considering the nonlinear methods we observe the following.

a) Error rates vary considerably according to the sample size. For sample size 50, there
is an average difference of 12.6 points between the test and the population Bayes error.
This average difference decreases to 7.8 and 1.7 for sample sizes 100 and 1000, respectively.

b) The proposed method based on the CG densities produced the lowest error rates.
The differences between these errors and the Bayes error are 7.5, 4.0, and 0.1 for sample
sizes 50, 100 and 1000, respectively. No noticeable difference was observed considering
rules with trees or forests, or when considering the stepwise procedure for variable selec-
tion.

c) The second-best results were obtained by the quadratic discriminant and the logis-
tic lasso rules.

d) Random forest and k-nn produced the largest test errors for all sample sizes.

e) DNN produced test errors that were among the 4 largest, and with variable selec-
tion using LassoNet, the error decreased, e.g. 2.8 percentage points for sample size 50.
LassoNet has test errors similar to those for regularized regression.

II. Two populations with different means and marginal means. Here, we observe the fol-
lowing.

a) The linear methods with no interactions were able to discriminate between the two
populations. Their performance was similar, with test errors that, on average, differed
from the population error by 11.0, 9.4 and 7.6 points for sample size 50, 100 and 1000,
respectively.

b) The performance of the nonlinear methods was similar to that of those where the
two populations had equal marginal means and marginal variances, though the error rates
differed less among the former, 28.1–34.8 for sample size 50, than among the latter, 27.6–
40.0. Their performance, on average, differed from the population error by 10.4, 6.8 and
1.6 points for sample size 50, 100 and 1000, respectively.
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c) CG-forest with and without variable selection, together with LOG2-lasso and QDA
performed better than all the linear methods for the same sample size, and were the best
in both simulation settings.
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Figure 3: Simulated data. Estimated test and training error rates. Test errors averaged
across 1000 test sets of size 1000, except for DDN and LassoNet with 50 and 100 test sets,
respectively. Training sets of size 50 (blue), 100 (red) and 1000 (green) on each of the two
populations. a) Top panel, setting where the data were generated from two CG densities
with equal marginal means and marginal variances, E1(xj) = E2(xj) and V1(xj) = V2(xj),
j ∈ {1, . . . , 10}. b) Bottom panel, setting where the data were generated from two CG
densities with different marginal means. Labels of the horizontal axis appear in Table 1
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5 Concluding remarks

The simulation study is based on samples from density functions where interactions among
variables are pairwise and not higher, and where the performance of the methods was
largely due to the sample sizes.

For large sample sizes, in both simulation settings, all nonlinear methods performed
equally well, except k-nn; whereas linear methods performed poorly in one setting and
did not detect any difference between the two populations when these differed in their
interactions and not in their means.

For the small sample size, in both settings, the proposed method based on CG tree
models performed the best, though their errors were seven points higher than the Bayes
error. This suggests that even when these models were parsimonious and in most of the
cases the graph structure was recovered, the error associated with the estimation of the
parameters diminished the performance of the estimated rule.

However, when interactions among three or more variables are present, the perfor-
mance of the methods might be more variable. For small sample sizes, parsimonious
methods are expected to perform better. For large sample sizes, methods that are able
to capture high nonlinearities are expected to perform better than those that are limited
to at most pairwise interactions. In the case, when the number of observations is large
and interactions of high order are present, regularized logistic regression including prod-
ucts among three or more variables might perform well, and deep neural networks might
outperform most methods.

Preprocessing the data, like using transformations or standardizing the variables, as
well as using variable selection or regularization improved the classification performance
in most of the cases. This supports the suggestion of using them when classifying obser-
vations and more strongly when the data sets are small.

The proposed method with variable selection and logistic regression with interactions
and lasso had a good performance in the simulation and the real data sets. They are
straightforward to apply and not highly computer-intensive. This makes them worth con-
sidering for classification, especially for small sample sizes where parsimonious methods
with variable selection or regularization might perform better. They are also worth con-
sidering when computational resources are limited or simply as an additional alternative
in order to compare the magnitude of error rates with those given by alternative classifi-
cation methods.

Deep neural networks are computer-intensive methods that are powerful in tasks other
than tabular data of small size. They did not perform the best in any of the simulated
settings nor in the real data set; it might be that the small data sets were insufficient for a
more efficient training of the networks, or that more expertise from the user was required.
For high-dimensional small data sets it has been noticed that they do not perform well,
Margeloiu et al. (2023).

In ongoing work we are studying the performance of the methods with samples from
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populations with interactions among three or more variables; in particular, for analizing
whether the proposed method and logistic lasso outperform methods with a larger number
of parameters when the sample size is small.

Further research on the use of MGMs for classification is worth pursuing. For instance,
some modifications to the ratio of two CG densities are the following. a) Restricting the
densities in both populations to have the same decomposable tree graph, as the TAN
structure in Friedman et al. (1997, 1998). b) The use of CG densities with decomposable
models with a graph structure more complex than the trees. In this case, a fast algorithm
for the identification of the structure should be implemented since the R package gRapHD
is no longer maintained. c) The use of CG-densities where the interactions of the variables
are limited up to two or three variables, using for example the R packages mgm (Haslbeck
and Waldorp, 2020) or hume (Göber et al., 2024).

Acknowledgements Guillermina Eslava gratefully acknowledges the hospitality of the De-
partment of Applied Mathematics and Computer Science, Technical University of Denmark.
This work was done partly while she was on Sabbatical leave and partly on a six-month leave
from the Faculty of Sciences at the National Autonomous University of Mexico (UNAM). She
gratefully acknowledges the receipt of a grant from the program PASPA from DGAPA, UNAM,
for six months of Sabbatical leave. Gonzalo Perez gratefully acknowledges that this work was
supported by UNAM-PAPIIT IA101224.

References

Abreu, G., Edwards, D. and Labouriau, R. (2010) High-Dimensional Graphical Model Search
with the gRapHD R Package. Journal of Statistical Software, 37(1), 1–18

Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich, B., Caruana, R., and Hinton, G. E.
(2021) Neural additive models: Interpretable machine learning with neural nets. Advances in
Neural Information Processing Systems, 34.

Armitage, P., McPherson, C.K. and Copas, J.C. (1969). Statistical Studies of Prognosis in
Advanced Breast Cancer, Journal of Chronic Diseases, 22, 5, 343-60.

Chen, S., Witten, D.M., and . Shojaie, A.S. (2015) Selection and estimation for mixed graphical
models. Biometrika, 102, 1, 47-64

Cheng, J., Li, T., Levina, E. and Zhu, J. (2017) High-dimensional mixed graphical models. J
Comput Graph Stat, 26(2), 367–378

Chow, C. and Liu, C. (1966) An approach to structure adaptation in pattern recognition. IEEE
Trans. Syst. Sci. Cybern. 2, 73–80.

Cortes, C. and Vapnik, V. (1995) Support-Vector Networks. Machine Learning, 20, 273-297.

Edwards, D. (2000) Introduction to Graphical Modelling. Springer-Verlag, New York.

Edwards, D., Abreu, G. and Labouriau, R. (2010) Selecting high-dimensional mixed graphical
models using minimal AIC or BIC forests. BMC Bioinformatics 11, 18.

Fan, J., Liu, H., Ning, Y. and Zou, H. (2017) High dimensional semiparametric latent graphical
model for mixed data. J. R. Stat. Soc. Ser. B. Stat. Methodol., 79(2), 405–421.

Friedman, J., Tibshirani, R. and Hastie, T. (2010) Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

16



Friedman, N., Geiger, D. and Goldszmidt, M. (1997) Bayesian network classifiers. Mach Learn
29, 131–163

Friedman, N., Goldszmidt, M. and Lee, T. (1998) Bayesian Network Classification with Contin-
uous Attributes: Getting the Best of Both Discretization and Parametric Fitting. In Proceedings
of the Fifteenth International Conference on Machine Learning (ICML 1998), 179–187.
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A Specifications of the CG densities in the simula-

tion study

The parameters (p(i), µ(i),Σ(i)) in the CG density were specified as follows. The inverse of the
covariance matrix, K(i), was a banded matrix:

K(i) = K(i4) =
1

1− ρ2



ai4 −ρ 0 0 0 0
−ρ 1 + ρ2 −ρ 0 0 0
0 −ρ 1 + ρ2 −ρ 0 0
0 0 −ρ 1 + ρ2 −ρ 0
0 0 0 −ρ 1 + ρ2 −ρ
0 0 0 0 −ρ 1

 , (15)

|K(i)| = ai4−ρ2

(1−ρ2)6
, |Σ(i)| = |K−1(i)| = (1−ρ2)6

ai4−ρ2
→ ai4 > ρ2.

Σ(i) = K−1(i) =
1− ρ2

ai4 − ρ2
×



1 ρ ρ2 ρ3 ρ4 ρ5

ρ ai4 ai4ρ ai4ρ
2 ai4ρ

3 ai4ρ
4

ρ2 ai4ρ (ai4 − 1)ρ2 + ai4 (ai4 − 1)ρ3 + ai4ρ (ai4 − 1)ρ4 + ai4ρ
2 (ai4 − 1)ρ5 + ai4ρ

3

ρ3 ai4ρ
2 (ai4 − 1)ρ3 + ai4ρ (ai4 − 1)(ρ4 + ρ2) + ai4 (ai4 − 1)(ρ5 + ρ3) + ai4ρ (ai4 − 1)(ρ6 + ρ4) + ai4ρ

2

ρ4 ai4ρ
3 (ai4 − 1)ρ4 + ai4ρ

2 (ai4 − 1)(ρ5 + ρ3) + ai4ρ (ai4 − 1)(ρ6 + ρ4 + ρ2) + ai4 (ai4 − 1)(ρ7 + ρ5 + ρ3) + ai4ρ

ρ5 ai4ρ
4 (ai4 − 1)ρ5 + ai4ρ

3 (ai4 − 1)(ρ6 + ρ4) + ai4ρ
2 (ai4 − 1)(ρ7 + ρ5 + ρ3) + ai4ρ (ai4 − 1)(ρ8 + ρ6 + ρ4 + ρ2) + ai4


,

(16)

with ai4 taking values depending on the value of the corresponding cell i ∈ I. For the
specific case of a single path graph as in Fig. 1a), (15) and (16) depend on the value of
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i4 ∈ {0, 1} only. Table 2 shows the values of the parameters used in the simulations.

Population Variable

Π1 Π2 i4

Equal marginal means and marginal variances in both distributions
p(1) .5 .5

p(0, 0) .3 .2

p(1, 1) .3 .2

K(i) (15) with (ρ, ai4) = (0.2, 2.5) (15) with (ρ, ai4) = (−0.2, 1.0) 0

(15) with (ρ, ai4) = (0.2, 1.0) (15) with (ρ, ai4) = (−0.2, 2.5) 1

µ(i) −0.5(1, ρ, ρ2, ρ3, ρ4, ρ5) 0.5(1,−ρ, ρ2,−ρ3, ρ4,−ρ5) 0

0.5(1, ρ, ρ2, ρ3, ρ4, ρ5) −0.5(1,−ρ, ρ2,−ρ3, ρ4,−ρ5) 1

Different distributions in both populations
p(1) .5 .4

p(0, 0) .3 .312

p(1, 1) .3 .112

K(i) (15) with (ρ, ai4) = (0.2, 2.0) (15) with (ρ, ai4) = (−0.2, 1.0) 0

(15) with (ρ, ai4) = (0.2, 1.0) (15) with (ρ, ai4) = (−0.2, 2.0) 1

µ(i) (1, ρ, ρ2, ρ3, ρ4, ρ5) (0, 0, 0, 0, 0) 0

(0, 0, 0, 0, 0) −(1,−ρ, ρ2,−ρ3, ρ4,−ρ5) 1

Table 2: Heterogenous CG distribution. a) Top panel, setting where the two CG densities
have equal marginal means and marginal variances, E1(xj) = E2(xj) and V1(xj) = V2(xj),
j ∈ {1, . . . , 10}, and Cor1(xi, xi+1) > 0 and Cor2(xi, xi+1) < 0, ∀ i ∈ {1, . . . , 9}. Esti-
mated Bayes error rate of 20.1%. b) Bottom panel, setting where the data were generated
from two CG densities with different marginal means. Estimated Bayes error rate of
20.2%. p(1) = p(ij = 1), p(l, k) = p(ij = l, ij+1 = k), j ∈ {1, . . . , 3}, l, k ∈ {0, 1},
p(1) + p(0) = 1, p(1, 0) = p(0, 1) = p(1)− p(1, 1).
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i p(i) N
(
µ(i),Σ(i)(ρ)

)
i1i2i3i4 Π1 Π2 Π1 Π2

0000 .108 .032 µ(i) = −.5(1, ρ, ρ2, ρ3, ρ4, ρ5) µ(i) = .5(1, ρ, ρ2, ρ3, ρ4, ρ5)
0010 .048 .048 Σ(i) with (ρ = .2, ai4 = 2.5) Σ(i) with (ρ = −.2, ai4 = 1)
0100 .048 .072
0110 .048 .072
1000 .072 .048
1010 .032 .108
1100 .072 .048
1110 .072 048

0001 .072 .048 µ(i) = .5(1, ρ, ρ2, ρ3, ρ4, ρ5) µ(i) = −.5(1, ρ, ρ2, ρ3, ρ4, ρ5)
0011 .072 .048 Σ(i) with (ρ = .2, ai4 = 1) Σ(i) with (ρ = −.2, ai4 = 2.5)
0101 .032 .108
0111 .072 .048
1001 .048 .072
1011 .048 .072
1101 .048 .072
1111 .108 .032

.33/.52 = .108; .3× .22/.52 = .048; .2× .32/.52 = .072; .23/.52 = .032

Table 3: Heterogenous case where the two CG densities f1(x) and f2(x) have equal
marginal means and marginal variances, E1(xj) = E2(xj) and V1(xj) = V2(xj), j ∈
{1, . . . , 10}, and Cor1(xi, xi+1) > 0 and Cor2(xi, xi+1) < 0, ∀ i ∈ {1, . . . , 9}. K(i) depends
on a single parameter ρ and is given in (15).

i p(i) = p(i1,i2)p(i2,i3)p(i3,i4)
p(i2)p(i3)

N
(
µ(i),Σ(ρ)

)
i1i2i3i4 Π1 Π2 Π1 Π2

0000 .108 .1898 µ(i) = (1, ρ, ρ2, ρ3, ρ4, ρ5) µ(i) = (0, 0, 0, 0, 0, 0)
0010 .048 .1617 Σ(i) with (ρ = .2, ai4 = 2) Σ(i) with (ρ = −.2, ai4 = 1)
0100 .048 .1617
0110 .048 .0581
1000 .072 .1752
1010 .032 .1493
1100 .072 .0629
1110 .072 0226

0001 .072 .1752 µ(i) = (0, 0, 0, 0, 0, 0) µ(i) = −(1, ρ, ρ2, ρ3, ρ4, ρ5)
0011 .072 .0629 Σ(i) with (ρ = .2, ai4 = 1) Σ(i) with (ρ = −.2, ai4 = 2)
0101 .032 .1493
0111 .072 .0226
1001 .048 .1617
1011 .048 .0581
1101 .048 .0581
1111 .108 .0088

.33/.52 = .108; .3× .22/.52 = .048; .2× .32/.52 = .072; .23/.52 = .032

.3123/.42 = .1898; .312× .2882/.42 = .1617; .2882 × .112/.42 = .0581; .288× .3122/.42 = .1752; .2883/.42 = .1493;

.112× .288× .312/.42 = .0629; .1122 × .288/.42 = .0226; .1123/.42 = .0088

Table 4: Heterogenous case with two different CG densities f1(x) and f2(x) where the
marginal means and variances are different on each population. K(i) depends on a single
parameter ρ and is given in (15).
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B Error rates for the real and simulated data sets

Method Error rates %
Training set Test set

Group Π1 Π2 Global Π1 Π2 Global

Methods with no interactions

Linear discriminant analysis 24.6 38.7 31.2 30.3 46.8 38.0
Penalized LDA 31.2 46.7 38.5 34.5 51.0 42.3
Naive 23.1 50.8 36.0 26.4 55.4 40.0
Logistic regression 25.3 37.8 31.1 30.8 45.6 37.8
Logistic lasso 22.9 43.0 32.3 28.4 50.2 38.6
SVM with linear kernel 23.8 41.5 32.1 29.9 49.4 39.1

Methods with pairwise interactions

Tree-structured discriminant 19.6 41.9 30.1 26.7 52.0 38.6
Step reduced Tree-structured discriminant 17.9 33.5 25.2 24.6 43.0 33.2
LDA with pairwise interactions 13.6 24.9 18.9 29.7 41.9 35.4
Step reduced Logistic with pairwise interactions 19.7 30.9 24.9 24.4 38.2 30.9
Logistic lasso with pairwise interactions 19.0 28.9 23.6 24.6 39.8 31.7
Quadratic discriminant analysis 14.3 33.1 23.1 30.1 47.8 38.4

Algorithmic methods

SVM with polynomial kernel 11.1 25.7 17.9 25.6 44.4 34.4
K nearest neighbour 20.4 36.1 27.7 29.0 47.5 37.7
Random forests 0.1 3.3 1.6 27.2 50.2 38.0

Deep neural networks

Deep neural networks 15.0 27.3 20.8 27.1 38.0 32.2
DNN with variable selection 18.6 32.3 25.0 29.0 43.5 35.8

Table 5: Breast cancer dataset with nsuccess = 99 and nfailure = 87. Estimated test and
training error rates. Values averaged across 1000 random training-test data splits, except
for DDN and LassoNet where there were 50 and 100 data splits, respectively. The data
splits were done within each group in proportions (9/10, 1/10). Labels of the horizontal
axis appear in Table 1
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Method Error rates %
Training set Test set

Group sample size 50 100 1000 50 100 1000

Methods with no interactions

Linear discriminant analysis 36.9 41.0 47.2 49.9 49.9 50.0
Penalized LDA 37.9 41.4 47.3 49.9 49.9 49.9
Naive 34.7 39.3 46.7 49.9 49.9 50.0
Logistic regression 36.9 41.0 47.2 49.9 49.9 50.0
Logistic lasso 37.7 41.5 47.3 49.9 49.9 49.9
SVM with linear kernel 36.3 40.7 47.1 49.5 49.5 49.6

Methods with pairwise interactions

Forest-structured discriminant 16.6 18.7 19.8 27.6 24.1 20.2
Step reduced Forest-structured discriminant 16.2 18.6 19.8 27.6 24.1 20.2
Step reduced Logistic with pairwise interactions 0.0 16.7 20.4 35.2 27.3 21.0
Logistic lasso with pairwise interactions 11.9 16.8 20.1 30.7 26.0 21.3
Quadratic discriminant analysis 12.0 16.0 20.1 29.5 25.5 21.2

Algorithmic methods

SVM with polynomial kernel 10.0 14.6 19.9 30.7 26.8 21.5
K nearest neighbour 19.4 21.3 21.4 36.8 32.6 25.1
Random forests 0.0 0.1 0.0 40.0 34.7 22.8

Deep neural networks

Deep neural networks 10.7 11.4 19.3 36.0 30.0 22.6
DNN with variable selection 19.9 21.5 20.2 33.2 27.6 22.5

Table 6: Simulated data. Estimated test and training error rates. Test errors averaged
across 1000 test sets of size 1000, except for DDN and LassoNet with 50 and 100 test sets,
respectively. Training errors averaged across training sets of size 50, 100 and 1000 on each
of the two populations. Setting where the data were generated from two CG densities
with equal marginal means and marginal variances, E1(xj) = E2(xj) and V1(xj) = V2(xj),
j ∈ {1, . . . , 10}, and Cor1(xi, xi+1) > 0 and Cor2(xi, xi+1) < 0, ∀ i ∈ {1, . . . , 9}.
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Method Error rates %
Training set Test set

Group sample size 50 100 1000 50 100 1000

Methods with no interactions

Linear discriminant analysis 23.8 25.6 27.1 30.6 29.1 27.5
Penalized LDA 26.5 27.5 28.1 31.6 30.3 28.5
Naive 25.0 26.7 28.1 33.6 31.5 28.7
Logistic regression 23.7 25.6 27.2 30.6 29.1 27.6
Logistic lasso 24.6 25.7 26.9 29.9 28.6 27.4
SVM with linear kernel 23.3 25.2 26.7 31.0 29.3 27.3

Methods with pairwise interactions

Forest-structured discriminant 16.6 18.7 19.9 28.1 24.6 20.3
Step reduced Forest-structured discriminant 16.4 18.7 19.9 28.1 24.6 20.3
Step reduced Logistic with pairwise interactions 0.0 16.4 20.2 34.8 27.2 20.8
Logistic lasso with pairwise interactions 14.3 17.6 20.0 28.3 25.0 21.1
Quadratic discriminant analysis 12.1 15.9 20.0 29.1 25.4 21.1

Algorithmic methods

SVM with polynomial kernel 9.4 13.7 19.5 32.3 28.4 21.6
K nearest neighbour 20.8 21.4 21.3 33.3 30.0 24.9
Random forests 0.0 0.2 0.6 30.9 28.4 23.1

Deep neural networks

Deep neural networks 9.3 12.9 19.3 31.2 29.0 22.7
DNN with variable selection 16.8 17.8 20.3 30.3 27.6 22.5

Table 7: Simulated data. Estimated test and training error rates. Test errors averaged
across 1000 test sets of size 1000, except for DDN and LassoNet with 50 and 100 test sets,
respectively. Training errors averaged across training sets of size 50, 100 and 1000 on each
of the two populations. Setting where the data were generated from two CG densities
with different marginal means.

C Computational details

The computation of most of the errors was done with R (R Core Team, 2023), using
the following functions and packages. For logistic discrimination, glm and step with
the BIC criterion; and cv.glmnet in glmnet package (Friedman et al., 2010) for lasso
with λ tuned over a grid of 100 values. For discrimination assuming normal popula-
tions, lda and qda, both functions in the MASS package (Venables and Ripley, 2002);
and PenalizedLDA.cv in the penalizedLDA package (Witten and Tibshirani, 2011) with
λ ∈ {0.001, 0.005, 0.010, 0.030, ..., 0.490}. For the Naive classifier and SVM, functions
naiveBayes and svm in e1071 package (Meyer et al., 2020), tuning the hyperparame-
ters cost ∈ {0.01, 0.10, 1, 10, 100} and additionally for the quadratic polynomial kernel
γ ∈ {.00001, .0001, .001, .01, .03, 0.0667, .1, .5}. For k-nn the function knn in class package
(Venables and Ripley, 2002), with k ∈ {1, 2, ..., 20}. For Random forest, package random-
Forest (Liaw and Wiener, 2002) with ntree ∈ {100, 500, 1000} and mtry ∈ {1, 2, ..., 10}.
The hyperparameters of all the previous methods were tuned by tenfold cross-validation,
except for Random forest where the out-of-bag error was used.
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The training of the deep neural networks was done with Keras with most of the hyper-
parameters with their default values for a one-hidden-layer feed-forward neural network
with ReLU activation function, Adam optimizer and the following values: the number of
neurons within {7, 8, ..., 11} and {1, 2, ..., 15} for the real and simulated data, respectively,
a learning rate value between 0.0001 and .02, dropout ∈ {0, .1, .2} and a regularization
value l1 ∈ {0, .001, .005, .01, .025, .05, .1}. The tuning process was done using the Hyper-
band Tuner in Keras (Lisha and Jamieson, 2018).

The training of deep neural network with variable selection was done using the platform
LassoNet with default values for most of the hyperparameters except for the following:
one hidden layer with the number of neurons within {7, 8, ..., 11} and {4, 6, ..., 12} for
the real and simulated data, respectively; with M ∈ {1, 10} and dropout ∈ {0, .2, .4}.
The tuning of the hyperparameters was done by fivefold cross-validation using function
LassoNetClassifierCV.
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