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15 ABSTRACT
16 Chemical points of departure (PODs) for critical health effects are crucial for evaluating 

17 and managing human health risks and impacts from exposure. However, PODs are unavailable 

18 for most chemicals in commerce due to a lack of in vivo toxicity data. We therefore developed a 

19 two-stage machine learning (ML) framework to predict human-equivalent PODs for oral 

20 exposure to organic chemicals based on chemical structure. Utilizing ML-based predictions for 

21 structural/physical/chemical/toxicological properties from OPERA 2.9 as features (Stage 1), ML 

22 models using random forest regression were trained with human-equivalent PODs derived from 

23 in vivo datasets for general noncancer effects (n = 1,791) and reproductive/developmental effects 

24 (n = 2,228), with robust cross-validation for feature selection and estimating generalization errors 

25 (Stage 2). These two-stage models accurately predicted PODs for both effect categories, with 

26 cross-validation-based root-mean-squared errors less than an order of magnitude. We then 

27 applied one or both models to 34,046 chemicals expected to be in the environment, revealing 

28 several thousand chemicals of moderate concern and several hundred chemicals of high concern 

29 for health effects at estimated median population exposure levels. Further application can expand 

30 by orders of magnitude the coverage of organic chemicals that can be evaluated for their human 

31 health risks and impacts.

32

33 Keywords: QSAR model, machine learning, toxicity prediction, chemical risk assessment, high-

34 throughput screening, life cycle impact assessment (LCIA)

35

36 Synopsis: Most chemicals lack toxicity data related to human health. This study uses machine 

37 learning to fill this gap, greatly expanding the ability to characterize chemical risks and impacts. 
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41 INTRODUCTION
42 Determining a chemical’s point of departure (POD) is crucial to evaluating and managing 

43 health risks and toxicity impacts associated with chemical exposure. The POD is the starting 

44 point along the dose-response curve for extrapolating health risks to relevant exposure levels that 

45 may be encountered in the general population.1 A variety of impact and risk assessment 

46 frameworks, such as contaminated site remediation, life cycle impact assessment (LCIA), 

47 chemical alternatives assessment (CAA), and health-based risk screening, heavily rely on 

48 PODs.2,3 These PODs are primarily developed in regulatory or other authoritative assessments by 

49 agencies, such as the United States Environmental Protection Agency (U.S. EPA), that 

50 synthesize available toxicity data from in vivo studies and identify the “critical” or “most-

51 sensitive” endpoint for characterizing health effects. However, due to the resource-intensive 

52 nature of these assessments, such authoritative PODs are available for less than 1,000 chemicals, 

53 which is a tiny fraction of the more than 150,000 commercial chemicals to which humans may 

54 be exposed.4,5 Consequently, most of these chemicals lack comprehensive human health 

55 assessments and are not included in impact and risk assessment tools, such as USEtox.6

56 To partially address the lack of availability of authoritative assessments, a number of 

57 open-source databases compiling publicly available experimental in vivo toxicity data required 

58 for POD derivation have emerged, such as the U.S. EPA’s Toxicity Value Database 

59 (ToxValDB)7 and the European Chemicals Agency’s International Uniform Chemical 

60 Information Database (IUCLID; https://iuclid6.echa.europa.eu/). These databases have enabled 

61 researchers to derive “surrogate” PODs, through rigorous curation and statistical approaches, as a 

62 proxy for PODs that would be selected in an authoritative assessment.8 However, even though 

63 use of these databases increases the availability of PODs by an order of magnitude to about ten 
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5

64 thousand chemicals, the remaining gap underscores the need for a high-throughput approach to 

65 develop surrogate PODs in the absence of in vivo data.

66 “New approach methods” (NAMs), including in vitro and computational (in silico) 

67 approaches, have emerged as promising, high-throughput alternatives to animal testing, while 

68 also addressing ethical concerns regarding animal use. A prime example of in silico NAMs is 

69 QSAR modeling (Quantitative Structure-Activity Relationship). QSAR models commonly use 

70 machine learning (ML) to predict biological activity based on chemical structure information. 

71 Applications of QSAR modeling have substantially expanded the availability of toxicologically 

72 relevant data. For example, Mansouri et al. developed a collection of open-source ML models 

73 known as “OPERA” [Open (Quantitative) Structure-activity/property Relationship App].9,10 

74 These models predict structural and physical-chemical properties, environmental fate metrics, 

75 acute toxicity, and toxicokinetic endpoints for hundreds of thousands of chemicals. Many of 

76 these predictions are available through open-source web platforms such as the CompTox 

77 Chemistry Dashboard by U.S. EPA,11 and the National Toxicology Program (NTP) Integrated 

78 Chemical Environment (ICE).12 

79 Previous studies have also developed QSAR models to predict PODs. For instance, the 

80 models developed by Wignall et al. (2018) included those that predict PODs, such as benchmark 

81 doses (BMDs) and No Observed Adverse Effect Levels (NOAELs), using training data from 

82 several hundred chemicals with available authoritative human health assessments (n=137 for 

83 BMDs and n=487 for NOAELs).4 For these PODs, the Wignall et al. (2018) models explained 

84 between 28% and 45% of the variance, with mean absolute errors of 0.93-1.13 log10-units. 

85 Pradeep et al. (2020) used a similar approach to predict effect levels for specific species-study 

86 type combinations in ToxValDB, with training sets ranging in size from <100 to over 3600 and a 
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87 wide range of performance depending on the study type.13 Combining all study types, they 

88 achieved an R2 of 0.53 and RMSE of 0.71 in log10-units, but their approach does not provide 

89 surrogate PODs that reflect the “critical” or “most-sensitive” endpoints for characterizing health 

90 effects. Thus, there remains a substantial gap in the availability of surrogate PODs for a wider 

91 range of chemicals.

92 Conventional ML-based QSAR models often rely on hundreds of molecular descriptors 

93 as features.4,13 While these descriptors can enable accurate predictions, and many have good 

94 structural interpretability, it can be challenging to explain their toxicological importance to 

95 practitioners and decision-makers. Recognizing this challenge, the Organisation for Economic 

96 Co-operation and Development’s (OECD) (Q)SAR Assessment Framework14 includes a key 

97 “mechanistic interpretation” criterion for evaluating a QSAR model, defined as “how the 

98 rationale behind a (Q)SAR model is consistent with or accounts for the knowledge related to the 

99 predicted property.” This guidance highlights the importance of QSAR models that not only 

100 predict accurately but also provide insights into their underlying scientific basis to enhance their 

101 utility and trustworthiness. Thus, in accordance with the OECD report suggesting preference for 

102 a “physical-chemical interpretation (if possible) that is consistent with a known mechanism of 

103 biological action,” we posit that the structural/physical/chemical/toxicological properties that are 

104 available in OPERA, such as water solubility and bioconcentration factor, are more easily 

105 understood by a typical practitioner than typical chemoinformatic descriptors, and offer a path 

106 towards more “understandable” machine learning.

107 Building on prior efforts, this study aimed to expand the coverage of chemicals with 

108 toxicity values that can be used as a surrogate for human-equivalent noncancer PODs for oral 

109 exposure in the absence of in vivo data. Our objectives were threefold:
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110 1. Develop and evaluate a two-stage QSAR modeling framework that incorporates 

111 an intermediate layer of structural/physical/chemical/toxicological properties as 

112 features.

113 2. Generate an extended set of oral surrogate PODs, with quantified model 

114 prediction errors based on cross-validation, for a wide range of chemicals. 

115 3. Apply this framework to a large dataset of chemicals observed in the 

116 environment, assessing potential health risks using the margin of exposure as a 

117 metric.

118 Following Aurisano et al. (2023),8 we differentiated between reproductive/developmental and 

119 nonreproductive/developmental effects (“general noncancer effects”).3,15 The surrogate PODs 

120 from this study can be integrated into various chemical management and exposure and impact 

121 assessment frameworks for health-based risk screening, LCIA, CAA for chemical substitution, 

122 and exposure and risk prioritization.3,16,17

123 METHODS
124 To address the stated objectives, we developed a two-stage ML framework. The first 

125 stage derives ML-based predictions for structural/physical/chemical/toxicological properties that 

126 are readily interpretable. The second stage leverages these properties as features in a separate 

127 ML model to predict surrogate PODs. Figure 1A illustrates the conceptual framework, while 

128 Figure 1B shows an overview of the model development, evaluation, and application. The 

129 conceptual framework comprises the following steps:

130 1. Select and identify chemicals for modeling.

131 2. Standardize chemical structures to make them “QSAR-ready.”

132 3. Run prior QSAR models for feature extraction (Stage 1).
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8

133 4. Clean and parse the QSAR predictions to obtain raw features.

134 5. Apply these features in a modeling pipeline to predict PODs (Stage 2).

135 All ML algorithms for predicting PODs were implemented using Python 3.9, leveraging open-

136 source libraries such as scikit-learn 1.2.2.18 The source code, results, and input files associated 

137 with this study are openly available in a GitHub repository at https://github.com/jkvasnicka/Two-

138 Stage-ML-Oral-PODs.
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9

139
140 Figure 1. Overview of the two-stage machine learning framework for predicting points of departure. (A) Conceptual 
141 framework; (B) Model development, evaluation, and application. The surrogate points of departure were obtained 
142 from Table S5 of Aurisano et al. (2023).8 Features were extracted from predictions by OPERA 2.9.9,10 Figures S1-
143 S2 provide an overview of the model training and evaluation. Exposure estimates were obtained from SEEM3 by 
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10

144 Ring et al. (2019).19 Application chemicals were expected to occur in the environment and lacked in vivo points of 
145 departure.20,21 Note: ML, machine learning; POD, point of departure; QSAR, quantitative structure-activity 
146 relationship; OPERA, OPEn structure–activity/property Relationship App; ToxValDB, Toxicity Value Database; 
147 RMSE, root-mean-squared error, MedAE, median absolute error; R2, coefficient of determination; MAD, median 
148 absolute deviation; SEEM, Systematic Empirical Evaluation of Models.
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149 Training Data Collection and Preprocessing
150 Data Collection: Predicting PODs was essentially a regression task with a continuous 

151 target vector of oral doses, in log10-transformed units of mg∙(kg-d)-1, representing a POD for 𝑦𝑒 

152 a given effect category e, and inputs represented by a matrix X, where each row corresponds to a 

153 sample and each column corresponds to one of n distinct features, i.e., . This 𝐗 = [𝑥1, 𝑥2, …, 𝑥𝑛]

154 task required labeled data mapping chemical identifiers to their respective in vivo PODs. 

155 Specifically, we used the surrogate oral PODs from Table S5 of Aurisano et al. (2023),8 which 

156 were derived through meticulous curation and statistical analysis of in vivo experimental animal 

157 data from ToxValDB 9.1,7 adjusted to chronic human equivalent benchmark doses (BMDh). 

158 Throughout this study, the U.S. EPA’s DSSTox Substance Identifier (DTXSID) uniquely 

159 identify each chemical.

160 Data Filtering: Initially, there were 5,209 unique chemicals with surrogate PODs for 

161 general noncancer effects, and 4,938 chemicals for reproductive/developmental effects. 

162 However, a series of filtering steps removed chemicals that were unsuitable for modeling 

163 (Figure 1B). First, chemicals with ≤ 3 in vivo studies were excluded because those surrogate 

164 PODs may be less robust (Aurisano et al. used the lower 25th percentile of the distribution of 

165 available PODs for a chemical as the surrogate POD), leaving 2,404 and 2,999 chemicals for the 

166 respective effect categories. Next, a general applicability domain exclusion and standardization 

167 workflow was applied to generate “QSAR-ready” structures compatible with a variety of 

168 modeling approaches.22,23 Applying this workflow yielded 1,791 organic chemicals for general 

169 noncancer effects and 2,228 organic chemicals for reproductive/developmental effects.

170 Feature Extraction & Preparation: To obtain features, we leveraged the QSAR 

171 modeling framework, OPERA 2.9, by Mansouri et al.9,10 Specifically, we used the command-line 
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172 version, OPERA2.9_CL, inputting the chemical identifiers (DTXSID) as a text file. OPERA then 

173 retrieved the corresponding QSAR-ready structures as simplified molecular-input line-entry 

174 system (SMILES) strings from its internal database. This execution yielded 39 interpretable 

175 features (e.g., water solubility) with feature-specific applicability domain information. We then 

176 flagged features outside the applicability domain as “missing” if both of the following criteria by 

177 Mansouri et al. were met:9 

178 1. The value was outside the global applicability domain of the model/feature.

179 2. The value had a low local applicability domain index (< 0.4) with respect to its 

180 nearest neighboring values.

181 Figure S3 displays the distributions of raw features for all chemicals in this study, with 

182 corresponding descriptions in a supplemental Excel file (Table S3). Given the diverse nature of 

183 these features, we designed a robust feature preprocessing pipeline for feature transformation 

184 (Figure 1B), generalizable across a variety of ML estimators, as detailed below.

185 Model Training and Evaluation
186 Overview of Modeling Pipeline: The QSAR models for predicting PODs consisted of a 

187 pipeline of feature preprocessing steps and a ML estimator (e.g., random forest) (Figure 1B). 

188 This design ensured that transformation parameters (e.g., median for imputation) were derived 

189 solely from the training data, minimizing potential for data leakage and overoptimistic 

190 performance estimates. The feature preprocessing steps are described in the Supporting 

191 Information (see section, Feature Preprocessing Steps), and include imputation of missing 

192 values using the median (features were excluded if >30% imputation would be necessary). For 

193 the last components in the pipeline (steps 6 and 7 in Figure 1B), we chose the Random Forest 

194 Regressor and made predictions for the surrogate PODs. This estimator was a reasonable choice, 
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195 given its track record of robust performance without extensive preprocessing or hyperparameter 

196 tuning,24 and its successful applications in prior studies involving POD prediction.4,13 The 

197 algorithm constructs a collection of de-correlated decision trees using bootstrapped sampled 

198 versions of the training data, and then averages predictions to minimize variance.25 For the 

199 hyperparameters, we used the scikit-learn 1.2.2 defaults,18 except for the number of features to 

200 consider when searching for the best split, which we set to 1/3 (or at least 1) of the available 

201 features,24 instead of considering all features. 

202 For model training and evaluation, we implemented nested 5-fold cross-validation, with 

203 separate “inner” and “outer” loops (Figures 1B, S1, and S2). The “inner” loop is used for feature 

204 selection, whereas the “outer” loop is used to evaluate performance. Thus, for an iteration of the 

205 “outer” loop, the data are divided into an “outer” training and testing dataset. The “outer” 

206 training set is sent to the “inner” loop where it is repeatedly divided into “inner” training and 

207 testing datasets. This “inner” loop trains an “inner” model in order to conduct feature selection 

208 (described below under Model Training with Feature Selection). The selected features are then 

209 passed back to the “outer” loop, which trains a model using only those selected features with the 

210 “outer” training dataset, and evaluates performance using the “outer” testing data. This whole 

211 process is then repeated multiple times with different randomizations (described below under 

212 Model Evaluation).

213 Model Training with Feature Selection: Given the 39 features from OPERA 2.9 

214 (Figure S3),9,10 we hypothesized that a subset of 10 features would be sufficient for successful 

215 modeling while remaining interpretable. We selected the value of “10” a priori to avoid over-

216 fitting, and verified this hypothesis in a sensitivity analysis (described below) where all features 

217 were used without feature selection. If the value of “10” were to materially degrade performance, 
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218 then we could have used more complex feature selection approaches, such as recursive feature 

219 elimination.

220 To select features in an objective, robust, reproducible manner, we implemented a feature 

221 selection scheme by nesting a permutation feature importance algorithm within a repeated k-fold 

222 cross-validation loop. Specifically, we repeatedly divided the data into 5-folds, training the 

223 model on 4/5 of the data in which the algorithm measured feature importance by assessing the 

224 decrease in model performance upon random permutation of feature values. In particular, we 

225 used the median value for this importance score across random permutations as the selection 

226 criterion. The cross-validation loop minimized biases and over-optimistic performance scores. 

227 Further details can be found in the Supporting Information (see section, Model Training Steps, 

228 and Figure S1). 

229 Model Evaluation: To gauge the model’s generalization to unseen data, we nested the 

230 training process described above within another repeated K-fold cross validation loop. For this 

231 loop, we used 30 repetitions and 5 folds, yielding 150 (30x5) replicate models that underwent the 

232 same model training steps. To quantify performance, we used the root-mean-squared error 

233 (RMSE), median absolute error (MedAE), and coefficient of determination (R2). Further details 

234 regarding the model evaluation, along with definitions of the performance metrics, can be found 

235 in the Supporting Information (see section, Model Performance Metrics, and Figure S2). 

236 Model Benchmarking: To further evaluate our models, we benchmarked the QSAR-

237 derived PODs (PODQSAR) against estimates from other studies. Specifically, we referenced the 

238 original authoritative PODs (PODauthoritative) and the target variable of surrogate PODs 

239 (PODsurrogate) from Aurisano et al. (2023),8 both of which were fully adjusted to BMDh. 

240 Additionally, we compared our PODQSAR values with oral equivalent doses derived from 
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241 combining high-throughput in vitro bioactivity data with toxicokinetic data using reverse 

242 dosimetry. Specifically, we used the “PODNAM,50” values from Table S2 of Paul Friedman et al. 

243 (2020),26 where “50” denotes the median from a population distribution of steady-state 

244 administered equivalent doses. PODNAM,50 values were available for 263 chemicals for general 

245 noncancer effects and 13 chemicals for reproductive/developmental effects.  

246 Sensitivity Analysis
247 We conducted a sensitivity analysis to assess generalization error sensitivity to different 

248 datasets, feature preprocessing, and ML estimators. Our baseline Final Model was described 

249 above, involving feature selection among all 39 OPERA 2.9 features, imputation of missing 

250 values, and the Random Forest Regressor. We compared several additional models for each 

251 effect category using the same evaluation scheme described above (Figure S2), varying one 

252 modeling aspect at a time. These alternative models are shown in Figure 1 (see section, 

253 Sensitivity Analyses), and corresponding descriptions are in Table S1. All models were applied 

254 to the same chemicals, except the model involving no imputation, which was restricted to those 

255 chemicals with no missing feature values (n =184–227).  

256 Model Application 
257 We demonstrated application of our final two-stage models using a large dataset of 

258 organic chemicals expected to occur in the environment and for which human oral exposure 

259 could be estimated. Specifically, we assessed 34,809 chemicals that were on the Merged 

260 NORMAN Suspect List (SusDat)20,21 and within the applicability domain of SEEM3 (Systematic 

261 Empirical Evaluation of Models) by U.S. EPA.19 We excluded any chemicals outside the 

262 “general applicability domain” due to their being unsuitable for QSAR modeling based on the 

263 standardization workflow mentioned above,22,23 and that had a PODsurrogate value used for model 
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264 training (“training chemicals”). This exclusion resulted in 33,407 chemicals predicted for general 

265 non-cancer effects, and 32,970 for reproductive/developmental effects (34,046 chemicals across 

266 the two sets of predictions). We also evaluated how these chemicals fit within the “feature-

267 specific applicability domains” of the OPERA models, and the extent to which the distribution of 

268 features compared to that of the training set chemicals. 

269 The margin of exposure was used as a health risk metric to compare SEEM3 predicted 

270 population median oral exposures in mg∙(kg-d)-1] with the QSAR-predicted POD [[𝑦exposure,𝑖 

271  , also in mg∙(kg-d)-1]. For each sample i, the margin of exposure ( ) was PODQSAR, 𝑖 𝑀𝑂𝐸𝑖

272 calculated as:

273

𝑀𝑂𝐸𝑖 =
PODQSAR, 𝑖

𝑦exposure,𝑖

(1)

274

275 We screened chemicals for potential health concern using the following categorization 

276 scheme:27,28 

277 1. Low Concern for the median population exposure:  > 100𝑀𝑂𝐸𝑖

278 2. Moderate Concern for the median population exposure: 1 <  ≤ 100𝑀𝑂𝐸𝑖

279 3. High Concern for the median population exposure: 0 <  ≤ 1𝑀𝑂𝐸𝑖

280 SEEM3 exposure predictions ( ) for an individual at the population median exposure, 𝑦exposure,𝑖

281 accompanied by a model-based Bayesian 90% credible interval representing uncertainty,19 were 

282 downloaded from ICE.12 We also assessed the contribution of PODQSAR (hazard) uncertainty to 

283 the overall uncertainty in the margin of exposure, in addition to exposure uncertainty from 

284 SEEM3. Specifically, we derived 90% prediction intervals of PODQSAR uncertainty for each 

285 percentile of exposure uncertainty for the median individual. The derivation of these prediction 
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286 intervals is shown in the Supporting Information (see section, Margin of Exposure Uncertainty 

287 Analysis).

288 RESULTS

289 Dataset Characterization
290 The proportions of missing values across all 39 features from OPERA 2.9 for the training 

291 chemicals, and for the application chemicals, can be found in the Supporting Information 

292 (Figure S4). Most features predominantly had samples within their respective applicability 

293 domains. However, three features had more than 30% missing values and were subsequently 

294 removed in the pipeline. 

295 Performance Evaluation and Benchmarking
296 The final models accurately fitted/predicted PODsurrogate values for both effect categories, 

297 shown by their RMSE, MedAE, and R2. The models demonstrated consistent performance for 

298 both effect categories regardless of feature selection. Because of our nested cross-validation 

299 approach, each chemical may be part of the “training” or the “testing” dataset depending on the 

300 replicate. Figure 2 summarizes the “in-sample” model fitting, showing the predictions of the 

301 cross-validated final models that were fitted on the full labeled dataset. The accuracy was 

302 demonstrated by the clustering of fitted predictions and observations along diagonal line, the low 

303 values for the disperse measures (RMSE, MedAD), and the high R2 values. More importantly, 

304 Figure 3 summarizes the “out-of-sample” results, where the median prediction shown is across 

305 replicates when the chemical is part of the “testing” dataset. The estimated generalization errors 

306 (with 5th - 95th percentiles) based on cross validation were also quite good. These results imply 

307 that for a “new” chemical, we can expect the model to predict the POD with a GSD error of less 
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308 than 3.5- to 5.7-fold (taking the range of RMSE values from 0.54 to 0.76), or equivalently a 95% 

309 confidence interval spanning 11- to 30-fold in each direction.

310

311

312
313 Figure 2. Model fitting. In-sample performance is assessed through scatterplots and performance metrics 
314 comparing the fitted and observed values for each chemical  The fitted values are predictions from the cross-
315 validated final models that were fitted on the full labeled dataset. The figure is subdivided by target effect category 
316 and by whether feature selection was implemented. Note: RMSE, root-mean-squared error, MedAE, median 
317 absolute error; R2, coefficient of determination; n, sample size. 

318
319
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320
321 Figure 3. Model evaluation. (A) Out-of-sample performance is assessed through scatterplots comparing the mean 
322 predicted values for each chemical when it is part of the “testing” dataset across 30 cross-validation repeats (y-axis) 
323 against the corresponding surrogate values (x-axis). The dashed red line indicates perfect correspondence. (B) The 
324 distribution of performance metrics from 150 cross-validation scores (30 repeats x 5 folds), where each boxplot 
325 shows the median and interquartile range with whiskers representing the 95% confidence interval. The figure is 
326 subdivided by the performance metric, target effect category, and by whether feature selection was implemented. 
327 Note: RMSE, root-mean-squared error, MedAE, median absolute error; R2, coefficient of determination; n, sample 
328 size. The scale for R2 is reversed to be consistent with values to the “left” corresponding to better performance.

329

330 The benchmarking revealed that the PODQSAR values correlated well with the 

331 corresponding PODauthoritative values for general noncancer effects (n = 564) (Figure S5), with 

332 RMSE = 0.50 and MedAE = 0.32, both in log10-units, and R2 = 0.79. The correspondence was 

333 poorer for reproductive/developmental effects, with RMSE = 0.75, MedAE = 0.40, and R2 = 

334 0.47. For both effect categories, the PODQSAR values corresponded substantially better to the 

335 PODauthoritative values than did the PODNAM,50 values that were derived from in vitro bioactivity 

336 data.26 The PODNAM,50 values yielded negative R2 values, indicating worse performance than a 
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337 naïve constant model. However, the performance of PODQSAR values in this comparison may be 

338 overstated because they incorporated information about PODauthoritative indirectly through the use 

339 of surrogate PODs derived from ToxValDB, while the PODNAM,50 consisted of a completely 

340 independent dataset. 

341 Feature Importance
342 Results from the feature selection can be found in the Supporting Information (Figures 

343 S6-S10). Notably, the most important feature was consistently the QSAR-predicted LD50 

344 derived from in vivo rat acute oral toxicity studies.29 Four important features were common to 

345 both effect categories: 

346  QSAR-predicted LD50 derived from in vivo rat acute oral toxicity studies 

347 (CATMoS_LD50_pred)

348  Combined dipolarity/polarizability (CombDipolPolariz)

349  Ready biodegradability, a binary variable (ReadyBiodeg_pred_discrete)

350  Water solubility at 25 °C (WS_pred)

351 For these features, no more than 11% of the training datasets were imputed, with less than 1% 

352 imputed for the predicted LD50 (Figure S4). The remaining important features depended on the 

353 effect category (Figures S6-S10) and involved imputation of no more than 25% of the training 

354 set. Some additional important features were identified by the replicate models but excluded 

355 from the final models to prevent overfitting (Figure S6). 

356 Sensitivity Analysis
357 Table 1 compares the estimated generalization errors of the models from the sensitivity 

358 analysis. The best overall performance was exhibited by the baseline model (all 39 OPERA 2.9 

359 features, imputation of missing values, Random Forest Regressor). However, as mentioned, this 
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360 model’s performance was indistinguishable from the final model that involved a subset of 10 

361 important features (Figure 3B). Interestingly, when the baseline model was applied to samples 

362 without need for imputation, the model continued to exhibit favorable performance in terms of 

363 RMSE and MedAE, but with substantially higher variances and with R2 values that were much 

364 lower (Table 1), likely due to the much more limited training sample sizes. Additionally, when 

365 using the more “traditional” descriptors from RDKit (2022.09.5),30 the performance was similar 

366 to, but slightly poorer than our baseline model, suggesting that the 10 selected OPERA features 

367 encapsulate the essential information for POD prediction. Overall, our final model (Random 

368 Forest Regressor with feature selection and OPERA 2.9 features) was among the highest 

369 performing models in terms of its combination of low prediction error (RMSE and MedAE) and 

370 higher R2.

371

372
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373 Table 1. Comparison of performance metrics for QSAR models predicting points of departure.

QSAR Model (n) RMSE MedAE R2

Current Work: General non-cancer effects
RandomForestRegressor with feature 
selection (1,791) 0.69 [0.64 – 0.76] 0.40 [0.37 – 0.44] 0.48 [0.41 – 0.53]
*RandomForestRegressor (1,791) 0.68 [0.62 - 0.74] 0.39 [0.35 - 0.43] 0.50 [0.44 - 0.56]
*GradientBoostingRegressor (1,791) 0.69 [0.64 - 0.75] 0.41 [0.37 - 0.46] 0.48 [0.42 - 0.55]
*Ridge (1,791) 0.73 [0.68 - 0.79] 0.44 [0.40 - 0.48] 0.42 [0.36 - 0.48]
*LinearRegression (1,791) 0.73 [0.68 - 0.79] 0.44 [0.40 - 0.48] 0.42 [0.36 - 0.48]
*XGBRegressor (1,791) 0.72 [0.66 - 0.78] 0.42 [0.38 - 0.46] 0.43 [0.36 - 0.51]
*SVR (1,791) 0.96 [0.89 - 1.04] 0.64 [0.57 - 0.69] -0.01 [-0.03 - 0.01]
*MLPRegressor (1,791) 2.75 [1.56 - 5.53] 0.67 [0.58 - 0.84] -7.50 [-36.72 - -1.72]
**OPERA w/ Exp. LD50s (1,791) 0.69 [0.63 - 0.75] 0.40 [0.37 - 0.43] 0.48 [0.42 - 0.55]
**CompTox Features (1,791) 0.75 [0.69 - 0.82] 0.44 [0.39 - 0.49] 0.39 [0.31 - 0.46]
**RDKit Features (1,789) 0.71 [0.65 - 0.78] 0.40 [0.36 - 0.44] 0.45 [0.38 - 0.51]
**No Imputation (184) 0.58 [0.46 - 1.17] 0.37 [0.28 - 0.49] 0.22 [0.02 - 0.44]

Current Work: Reproductive/developmental effects
RandomForestRegressor with feature 
selection (1,791) 0.58 [0.54 – 0.72] 0.31 [0.28 – 0.34] 0.49 [0.38 – 0.56]
*RandomForestRegressor (2,228) 0.57 [0.53 - 0.72] 0.31 [0.29 - 0.35] 0.51 [0.40 - 0.58]
*GradientBoostingRegressor (2,228) 0.59 [0.54 - 0.73] 0.32 [0.30 - 0.35] 0.49 [0.37 - 0.55]
*Ridge (2,228) 0.63 [0.58 - 0.76] 0.37 [0.34 - 0.40] 0.42 [0.32 - 0.48]
*LinearRegression (2,228) 0.63 [0.58 - 0.76] 0.37 [0.34 - 0.40] 0.42 [0.32 - 0.48]
*XGBRegressor (2,228) 0.62 [0.56 - 0.74] 0.33 [0.30 - 0.36] 0.43 [0.34 - 0.52]
*SVR (2,228) 0.85 [0.77 - 0.96] 0.54 [0.51 - 0.58] -0.03 [-0.06 - -0.01]
*MLPRegressor (2,228) 1.75 [1.18 - 2.71] 0.56 [0.48 - 0.68] -3.43 [-10.68 - -0.92]
**OPERA w/ Exp. LD50s (2,228) 0.57 [0.53 - 0.71] 0.32 [0.29 - 0.34] 0.52 [0.42 - 0.58]
**CompTox Features (2,228) 0.67 [0.60 - 0.81] 0.38 [0.34 - 0.41] 0.34 [0.26 - 0.44]
**RDKit Features (2,224) 0.62 [0.55 - 0.73] 0.32 [0.29 - 0.35] 0.45 [0.37 - 0.52]
**No Imputation (227) 0.45 [0.35 - 0.55] 0.28 [0.20 - 0.35] 0.40 [0.21 - 0.53]

Previous Work
Wignall et al. 2018 NOAEL (487) N.R. 0.70 [0.06 - 1.82] 0.45
Pradeep et al. 2020 CHR R,M (11201) 0.92-0.94 N.R. 0.39-0.40
Pradeep et al. 2020 REP R,M (5951) 0.79-0.91 N.R. 0.26-0.31
Pradeep et al. 2020 DEV R,M, Rb (9945) 0.76-0.80 N.R. 0.26-0.29
Pradeep et al. 2020 ALL (71,020) 0.67-0.70 N.R. 0.54-0.57

374 Bold represents the “final” model used for predictions. *Sensitivity analyses using different machine 
375 learning algorithms; ** Sensitivity analyses using different descriptor sets (all using Random Forest 
376 Regressor without feature selection). Abbreviations: RMSE, root-mean-squared error; MedAE, median 
377 absolute error; R2, coefficient of determination; N.R. not reported; CHR, chronic; REP, reproductive; 
378 DEV, developmental, R, rat; M, mouse, Rb, Rabbit. Values for current work are median and 90% CI 
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379 based on “outer” cross-validation replicates (see Methods). Range for Pradeep et al. (2020) based on 
380 internal cross-validation and external test set.

381 Model Application
382 The top panels of Figure 4 display cumulative counts of the application chemicals in 

383 relation to the corresponding PODQSAR values, along with uncertainty estimates in the form of a 

384 90% prediction interval representing PODQSAR (hazard) uncertainty (Supporting Information 

385 Equation S8). For general noncancer effects, the median PODQSAR (with 5th - 95th percentiles) 

386 was 11 mg∙(kg-d)-1 (0.82 – 150). This distribution is somewhat higher (less potent) than that of 

387 the available regulatory/authoritative PODs (see Figure S11), as it is expected that higher 

388 potency (lower POD) chemicals would be more likely to have such regulatory or authoritative 

389 assessments. Additionally, as a sensitivity analysis, we also applied the model without feature 

390 selection to these chemicals and obtained consistent results [high correspondence between with 

391 and without feature selection: R2 ~0.9 and RMSE < 0.2 log-10 units (Figure S12)]. 

392 The lower panels of Figure 4 show the margins of exposure for an individual at the 

393 population median exposure, incorporating the 90% confidence interval for the population 

394 median exposure from SEEM3.19 About ~2,400 chemicals emerged as moderate concerns for 

395 population median exposures (MOE < 100) for general noncancer effects based on the upper 95th 

396 percentile of exposure uncertainty estimates and the lower boundary of the 90% prediction 

397 interval of PODQSAR uncertainty. In a similar manner, ~500 chemicals emerged as high concerns 

398 (MOE < 1) for general noncancer effects. For reproductive/developmental effects, the median 

399 PODQSAR was 31 mg∙(kg-d)-1 (3.4 – 280), with ~1,500 chemicals emerging as moderate 

400 concerns, and ~190 chemicals emerging as high concerns. In both cases, most chemicals appear 

401 to have low concern MOE values of >100 at the level of the median population exposures. It is 

402 however important to note that this level of concern could be substantially higher for 
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403 subpopulations that regularly use products containing the considered chemicals.31 A graphical 

404 user interface will be made available for accessing these predictions and identifying chemicals of 

405 concern.

406 Exposure uncertainty was the primary driver of the overall uncertainty in the margin of 

407 exposure (Figure 4). The typical exposure uncertainty spanned 4 orders of magnitude, evidenced 

408 by the median difference in log10-transformed exposure estimates between the 95th and 5th 

409 percentiles. In contrast, when focusing on PODQSAR, the typical error was constrained to less 

410 than a factor of 5 according to the median RMSE of ≤ 0.69 in log10-units (Figure 3B). This 

411 error corresponds to a squared geometric standard deviation (GSD2) ≤ 23, which, as expected, is 

412 larger than the error reported by Aurisano et al. (GSD2 ≤ 17 for all chemicals, GSD2 ≤ 14 for 

413 chemicals with at least 4 data points) that was based directly on in vivo PODs.8
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414
415 Figure 4. Cumulative counts of application chemicals in relation to the predicted points of departure and margins of 
416 exposure. Data are shown for chemicals that were on the Merged NORMAN Suspect List (SusDat)20,21 and within 
417 the applicability domain of SEEM3 (n = 32,524),19 excluding any training chemicals. The margins of exposure 
418 correspond to an individual at the population median exposure. Uncertainty is represented in two ways: (1) Exposure 
419 uncertainty, reflected by examining margins of exposure at different exposure percentiles; (2) Point of departure 
420 (hazard) uncertainty, represented by a 90% prediction interval derived from the median RMSE based on cross 
421 validation. Vertical spans highlight different risk categories as described in the Methods. The x-axis is truncated at 
422 log10MOE = 10. Note: POD, point of departure; MOE, margin of exposure.

423
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424 DISCUSSION
425 This study successfully extended the work of Aurisano et al. (2023),8 yielding a two-

426 stage ML framework capable of generating human-equivalent noncancer PODs for oral exposure 

427 in the absence of in vivo data. This framework was applied to derive surrogate PODs and 

428 corresponding margins of exposure for over 30,000 chemicals expected based on monitoring to 

429 occur in the environment and which lacked in vivo toxicity data.20,21 This represents a greater 

430 than three-fold increase in the coverage of organic chemicals with surrogate PODs compared to 

431 previous work.8 Moreover, a graphical user interface will be made available for accessing 

432 predictions for organic chemicals available on the U.S. EPA’s CompTox Chemistry Dashboard 

433 that pass the QSAR standardization workflow,22,23 which will further increase the coverage of 

434 chemicals by over an order of magnitude to ~800,000.11 Moreover, as shown in Figure S4, the 

435 rates of imputation for the >30,000 application chemicals were similar to the training set, with 

436 the most influential feature (CATMoS_LD50_pred) being imputed for only ~1% of values. 

437 Additionally, our training set of several thousand chemicals from ToxValDB appears to be 

438 diverse and representative based on similar coverage of features compared to application 

439 chemicals (Figure S13).7 

440 Applying our two-stage models revealed several thousand chemicals of moderate 

441 concern, and several hundred chemicals of high concern, for health effects at estimated median 

442 population exposure levels (Figure 4). Notably, exposure uncertainty was the primary driver of 

443 the overall uncertainty in the margin of exposure. Exposure uncertainty was larger than PODQSAR 

444 (hazard) uncertainty, despite our QSAR-based approach inherently introducing a larger 

445 uncertainty than the surrogate PODs from Aurisano et al. (2023) that were based directly on in 

446 vivo data.8 Moreover, we only assessed risk at estimated median exposure levels, and for most 

447 chemicals only a small fraction of the population is likely exposed. Thus, the actual uncertainty 
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448 in exposure is even greater when recognizing the need to address highly exposed subpopulations. 

449 These findings underscore the need for refined exposure estimates to better characterize chemical 

450 use patterns, product compositions, and human behaviors that influence exposure.32–34

451 In Table 2, we illustrate another case study example demonstrating how these models 

452 could be used in the context of deriving a reference dose (RfD) for a “new” chemical. In 

453 particular, we use the example of 4-Methylcyclohexanemethanol (MCHM) – a chemical used in 

454 the processing of coal that spilled from a storage tank into the Elk River in West Virginia, US in 

455 January 2014. At the time, there were no regulatory toxicity values for MCHM. After several 

456 days, CDC (2014) developed guidance levels based on a 4-week rat study (Eastman, 1990), and 

457 several months later, an expert panel (TERA 2014) proposed refined analyses using the same 

458 study.35–37 Over six years later, NTP completed a developmental and reproductive toxicity study 

459 in rats (NTP 2020).38 However, as illustrated in Table 2, utilizing our QSAR models for 

460 predicting PODs and deriving RfDs for MCHM would yield very similar results in a much more 

461 rapid timeframe of minutes, rather than days, months, or years. Additionally, because our 

462 predictions include confidence bounds for model uncertainty, they can also be incorporated into 

463 probabilistic derivations of toxicity values or health impacts.39–41

464

465
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466 Table 2. Illustration of application to deriving a Reference Dose (RfD) for 4-

467 Methylcyclohexanemethanol (MCHM) in context of 2014 chemical spill in West Virginia, US.

Source
Point of Departure 
(mg∙(kg-d)-1) UFA

a UFH
a UFD

a
RfD 
(mg∙(kg-d)-1)

Analysis 
time

CDC (2014) 100 (Eastman 1990) 10 10 10 0.1 Days
TERA (2014) 71 (Eastman 1990)b 10 10 10 0.07 Months
NTP (2020) 50 (maternal) 10 10 10 0.05 Years
This work - 
General non-
cancer 1.9c 3d 10 1e 0.06 Minutes
This work – 
Reproductive/ 
Developmental 3.5c 3d 10 1e 0.1 Minutes

468 Notes:

469 a Default factor unless otherwise noted. UFA = animal to human, UFH = human variability, UFD 

470 = database inadequacy.

471 b Duration adjusted for 5 days/week exposure.

472 c QSAR human equivalent POD prediction is 26 [90% CI: 1.9-360] mg∙(kg-d)-1 for general non-

473 cancer and 32 [90% CI: 3.5-290] for reproductive/developmental effects. Lower 95% confidence 

474 bound used as a “conservative” POD.

475 d QSAR predictive POD is already adjusted from animal to human equivalent dose using 

476 allometric scaling.

477 e Reduced to 1 because database uncertainty is already addressed by using lower confidence 

478 bound of QSAR-predicted POD and separate predictions for general non-caner and 

479 reproductive/developmental effects.

480
481
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482 A primary strength of our framework lies in its two-stage approach described in the 

483 Methods. Our final models accurately predicted PODs using a subset of 10 interpretable features 

484 from OPERA 2.9 (Figure S6).9,10 A unique aspect of this approach was the incorporation of 

485 predicted biological features. Notably, the QSAR-predicted LD50, derived from in vivo rat acute 

486 oral toxicity studies,29 consistently emerged as the most important feature in our models. For this 

487 feature, >99% of the chemicals in the training set were within the applicability domain (Figure 

488 S4). This feature indicates the acute mammalian potency of a chemical, and was previously 

489 predicted with an RMSE of around 0.50 (in log-10 units).29 As expected, our POD predictions 

490 had RMSE values that were (slightly) greater because they relied on the QSAR-predicted LD50 

491 as a “feature.” Importantly, using experimental LD50 values as features in our sensitivity 

492 analysis did not materially improve model performance, while substantially reducing the 

493 applicability domain of the model because only chemicals with experimental LD50s were 

494 predicted. Other important features were easily interpretable physical/chemical/biological 

495 properties, such as water solubility or fish bioconcentration factor. Moreover, certain structural 

496 properties, such as combined dipolarity/polarizability, also emerged as important features 

497 independently of the predicted physical/chemical/biological properties. In essence, our two-stage 

498 framework is akin to a traditional deep learning model, but providing a supervised intermediate 

499 layer that transforms raw chemical descriptors into readily interpretable 

500 physical/chemical/toxicological properties. However, a limitation of this approach is that the 

501 applicability domain of the overall model is constrained by those of the individual first stage 

502 models.

503 Comparatively, our final models outperformed many alternative models in our sensitivity 

504 analyses, as well as those published previously. Specifically, our in-sample predictions aligned 
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505 more closely with authoritative PODs than the combination of high-throughput in vitro 

506 bioactivity data with toxicokinetic data (Figure S5).26 Moreover, even our accuracy for “out-of-

507 sample” predictions were higher than those based on extrapolation from in vitro-based PODs. 

508 Additionally, as shown in Table 1, our QSAR models had similar or better performance 

509 compared to previous models developed by Wignall et al. (2018) or Pradeep et al. (2020).4,13 

510 Although the final “ALL” model by Pradeep et al. (2020) that uses study type and species as 

511 additional descriptors had an R2 value slightly higher than ours, this model includes subchronic 

512 and subacute studies, and also does not identify a “critical effect” POD. On the other hand, our 

513 “surrogate” PODs can be directly used in deriving toxicity values for application in various risk 

514 and impact assessment and characterization approaches. Nonetheless, despite differences in 

515 target variables making direct comparisons challenging, these studies suggest an upper limit in 

516 the performance of QSAR models trained with in vivo data from ToxValDB.7 Moreover, the 

517 performance achievable through QSAR modeling is constrained by the intrinsic variability in the 

518 derived toxicity values and PODs across different organizations for identical chemicals.4

519 For regulatory use, it is also important to consider our model and framework in light of 

520 internationally recognized evaluation criteria for QSAR models. According to the (Q)SAR 

521 Assessment Framework by OECD,14 a QSAR model under consideration should be associated 

522 with (1) a defined endpoint; (2) an unambiguous algorithm; (3) a defined domain of 

523 applicability; (4) appropriate measures of goodness-of-fit, robustness and predictivity; (5) a 

524 mechanistic interpretation, if possible. Table S2 shows the results of applying the (Q)SAR 

525 Assessment Framework to our modeling framework, demonstrating how our framework 

526 conforms to general principles and criteria for use of QSAR models.14 
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527 Despite its advantages, our framework has several notable limitations. First, it is possible 

528 that the actual generalization errors of our models were larger than those reported (Figure 3B), 

529 particularly for features with a large proportion of missing values. In our framework, missing 

530 values were imputed with the median, a common practice to maintain dataset integrity. However, 

531 this approach can bias predictions towards central estimates, effectively narrowing the observed 

532 variability. This “mean reversion” phenomenon can result in predictions that are less varied and 

533 more centered around the median (Figure S14), which might not always reflect the underlying 

534 distribution. This problem was partially mitigated by excluding features with many missing 

535 values from our modeling pipeline (Figure 1B). Furthermore, based on our in-sample 

536 performance and benchmarking, there may be a small trend towards overpredicting PODs for 

537 higher potency chemicals (Figures 2 and S5). Again, this may be a mean reversion phenomenon 

538 because of random forest is an ensemble-based method that averages over multiple individual 

539 models and chemicals. This trend of a narrower range of predicted PODs was also observed in a 

540 previous QSAR modeling effort.4

541 Additionally, like most QSAR models, our models are only applicable to single organic 

542 compounds of small to medium sizes; mixtures, large biomolecules, polymeric chains, 

543 nanomaterials, and inorganic compounds are outside the applicability domain of OPERA 2.9.9,10 

544 Different types of prediction models will need to be developed for these chemicals.  

545 Additionally, our models were limited by the broad categorization of health effects.8 This 

546 categorization was necessitated by data availability; predicting PODs at a higher resolution, such 

547 as for specific critical effects or organ systems, would have further fragmented an already limited 

548 dataset. Our models also focused on the oral exposure route, and future work is needed to 

549 incorporate additional exposure routes. Additionally, our model uncertainty estimates are based 
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550 on cross-validation generalization error, and future work could more fully characterize model 

551 uncertainty, for instance, at the level of the individual prediction.

552 Overall, this study predicted in vivo noncancer PODs for organic chemicals, with typical 

553 RMSEs of less than an order of magnitude, based on structure alone. Our framework offers a 

554 high-throughput alternative to augment approaches that are based directly on in vivo data. 

555 Moreover, our model also conforms well to OECD guidance for evaluating QSAR models,14 

556 increasing confidence in our model predictions. These predictions can, in turn, be directly used 

557 for a range of hazard, risk, and impact characterization applications, including (but not limited 

558 to) deriving probabilistic toxicity values,39,42 emergency response, contaminated site remediation, 

559 LCIA, CAA, and comparative risk screening. Thus, predictions from our model can substantially 

560 expand the coverage of chemicals that can be evaluated for their human health risks and impacts, 

561 and thereby better promote a safer and more resilient, sustainable, and healthy environment.

562

563 SUPPORTING INFORMATION
564 Supplemental methods including feature preprocessing steps, model training steps 

565 (Figure S1), model performance metrics and evaluation (Figure S2), model descriptions (Table 

566 S1), and uncertainty analysis, as well as supplemental results (Figures S3-S14 and Table S2). A 

567 supplemental Excel file (Tables S3-S4) describes the features used to the train the QSAR models 

568 for predicting points of departure.
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