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Abstract 28 

Chemicals assessment and management frameworks rely on regulatory toxicity values, 29 

which are based on points of departure (POD) identified following rigorous dose-response 30 

assessments. Yet regulatory PODs and toxicity values for inhalation exposure (i.e., reference 31 

concentrations [RfCs]) are available for only 200 chemicals. To address this gap, we applied a 32 

workflow to determine surrogate inhalation route PODs, and corresponding toxicity values, 33 

where regulatory assessments are lacking. We curated and selected inhalation in vivo data 34 

from the U.S. EPA’s ToxValDB and adjusted reported effect values to chronic human 35 

equivalent benchmark concentrations (BMCh) following the WHO/IPCS framework. Using 36 

ToxValDB chemicals with existing PODs associated with regulatory toxicity values, we 37 

found that the 25th percentile of a chemical’s BMCh distribution (POD𝑝25BMCh
) could serve as 38 

a suitable surrogate for these regulatory PODs (Q2≥0.76, RSE≤0.82 log10 units). We applied 39 

this approach to derive POD𝑝25BMCh
 for 2,095 substances with general non-cancer toxicity 40 

effects and 638 substances with reproductive/developmental toxicity effects, yielding a total 41 

coverage of 2,160 substances. From these POD𝑝25BMCh
, we derived probabilistic RfCs and 42 

human population effect concentrations. With this work, we have expanded the number of 43 

chemicals with toxicity values available thereby enabling a much broader coverage for 44 

inhalation risk and impact assessment.  45 
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Synopsis  54 

Regulatory toxicity values for inhalation exposure are available for a limited amount 55 

of chemicals. This study provides surrogate toxicity values for thousands of substances based 56 

on available in vivo data.  57 
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1. Introduction 58 

Chemical assessment and management frameworks, including life cycle impact 59 

assessment (LCIA), and comparative risk screening, evaluate potential risks and toxicological 60 

impacts from chemical exposures using chemical-specific points of departure (PODs).1–4 61 

PODs represent the point on the dose-response curve used for low-dose extrapolation for risk 62 

assessment.5 If the available toxicity data are suitable for dose-response modeling, the 63 

statistically-derived benchmark concentration lower confidence limit (BMCL) is modeled and 64 

considered as a candidate POD for toxicity value derivation; otherwise, the lowest-observed-65 

adverse-effect concentration (LOAEC) or the no-observed-adverse-effect concentration 66 

(NOAEC) are used instead.6,7 In addition, many frameworks require PODs based on 67 

regulatory assessments and thus derived from a comprehensive and systematic dose-response 68 

assessment process of available toxicity studies. These include peer-reviewed human health 69 

toxicity values from, for example, the U.S. EPA’s Provisional Peer Reviewed Toxicity Values 70 

(PPRTV), and the Office of Pesticide Programs. Yet, human health assessment relevant data 71 

sources currently only provide PODs for a small fraction of the tens of thousands of 72 

chemicals used worldwide,8–11 since conducting such assessments is highly data-, time-, and 73 

resource-intensive.12 74 

The World Health Organization’s International Programme on Chemical Safety 75 

(WHO/IPCS) developed a consistent and transparent framework for dose-response 76 

assessment that results in the derivation of reference doses (RfDs) and reference 77 

concentrations (RfCs) from probabilistically modeled PODs, for both health-based risk 78 

assessment as well as comparative risk screening.13–16 For LCIA purposes, this framework 79 

was adopted for deriving human dose-response factors for non-cancer endpoints, using 80 

population effect concentrations with an incidence response level I = 10%.1 Even though it 81 

can be applied to derive both RfDs and RfCs, it has mainly been applied to the evaluation of 82 
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health risks via the oral route of exposure. Specifically, Chiu et al.16 derived probabilistic 83 

RfDs for 608 substances with assessment-relevant data, and only 1 probabilistic RfC was 84 

derived for acrolein.7 Fantke et al.1 derived human population effect doses (I = 10%) for 115 85 

organic chemicals, and Aurisano et al.17 derived probabilistic RfDs and human population 86 

effect doses for 10,145 substances. However, no sets of human population effect 87 

concentrations for inhalation exposure have been derived yet, mainly due to the much lower 88 

data availability of inhalation toxicity studies,12 as well as the low substance coverage across 89 

regulatory sources with RfCs available for 𝑛 < 200 chemicals. 90 

The availability of toxicity values for thousands of chemicals for inhalation exposure 91 

is nevertheless crucial, especially for comparing chemicals across exposure routes,18–20 and 92 

for assessing chemicals in a variety of product applications where inhalation often is the 93 

predominant exposure route.21 To address this need, we can take advantage of the increasing 94 

availability of experimental animal data housed in databases, such as the U.S. EPA’s Toxicity 95 

Value Database (ToxValDB), where in vivo toxicity data covering inhalation exposure are 96 

available for hundreds of chemical substances.22,23  97 

In the present study, we propose to adapt the probabilistic risk assessment workflow 98 

developed for oral exposures by Aurisano et al.17 to the derivation of surrogate inhalation 99 

PODs, probabilistic RfCs, and human population effect concentrations. We focus on the 100 

following four specific objectives: 101 

(i) to compile from ToxValDB a curated dataset of inhalation exposure-response 102 

toxicity data covering multiple non-cancer endpoints,  103 

(ii) to develop an approach to derive surrogate inhalation route PODs based on the 104 

distribution of available in vivo toxicity data in ToxValDB and compare them 105 

with available PODs based on regulatory assessments,  106 
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(iii) to apply (ii) to derive surrogate inhalation PODs (and their uncertainties) for a 107 

wide range of chemicals, separately for general non-cancer effects and 108 

reproductive/developmental effects, and 109 

(iv) to use the surrogate inhalation PODs to determine human population effect 110 

concentrations at 10% incidence response and probabilistic RfCs using the 111 

WHO/IPCS framework and compare the latter against available regulatory 112 

RfCs. 113 

We consider two different health effect categories: reproductive/developmental effects 114 

and non-reproductive/developmental effects (the latter hereafter referred to as “general non-115 

cancer effects”). This choice is dictated by the large difference between these two categories 116 

in levels of severity assigned to the predicted population response levels, i.e., disability-117 

adjusted life year (DALY) estimates associated with different effect types.1,17,24 The provided 118 

set of surrogate inhalation PODs, corresponding RfCs and human population effect 119 

concentrations, are suitable for implementation into LCIA, chemical alternatives assessment, 120 

and high-throughput risk screening for chemical substitution and prioritization.1,25,26 121 

 122 

2. Methods 123 

We propose a workflow that aims to derive surrogate inhalation PODs, building on the 124 

assumption that for substances for which regulatory toxicity values for inhalation exposure 125 

are lacking, probabilistic modeling of available in vivo toxicity data might be used for a 126 

distribution of chemicals to estimate a POD that most closely mimics statistically a POD that 127 

is derived from a regulatory assessment, as done in our previous effort for the oral exposure 128 

route.17 Since in regulatory assessments PODs are usually selected based on a “sensitive” 129 

endpoint, surrogate POD would be expected to be at the lower end of the distribution of 130 

available toxicity values,27 following careful data curation where needed.28 Indeed, for a given 131 
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chemical, multiple studies might be available reporting various effect-level types (e.g., BMC, 132 

NOAEC), observed critical effects (e.g., mortality, developmental), and tested species (e.g., 133 

rabbit, mice), with the consequence of reported effect-level values (i.e., experimental values 134 

of toxicity from individual studies) varying over orders of magnitude.5,16,29 Thus, the 135 

numerous challenges in using experimental animal databases need to be overcome by 136 

applying methods for data selection and harmonization for human toxicity information,30,31 137 

similar to those proposed for physico-chemical properties and freshwater ecotoxity 138 

information.32,33 139 

To compile a harmonized dataset of inhalation exposure-response toxicity data and 140 

derive related surrogate POD values, our proposed workflow is composed of six main stages 141 

(Fig. 1). The first stage is the curation and selection of the relevant experimental animal 142 

toxicity data, and their allocation in one of the two considered health effect categories, i.e., 143 

general non-cancer and reproductive/developmental effects (Fig. 1A). Next, we compiled a 144 

dataset of reported POD values for inhalation from various regulatory assessments (PODreg) 145 

(Fig. 1B). Third, we investigated the correlation between curated and selected inhalation 146 

experimental animal toxicity data and the collected PODreg for an overlapping subset of 147 

chemicals (Fig. 1C). Based on this analysis, we then systematically determined a surrogate 148 

POD for each substance in the two curated datasets (Fig. 1D) and characterized the 149 

uncertainty around the determined value (Fig. 1E). Finally, we derived probabilistic RfCs and 150 

human population effect concentrations (I = 10%) with related uncertainty using the 151 

WHO/IPCS framework (Fig. 1F). The following sections present each of these stages in 152 

further detail. For additional information on the applied WHO/IPCS consensus framework, 153 

see Supporting Information (SI) Text S1 and Fig. S1. 154 
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 155 

Fig. 1. Overview of the proposed workflow: (A) data curation and selection applied to the 156 

collected in vivo data from ToxValDB, (B) collection and extrapolation of regulatory PODs, 157 

(C) analysis of the correlation between ToxValDB and regulatory POD data, (D) systematic 158 

derivation of surrogate inhalation PODs from the curated datasets, differentiating between 159 

general non-cancer (non-reproductive/developmental) and reproductive/developmental 160 

effects, (E) quantification of the substance-specific uncertainty of the derived PODs, and (F) 161 

derivation of probabilistic reference concentrations (RfC) and human population effect 162 

concentrations at 10% incidence level. The workflow is adapted from Aurisano et al.17 163 

 164 

 Description of the in vivo input data set 165 

We used ToxValDB as a source for the experimental animal toxicity data (accessible 166 

at https://comptox.epa.gov/dashboard).34,35 The entire ToxValDB was downloaded for 167 

subsequent filtering and processing. ToxValDB is a database collecting toxicity data from 168 

more than forty publicly available sources,22 including—among others—ToxRefDB,36,37 169 

IRIS, PPRTV, ECHA’s eChem Portal and the EFSA’s Chemical Hazards Database. 170 

 171 
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 Input data curation and selection 172 

ToxValDB is reporting toxicity data from diverse sources. Such data are often of 173 

varying quality, developed for specific applications using different methods, following 174 

different guidelines, and available in formats that are not always easily integrated.32,38,39 For 175 

this reason, the collected toxicity data went through a curation and selection process.14–16 The 176 

curation process had three main objectives. Firstly, it aimed to harmonize the reported 177 

information, ensuring easy data processing for our study. Secondly, it involved filtering out 178 

all records irrelevant to our analysis, specifically focusing on inhalation data. Lastly, it sought 179 

to make the reported toxicity animal data directly comparable across different species and 180 

study types. The reported effect value derived for each record was extrapolated to a chronic 181 

human equivalent benchmark concentration (BMCh) with a consistent unit expressed in 182 

mg/m3. The extrapolations covered LOAEC-to-NOAEC, NOAEC-to-BMC, BMCL-to-BMC, 183 

exposure duration extrapolation, and the application of a dosimetric adjustment factor. For 184 

details on the data curation and selection as well as an overview of the extrapolation factors 185 

applied, see SI Text S2 and Tables S1-S2. After the curation and selection process, the 186 

curated data were split into two distinct datasets covering general non-cancer and 187 

reproductive/developmental effects based on each record study type and reported critical 188 

effects (Fig. 1A). 189 

 190 

 Regulatory data 191 

To build a regulatory dataset for inhalation exposure, we used as a starting point the 192 

work conducted by Wignall et al.,12,40 collecting peer-reviewed toxicity values reported in 193 

various public sources, such as IRIS. In addition, the collected toxicity values were cross-194 

checked with the November 2019 release of the U.S. EPA RSL and incorporated new 195 

substances with available PODs.41 In our study, a PODreg is defined as an inhalation exposure 196 

route NOAEC, LOAEC, or BMCL associated with a reported RfC collected from one of the 197 
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above-mentioned data sources. As done for the in vivo input data set, PODreg  values were 198 

extrapolated to chronic human equivalent benchmark concentrations (PODreg,BMCh
) (Fig. 1B), 199 

see SI Text S2 and Tables S1-S2. 200 

 201 

 Approach for deriving surrogate inhalation PODs 202 

To derive surrogate inhalation PODs, we followed and tested the hypothesis that, for 203 

each chemical, the lower end of the effect values distribution available in ToxValDB is 204 

considered as a suitable proxy for PODreg.27 Thus, for chemicals for which both PODreg,BMCh
 205 

and in vivo data were available, we assumed a lognormal distribution across BMCh  and 206 

separately derived the 5th %-ile, 15th %-ile, 25th %-ile and 35th %-ile of the fitted lognormal 207 

distribution. To test the appropriateness of the selected percentile for inhalation toxicity data, 208 

these different percentiles were compared against the respective available PODreg,BMCh
showing 209 

that the 25th %-ile is the percentile with the lowest bias when regressed against the regulatory 210 

values. Since the intercept was not significantly different from zero, we tested a regression 211 

forcing the intercept to zero, yielding a slope of 0.99 (95th CI, 0.94 – 1.05), not significantly 212 

different from 1 (Table S3). The 25th %-ile of the human benchmark concentrations was 213 

therefore directly selected as the inhalation POD (POD𝑝25BMCh
). This is consistent with our 214 

previous study on oral exposure,17 that also identified the 25th %-ile of the benchmark dose as 215 

the most suitable for estimating a surrogate oral POD. 216 

The two function moments used for fitting the lognormal distribution to BMCh values 217 

are mu (μ) and sigma (σ), where μ represents the log-scale population median, and σ is the 218 

standard deviation of the available effect values for a substance.42 μ was calculated from the 219 

available BMCh for all substances. Whereas, for σ, due to the highly unstable estimates of σ 220 

for chemicals with a limited amount of records available (Fig. S2), an average-shaped 221 

distribution was applied instead of relying on the few available effect values to avoid bias 222 
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introduced by too few data points. Thus, we differentiate between substances with ≥10 223 

records available (data-rich chemicals) and <10 records available (data-poor chemicals), after 224 

extrapolating all data to chronic values. For fitting the lognormal distribution, σ was 225 

calculated from the available BMCh only for data-rich chemicals, whereas for data-poor 226 

chemicals, we applied a fixed standard deviation (σfixed). The σfixed is derived from the 227 

average across σ of data-rich chemicals. This is consistent with our previous study on oral 228 

exposure.17 Where despite observing considerable variability across effect values available for 229 

substances with the same number of records, largely attributed to disparities in underlying 230 

data, our analysis revealed a consistent trend: as the number of records increased, this 231 

variability steadily diminished. We identified 10 records as a reliable and pragmatic cutoff 232 

point. 233 

 234 

 Deriving surrogate inhalation PODs across ToxValDB substances without 235 

regulatory values 236 

After confirming that the 25th %-ile of the fitted lognormal distribution is suitable to 237 

derive surrogate inhalation route PODs, we systematically estimated μ and σ for each 238 

substance from the available records and then derived related POD𝑝25BMCh
 (Fig. 1D). This 239 

was done separately for the two categories of effects. For substances with curated toxicity 240 

records available in both categories, two distinct POD𝑝25BMCh
 values were derived. 241 

 242 

 Quantifying uncertainty around the derived points of departure 243 

We characterized the uncertainty around the derived POD𝑝25BMCh
 from the residual 244 

standard error (RSE) of the comparison carried out between PODreg and POD𝑝25BMCh
 (Fig. 245 

1E). This uncertainty is expressed as the squared geometric standard deviation (GSD𝑝25→reg
2 ). 246 

GSD𝑝25→reg
2  describes the spread of data around their geometric mean, and more specifically 247 



12 

 

indicates that 95% of the data fall within the range of POD𝑝25BMCh
/GSD𝑝25→reg

2  and 248 

POD𝑝25BMCh
× GSD𝑝25→reg

2 .43–46 For example, a GSD𝑝25→reg
2 = 10 indicates that the 95% 249 

confidence interval of POD𝑝25BMCh
 span over two orders of magnitude. 250 

 251 

 Deriving probabilistic reference and human effect concentrations 252 

For each of the derived POD𝑝25BMCh
 we calculated probabilistic RfCs and human 253 

population effect concentrations (at incidence level I = 10%) (Fig. 1F). 254 

We implemented the approximate approach by Chiu et al.16 for the calculation of the 255 

probabilistic RfCs. These were derived from the lower 95% confidence bound of HCM
1%, i.e., 256 

the daily human concentration at which, with 95% confidence, no more than 1% of the 257 

population shows a level of effect M corresponding to the effect level type reported in the 258 

database and the type of endpoint (e.g., continuous, quantal deterministic, or stochastic 259 

deterministic). For each chemical, HCM
1% was calculated from POD𝑝25BMCh

 by dividing it by 260 

an extrapolation factor of 𝑃50 = 9.7 to account for variability in sensitivity between the 261 

median and the 1st %-ile of human population response.14 The lower 95% confidence bound 262 

of HCM
1%  was derived by combining probabilistically GSD𝑝25→reg

2  and the uncertainty 263 

distribution (i.e., 𝑃95 𝑃50 = GSDh
1.65 = 4.3⁄ ) assigned to the human variability at 1st %-ile.14  264 

Note that GSD1.65 = (GSD2)
1.65

2 , indicating a one-sided (i.e., lower) confidence interval range. 265 

We then compared the derived lower 95% confidence bound of HCM
1% against the related 266 

regulatory RfC (if available) to investigate the potential influence of the database uncertainty 267 

factor (𝑈𝐹𝑑). 𝑈𝐹𝑑 is commonly implemented when deriving regulatory RfCs but is not 268 

directly included in the WHO/IPCS framework.16 Nevertheless, in our previous study 269 

focusing on oral exposure,17 an approach was developed for including such uncertainty 270 

factors to account for data gaps as a function of records availability. We implemented and 271 
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tested the same approach in the present study to understand whether the derived toxicity 272 

values are consistent with regulatory RfCs and identify potential biases. 273 

For LCIA purposes, recent updates of the globally recommended approach for 274 

deriving human dose-response factors for non-cancer endpoints proposed using the human 275 

population effect concentration with an incidence response level I = 10%.1 We derived 276 

HCM
10% from the provided POD𝑝25BMCh

, accounting for the human variability between 50% 277 

and 10% incidence level by dividing the POD𝑝25BMCh
 by the best estimate factor of 𝑃50 =278 

3.49.14 HCM
10% related uncertainty was calculated by combining probabilistically GSD𝑝25→reg

2  279 

of POD𝑝25BMCh
 and the uncertainty distribution assigned to the human variability at 10th %-280 

ile, i.e., 𝑃97.5 𝑃50⁄ = 2.67.14 281 

Finally, the derived RfCs and HCM
10%s were compared against the results of our 282 

previous study on oral toxicity to investigate potential trends across exposure routes.17 In 283 

addition, we matched our results with exposure estimates from the Systematic Empirical 284 

Evaluation of Models (SEEM) meta-model.47 In this analysis, we aimed to identify the 285 

fraction of assessed substances with population median chemical intake rates above our 286 

derived probabilistic RfCs to put the obtained results into perspective. Indeed, the identified 287 

substances will deserve further scrutiny, since for these exposure best estimates are higher 288 

than derived probabilistic RfCs, highlighting a high potential risk. For these comparisons, 289 

RfCs and HCM
10% were converted into a consistent unit of mg/kg-d, assuming an average 290 

individual human breathing rate of 13 m3/d and body weight of 70 kg. 291 

 292 

  Data analysis 293 

The gathered toxicity data from ToxValDB were processed using the open source 294 

statistical software R version 3.6.1,48 and the package “ggplot2” was used to generate all 295 
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results figures.49 The R code used in this study for deriving PODs from the provided selected 296 

and harmonized datasets is available in SI Text S3. 297 

 298 

3. Results 299 

 Curated toxicity test datasets 300 

The downloaded version of ToxValDB listed 427,506 records for more than 30,000 301 

chemicals and reported a wide range of toxicity information. The resulting curated dataset 302 

compiled inhalation toxicity information for 2,160 substances covered by 15,219 records. 303 

We split this curated dataset into two distinct datasets covering two health effect categories, 304 

i.e., 2,095 substances (11,767 records) for general non-cancer and 638 substances (3,452 305 

records) for reproductive/developmental effects. Records were available in both datasets for 306 

573 substances. The curated datasets are provided in the SI, separately for general non-cancer 307 

effects (Table S4) and reproductive/developmental effects (Table S5).  308 

Fig. S3 summarizes the statistics of the two curated datasets. Fig. S3A-B presents the 309 

distribution of the extrapolated effects values (BMCh) across all records, differentiating 310 

between underlying effect-level and study types information. NOAEC is the most common 311 

effect-level type in both datasets (~75%), followed by LOAEC (~24%) and BMCL (~1%). 312 

For the study types distribution across records in the general non-cancer effects dataset (Fig. 313 

S3A), 33%, 58%, and 8% of the records were reported as chronic, subchronic, and subacute, 314 

respectively. 315 

Fig. S3C-D gives an overview of the number of curated records available per 316 

substance in the two datasets, highlighting the limited number of records available for most 317 

substances. For example, only one or two records are available for around half of the covered 318 

substances, and for both datasets, only 15% of all substances are considered as data-rich 319 

chemicals. Concerning the tested species, the majority of records report rat followed by 320 
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mouse (Fig. S3E-F). The statistics of the curated datasets are in line with data for oral 321 

exposure,17 and with other studies using the same database to develop QSAR and new 322 

approach methodologies (NAMs) models.5,6 323 

Fig. 2A-B visualizes the extrapolated effect values (BMCh) for all the records in the 324 

two datasets, differentiating between originally reported effect-level types. Across the records 325 

in the general non-cancer effects, BMCh values range from 2.5 × 10−4 to 3.7 × 107 mg/m3 326 

with a median value of 713 mg/m3 (Fig. 2A), while in the reproductive/developmental effects 327 

dataset, they range from 3.5 × 10−3 to 3.4 × 106 mg/m3 with a median value of 7875 mg/m3 328 

(Fig. 2B). The BMCh values across the records available for the same substance can span over 329 

several orders of magnitude. In general, this variability might be related to different factors, 330 

such as different critical effects studied or species tested in various environmental conditions 331 

(i.e., biological variability), as well as systematic errors, including errors in the measurements, 332 

differences in experimental protocols, or measurement tools.5,50,51 In addition, collected 333 

PODreg,BMCh
 are represented as black triangles for the substances for which a regulatory RfC 334 

was available.  335 
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 336 

Fig. 2. Inhalation effect values adjusted to chronic human equivalent benchmark 337 

concentrations (BMCh) for all the records in the general non-cancer effects (A) and 338 

reproductive/developmental effects (B) dataset, together with the corresponding PODreg 339 

(black , when available) and derived PODs (POD𝑝25BMCh
, grey data points). Chemicals are 340 

ranked by derived POD𝑝25BMCh
. 341 

 342 

 Points of departure and comparison with regulatory toxicity values 343 

We derived surrogate inhalation PODs for all the substances for which toxicity 344 

information were available in the curated datasets as the 25th %-ile of the fitted lognormal 345 

distribution to the available records per substance (POD𝑝25BMCh
). To fit the lognormal 346 

distribution for data-rich chemicals (≥10 records), we directly used the available effect values 347 

(BMCh) to derive a chemical-specific standard deviation, assuming that the available records 348 

are sufficient to represent and cover different potential adverse effects. In contrast, we derived 349 

an average standard deviation across data-rich chemicals of  log10𝜎fixed = 0.6 for both 350 
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general non-cancer and reproductive/developmental effects (Fig. S2). We then applied 𝜎fixed 351 

to all data-poor chemicals (<10 records) for calculating POD𝑝25BMCh
. 352 

We systematically derived surrogate POD𝑝25BMCh
 for 2,095 substances for general 353 

non-cancer effects and 638 substances for reproductive/developmental effects, yielding a total 354 

substance coverage of 2,160. For 573 substances, we derived two distinct POD𝑝25BMCh
 as 355 

toxicity values were available for both health effect categories. The derived POD𝑝25BMCh
 are 356 

presented in Fig. 2, ranging from 9.8 × 10−5 to 1.5 × 107 mg/m3 for general non-cancer 357 

effects, with a median POD𝑝25BMCh
 value of 117 mg/m3. For reproductive/developmental 358 

effects, POD𝑝25BMCh
 are on average more than one order of magnitude higher, ranging from 359 

1.9 × 10−3 to 9.4 × 105 mg/m3. Table S6 provides all derived PODs. 360 

Fig. 3 compares the derived POD𝑝25BMCh
 against the respective available PODreg,BMCh

 361 

for both studied effects. The comparison was carried out for a total of 𝑛 = 174 substances 362 

with available regulatory inhalation data, i.e., 𝑛 = 160 substances for general non-cancer 363 

(Fig. S4A) and 𝑛 = 14 for reproductive/developmental effects (Fig. S4B). The estimated 364 

POD𝑝25BMCh
 values correlate well with the derived POD𝑝25BMCh

, with a coefficient of 365 

"goodness of prediction" of Q2 = 1 − 𝑃𝑅𝐸𝑆𝑆/𝑇𝑆𝑆 = 0.76 and a residual standard error on 366 

the log of RSE = 0.82 evaluated on log-scale for the 1:1 line. PRESS is the Predictive Error 367 

Sum of Squares, which is the sum of the squares of the differences (residuals) between the 368 

predicted and regulatory values, and TSS is the Total Sum of Square.52 To evaluate the choice 369 

of selecting the 25th %-ile of the fitted lognormal distribution as a surrogate for regulatory 370 

data, we analyzed the correlation of PODreg,BMCh
 against other three additional percentiles, 371 

i.e., POD𝑝05BMDh
, POD𝑝15BMDh

, POD𝑝35BMDh
 (Fig. S5). This analysis showed that the 25th %-372 

ile is the percentile with the lowest bias when regressed against the regulatory values. Since 373 

the intercept was not significantly different from zero, we tested a regression forcing the 374 

intercept to zero, yielding a slope of 0.99 (95th CI, 0.94 – 1.05), not significantly different 375 
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from 1 (Table S3). This supports our choice of the 25th %-ile, which is consistent with the 376 

best-suited percentile identified for oral exposure.17 The collected PODreg,BMCh
are 377 

summarized in Table S7. 378 

For around 60% (𝑛 = 104) of the substances the derived POD𝑝25BMCh
 values are 379 

slightly higher than the respective available PODreg,BMCh
. This suggests that the provided 380 

POD𝑝25BMCh
 values might be slightly less conservative than regulatory ones based on the 381 

best-fitted %-ile, which is reflected in the uncertainty factor derived from RSE and applied 382 

when deriving probabilistic reference and human effect concentrations. 383 

 384 

Fig. 3. Comparison between estimated POD𝑝25BMCh
 and PODreg,BMCh

 for general non-cancer 385 

() and for reproductive/developmental effects (◼), differentiating between data-rich (light 386 

blue, ≥10 records) and data-poor chemicals (dark blue, <10 records). Coefficient of "goodness 387 

of prediction" (Q2) and residual standard error (RSE) are evaluated on log-scale for the 1:1 388 

line (black dashed line). 389 

 390 
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The uncertainty factor of GSD𝑝25→reg
2 = 102.02x0.82 = 45 is derived from this 391 

comparison with regulatory values, to reflect the use of POD𝑝25BMD as a suitable 392 

approximation of PODreg. The limited amount of chemicals considered in the comparison 393 

against regulatory values for reproductive/developmental effects precluded the 394 

characterization of an effect-specific uncertainty; hence, the same uncertainty as for general 395 

non-cancer effects is used by default. Fig. S6 presents the distributions of the derived 396 

POD𝑝25BMDh
 together with their characterized 95% 𝐶𝐼. 397 

 398 

 Probabilistic reference concentrations and human population effect 399 

concentrations 400 

From the provided POD𝑝25BMCh
, we derived probabilistic RfCs and human population 401 

effect concentrations (HCM
10%), following the WHO/IPCS framework.14 Since WHO/IPCS 402 

focus on endpoint-specific uncertainties and RfCs, an additional database uncertainty factor 403 

(𝑈𝐹𝑑) needed to be included  when deriving probabilistic RfCs that are comparable to and 404 

consistent with regulatory RfCs. 𝑈𝐹𝑑 accounts for data gaps and is typically equal to 1, 3, and 405 

10 as a function of the data coverage for different endpoints.53 Since access to the underlying 406 

data of each chemical is limited in the ToxValDB, chemical-specific data availability was 407 

used as a surrogate to deterministically estimate additional 𝑈𝐹𝑑 following the approach of 408 

Aurisano et al.17: the lower 95% confidence bound of HCM
1% is divided by 𝑈𝐹𝑑 = 10 for 409 

substances with very poor data availability (𝑛 ≤ 3 records), by 𝑈𝐹𝑑 = 3 for substances with 410 

intermediary data availability (3 < 𝑛 < 10 records), and by  𝑈𝐹𝑑 = 1 for data-rich substances 411 

(𝑛 ≥ 10 records). For data-rich chemicals, the probabilistic RfC value is thus equal to the 412 

lower 95% confidence bound of HCM
1%. The derived probabilistic RfCs show a good 413 

correlation with the regulatory RfCs with a Q2 = 0.59 and RSE = 1.11 evaluated on log-scale 414 

for the 1:1 line (Fig. S7B). In the comparison, out of 𝑛 = 174 substances with available 415 
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regulatory inhalation data, 𝑈𝐹𝑑 = 10 was applied to 𝑛 = 42, 𝑈𝐹𝑑 = 3 was applied to 𝑛 = 64, 416 

and 𝑈𝐹𝑑 = 1 was applied to 𝑛 = 68 data records, respectively. In contrast, neglecting 𝑈𝐹𝑑 417 

would lead to a systematic overestimation of the RfCs (Fig. S7A, Q2 = 0.54, RSE = 1.18). 418 

Following the 𝑈𝐹𝑑 complemented approach, probabilistic RfCs for 𝑛 = 2,169 substances 419 

were derived. 420 

We also derived best estimates of HCM
10% = HCM

50%/3.49 = POD𝑝25BMCh
3.49⁄  with 421 

their uncertainties.1 The associated uncertainty characterized by combining probabilistically 422 

GSD𝑝25→reg
2  and the uncertainty distribution assigned to the human variability at 10th %-ile is 423 

equal to GSD
HCM

   10%
2 = 51, indicating that the 95% confidence bound of HCM

10% values on a 424 

log-scale is +/- 1.7 log10 mg/m3 (Fig. S8). Table S6 provides the derived probabilistic RfCs 425 

and HCM
10%s with related uncertainties. 426 

 427 

 Comparison of toxicity value ranges across health effect categories and exposure 428 

routes 429 

Fig. 4 summarizes the derived toxicity values for inhalation and compares their ranges 430 

against results for oral exposure provided by Aurisano et al.17 Fig. 4A-B presents ranges of 431 

inhalation HCM
10% and oral HDM

10%, while Fig. 4C-D presents RfCs and RfDs, separately for 432 

the two health effect categories. For each combination (e.g., inhalation HCM
10% for general 433 

non-cancer effects), regulatory values are presented first (darker color), followed by 434 

probabilistic values for the same chemicals for which regulatory assessments were available, 435 

and finally by the probabilistic values for all covered substances. Regulatory-based HCM
10% 436 

and HDM
10% are also estimated from PODreg following the WHO/IPCS framework. For these 437 

comparisons, RfCs and HCM
10% were converted into a consistent unit of mg/kg-d, assuming 438 

an average individual human breathing rate of 13 m3/d and body weight of 70 kg. 439 



21 

 

Fig. 4 confirms that considering chemicals for which regulatory toxicity values were 440 

available, the ranges of derived probabilistic values are well in line with regulatory values 441 

across different toxicity values, exposure routes, and effects considered. On the other hand, 442 

when considering all chemicals, the median of the probabilistic toxicity values is higher than 443 

the available regulatory values in the majority of the cases. This trend is linked to our 444 

probabilistic results covering thousands of substances while the regulatory values only cover a 445 

few hundred substances, and suggests that regulatory values tend to be selected among the 446 

most toxic substances.  447 

No discernible trends in ranges across different exposure routes were noted. As an 448 

additional step, a more detailed investigation was undertaken to explore potential trends and 449 

correlations at the chemical-specific level for substances with available toxicity data for both 450 

oral and inhalation exposure. However, this analysis further supports that there are no clear 451 

correlations between oral and inhalation toxicity for both general non-cancer and for 452 

reproductive/developmental effects (Fig. S9). These low correlations across diverse exposure 453 

routes could stem from several factors, such as the consideration of data points coming from a 454 

wide range of studies with different settings and examining different critical effects. 455 
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 456 

Fig. 4. Comparison between oral toxicity values covering probabilistic reference doses (RfDs) 457 

and human effect doses (I = 10%, HCM
10%) and the derived probabilistic reference 458 

concentrations (RfCs) and human effect concentrations (I = 10%, HCM
10%) for general non-459 

cancer effects (A and C) and reproductive/developmental effects dataset (B and D).17 Note 460 

that probabilistic RfCs and HCM
10% of this study were converted to doses with a consistent 461 

unit of mg/kg-d, assuming an average individual human breathing rate of 13 m3/d and body 462 

weight of 70 kg. n represents the number of chemicals covered. Reg.: regulatory values; 463 

PODp25 With reg.: probabilistic values for the same chemicals for which regulatory 464 

assessments were available; PODp25 All: probabilistic values for all covered substances. 465 
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 466 

Finally, we compared the derived probabilistic RfCs with population median chemical 467 

intake rates estimated via the SEEM meta-model, available for around half of the considered 468 

substances.47 We identified 33 substances for which exposure best estimates are higher than 469 

derived probabilistic RfCs, highlighting a high potential risk (Fig. 5). These substances 470 

include, for example, insecticides and biocides such as parathion (CAS: 56-38-2) and acrolein 471 

(CAS: 107-02-8) as well as substances with various industrial applications such as 1,6-472 

diisocyanatohexane (CAS: 822-06-0). In contrast to our previous study, where only three 473 

substances were identified as potentially risky via oral exposure, a greater number of 474 

substances were flagged as potentially risky via inhalation exposure in our present study, 475 

despite having five times less data for inhalation.17 When considering the upper 95% 476 

confidence bound of the SEEM estimates (grey error bars in Fig. 5), median intake rates are 477 

100 times higher than doses calculated from probabilistic RfCs for around 5% of the 478 

substances for which SEEM intake rates are available, that is substances that should be 479 

prioritized for further analysis. 480 

 481 
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Fig. 5. Comparison between probabilistic reference concentrations (RfC) and population 482 

median chemical intake rates, differentiating between (A) general non-cancer effects and (B) 483 

reproductive/developmental effects. The upper 95% confidence bound of the SEEM Intake 484 

rates (error bars) reflects uncertainty around the population median intake rate and does not 485 

reflect population variability. Substances are ranked in increasing order based on the 486 

probabilistic RfCs. Probabilistic RfCs were converted into a consistent unit of mg/kg-d, 487 

assuming a breathing rate of 13m3/d and a body weight of 70 kg. 488 

 489 

4. Discussion 490 

 Applicability of the derived toxicity values 491 

This study expanded by a factor 13 the coverage of chemicals for which inhalation 492 

toxicity values can be derived for general non-cancer effects, and by a factor 45 for 493 

reproductive/developmental effects. Combined with our previous effort focused on oral 494 

exposure, the presented approach provides a basis for consistently assessing toxicity effects 495 

across these two exposure routes for thousands of chemicals in various impact assessment and 496 

risk screening contexts. 497 

The provided HCM
10% can be implemented in LCIA to derive human toxicity effect 498 

factors with direct application in USEtox. USEtox is the UNEP/SETAC scientific consensus 499 

model for human toxicity and ecotoxicity characterization in life cycle impact assessment and 500 

other comparative assessments,54,55 and aims to improve the understanding and management 501 

of chemicals by quantifying exposure, risks, and impacts of chemicals in products (e.g., 502 

personal care, toys, building materials) and in the environment.1,56 USEtox applications 503 

include life cycle assessment, chemical footprinting, risk screening, safe and sustainable-by-504 

design (SSbD) and chemical substitution, to inform public and private stakeholders. In the 505 

current version of  USEtox, human toxicity effect factors covering non-cancer toxicity were 506 
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only available for less than 500 chemicals, of which only one-tenth is derived from inhalation 507 

toxicity data. The provided HCM
10%s will increase the chemical coverage for inhalation by a 508 

factor of forty. In addition, by providing HCM
10%s specific to general non-cancer effects and 509 

reproductive/developmental effects, these will be able to reflect the difference in severity 510 

when evaluating DALY related to chemical exposure (i.e., 2.4 DALY/incidence for general 511 

non-cancer effects vs. 44.1 DALY/incidence for reproductive/developmental effects).1,24 512 

The provided probabilistic RfCs find direct application to support high-throughput risk 513 

screening studies, where hundreds (if not thousands) of chemicals are assessed in terms of 514 

multi-pathway exposure and related effects on humans. Thus the availability of toxicity 515 

information is a key factor when, e.g., evaluating exposures and identifying chemicals of 516 

concern and potential alternatives to harmful chemicals present in consumer products.18–20 517 

Finally, by estimating surrogate inhalation PODs and deriving corresponding toxicity 518 

values also for chemicals with a limited amount of toxicity data available, our results support 519 

the work of health assessors at multiple levels, including the cases of chemicals of potential 520 

concern not yet tested or reviewed.12 While our results are primarily applicable at screening 521 

level and cannot substitute the rigorous assessments of chemicals potentially of concern, they 522 

constitute a useful dataset to train in-silico approaches beyond the restricted availability of 523 

regulatory values. 524 

 525 

 Limitations of the proposed workflow 526 

The presented workflow also comes with limitations. First, the provided PODs (and 527 

related toxicity values) are based for 85% of the covered substances on less than ten curated 528 

records. For data-poor chemicals, there is the possibility of missing critical effects not 529 

covered by the considered studies and thus underestimating the toxicity of specific 530 

substances. To address this issue when deriving PODs for these substances, we fitted a 531 

lognormal distribution with a predefined average shape with a fixed standard deviation. 532 
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Nevertheless, fitting a chemical-specific distribution based on a set of experiments to derive 533 

POD𝑝25BMCh
 would still be preferred and more accurate. In our approach, data richness is 534 

nevertheless considered, but in a simplified way when deriving probabilistic RfCs, where 535 

different 𝑈𝐹𝑑 are applied deterministically to the lower 95% confidence bound of HCM
1% 536 

based on the data availability. Alternative ways to derive 𝑈𝐹𝑑 should be explored in the future 537 

to account not only for the number but also the type of data available. 538 

In addition, we acknowledge that ToxValDB is reporting toxicity data from diverse 539 

sources and as a consequence, such data are often of varying quality and relevance. Except for 540 

addressing duration extrapolation (e.g., subchronic to chronic), there is no filtering 541 

implemented or prioritization for records with specific quality or reliability (e.g., coming from 542 

specific data sources). This is an intrinsic limitation of the database (e.g., NOAELs and 543 

NOELs often do not include specific severity/endpoint information), so in our approach, all 544 

records are selected and harmonized (e.g., filtering out all records not covering the inhalation 545 

route) are treated as equally relevant for further processing. While prioritizing records with 546 

higher reliability would lead on the one hand to a higher quality dataset, it would on the other 547 

hand lead to a lower chemical coverage as a trade-off; hence, both aspects generally will have 548 

to be balanced. Additionally, this concern is somewhat ameliorated by the calibration of our 549 

surrogate PODs to authoritative values, so on average we have demonstrated our approach to 550 

be unbiased. 551 

The characterized uncertainty for each POD, expressed as GSD𝑝25→reg
2 , is limited to 552 

the uncertainty around the derived POD and directly reflects the use of POD𝑝25BMCh
 as a 553 

suitable approximation of regulatory values (PODreg,BMCh
). The limited availability of 554 

reproductive/developmental effects data precluded the possibility of deriving an effect-555 

specific GSD𝑝25→reg
2  instead of a generic uncertainty applied to POD𝑝25BMCh

 for both effects. 556 

The same is valid for the uncertainty around the derived reproductive/developmental HCM
10%s 557 



27 

 

as well as the uncertainty used to define the lower 95% confidence bound of HCM
1%. 558 

Compared to the uncertainties for surrogate PODs derived in our previous study,17 559 

GSD𝑝25→reg
2  is higher for inhalation by a factor 3 and up to a factor 6. 560 

Finally, we acknowledge that in our workflow, there is an intrinsic limitation related 561 

to predicting a toxicity value from in vivo data. More specifically, even if starting from the 562 

same underlying toxicity dataset, risk estimates can vary across regulatory settings despite the 563 

rigorous scientific judgment involved.12,59 564 

 565 

 Future research needs 566 

Future research should focus on further increasing the exposure route coverage. Even 567 

though the toxicity data availability and related chemical coverage will be lower for other 568 

exposure routes, such as dermal, route-specific toxicity data are key for assessing chemicals 569 

in specific product applications.  570 

Similarly, in our work, we differentiated between reproductive/developmental effects 571 

and general non-cancer effects due to the difference in both the exposure windows involved 572 

and the severity of these two disease categories to affect human lifetime loss.1,24 Another 573 

reason for considering only these two effect categories in this study is that for the majority of 574 

the globally marketed chemicals, only very few toxicity data points are available—hence, 575 

expanding the scope to include more effect categories would have inevitably resulted in a 576 

reduction in the number of chemicals covered within each category. This would have reduced 577 

precision into the overall comparison by skewing the representation of chemicals across 578 

different categories of effects. Future work should further increase this differentiation and 579 

provide more critical effect-specific PODs (and related HCM
10% and probabilistic RfCs). 580 

Highly relevant critical effects include, for example, endocrine disruption.60 581 

Finally, given the large number of new and existing substances requiring assessment 582 

and management, there is a pressing need for cost-effective and rapid non-animal 583 
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alternatives.61 In answer to this, the curated dataset compiling inhalation toxicity information 584 

provided in this study can be used in future research for training in silico, machine learning-585 

based methods (e.g., random forest algorithms) to construct QSAR models for predicting 586 

PODs for substances lacking in vivo data.12,62 This would cover an even broader range of 587 

chemical substances. 588 
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