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Abstract. This paper addresses the challenge of incorporating electricity prices into wind
turbine design methods and shows how price volatility drives wind turbines towards larger
rotors and lower specific power. Since wind speed and electricity prices fluctuate, current
efforts to estimate a wind turbine’s revenue are based on time-series approaches. However,
this paper presents a new way of accounting for price volatility based on wind distributions,
which is computationally cheap and easily integrates with current wind turbine and farm design
methods and tools. The new method demonstrates that a traditional wind turbine can lose more
than 15% of its revenue in open energy markets like Denmark due to price volatility. Designing
turbines with lower specific power can substantially increase revenue by producing more energy
at low wind speeds with higher energy demand and electricity prices.

1. Introduction
As we introduce more wind energy to open-market grids, the electricity prices tend to decline
by the ”merit-order effect” and correlate negatively with production [1, 2]. Therefore, while a
wind farm owner will have high electricity production on windy days, the production revenue
can be practically zero. Loth et al. [3] projects that the revenue for open-market grids with
high wind energy penetration can be halved due to this price volatility.

Traditional wind turbines (WTs) reach their rated power at around 12 m/s and cut out at
25 m/s, i.e. they produce the most energy during high wind speeds. This leads to an imbalance
between power production and consumption in regions with considerable wind and solar energy
and can result in low or even negative electricity prices in periods with high wind speeds. On this
background, the LowWind turbine concept [4] was proposed with the objective of making a major
contribution to the system integration on the production side, where traditionally, the integration
has only been on the consumption side, like battery storage and adaptive consumption. Low-
wind WTs [4] have larger rotors and lower Specific Power (SP), making them more expensive.
However, they produce more power during low-wind periods when electricity is expensive.

Swisher et al. [5] investigate the price point at which the LowWind WT concept, with an SP
of only 100 W/m2, becomes competitive in the energy system of Northern and Central Europe.
They simulate the energy system (electricity, heat, and transport) until 2050 using the dynamic
Balmorel model [6], giving it the objective of minimising the total system cost. Results show that
the SP100 WT becomes disruptive if the cost is not more than 39% higher than a conventional
WT. While the SP100 WT will find a lot of investments in low-wind regions, high-wind regions
with transmission constraints, like Denmark, also see considerable investments.
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Current WTs and WFs (wind farms) are designed to maximise the Annual Energy Production
(AEP ), a simple design metric to calculate and use. On the other hand, optimising for revenue
requires dynamic information on the hourly energy price and production of the future electricity
market, making it an impractical metric for WT and WF design. This paper defines a new
design metric called the Annual Energy Value (AEV ) that accounts for the negative production-
price correlation. AEV is based on wind distributions instead of time-series and is therefore
computationally cheap, can be implemented in current design methods, and can be used as a
new ”objective function” when optimising WTs and WFs. AEV can, therefore, be used to
design a new generation of LWTs that better integrate with market demands.

1.1. Research questions
This paper investigates how we can design WTs that better align with the fluctuating energy
demand. We first derive a mathematical model of calculating the WT revenue based on wind
distributions instead of time-series. The mathematical model leads to the new AEV metric that
can be seen as a price volatility correction to the well-known AEP metric. Next, we present an
example of the new price curve for a site in Denmark. Finally, a parametric study is conducted
of how the SP of a WT impacts the revenue when the electricity price is fixed and fluctuating.
The paper tries to answer the following central questions:

(i) Can we calculate the annual revenue of a WT statistically instead of using time-series?

(ii) Does price volatility change the boundary conditions for WT design?

(iii) How does changing the SP of a WT affect its revenue?

2. A New Design Paradigm
Current objective functions for WT and WF design aim to minimise the cost of the energy
produced. However, this design philosophy assumes that the value of energy is constant. In
open energy markets with high shares of wind energy, wind power does not perfectly align with
market demands and the energy price is reduced. Production needs to better align with the
fluctuating energy demand to get higher prices and make future wind energy systems profitable.
We, therefore, want a new objective function that includes the volatility of the electricity prices.
This section derives such a metric that we call the Annual Energy Value (AEV).

2.1. A stationary revenue model
The revenue of a WT depends on the price of electricity and power production, which depends on
wind speed. Since spot prices change each hour and there are distinct yearly weather patterns,
we use these time scales to calculate the Annual Energy Revenue (AER). We can calculate AER
using time-series [3] or with a statistical approach [7]:

AER = 8766E(r)

=

8766∑
i=1

vi p(ui)

= 8766

∫ ∞

0

∫ ∞

−∞
v p(u) f(v, u) dv du

(1)

E denotes the expected value, r is the mean hourly revenue, ui and vi are the mean wind speed
and spot price values at a particular hour, p(u) = E(p|u) is the power curve, and the 8766 factor
is the number of hours per year. Since the joint probability density function, f(v, u), is hard
to model, the current efforts use time-series of electricity prices and wind speed (Figure 1 left)
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Figure 1: The same data from Østerild for 2023 is presented as time-series and statistically.
Left: The hourly electricity price (blue) and wind speed (green). Right: The price curve (blue)
and the wind climate (green). The annual mean price is shown in red.

to calculate the revenue. However, even though it is possible to dynamically simulate the spot
price and wind speed at a wind farm location, these models are computationally expensive and
have coarse spatial resolution.

To predict the revenue of each individual WT for layout optimisation or WT design, we want
a stationary modelling approach that can quickly update the revenue estimation for each design
iteration. We can do this by introducing the spot price’s dependency on the wind speed:

E(r) =

∫ ∞

0

∫ ∞

−∞
v p(u) f(v, u) dv du

=

∫ ∞

0

∫ ∞

−∞
v p(u) f(v|u) f(u) dv du

=

∫ ∞

0

(∫ ∞

−∞
v f(v|u) dv

)
p(u) f(u) du

=

∫ ∞

0
E(v|u) p(u) f(u) du

=

∫ ∞

0
v(u) p(u) f(u) du

(2)

f(u) is the marginal probability density function of wind speed, often referred to as the wind
climate, and v(u) = E(v|u) is a ”price curve” that expresses how the mean spot price depends on
the site-specific wind speed. For a given wind climate and price curve, we can revenue-optimise
the WT as the wind climate and price curve are independent of the WT power curve. The price
curve and wind climate can be described with only a few parameters instead of 8766 time-steps
(Figure 1 right). Suppose we know the wind climate and price curve at one position in the
wind farm (e.g. from measurements during the wind farm prospecting), then we can quickly
extrapolate them to all WT positions using well-known stationary methods like the Wind Atlas
methodology [7].

2.2. The Annual Energy Value
The IEC 61400-12-1 standard [8] evaluates the performance of wind turbines using the Annual
Energy production (AEP). Therefore, most WF assessments and WT design tools calculate
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the AEP without considering the hourly price volatility. To make it straightforward to include
price volatility, we define a new metric called the Annual Energy Value (AEV) that can directly
replace AEP. AEV has the same units (Wh) as AEP but includes the energy devaluation when
production and market demand misalign. Like Loth et al. [3], we use the average annual price
(v) to define the hourly normalised price (ṽ = v/v). If we combine this with Equation (2), we
can write the AER as a function of the non-dimensional price:

AER = 8766

∫ ∞

0
v(u) p(u) f(u) du

= v

(
8766

∫ ∞

0
ṽ(u) p(u) f(u) du

)
= v AEV = v (ϕV AEP )

(3)

where ϕV = AEV /AEP is a price volatility correction factor that is the ratio of actual revenue
to expected revenue when discounting price volatility. For markets with fixed electricity prices,
AEV equals AEP and ϕV = 1. As demonstrated in the Results section, the volatility loss can
be more than 15% in markets with fluctuating prices, so it is important to consider this during
WF development and WT design.

3. Method
Traditional AEP-optimisation of WT designs requires models of the power curve, p(u), and
the wind climate, f(u). We need to add the price curve model, ṽ(u), to demonstrate how the
inclusion of price volatility affects WT design. The models used in this paper are shown in
Figure 2 and further described in the following section.

3.1. Wind climate f(u) and price curve ṽ(u)
Figure 1 left shows the time-series of the hourly wind speed and the normalised electricity for
2023. The wind speed is taken at a height of 106 meters from a met mast at Test Centre
Østerild, located on the west coast of Northern Jutland, and the spot price is taken from the
same price area (west Denmark). Figure 2 uses the same data set but presents the wind speed
as a probability density function (left) and the spot price as a price curve (middle); the error
bars represent the standard error of the mean.

Figure 2: The three model types needed to calculate the Annual Energy Revenue (AER). Left:
f(u) - The wind climate (PDF). Middle: ṽ(u) - The price curves for Østerild/Denmark (”Actual
price”) and a fixed price market (”Fixed price”). Right: p(u) - The WT power curve models.
SP indicates the specific power (the ratio of the rated power to the swept area).
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As seen in the middle of Figure 2 (”Actual price”), there is a clear trend of decreasing
electricity prices at increasing wind speeds. The supply of wind-produced electricity is low at
low wind speeds, and electricity prices increase. In contrast, the energy supply increases at
higher speeds and prices decrease. At wind speeds above 24m/s, many wind farms reach their
cut-out wind speed, reflected in increasing electricity prices.

Traditionally, the wind climate is represented in compact form by the Weibull distribution:

f(u) =
k

A

( u

A

)k−1
exp

(
−
( u

A

)k
)

where A and k are the all-sector Weibull scale and shape parameters. Similarly, the price curve
can be represented as a simple linear function of u:

ṽ(u) = αu+ β

where α and β are also site-specific constants. In this work, however, we do not use the compact
forms but apply the wind speed binned values (Figure 2) directly. As Denmark has a high share
of wind energy, the price curve (”Actual price”) represents a market with high price volatility.
To study how price volatility influences wind turbine design across markets, we will also consider
a market with fixed pricing, ṽ(u) = 1 (”Fixed price” on Figure 2). Comparing these two price
curves can indicate how wind turbine design will develop for markets approaching Denmark’s
wind energy penetration. The wind climate is fixed for all result comparisons presented in the
paper.

3.2. Power curve models p(u)
We want to evaluate the effects of changing the WT’s specific power (SP)– the ratio of the
rated power to the swept area. The WT is modelled using a simple parametric power curve.
The power in the full load region is equal to the rated power (10 MW), while we use the power
equation in the partial load region, assuming the optimal Power Coefficient (Cp=0.49):

p(u) =
1

2
ρu3Cpπ(D/2)2

D is the rotor diameter, and the air density is ρ = 1.225 kg/m3. We ignore wake effects since
this work only analyses a single WT. The IEA 10-MW off-shore WT [9] is used as reference WT.
It has cut-in and cut-out wind speeds of uin = 4m/s and uout = 25m/s and a rotor diameter
of D = 198m, giving it a SP = 325W/m2 (SP325). In addition to the reference SP325 WT,
we define two LWT with rotor diameters of D = 230m (SP241) and D = 290m (SP151), with
cut-in and cut-out wind speed of uin = 3m/s and uout = 20m/s (see Figure 2 right).

4. Results
4.1. The energy value density
Evaluating the revenue and production generation potential at varying wind speed ranges is
important for designing WTs, as we can shift the production to lower or higher wind speeds by
lowering or increasing the WTs’ SP. We can assess the average value of diverse wind speeds by
defining the average energy value density

(
Wm−2

)
as follows:

EV (u) =
1

2
ρ u3 ṽ(u) f(u)

where f(u) is the wind climate, and ṽ(u) is the price curve at the specific location. A graph of
this function shows which wind speeds are essential for energy revenue generation. Figure 3 left
shows the energy density value for Østerild with and without the inclusion of price volatility.
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Figure 3: This figure shows the energy value density in order to evaluate the revenue generation
potential at varying wind speeds. Left: Comparison of the energy density value with and without
price volatility. Right: Comparison of the cumulative energy density value with and without
price volatility.

When price volatility is included (”Actual price”), the energy value at higher wind speeds is
reduced and even negative. The revenue of the produced electricity is markedly reduced at
wind speeds higher than 10 m/s. Therefore, the effect of price volatility on the AER is similar
to reducing the mean wind speed of the wind climate. LWTs may, therefore, be preferred in
volatile markets despite good wind conditions.

4.2. The cumulative energy value density
To further illustrate how the main part of the AER is shifted to lower wind speeds in markets
with price volatility, we define the cumulative energy value density:

CEV (u) =

∫ u
0 EV (u)∫∞
0 Ev(u)

The cumulative energy value density of Østerild is shown in Figure 3 right. The figure shows
that 90% of the potential revenue is generated at wind speeds of 17 m/s and below (”Actual
price”), despite only 80% of the energy can potentially be produced in this wind speed range
(”Fixed price”). 20 m/s is a point of diminishing returns; almost no revenue can be created
at higher wind speeds. Only 3% of the potential AER comes from the 20-25 m/s wind speed
range, while 9% of the potential AEP can be found here. These numbers illustrate why WTs
that operate in volatile markets should be designed for lower SP than traditional WT.

4.3. Price volatility loss
Now, we will look at how the SP325 reference WT performs in the fixed pricing market compared
to the volatile one (Figure 2 middle). It is worth remembering that the power curve, wind
climate, and mean electricity price are identical in this example; only the price volatility is
changed.

Table 1 shows the AEP and AEV for the reference WT (SP325) in the two electricity markets.
It is seen that the revenue in the market with price volatility is only 84.5% (AEV/AEP ) of
a market with fixed prices. In other words, there is no demand for 15.5% of the electricity
produced, which might as well be curtailed. WF developers that aim to maximise AEP (or
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Table 1: The AEP and AEV for the SP325 WT in a volatile and fixed-price market

Fixed price Volatile price
AEP [GWh] 41.6 41.6
AEV [GWh] 41.6 35.2
AEV/AEP [%] 100 84.6

Table 2: The AEP and AEV for the SP325, SP241, and SP151 WT in a volatile price market.

SP325 SP241 SP151
Diameter [m] 198 230 290
AEP [GWh] 41.6 47.7 56.5
AEV [GWh] 35.2 42.2 51.9
AEV/AEP [%] 84.6 88.5 91.9

minimise the LCOE) are unaware of this volatility loss; only by calculating AEV can we see this
loss.

4.4. Marked-aligned wind turbines
In Table 2, we compare the performance of WT SP325, SP241, and SP151 in the volatile price
market. The wind climate and price curve are kept fixed; only the power curve is changed. As
expected, the revenue (AEV) increases with lower SP-values. WT SP241 and SP151 have 19.8%
and 47.4% higher AEV than SP325, respectively. The LWTs not only produce more electricity
(higher capacity factor), but a larger fraction of the electricity is in demand (AEV/AEP ). Only
8.1% of the energy produced by SP151 is not in demand and therefore curtailed.

Swisher et al. [5] showed that the LowWind SP100WT would be disruptive in many European
high-wind speed regions towards 2050 if the WT cost is not more than 39% higher than a
conventional WT. The results presented here show that an SP151 WT is already competitive in
Denmark if its cost is not more than 47.4% higher than a conventional WT.

5. Conclusions
This work explored the concept of incorporating electricity prices into wind turbine design. A
new design metric, Annual Energy Value, was proposed to address the issue of price volatility
and energy supply/demand mismatch in open energy markets. The paper also delved into the
potential changes in wind turbine design under fluctuating electricity prices and examined how
the specific power of a wind turbine influences its revenue. Based on these investigations, we
can draw the following conclusions:

(i) The proposed AEV metric provides a feasible method for calculating the annual revenue
of a wind turbine in dynamic pricing scenarios. It successfully accounts for price volatility
using a new ”price curve” that integrates with the traditional AEP calculation. The price
curve is the only new ”ingredient” compared to AEP calculations, and it can be determined
by simply logging the electricity price during the wind measurement campaign. Keeping to
the traditional wind distribution approach rather than time series offers a computationally
efficient method of optimising wind turbines and farms that integrates with existing design
methods and tools. As such, the AEV can be a one-to-one replacement for the IEC standard
AEP performance metric.

(ii) Electricity price volatility significantly alters the boundary conditions for wind turbine
design. In markets with high price volatility, there is a clear shift towards valuing energy
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produced at lower wind speeds more highly. This underscores the importance of re-
evaluating traditional wind turbine designs, prioritising high-wind speed energy production.
Especially in open markets like Denmark, which has high wind energy penetration, it is
important to reconsider the design objectives; in the example presented, the traditional
wind turbine (SP325) lost 15.5% of its revenue due to price volatility.

(iii) Changing a wind turbine’s specific power significantly impacts its revenue in price-volatile
markets. Lower specific power generates higher revenues in these markets, implying that
larger rotor designs are more profitable despite increased costs. The increased revenue is
caused by more low-wind speed energy production that better aligns with the fluctuating
energy demand, leading to higher electricity prices.
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