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ABSTRACT 

Spatially resolved technology is widely recognized as a cutting-edge technology in life 

sciences. It is increasingly utilized in various areas such as organ development, 

organism growth, tumor heterogeneity and evolution, as well as clinical translational 

research. Higher spatial resolution typically implies smaller molecular quantities, 

whereas observing whole tissues requires a larger field-of-view. The substantial 

progress in fundamental and translational research come with potential requirements in 

terms of higher resolution (i.e., at single-cell level) and larger field-of-view, as well as 

the urgent need for tools to analyze the raw data. To address the data analysis challenges 

posed by large field-of-view and high resolution spatially resolved technology, this 

doctoral project is based on Stereo-seq, and aims to provide analysis methods and tools 

for obtaining high-quality spatial single-cell data, thereby facilitating the application of 

spatially resolved technology.  

 

In the first study, we developed a framework called StereoCell for high-resolution and 

large field-of-view spatial transcriptomic data analysis. StereoCell provided a 

comprehensive and systematic platform for generating high-confidence single-cell 

spatial data, including image stitching, registration, nuclei segmentation, and molecule 

labeling. By utilizing better-performing algorithms during image stitching and molecule 

labeling, StereoCell reduced stitching error and time, and improved the signal-to-noise 

ratio of single-cell gene expression data compared to existing methods. These 

improvements were validated in mouse brain tissue and results confirmed that 

StereoCell produced highly accurate spatial single-cell gene expression profiles, thus 

facilitating clustering and cellular annotation within the biological tissue. 

 

With recent advancements in Stereo-seq technology, it is now possible to acquire cell 

boundary information, such as cell membrane/wall staining images. In the second study, 
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we took advantage of this progress, and updated StereoCell to a new version, STCellbin, 

which used nuclei staining images as a bridge to procure cell membrane/wall staining 

images that align with spatial gene expression map. By employing a sophisticated cell 

segmentation technique, we obtained precise cell boundaries, thereby yielding more 

reliable profiles of single-cell spatial gene expression. STCellbin was utilized in mouse 

liver (cell membranes) and Arabidopsis seed (cell walls) datasets. This enhanced 

capability offered valuable insights into the spatial organization of gene expression 

within cells, contributing to a deeper understanding of tissue biology. 

 

In the third study, we proposed an efficient and adaptive Gaussian smoothing (EAGS) 

imputation method for high-resolved spatial transcriptomics. The adaptive two-factor 

smoothing of EAGS created patterns based on the spatial expression information within 

single cells, as well as adaptive weights for the smoothing of cells in the same pattern, 

and then utilized the weights to restore the gene expression profiles. The performance 

efficiency of EAGS were assessed by using simulated and high-resolved spatial 

transcriptomic datasets of the mouse brain and olfactory bulb. Compared with other 

competitive methods, EAGS showed higher clustering accuracy, better biological 

interpretations, and significantly reduced resource consumption from computational 

processes.  
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1 Introduction 

1.1 Single-cell RNA sequencing and spatially resolved transcriptomics 

Gene expression is a dynamic process with extensive spatiotemporal heterogeneity 

within tissues. At present there exists different transcriptomic technologies, including 

bulk RNA sequencing (RNA-seq)1, Single-cell RNA sequencing (scRNA-seq)2, and 

spatially resolved transcriptomics3,4 that enable investigations of gene expression in 

cells and tissues. Traditional bulk RNA-seq captures the transcriptome in a large 

number of mixed cells, but it can only deliver the average expression level of genes 

within the sample, and ignores the heterogeneity of gene expression among different 

cells within a given cell population and between different cell types1. scRNA-seq 

advances our understanding of cellular gene expression to the single-cell level. It 

provides independent RNA expression profiles for each cell, enabling identification of 

gene expression differences between cells and the identification of rare cells within 

heterogeneous cell populations5. Although scRNA-seq greatly expands our knowledge 

of cellular heterogeneity, performing single-cell sequencing requires the dissociation of 

cells from tissues, leading to the loss of spatial information3,6. However, the spatial 

location of cells implies possible interactions between cells, and such interaction may 

be directly related to physiological and pathological functions of tissues. Therefore, it 

is necessary to link gene expression with spatial information to enhance our 

understanding of tissue function in health and disease7. Driven by this demand, Joakim 

Lundeberg's research group first proposed the concept of spatial transcriptomics in 2016 

and published the first spatial transcriptomics technique based on in situ capturing of 

mRNAs8. Since then, a series of high-throughput in situ RNA detection techniques have 

been categorized as spatially resolved transcriptomics (SRT). Although these 

techniques have different principles, they all share a common feature, which is the 

recording of the spatial location information of detected molecules9. SRT can 

simultaneously obtain spatial information and gene expression data of cells, but 
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currently, there are only few techniques achieve single-cell resolution. Some techniques 

achieve high resolution, but the methods for obtaining data are complex, and the data 

quality is difficult to compare with mature single-cell RNA sequencing, which greatly 

limits its effectiveness. Just like single-cell sequencing has revolutionized various fields 

of biology, spatial resolved technology is widely recognized as a new frontier in the life 

sciences, and with the explosive innovation and growth of the technology, SRT is poised 

to usher in a new era of biological research and facilitate a more comprehensive 

understanding of the intricacies of living systems10. 

 

1.2 Categories of spatially resolved transcriptomics technologies 

Investigations of tissues using two-dimensional (2D) or three-dimensional (3D) 

structural information are referred to as ‘spatial biology’, which has become the latest 

frontier of molecular biology7. Considering its immense importance and popularity, and 

potential to provide insights into currently unresolved research questions, spatially 

resolved transcriptomics (SRT) technology has been recognized as the method of the 

year in 2020 by Nature Methods3. It is worth noting that SRT methods generate data 

that allow us to identify specific functional regions within the whole genome range by 

deciphering the diversity of gene expression11 and address cell type heterogeneity and 

intercellular communication through the analysis of intrinsic gene expression features 

and their physical proximity12,13. The powerful capabilities of SRT technology in 

decoding tissue complexity have helped us create maps of key biological processes, 

such as tissue and even organ development14,15, as well as pathological mechanisms 

underlying several human diseases16,17. From the method of tissue molecular detection 

through in situ hybridization first reported in 196918 to the recent emergence of various 

SRT technologies based on next-generation sequencing (NGS) 8,19–23, SRT technology 

has undergone revolutionary developments due to advancements in sequencing 

technology and single-cell "omics". In terms of the way spatial information is obtained, 

current SRT technologies can be roughly categorized into four types: region of interest 
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(ROI) selection24, in situ hybridization (ISH)18, in situ sequencing (ISS)25, and in situ 

spatial barcoding8. The developers of these technologies typically aim to achieve a 

combination of transcriptome-wide analysis, single-cell resolution, and high gene 

detection efficiency (Figure 1). Despite the growing feasibility of this endeavor, the 

characteristic of current-era technologies is to balance between these goals.  

 

 
Figure 1: Timeline of the major SRT technologies. The approaches are categorized and distinguished 

by different colors (red, ROI selection method; green, in situ hybridization method; blue, in situ 

sequencing method; purple, in situ spatial barcoding method). The x-axes represent the timeline, and the 

y-axes are divided into two parts: the upper part represents the number of transcripts detected, while the 

bottom part represents the spatial resolution (in m) in each of the technologies. The size of purple circles 

roughly indicates the field-of-view for these methods. Information about the listed methods are provided 

as follows: ISH18, FISH26, smFISH27, ISS25, FISSEQ28, seqFISH29, MERFISH30, STARmap31, 
BaristaSeq32, osmFISH33, seqFISH+34, HybISS35, EASI FISH36, EEL FISH37, STARmap PLUS38, 
LCM39, TIVA40, Tomo-seq41, ST8, Geo-seq19, Slide-seq20, HDST42, GeoMX DSP43, Visium44, DBiT-

seq21, Slide-seqV245, XYZeq46, Seq-Scope22, Stereo-seq47, Pixel-seq23. 

 

1.2.1 ROI selection 

Spatial localization could be obtained by selecting and isolating regions of interest (ROI) 

with known positions and shapes through physical and optical marking of ROIs. The 

separated ROIs can then be analyzed using complementary DNA (cDNA) microarrays 

or RNA-seq, or dissociated into single cell suspension for scRNA-seq. Laser capture 
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microdissection (LCM)39 enables precise cutting and capturing of ROIs in tissue 

sections for various omics analyses, including RNA-seq, DNA-seq, epigenetic analysis, 

of which RNA-seq could obtain gene expression profiles with spatial information, even 

at the single-cell level. In Tomo-Seq41, frozen tissues are sequentially sectioned and 

RNA-seq is performed for each section, resulting in a gene expression atlas coupled 

with spatial information. Geo-seq19 involves cutting the tissue into small blocks, 

followed by RNA-seq of each block, to reconstruct a three-dimensional gene expression 

atlas using the positional information of the small tissue blocks. STRP-seq is an 

innovative physical microdissection method that slices adjacent tissue sections into thin 

strips at different angles and reconstructs the gene expression map in 3D using 

Tomographer48. In contrast, recent studies have utilized light to label ROIs instead of 

physical dissection. Transcriptome in vivo analysis tag (TIVA-tag) 40and photo-isolation 

chemistry (PIC)49 employ photosensitive groups to trigger reverse transcription (RT) in 

vivo or in fixed samples. Nanostring GeoMx43 uses photocleavable groups similar to 

TIVA to release fluorescent combinatorial tags bound to detection probes (antibodies or 

hybridization probes), which are then quantified using Nanostring's nCounter 

technology. Due to the use of a predefined gene panel instead of poly-A capture, 

Nanostring provides cancer transcriptome atlas (CTA) gene panels with over 1,800 

genes as well as human and mouse whole transcriptome panels with over 18,000 genes. 

Light can also trigger the attachment of DNA barcodes or barcode combinations, with 

Light-seq50 and ZipSeq51 using light labeling to assign region IDs through crosslinking 

or hybridization, followed by barcode reassignment of reads to these regions. All ROI 

selection techniques have their own advantages and limitations: they offer deep 

profiling approaching bulk sequencing levels, enable whole transcriptome detection, 

and allow for customization of ROIs from single cells to entire areas. However, their 

throughput is relatively low (typically less than a few hundred locations) as each 

selected region must be individually collected and processed.  
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1.2.2 In situ hybridization 

The method based on in situ hybridization is a descendant of the single molecule FISH 

(smFISH)27, which is a technique that decomposes individual mRNA molecules in 

tissues into sub-diffraction fluorescence spots. smFISH is often regarded as the "gold 

standard" in RNA quantification methods because it can detect low abundance 

transcripts with one copy per cell, thus spatial analysis techniques derived from it often 

have excellent sensitivity9. In sequential FISH (seqFISH)29, fluorescently labeled FISH 

probes hybridize directly to cellular mRNA and after each cycle, mRNA is removed by 

deoxyribonucleic acid (DNase) digestion, keeping the mRNA in place. In another 

typical technique, Multiplexed Error-Robust FISH (MERFISH)30, the probes include 

mRNA binding regions and a series of "reporter" regions corresponding to barcode 

elements, which are detected through secondary hybridization rounds. This effectively 

makes detection independent of the original RNA molecules, making the scheme more 

resistant to ribonuclease (RNase) contamination, and due to the removal of only the 

fluorophores but not the probes, the multiple rounds of hybridization in MERFISH take 

less time than in seqFISH, making it possible to image hundreds to thousands of targets. 

Another version of seqFISH29, seqFISH+34, follows the same method. Another element 

introduced by MERFISH and adopted in seqFISH+ is the encoding strategy in 

information theory to make the combinatorial barcode "error-robust", this mitigates the 

effects of hybridization failure or non-specific binding, which can be quite significant 

due to the periodicity of imaging. In recent years, both MERFISH and seqFISH+ have 

been extended to the whole transcriptome level, suitable for simultaneous detection of 

mRNA and proteins through oligo-conjugated antibodies, and enhanced by adding 

signal amplification strategies and tissue embedding and clearing.  

Although seqFISH and MERFISH are currently the two main hybrid-based spatial 

transcriptomics methods available, there are also some other technologies that possess 

distinctive components. Ouroboros smFISH (osmFISH)33 is a periodic smFISH method 

that lacks a barcode scheme and multiplexing capability (only detects a few transcripts 
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per cycle) to obtain a simpler protocol unaffected by transcript abundance or density33. 

Saber-FISH52 and Clamp-FISH53, based on different signal amplification methods, offer 

significantly improved signal-to-noise ratios compared to the "first-generation" 

protocols, but have not been shown to detect more than 100 transcripts. SCRINSHOT54  

is a similar method specifically designed to detect approximately 30 transcripts in 

formalin-fixed paraffin-embedded (FFPE) tissues. A recent approach called enhanced 

electronic FISH (EEL-FISH)37 uses electrophoresis to drive cell mRNA onto the surface 

of a conductive glass slide. The tissue is then removed and mRNA is detected using 

multiplexed FISH. Tissue removal leads to a significant increase in signal-to-noise ratio 

and higher speed. Another method, Expansion-Assisted Iterative Fluorescence In Situ 

Hybridization (EASI FISH)36, aims to address the fact that seqFISH and MERFISH 

only allow analysis of limited tissue sizes, while being time-consuming and labor-

intensive. Lastly, commercial options for some of these techniques are becoming 

feasible. Many of these solutions offer analysis of thousands of genes and the option to 

simultaneously analyze dozens of proteins. Most other smFISH-based techniques, such 

as hybridization-based ISS (HybISS)35 and split-FISH55, use barcoding similar to 

seqFISH or MERFISH. smFISH faces many challenges, which have been addressed 

through various methods. Rolling Circle Amplification (RCA), branched DNA56, 

hybridization chain reaction (HCR)57, primer exchange reaction, and tissue clearing can 

improve signal-to-noise ratio. As the gene repertoire increases, it becomes increasingly 

likely for transcripts to overlap, causing optical crowding. This can be alleviated by 

expansion microscopy (ExM)58, imaging only subsets of probes at a time, using 

computational super-resolution to image highly expressed genes without the use of 

combinatorial barcoding, and calculating solutions to resolve overlapping points. 

 

1.2.3 In situ sequencing 

The method closest to the in situ hybridization-based method is the in situ sequencing-

based method. This series of methods amplifies the target signal in situ using padlock 
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or RCA, and then identifies the base signals using microscopy. The most used 

sequencing technique in this method is ligation sequencing, rather than the synthetic 

sequencing that dominates traditional next-generation sequencing. Similarly, these 

methods achieve subcellular resolution; however, due to the requirement for prior 

knowledge and the limited cellular space, this method can only capture target transcripts 

and has limited throughput. The maximum read length is ~30 nucleotides, as longer 

reads are more difficult to achieve in situ than on flow cells due to the influence of 

many variables. ISS25 methods obtain spatial transcriptomic information through 

sequencing, typically using spatial barcoding, gene barcodes (targeted), or in situ cDNA 

short fragments (untargeted). This method relies on ligases to connect two DNA 

fragments - a primer with a known sequence and a probe - and any mismatched probes 

will be washed away if they match the template. The probes used are degenerate, except 

for one or two query bases encoded by color. Subsequently, ISS was commercialized 

by Cartana in 2013, and barcoded oligonucleotides linked to RNA for multiplexed in 

situ analysis were sequenced with one query base per probe59, like combinatorial probe 

anchor ligation (cPAL)60, for gene barcoding. In cPAL, one base of the gene barcode is 

queried by each probe. Meanwhile, a technique called fluorescence in situ sequencing 

(FISSEQ)28 generates RCA amplicons of cDNA molecules through circularization, 

which are themselves generated by mean of RT of mRNAs by using an oligo(dT) primer. 

This technique allows for true "untargeted" sequencing in space, although it is only used 

for very short 3'-end reads and has very low sensitivity (far below 1% of the total 

cellular transcriptome) due to the low efficiency of in situ RT and cDNA circularization. 

In the spatially-resolved transcript amplicon readout mapping (STARmap)31, gene 

barcodes are sequenced by sequencing with error-reduction by dynamic annealing and 

ligation (SEDAL), which uses two query bases to reject errors, but single-base encoding 

can also be used. BaristaSeq32 improves efficiency by optimizing the gap filling padlock 

probe method and using Illumina synthetic sequencing for detection. Recently, both the 

lock-based ISS method and the untargeted FISSEQ method have been combined with 
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expansion microscopy chemistry61, resulting in substantial improvements in efficiency 

and signal-to-noise ratio. One of the key innovations of ExSeq61 is the combination of 

untargeted, short-cycle ISS with conventional "bulk" sequencing after extracting cDNA 

present in the tissue. Short sequences serve as different "labels" to match each "bulk" 

read to specific locations, effectively generating full-length, long reads of ISS that are 

sufficient for mapping alternative splicing isoforms at subcellular resolution in complex 

tissues such as the mouse brain. 

Both in situ hybridization-based methods and in situ sequencing-based methods have 

one commonality: detection is ultimately accomplished through high-resolution 

microscopic imaging of tissues, and gene expression is measured by effectively 

counting individual mRNA molecules. While imaging is the most direct method to 

obtain spatial information, single-molecule microscopy is highly challenging and 

requires extremely precise instruments and procedures. This technical barrier becomes 

even more complex due to the need for multiple imaging cycles, as well as extensive 

sample manipulation through fluid exchange, enzymatic reactions, and other 

procedures. It is not surprising that image co-registration and feature extraction are 

among the biggest challenges in analyzing all image-based spatial transcriptomics 

datasets. Single-molecule microscopy can also be slow as it requires high magnification 

and resolution, resulting in a very small field of view, necessitating the assembly of 

numerous small images and image stitching (which itself is not a straightforward 

process) to obtain any meaningful sample size. Given the diffraction limit, molecular 

crowding within cells also imposes a limit on the number of molecules that can be 

resolved. Therefore, the sensitivity of detection is influenced by cell size, with larger 

cells allowing for deeper analysis. 

 

1.2.4 In situ spatial barcoding 

Some may argue that if only spatial location can be encoded in sequence space, then 

the best available tool for generating high-quality transcriptomics data at a very high 
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speed and throughput is already available in the form of conventional NGS. This is 

precisely the key insight behind spatial transcriptomics. In ST, ordered oligonucleotide 

arrays are deposited on a glass/silicon slide using microarray printing technology. Each 

oligonucleotide includes a handle(adapter) compatible with downstream sequencing 

reactions, a barcode specific to each spatial location, a random unique molecular 

identifier (UMI) for correcting polymerase chain reaction (PCR) amplification bias, and 

a poly(T) sequence for capturing polyadenylated (poly(A+)) mRNAs. Each array spot 

has a different spatial barcode. Thin tissue sections (~10 μm) are then placed on the 

array, and cell RNA diffuses onto the barcode oligonucleotides through cellular 

permeabilization, followed by in situ RT to generate spatially indexed cDNA. The latter 

is then amplified, adapter ligated to generate libraries, and sequenced using standard 

NGS. Some key advantages include no requirement for prior knowledge, unbiased 

capture of target molecules, ability to generate long sequencing reads (although still 

biased towards the 3'-end of transcripts), independence from complex imaging 

instruments, high speed (processing time effectively independent of sample size), and 

the potential for parallelization. These features greatly facilitate the commercial 

applications of this technology10. In situ spatial barcoding is a recent breakthrough that 

employs high-density barcode probes fixed on a carrier to capture spatial RNA within 

tissue sections, offering an unbiased method for capturing the entire transcriptome 

within tissues. 

 

1.2.4.1 Microarray-based in situ spatial barcoding technologies 

The breakthrough in SRT technology in the early days was based on the use of glass 

surfaces or microbeads to connect spatial probes and generate capture carriers. 

Additionally, by increasing the density of spatial probes on the glass surface or reducing 

the diameter of the microbeads, higher precision in spatial resolution can be achieved. 

ST8 was the first technology based on in situ spatial barcoding. It utilizes glass slides 

with fixed spatial barcodes and poly(T) probes to generate thousands of capture points, 
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creating capture regions. The spatial probes in ST are consistent within each capture 

point but variable between two capture points; thus, the minimum distance between 

capture points determines the spatial resolution. In 2019, 10X Genomics released 

Visium44 based on ST, which has a higher spatial resolution of 100 μm and a diameter 

of 55 μm (center-to-center distance between adjacent capture motions), smaller than ST 

but still larger than the diameter of most cells. Based on the design, improving spatial 

resolution further remains a challenge for ST/Visium. Considering the overall strategy 

for generating capture regions, Slide-seq20/Slide-seqV245 and high-definition spatial 

transcriptomics (HDST)42 are very similar. They both utilize pre-synthesized spatial 

barcodes and poly(T) probes placed on a slide to form capture regions, instead of 

directly printing probes onto glass slides in ST. Each bead contains a unique barcode 

sequence, which serves as the basic unit of spatial resolution (the center-to-center 

distance between adjacent beads). The spatial resolution is 10 μm in Slide-seq, while it 

is 2 μm in HDST. If only considering the physical size of cells, such as mouse brain 

cells of about 10 x 10 m2, Slide-seq/Slide-seqV2 and HDST are among the first or few 

methods that achieve single-cell resolution using barcoding. However, in terms of using 

single-cell regions as the smallest analysis unit, the capture efficiency of each barcode 

head is not satisfactory, requiring sufficient capture of RNA information to perform 

statistically significant calculations. Thus, enhancing RNA capture efficiency will play 

a crucial role in advancing the development of high spatial resolution SRT techniques. 

 

1.2.4.2 Microfluidics-based in situ spatial barcoding technologies 

Combining microfluidic technology with SRT technology is a compatible strategy that 

allows for the alteration of spatial resolution by adjusting channel size, making spatial 

multi-omics more achievable with the use of spatial barcoding. However, due to 

limitations in engineering materials, the spatial resolution of this method is difficult to 

achieve at the single-cell level. Deterministic barcoding in tissue for spatial omics 

sequencing (DBiT-seq)62 is the first microfluidic-based technology that measures 
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mRNA and protein spatial information simultaneously through NGS. Unlike the other 

techniques, DBiT-seq does not pre-synthesize capture regions with unique spatial 

barcodes and poly(T) probes. Instead, the barcode oligonucleotides flowing through 

each channel are linked to target biomolecules. Subsequently, the microfluidic chip is 

rotated 90° and barcoding is performed a second time, generating a grid where each 

intersection has a different index. In this process, poly(T) probes bind to mRNAs, 

meaning that mRNAs in the region channels are linked to the barcodes. The subsequent 

steps include mRNA-cDNA complex synthesis in RT, followed by tissue digestion, 

collection of mRNA-cDNA, template amplification, and generation of NGS libraries. 

The pixel size of the channels determines the spatial resolution, ranging from 10 to 50 

μm. Although the spatial resolution of DBiT-seq is already approaching the single-cell 

level, its capture and spot analysis are still not equivalent to single cells. Additionally, 

its capture efficiency is relatively high, possibly due to the absence of diffuse RNA from 

tissue to barcode carriers. 

 

1.2.4.3 Sequencing carrier-based in situ spatial barcoding technologies 

The combination of NGS "chips" and SRT technology is essential for single-cell 

resolution spatial analysis, which requires two rounds of sequencing. The carrier can be 

a sequencing chip or a similar chip that can carry a higher density of spatial probe 

distribution. In addition, the sequence of spatial probes is not required when attached 

to the chip surface, but can be sequenced during the attachment process or in the first 

round of sequencing. Then, tissue sections are placed on the chip surface to capture 

RNA, and a second round of sequencing is performed. The first round sequencing data 

is compared to obtain the spatial location of each molecule, thereby achieving single-

cell level spatial resolution. Poly-indexed library-sequencing (Pixel-seq)23 uses a 

"stamp gel" as a template, which contains clusters of cloned DNA of about 1 μm, 

including poly(T) probes and spatial barcodes, which can be replicated onto many 

"replica gels" and capture regions are performed on the slide using poly(T) probes. The 
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distance between adjacent and specific DNA clusters determines the spatial resolution 

of Pixel-seq, which is about 1 μm. It achieves spatial single-cell resolution by 

combining weighted network segmentation and transcript separation into cell masks. 

Considering that in other in situ barcode-based methods, the captured cell layer is the 

only cell layer close to the replica gel surface, rather than relying on permeable multiple 

cell layers, the capture efficiency of Pixel-seq is similar to that of permeable SRT 

methods, for example, an average of about 1000 UMIs in a 10 x 10 m2 area of mouse 

tissue. However, this still needs to be enhanced to capture higher UMIs in a single-cell 

area to achieve more biological identification. Due to the gel-gel replication strategy, 

many "replica gels" can be generated from a "stamp gel" template with the same spatial 

barcode probes, and even "replica gels" can be used as "stamp gels" for subsequent 

manufacturing rounds, so only one or a few "replica gels" need to be sequenced to 

obtain spatial barcode information. In contrast, each capture chip of Seq-Scope22 and 

Stereo-seq47 requires separate sequencing, and the Pixel-seq strategy can reduce 

manufacturing costs and time. Seq-Scope is based on solid-phase amplification and 

provides a spatial resolution of about 0.5-0.8 μm (average ~0.6 μm), surpassing the 

previously published in situ spatial barcode-based techniques in 2021. The first round 

of sequencing aims to identify the unique spatial barcodes in the region's physical array, 

followed by exposing the poly(T) probe domain to generate an HDMI-encoded RNA 

capture array (capture region) for tissue section sequencing. Similar to ST and HDST, 

Seq-Scope can perform tissue section sequencing and H&E staining, while in Seq-

Scope, H&E staining images can be segmented based on cell boundaries. The images 

and sequencing data are then merged for further analysis at the level of true single cells. 

The recently developed Spatially Enhanced Resolution Genomic Sequencing (Stereo-

seq)47 technique is the first method to achieve subcellular resolution and centimeter-

scale field of view. It utilizes DNA nanoballs (DNBs) on sequencing chips as spatial 

barcodes. Stereo-seq is based on a pattern array of DNB with a diameter of 220 nm on 

a photolithography chip, overcoming the physical distance limitation between spots and 
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achieving nanoscale spatial resolution or super-resolution. The Stereo-seq chip 

combines high resolution of DNB and high probe density per unit area, enabling 

effective capture of spatial transcriptome at the whole-genome level with nanoscale 

resolution. In addition, by capturing the track line features of the DNB array stained 

with nucleic acid dyes and taking photographs together with tissue sections before and 

after fixation and permeabilization reactions, Stereo-seq can accurately obtain tissue 

cell morphology and sequenced mRNA transcripts, achieving further single-cell 

segmentation. Overall, with the high-density barcode chips (with large probes and 

nanoscale resolution), trajectory line features of the DNB chip, high polymer capture 

efficiency, and appropriate RNA diffusion, Stereo-seq is capable of decoding tissue 

complexity at the single-cell level with spatial resolution and centimeter-scale field of 

view.  

 

1.2.5 Trends in the methods of spatially resolved transcriptomics 

Ideally, spatial resolved technologies would provide a nearly complete and unbiased 

profiling of the entire RNA molecule content at subcellular resolution in a short period 

of time, and be sufficiently reliable and affordable to be applied to many samples. 

However, currently all techniques require some compromises, so the choice of method 

depends on the specific needs of each study. Capture efficiency, whole transcriptome, 

resolution, throughput, large tissues, ease of implementation, robustness, and cost are 

all key variables in the balancing act of spatial analysis.  

 

1.2.5.1 Capturing efficiency 

Despite displaying significantly higher gene detection numbers, for example, in single-

cell sized regions, Stereo-seq detected 1450 UMIs (mouse olfactory bulb, 100 m2), 

Seq-Scope detected 848 UMIs (mouse liver, 100 m2), and Slide-seqV2 detected 550 

UMIs (mouse embryo, ~100 m2). Compared to the sensitivity of current single-cell 

RNA sequencing (scRNA-seq) technologies, such as ~40,000 UMIs (~6,000 genes) 



30 

 

detectable in 10X Chromium, ~8,000 genes detectable in Smartseq2, significant 

improvements are still required in the SRT technology to enhance cell classification 

performance. Currently, SRT has proposed a new strategy, which is to utilize poly(A) 

polymerase to add poly(A) tails in situ on RNA, enabling the detection of the entire 

spectrum of RNA while using barcode-based methods to capture the added poly(A) 

RNA. Compared to only capturing naturally occurring poly(A) tails, which cannot 

measure degraded RNA, the latter can improve capture efficiency. RNA degradation 

poses a significant challenge in some clinical tissues or easily degradable samples. 

 

1.2.5.2 Spatial resolution 

From a few mixed cells per capture point in ST/Visium to near single-cell resolution in 

Slide-seq/Slide-seqV2, HDST, and DBiT-seq, and even to true single-cell resolution 

based on cell segmentation in Seq-Scope and Stereo-seq; however, further 

improvements in resolution are still necessary for new insights into cellular spatial gene 

regulation and biology. Expansion microscopy (ExM) is a potential technology that 

utilizes expandable gel materials to enhance the spatial resolution of SRT techniques, 

which has been applied in Ex-Seq and STARmap/STARmap PLUS as in situ 

sequencing methods. For barcode-based methods, expanded spatial transcriptomics 

combines ExM with Visium, increasing the resolution of Visium arrays from 55 μm to 

20 μm and improving the RNA capture efficiency per region. Furthermore, if higher-

resolution SRT techniques such as Seq-Scope and Stereo-seq are combined with 

expansion microscopy, the spatial resolution could be further improved from ~500 nm 

to ~100 nm or even less than 100 nm, which could improve biological understandings 

of cellular interplays in tissues. 

 

1.2.5.3 Tissue area 

In general, techniques with lower detection efficiency are often more suitable for 

analyzing larger tissue areas. In current SRTs, tissue sections several millimeters wide, 
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such as a significant portion of mouse brain coronal sections, can be suitable for ST 

tissue capture areas, which are considered large, and increasing tissue area and 

sequencing depth to improve sensitivity will increase sequencing costs9. Cartana ISS 

and HybISS have also been used to depict tissue areas several millimeters wide, but 

only with about 100 genes. The advantage of HybISS here is strong RCA signals and 

less optical crowding, which is due to lower detection efficiency and lower 

magnification, resulting in faster imaging speed. For smFISH techniques, there seems 

to be a trade-off between the size of tissues and the number of genes. ROI selection 

techniques are usually used for a small number of ROIs, as selecting a very large 

number of ROIs and processing them individually without spatial barcoding is labor-

intensive.  

 

1.2.5.4 Accessibility of technology 

While many new technologies have been developed, most of them have not been 

disseminated beyond their originating institutions. Among the more widely spread 

companies, the most popular ones are often commercial platforms such as LCM39, 10X 

Visium44 (formerly ST and Cartana ISS, acquired by 10X), and Nanostring GeoMX43. 

Additionally, many major institutions have core facilities for NGS, reducing the cost of 

purchasing new equipment and training individual lab personnel if platforms like LCM, 

Visium, and GeoMX are available. Tomo-seq has also gained popularity, perhaps due 

to its ease of implementation on standard equipment. In contrast, smFISH-based 

technologies have not been widely disseminated so far, possibly due to the complexity 

of homemade fluidic systems, longer imaging times, terabyte-level images, and 

expensive probes. Some smFISH technologies are being commercialized through 

automated imaging and fluidic platforms, such as Vizgen's commercialized MERFISH 

technology and Resolve Biosciences' molecular mapping platform based on smFISH. 

Moreover, Rebus Esper can be programmed to automate different smFISH technologies 

and process images online, like Illumina sequencing, and has been used for automated 
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cycling-osmFISH. With the emergence of new automated commercial platforms, 

smFISH-based technologies may become more popular, especially if adopted by core 

facilities. The combination of in situ barcoding technology and bulk sequencing 

technology has been very successful. The availability of commercial choices, the 

independence from high-precision instruments, and the compatibility with existing 

workflows have reduced the entry barriers for many groups. Data analysis is also 

relatively simple because all processing occurs at the level of sequence data, which is a 

more widely specialized field in biological laboratories compared to image analysis. 

However, the low resolution and random localization of spatial barcoding relative to 

the samples means that information can sometimes be averaged across several different 

types of cells, leading to result confusion. Nevertheless, ST and its derivative 

technologies have been successfully applied in many studies, particularly in the fields 

of neuroscience and cancer biology, and improved methods may further drive the 

adoption of spatial analysis techniques. 

 

1.3 Tools and challenges in spatially resolved transcriptomics data 
analysis 

Compared to single-cell "omics", SRT generates a large amount of data (often many 

TBs), and the entire data processing is influenced and biased by many factors that 

without proper analysis tools, an experiment costing thousands of dollars may become 

completely useless. At the same time, the raw data is sometimes very large, and without 

specialized hardware and software, they cannot be visualized correctly. Therefore, there 

are huge challenges in processing of SRT data. The entire process of spatial dataset 

analysis can be roughly divided into two parts: (1) upstream analysis, which generates 

a gene expression matrix with spatial location information, which is directly associated 

with spatial technology itself. And then, selects different resolutions and analyzes 

different regions based on different applications; (2) downstream analysis, which is 

usually applicable to gene count matrices and cell or spot locations, and is therefore 
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largely independent of data collection techniques. These are illustrated in Figure 2, and 

will be further detailed below. 

 

 
Figure 2: Analysis workflows for spatial datasets. The core acquisition modality can be two main 

categories: i) imaging-based, including in situ hybridization and in situ sequencing; ii) next-generation 

sequencing-based, including in situ spatial barcoding and ROI selection. Imaging-based methods involve 

several preprocessing steps for the field-of-view images captured by the microscope during each cycle, 

including image stitching, background subtraction, and registration. In single-molecule imaging methods, 

the spots that represent signals on the images need to be identified and decoded to assign them to 

corresponding molecular labels. The cell images are then segmented to define areas corresponding to 

each cell (mask) by either identifying the cell membranes or performing a geometric expansion around 

the nucleus as a representation of the cytoplasm. Subsequently, the number of spots or signal intensities 

is integrated within the cell masks to generate an area-by-features matrix. By contrast, NGS-based 

methods produce datasets in the form of sequencing output, which are preprocessed and parsed to assign 

each read to a spatial coordinate through the position barcodes and a biomolecule's ID by mapping it to 

a reference, such as a transcriptome. After obtaining the area-feature expression matrix, subsequent 

analysis steps typically involve filtering, dimensional reduction, clustering, and identification of 

differentially expressed markers. Some intermediate results can be visualized directly or based on the 

dimensionality reduction space of genomic features. Further analyses are performed according to the 

specific research questions. 

 

1.3.1 Upstream analysis 

1.3.1.1 Spatial matrix generation 

The so-called "spatial expression matrix" in its wide matrix form is a two-dimensional 

non-negative matrix, where the row names are genes and the column names are two-

dimensional XY coordinate pairs. To reduce storage space, the spatial expression matrix 

can be processed using a long matrix that only includes the three-dimensional 

coordinates (X, Y, gene) and the positions of non-zero values. Obtaining the spatial 
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expression matrix is the first step in upstream analysis of spatial data, with a key step 

being to decipher the spatial location of each mRNA transcript molecule. For spatial 

techniques based on ISH and ISS, the raw data consists of fluorescent dot images. The 

first step is to stitch the images and align cyclical images. After alignment, the images 

need to be processed for background correction, filtering, and normalization to identify 

the transcription point signals. The signal points are then connected to match genes, and 

error correction and detection are applied to obtain the molecular quantity at each 

location. In this process, image registration is a very important issue that has been 

extensively discussed elsewhere and becomes more complex in spatial profiling due to 

the large amount of data. Most methods use easily identifiable "reference landmarks" 

(fluorescent beads) as features to calculate the registration matrix, which makes 

registration easier but requires additional experimental processing. Recently, the 

SpaceTx Consortium has made significant efforts and released a python module called 

Starfish63, which has been successfully applied to most techniques such as seqFISH, 

MERFISH, and ISS. However, it has not been widely adopted yet as it generally does 

not perform as well as dedicated pipelines for each method. 

In spatial barcode-based SRT, there are various methods for obtaining the spatial gene 

expression matrix. Similar to standard single-cell sequencing techniques, spatial 

barcoding technique involves two libraries: read 1 containing spatial barcode and UMI 

sequences, and read 2 containing cDNA sequences. However, the difference lies in the 

fact that in spatial techniques, barcodes are associated with spatial coordinates rather 

than cells. It is worth noting that each technique currently has its own method of 

associating barcodes with spatial coordinates: (a) in DBiT-seq, ST, and other techniques, 

the spatial position of barcodes is predetermined, and each barcode has a known spatial 

coordinate62; (b) in seq-Scope technique, the synthesis sequencing technology ensures 

that the corresponding spatial coordinates can be obtained during the synthesis process 

on the spatial chip HDMI22; (c) in Stereo-seq, after loading DNB onto the sequencing 

chip, a first round is performed to obtain the barcode sequences and corresponding 
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spatial coordinates of each DNB, followed by a second round of spatial transcriptome 

experiment and cDNA sequence capture. Once the correspondence between barcodes 

and coordinates in read 1 is established, read 2 can be aligned to the genome to 

determine the spatial location of gene expression47. Overall, this workflow is consistent 

with the methods used in single-cell transcriptome analysis. 

 

1.3.1.2 Image processing and cell segmentation 

High-resolution SRT datasets typically include immunohistochemistry, hematoxylin 

and eosin (H&E) staining, and/or nucleic acid staining images to obtain subsequent 

cell/nucleus segmentation and supplement cell-level biological features. Most 

techniques based on in situ hybridization and in situ sequencing have subcellular 

resolution, but almost all downstream analyses are performed at the single-cell level. 

Once a molecule is detected in space, it needs to be assigned to a cell, and all 

measurements within a cell region need to be integrated into a single abundance score 

for each gene or protein, ultimately creating a cell feature matrix. To achieve this, the 

original images are segmented to identify regions belonging to individual cells. In the 

previous section, we mentioned that in the processing of the two aforementioned 

techniques, a matrix is obtained through image processing, and stitching and 

registration operations are required. Here, we also need to perform stitching operations 

on the stained images and align them with the fluorescent images of the expression 

matrix. For image stitching and registration, ASHLAR64 provides multiplexing 

technology with better results, but lacks a good gold standard for evaluation. Image 

registration tools (such as Spot Detector65) provide an automated process for aligning 

images and spot locations, mainly including alignment, framing, and validation steps. 

However, with the emergence of high-resolution SRT techniques, a more precise 

alignment process is needed. For example, in the alignment process of Stereo-seq, the 

matrix of each expressed DNB point is converted to a grayscale image, and then 

manually aligned with the nucleic acid staining image using track line features. The 
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next step is to obtain spatial single-cell/nucleus data based on the segmentation of 

cell/nucleus positions in the stained images, providing a bridge for achieving spatial 

single-cell resolution. Image segmentation is a core problem in biological imaging and 

computer vision, and it has benefited from the rapid development of artificial 

intelligence (AI) and deep learning in recent years66–68. Although cell nucleus 

segmentation benefits from the regular shape of the nucleus and the availability of 

universal stains (DNA intercalators), determining the cell membrane boundary is a 

more complex task. Membrane markers often produce low signals, have poor 

specificity for the cell membrane, or are not universal for all cell types, so even with 

the use of AI models, effective segmentation cannot be achieved. While combining 

multiple labels has shown some promising results, developing a truly universal 

membrane marker would have a revolutionary impact on the field of spatial 

transcriptomics. Based on various considerations for achieving cell segmentation, the 

multi-dimensional mRNA density estimation calculates cell types based on RNA 

distribution without cell boundary segmentation65, while Baysor69 achieves cell 

boundary recognition and segmentation annotation. Joint segmentation and cell type 

annotation (JSTA)70 use cell types defined by scRNA-seq to assist in identifying spatial 

data. 

 

1.3.1.3 Cell type deconvolution 

In order to achieve spatial single-cell analysis in low-resolution SRT technology, it is 

often necessary to perform deconvolution from scRNA-seq datasets instead of directly 

performing cell segmentation. One common solution is to integrate SRT with scRNA-

seq datasets. It is worth noting that one method currently available to integrate the two 

datasets are through probabilistic modeling. The expression of individual cells in single-

cell data can often be modeled as a negative binomial distribution or a Poisson 

distribution. Robust Cell Type Decomposition (RCTD)71, and cell2location72 use the 

aforementioned probabilistic models to integrate individual cells and provide 
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deconvolution of cell types. SPOTlight73 and SpatialDWLS74 use topic similarity 

obtained from non-negative matrix factorization (NMF) dimensionality reduction to 

determine SRT cell types. CellTrek75 projects SRT and scRNA-seq data into the same 

latent space and models them using multivariate random forests (RF)76. Tangram77 is a 

deep learning method that calculates the correspondence between SRT points or cells 

after cell segmentation using neural networks. However, the integration strategies of 

SRT and scRNA-seq datasets still face some challenges, including the possibility of 

ignoring or losing partial information of rare cell types due to current technological and 

algorithmic limitations. For example, in low spatial resolution SRT technologies, a 

capturing point may cover and capture mixed RNA from multiple cells, making it 

impossible to accurately distinguish the molecules in situ of each cell and label them to 

their corresponding cells, which prevents the subsequent single-cell precision analysis. 

Moreover, the transcriptomic pattern of rare cell types does not show obvious 

differences from the major cell types; while, the specific information of rare cell types 

retained during data integration may be a potential point for further identifying rare cell 

type-specific markers4. For example, RaceID78 provides a strategy to identify rare cell 

information from multiple cell populations and has shown good performance79.  

 

1.3.2 Downstream analysis 

1.3.2.1 Combination of spatial and single cell 

Given the correlation between scRNA-seq and spatial data, as well as the analysis 

approach of spatial data in exploratory data analysis (EDA), popular scRNA-seq EDA 

ecosystems, such as Seurat80–84, SCANPY85, and single cell experiment (extended by 

SpatialExperiment86), have all enhanced the functionality of spatial data. For example, 

they have updated data containers and functionalities to facilitate the visualization of 

gene expression and cell or point metadata in spatial locations. Dedicated EDA 

packages specifically for spatial data have also been developed, which feature beautiful 

graphics and well-documented software, such as Giotto87 and STUtility88. Seurat and 
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Giotto87 have also implemented basic methods for identifying spatial variable genes. 

Additionally, Giotto has implemented methods for identifying cell type enrichment on 

ST and Visium spots, identifying co-expression of genes, cell type co-localization of 

gene expression, and identifying spatial regions. Spatial variable genes refer to genes 

whose expression is correlated with spatial location. These genes are often identified 

using three methods: Gaussian process regression (GPR)89 and its extensions for 

Poisson90 and negative binomial (NB)91, Laplacian score92, and Moran's I. The GPR-

based method employes GPR to normalize the rate parameter of gene expression or 

Poisson/NB gene expression and determine whether the model provides a better fit to 

the data with or without spatial features. Laplacian score-based methods identify genes 

that exhibit a stronger association with the spatial neighborhood graph structure in terms 

of their expression. The positioning of cells can be modeled as a spatial point process, 

using gene expression as markers, and spatial variable genes can be identified by their 

correlation with location. The computational cost of fitting GPR models to multiple 

genes, particularly when using Bayesian methods with Markov chain Monte Carlo, can 

be high. Similarly, permutation tests used in Laplacian score methods can be time-

consuming9. In some cases, classical spatial autocorrelation measures such as Moran's 

I, as implemented in Seurat v382 and above, are directly applied to identify spatial 

variable genes in both GPR-based and Laplacian score-based methods.  MERINGUE93 

utilizes a local version of Moran's I, and its significance tests are implemented in well-

established geographic spatial software packages, which are simple and quick to 

execute, but may have lower statistical power compared to model-based methods. 

 

1.3.2.2 Cell-cell communication 

The emergence of SRT technology enables the direct measurement of cell 

communication in specific microenvironments through the analysis of cell-cell 

interactions, which is more advantageous for analyzing short-distance interactions. 

Therefore, false-positive results based solely on RNA expression levels are excluded. 
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Based on the SRT dataset, the expression of ligands and receptors and the determination 

of spatial distance coexist, allowing the determination of cell-cell interactions. 

Importantly, the localization of ligands at the corresponding subcellular positions is 

crucial in the spatial aspect of cell-cell interactions, which cannot be deciphered by 

standard single-cell RNA sequencing experiments. To address this, Physical Interaction 

(PIC)-seq methods provide a high-throughput solution to study interactions arising 

from spatial proximity, while advanced algorithms considering intercellular 

communication constants can provide additional input. It is worth noting that several 

computational tools have been developed in this regard, such as CellChat94 and 

CellCall95. Different tools have applied various methods to identify intercellular 

communication using the SRT dataset. For example, Gene Graph Convolutional Neural 

Networks (GCNG)96 analyze gene interactions between cells, SVCA97 quantifies the 

impact of intercellular interactions on gene expression, and DIALOGUE98 explains 

multicellular collaborative programs. Additionally, NICHES99 and HoloNet100 consider 

the expression profiles of ligands and receptors to visualize heterogeneous signaling 

prototypes or develop graph neural network models to explore transcriptional events 

related to intercellular communication. Finally, the SpaTalk101 tool models and scores 

ligand-receptor-target signaling networks based on network biology methods, such as 

knowledge graph approaches102, to reveal cell communication in the SRT dataset on a 

general scale. There are also many other types of downstream analyses that are useful 

for spatial transcriptomics analysis, including identifying prototype gene patterns, 

defining spatial regions by transcriptome, inferring gene-gene interactions, subcellular 

transcript localization, and gene expression estimation from H&E images. 

 

1.3.3 Challenges in spatially resolved transcriptomics data analysis 

Although some analysis tools have been developed, with the decreasing cost of SRT 

technology and its widespread application, more challenges in data analysis will arise. 

These challenges may include the following: (a) SRT data size is enormous. As high-
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density large field-of-view datasets increase, new methods for SRT data storage and 

data preprocessing speed will be urgently needed in the future. (b) Batch effects often 

occur between different slices due to different technical batches, operators, or operating 

methods. Correcting batch differences is a significant challenge that needs to be 

addressed to compare different slices and obtain analysis conclusions that are more 

accurate and reliable. It is worth noting that several techniques have been developed to 

process batch effects in scRNA-seq methods103–106. However, considering the 

complexity of SRT, all these methods require standardization. (c) As the individual slice 

in SRT cannot represent the whole organ, methods for three-dimensional (3D) 

reconstruction using SRT data will become increasingly important in the future. 

Currently, advances in the 3D field are primarily based on the 3D reconstruction of 

multiple adjacent slices of the same tissue, which relies on the stability of experimental 

techniques to allow comprehensive analysis of multiple adjacent slices, and also relies 

on analysis tools capable of 3D reconstruction, such as the probabilistic aligner for 

spatial transcriptomics (PASTE) in ST experiments107. Nevertheless, more efficient 

analysis methods are still needed in the future to address many challenges faced by 

current 3D reconstruction, such as cell mapping and reconstruction of links between 

adjacent slices. In addition, with the rapid development of advanced analysis methods, 

it is necessary to systematically evaluate these methods to determine their reliability 

and guide the selection of analysis tools. Many benchmark studies are needed in terms 

of single-cell resolution and spatial variable gene selection, and new algorithms need 

to be established for standardized evaluation systems, cell segmentation accuracy, 

spatial domain recognition, and spatial clustering. So far, existing benchmark studies 

have shown that some tools perform better in assessing the spatial distribution of RNA 

transcripts, while others show better performance in cell deconvolution methods or 

clustering accuracy108.  

In summary, the challenges to be addressed include cross-slice data alignment, 

elimination of batch effects, data normalization, and filling in information gaps between 
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slices. Other challenges involve (a) integrating ST with other modalities10. Given the 

breakthroughs in spatial multi-omics methods, there is an urgent need to improve an 

integrated algorithm for understanding spatially resolved data with tissue functionality 

and how to integrate SRT data with data obtained from other methods such as 

proteomics and chromatin accessibility109. (b) how to identify consistent spatial 

domains in gene expression patterns and histological features110. (c) how to combine 

SRT data with multiple (rather than single) adjacent tissues that have undergone 

different slice treatments107. 

 

1.4 Thesis aim, problems and hypotheses 

Based on a thorough exploration of the progress, significance, and challenges of spatial 

transcriptomics, it was clear that NGS-based barcode spatial technology has developed 

rapidly during recent years. Due to the widespread use of second-generation sequencing 

technology, it was decided that there was no need at the time of initiation of the thesis 

work for additional equipment development, as several available technologies were 

deemed to be highly commercially viable. The technology used in this thesis work is 

Stereo-seq technology. Stereo-seq, which is based on mainstream second-generation 

sequencing technology (DNBSEQ), has the advantage of having a large field of view 

(centimeter-level) combined with high resolution (nanometer-level). It can also capture 

the whole-wide transcriptome, and has recently shown to be useful in many research 

fields. For example, the Stereo-seq technology has been used to analyze the gene spatial 

expression patterns of organ development in late-stage mouse embryos, draw organ 

development trajectory maps, and construct spatial-temporal transcriptome maps of 

mouse organ development47. This technology has also been applied to establish high-

resolution spatial landscapes of cell types in the regenerating brain of axolotls, revealing 

new cell types involved in brain regeneration111. In addition, Stereo-seq has also created 

a three-dimensional spatial resolution cell type atlas of the macaque brain, with most 

sections covering an area of 5 x 3 cm2, making it possible to study the large-scale 
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distribution, heterogeneity, and functionality of the whole brain112. Moreover, Stereo-

seq has played an important role in disease mechanism research. For example, Wu et 

al. used Stereo-seq for the first time to analyze the heterogeneity and microenvironment 

of intrahepatic cholangiocarcinoma, defining a 500 mm wide region centered on both 

sides of the tumor boundary and characterizing the cells and transcriptional levels113. 

Zhang et al. used Stereo-seq technology to study colorectal adenocarcinoma, describing 

the characteristics of complex tumor regions and identifying molecular patterns 

involved in discontinuous inflammatory responses within this region114. In addition, 

Xia et al. used Stereo-seq to study the spatial resolution of plant cell landscapes, 

distinguishing cell subtypes of Arabidopsis leaves based on spatial information for the 

first time, demonstrating the new discovery capabilities of high-resolution Stereo-seq 

in the field of plant biology115. However, compared to other spatial technologies such 

as in situ sequencing, in situ hybridization, and microdissection, which have 

commercialized products such as 10X Xenium116, Nanostring CosMx117, and Vizgen 

MERFISH30, barcode-based technology has only recently developed its high-resolution, 

large field-of-view, and urgently needs to accelerate its applications to help researchers 

speed up their scientific progress. Stereo-seq has been launched and is undergoing rapid 

iteration and optimization. However, due to its high resolution and large field-of-view, 

existing data analysis tools cannot effectively solve the problems related to analysis of 

Stereo-seq-derived.  

 

The overall research aim of the current thesis work was therefore to solve and provide 

more efficient and accurate analysis tools to support Stereo-seq data analysis, focusing 

on the addressing the following problems and hypotheses:  

1) Problem: The production of a high-quality expression matrix during upstream data 

processing is too slow and inefficient. Hypothesis: It is possible to implement a 

complete and fast process for efficient and accurate attainment of single-cell spatial data 

from large field-of-view, high-resolution NGS barcode-based spatial transcriptomics 
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technology.   

2) Problem: The accuracy of cell segmentation, i.e., obtaining cell boundary 

information, is non-optimal for obtaining a high-quality gene expression matrix at 

single-cell resolution from large field-of-view applications. Hypothesis: By 

implementing other staining and automation procedures, analyses tools for obtaining 

spatial single-cell transcriptomics data from Stereo-seq can be developed. 

3) Problem: For high-resolution spatial resolved technology, due to technical limitations, 

there is always a low capture rate, resulting in a large amount of empty capture sites 

and a relatively low overall sum of gene numbers in spatial single-cell transcriptomes, 

which have a significant impact on downstream analysis. Hypothesis: Improving the 

gene number level or enhancing the quality of gene expression profiles during data 

processing will be possible to implement using imputation or filtering methods.  

The three hypotheses are addressed individually in the research manuscripts that 

make up chapter 2-4 that follow below. Each of the chapters are formatted according to 

journal requirements.  
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Abstract 

Owing to recent advances in resolution and field-of-view, spatially resolved sequencing, 

such as Stereo-seq, has emerged as a cutting-edge technology that provides a technical 

foundation for the interpretation of large tissues at the single-cell level. To generate 

accurate single-cell spatial gene expression profiles from high-resolution spatial omics 

data and associated images, a powerful tool is required. Here we present StereoCell, an 

image-facilitated one-stop software for high-resolution and large field-of-view spatial 

transcriptomic data of Stereo-seq. StereoCell provides a comprehensive and systematic 

platform for the generation of high-confidence single-cell spatial gene expression 

profiles, which includes image stitching, image registration, tissue segmentation, nuclei 

segmentation and molecule labeling. StereoCell is user-friendly and does not require a 

specific level of omics and image analysis expertise. StereoCell has contributed to the 

generation of a mouse organogenesis spatiotemporal transcriptomic atlas and was 

applied to generate reliable single-cell spatial gene expression profiles from continuous 

mouse brain slice datasets in previously published works. StereoCell is a fast tool for 

image and spatial omics data, demonstrated to be capable of handling a mouse brain 

dataset (131,990,020 molecules and 117 image tiles) in about 80 min on a server with 

40-core CPU, 128 GB of RAM and 24 GB of GPU. 
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2.1 Introduction 

Spatially resolved technology generates comprehensive data regarding the distribution 

of molecules that can be used to identify the location and function of cells within tissues, 

which helps to broaden our understanding of organ development106, tumor 

heterogeneity118 and cancer evolution119,120. This rapidly developing field is focused on 

obtaining detailed molecular information at single-cell resolution, as well as spatial 

information per molecule of tissue in a large field-of-view121. Single-cell resolution 

technologies47,30,20, make it possible to explore spatial omics data at the single-cell, or 

even subcellular level. When combined with large field-of-view technologies47, it 

allows for generation of 3D maps representing biological functions within single cells 

at the organ level. 

2.1.1 Development of the protocol 

Our previous work developed the high-resolution and large field-of-view spatially 

resolved technology Stereo-seq47, which enabled whole-organ sequencing of most 

tissues in model organisms (e.g., mouse brain (1cm×1cm) and mouse embryo 

(1cm×2cm)). The Stereo-seq protocol generates two main outputs: spot-level gene 

expression data and high-content stained tissue images. The former is based upon 

detection of unique molecular identifiers captured by each DNA nanoball (DNB) on 

the sequencing chip while the latter provides detailed image-based (visual) information 

about the cellular matrix within tissue samples. Solutions that merge the two to obtain 

accurate spatial gene expression profiles at single-cell level in large field-of view 

settings will advance spatially resolved technologies and be an important steppingstone 

for downstream analyses. 

Here we present StereoCell, an image-facilitated one-stop software for Stereo-seq 

transcriptomic data. StereoCell combines large field-of-view tissue images and high-

resolution spatial gene expression data to obtain high-confidence single-cell spatial 

gene expression profiles. StereoCell provides a straightforward and systematic platform, 

which includes image stitching, image registration, tissue segmentation, nuclei 
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segmentation and molecule labeling (Fig. 1a). We use the multiple Fast Fourier 

Transform (FFT)122 weighted stitching algorithm, named MFWS, for image stitching. 

MFWS is based on frequency domain information and allows the accurate stitching of 

high-resolution images in a wide field-of-view, in addition to improvements in cell 

dislocation errors caused by inaccurate image stitching and low efficiency caused by 

the huge number of image tiles (Fig. 1b). We transform the spatial gene expression data 

into a map. The stitched image is registered with the spatial gene expression map based 

on “track lines” (marker lines designed on Stereo-seq chip), which includes translation, 

scaling, flipping and rotation (Fig. 1c). We train the deep learning models for tissue 

segmentation (Fig. 1d) and nuclei segmentation (Fig. 1e) from the registered image. We 

enable molecule labeling using the cell morphology and Gaussian Mixture Model 

(GMM)123 algorithm, named MLCG, which applies GMM to fit the molecules within 

nuclei mask for accurate assignment of surrounding molecules to the most probable cell, 

obtaining a gene expression profile at the single-cell level (Fig. 1f). 
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Fig. 1 | The StereoCell workflow and applied algorithms. 

a. Schematic overview of the StereoCell software. The spatial gene expression data and the 

morphological (nuclei-stained) image of tissue are obtained using spatial transcriptomics technology and 

microscopy, respectively. The image tiles obtained by microscopy are stitched together to generate a large 

mosaic image of the whole tissue, the spatial gene expression data is transformed to a map, and the 

stitched image and spatial gene expression map are registered. Tissue and nuclei segmentations are 

performed on the registered image to obtain the tissue mask and nuclei mask. Molecule labeling is 
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adopted to obtain single-cell spatial gene expression profile. 

b. Cutting the overlap regions of the adjacent image tiles, and calculating the spectral information based 

on the Fast Fourier Transform (FFT) algorithm. Weighted spectral information of the overlap cuts pairs 

to take the maximum spectral position as the offset of the adjacent image tiles. The image tiles are stitched 

using the offset value. 

c. Registration with spatial gene expression map and stitched image based on “track lines”. The spatial 

gene expression map is the fixed image, and the stitched image is the moving one. We detect the “track 

lines” on two images, the “track lines” on the spatial gene expression map represent the template, for the 

stitched image, we calculate the scale and rotation parameters using the “track lines”. We then use the 

morphological features to get a rough registration of the offset, flip, and 90° rotation. “Track lines” are 

used to fine-tune registration. 

d. Bi-Directional ConvLSTM U-Net is used to obtain the tissue mask on registered image. 

e. U-Net is used to obtain the nuclei mask on registered image. 

f. Molecules within the nuclear boundary are assigned to a given cell, while molecules outside the nucleus 

are labeled to the cell that gains the largest probability from Gaussian Mixture Model fitting. 

 

2.1.2 Advantages of the protocol 

Although spatially resolved technologies vary in resolution and field-of-view, one 

common feature is their ability to produce traditional high-content tissue images using 

dyes such as fluorescence, hematoxylin-eosin (H&E) or 4,6-diamidino-2-phenylindole 

(DAPI) for cellular or nucleus staining. The generated images provide important 

information regarding tissue and cell morphology, however, two main difficulties exist: 

insufficient precision in image mosaics and inaccuracy of molecule labeling. 

The first difficulty is limited by the small imaging area, mechanical tolerance, and 

imperfect calibration of microscopes (e.g., 10×imaging lens, ~1mm×1mm/tile), which 

makes them sufficient for visual inspection of tissue images, but not accurate enough 

for quantitative single-cell analytical approaches. For example, a 1cm×1cm object 

generates approximately 10×10 image tiles, while a 3cm×3cm object generates 

thousands of image tiles. Existing image stitching methods, such as ASHLAR64 and 

MIST124, can meet most stitching accuracy requirements. However, stitching 

misalignment is a major issue and it is difficult to collect evaluation datasets to improve 

the accuracy of image mosaics in a large field-of-view, which is an obstacle in 

expanding their application. 
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The second difficulty, which is the key to achieving high-precision single-cell 

resolution, is classifying the transcripts and other molecules into the owner cell, a 

procedure termed “molecule labeling”. However, molecule labeling is not an easy task 

due to the low efficiency of molecule capture and the problem of diffusion of molecules 

outside cells during wet-lab procedures, which greatly affects the correct annotation of 

transcripts to the corresponding cell. Recent technology has considered this issue, such 

as 10X Xenium116, which includes more transcripts by extending the distance outside 

the nucleus (15 μm). Since the diameter of immune, stromal, and tumor cells varies, it 

is however challenging to obtain accurate single-cell data using such a generalized 

model that introduces varying levels of noise depending on the cell type. Some available 

methods, including Baysor69 and Pixel-seq23, require high-quality data as input, such as 

the number of captured molecules and their density distribution, which may not be 

applicable to most sequencing-based spatial omics data. Furthermore, existing spatial 

data analysis frameworks, such as Seurat83, RCTD71, Cell2location72, Squidpy125, and 

Spateo126, only focus on the downstream analysis tasks or one specific aspect of the 

spatial data analysis, or consider only cell nuclei segmentation. 

StereoCell is the first one-stop software to generate single-cell spatial gene expression 

profiles for whole transcriptome based on high-resolution and large field-of-view 

spatially resolved sequencing. For image stitching, StereoCell employs MFWS to 

reduce stitching errors in large-field-of-view datasets. The morphological tissue image 

stitching procedure of StereoCell is accurate and reliable for single-cell identification 

and is flexible and convenient in terms of run time. Its high-precision stitching 

algorithm is useful for the correction of stitching to almost subcellular precision. For 

molecule labeling, StereoCell employs MLCG to increase the signal-to-noise ratio of 

the single-cell spatial gene expression profile, which yields more reliable analysis of 

cell clustering and annotation. StereoCell has been successfully applied to datasets of 

various organs (such as brain, heart, embryo, artery, testis, kidney, liver and lymph) 

from different organisms (such as Homo sapiens, Mus musculus, Macaca mulatta and 
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Leporidae). The molecule labeling of StereoCell is also applicable to the datasets from 

multiple platforms other than Stereo-seq when the nuclei mask and spatial gene 

expression data are given. StereoCell’s rich documentation in the form of a functional 

application programming interface, examples, and tutorial workflows, is easy to 

navigate and accessible to both experienced developers and beginner analysts127. 

StereoCell has the potential to serve as a bridge between the fields of image analysis 

and molecular omics, providing a foundation for the development of next generation 

computational methods for spatially resolved technologies. 

2.1.3 Applications of the protocol and comparison with other methods 

2.1.3.1 StereoCell processes high-precision morphological tissue images from image 

tiles 

MFWS of StereoCell takes a folder of all image tiles obtained by microscopy and 

information files as the input, and outputs a stitched mosaic image of whole tissue. The 

datasets from different field-of-views (4 Stereo-seq mouse brain datasets with the chip 

sizes of 1cm×1cm, 1cm×2cm, 2cm×2cm and 2cm×3cm respectively and a public 

dataset128, and their grid sizes (11,9), (15,21), (25,21), (23,29) and (10,10), respectively) 

are collated. The image stitching methods, ASHLAR64 and MIST124, are used for 

comparison. For each dataset, the standards are designed (Supplementary materials) to 

calculate the relative offset error between each two adjacent image tiles and the absolute 

offset error of the entire stitched image in the stitching results of different methods. The 

relative offset errors are statistically analyzed by Wilcoxon signed rank test129 to 

examine the significant differences. The runtime to obtain the absolute offset error for 

each method is recorded. 

Processing of a morphological image from a tissue slide requires the stitching of an 

array of multiple image tiles generated by microscopy. Microscopes can automatically 

capture the image tiles of a tissue one by one and stitch the image tiles together using 

the built-in stitching method. However, overlapping areas between adjacent image tiles 

generated during microscope movement may be imprecise due to mechanical tolerance 
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and imperfect calibration. Such stitching errors are common in mosaic images and need 

to be removed if the goal is to achieve single-cell resolution in spatial omics 

applications. As an example, a mouse brain mosaic image on a chip with a size of 

~2cm×2cm and a tile size of 2424×2031 pixels are displayed (Fig. 2a), corresponding 

to a physical size of ~1.2mm×1.0mm. To visualize seams and stitching errors, we select 

two adjacent image tiles from the image (Fig. 2b). For accurate stitching results, the 

lower part of tile 1 (dotted area) and the upper part of tile 2 (dotted area) should be 

accurately overlaid. Shadows that represent inaccurate overlap of cells can be easily 

seen in the stitching results produced by the microscope (Fig. 2c, left), but MFWS of 

StereoCell is able to stitch the image tiles accurately, resulting in the absence of 

shadows (Fig. 2c, right). The stitching results of two image tiles within non-tissue areas 

(full-colored part) where individual “track lines” can be clearly seen using auto-contrast 

adjustment as also shown (Fig. 2c). The applied Stereo-seq chip contains periodic “track 

lines” with a size of 1500 nm (~3 pixels), which is apparent from the image (Fig. 2c, f). 

We use a collection of data to evaluate the accuracy and efficiency of existing stitching 

algorithms as compared with MFWS. 

We apply MFWS to the public dataset, and the results show that the relative offset errors 

of MFWS are comparable with those of MIST, both being concentrated within 5 pixels, 

while ASHLAR has larger offsets (>10-pixels) (Fig. 2d). Moreover, the offset error 

distribution is much more concentrated by MFWS. Next, we calculate the relative and 

absolute offset errors on 4 Stereo-seq mouse brain datasets. MFWS is shown to perform 

significantly better than ASHLAR and MIST with respect to the relative offset errors 

for all image size combinations (Fig. 2e). A 10-pixel (~5 μm) dislocation roughly 

corresponds to half a cell (Fig. 2f). In all the datasets, the errors generated by MFWS 

remain within a maximum of 10-pixels in the tissue area, while the other methods 

produce a shift greater than 10-pixels, which may misplace the cell (Fig. 2g). As the 

number of image tiles increases, the run time becomes a significant factor for stitching 

algorithms. The run time of MFWS is significantly shorter than that of the other 
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methods, mostly due to the embedded spectral calculation based on FFT (Fig. 2h). 

 

 
Fig. 2 | StereoCell includes a high-precision mosaic method for image stitching, enabling large field-

of-view morphological image analysis at single-cell spatial accuracy. 

a. Mosaic image of mouse brain tissue on a 2cm×2cm chip. 

b. The red box indicates the edge of the tissue (containing cells and non-tissue), and two neighboring 

image tiles (in the vertical direction) are shown in different colors. The part that needs to be overlaid by 

stitching is the lower part of tile 1 (within the dotted area) and the upper part of tile 2 (within the dotted 

area). 

c. The stitching results for the two image tiles (yellow box in b) using the stitching method built in to the 
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microscope (left) and MFWS (right). In each sub-figure, the left part shows the overlap of cells after 

stitching and the right part shows the “track lines” in the non-tissue area. The contrast of the background 

was increased to clearly show the “track lines” incorporated into the Stereo-seq chip. 

d. Comparison of the relative errors produced by MIST, ASHLAR, and MFWS on a public dataset. 

e. Comparison of the relative errors produced by MIST, ASHLAR, and MFWS on Stereo-seq mouse 

brain datasets, analyzed using different chip sizes from 1cm×1cm to 2cm×3cm, corresponding to number 

of image tiles from 11×9 to 23×29. The evaluation is based on the ground truth calculated using the “track 

lines” on the Stereo-seq chip. 

f. An example of the stitching error in pixels in the zoomed-in image. A dislocation of 10-pixels roughly 

corresponds to half a cell. 

g. Bar graph illustrating the maximal accumulation of stitching errors produced by MIST, ASHLAR, and 

MFWS on the datasets from e. 

h. Line graph displaying the run time of MIST, ASHLAR, and MFWS on Stereo-seq mouse brain datasets. 

 

2.1.3.2 StereoCell generates highly accurate single-cell gene expression profiles of 

spatial omics datasets 

Using StereoCell, we first obtain a nuclei mask and a cell mask, and then output their 

single-cell spatial gene expression profiles. To demonstrate the improvement in 

transcript assignment to cells by using the cell mask generated by StereoCell, we here 

compare the gene expression profile output using each of these masks on Stereo-seq 

data generated of mouse olfactory bulb, involving analysis of spatial gene expression 

data containing 37,288,344 molecules and 143 image tiles. The generated profiles are 

input into Stereopy (v6.0)130 (a downstream analysis tool) for analysis. The silhouette 

coefficient131 is used to evaluate clustering results. The moran’s I (calculating by 

Scanpy85 package) is used to evaluate spatial correlation. The details of the data analysis 

process and evaluation metrics are provided in Supplementary materials. 

After obtaining the nuclei mask, the molecules located inside the nucleus are assigned 

to the corresponding cell, and MLCG of StereoCell fits the molecular density 

distribution to each cell nucleus and re-labels the molecules outside the nucleus to 

finally generate a cell mask (Fig. 3a). By applying the cell mask, the uniquely expressed 

genes and total gene counts in a single cell increased by approximately 2.34 and 2.56 

times, respectively, as compared to the nuclei mask alone (Fig. 3b). Utilization of the 
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cell mask provides better overall clustering (Fig. 3c), and its silhouette coefficient is 

higher than that of the nuclei mask. We manually annotate the cell types by comparing 

the differentially expressed genes in each cluster with the marker genes of cell types 

inferred by a reference dataset132. Of note, there are fewer scattered points and a more 

concentrated distribution in the spatial position of the astrocyte layer (Moran’s I: 0.40 

vs. 0.30) and dopaminergic neuron layer (Moran’s I: 0.52 vs. 0.37) after molecule 

labeling using the cell mask (Fig. 3c). We further explore the marker gene distribution 

and expression in the annotated cell types, and all the marker genes provided by the 

reference dataset132 display higher expression using the cell mask as compared with the 

nuclei mask (Fig. 3d). We compare subtypes of granule cells discovered using the nuclei 

mask vs. the cell mask. The nuclei mask is able to identify two subtypes of granule cells: 

granule cell 0 and granule cell 3, while the cell mask enables identification of three 

granule cell subtypes: granule cell 0, granule cell 1, and granule cell 3. We explore the 

expression of the granule cell 1 subtype-marker genes Syt1, Scg2, and Cplx1, among 

all granule cells. There is no obvious difference in expression when using nuclei mask, 

while higher expression is found in granule cell 1 as compared with the other two 

subtypes when using cell mask (Fig. 3e). This supports that the cell mask captures a 

higher number of transcript signals from rare cells, facilitating better annotation and 

thereby enhances single-cell spatial resolution. 

We estimate and compare the similarity of spatial gene expression between a reference 

single-cell dataset of the mouse olfactory bulb26 and our Stereo-seq based mouse 

olfactory bulb dataset using the StereoCell nuclei mask vs. the cell mask to generate 

single-cell expression profiles. Tissue cells are auto-annotated by Tangram77 and 

correlation analysis is performed between the expression matrixes of single cells using 

each of the masks and the single-cell sequencing expression profile of the reference132. 

The Spearman correlation coefficient using annotations based on the cell mask is higher 

(0.4% to 8.9% better) than that based on the nuclei mask. Overall, the single-cell 

expression matrix generated by the cell mask shows a higher correlation with the single-
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cell reference (Fig. 3f), indicating that the cell mask provides a spatial single cell-level 

gene expression profile closer to that generated by single-cell sequencing. 

 

 
Fig. 3 | StereoCell provides single-cell spatial data with a higher signal-to-noise ratio that facilitates 

finer cell clustering and annotation of the mouse olfactory bulb. 
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a. Flowchart of MLCG processing of Stereo-seq mouse olfactory bulb dataset. 

b. Comparison of the number of uniquely expressed genes and the total gene count per cell using nuclei 

mask vs. cell mask on Stereo-seq mouse olfactory bulb dataset. Top: density plot of the total gene counts 

per cell. Bottom: density plot of the number of uniquely expressed genes per cell. 

c. Comparison of the clustering results generated using the “Leiden” algorithm on nuclei mask vs. cell 

mask. Top row, left: spatial clustering results of mouse olfactory bulb data generated using nuclei mask 

vs. cell mask; right: comparison of unique cells estimated by Silhouette coefficient. Middle and bottom 

rows, left: spatial distribution of cells in the inferred clusters of astrocytes and dopaminergic neurons 

generated using nuclei mask vs. cell mask; right: comparison of the spatial autocorrelation estimated by 

Moran’s I. 

d. Comparison of marker gene expression in the main cellular clusters inferred by the “Leiden” algorithm 

generated using nuclei mask vs. cell mask. 

e. Comparison of cellular subtype identification using nuclei mask vs. cell mask. First column: subtypes 

of granule cells identified using nuclei mask vs. cell mask. Other columns: gene expression heat maps of 

Syt1, Scg2, and Cplx1 respectively, which have been reported to be marker genes for granule cell 1, using 

nuclei mask vs. cell mask. 

f. Spearman correlation between gene expression in similar cells in tissue slides of the mouse olfactory 

bulb using nuclei mask vs. cell mask to define the gene expression in single cells and a single-cell 

reference dataset of the mouse olfactory bulb. 

c, d, f: AONM/T cell: anterior olfactory nucleus mitral/tufted cell, VIPP neuron: vasoactive intestinal 

peptide positive neuron. 

 

2.1.3.3 StereoCell enables dissection of the structural composition of mouse brain 

cortex data at single-cell resolution 

Non-cell based binning methods where adjacent tissue regions are divided into regions 

(bins) of specified sizes, are sometimes used in spatial transcriptomics analysis 

pipelines. To compare the StereoCell cell mask output to the Bin approach, we here 

apply a Stereo-seq mouse brain dataset containing 131,990,020 molecules and 117 

image tiles, where image tiles where split using Bin100, Bin50, Bin20 (BinX means a 

bin with X × X of DNBs47). The generated profiles are input into Stereopy (v6.0)130 for 

analysis, and more details are provided in Supplementary materials. We export the 

spatial gene expression map, nuclei-stained image, cell mask and Bin20 outlines to 

visually demonstrate the segmentation effect of the two methods. We also compare the 

abilities of StereoCell and the Bin approach to reconstruct known cellular regions in the 

mouse brain. 
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The clustering of data generated by StereoCell vs. Bin100, Bin50, and Bin20 is shown 

(Fig. 4a). It appears that splitting using Bin100 result in difficulties in identifying 

several important areas in the tissue, such as the brain hub and hippocampus. For Bin50, 

the tissue cortex and blood cells are poorly identified. Both Bin20 and StereoCell are 

able to identify important areas in the tissue, but StereoCell obtains the highest 

silhouette coefficient in evaluating the clustering results using several methods (Fig. 

4b). We calculate the uniquely expressed genes and total gene counts of StereoCell vs. 

the differently sized bins (Fig. 4c). The visualization shows that Bin20 more often 

divides a single cell into two or more cells, while StereoCell more accurately divides 

the cell area and is consistent with the actual cell distribution in the tissue (Fig. 4d). 

Bin20 results in splitting of approximately 90% of the cells, with only ~10% of the 

nuclei being completely covered in the nuclei-stained image, while only ~2% of the 

cells are split into two or more cells using StereoCell (Fig. 4e). The resulting single-cell 

data derived from cell identification using Bin20 and StereoCell were individually 

annotated using Spatial-ID133 (Fig. 4f, top) with adolescent mouse brain as a 

reference134. Bin20 annotates 29 different cell types, while StereoCell is able to annotate 

37 different cell types. Within the ACTE series, both Bin20 and StereoCell annotate 2 

subtypes. In the MEINH series, Bin20 annotates 2 subtypes, while StereoCell annotates 

3 subtypes. Within the TEGLU series, Bin20 and StereoCell annotate 10 and 13 

subtypes, respectively. In TEINH series, Bin20 annotates 5 subtypes and StereoCell 

annotates 4 subtypes, which is the only case where fewer subtypes were annotated by 

StereoCell. StereoCell also annotates 2 subtypes in within the ACNT series and 4 

subtypes within the TEINH series. When zooming in on the cortical area (Fig. 4f, 

bottom), it appears that the staining position of StereoCell and the nucleus are better 

aligned than seen for Bin20, and the cell state and tissue structure are more in line with 

the actual brain tissue map. Moreover, in the gear gyrus and cortical regions of the 

mouse brain, StereoCell performs better than Bin20 in matching the annotation results 

to the Allen mouse brain dataset (Fig. 4g). Although Bin20 is capable of annotating the 
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gear gyrus and cortex to align with the location in the Allen mouse brain atlas, the 

division between layers is not as accurate. Also, expression of marker genes in the gear 

gyrus (DGGRC2) and cortex (TEGLU3, TEGLU4, TEGLU7, and TEGLU8) is fully 

captured using the StereoCell algorithm, which is not the case when using Bin20 (Fig. 

4h). Overall, StereoCell provides single-cell spatial gene expression profiles with a 

higher signal-to-noise ratio compared to approaches based on differently sized bins. 

Moreover, the profile generated using StereoCell align well with cellular annotation 

within different brain regions and can provide a valuable reference for studies of cellular 

interaction networks in health and disease. 
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Fig. 4 | Clustering and annotation of mouse brain tissue by StereoCell vs. differently sized bins.  

a. Identification of gene expression clusters using differently sized bins vs. StereoCell on Stereo-seq 

mouse brain dataset. 

b. Silhouette coefficient evaluation of clustering performance. 

c. Violin plots displaying the total gene counts and number of uniquely expressed genes per cell captured 

using differently sized bins vs. StereoCell. 

d. Comparison of the cell boundary generated using Bin20 and StereoCell. The first image shows the 
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spatial gene expression map and nuclei-stained image, which are merged in green and blue, respectively. 

The second image displays an enlarged map of the local area from the first image. The third image is a 

comparison of the cell boundaries obtained using Bin20 (red) vs. StereoCell (green). 

e. Comparison of the proportion of cell nuclei covered or intersected using Bin20 vs. StereoCell.  

f. Comparison of end-to-end annotation results of Bin20 vs. StereoCell. Colors represent the same cell 

type in the Bin20 and StereoCell annotation charts. The enlarged local comparison map of the cortex 

shows the spatial distribution and boundary information of different cortical cells (bottom sub-figure). 

g. Comparison of cell annotation based on Bin20 vs. StereoCell using the Allen mouse brain atlas as a 

reference. The spatial distribution of the gear gyrus (DGGRC2, black) and the cortex (TEGLU3, 

TEGLU4, TEGLU7, and TEGLU8) is shown.  

h. Heat map displaying the consistency of marker gene expression within the different substructures in g 

(gear gyrus (DGGRC2) and cortex (TEGLU3, TEGLU4, TEGLU7, and TEGLU8) layers)). The upper 

part: results of Bin20, lower part: results of StereoCell. 

 

2.1.4 Limitations 

StereoCell has quality requirements for the input data. For Stereo-seq transcriptomic 

data, the gene expression counts in each Bin200 should not be less than 5000. For the 

image tiles taken by the microscope, the “track lines” clarity is required to pass our 

image quality control. 

2.2 Materials 

2.2.1 Datasets 

We provide a demo dataset for testing StereoCell, which has been used for the 

experiment of dissecting the structural composition of mouse brain cortex data at single-

cell resolution and includes spatial gene expression data with 131,990,020 molecules 

and 117 image tiles. The demo dataset can be downloaded on our Github repository 

(given in the Code availability section). 

2.2.2 Methods 

2.2.2.1 Image stitching 

The image tiles are stitched into a large mosaic image of the whole tissue by MFWS 

(Fig. 1b). The file name of each image tile needs to reflect the row and column, such as 

“0000_0001.tif” that reflects a tile at row 0 and column 1. Firstly, we calculate the actual 

overlap value with the neighbors in the horizontal and vertical directions for each image 

tile. A pair of image tiles in the vertical direction is taken as example. (i) The 
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overlapping regions of adjacent image tiles are marked as Af and Am respectively, and 

they are divided into N sub-region images as marked {fi} and {mi} respectively. (ii) The 

FFT122 algorithm is applied to obtain 2×N frequency spectra based on {fi} and {mi}. (iii) 

The sub-region images in Af and Am are paired, such as fi and mi, and N cross-power 

spectra are obtained using the formula for image cross-power calculation. Theoretically, 

any one of these spectra can reflect the true offset information. (iv) Due to the low 

signal-to-noise ratio of some sub-regions in the previous step, the calculated value 

differs greatly from the actual value. The overall accuracy of the algorithm can be 

significantly improved by weighted enhancement of partial blocks and reduction of 

residual sub-blocks. Our weighting coefficient is based on the peak value of the mutual 

power spectrum because experiments show that the greater the peak value, the higher 

the precision and reliability of the overlap value. A unique cross-power spectrum is 

obtained after the weighted superposition of N spectra. Then, the corresponding spatial 

domain correlation graph can be obtained through Inverse FFT. The coordinate of the 

peak value represents the required offset value. (v) Carrying out the above steps for 

each pair of adjacent image tiles to generate the offset matrices OH and OV. Secondly, 

transformation of local coordinates to stitching coordinates is required, since image 

stitching demands the unique coordinates of each tile in the reference system, i.e., the 

global coordinate matrix L. In the OH and OV matrixes, offsets corresponding to low-

confidence values are not credible that need to be eliminated. However, it leads to the 

existence of single or multiple connected domains. Therefore, when obtaining the 

coordinates, we first find the center of each connected domain, complete the splicing in 

the connected domain according to the relative relationship among the neighbors, and 

then use the experience value to fill multiple connected domains to complete the 

splicing of the entire image. Thirdly, according to the image tiles and the coordinate 

matrix L, the size of the mosaic image is obtained, the value is traversed, and the seam 

fusion is completed synchronously during the stitching process. 
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2.2.2.2 Image registration 

The spatial gene expression data is read and transformed into a map, in which the 

intensity value of each pixel is proportional to the total count of molecules of all genes 

expressed at position DNB. The stitched image is registered to the transformed map 

(Fig. 1c). Sequencing chips with sample tissue attached, imaging, and sequencing are 

designed with periodic “track lines” (horizontal and vertical) to assist base calling and 

image registration. The “track lines” are displayed as dark straight lines in both the 

stitched image and transformed map. Image registration is achieved using the 

transformed map as a template and performing an affine transformation on the stitched 

image. The “track lines” are detected in the transformed map and stitched image by line 

searching algorithms, and the intersections of the horizontal and vertical “track lines” 

are located. The scaling parameter is calculated by comparing the length of the line 

segments between intersections within the transformed map and stitched image. The 

rotation angle is defined as the difference between the horizontal “track lines” and the 

horizontal direction of the image coordinate system. For the offset between them, since 

the “track line” patterns are periodic, we first calculate the center of gravity of the tissue 

regions within the transformed map and stitched image, roughly match them together, 

and then match the “track lines” intersections to fine-tune the image registration. 

2.2.2.3 Tissue segmentation 

The tissue can be segmented from the registered image. The tissue segmentation 

process consists of two steps: preprocessing and model inference (Fig. 1d). In addition, 

a self-scoring mechanism is added to optimize the processing time and eliminate the 

effort of manually checking the results. The histogram enhancement method is used to 

improve the separation of tissue and background during the preprocessing, and then, 

Bi-Directional ConvLSTM U-Net135 is used to predict tissue masks during the model 

inference. Compared with the original U-Net136, the following improvements are 

incorporated. (i) The convolution sequence is replaced with a densely connected 

convolution in the final step of the encoding path to encourage feature reuse. (ii) The 
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feature maps extracted from the corresponding encoding path are combined with the 

previous decoding up-convolutional layer in a non-linear manner. (iii) The batch 

normalization is added to accelerate the convergence of the network. When dealing with 

a large amount of unstable data, the model cannot achieve ideal results with very 

complex or poor-quality tissue images, and the self-evaluation mechanism help to filter 

these potentially unsatisfactory results. When the registered image possesses a high 

gray value, we use the threshold value obtained in the histogram enhancement step as 

a reference value and assume that the pixel points higher than this value are valid pixels. 

The effective pixel densities of the tissue inside the mask and in the area surrounding 

the mask are calculated in sections, and the ratio of the two values is used as the basis 

for evaluation. 

2.2.2.4 Nuclei segmentation 

The nuclei can be determined from the registered image due to nuclei staining. Nuclei 

segmentation consists of three steps (Fig. 1e). The first step is image preprocessing. The 

median filtering is employed to smooth the noise that may be present in the input image. 

To both enhance the cell and homogenize the image background, the output of the 

median filtering operation is input into the pixel-wise subtraction process. This step 

facilitates the relative conspicuity of nuclei against the background. The second step is 

segmentation model inference. We use U-Net136 for segmenting the cells. Some 

optimizations are made to U-Net that, Residual U-Net137 is used as a feature extractor 

and the Pyramid Squeeze Attention138 module is used instead of the 3×3 convolution in 

the bottleneck as the basic feature-extracting unit of Residual U-Net, which ensures the 

model to pay more attention to the highlighted feature representation. The third step is 

mask post-processing. To obtain a more reliable segmentation, the mask generated by 

the segmentation model is input to the area filtering operation. Further, the opening 

operation (erode and dilatate) is applied to revise the cells shape and boundaries. 

2.2.2.5 Molecule labeling 

The single-cell spatial gene expression profile can be obtained by combining the nuclei 
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mask and spatial gene expression data (Fig. 1f). Firstly, the morphological tissue image 

is used to identify nuclear boundaries as described in nuclei segmentation. The specific 

transcripts that are contained within each nucleus are then assigned. A GMM123 

algorithm is used to estimate the probability of each transcript belonging to a given cell 

based on the nuclei mask. It is performed by modeling each cell as a GMM distribution, 

combining its spatial position, transcript count, and density. Simultaneously, we also 

estimate the probability scores of transcripts in the acellular region. In our model, the 

probability of assignment of a transcript to a given cell declines progressively with 

distance from the cell center, but increases with transcript count and density. A mixture 

model is a probabilistic model that can be used to represent a population distribution 

with K sub-distributions. GMM can be regarded as a model composed of K single 

Gaussian models. Taking a single cell as an example, based on the result of nuclei 

segmentation, we can locate the spatial position of the nucleus. Firstly, GMM is used 

to fit the molecular distribution of the current cells. We expand the nuclei mask 

boundary and captured as much as possible of the true distribution of data in cells rather 

than nuclei to develop the cell mask. According to the empirical value of the cell area, 

we finally determine the fitting range of 100pixels×100pixels. Subsequently, GMM is 

used to calculate the probability score of extracellular molecules within the fitting range. 

Finally, according to the maximum and minimum probability scores within the fitting 

range, the quartile is used as the adaptive threshold of the current cell. When the 

probability score is greater than the threshold, the molecule is re-divided into cells. In 

this way, molecules are assigned to their corresponding cell with high confidence. 

2.2.3 Software 

Operating system: Windows or Linux 

Source package and environment management system: Conda 

Script writing: Python v3.8 

2.2.4 Hardware 

StereoCell can be used on desktops, laptops, workstations, computer clusters or cloud 
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computing platforms. CRITICAL: To ensure the normal operation of StereoCell, we 

recommend a hardware configuration of at least 8-core CPU and 16 GB of RAM. The 

use of GPU can greatly accelerate the tissue and nuclei segmentation steps. The amount 

of disk storage required depends on the input dataset. Our experiment on mouse brain 

dataset is performed on a server with 40-core CPU, 128 GB of RAM and 24 GB of 

GPU, and we reserve at least 6 GB of disk storage for all results. 

2.3 Procedure 

CRITICAL: Before using StereoCell, make sure that “Conda” has been installed, and 

the “Python” environment has been configured and activated (detailed steps are given 

in the GitHub repository). StereoCell can be performed in one-stop, and any one step 

of StereoCell can also be performed individually according to users’ requirements. 

Taking the demo dataset (Stereo-seq mouse brain dataset) as an example, running 

StereoCell one-stop process by command: 

python stereocell.py 

--tiles_path /data/SS200000135TL_D1 

--gene_exp_data /data/SS200000135TL_D1.gem.gz 

--output_path /result 

--chip_no SS200000135TL_D1 

where --tiles_path is the path of all image tiles, --gene_exp_data is the 

compressed file of spatial gene expression data, --output_path is the output path, 

and --chip_no is the chip number of the Stereo-seq transcriptomic data. 

2.3.1 Image quality control ● Timing ~1.5 min 

1. CRITICAL: The image tiles are read and the clarity of their “track lines” are 

detected by image quality control. Only the detection has passed, the program 

proceeds to the next step. The detection result prints: “Image QC: PASS” if passed, 

and “Image QC: FAIL” if failed. This step can also be performed individually by 

command: 

python qc.py 

--tiles_path /data/SS200000135TL_D1 
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--chip_no SS200000135TL_D1 

where --tiles_path is the path of all image tiles, and --chip_no is the chip 

number of the Stereo-seq transcriptomic data. 

2.3.2 Image stitching ● Timing ~2 min 

2. CRITICAL: The stitched image is output as an intermediate result in StereoCell 

one-stop process. This step can also be performed individually by command: 

python stitching.py 

--tiles_path /data/SS200000135TL_D1 

--output_file /result/stitched_image.tif 

where --tiles_path is the path of all image tiles, and –output_file is the 

stitched image. 

2.3.3 Image registration ● Timing ~3.5 min 

3. CRITICAL: The registered image is output as an intermediate result in StereoCell 

one-stop process. This step can also be performed individually by command (since 

the registration requires “track lines”, an additional image quality control is 

performed when performing this step individually): 

python registration.py 

--image_file /result/stitched_image.tif 

--output_file /result/registered_image.tif 

--gene_exp_data /data/SS200000135TL_D1.gem.gz 

--chip_no SS200000135TL_D1 

where --image_file is the stitched image, --output_file is the registered 

image, --gene_exp_data is the compressed file of spatial gene expression 

data, and --chip_no is the chip number of the Stereo-seq transcriptomic data. 

2.3.4 Tissue segmentation ● Timing ~10 s 

4. CRITICAL: The tissue segmentation (tissue mask) image is output as an 

intermediate result in StereoCell one-stop process. This step can also be performed 

individually by command: 

python segmentation.py 

--type tissue 

--image_file /result/registered_image.tif 

--output_file /result/tissue_mask.tif 

where --type can be “tissue” or “nuclei”, --image_file is the registered 

image, and --output_file is the tissue mask image. 
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2.3.5 Nuclei segmentation ● Timing ~9 min 

5. CRITICAL: The nuclei segmentation (nuclei mask) image is output as an 

intermediate result in StereoCell one-stop process. This step can also be performed 

individually by command: 

python segmentation.py 

--type nuclei 

--image_file /result/registered_image.tif 

--output_file /result/nuclei_mask.tif 

where --type can be “tissue” or “nuclei”, --image_file is the registered 

image, and --output_file is the nuclei mask image. 

2.3.6 Nuclei mask filtering ● Timing ~10 s 

6. CRITICAL: Nuclei mask filtering is an optional step. Due to poor image quality 

or overflow of some molecules during gene capturing, there may be some impurities 

outside the tissue, which may be misclassified within the nuclei mask. This step 

uses the tissue mask image to filter out the impurities outside the tissue in the nuclei 

mask image, which can improve the quality of nuclei masks. The filtered nuclei 

mask image is output to replace the original nuclei mask image (changing the name 

of the output file can prevent the filtered image from replacing the original image). 

This step is not included in the StereoCell one-stop process and it can be performed 

individually by the following command if required: 

python filtering.py 

--nuclei_mask /result/nuclei_mask.tif 

--tissue_mask /result/tissue_maks.tif 

--output_file /result/nuclei_mask.tif 

where --nuclei_mask is the nuclei mask image, --tissue_mask is the 

tissue mask image, and --output_file is the filtered nuclei mask image. 

2.3.7 Molecule labeling ● Timing ~63 min 

7. CRITICAL: The single-cell spatial gene expression profiles based on nuclei mask 

and cell mask, respectively, are output. This step can also be performed individually 

by command: 

python labeling.py 

--image_file /result/nuclei_mask.tif 

--gene_exp_data /data/SS200000135TL_D1.gem.gz 

--output_path /result 

where --image_file is the nuclei mask image, --gene_exp_data is 

compressed file of spatial gene expression data, and --out_path is the output 

path. 
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2.4 Troubleshooting 

Troubleshooting advices are found in Table 1. 

Table 1 | Troubleshooting table 

Step Problem Possible reason Solution 

1 
IndexError: list index 

out of range 

The information files 

or weight files are 

missing. 

Make sure the input path contains a 

folder of all image tiles and two 

information files (1.ini and info.ini). Or 

make sure the weight files have been 

moved into the specified folder according 

to our GitHub repository instructions. 

3 

TypeError: only size-1 

arrays can be converted 

to Python scalars 

The inappropriate 

version of the 

“pyvips” package is 

installed. 

Uninstall the “pyvips” package and 

reinstall it with version of 2.2.1, use 

“PyPI” for Windows system, and use 

“Conda” for Linux system. 

2-6 

IndexError: list index 

out of range 

The expanded name 

of the input or output 

file is missing 

Give the expanded name of the input or 

output file (such as “.tif”) when 

executing the command. 

IsADirectoryError: 

[Errno 21] Is a 

directory: ‘…’ 

The file name of the 

input or output is 

missing. 

Give the file name of the input or output 

instead of just a path when executing the 

command. 

 

2.5 Timing 

Step 1, image quality control: ~1.5 min 

Step 2, image stitching: ~2 min 

Step 3, image registration: ~3.5 min 

Step 4, tissue segmentation: ~10 s 
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Step 5, nuclei segmentation: ~9 min 

Step 6, Nuclei mask filtering: ~10 s 

Step 7, Molecule labeling: ~63 min 

2.6 Anticipated results 

A total of six files are output from StereoCell (see details in Table 2). Due to the time 

spent in generating the cell mask image, it is not included as output files from the 

StereoCell one-stop process. When any step of StereoCell is performed individually, 

the corresponding file is generated as an output. When an error occurs in a certain step 

during program execution, it will not affect the intermediate results output by the 

previous steps. That is, after the error is resolved, the intermediate results can be used 

to continue performing subsequent steps to obtain the final result. 

For the generated single-cell spatial gene expression profiles, both 

“nuclei_mask_profile.txt” and “cell_mask_profile.txt” files contain 5 columns, namely 

“geneID”, “x”, “y”, “MIDCount” and “CellID”, which represent the ID of gene, 

coordinate x, coordinate y, gene expression count and the ID of assigned cell 

respectively. In “nuclei_mask_profile.txt”, “CellID” of “0” means that the molecule is 

outside the nuclei, i.e., this molecule is not assigned to any cell. In 

“cell_mask_profile.txt”, a large number of molecules outside the nuclei are assigned to 

cells through MLCG, thus “CellID” of these molecules is no longer “0”, and the 

remaining molecules with “CellID” of “0” are removed to facilitate downstream 

analysis. 

 

Table 2 | Output details 

Step Output file Description 

1 Image quality control NA 
No file output and just print “Image 

QC: PASS” or “Image QC: FAIL” 

2 Image stitching stitched_image.tif The stitched image 



71 

 

3 Image registration registered_image.tif The registered image 

4 Tissue segmentation tissue_mask.tif The tissue mask image 

5 Nuclei segmentation 

nuclei_mask.tif The nuclei mask image 

6 Nuclei mask filtering 

7 Molecule labeling 
nuclei_mask_profile.txt and 

cell_mask_profile.txt 

The single-cell spatial gene expression 

profiles based on nuclei mask and cell 

mask, respectively 

 

2.6.1 Data availability 

The data that support the findings of this study have been deposited into Spatial 

Transcript Omics DataBase (STOmics DB) of China National GeneBank DataBase 

(CNGBdb) with accession number STT0000027: 

https://db.cngb.org/stomics/project/STT0000027. 

2.6.2 Code availability 

StereoCell is used to perform the workflow analysis in this paper. Code, demo dataset 

and graphical user interface software are available at our GitHub repository with the 

detailed documentation: https://github.com/STOmics/StereoCell/tree/dev. 

 

2.7 Supplementary Materials 

The standard design in comparison experiment of image stitching methods. 

For each dataset, a standard is designed according to the size of each image tile and the 

translation parameter set during the microscope shooting, and the standard is fine-tuned 

manually to correct mechanical errors according to the overlap area between each two 

adjacent image tiles. These standards are used to calculate the relative offset error 

between adjacent image tiles in the stitching results of different methods as follows: 

𝑟𝑒௜,௝ = ට൫ห𝑥௜ − 𝑥௝ห − 𝑥௦൯
ଶ

+ ൫ห𝑦௜ − 𝑦௝ห − 𝑦௦൯
ଶ
 

where rei,j is the relative offset error between the i-th and j-th image tiles (adjacent 
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image tiles), (xi, yi) and (xj, yj) are the coordinates of the image tiles in the stitching 

result, and (xs, ys) is the coordinate of standard. 

According to the “track lines” designed on the Stereo-seq chip, a template of stitched 

image can be obtained for each Stereo-seq dataset (the public dataset has no “track lines” 

that its template is not obtained). These templates are used to calculate the absolute 

offset error in the results of different methods as follows: 

𝑎𝑒 = ෍ ඥ(𝑥𝑟௞ − 𝑥𝑡௞) + (𝑦𝑟௞ − 𝑦𝑡௞)
௡

௞ୀଵ
 

where ae is the absolute offset error, (xr, yr) and (xt, yt) are the coordinates of a marker 

point in the stitching result and template respectively, k means the k-th marker point (k 

= 1, 2, …, n), and there are total n marker points obtained according to the “track lines”. 

 

Data analysis process and evaluation metrics in experiment of generating single-

cell spatial gene expression profile on Stereo-seq mouse olfactory bulb dataset. 

The profiles are input into Stereopy (v6.0) to calculate the total gene counts and number 

of uniquely expressed genes through the quality control function. During the filtering 

process, the cells with fewer than 150 expressed genes and more than 5% mitochondrial 

genes are removed, and genes present in less than 3 cells are also removed. The profiles 

are then normalized using the “SCTransform” function. The differentially expressed 

genes are summarized by Principal Component Analysis (PCA) to reduce the data 

dimensionality. With these settings, we run the uniform manifold approximation and 

projection (UMAP) algorithm to obtain 2D data projections, followed by the “Leiden” 

clustering to identify all clusters within the dataset. The silhouette coefficient for 

evaluating clustering results is calculated as follows: 

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
 

where, S(i) is the silhouette coefficient, a(i) indicates the average distance between the 

i-th sample and other samples in its cluster, and b(i) is the average distance between the 

i-th sample and the samples in other clusters. Silhouette coefficient provides 
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information on how similar a given cell is to other similar cells/bins (cohesion) in 

comparison with non-similar cells (separation). The moran’s I for evaluating spatial 

correlation as follows: 

𝐼 =
𝑛

𝑆଴

∑ ∑ 𝜔௜,௝𝑧௜𝑧௝
௡
௝ୀଵ

௡
௜ୀଵ )

∑ 𝑧௜
ଶ௡

௜ୀଵ

 

where, I is the moran’s I, zi is the deviation of the attribute of factor i from its mean 

value, wi,j is the spatial weight between factors i and j, n is equal to the factor integration, 

and S0 is the aggregation of all spatial weights. 

 

Data analysis process and evaluation metrics in experiment of dissecting the 

structural composition on Stereo-seq mouse brain dataset. 

The generated profiles are input into Stereopy (v6.0), the total gene counts and number 

of uniquely expressed genes are calculated, the cells with fewer than 200 expressed 

genes and more than 5% mitochondrial genes are removed, and the genes present in 

less than 3 cells are removed. The profiles are normalized using the “SCTransform” 

function. The differentially expressed genes are summarized using PCA and the 2D data 

projections are obtained by the UMAP algorithm, followed all clusters within the 

dataset are identified by the “Leiden” clustering. 
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Abstract 

Stereo-seq is a cutting-edge technique for spatial resolved transcriptomics that 

combines subcellular resolution with centimeter-level field-of-view, serving as a 

technical foundation for analyzing large tissues at the single-cell level. Our previous 

work presents the first one-stop software that utilizes cell nuclei staining images and 

statistical methods to obtain high-confidence single-cell spatial gene expression profiles 

for Stereo-seq data. With recent advancements in Stereo-seq technology, it is possible 

to acquire cell boundary information, such as cell membrane/wall staining images. To 

take advantage of this progress, we updated our software to a new version, named 

STCellbin, which utilizes the cell nuclei staining image as a bridge to acquire cell 

membrane/wall staining images that align with spatial gene expression maps. By 

employing an advanced cell segmentation technique, accurate cell boundaries can be 

obtained, leading to more reliable single-cell spatial gene expression profiles. 

Experimental results verify the application of STCellbin on mouse liver (cell 

membranes) and Arabidopsis seed (cell walls) datasets. The improved capability of 

capturing single cell gene expression profiles by this update results in a deeper 

understanding of the contribution of single cell phenotypes to tissue biology. 

 

Availability & Implementation: The source code of STCellbin is available at 

https://github.com/STOmics/STCellbin. 
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3.1 STATEMENT OF NEED 

Spatial resolved single cell transcriptomics enables the generation of comprehensive 

molecular maps that provide insights into the spatial distribution of molecules within 

the single cells that make up tissues. This groundbreaking technology offers insights 

into the location and function of cells in various tissues, enhancing our knowledge of 

organ development106, tumor heterogeneity118, cancer evolution119, and other biological 

mechanisms. Resolution and field-of-view are two critical parameters in spatial 

transcriptomics. High resolution enables detailed molecular information at the single-

cell level, and large field-of-view facilitates the creation of complete 3D maps that 

represent biological functions at the organ level. Stereo-seq simultaneously achieves 

subcellular resolution and a centimeter-level field-of-view, providing a technical 

foundation for obtaining comprehensive spatial gene expression profiles of whole 

tissues at single-cell level47. Our previous work offers the software StereoCell for 

acquiring high signal-to-noise ratio single-cell spatial gene expression profiles from 

Stereo-seq data139. The image data generated by Stereo-seq for StereoCell consists of a 

nucleus staining image. However, there is a big difference between cell nuclei and cell 

boundary staining images, based on cell membrane/wall staining, in terms of the ability 

to capture robust and precise cell specific gene expression profiles. Despite the 

widespread use of spatial techniques, such as MERFISH30, CosMx117, and Xenium116, 

several of these techniques still struggle to achieve accurate cell boundary information, 

as they are based on nuclei staining images that can be generated using stains such as 

4,6-diamidino-2-phenylindole (DAPI). With STCellbin, we here implement a 

procedure based on simultaneous cell membrane/wall and cell nuclei staining using 

multiplex immunofluorescence (mIF) and calcofluor white (CFW) staining140,141, to 

automatically acquire more accurate cell boundary information and thereby obtain more 

reliable single-cell spatial gene expression profiles.  

In STCellbin, we have retained the image stitching, tissue segmentation and 

molecule labeling steps from StereoCell and improved the image registration and cell 
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segmentation steps. As the cell membrane/wall staining images miss the “track line” 

information, which is the key in the image registration step 139, we utilize the cell nuclei 

staining image as a bridge to align the cell membrane/wall staining image with the 

spatial gene expression map, upon which we obtain the registered cell boundary 

information in the cell segmentation step. Based on the cell boundaries information, we 

directly assign the molecules to their corresponding cells, obtaining single-cell spatial 

gene expression profiles. We here applied STCellbin on mouse liver (cell membrane) 

and Arabidopsis seed (cell wall) datasets, and confirm the accuracy of cell segmentation. 

This update offers a comprehensive workflow to obtain reliable single-cell spatial gene 

expression profiles based on cell membrane/wall information, providing support and 

guidance for related scientific investigations, particularly those based on Stereo-seq. 

 

3.2 IMPLEMENTATION 

3.2.1 Overview of STCellbin 

The process of STCellbin includes image stitching, image registration, cell 

segmentation and molecule labeling (Fig. 1). The Stereo-seq spatial gene expression 

data, cell nuclei and cell membrane/wall staining image tiles are input into STCellbin. 

The stitched cell nuclei and cell membrane/wall staining images are obtained through 

the MFWS algorithm139. The stitched cell nuclei and cell membrane/wall staining 

images are registered using the Fast Fourier Transform (FFT) algorithm122. The spatial 

gene expression data is transformed into a map, this map and a stitched cell nuclei 

staining image are registered based on “track lines”. Thus, the registration of the gene 

expression map and cell membrane/wall staining image is implemented. Cell 

segmentation is performed on the registered cell membrane/wall staining image by 

Cellpose 2.068 to obtain the cell mask. The molecules are assigned to their 

corresponding cells according to the cell mask to obtain the single-cell spatial gene 

expression profile. The tissue segmentation step based on Bi-Directional ConvLSTM 

U-Net135 is set as optional, which can generate a tissue mask to assist in filtering out 
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impurities outside the tissue. 

 

 

Figure 1. Overview of STCellbin. The cell nuclei and cell membrane/wall staining image tiles are 

stitched into individual large images respectively. The spatial gene expression map and stitched cell 

membrane/wall staining image are registered with the stitched cell nuclei staining image as a bridge. The 

cell mask is directly obtained from the registered cell membrane/wall staining image by cell segmentation. 

The single-cell spatial gene expression profile is obtained by overlaying the generated cell mask and the 

gene expression map. 

 

3.2.2 Image stitching 

The image stitching steps in STCellbin is consistent with the image stitching steps in 

StereoCell. The MFWS algorithm139 is adopted, which calculates the offsets of two 

adjacent tiles with overlapping areas using FFT122 to stitch these two tiles, and extends 

this process to all tiles. The relative error, absolute error and running time of MFWS 

have been verified in our previous work139. 
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3.2.3 Image registration 

The image registration of STCellbin includes two steps. The first is the registration of 

the stitched cell nuclei and stitched cell membrane/wall staining images. The two 

stained images are taken by the same microscope at the same magnification, which 

ensures that they have similar sizes and no large difference in rotation. Therefore, the 

key of the registration is to calculate the image offsets. The cell nuclei staining image 

is fixed, and the size of the cell membrane/wall staining image is adjusted to be 

consistent with the cell nuclei staining image by cutting and zero-padding (Fig. 2A). 

FFT113 is then used to calculate the image offsets (similar to MFWS139). To save 

computing resources, the two stained images are mean-based subsampled142 (Fig. 2B), 

the offsets of the subsampled images are calculated (Fig. 2C), and these offsets are 

restored to the scale of the original images so that the nuclei and cell membrane/wall 

staining images can be registered (Fig. 2D). The second registration is the same as in 

StereoCell139, that is, the spatial gene expression data is transformed into a map, and 

then this map is registered with the stitched cell nuclei staining image based on “track 

lines”. This registration fixes the spatial gene expression map and performs scaling, 

rotating, flipping and translating on the stitched cell nuclei staining image. Since the 

cell nuclei and cell membrane/wall staining images have been registered, the same 

operations (scaling, rotating, flipping and translating) are repeated on the cell 

membrane/wall staining image (Fig. 2E), that is, the cell membrane/wall staining image 

and spatial gene expression map can be registered using the nuclei staining image as a 

bridge. STCellbin also has compatibility with registration requirements of specific 

images. When utilizing staining images produced with a multi-channel microscope, it 

is possible to omit the registration between these images, and the image stitching 

parameters can be the same for all channel images. Moreover, the registration can 

handle the case of multiple mIF staining images taken from identical tissues using the 

same microscope when there is only a difference in offsets among these images. 
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Figure 2. Registration of the cell membrane/wall staining image and spatial gene expression map 

using the cell nuclei staining image as a bridge. A. Size of the cell membrane/wall staining image is 

adjusted to be consistent with the cell nuclei staining image. B. Cell nuclei and cell membrane/wall 

staining images are subsampled. C. Calculating the offsets of the subsampled images. D. Restoring the 

offsets to the scale of original images for registration. E. Registering the spatial gene expression map and 

cell nuclei staining image by performing scaling, rotating, flipping and translating, and registering the 

spatial gene expression map and cell membrane/wall staining image by performing the same operations. 
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3.2.4 Cell segmentation 

The cell segmentation step of STCellbin is performed using Cellpose 2.068 with some 

adjustments. The model architecture of Cellpose 2.0 and its weight files “cyto2” are 

downloaded. Due to the large size of staining images derived from Stereo-seq data, 

Cellpose 2.0 cannot be executed smoothly using normal hardware configurations. To 

circumvent this issue, the staining images are therefore cropped into multiple tiles with 

overlapping areas to perform cell segmentation and record the coordinates of tiles. The 

overlapping areas rescue cells at the border of the tiles from being cropped. To obtain 

the best results, segmentations with different values of the cell diameter parameter are 

performed independently, and the result with the largest sum of cell areas is retained. 

All the segmented tiles are assembled into the final segmented result according to the 

recorded coordinates. Moreover, when selecting the tissue segmentation option, an 

additional step is executed to apply a filter on the cell mask using the tissue mask, 

resulting in a filtered segmented outcome. 

 

3.2.5 Molecule labeling 

The molecule labeling of STCellbin is in principle the same as the one used in 

StereoCell. StereoCell assigns molecules in the cell nuclei to the cell by using the cell 

nuclei mask, and then assigns molecules outside the cell nuclei to the cells with the 

highest probability density using Gaussian Mixture Model123. STCellbin assigns 

molecules to the cells directly based on the cell mask, while the process of assigning 

molecules outside the cell is included as an option. The latter decision was made as the 

cell membranes/walls are usually tightly packed, with only a few molecules outside the 

cells, and the assignment of these molecules takes a lot of time. Thus, we generally do 

not recommend this option, and the users can use it according to actual requirements. 
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3.3 RESULTS 

3.3.1 Datasets 

We adopt two datasets acquired via Stereo-seq technology47 One is a mouse liver dataset, 

a tissue that offers cell boundary information via cell membranes, as in all mammalian 

tissues. The other dataset is derived from seeds of the plant Arabidopsis, a tissue that 

provides cell boundary information based on rigid cell walls. More details of the two 

datasets are shown in Table 1. 

 

Table 1. Details of two datasets used for evaluation of cell boundary information 

Detail Mouse liver dataset Arabidopsis seed dataset 

Data source A slice of liver Slices of multiple seeds 

Cell nuclei dye DAPI ssDNA 

Cell membrane/wall dye mIF CFW 

Number of molecules 16,177,288 62,884,637 

Number of cell nuclei staining image tiles 99 126 

Number of cell membrane/wall staining image tiles 99 117 

Abbreviations: CFW: calcofluor white; DAPI: 4,6-diamidino-2-phenylindole; mIF: multiplex 

immunofluorescence; ssDNA: single strand DNA. 

 

3.3.2 Evaluation of cell segmentation performance 

To evaluate the cell segmentation performance of STCellbin, we designed a ground 

truth based on a manual markup of the cells according to their cell membranes/walls 

based on the staining images. The number of cells from ground truth is named ng. The 

number of cells segmented by STCellbin is named ns. For each STCellbin segmented 

cell (s_celli), there must be a corresponding cell from ground truth (m_celli), where i is 

the index of the cell (i = 1, 2, …, ns). Then a rule is set: 

s_cell  is segmented correctly          if  0.5

s_cell  is segmented incorrectly       otherwise
i i

i

IoU 

  

(1) 

where IoU is the standard intersection over union metric66 set as: 
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i i iIoU ao au  
(2) 

where aoi is the area of overlap between s_celli and m_celli, and aui is the area of union 

of these two cells. Then the precision (Pre) and recall (Rec) are adopted: 

Pre= nc ns  
(3) 

Rec=nc ng  
(4) 

where nc is the number of cells correctly segmented by STCellbin. 

 

3.3.3 Generation of single-cell spatial gene expression profiles utilizing cell 

membrane/wall staining images 

STCellbin was next applied to the mouse liver and Arabidopsis seed datasets. For each 

dataset, the input includes a file of spatial gene expression data, a folder of cell nuclei 

staining image tiles, and a folder of cell membrane/wall staining image tiles. Through 

the steps of image stitching, image registration, cell segmentation (the option of tissue 

segmentation is selected), and molecule labeling, the single-cell spatial gene expression 

profiles are generated as the output. 

Given the substantial amount of work required for manual cell marking and limited 

clarity in certain regions of the staining images, we selected the areas with the best 

image data from the two datasets for presentation of the segmentation results. When 

using staining images with different dyes, STCellbin effectively identifies cell 

membranes/walls for cell segmentation, yielding cell masks that exhibit acceptable 

agreement with the manually marked results (Fig. 3A). This capability offers significant 

time and cost savings in practical applications. STCellbin demonstrates reliable 

identification of cells in both mammalian and plant tissues with a detection rate (ns/ng) 

of over 93.6%, and correctly segments most of them (Fig. 3B, left). Using the 

Arabidopsis seed dataset, STCellbin achieves a precision of 60.5% and a recall of 

56.7%, while in the mouse liver dataset, it achieves a precision of 74.1% and a recall of 

70.5% (Fig. 3B, right). 



84 

 

By employing STCellbin, the Stereo-seq spatial gene expression data includes an 

attribute of “CellID”, that is, the molecules are assigned to their originating cell to 

obtain single-cell gene expression profiles with spatial information (Fig. 3C, left). Cell 

area, number of unique genes per cell and number of gene counts per cell are 

statistically analyzed based on the data generated from mouse liver and the two 

Arabidopsis seeds with the most accurate segmentation profiles (Fig. 3C, right). By 

utilizing the obtained single-cell spatial gene expression profiles, clustering analysis 

was performed using the Leiden algorithm143 (Fig. 3D). The resulting clusters of cells 

are spatially mapped within the tissue (Fig. 3D, left hand side for each tissue), allowing 

for the observation of their specific positions. From the Umaps, it is apparent that the 

different cell types are effectively distinguished (Fig. 3D, right hand side for each 

tissue). The spatial location of the different cell types will positively influence a series 

of downstream analyzes such as cellular annotation in less well-studied tissues. 
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Figure 3. Results of STCellbin on mouse liver and Arabidopsis seed datasets. A. Results of cell 

segmentation, where in the merged images, cell masks are set in yellow, staining images are set in cyan, 

and ground truths are set in red. B. Evaluation of segmentation performance. C. Generation of single-

cell spatial gene expression profile, and statistics of cell areas, gene number per cell and gene expression 

per cell. D. Clustering results (left) and Umaps (right) from generated single-cell spatial gene expression 

profiles of a slice of mouse liver and two Arabidopsis seeds. 

 

3.3.4 Discussion 

Accurate identification of cell boundaries plays a crucial role in generating single-cell 

resolution in spatial omics applications. Based on previous work in StereoCell using 

cell nuclei staining images to generate single-cell spatial gene expression profiles, this 

STCellbin update extends the capability to automatically process Stereo-seq cell 

membrane/wall staining images for identification of cell boundaries that facilitates 

downstream analyses. We also showcase a few examples of the performance of cell 

membrane/wall segmentation in STCellbin. Currently, the tools for cell nuclei and cell 

membrane/wall segmentation can be independently executed, allowing users to choose 

the more suitable solution for their specific applications. In future work, these two 

techniques can be combined by training a deep learning model that is compatible with 

any staining image type, thereby achieving more accurate results. 

 

3.4 AVAILABILITY OF SOURCE CODE AND REQUIREMENTS 

● Project name: STCellbin 

● Project home page: https://github.com/STOmics/STCellbin 

● Operating system(s): Platform independent 

● Programming language: Python 

● Other requirements: Python 3.8 

● License: MIT License 

● RRID: SCR_024438 

 

3.5 DATA AVAILABILITY 

The data that support the findings of this study have been deposited into Spatial 
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Transcript Omics DataBase (STOmics DB) of China National GeneBank DataBase 

(CNGBdb) with accession number STT0000048: 

https://db.cngb.org/stomics/project/STT0000048. 
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Abstract 

Background: The emergence of high-resolved spatial transcriptomics (ST) has 

facilitated the research of novel methods to investigate biological development, 

organism growth, and other complex biological processes. However, high-resolved and 

whole transcriptomics ST datasets require customized imputation methods to improve 

the signal-to-noise ratio and the data quality.  

Findings: We propose an efficient and adaptive Gaussian smoothing (EAGS) 

imputation method for high-resolved ST. The adaptive two-factor smoothing of EAGS 

creates patterns based on the spatial location and expression information of the cells, 

generates adaptive weights for the smoothing of cells in the same pattern, and then 

utilizes the weights to restore the gene expression profiles. We assessed the performance 

and efficiency of EAGS using simulated and high-resolved ST datasets of mouse brain 

and olfactory bulb.  

Conclusions: Compared with other competitive methods, EAGS shows higher 

clustering accuracy, better biological interpretations, and significantly reduced 

computational consumption. 

 

Keywords: spatial transcriptomics; imputation; gaussian smoothing; adaptive weight 
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4.1 Introduction 

Recent advances in barcode-based spatial transcriptomics (ST) technology include 10X 

Visium44,Slide-Seq20,45 and high-definition spatial transcriptomics42. These advances 

made it feasible to provide expression profile information of entire genes, which is 

extremely important for comprehending biological functions and interaction 

networks106,145. High-resolved ST is an essential technical support for analyzing 

complex biological problems, as the function of complex biological tissues is closely 

related to the location of the transcriptional expression events within the tissue. 

However, cell localization and identification are limited by technical factors, such as 

the chip capture area, the sequencing depth, and the resolution. Spatially enhanced 

resolution transcriptome sequencing (Stereo-seq)47 is a new ST technology based on 

DNA nanoballs. Stereo-seq provides the highest resolution (500 nm) among all 

currently available ST technologies. Such breakthrough in resolution allows researchers 

to perform genome-wide analyses of gene expression at the capture site (spot) with a 

single-cell or even sub-cellular resolution. Wang et al.146 applied Stereo-seq to the 3D 

reconstruction of the ST of Drosophila embryos and larvae, providing a spatial- and 

temporal-resolved transcriptomic map of the whole organism across the developmental 

stages for Drosophila research. Liu et al.147 reconstructed the developmental trajectory 

of zebrafish embryos during their development by analyzing Stereo-seq and scRNA-

seq datasets from different time points. 

Barcode-based high-resolved ST technology captures fewer genes at a single 

sequencing site (spot) than low-resolution ST technologies, such as 10X Visium44 

leading to high sparsity of the complete gene expression profile. In certain cell cycle 

phases, some cells do not express a set of genes whose expression thus appears to be 

null. In addition, amplification bias, cell cycle, library creation, and poor RNA capture 

rates cause some genes to be expressed but not captured by DNA nanoballs; such genes 

are called “dropout”148. Such biases adversely affect downstream analyses, such as 

clustering, cellular interaction analyses, and pseudo-temporal reconstructions149,150, 
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when the raw data is directly processed. 

Various imputation methods have been proposed to solve the “dropout” in gene 

expression for scRNA-seq datasets151. These imputation methods can be broadly 

classified into 3 categories according to their principles. The first category smooths or 

diffuses the levels of gene expression in cells with comparable expression patterns to 

correct (typically) all values (zero and non-zero). MAGIC imputes the missing data on 

scRNA-seq datasets based on the Markov chains of adjacent domains and recovers gene 

expression of the characterized cells by data diffusion152; DrImpute finds similar cells 

by consensus clustering and pools their gene expression values to estimate the loss153. 

The second category models the gene expression profile with an existing probabilistic 

statistical model to simulate the distribution of genes. SAVER assumes that each gene 

in each cell follows a Poisson-Gamma distribution (a negative binomial distribution) 

and estimates prior parameters to recover the expression of the missing genes using 

Poisson LASSO regression methods154. Scimpute constructs a mixed Gamma-Normal 

distribution based on the gene expression profile and uses a non-negative least squares 

regression model, sc-transform (R package), to perform the imputation155. The third 

category uses deep learning methods to capture the potential spatial representation of 

cells and reconstruct the expression matrix. DCA is an auto-encoder that predicts the 

parameters of the selected distribution to generate estimates156. These methods offer 

practical recommendations for single-cell imputation; however, these methods do not 

account for spatial information in ST datasets, and the methods based on specialized 

statistical models cannot be applied to the high sparsity of high-resolved ST datasets. 

In recent years, ST-based imputation methods have been presented. The method 

Sprod first projects gene expression onto a potential space, connects nearest neighbor 

cells to construct patterns, and then learns the denoising matrix using a shared 

minimization of the graph’s Laplacian smoothing term and reconstruction errors157. For 

ST data without pathology images, Sprod provides cluster-based pseudo-images, but it 

does not accurately reflect the actual cell clustering situation. STAGATE introduces a 
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graph attention auto-encoder to construct a spatial neighbor network based on 

sequencing spots, and then, it introduces a distribution of the spatial neighbor network 

in the middle layer of the self-encoder to learn the correlation of neighboring 

sequencing spots and subsequently obtains the recovered gene expression profile by 

decoder105. However, the labels processed based on a specific clustering method are not 

completely consistent with the reality of the biological organization. It has been noted 

that the self-attention layer of the network does not consider the interaction between 

spot pairs and the information about the graphical structure of the spots158. 

To address these problems, we propose an efficient and adaptive Gaussian 

smoothing (EAGS) method, which is applied to high-resolved ST data. EAGS be 

derived from the fact that the spatial location of cells in biological tissues has a close 

relationship with their microenvironment, and the gene expression levels of cells within 

the same microenvironment are similar155,159.EAGS constructs different patterns based 

on cell expression profiles and cell location information to generate a similarity matrix. 

The similarity matrix then assesses cellular similarity within expression profiles to 

recover true biosignatures. By refining the information from proximal cells using 

adaptive smoothing weights and generating new gene expression profiles, the “dropout” 

is reduced. The resulting dataset provides RNA abundances more accurately than the 

original gene expression profile and preserves more of the true biological signal. EAGS 

enables the usage of high-sparsity ST datasets since it is independent of prior statistical 

models of the expression preconditioning the gene expression profiles. More crucially, 

EAGS could be used for large-scale ST datasets without requiring a lot of operating 

memory since it does not call for the computation of parameters for a pre-defined model, 

skipping most of the iterative process. We here applied EAGS to the simulated and 

high-resolved ST datasets of mouse brain and olfactory bulb, and compared it with 

widely used imputation methods to evaluate its efficacy in terms of fewer “zeros” in the 

gene expression profiles, improved cell annotation, and spatial organization replication. 
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4.2 Methods 

4.2.1 The workflow of EAGS 

In EAGS, the original expression matrix with the single-cell resolution was first used 

to generate patterns based on expression and spatial information. Then, the tight 

relationship between cells was established usispang two distinct patterns. Finally, the 

smoothing weights calculated from the patterns were used to define the level of 

smoothing for each cell, and were applied to recalculate the gene expression. 

4.2.2 Datasets 

There were two methods to generate gene expression profiles from Stereo-seq in situ 

captured data. One was to acquire the spatial location information of various cells by 

conducting cell identification and segmentation on the optical stained image, and then 

match the cell in the image to the sequencing spots with spatial coordinates47,139. The 

other one was to take consecutive X×X bins as units (considered as cells), where each 

bin (binX) contains the total gene expression of X×X spots47. We used the mouse brain47 

and olfactory bulb datasets at single-cell resolution139, which were generated by the first 

method and included 61,857 and 33,272 cells respectively. The in situ hybridization 

(ISH) images of the signature genes from the mouse brain were obtained to help 

compare the impacts of smoothing134,160. We also used another mouse olfactory bulb 

dataset generated by the second method, which contained 812 units of Bin140161. 

The above two categories of gene expression profile with spatial information were pre-

processed with the Scanpy toolbox (V1.9.1; RRID:SCR_018139) to remove low-

quality signals that might be blended into the gene expression data85,162. For the first 

category, firstly, we filtered genes based on expression in at least 10 cells: those genes 

were kept. Next, cell outliers were filtered using gene expression: cells expressing at 

least 300 MID counts were kept. The 2% highest MID counts in all cells were subtracted 

from the overall number of MIDs across all cells in the gene expression profile. Finally, 

the coordinates of the spatial position information of the cells and the log-transformed 

and normalized gene expression profiles were employed as input to EAGS. For the 
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second category, we filtered genes based on expression in at least 10 cells: those genes 

were kept. Next, cell outliers were filtered using gene expression: cells expressing at 

least 300 MID counts were kept. 

 

4.2.3 Pattern construction 

Since “similar cells” in organisms with comparable molecular microenvironments 

express their genes similarly, the regions with identical expression patterns may 

originate from the same cell type or from the same biological tissue location155,159. 

Using “similar cells” to supplement the information of a particular spot is feasible. 

Based on spatial location data and gene expression profiles, we constructed two patterns 

to divide the cells on an ST slice’s gene expression profile into several clusters. A 

comprehensive description of these two pattern styles is given below: 

Definition 1 (Gene Expression Pattern): If  e iP  is the gene expression domain of 

iCell  for ST data, then: 

     , { } , . . e e
j e k g e i ij iki i s t d d      Cell P Cell P P Cell  (1) 

where iCell  , jCell   and kCell   are different cells, gP   is the global pattern of gene 

expression, e
ijd   and e

ikd   are the distance between iCell   and jCell  , and iCell   and 

kCell , respectively. 

Balltree is a binary tree data structure that performs well on high-dimensional 

datasets, especially for Fast Nearest-neighbor Search on high-dimensional 

datasets163,164. The complete gene expression profile is separated into many different 

subspaces by Balltree. Then, the Euclidean distances between cells are calculated 

separately. Assuming the pre-normalized gene expression profile still contains m cells, 

the unsupervised nearest neighbor network toolkit (scikit-learn) is used to extract the n-

dimensional principal component data and creates the low-dimensional information 
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matrix (  ,m nLDIM ) for the gene expression profile, as shown in Algorithm 1165. Then, 

the neighboring cell matrix is constructed based on the K-Nearest Neighbors network 

as in Algorithm 2, forming the Expression Neighbor Matrix ( ( , )m mENM  ). Different 

definitions are given depending on whether jCell   can be attributed to the gene 

expression pattern of iCell : 

    
 

,

1,

= 1,

0,

j ei j

j e

j i

ENM i

i

 
 
 

Cell P

Cell P

 (2) 

where  ,i jENM  defines whether jCell  is within the gene expression pattern  e iP  of 

iCell , if  ,i jENM  = 1, jCell  belongs to the expression pattern of iCell ; if  ,i jENM  = 

0, it does not. 

 

Algorithm 1. Builds the tree structure of Balltree 

Balltree is built using a divide-and-conquer method. Initially, Balltree has only one (root) node 

and all data points are assigned to it. At each step, the partition corresponding to each node is 

split into two sub-partitions. For a partition ip , the splitting procedure is as follows: 

Step 1: Find the centroid of the node points in  ,m nLDIM . Reducing an n-dimensional matrix to 

a two-dimensional plane, the centroid of the node is centroid 1. 

Step 2: Select the farthest point from centroid 1 in ip  as the first (left) child pivot L
ip . 

Step 3: Select the farthest point from L
ip  as the second (right) child pivot R

ip . 

Step 4: Assign each data point ip  to the partition whose pivot is closer. 

Step 5: Assign the new sub-partitions as children of iv  in Balltree, i.e., R
iv  and L

iv . 
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Algorithm 2. Using Balltree to find the nearest Neighbor of each cell 

Input: Balltree structure nbrs  , nearest neighbor num k , test point t , Current node n  

Output: Expression Neighbor Matrix ( ENM ) 

Algorithm: ( , , , )ball tree research nbrs k t n   

if  , .distance t node pivot  - .node radius  ≥  max q : 

return; 

if node in leaf-node set: 

Add .node pivot  to Q  refresh q  

If  length Q  > k : 

    Remove the point furthest from the test point 

    Refresh q  

else: 

( , , , . 1)ball tree research nbrs k t nodeson   

( , , , . 2)ball tree research nbrs k t nodeson   

end if 

return ENM  

 

The difference between ST and scRNA-seq datasets is that ST dataset provides the 

spatial coordinate position of each sequencing site (spot). After StereoCell processing, 

ST data are spots with a single-cell resolution where every spot corresponds to a single 

physical cell with spatial coordinates139. Cells in adjacent regions of histological 

sections are more likely to come from the identical microenvironment and belong to 

similar or identical cell types than cells from other areas. Therefore, we offer the spatial 

neighborhood pattern as a reference and classify the cluster of cells that are physically 

adjacent to a specific cell as its “spatial neighborhoods”: 
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Definition 2 (Spatial Neighbor Pattern): If  s iP  is the spatial neighbor pattern of 

iCell  for ST data, then: 

     . . s
j s ij si s t d   ，Cell P  (3) 

where S
ijd   is the spatial distance between iCell   and jCell  , and s   represents the 

maximum spatial distance of  s iP  of iCell . 

Since the spatial distribution of ST dataset is a two-dimensional plane space, the 

Euclidean distance can serve as a useful measure of spatial location between cells in a 

low-dimensional environment. Therefore, the spatial distance Matrix (  ,m mSDM  ) is 

constructed by computing the Euclidean distance. Furthermore, since ST chips of the 

Stereo-seq platform vary in size, EAGS fine-tunes the weight value for different chip 

sizes while calculating Euclidean distances. 

 

4.2.4 Adaptive weight calculation 

Cells can be used as smoothing factors for iCell  , and must satisfy both the gene 

expression pattern and the spatial neighbor pattern belonging to iCell . A cell acting as 

the smoothing factor is more similar in gene expression to the smoothed cell than to 

other cells in the overall expression profile. EAGS defines the nearest neighbor 

contribution matrix (  ,m mNCM ) for a ST dataset containing m  cells as follows: 

      , , ,m m m m m m NCM SDM ENM  (4) 

where  ,m mNCM   is the dot product obtained by multiplying the corresponding 

elements of the  ,m mSDM  and  ,m mENM  matrices. The non-zero value nonzeroNCM  part 

of the  ,m mNCM  is selected as the parameter for smoothing weights, and nonzeroNCM  is 

a G-dimensional row vector, where the condition G M M    is satisfied. The thp  
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percentile of the nonzeroNCM   along the specified axis is calculated by the following 

method: 

  1 thG p c t     (5) 

where G   represents the number of vectors of nonzeroNCM  . c   and t   represent the 

integer and fractional parts of the calculation result, respectively. The Distance 

Distribution Threshold ( DDT ) is defined as follows: 

      1 1nonzero nonzeroDDT t c t c     NCM NCM  (6) 

where the calculated c   and t   obtain the thp   percentile DDT   along the specified 

axis of the nonzeroNCM . The calculation of the adaptive weights is based on the nonzeroNCM : 

  
 2

22GS
b

new a e 




  
NCM

GS NCM  (7) 

where newGS   is the degree of smoothing information and is an adaptive weight 

determined by the degree of similarity between the cells in the pattern’s framework, and 

GS()   is used to calculate the adaptive weights. The precise smoothing weight 

contribution between cells is calculated as follows: 

 
 2

2 ln

DDT b

gs
a




 
   
 

 (8) 

where gs   is a hyperparameter that characterizes the overall smoothness of the 

reference gene expression profile, which represents the overall smoothness of the entire 

chip. For a 1 1  cm ST chip of the Stereo-seq platform, gs  is set to 0.95.   is the 

smooth weight that varies around the gs  , and characterizes the overall contribution 

level of cells in both the  e iP  and  s iP  to iCell . 

DDT  in Eq. (6) refers to the similarity distance between cells generated based on 

the Gene Expression Pattern and the Spatial Neighbor Pattern in the entire gene 

expression distribution matrix, that as a global benchmark reference for information 
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distribution and can be characterized as the distribution of the gene expression matrix 

from the overall level.   calculated in Eq. (8) refers to the standardized parameters of 

the Gaussian model. The value of   calculated by DDT  can make the smoothed gene 

expression matrix more consistent with the preset distribution, such newGS   can be 

measured with the help of some existing expression quantities, genes are complemented 

without changing the overall expression profile. 

 

4.2.5 Smooth 

The raw gene expression profile can be processed after newGS   and raw expression 

originE have been obtained:  

  
     

    1
A

A

new origin xi P i

GS

newi P i

R i,x i
x

R i,x





 






GS E E

E
GS

 (9) 

where GSE  represents the level of gene expression after adaptive weight smoothing, 

( )AP i  represents all cells in the region where cell x is smoothed, xE  represents the 

original gene expression of the smoothed cell. The whole process can be represented 

by Algorithm 3. 

 

Algorithm 3. Calculate weights and perform smoothing 

Input: Expression Neighbor Matrix ENM  , Spatial Distance Matrix  ,m mSDM  , Origin 

expression matrix originE  , Hyperparameter gs  

Output: Smooth expression Matrix  GSE  

Step 1:  Calculating the K-nearest-neighbor cell Euclidean distance distribution. 

Step 2:  Smooth threshold takes the percentile value x of the distance distribution and requires 

a value from 0.2 to 1. 

Step 3:  Using Eq. (6) to back-calculate the magnitude of   at this time; preset gs  =  0.95. 
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Step 4:  The Gaussian weights at other distances are calculated by substituting   values into 

Eq. (7). 

Step 5:  Re-weighted summation based on the newly calculated Gaussian weights and the 

original expressions. 

 

If relying entirely on the cells in the ( )AP i  as smoothing factors without using the 

origin gene expression of the smoothed iCell , Eq. (10) can be further streamlined as: 

  
     

   

,

,
A

A

new origini P i

GS

newi P i

R i x i
x

R i x










GS E

E
GS

 (10) 

where GSE   is completely calculated from the expression level of cells in ( )AP i  , 

regardless of the gene expression of iCell . 

 

4.2.6 Evaluation method 

We used the imputation error by calculating the L2 norm of the difference between the 

smoothed matrix and ground truth (L2-error)166. We used Calinski-Harabasz Index 

(CHI) and the Davies-Bouldin Index (DBI) to evaluate the significance of the 

differences in intra-class and extra-class similarity of the clustering results. We used 

Moran’s I and Geary’s C to calculate the correlation of cellular marker genes in the gene 

expression space of the data before and after smoothing167. 

 

Imputation error by calculating the L2 norm 

L2-error is used to compute the difference between two matrix vectors by 

calculating the Euclidean distance between each corresponding element of the two 

matrices separately. A lower L2-error represents a higher degree of similarity between 

the two matrices, indicating that the method performs better. It is defined as follows: 

    2 2

, ,1 1 1 1
L2-error

N N N N

i j i ji j i j
Y X

   
      (11) 
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where ,i jY   represents the reference gene expression matrix, and ,i jX   represents the 

smoothed gene expression matrix. L2-error is mainly used to compare the difference 

between the reference expression matrix with “ground truth counts” and the smoothed 

expression matrix. 

 

Calinski-Harabasz Index 

The CHI computes the sum of squares of the distances between points in the class 

and the class center to determine how closely a class is related168. The higher the CHI, 

the higher the similarity between cells of the same type in the cell population, indicating 

that this method performs better. It is defined as: 

 
 
 

tr
CHI( )

1tr

q

q

h q
k

q

 
    

B

W
 (12) 

where h  is the number of training samples, q  is the number of categories, qB  is the 

between-category covariance matrix, qW   is the within-category data covariance 

matrix, and tr()  is the trace calculation function. 

 

Davies-Bouldin Index 

The DBI finds the maximum by calculating the quotient of the sum of the average 

intra-class distances of any two classes within the sample set and the distance between 

the centers of the two clusters169. The lower the DBI, the higher the similarity between 

cells of the same type in the cell population, indicating that this method performs better. 

It is defined as: 

  1

1
DBI max

,

n
i j

i j
i i j

n d

 




 
 
 
 


c c

 (13) 

where n  is the number of categories, ic  is the center of the i th  category, i  is the 

average distance from all points of the i th   category to the center,  ,i jd c c   is the 
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distance between the center points ic  and jc , and max()  is the maximum function. 

 

Moran’s I 

Moran’s I is a global autocorrelation statistic for certain metrics on a graph. It is 

commonly used in spatial data analysis to evaluate autocorrelation on two-dimensional 

grids170. The higher the Moran’s I, the stronger the spatial autocorrelation of the cell 

population, indicating that the method performs better. It is defined as: 
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where N  is the number of spatial units indexed by i  and j , x  is the variable of 

interest, x  is the mean of x , ijw  are the elements of a matrix of spatial weights with 

zeros on the diagonal, and W  is the sum of all ijw . 

 

Geary’s C 

Geary’s C is a measure of spatial autocorrelation that attempts to determine if 

observations of the same variable are spatially autocorrelated globally (rather than at 

the neighborhood level)171. The lower the Geary’s C, the stronger the spatial 

autocorrelation of the cell population, indicating that the method performs better. It is 

defined as: 

 
    

 2

0

Geary s C
1

2

ij i ji j

ii

N x x

S x x

   


 







w
 (15) 

where ijw  is the -i th  row of the spatial weight matrix with zeros on the diagonal, and 

0S  is the sum of all the weights. 
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4.3 Results 

4.3.1 Overview of EAGS 

We use previously generated the datasets of mouse brain and olfactory bulb as inputs 

to EAGS133,139. The acquisition process of these data is: stereo-seq47 is used to capture 

the ST data of the mouse brain and mouse olfactory bulb in situ and record the position 

information of the sequencing spot, just like the data generation process in “Datasets” 

subsection, and then StereoCell139 is used to generate ST data at single-cell resolution 

with spatial information. After obtaining the ST dataset at single-cell resolution, the 

entire gene expression profile is normalized and smoothed172, as shown in Fig. 1A. 

EAGS constructs two styles of patterns based on the input gene expression 

information and spatial information, respectively. These two patterns are used to 

identify similar cells within the pattern, as shown in Fig. 1B. Next, EAGS adaptively 

generates smoothing weights based on the difference between similar cells and their 

genes’ expression, then utilizes these weights as a reference to complement the 

expression of similar cells. 
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Figure 1: Workflow of EAGS. (A) Data generation process for the input of EAGS. (B) The EAGS 

method calculates the nearest neighbor information based on the gene expression pattern and spatial 

information. Then, EAGS adaptively generates smoothing weights and outputs the smoothed results. 

 

4.3.2 EAGS performs better smoothing by adaptive weighting 

We use the mouse brain dataset to evaluate EAGS with adaptive weight. The results are 

compared to the outputs of EAGS with fixed weights. As the mouse brain dataset’s 

adaptive weight value is 19,001, the fixed value weights are set to 25,000 and 15,000. 

We use Spatial-ID to annotate cell types in order to assess the potential of EAGS to 

improve the cell annotation power and restore the true levels of gene expression133. Fig. 
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2 shows all the results of the subsequent analysis with the adaptive and the fixed weights. 

The cell annotation results of EAGS using an adaptive weight compared to a fixed 

weight generated a cell-type spatial map with clearer tissue outlines and more annotated 

cell subtypes (Fig. 2A). 

Based on our cell annotation results, the CHI of the EAGS smoothing results with 

adaptive and fixed weights are calculated. Next, Geary’s C and Moran’s I of the 

common cell types in the annotation results are calculated (Figs. 2B and C). The results 

based on the adaptive weight cell annotation show a significant improvement in spatial 

autocorrelation compared to the others. Also, within the same type of cell annotation, 

the level of intra-class autocorrelation is higher. 

 

 
Figure 2: Results of EAGS with adaptive and fixed weights. (A) Spatial cell type map for cell 

annotation with Spatial-ID using different weights for smoothing results. (B) The smoothing results with 

different weights are annotated with Spatial-ID cells. The Calinski-Harabasz Index is calculated using 

cell labels. (C) After the cell annotation using Spatial-ID with different weights, Geary’s C and Moran’s 
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I are calculated from annotation results. 

 

4.3.3 EAGS smooths gene expression with better performance on simulated ST 

dataset 

We collected Bin140 specification for the mouse olfactory bulb ST dataset161, and 

selected the top 2000 highly variable genes as the reference input of ScDesign3 to 

construct a simulation space group with “ground truth counts”173. To simulate the 

“dropout” phenomenon during the sequencing process, we randomly drop the simulated 

ST dataset expression to varying degrees and add different proportions of noise. EAGS, 

MAGIC152, kNN-smoothing77, SPCS159 and STAGATE105 are used to impute the 

processed ST dataset, then L2-error with the “ground truth counts” matrix and DBI are 

calculated respectively. The results are shown in Table 1. 

 

Table 1. Results on simulated ST dataset with different proportions of dropout and noise. 

Dataset Method 

10% noise 20% noise 30% noise 

L2-error DBI L2-error DBI L2-error DBI

30% 

dropout 

MAGIC 473.0679 4.7818 524.2593 4.4600 562.8816 4.2533 

kNN-smoothing 381.4241 4.4481 448.7622 4.2175 504.8468 3.9928 

SPCS 322.4659 4.6961 390.2348 4.3379 460.2699 4.2569 

STAGATE 757.3749 11.3146 790.5977 10.4536 791.5948 4.7064 

EAGS 313.4211 4.1926 379.4374 3.9912 449.6919 3.9589 

50% 

dropout 

MAGIC 496.2557 4.9018 557.0938 4.4717 590.9306 4.2881 

kNN-smoothing 389.2189 5.2899 458.8456 4.4637 517.1581 4.7092 

SPCS 319.4318 4.8357 398.8399 4.3223 475.0918 4.2884 

STAGATE 705.9759 8.7298 747.5357 76.9083 872.2147 9.3826 

EAGS 310.2873 4.6808 386.7170 4.3201 459.1241 4.2065 

70% 

dropout 

MAGIC 506.0679 6.3969 571.8875 5.9789 600.8655 5.7213 

kNN-smoothing 390.3494 7.7208 477.8630 6.6270 532.8365 6.1928 



107 

 

SPCS 321.1818 5.9028 413.9192 5.7685 488.5445 5.6784 

STAGATE 850.6077 13.1108 814.2477 15.8843 693.4574 7.2281 

EAGS 312.1247 6.0768 395.1362 5.6497 467.0692 5.6410 

From Table 1, in the simulated datasets with 30%- and 50%-dropout, L2-error and 

DBI values obtained by EAGS are always the lowest, regardless of the proportion of 

noise. When the proportion of dropout is 70%, DBI obtained by EAGS is suboptimal 

with 10%-noise (only higher than that of SPCS), and the results obtained by EAGS are 

the best on the other cases. In general, EAGS performs better on different simulated ST 

datasets and shows obvious advantages in improving intra-cell similarity and 

consistency with the “ground truth counts” compared with other methods. 

 

4.3.4 EAGS smooths gene expressions for better characterizing the spatial 

expression patterns of mouse brain 

We perform cell annotation on mouse brain data before and after EAGS smoothing 

using Spatial-ID133. The annotation results are shown in Fig. 3A. The mouse brain cell 

annotation based on data smoothed by EAGS return a clearer tissue structure, and more 

cell types can be annotated. To further assess the improvement provided by EAGS in 

cell annotation, we also perform cell annotation with Tangram77, a technique for 

merging spatial data types with single cell/single nucleus RNA sequencing data and for 

cell type annotation. As shown in Fig. 3B, the CHI and DBI are calculated for the spatial 

autocorrelation of cell types with the gene expression profiles after Tangram and 

Spatial-ID cell annotation. These results show that EAGS smoothing provides 

significantly better results in cell-type annotations. 

Fig. 3C shows the results of cell annotation using Spatial-ID and the spatial map of 

Allen Mouse Brain Atlas of corresponding cell types134,160. TEGLU24, TEGLU7 and 

MEINH2 are important cell types in the Hippocampus, Cortex and Midbrain dorsal 

respectively, and DGGRC2 is the important cell type in the Midbrain ventral and 

Dentate gyrus. These cell types are more consistent with the Allen’s spatial expression 
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map of cell types after EAGS smoothing. To verify the smoothing effect, Moran’s I and 

Geary’s C are calculated for cells with different cell number ratios using the raw or the 

EAGS smoothed dataset (Fig. 3D). To determine whether the correlation between the 

above cell types and their marker genes improved after smoothing, the ratios of the 

number of annotated cell types to their corresponding non-zero marker gene 

expressions are computed. The ability of EAGS to restore true biological signals is 

shown in Fig. 3E. Our results show that EAGS contributes to enhancing the cellular 

features of the mouse brain as well as the spatial autocorrelation and intraclass 

similarity of the gene expression patterns. 

 

 
Figure 3: Comparisons between the analysis results obtained from data before and after EAGS 



109 

 

smoothing. (A) Spatial cell type maps of the mouse brain using Spatial-ID cell annotation of raw and 

EAGS smoothed data. (B) Davies-Bouldin and Calinski-Harabasz Indexes calculated using Spatial-ID 

and Tangram annotation results obtained from raw and EAGS smoothed data. (C) Comparison of the 

spatial map and Allen Mouse Brain Atlas obtained from raw and EAGS smoothed dataset. (D) 

Comparison of Moran’s I and Geary’s C cell annotation types obtained from raw and EAGS smoothed 

dataset. (E) Heatmap of non-zero ratio between the number of cell types and their marker genes obtained 

from raw and EAGS smoothed dataset. 

 

4.3.5 EAGS improves spatial patterns and downstream analyses of gene 

expression data 

EAGS is compared with the imputation methods, MAGIC152, STAGATE105 and kNN-

smoothing174, on ST mouse brain dataset (SPCS cannot be executed successfully 

because the sparsity of this dataset is high). The cell type spatial maps of different 

imputation methods using Spatial-ID as reference are shown in Fig. 4A (left). EAGS 

return more cell types and more prominent outlines than other methods. The results of 

MAGIC are very unbalanced in terms of the number of cell types, with a large number 

of cell annotations that did not match the true values134,160. The annotations of the 

Midbrain dorsal, the Midbrain ventral, and the Dentate gyrus are mixed using MAGIC. 

The results of STAGATE show fewer cell types. Also, STAGATE do not result in well-

organized cell type distributions in the Hippocampus and Cortex. The cell type 

boundaries of cell annotation after kNN-smoothing processing are blurred, and different 

types of cells are mixed. In order to avoid the impact of data sparsity on the 

interpretability of the results, the input data of the cell annotation is the 50th-

dimensional principal component of different imputation results; the Uniform Manifold 

Approximation and Projection (UMAP) of the annotated results is shown in Fig. 4A 

(middle). The cell type spatial maps, consisting of cell types that are highly represented 

and annotated by the three methods, are shown in Fig. 4A (right). Fig. 4B shows the 

CHI derived from data processed using one of the four methods. After cell annotation, 

CHI168 calculated by the cell annotation label using EAGS shows higher spatial 

autocorrelation than other three methods. EAGS obtain higher Moran’s I and Geary’s 

C than other methods (Fig. 4C). Additionally, the spatial maps of a few marker genes 
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based on their expression are generated (Fig. 4D). The gene expression profiles 

smoothed by EAGS agree with the Allen’s ISH image better than the other methods. 

To evaluate the efficiency of high-resolved ST data, we run EAGS, MAGIC, 

STAGATE, kNN-smoothing, Scimpute and Drimpute three times on ST mouse brain 

dataset and monitor the average run time. STAGATE is run using a GPU. For the sake 

of fairness, in this running time comparison, all methods used the CPU uniformly. 

EAGS require the shortest run time, taking 3,484 seconds, while MAGIC takes 4,109 

seconds, kNN-smoothing takes 4,739 seconds, and the other methods need a large 

memory consumption and cannot reach their final output in an acceptable time. 
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Figure 4: Comparison of different imputation methods. (A) left: Spatial maps of cell types using 

Spatial-ID cell annotations and four different imputation methods. middle: UMAP dimensionality 

reduction using Spatial-ID cell annotation and different imputation methods. right: Individual cell type 

spatial maps after cell annotation and different imputation methods. (B) Calinski-Harabasz Index 
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calculated using cell labels after Spatial-ID cell annotations and different imputation methods. (C) 

Moran’s I and Geary’s C for the DGGRC2, TEGLU7, TEGLU24 cell types. (D) Marker gene heatmaps 

and Mouse Brain Atlas obtained using different imputation methods. 

 

4.3.6 EAGS application to high-resolved ST dataset of other biological tissues 

To verify EAGS’s adaptability to high-resolved ST data, we next apply EAGS to mouse 

olfactory bulb dataset. We generate the mouse olfactory bulb spatial cell map with cell 

type annotations (Fig. 5A) and the UMAP with cell annotation labels (Fig. 5B). The 

cell-annotated spatial map of the EAGS results show a clearer outline of the cells in the 

mouse olfactory bulb (Fig. 5A). The results of EAGS in UMAP form easily 

distinguishable clusters in the transcriptome space, and the clusters of different cell 

types have a low degree of overlap (Fig. 5B). We then calculate the CHI and DBI of the 

results generated without and with EAGS. EAGS can generate the results with higher 

intraclass similarity. Also, cells belonging to the same annotation type are closer to each 

other when the data has been smoothed by EAGS (Fig. 5C). Next, we count the cell 

types with a high proportion of Tangram cell labels to generate a spatial cell map and 

make a heatmap of the expression of the corresponding marker genes for different types 

of cells (Fig. 5D). Then we classify the sources of different cell labeling results and 

calculate Geary's C and Moran's I. The cell type annotation profile generated through 

dataset smoothed by EAGS is clearer. Also, the corresponding marker gene expression 

is more concentrated, and the cell types have higher Geary's C and Moran's I if the data 

has been processed using EAGS. These results indicate a stronger spatial 

autocorrelation in the transcriptome space. 
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Figure 5: EAGS application to mouse olfactory bulb data. (A) Cell-annotated spatial map of data 

before and after EAGS smoothing. (B) Cell-annotated Umap of dataset before and after EAGS smoothing 

(C) Davies-Bouldin and Calinski-Harabasz Indexes of mouse olfactory bulb data. (D) How the 

annotation results of the main cell types of the mouse olfactory bulb differ between data without and with 

EAGS smoothing. We also show the heatmap of the marker genes of different cell types, and Moran’s I 

and Geary’s C indexes of the corresponding types. Cells annotated before and after smoothing (grey), 

cells annotated by EAGS alone (purple), and cells annotated by pre-treatment data alone (orange) are 

displayed on the left side; the expression heatmap of marker genes corresponding to different cell types 

are shown on the middle; the Moran’s I and Geary’s C indices are shown on the right side. 

 

4.4 Discussion 

EAGS defines patterns based on expression and spatial information. Specifically, it 

selects similar elements from the intersection between cells of two patterns, ensuring a 

reliable source of information is borrowed between smoothed cells and similar cells. 

The main source of smoothing information for EAGS is the smoothing weights 

adaptively generated based on gene expression profiles. EAGS considers the overall 

expression level to generate weights, avoids the appearance of a single edge value, and 

effectively ensures the reliability of information borrowed between cells. This allows 

to recover authentic cellular signals with improved intracellular similarity and spatial 

autocorrelation. For example, the expression of the Cartpt gene in Fig. 4D is scattered 

in the original data heatmap, with more noise appearing, and the matching degree with 

Allen’s ISH image is low. EAGS smoothing consider the reliability of adjacent 

information. After EAGS smoothing, a lot of noise is eliminated, more Cartpt genes are 

expressed in the correct cells, which is more in line with Allen’s ISH image, and the 

aggregation of Cartpt expression is significantly improved. Furthermore, EAGS 

improves the quality of raw data as it recovers the original biological signals by 

smoothing cell expression information. The dimensional space is adjusted to ensure the 

hidden correlation between cells. As it does not depend on a specific statistical model, 

EAGS does not adjust from the low-dimensional space of the expression profile, thus 

ensuring the hidden correlation between cells. More importantly, EAGS does not 

require pre-defined expression models, numerous iterations to obtain the model 
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parameters, or multiple training sessions on the deep learning model framework of the 

GPU platform. Consequently, EAGS significantly reduces computational costs and 

offers a significant execution advantage over other methods. Finally, because of the 

general applicability of smoothing, EAGS is suitable for different ST data. 

It should be noted that the EAGS model is based on the premise that “neighboring” 

cells in the spatial microenvironment of biological tissues are more similar, which is 

applicable to most developmental tissue systems. However, for complex 

microenvironments with high biological heterogeneity (such as tumor 

microenvironment), this assumption will be challenged. EAGS may result in many false 

positive signals. When it is necessary to perform EAGS on complex tumor 

microenvironment samples, when calculating the adaptive Gaussian smoothing weight, 

the sample may need to be partitioned according to different situations, and gaussian 

weight will need to be calculated for different areas. 

 

4.5 Conclusion 

We propose EAGS, a method for smoothing high-resolved ST datasets that performs 

two-factor smoothing and adaptive weighting on raw gene expression profiles. EAGS 

significantly improves computing efficiency, reduces “dropout” in ST data, recovers 

the expression of true biological signals, and restores the spatial patterns of tissues. In 

the future, we will explore the false positive signals produced by EAGS imputation 

strategies, as well as downstream analyses of datasets after imputation. 

 

4.6 Availability of Source Code and Requirements  

Project name: EAGS: efficient and adaptive Gaussian smoothing 

Project home page: https://github.com/STOmics/EAGS 

Operating system(s): Platform independent 

Programming language: Python 

Other requirements: Python 3.8 or higher 
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License: MIT License 

RRID: SCR_024399 

BiotoolsID: EAGS 

 

4.7 Data availability 

The mouse brain dataset at single-cell resolution is available in STOmics DB of China 

National Gene Bank (CNGB) (accession code: “STT0000022”)175. The mouse 

olfactory bulb at single-cell resolution is available in STOMICS DataBase (accession 

code: “STT0000027”)175. The mouse olfactory bulb data for the Bin140 specification 

is available in China National Gene Bank (CNGB) (accession code: “CNP0001543”) 

47. The ST data at single-cell resolution with spatial information is available in Zenodo 

176. An archival copy of the code and supporting data is available via the GigaScience 

repository, GigaDB177. 
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5 Overall discussion 

In the past five years, spatial transcriptomics has been widely regarded as a new 

frontier in life sciences, opening a new chapter for biological research and enabling 

deeper understanding of the complexity of living systems10. However, despite the 

stimulating innovation and gradual maturity of spatially resolved technology, 

researchers still need to invest a considerable amount of effort in seeking solutions to 

empower and optimize the usability of the techniques. Single-cell sequencing 

technology has already profoundly changed many fields of biology2, and spatial 

resolved technology provides molecular in situ information within cells, which will 

drive the next generation of scientific discoveries3. In this regard, obtaining high-quality 

single-cell level spatial data in spatial transcriptomics will be the foundation for all of 

this. Therefore, this thesis mainly centered around optimization of tools on how to 

obtain high-quality single-cell spatial data.  

In Chapter 2, we presented the development of StereoCell to enable data processing 

for production of a high-quality expression matrix. StereoCell was developed as an 

image-assisted cell segmentation framework for high-resolution and large-field-of-

view spatial transcriptomics, providing a complete and systematic solution for 

obtaining high-confidence spatial single-cell level data. We implemented a tissue 

morphology image stitching method to ensure precise and reliable single-cell level 

accuracy, which can be used flexibly and conveniently. By combining FFT-based high-

precision stitching methods with benchmark datasets based on chip track lines, we can 

improve the stitching accuracy to the subcellular level. Additionally, we have 

implemented a novel molecular labeling method based on GMM and cell nucleus 

segmentation, which can generate single-cell spatial gene expression data with higher 

signal-to-noise ratio, thereby obtaining more reliable cell clustering analysis and end-

to-end annotation results. Furthermore, we have optimized the image processing 

module, including chip track line detection, cell nucleus segmentation, and tissue 
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segmentation. StereoCell also comes with an auxiliary software called CellbinStudio127, 

which includes a graphical user interface for manual image stitching, registration, and 

segmentation. StereoCell provides rich documentation, including functional application 

programming interfaces, examples, and tutorial workflows, making it easy to use and 

access without specific levels of omics and image analysis expertise, whether for 

experienced developers or beginners. The automated processing of StereoCell is 

specifically designed for Stereo-seq data, as it relies on the production of images, such 

as ssDNA staining, DAPI staining, or H&E staining, following the Stereo-seq standard 

operating procedures (SOP). These images are captured to highlight the track line 

features on the chip and achieve precise registration. To obtain high-precision 

registration at the cellular level, close collaboration is required in various processes, 

including imaging equipment, staining SOPs, and chip/slide design, for each SRT 

platform such as Xenium116 and CosMx117. However, the specific methods employed 

by commercial products are not disclosed. To ensure accurate registration results, the 

use of cell-level markers is essential. Therefore, the track line-assisted registration 

solution of Stereo-seq presents a new model inspired by sequencing chips. However, 

the fully automated StereoCell is only applicable to Stereo-seq technology or 

sequencing chips with markers similar to Stereo-seq technology (e.g., Illumina178 

sequencing chips). New marker detection methods need to be developed to replace the 

track lines in StereoCell. Other methods proposed by StereoCell, such as image 

stitching, cell segmentation, tissue segmentation, and molecular labeling, can be used 

independently. These methods rely on common image analysis steps and are currently 

suitable for processing ssDNA and DAPI images. Efforts are being made to adapt them 

for H&E images, providing a unified solution for nuclear staining image processing. 

ASHLAR64 is the current representative solution for image-based SRTs in terms of 

image stitching and registration. However, practical considerations, such as running 

large field-of-view images efficiently, solving cumulative errors, and evaluating 

datasets, will need to be considered. ASHLAR is primarily applicable to image-based 
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SRTs and may not meet the requirements for technology based on in situ spatial 

barcoding-based SRTs. There is a significant modal difference between expression 

maps and staining images, and tissue heterogeneity is high. Even manual registration 

sometimes falls short, necessitating reliance on fixed marker features to obtain reliable 

results. StereoCell utilizes advanced cell/tissue segmentation frameworks like 

Cellpose68 and DeepCell67, which are trained and optimized for Stereo-seq data. These 

frameworks are the best choice for Stereo-seq data or specific requirements (e.g., high 

cell mask coverage) but may not be as suitable as existing methods (e.g., Cellpose) for 

general versatility or other types of research (e.g., bacteria). Molecular cell labeling is 

an essential step in SRT data analysis. The simplest method currently employed 

involves geometric binning techniques, such as using squares or circles based on a 

tissue-based cell size, or employing deconvolution statistics to determine cell 

components (as shown in Chapter 1.3.1.3). StereoCell introduces a more accurate 

“cellbin” concept based on the position of cell nuclei. While the position of the cell 

nucleus can be determined, its exact boundary cannot. To infer the cell labeling of 

molecules, StereoCell combines the distribution of molecules with the positions of cell 

nuclei, increasing the number of molecules in cells. However, this method is prone to 

introducing noise and has low computational efficiency. For large field-of-view data, it 

may even cause program crashes, similar to other methods like Baysor69 and SCS179. 

To address these issues, an accelerated version has been developed that directly extends 

the cell nucleus mask. This approach does not consider the distribution characteristics 

of molecules but improves efficiency by more than 10 times, serving as an initial 

method for analysis. During the development and optimization of StereoCell, the 

complexity of the actual situation was found to be greater than anticipated. Factors such 

as tissue diversity, experimental operation instability, and the various types of images 

produced by microscopes directly impact data quality and difficulties with data 

processing. To address this, StereoCell has been modularized and provides Graphical 

User Interface (GUI) manual assistance software127. This software allows for manual 
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adjustments before integration, and StereoCell supports module upgrades and results 

replacements, which greatly enhances the scalability and compatibility of the entire 

process. However, due to its compatibility, more effort is required to ensure accuracy. 

In the future, there are plans to integrate StereoCell into a platform similar to the 

foundation model in Generative Pre-trained Transformer (GPT) fields, where 

researchers can fine-tune the tissue segmentation, cell segmentation, and molecular 

labeling models according to their specific data. This will allow for achieving the 

highest accuracy and simultaneous application in various types of research. 

With the advancement of spatial technology to encompass single cells, a method 

for capturing of true cell boundaries images was required. In Chapter 3, we upgraded 

StereoCell to STCellbin to develop a more accurate cell binning solution that can 

generate single-cell spatial gene expression profiles using Stereo-seq staining images 

of cell membranes/cell walls. We retained the steps of image stitching, tissue 

segmentation, and improved the steps of image registration and cell segmentation. 

Since the staining images of cell membranes/cell walls lack "track lines", in the image 

registration step, we used the staining images of cell nuclei (DAPI) as a bridge to align 

the images of cell membranes or walls with the spatial gene expression map, thereby 

obtaining registered cell boundary information. In the cell segmentation step, we used 

advanced technique to segment the staining images of cell membranes/cell walls, thus 

obtaining cell boundaries. Based on the cell boundary information, we directly assigned 

molecules to the corresponding cells, obtaining single-cell spatial gene expression 

profiles. We applied STCellbin to mouse liver (cell membrane) and Arabidopsis seed 

(cell wall) datasets and confirmed the accuracy of cell segmentation. This update 

provides a comprehensive and universal processing workflow, which can be used to 

process any imaging information of cell membranes/cell walls produced by spatial 

technology, to obtain reliable single-cell spatial gene expression profiles based on cell 

membrane/cell wall information. STCellbin is a result derived from the inheritance of 

the advantages of StereoCell. Its prominent feature lies in its ability to provide genuine 
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cellular boundary information, which serves as the gold standard for cellbin9. It offers 

a strategy for acquiring a single-cell spatial matrix using mIF images. However, the 

automation aspect is limited to Stereo-seq data, and the concepts of registration and 

segmentation can be referred to separately. From an alternative perspective, when 

simultaneously obtaining the results of both StereoCell and STCellbin, the preferred 

choice or the means to achieve the best outcome is to adopt the results of STCellbin. In 

the scheme of cell segmentation, such as DeepCell67, when images of both cell nuclei 

and cell membranes are inputted simultaneously, the results of cell membranes and cell 

nuclei are directly combined to produce a single final mask (it was discovered during 

testing that the results based on cell membranes are the most accurate). In the liver data 

utilized in our study, the results derived from cell membranes are relatively satisfactory, 

and most cells have been successfully obtained (cells are densely arranged), making it 

acceptable to not consider the results of cell nuclei. However, in real-life scenarios, mIF 

can only stain specific cells, and some cells may remain unstained. In general, 

combining cell nuclei and cell membranes to identify cell positions and boundaries 

would offer greater reliability, and this represents a potential future direction. 

After obtaining a spatial expression map, the quality of these data directly affects 

downstream analysis. In Chapter 4, we implemented efficient and adaptive Gaussian 

smoothing (EAGS) to enhance the ability to capture signals from transcripts in Stereo-

seq data. EAGS defines a processing mode based on both gene expression and spatial 

information. Specifically, it selects similar elements from the intersection of the two 

modes' units, ensuring reliable borrowing of information between smooth units and 

similar units. The main source of EAGS smoothing information is the adaptive 

generation of smoothing weights based on gene expression profiles, considering the 

overall expression level to generate weights, avoiding the occurrence of single-edge 

values, and effectively ensuring the reliability of intercellular information borrowing. 

This allows for the recovery of true cell signals and improved intracellular similarity 

and spatial autocorrelation. After EAGS smoothing, a large amount of noise is 
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eliminated, and more specific genes are left in the correct cells. In addition, EAGS 

improves the quality of the original data by smoothing the cell expression information 

and adjusts the dimensional space to ensure the hidden correlations between cells. Since 

it does not rely on specific statistical models, EAGS does not adjust from the low-

dimensional space of the expression profile, ensuring the hidden correlations between 

cells. Importantly, EAGS does not require pre-defined expression models, multiple 

iterations to obtain model parameters, or multiple training on a GPU platform's deep 

learning model framework. Therefore, compared to other methods, EAGS significantly 

reduces computational costs and provides significant operational advantages. Finally, 

due to its general applicability, EAGS is suitable for different ST data, here, mainly the 

mouse brain and olfactory bulb data of Stereo-seq were tested. EAGS is a statistical 

model-based method, it should be noted that the model is based on the premise that 

"adjacent" cells in the biological tissue spatial microenvironment are more similar than 

“distant” cells, which is applicable to most developmental tissue systems. However, this 

assumption will be challenged in complex microenvironments with high biological 

heterogeneity, such as tumor microenvironments. In such cases, EAGS may result in 

many false positive signals. When applying EAGS to complex tumor 

microenvironment tissue, it may be necessary to segment the samples and calculate 

Gaussian weights for different regions based on different situations when computing 

adaptive Gaussian smoothing weights. The complexity and diversity of spatial resolved 

technology also results in various specific characteristics of the acquired signals. 

Currently, due to the bottleneck of capture efficiency, signal loss exists in most cases, 

so imputation is an important but controversial preprocessing method4. In the future, 

we will explore the false positive signals generated by the EAGS interpolation strategy 

and the downstream analysis of the interpolated dataset. 

In general, the developed image processing methods and spatial data processing 

frameworks are compatible with other spatial single-cell sequencing technologies. In 

addition, the joint analysis of multimodal and multi-omics data, such as obtaining the 
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boundary of the cell nucleus from the cell nucleus image, obtaining the true cell 

boundary information from the cell membrane/wall image, and even the clustering of 

gene expression within single cells across a tissue (molecular aggregation), can assist 

in obtaining cell boundary information. The combined use of the above information 

will play a positive role in the accuracy of cell positioning and cell area delineation. 

Moreover, in real-world scenarios, apart from the cell nuclei, cell walls, and cell 

membranes depicted in StereoCell and STCellbin, numerous microscopy images of 

diverse types offer researchers abundant insights into tissue biology9,10. Presently, the 

processing techniques solely utilize the cell positions and cell boundary information 

derived from aligned images, lacking in-depth integration and analysis of the 

comprehensive microscopy image data. This aspect merits further exploration in future 

research activities. With the development of spatial technology, we not only focus on 

the transcriptome, but also on spatial multi-omics, which is an important direction of 

development10. The focus in this thesis was on the generation of tools for capturing and 

processing of high-quality spatial single-cell data, but in the future the proteome, 

epigenome, and metabolome, will add on additional layers of information that will need 

to be integrated to obtain more complete maps of single cells within tissues, and how 

they interact during different developmental stages and conditions. 
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6 Overall conclusion 

Integrating the advantages of spatial resolved technology and single-cell 

sequencing to obtain accurate and reliable spatial single-cell atlases has been a 

challenging and crucial task. As part of this thesis work, three analytical tools were 

developed with the overall aim of providing more efficient and accurate tools to support 

analysis of Stereo-seq generated data. The three tools, StereoCell, STCellbin and EAGS, 

were each implemented to provide different features:  

To obtain high-confidence spatial single-cell level transcriptomic data maps from 

large field-of-view tissue images and high-resolution single-cell gene expression data, 

we first developed the processing pipeline StereoCell. The pipeline provides a 

systematic platform for accurate single-cell spatial data acquisition, including image 

stitching, registration, cell nucleus segmentation, and molecular labeling. Compared to 

existing methods, StereoCell offers improved algorithms for reducing stitching errors 

and time during the image stitching and molecular labeling processes, and also 

enhances the signal-to-noise ratio of single-cell gene expression data. StereoCell is 

designed to be user-friendly and does not require a specific level of expertise in omics 

and image analysis. It has showed instrumental in creating a comprehensive 

spatiotemporal transcriptomic atlas of mouse organogenesis and has been successfully 

used to generate reliable single-cell spatial gene expression profiles from continuous 

datasets of mouse brain slices in previous studies47. StereoCell is a high-speed tool for 

analyzing image and spatial omics data. It has demonstrated its ability to handle a large 

mouse brain dataset (consisting of 131,990,020 molecules and 117 image tiles) in 

approximately 80 minutes on a server equipped with a 40-core CPU, 128 GB of RAM, 

and 24 GB of GPU. 

To obtain accurate information about cell boundaries for generating more reliable 

single-cell spatial gene expression profiles, we developed the tool STCellbin. It is an 

update of StereoCell with implementation of the cell membrane/cell wall staining 
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images. As part of the image registration step, we utilize cell nucleus staining images 

as a bridge to align the cell membrane/cell wall staining images with the spatial gene 

expression profiles, thereby obtaining registered cell boundary information. In the cell 

segmentation step, we employ an advanced technique to segment the cell 

membrane/cell wall staining images and obtain cell boundaries. Based on the cell 

boundary information, we directly assign molecules to their corresponding cells to 

obtain single-cell spatial gene expression profiles. When applied to mouse liver (cell 

membrane) and Arabidopsis seed (cell wall) datasets, STCellbin demonstrates 

improved accuracy of cell segmentation, providing valuable insights into spatial 

organization with this enhanced functionality. 

For smoothing high-resolution ST data, and apply dual-factor smoothing and 

adaptive weighting to the original gene expression profiles, the method EAGS was 

developed. EAGS was found to significantly improve computational efficiency while 

reducing "dropout" in ST data, restoring the expression of true biological signals, and 

restoring the spatial patterns of the tissue. 

Altogether, this thesis work has generated knowledge ending up in development of 

three analytical tools that are incorporating in-depth research from how to obtain single-

cell spatial data to how to improve the quality of matrix data, involving image 

processing techniques, spatial transcriptomics feature mining, and statistics. These 

solutions have the potential to become a bridge between image analysis and molecular 

omics fields, providing a foundation for the development of computational methods for 

next-generation spatially resolved technologies. 
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