

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 15, 2024

Algorithms for Strings and Modern Data Models

Stordalen, Tord Joakim

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Stordalen, T. J. (2023). Algorithms for Strings and Modern Data Models. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/d868c8b4-1ed5-489e-96b3-9a7abaee5899

Algorithms for Strings and Modern Data Models
Tord Joakim Stordalen

December 2023

Preface

The research presented in this dissertation was done while I was enrolled as a PhD student at the Department
of Applied Mathematics and Computer Science at the Technical University of Denmark, from January 1st,
2021 to December 31st, 2023. It was funded by the DTU Compute PhD scholarship. My advisors are
Professor Philip Bille and Professor Inge Li Gørtz. During my studies I spent three months at Universidad
de Chile, visiting Professor Gonzalo Navarro.

Acknowledgments I am deeply grateful to my advisors Philip Bille and Inge Li Gørtz for introducing
me to field of algorithms, for all the time they spent teaching me how to think, write, and teach, for being
patient, understanding, and supportive, for setting standards I had to work to achieve, for challenging my
ideas and opinions, and for being open to being challenged by me in return. They are truly excellent advisors.
I would also like to thank all my co-authors for being inspiring collaborators; this includes both my advisors,
Johannes Fischer, and Max Rishøj Pedersen. Thank you to Gonzalo Navarro for hosting me during my
external stay in Chile. Finally, I would like to thank all my colleagues and friends at DTU for all the
wonderful coffee breaks, banter, and interesting conversations, and my family and friends for their support
throughout my studies.

i

ii

Abstract

We study problems related to pattern matching in strings, and problems in modern data models. Specifi-
cally, we study the predecessor problem in a model of computation that captures modern vector processor
architectures, the problem of compactly and efficiently counting the co-occurrences of a set of characters in
a string, pattern matching in a sliding window over a stream, and the problem of supporting rank and select
on degenerate strings.

Predecessor on the Ultra-Wide Word RAM We consider the predecessor problem on the ultra-wide
word RAM model of computation, which extends the word RAM model with ultrawords consisting of w2 bits
[TAMC, 2015]. The model supports arithmetic and boolean operations on ultrawords, in addition to scattered
memory operations that access or modify w (potentially non-contiguous) memory addresses simultaneously.
The ultra-wide word RAM model captures (and idealizes) modern vector processor architectures. Our main
result is a simple, linear space data structure that supports predecessor in constant time and updates in
amortized, expected constant time. This improves the space of the previous constant time solution that uses
space in the order of the size of the universe. Our result holds even in a weaker model where ultrawords
consist of w1+ϵ bits for any ϵ > 0. It is based on a new implementation of the classic x-fast trie data structure
of Willard [Inform. Process. Lett. 17(2), 1983] combined with a new dictionary data structure that supports
fast parallel lookups.

The Complexity of the Co-Occurrence Problem Let S be a string of length n over an alphabet Σ
and let Q be a subset of Σ of size q ≥ 2. The co-occurrence problem is to construct a compact data structure
that supports the following query: given an integer w return the number of length-w substrings of S that
contain each character of Q at least once. This is a natural string problem with applications to, e.g., data
mining, natural language processing, and DNA analysis. The state of the art is an O(

√
nq) space data

structure that — with some minor additions — supports queries in O(log log n) time [CPM 2021].
Our contributions are as follows. Firstly, we analyze the problem in terms of a new, natural parameter

d, giving a simple data structure that uses O(d) space and supports queries in O(log log n) time. The
preprocessing algorithm does a single pass over S, runs in expected O(n) time, and uses O(d + q) space in
addition to the input. Furthermore, we show that O(d) space is optimal and that O(log log n)-time queries
are optimal given optimal space. Secondly, we bound d = O(

√
nq), giving clean bounds in terms of n and q

that match the state of the art. Furthermore, we prove that Ω(
√
nq) bits of space is necessary in the worst

case, meaning that the O(
√
nq) upper bound is tight to within polylogarithmic factors. All of our results

are based on simple and intuitive combinatorial ideas that simplify the state of the art.

Sliding Window String Indexing in Streams Given a string S over an alphabet Σ, the string indexing
problem is to preprocess S to subsequently support efficient pattern matching queries, that is, given a pattern
string P report all the occurrences of P in S. In this paper we study the streaming sliding window string
indexing problem. Here the string S arrives as a stream, one character at a time, and the goal is to maintain
an index of the last w characters, called the window, for a specified parameter w. At any point in time a
pattern matching query for a pattern P may arrive, also streamed one character at a time, and all occurrences
of P within the current window must be returned. The streaming sliding window string indexing problem

iii

naturally captures scenarios where we want to index the most recent data (i.e. the window) of a stream
while supporting efficient pattern matching.

Our main result is a simple O(w) space data structure that uses O(logw) time with high probability to
process each character from both the input string S and any pattern string P . Reporting each occurrence
of P uses additional constant time per reported occurrence. Compared to previous work in similar scenarios
this result is the first to achieve an efficient worst-case time per character from the input stream with high
probability. We also consider a delayed variant of the problem, where a query may be answered at any point
within the next δ characters that arrive from either stream. We present an O(w+δ) space data structure for
this problem that improves the above time bounds to O(log(w/δ)). In particular, for a delay of δ = ϵw we
obtain an O(w) space data structure with constant time processing per character. The key idea to achieve
our result is a novel and simple hierarchical structure of suffix trees of independent interest, inspired by the
classic log-structured merge trees.

Rank and Select on Degenerate Strings A degenerate string is a sequence of subsets of some alphabet;
it represents any string obtainable by selecting one character from each set from left to right. Recently, Alanko
et al. generalized the rank-select problem to degenerate strings, where given a character c and position i the
goal is to find either the ith set containing c or the number of occurrences of c in the first i sets [SEA 2023].
The problem has applications to pangenomics; in another work by Alanko et al. they use it as the basis for
a compact representation of de Bruijn Graphs that supports fast membership queries.

In this paper we revisit the rank-select problem on degenerate strings, introducing a new, natural pa-
rameter and reanalyzing existing reductions to rank-select on regular strings. Plugging in standard data
structures, the time bounds for queries are improved exponentially while essentially matching, or improving,
the space bounds. Furthermore, we provide a lower bound on space that shows that the reductions lead to
succinct data structures in a wide range of cases. Finally, we provide implementations; our most compact
structure matches the space of the most compact structure of Alanko et al. while answering queries twice
as fast. We also provide an implementation using modern vector processing features; it uses less than one
percent more space than the most compact structure of Alanko et al. while supporting queries four to seven
times faster, and has competitive query time with all the remaining structures.

iv

Contents

Preface i

Contents v

1 Introduction 3

1.1 Models of Computation . 3

1.2 Predecessor on the Ultra-Wide Word RAM . 4

1.3 The Complexity of the Co-Occurrence Problem . 6

1.4 Sliding Window String Indexing in Streams . 7

1.5 Rank and Select . 9

2 Predecessor on the Ultra-Wide Word RAM 11

2.1 Introduction . 12

2.2 The Ultra-Wide Word RAM Model . 15

2.3 Computing Multiply-Shift in Parallel . 16

2.4 The wϵ-Parallel Dictionary . 17

2.5 The xtra-fast Trie . 20

2.6 The xtra-fast Trie With Smaller Ultrawords . 24

2.7 Conclusions and Open Problems . 25

2.A Blend and 2w-bit Multiplication . 25

3 The Complexity of the Co-Occurrence Problem 29

3.1 Introduction . 30

3.2 The Left-Minimal Co-Occurrence Problem . 33

3.3 The Co-Occurrence Problem . 35

3.4 Lower Bounds . 36

3.A Preprocessing . 39

3.B Lower Bound on Time . 40

4 Sliding Window String Indexing in Streams 41

4.1 Introduction . 42

4.2 Preliminaries . 45

4.3 The Timely SSWSI Problem . 46

4.4 The Delayed SSWSI Problem . 51

4.5 Obtaining High Probability . 53

4.6 Conclusion and Future Work . 54

v

5 Rank and Select on Degenerate Strings 55
5.1 Introduction . 56
5.2 Our Results . 57
5.3 Reductions . 58
5.4 Lower Bound . 59
5.5 Experimental Setup . 60
5.6 Results . 62
5.A Additional Data . 62
5.B Results for all Data Structures . 63

Bibliography 67

1

2

Chapter 1

Introduction

This dissertation is based on the (revised) full versions of the following papers.

Chapter 2 Predecessor on the Ultra-Wide Word RAM. Philip Bille, Inge Li Gørtz, Tord Joakim
Stordalen. Full version: Algorithmica (accepted without reservations as of December 2023; not yet
published). Conference version: Proc. 18th SWAT, 2022, pages 18:1 - 18:15.

Chapter 3 The Complexity of the Co-Occurrence Problem. Philip Bille, Inge Li Gørtz, Tord Joakim
Stordalen. Proc. 29th SPIRE, 2022, pages 38-52.

Chapter 4 Sliding Window String Indexing in Streams. Philip Bille, Johannes Fischer, Inge Li Gørtz,
Max Rishøj Pedersen, Tord Joakim Stordalen. Proc. 34th CPM, 2023, pages 4:1 - 4:18.

Chapter 5 Rank and Select on Degenerate Strings. Philip Bille, Inge Li Gørtz, Tord Stordalen.
Accepted for publication at DCC 2024 (Data Compression Conference); not yet published.

The rest of this section briefly introduces the history of each problem, our results, and our techniques.

1.1 Models of Computation

Word RAM The word RAM model of computation was proposed by Hagerup [Hag98]. The memory is
an infinite array consisting of w-bit cells (words) for some positive integer parameter w. The model supports
reads and writes on the memory, standard arithmetic operations on w-bit integers (addition, subtraction,
multiplication, division), standard bitwise operations (or, and, exclusive or, negation), and other standard
bit manipulation operations such as left and right shifts. Each of these instructions take constant time, time
complexity is measured in the number of instructions run by an algorithm, and the space complexity of a
data structure is measured in the number of words stored. We make the common assumption that w ≥ log n
(where n is the input size) such that a pointer or an index into our input can be stored in a single word. We
allow our algorithms to use a constant number of w-bit constants.

Ultra-Wide Word RAM The Ultra-Wide Word RAM (UWRAM) model is a variant of the word RAM
proposed by Farzan, Lopés-Ortiz, Nicholson, and Salinger [FLNS15]. It extends the word RAM with w2-bit
words named ultrawords. Ultrawords are stored in memory as length-w arrays, can be written and read
in constant time, and use O(w) space. The model supports constant time addition, subtraction, bitwise
operations, and bit shifts on ultrawords, in addition to the standard word RAM operations on regular w-bit
words. Furthermore, the model also supports scattered memory operations, allowing reads and writes of w
non-contiguous words in constant time.

Farzan et al. introduce both the restricted and themultiplication variants of the model, which respectively
do not and do support multiplication on ultrawords. This distinction highlights a practical concern, as the

3

size of the smallest known multiplication circuit for two w-bit integers is Θ(w logw) [HVDH21]. Therefore,
assuming a multiplication circuit for w2-bit integers may not be realistic. In Chapter 2 we compromise by
allowing component-wise multiplication; an ultraword can be seen as consisting of w regular words (or com-
ponents) and we allow multiplying two ultrawords component by component, i.e., w parallel multiplications.
This is consistent with the type of multiplication supported by modern vector hardware. Furthermore, we
show all our results also in a weaker model where ultrawords consist of only w1+ϵ bits for any ϵ > 0, i.e.,
only ϵ components.

Streaming In the streaming model, we assume that the input arrives one element at a time, as opposed
to being available up-front, and we must process each element as it arrives. When designing algorithms, the
goal is to minimize both the cost per processed element, and the number of words stored by the algorithm.
Motivations for this type of model include, e.g., computing statistics of network activity in routers (which
have limited memory and must be fast), processing data that is stored on slow, external storage1, and
constructing small-space summaries of large data sets. One type of streaming model is the sliding window
model where the goal is to maintain some data structure or computation over a fixed-width segment that
is being slid across the input, one element at a time. We use the (sliding window) streaming model in
Chapters 3 and 4.

1.2 Predecessor on the Ultra-Wide Word RAM

Problem Definition and History Given a subset S of a totally ordered universe U , the static pre-
decessor problem is to preprocess S to support the operation predecessor(x) = max{y ∈ S | y ≤ x} (or
none if x has no predecessor). The dynamic variant also supports updates on S. This is a fundamental
problem in computer science that has been studied extensively [PT06,PT14,vEBKZ77,Wil83,FW93,And96,
BF02, vEB77, BBV10, BBPV09, Ajt88, BF02,Mil94,MNSW98, SV08, PT06, PT07] with applications to, for
instance, integer sorting [And96,AHNR98,FW93,Han04], string sorting [AFGV97,BFK06,Far97], and string
searching [Bel12,BBV10,BEGV18,BGS17,BLR+15]. See Navarro and Rojas-Ledesma [NR20] for a recent
survey.

Arguably, the most well-known type of solutions to the predecessor problem are balanced binary search
trees such as, e.g., red-black trees [GS78] and splay trees [ST83]. These data structures work for any universe
U whose elements can be compared, and each operation takes O(log n) comparisons where n = |S| (for splay
trees the bound is amortized).

In the word RAM model and for integer universes U = {0, 1, . . . , u}, it is possible to do much better using
techniques that go beyond comparisons (e.g., hashing) and by exploiting the representation of the elements of
S. For instance, van Emde Boas [vEB77] gave a now famous data structure using O(u) space and supporting
predecessor in O(log log u) time by dividing the universe into smaller universes of size

√
u, storing each

element in the corresponding sub-universe, and recursively solving predecessor in each subproblem. Other
famous data structures include the x-fast and y-fast tries by Willard [Wil83]; the y-fast trie uses O(n) space
and supports all operations in O(log log u) expected time (updates are amortized). The main idea is to store
all prefixes of all keys in S in a hash table and, given a query x, binary search over the binary representation
of x to find the longest prefix of x that occurs as a prefix in S. Fredman and Willard [FW93] presented
the fusion tree, which supports predecessor queries on sets of size wO(1) in constant time (recall that w
is the word width). Pătraşcu and Thorup [PT14] presented the dynamic fusion tree which also supports
updates in constant time on sets of size wO(1). Andersson [And96] presented the exponential search tree
supporting predecessor in O(

√
log n). There are many more results for the predecessor problem; see [NR20]

for a comprehensive survey.

Pătraşcu and Thorup presented new lower bounds, new upper bounds, and modifications of existing
bounds to show the following tight upper and lower bound [PT06,PT07,PT14] for the dynamic predecessor

1Other models, such as the external memory model, deal with this issue explicitly.

4

problem.

Θ

max

1,min

logw n,

log w
logw

log
(
log w

logw/ log logn
logw

) , log log(2w − n)

logw

From the upper bound perspective, the first branch matches dynamic fusion trees [PT14], the second branch
is based on an extension of the techniques from Beame and Fich [BF02], and the last branch is based on an
extension of dynamic van Emde Boas trees [vEBKZ77].

Modern Models of Computation The lower bound implies that — in the word RAM model — we
cannot support operations in constant time for general n and w. Hence, a natural question is if practical
models of computation capturing modern hardware can allow us to overcome the superconstant lower bound.
One such model is the RAM with byte overlap (RAMBO) by Brodnik et al. [BCF+05]. This model extends
the word RAM model by adding a set of special words that share bits; flipping a bit in one word will also
affect all the other words that share that bit. Prototypes for this type of model have been built [LMu+99].
Brodnik et al. give a data structure using constant time per operation with O(2w/w) space (counting both
regular words and shared words). More recently, Farzan et al. [FLNS15] introduced the UWRAM model,
as described above. They show how to simulate the result of Brodnik et al [BCF+05] at the cost of using a
polylogarithmic factor more space; they use O(w2w) space and support both predecessor queries and updates
in worst case constant time.

Our Results Let S be a subset of the universe U = {0, . . . , 2w − 1} and define n = |S|. We revisit the
predecessor problem on the UWRAM and give a data structure that uses O(n) space, supports predecessor
queries on S in constant time, and updates on S in amortized expected constant time. Our result also holds
when ultrawords consist only of w1+ϵ bits for any fixed ϵ > 0. Compared to the previous result of Farzan
et al. [FLNS15] we reduce the space from O(w2w) (i.e., superlinear in |U |) to linear in S while supporting
all operations in constant time. By restricting ourselves to only w1+ϵ-bit ultraword we limit our reliance on
the powerful scattered memory operations by allowing them to access only wϵ words in memory in parallel.

A key component in our solution is a new dictionary data structure of independent interest that supports
fast parallel lookups on the UWRAM. Let D be a size-n subset of U . We give an O(n) space data structure
that supports insertions to and deletions from D in amortized expected constant time. It also supports a
constant time parallel query that, when given w (or wϵ) elements in an ultraword, returns an ultraword
indicating which of the inputs are present in D.

Techniques Our parallel dictionary is based on the dynamic perfect hashing structure of Dietzfelbinger
et al. [DKM+94], which is a two-level structure similar to the classic FKS static perfect hashing struc-
ture [FKS84]. The first level divides the set D into smaller, disjoint subsets using a hash function, and
these subsets are each stored in a separate array — without collisions — using another hash function. We
carefully lay out the data structure in memory, show how to evaluate a class of universal hash functions in
parallel using the ultraword operations, and use the scattered memory operations to navigate the structure
in parallel for each of the queried elements.

For w2-bit ultrawords, our predecessor structure is based on the x-fast trie by Willard [Wil83], combined
with the parallel dictionary structure above. The core idea of the x-fast trie is to store all prefixes of all
elements in S in a hash table, using O(nw) space. Given an element x it is then possible to find the longest
prefix of x that also occurs in S in O(logw) = O(log log u) time by binary searching over the length of the
prefix. Once the longest prefix is found, finding the predecessor is straight forward. We use the parallel
dictionary to query all prefixes simultaneously, achieving constant time. This also allows us to store the
compact trie of S instead of the uncompacted trie reducing the space to O(n) (since we are checking all
possibilities we do not need a monotonic property to decide which direction to search). To extend the result
to w1+ϵ-bit ultrawords we run a wϵ-ary search instead of a binary search, taking O(logwϵ w) = O(1) time. In
this case we cannot use the compacted trie; we use the top-bottom-type decomposition from Willard [Wil83]
to reduce the space from O(nw) to O(n).

5

1.3 The Complexity of the Co-Occurrence Problem

Problem Definition and History Let S be a length-n string over an alphabet Σ and let Q be a subset
of Σ of size q ≥ 2. Given integers 1 ≤ i ≤ j ≤ n, the interval [i, j] = {i, i+1, . . . , j} is a co-occurrence of Q if
the substring S[i, j] contains each character in Q at least once. The co-occurrence problem is to preprocess
S and Q into a data structure that supports the query

coS,Q(w): return the number of co-occurrences of Q in S that have length w.

For example, let Σ = {A, B, C, -}, Q = {A, B, C} and

S = -
1
-
2
-
3
-
4
B
5
C
6
-
7
A
8
C
9

C
10

B
11

-
12

-
13

Then

• coS,Q(3) = 0, because no length-three substring contains all three characters A, B, and C.

• coS,Q(4) = 2, because both [5, 8] and [8, 11] are co-occurrences of Q.

• coS,Q(8) = 6, because all six of the length-eight substrings of S are co-occurrences of Q.

Only data structures using sublinear space are interesting, since we otherwise can precompute coS,Q(i) for
each i. This problem is related to the sliding window streaming model mentioned above; the answer to
coS,Q(i) is equivalent to sliding a window of size i over S, character by character, and counting the number
times the window contains all characters in Q. Furthermore, we also aim to construct this data structure
using a streaming algorithm that processes S only once.

The co-occurrence problem, introduced by Sobel, Bertram, Ding, Nargesian and Gildea [SBD+21], is a
new take on standard data mining problems. For instance, a large amount of work has gone towards related
problems such as finding frequent items in streams [DLM02,GDD+03,KSP03,LCK14] and finding frequent
sets of items in streams [AH18,CL06,DP13,LL09,LCWC05,MTZ08,YYL+15], i.e., extracting a set Q. In the
co-occurrence problem, however, the goal is to extract information about a predetermined set of elements.
Analyzing a given query set over all window lengths may reveal domain specific properties of the set. For
instance, Sobel et al. motivate the problem by listing potential applications such as training models for
natural language processing (short and long co-occurrences of a set of words tend to represent respectively
syntactic and semantic information), automatically organizing the memory of a computer program for good
cache behaviour (variables that are used close to each other should be near each other in memory), and
analyzing DNA sequences (co-occurrences of nucleotides in DNA provide insight into the evolution of viruses).
See [SBD+21] for a more detailed discussion of these applications.

Our work is inspired by [SBD+21]. They do not consider fast, individual queries, but instead they give
an O(

√
nq) space data structure from which they can determine coS,Q(i) for each i = 1, . . . , n in O(n) time.

Supporting fast queries is a natural extension to their problem, and we note that their solution can be
extended to support individual queries in O(log log n) time using the techniques presented below.

We also introduce the following related problem. A co-occurrence [i, j] is left-minimal if [i+ 1, j] is not
a co-occurrence. The left-minimal co-occurrence problem is to preprocess S and Q to support

lmcoS,Q(w): return the number of left-minimal co-occurrences of Q in S that have length w.

We use our solution to this simpler problem as a building block for our solution to the co-occurrence problem,
showing that the following equality holds

coS,Q(x) =

(
x∑

i=2

lmcoS,Q(i)

)
− max(x− r1, 0) (1.1)

where r1 is the first index in S such that S[1, r1] is a co-occurrence. This makes sense intuitively; the
sum counts all the positions where the the left-minimal co-occurrence ending at that position has length at
most x, and from these positions the subtraction excludes the positions where no length-x co-occurrence
may end (for instance, S[1, r1] is not a length-x co-occurrence if r1 < x). To our knowledge, the left-minimal
co-occurrence problem has not been studied before.

6

Our Results Our two main contributions are as follows. Firstly, we give an upper bound that matches and
simplifies the state of the art. Secondly, we provide lower bounds that show that our solution has optimal
space, and that our query time is optimal for optimal-space data structures. As in previous work, all our
results work on the word RAM model with logarithmic word size.

To do so we use the following parametrization. Define δ(i) = lmco(i)− lmco(i− 1) for each i ∈ [2, n] and
let d be the number of indices i such that δ(i) ̸= 0 (here we are omitting the subscript on δ, d, and lmco).
Our results are as follows.

• We give an O(d) space data structure that supports (left-minimal) co-occurrence queries in O(log log n)
time. It can be constructed by a single-pass streaming algorithm over S that uses O(n) expected time
and O(d+ q) space.

• Any data structure supporting (left-minimal) co-occurrence queries needs Ω(d) space in the worst case,

and structures with d logO(1) d space cannot support queries faster than Ω(log log n).

• We bound d = O(
√
nq) and show that Ω(

√
nq) bits of space is necessary in the worst case for any data

structure supporting (left-minimal) co-occurrence queries.

Thus, we prove that our data structure has optimal space and is as fast as possible within optimal space.
Compared to the previous work, we match their O(

√
nq) space and O(log log n) time solution, and show

that this space bound is optimal to within a logarithmic factor. All of our results are based on simple and
intuitive combinatorial ideas that simplify the state of the art.

Techniques The key technical insights that lead to our results stem mainly from the structure of δ.

For the upper bound, we store a predecessor structure over the set {(i, lmco(i)) | δ(i) ̸= 0}, i.e., for each
i where lmco(i) ̸= lmco(i− 1). Then we answer left-minimal co-occurrence queries using a single predecessor
query. There are linear space predecessor structures that support queries in O(log log |U |) time [Wil83],
which in this case is O(log log n). For co-occurrennce queries, we store an additional piece of information for
each entry allowing us to compute Equation 1.1 in constant time. We bound d = O(

√
nq) observing that

each non-zero δ(i) essentially corresponds to a minimal co-occurrence (i.e., both left- and right-minimal)
of length i, and we bound the cumulative lengths of minimal matches to O(nq). Thus, d = ω(

√
nq) is not

possible because the cumulative length would be at least 1 + 2 + . . .+ d = Ω(d2) = ω(nq).

For the lower bounds on space we carefully design lmco instances that encode sets (or sequences) in
the δ-function. We can retrieve δ(i) = lmco(i) − lmco(i − 1), so the data structure thus represents these
sets. If there are L possible sets, the data structure needs to use logL bits in the worst case in order to
distinguish them all. For the lower bounds on query time we reduce from the static predecessor problem to
the left-minimal co-occurrence problem and apply lower bounds by Pătraşcu and Thorup [PT07].

1.4 Sliding Window String Indexing in Streams

Problem Definition and History The string indexing problem is to preprocess a string S into a compact
data structure that supports efficient subsequent pattern matching queries, that is, given a pattern string P ,
report all occurrences of P within S. In this paper, we introduce a basic variant of string indexing called the
streaming sliding window string indexing (SSWSI) problem, where the goal is to support pattern matching
queries in the sliding window streaming model, as described in Section 1.1.

Specifically, the string S arrives as a stream, one character at a time, and the goal is to maintain an
index over the w most recent characters, i.e., the window (this paper consistently uses w as window width
as opposed to the word width in the word RAM model). At any point in time a pattern matching query
for a pattern P may arrive, also streamed one character at a time, and we need to report the occurrences of
P within the current window. The goal is to use O(w) space and to minimize the time spent per character
from both S and P . We consider two variants of the problem: a timely variant where each query must

7

be answered immediately, and a delayed variant where it may be answered at any point within the next δ
characters arriving from either stream, for a specified parameter δ.

The SSWSI problem has not been explicitly studied before in our precise formulation, but closely related
work on maintaining the suffix tree over a sliding window [FG89,Lar99,Sen05,BJ18,NAIP03] can be extended
to solve the timely version. For constant-sized alphabets, the best of these solutions [BJ18] maintains
the sliding window suffix tree in constant amortized time per character while supporting efficient pattern
matching queries. The worst-case time for updates is Ω(w). The amortization is unavoidable because a new
character may cause Ω(w) changes to the suffix tree.

Another closely related problem is online string indexing [AKLL05, Kop12, BI13, Kos94, AN08, KN17,
FG05,AFG+14], i.e., incrementally building an index over S as it arrives one character at a time. The best
of these solutions update the index in either constant time per character for constant-sized alphabets [KN17]
or O(log log n+ log log |Σ|) [Kop12] time for a general alphabet Σ. However, they heavily rely on processing
S in reverse order, which we cannot do in our model. We could pretend that S is arriving in reverse and
reverse the patterns prior to querying, but this would lead to worst-case Ω(|P |) time per character in the
pattern as they are also being streamed. Furthermore, it is not clear how to adapt these results to index a
sliding window as opposed to a growing prefix or suffix of the string.

Another line of work shows how to maintain a fully dynamic suffix array under insertions and dele-
tions [AB20,AB21, SLLM10,KK22]. These can be used to solve SSWSI but are more general and lead to
polylogarithmically slower bounds than our results while being more complicated.

Our Results For the timely variant, we present a simple O(w) space data structure that spends O(logw)
time per character in both S and each pattern P . This bound holds with high probability in w, that is,
it fails to hold only with probability 1/wd for any positive constant d. In the delayed variant, where the
answer to queries may be given at any point within the next δ characters to arrive from any stream, the
space is O(w + δ) while the time bound is improved to O(log(w/δ)) with high probability for both updates
and queries. In particular, if δ = ϵw for any constant ϵ > 0, we achieve linear time and optimal constant
time processing per character. Compared to previous suffix tree based approaches for indexing a sliding
window, we improve the worst-case time bounds per character in the stream from Ω(w) to O(logw) with
high probability. For both the timely and delayed variants, reporting the occurrences of a pattern incurs an
additional constant time per reported occurrence. The result hold on the word RAM with logarithmic word
size, and for any alphabet where each character fits into a constant number of machine words.

Techniques The core idea of our data structure is to maintain at most logw suffix trees2 that do not overlap
and together cover the window. The trees are organized by the log-structured merge technique [OCGO96]
such that the trees grow exponentially towards the left. We build a new suffix tree over each character that
arrives from S and append it to the data structure. Whenever two equal-sized suffix trees are adjacent we
“merge” them by constructing a new tree covering them both. This process is deamortized by merging in the
background, resulting in O(logw) time per update in the timely variant (since each element is included in
logw suffix trees before it leaves the window). We use powerful dictionaries with high-probability guarantees
to store the edges of the suffix tree (for fast navigation), and a new alphabet reduction hashing scheme to
reduce large alphabets to small ranges (this is necessary for linear time construction of suffix trees).

To support queries we query each individual suffix tree, and use different methods for querying across
the boundaries between adjacent suffix trees; the exact method depends on the exact model, see the paper
for details. This takes O(logw) time per character as we spend constant time per tree and boundary.

To extend the result to the delayed variant of the problem we store only the O(log(w/δ)) largest trees
and leave a suffix of size Θ(δ) of the window uncovered by suffix trees. We answer queries as follows. If
|P | > δ/4 we say that P is long, and otherwise it is short. Long patterns are long enough that we have
the time build a suffix tree over the uncovered suffix at query time, so we may apply the techniques from
the timely variant more or less directly. For short patterns we utilize that they are smaller than the delay

2A suffix tree is a fundamental data structure for string processing [Wei73]. It is a static data structure that uses linear
space and supports pattern matching queries in linear time in the length of the pattern.

8

to temporarily buffer the queries and later batch process them, at which point we can also afford to build
a suffix tree over the uncovered suffix. In both cases, we spend constant time per character for each tree,
boundary, and the uncovered suffix, spending O(log(w/δ)) time in total per character.

1.5 Rank and Select

Given a string S over an alphabet [1, σ], the rank-select problem is to preprocess S to support

• rankS(i, c): return the number of occurrences of c in S[1, i]

• selectS(i, c): return the index of the ith occurrence of c in S

The rank-select problem is a fundamental string problem due to its wide applicability, e.g., [BN15,OS07,
GMR06,RRS07,PNB17,BCPT15,MN07,FMMN07,BHMS11,BCG+14,NS14,HM10,NN14,GRSV13], refer-
ences therein, and surveys [Gag16].

A degenerate string is a sequence X = X1, . . . Xn where each Xi is a subset of [1, σ]. It encodes the set
of strings that can be obtained by selecting one character from each Xi, from left to right. We define its
length to be n, its size to be N =

∑
i |Xi|, and denote by n0 the number of empty sets among X1, . . . , Xn.

Degenerate strings have been studied since the 80s [Abr87] and the literature contains papers on problems
such as degenerate string comparison [AAB+20], finding string covers for degenerate strings [CIK+17], and
pattern matching with degenerate patterns, degenerate texts, or both [Abr87, IMR08].

Alanko, Biagi, Puglisi, and Vuohtoniemi [ABPV23] recently generalized the rank-select problem to the
subset rank-select problem, where the goal is to preprocess a given degenerate string X to support

• subset-rankX(i, c): return the number of sets in X1, . . . , Xi that contain c

• subset-selectX(i, c): return the index of the ith set that contains c

Their motivation for studying is problems in pangenomics; specifically, in another work they show how to
preprocess a string S such that they can answer k-mer queries (i.e., “does this length-k string appear in S?”)
using 2k subset-rank queries [APV23]. Their implementation outperforms the previous state of the art by
one to two orders of magnitude, while improving or matching space usage. Their theoretical result [ABPV23]
supports both queries in O(log σ) time and uses 2N log σ + 2n0 + o(N log σ + n0) bits of space

3.

Our Results We introduce the natural parameter N , and reanalyze a number of reductions from subset
rank-select to regular rank-select, based on reductions from [APV23]. By plugging in standard rank-select
data structures we improve the existing theoretical query times exponentially to O(log log σ), while improv-
ing, or essentially matching, the space bounds. We provide a lower bound showing that any solution to
the problem must use N log σ − o(N log σ) bits in the worst case, and show that the reductions match this
bound up to lower order terms in many cases. Finally, we provide implementations and compare them to the
implementations provided by [APV23,ABPV23] for their results. Our most compact structure matches the
space of their most compact structure while answering queries twice as fast. We also provide a data structure
utilizing modern vector hardware, which matches the space of the most compact structure, improves query
time a factor four to seven, and remains competitive with the remaining fast structures.

Techniques Most of the techniques are straightforward. For the lower bound we use similar techniques
to those described in Section 1.3. For the upper bounds we analyze the reductions by carefully considering
different cases for n, N , and n0. For our implementation using vector hardware, one interesting component
is the operation vpternlogq, which — given three vectors A, B, and C — evaluates any three-variable
boolean function f bitwise for each of the vectors, i.e., the ith bit of the output is the result of applying f

3The space bound they state is slightly different as they do not explicitly use N as a parameter; the bound we state here is
the result of our reanalysis of their result.

9

to the ith bits of A, B, and C. We use this during rank queries to quickly indicate the character that we are
performing a rank query for, before counting the number of occurrences using an operation that counts the
number of 1-bits.

10

Chapter 2

Predecessor on the Ultra-Wide Word
RAM

11

Predecessor on the Ultra-Wide Word RAM

Philip Bille∗

DTU Compute
phbi@dtu.dk

Inge Li Gørtz∗

DTU Compute
inge@dtu.dk

Tord Joakim Stordalen
DTU Compute
tjost@dtu.dk

Abstract

We consider the predecessor problem on the ultra-wide word RAM model of computation, which
extends the word RAM model with ultrawords consisting of w2 bits [TAMC, 2015]. The model supports
arithmetic and boolean operations on ultrawords, in addition to scattered memory operations that access
or modify w (potentially non-contiguous) memory addresses simultaneously. The ultra-wide word RAM
model captures (and idealizes) modern vector processor architectures. Our main result is a simple, linear
space data structure that supports predecessor in constant time and updates in amortized, expected
constant time. This improves the space of the previous constant time solution that uses space in the
order of the size of the universe. Our result holds even in a weaker model where ultrawords consist of
w1+ϵ bits for any ϵ > 0. It is based on a new implementation of the classic x-fast trie data structure of
Willard [Inform. Process. Lett. 17(2), 1983] combined with a new dictionary data structure that supports
fast parallel lookups.

2.1 Introduction

Let S be a set of n w-bit integers. The predecessor problem is to maintain S under the following operations.

• predecessor(x): return the largest y ∈ S such that y ≤ x.

• insert(x): add x to S.

• delete(x): remove x from S.

The predecessor problem is a fundamental and well-studied data structure problem, both from the per-
spective of upper bounds [PT06,PT14,vEBKZ77,Wil83,FW93,And96,BF02,vEB77,BBV10,BBPV09] and
lower bounds [Ajt88, BF02,Mil94,MNSW98, SV08, PT06, PT07]. The problem has many applications, for
instance integer sorting [And96,AHNR98,FW93,Han04], string sorting [AFGV97,BFK06,Far97], and string
searching [Bel12,BBV10,BEGV18,BGS17,BLR+15]. See Navarro and Rojas-Ledesma [NR20] for a recent
survey.

On the word RAM model of computation, the complexity of the problem is well-understood with the
following tight upper and lower bound on the time for operations given by Pătraşcu and Thorup [PT14].

Θ

max

1,min

logw n,

log w
logw

log
(
log w

logw/ log logn
logw

) , log log(2w − n)

logw

From the upper bound perspective, the first branch matches dynamic fusion trees [PT14], the second branch
is based on an extension of the techniques from Beame and Fich [BF02], and the last branch is based on an

∗Supported by Danish Research Council grant DFF-8021-002498

12

extension of dynamic van Emde Boas trees [vEBKZ77]. Note that the lower bound implies that we cannot
support operations in constant time for general n and w. Hence, a natural question is if practical models of
computation capturing modern hardware can allow us to overcome the superconstant lower bound.

One such model is the RAM with byte overlap (RAMBO) by Brodnik et al. [BCF+05]. This model
extends the word RAM model by adding a set of special words that share bits; flipping a bit in one word
will also affect all the other words that share that bit. The precise model is determined by the layout of the
shared bits. It is feasible to make hardware based on this model, and prototypes have been built [LMu+99].
In the RAMBO model, Brodnik et al. [BCF+05] gave a predecessor data structure using constant time per
operation with O(2w/w) space (counting both regular words and shared words). They also gave a randomized
version of the solution that uses constant time with high probability and reduces the regular space to O(n)
(but still needs Ω(2w/w) space for the shared words). In both cases, the total space is near-linear in the size
of the universe.

More recently, Farzan et al. [FLNS15] introduced the ultra-wide word RAM model (UWRAM). The
UWRAM extends the word RAM model by adding special ultrawords of w2 bits. The model supports
standard boolean and arithmetic operations on ultrawords, as well as scattered memory operations that
access w words in memory in parallel. The UWRAMmodel captures (and idealizes) modern vector processing
architectures [Rei13, SBB+17, CRDI07] (see Section 2.2 for details of the model). Farzan et al. [FLNS15]
showed how to simulate algorithms for the RAMBO model on the UWRAM at the cost of increasing the
space by a polylogarithmic factor. Simulating the above RAMBO solution for the predecessor problem, they
gave a solution to the predecessor problem on the UWRAM using worst case constant time for all operations
and O(w2w) space.

2.1.1 Our Results

We revisit the predecessor problem on the UWRAM and show the following main result.

Theorem 1. Given a set of n w-bit integers, we can construct an O(n) space data structure on a UWRAM
that supports predecessor in constant time and insert and delete in amortized expected constant time. The
result holds even when ultrawords consist of w1+ϵ bits for any fixed ϵ > 0.

Compared to the previous result of Farzan et al. [FLNS15], Theorem 1 significantly reduces the space
from O(w2w) to linear while maintaining constant time for operations (note that query time is worst-case,
while updates are amortized expected). Furthermore, our result works in a weaker model were ultrawords
consist of only w1+ϵ bits for any arbitrarily small ϵ > 0. In this restricted model we limit our reliance on
the powerful scattered memory operations by allowing them to access only wϵ words in memory in parallel.

A key component in our solution is a new dictionary data structure of independent interest that supports
fast parallel lookups on the UWRAM. We define the problem as follows. Recall that an ultraword X consists
of w2 (or w1+ϵ) bits. We view X as divided into w (or wϵ) words of w consecutive bits each, numbered
from right to left starting from 0. The ith word in X is denoted X⟨i⟩ (we discuss the model in detail in
Section 2.2). Given a set S of n w-bit integers, the wϵ-parallel dictionary problem is to maintain S under
the following operations.

• pMember(X): return an ultraword I where I⟨i⟩ = 1 if X⟨i⟩ ∈ S and I⟨i⟩ = 0 otherwise.

• insert(x): Add x to S.

• delete(x): Remove x from S.

Thus, pMember takes an ultraword X of wϵ integers and returns an ultraword encoding which of these
integers are in S. To the best of our knowledge, the wϵ-parallel dictionary problem has not been studied
before. We show the following result.

Theorem 2. Given a set of n w-bit integers on a UWRAM with w1+ϵ-bit ultrawords for any fixed ϵ > 0,
we can construct an O(n + wϵ)-space data structure that supports pMember queries in worst case constant
time and insert and delete in amortized expected constant time.

13

Note that the queries are worst-case constant time, while the updates are amortized expected constant
time. The time bounds of Theorem 2 thus match the well-known dynamic perfect hashing structure of
Dietzfelbinger et al. [DKM+94] (which is also the basis of our solution), except that the queries are parallel.
The space is linear except for the additive wϵ term, which is needed even for storing the input to the pMember
query.

In our data structures we only need to store a constant number of ultrawords during the computation.
This is important since modern vector processor architectures only have a limited number of ultraword
registers.

An extended abstract of this paper appeared at the 18th Scandinavian Symposium and Workshops on
Algorithm Theory [BGS22b]. The current paper improves that result by extending it to ultrawords consisting
of only w1+ϵ bits, and also provides complete proofs for all the claims.

2.1.2 Techniques

Our results are achieved by novel and efficient parallel implementations of well-known sequential data struc-
tures.

Our parallel dictionary structure of Theorem 2 is based on the dynamic perfect hashing structure of Di-
etzfelbinger et al. [DKM+94]. This is a two-level data structure similar to the classic static perfect hashing
structure of Fredman et al. [FKS84]. At the first level, a universal hash function partitions the input into
smaller subsets, each of which is then resolved at the second level using another universal hash function
mapping the elements into sufficiently large tables. The structure supports (sequential) membership queries
in worst-case constant time by evaluating the hash functions and navigating the structure accordingly. Up-
dates are supported in amortized expected constant time by carefully rebuilding and rehashing the structure
during execution. At any point in time the structure never uses more than O(n) space. We show how
to parallelize the evaluation of a universal hash function (the simple and practically efficient multiply-shift
hash function). Then, using the scattered memory access operations, we show how to access the corre-
sponding entries in the structure in parallel. Our technique requires only small changes to the structure of
Dietzfelbinger et al. [DKM+94] and we can directly apply their update operations to our solution. Thus,
we are able to parallelize the worst-case constant time sequential membership query while maintaining the
amortized expected constant update time bound of Dietzfelbinger et al. [DKM+94], leading to the bounds
of Theorem 2.

We first show Theorem 1 for the simpler case ϵ = 1 that corresponds to the original UWRAM model
by [FLNS15]. Our data structure is based on the x-fast trie of Willard [Wil83] combined with our parallel
dictionary structure of Theorem 2. The x-fast trie consists of the trie T of the binary representation of the
input set. Also, at each level i, the structure stores a dictionary containing the length-i prefixes of the input
set. In total, this uses O(nw) space. The x-fast trie supports predecessor queries in O(logw) time by binary
searching the levels (with the help of the dictionaries) to find the longest common prefix of the query and
the input set. Though not designed for it, we can implement updates on the x-fast trie in O(w) time by
directly updating each level of the dictionary accordingly. Our new predecessor structure, which we call the
xtra-fast trie, instead stores the compact trie of the binary representation of the input set (i.e., the trie where
paths of nodes with a single child are merged into a single edge). We store a dictionary representing the
prefixes (similar to the x-fast trie) using our parallel dictionary structure of Theorem 2, but now only for the
branching nodes in the compact trie. This reduces the space to O(n). To support predecessor queries for an
integer x, we generate all w prefixes of x and apply a parallel membership query on these in the dictionary.
We show how to identify the longest match in parallel which in turn allows us to identify the predecessor.
In total this takes worst-case constant time for the predecessor query. To handle updates, we show how to
modify the trie efficiently using scattered memory access operations and a constant number of dictionary
updates, leading to the expected amortized constant time bound of Theorem 1.

We generalize our result for Theorem 1 to arbitrary ϵ > 0 as follows. The main challenge is that pMember
now supports only wϵ member queries in parallel, so we cannot search for all prefixes of x simultaneously.
Instead, we adapt ideas from the y-fast trie by Willard [Wil83] to our xtra-fast trie. The y-fast trie works as
follows. Partition the input set S into O(n/w) sets S1, . . . , St where each Si consists of w consecutive values

14

Figure 2.1: The layout of an ultraword X

from S, i.e., where max(Si) < min(Si+1) for each i. Build an x-fast trie over the set S′ = {max(Si) | i =
1, . . . , t− 1} — which takes O(n) space since |S′| = O(n/w) — and a balanced binary search tree over each
Si. To determine predecessor(x), do a predecessor query in the x-fast trie to determine the set Si containing
the predecessor of x and do a predecessor query in Si, both of which takes O(logw) time. Insertions are
supported by instead inserting x in Si. If Si subsequently becomes too large (e.g., larger than 2w), split Si

into two and add an additional element to S′ in the x-fast trie. This takes O(w) time, which is constant when
amortized over the Ω(w) insertions necessary for Si to grow too large. Deletions are supported similarly. In
our data structure we use dynamic fusion trees by Pătraşcu and Thorup [PT14] for each Si, which solves
the predecessor problem on sets of size wO(1) in linear space and constant time per operation. We build an
uncompacted xtra-fast trie over S′, i.e. the xtra-fast trie that also includes non-branching nodes. To support
fast queries and updates for an integer x, we use the scattered memory operations to simulate a wϵ-way
search (as opposed to a binary search) to find the longest common prefix between x and S′. This eliminates
a factor 1/wϵ of the remaining possibilities per round, leading to a running time of O(logwϵ w) = O(1/ϵ),
i.e., constant for any fixed ϵ.

2.1.3 Outline

In Section 2.2 we describe the UWRAM model of computation and some useful procedures. In Sections 2.3
and 2.4 we show how to do parallel hash function evaluation and wϵ-parallel dictionaries, proving Theorem 2.
Finally, in Section 2.5 we prove Theorem 1 for ϵ = 1, which we generalize to arbitrary ϵ > 0 in Section 2.6.

2.2 The Ultra-Wide Word RAM Model

The word RAM model of computation [Hag98] consists of an unbounded memory of w-bit words and a
standard instruction set including arithmetic, boolean, and bitwise operations (denoted ‘&’, ‘|’ and ‘∼’ for
and, or and not) and shifts (denoted ‘≫’ and ‘≪’) such as those available in standard programming languages
(e.g., C). Furthermore, we assume for simplicity that there is a constant-time operation for finding the index
of the leftmost 1-bit in a word. This operation is supported by most modern computers; otherwise there
is a constant-time implementation using standard bitwise and arithmetic operations [FW93]. We make the
standard assumption that we can store a pointer into the input in a single word and hence w ≥ log n, where
n is the size of the input, and for simplicity we assume that w is even. We denote the address of x in memory
as addr(x), and the address of an array is the address of its first index. The time complexity of a word RAM
algorithm is the number of instructions and the space is the number of words stored by the algorithm.

The ultra-wide word RAM (UWRAM) model of computation [FLNS15] extends the word RAM model
with special ultrawords of w2 bits (in Section 2.6 we consider the case where ultrawords have w1+ϵ bits for
any fixed ϵ > 0). As in [FLNS15], we distinguish between the restricted UWRAM that supports a minimal
set of instructions on ultrawords consisting of addition, subtraction, shifts, and bitwise boolean operations,
and the multiplication UWRAM that additionally supports multiplications. We extend the notation for
bitwise operations and shifts to ultrawords. The UWRAM (both restricted and multiplication) also supports
contiguous and scattered memory access operations, as described below. The time complexity is the number
of instructions (on standard words or ultrawords) and the space complexity is the number of words used by
the algorithms, where each ultraword is counted as w words. The UWRAM model captures (and idealizes)
modern vector processing architectures [Rei13, SBB+17, CRDI07]. See also Farzan et al. [FLNS15] for a
detailed discussion of the applicability of the UWRAM model.

15

2.2.1 Instructions and Componentwise Operations

Recall that an ultraword consists of w2 bits. We often view an ultraword X as divided into w words of w
consecutive bits each, which we call the components of X. We number the components in X from right-to-left
starting from 0 and use the notation X⟨i⟩ to denote the ith word in X (see Fig. 2.1). We will also use the
notation X = ⟨xw−1, . . . , x0⟩, denoting that X⟨i⟩ = xi.

We define a number of useful componentwise operations on ultrawords that we will need for our algorithms
in the following. Let X and Y be ultrawords. The componentwise addition of X and Y , denoted X + Y ,
is the ultraword Z such that Z⟨i⟩ = X⟨i⟩ + Y ⟨i⟩ mod 2w. We define componentwise subtraction, denoted
X−Y , and componentwise multiplication, denoted XY , similarly. The componentwise comparison of X and
Y is the ultraword Z such that Z⟨i⟩ = 1 if X⟨i⟩ < Y ⟨i⟩ and 0 otherwise. Given another ultraword I where
each component is either 0 or 1, we define the componentwise blend of X, Y , and I to be the ultraword Z
such that Z⟨i⟩ = X⟨i⟩ if I⟨i⟩ = 0 and Z⟨i⟩ = Y ⟨i⟩ if I⟨i⟩ = 1.

Except for componentwise multiplication, all of the above componentwise operations can be implemented
in constant time on the restricted UWRAM using standard word-level parallelism techniques [Hag98,BGS22a]
(see Appendix 2.A for details on blend). For our purposes, we will need componentwise multiplication as
an instruction (for evaluating hash functions in parallel) and thus we include this in the instruction set of
the UWRAM. This is the UWRAM model that we will use throughout the rest of the paper. Note that all
of the componentwise operations are widely supported directly in modern vector processing architectures.
For instance, a componentwise multiplication (e.g., the vpmullw operation) is defined in Intel’s AVX2 vector
extension [Cor11].

We will need componentwise operations on components that are small constant multiples of w. In
particular, we will need a 2w-bit componentwise multiplication that multiplies w/2 components of w bits
and returns the w/2 resulting components of 2w bits. Specifically, let X = ⟨0, xw−2, . . . , 0, x2, 0, x0⟩ and
Y = ⟨0, yw−2, . . . , 0, y2, 0, y0⟩, i.e., X and Y store w/2 components aligned at the even positions. The 2w-bit
componentwise multiplication is the ultraword Z = ⟨z+w−2, z

−
w−2, . . . , z

+
2 , z

−
2 , z+0 , z

−
0 ⟩ where z+i and z−i is the

leftmost and rightmost w bits, respectively, of the 2w-bit product of xi and yi. We can implement 2w-bit
componentwise multiplication using standard techniques in constant time on the UWRAM. See Appendix 2.A
for details.

Finally, the UWRAM model supports the compress operation that, given X, returns the word that results
from concatenating the rightmost bit of each component of X. We do not need the corresponding inverse
spread operation, defined by Farzan et al. [FLNS15].

2.2.2 Memory Access

The UWRAM supports standard memory access operations that read or write a single word or a sequence of
w contiguous words. More interestingly, the UWRAM also supports scattered access operations that access
w memory locations (not necessarily contiguous) in parallel. Given an ultraword A containing w memory
addresses, a scattered read loads the contents of the addresses into an ultraword X, such that X⟨i⟩ contains
the contents of memory location A⟨i⟩. Given ultrawords X and A a scattered write sets the contents of
memory location A⟨i⟩ to be X⟨i⟩. Scattered memory accesses captures the memory model used in IBM’s
Cell architecture [CRDI07]. They also appear (e.g., vpgatherdd) in Intel’s AVX2 vector extension [Cor11].
Scattered memory access operations were also proposed by Larsen and Pagh [LP12] in the context of the
I/O model of computation. Note that while the addresses for scattered writes must be distinct, we can read
simultaneously from the same address. We can use this to efficiently copy x into all w components of an
ultraword X. To do so, create the ultraword ⟨0, . . . , 0⟩ by left-shifting any ultraword by w2 bits, write x to
address 0, and do a scattered read on ⟨0, . . . , 0⟩. We say that we load x into X.

2.3 Computing Multiply-Shift in Parallel

We show how to efficiently compute a universal hash function in parallel. The multiply-shift hashing scheme
is a standard and practically efficient family of universal hash functions due to Dietzfelbinger et al. [DHKP97].

16

For some integer 1 ≤ c ≤ w, define the class Hc = {ha | 0 < a < 2w and a is odd} of hash functions where
ha(x) = (ax mod 2w) ≫ (w − c). Each function in Hc maps from w-bit to c-bit integers. The class Hc is
universal in the sense that for any x ̸= y and for ha ∈ Hc selected uniformly at random, it holds that
P [ha(x) = ha(y)] ≤ 2/2c.

We will show how to evaluate w such functions in constant time. Given X⟨i⟩ = xi, A⟨i⟩ = ai and
C⟨i⟩ = 2ci where hi(x) = (aix mod 2w) ≫ (w − ci) the goal is to compute H⟨i⟩ = hi(xi). To do so we first
evaluate the functions in two rounds of w/2 functions each, and then combine the results.

Step 1: Evaluate the hash function on the even indices. We construct an ultrawordHeven containing
all the values of hi(xi) at all even indices i. First construct the ultrawords

C ′ = ⟨0, 2cw−2 , 0, 2cw−4 , . . . , 0, 2c0⟩
T ′ = ⟨0, pw−2, 0, pw−4 . . . , 0, p0⟩.

where pi is the product aixi mod 2w.
To do so, we do componentwise multiplication of C with the constant M = ⟨0, 1, . . . , 0, 1⟩ and compo-

nentwise multiplications of A, X, and M . Then, we do a 2w-bit multiplication of C ′ and T ′ and right shift
the result by w. This produces the ultraword

Heven = ⟨⋆, pw−2 ≫ (w − cw−2), ⋆, pw−4 ≫ (w − cw−4), . . . , ⋆, p0 ≫ (w − c0)⟩.
Note that pi ≫ (w− ci) = (aixi mod 2w) ≫ (w− ci) = hi(xi). Thus, all even indices in Heven store the

resulting hash values of the integers at the even indices in the input. We will not need the values in the odd
indices (resulting from the 2w-bit multiplication and the right shift) and therefore these are marked with a
wildcard symbol ⋆.

Step 2: Evaluate the hash function on the odd indices. Symmetrically, we now construct the
ultraword Hodd containing hi(xi) at all odd indices i. To do so, repeat step 1 and modify the shifting to
align the computation for the odd indices. More precisely, right shift X, C and A by w and repeat step 1,
then left shift the result by w to align the results back to the odd positions. This produces the ultraword

Hodd = ⟨pw−1 ≫ (w − cw−1), ⋆, pw−3 ≫ (w − cw−3)⋆, . . . , p1 ≫ (w − c1), ⋆⟩

Step 3: Combine the results. Finally, we combine the results by blending Heven and Hodd using
I = ⟨1, . . . , 1⟩ −M , producing the ultraword H of the even indices of Heven and the odd indices of Hodd.

This takes constant time since componentwise multiplication, 2w-bit multiplication, shifting, blending,
loading 1 into ⟨1, . . . , 1⟩, and componentwise subtraction all run in constant time. Hence, we can evaluate
each case of w/2 hash functions in constant time and combine the results in constant time. In summary, we
have the following result.

Lemma 1. Given X⟨i⟩ = xi, A⟨i⟩ = ai, C⟨i⟩ = 2ci , and the constant M = ⟨0, 1, . . . , 0, 1⟩ we can evaluate
each of the w multiply-shift hash functions hi(x) = (aix mod 2w) ≫ (w − ci) by computing the ultraword
H = ⟨hw−1(xw−1), . . . , h0(x0)⟩ in constant time on a UWRAM.

2.4 The wϵ-Parallel Dictionary

We now show how to construct the wϵ-parallel dictionary of Theorem 2. Throughout the section we assume
that ϵ = 1, but the result generalizes to any ϵ > 0 in a straightforward manner. Our data structure is based
on a dictionary by Dietzfelbinger et al. that implements a dynamic perfect hashing strategy [DKM+94].
Their dictionary already supports insert and delete in amortized expected constant time. Furthermore, it

17

supports sequential member queries (i.e. “is x ∈ S”) in worst case constant time. We will show that we can
use scattered memory operations to run w member queries simultaneously, thus implementing pMember in
constant time.

2.4.1 Dynamic Perfect Hashing

In this section we briefly describe the contents of the data structure of Dietzfelbinger et al. [DKM+94]. Note
that we use the multiply-shift hashing scheme, while they use another class of universal hash functions.
Multiply-shift satisfies all the necessary constraints and the analysis from [DKM+94] still works. It does
however incur a multiplicative, constant space overhead for our arrays since the range of a multiply-shift
function is a power of two.

The main idea of the data structure is as follows. Let S be a set of w-bit integers. Choose h ∈ Hc and
partition S into 2c = Θ(n) sets S0, . . . , S2c−1 where Si = {x | x ∈ S and h(x) = i}. Each set Si is stored in
a separate array using a hash function hi(x) = (aix mod 2w) ≫ (w − ci). Dietzfelbinger et al. show how
to implement the operations insert and delete such that they maintain that hi has no collisions on Si. The
values of c and each ci vary as as the size of S changes. However, in general 2c is smaller than, e.g., 3|S|
and 2ci is approximately 2

(|Si|
2

)
. See details in Dietzfelbinger et al. [DKM+94].

The data structure consists of the following.

• For each Si, store an array Ti of size 2ci . For each x ∈ Si let Ti[hi(x)] = x, i.e. the position that x
hashes to stores x. If there is no x ∈ Si that hashes to j, then Ti[j] = 2w−1 if j = 0 and Ti[j] = 0
otherwise. We claim that hi(0) is always zero and hi(2

w−1) is never zero; it follows that x ∈ Si if and
only if Ti[hi(x)] = x since each unused entry Ti[j] stores a value whose hash cannot be j. We have
that hi(2

w−1) is not zero because

hi(2
w−1) = (ai2

w−1 mod 2w) ≫ (w − ci) = 2w−1 ≫ (w − ci) ≥ 1.

The second step follows since ai is odd; then ai2
w−1 = 2w−1 + (ai − 1)2w−1, and the latter term is 0

modulo 2w since ai − 1 is even. The last step follows because ci ≥ 1.

• An array T of size 2c. At index T [i] we store the 5-tuple (addr(Ti), 2
ci , ai, ⋆, ⋆) where ⋆ are book-keeping

values used by insert and delete. Note that 2ci and ai encode hi.

• The integers a and 2c representing the top-level hash function h(x) = (ax mod 2w) ≫ (w− c), as well
as addr(T).

It follows from this construction that x ∈ S if and only if Ti[hi(x)] = x where i = h(x). Dietzfelbinger et al.
show that the data structure uses linear space, that member runs in worst-case constant time, and that insert
and delete run in amortized expected constant time [DKM+94].

Extending the Data Structure. We extend this data structure by storing the constantM = ⟨0, 1, . . . , 0, 1, 0, 1⟩
from Section 2.3 used to evaluate multiply-shift functions in parallel. This increases the space of the data
structure to O(n+ w). Note that linear space in w is needed even to store the input to a pMember query.

2.4.2 Parallel Queries

In this section, we begin by describing a single member query, before we show how to run w copies of the
member query in parallel to support pMember. We compute member(x) as follows.

1. Using a and 2c, compute j = h(x).

2. Let q = addr(T) + 5j = addr(T [j]) (recall that each index in T stores five words). Read the values
stored at q, q+1 and q+2 to get respectively addr(Tj), 2

cj and aj , the first three words stored at T [j].
Compute k = hj(x).

18

3. Check whether the value stored at addr(Tj) + k = addr(Tj [k]) is equal to x.

The parallel algorithm runs this algorithm for all w inputs simultaneously. Given X = ⟨xw−1, . . . , x0⟩ we
implement pMember(X) as follows. Each of the steps below executes the corresponding step above in parallel
for each of the w inputs.

Step 1: Evaluate the top-level hash function. Load the two ultrawords A = ⟨a, . . . , a⟩ and C =
⟨2c, . . . , 2c⟩. Compute the ultraword J = ⟨h(xw−1), . . . , h(x0)⟩ using the multiply-shift algorithm of Lemma 1.

Step 2: Evaluate each of the second-level hash functions. Load F = ⟨5, . . . , 5⟩ and P = ⟨addr(T), . . . , addr(T)⟩.
Compute Q = P+FJ . Then Q⟨i⟩ = addr(T)+5J⟨i⟩ = addr(T [J⟨i⟩]). Do scattered reads of Q, Q+⟨1, . . . , 1⟩,
and Q+ ⟨2, . . . , 2⟩ to produce the ultrawords P ′, C ′, and A′. We have that

P ′ = ⟨addr(TJ⟨w−1⟩), . . . , addr(TJ⟨0⟩)⟩
C ′ = ⟨2cJ⟨w−1⟩ , . . . , 2cJ⟨0⟩⟩
A′ = ⟨aJ⟨w−1⟩, . . . , aJ⟨0⟩⟩

Compute the ultraword K = ⟨hJ⟨w−1⟩(xw−1), . . . , hJ⟨0⟩(x0)⟩ using the multiply-shift algorithm of Lemma 1.

Step 3: Check whether the inputs are present in the dictionary. Do a scattered read of P ′ +K
and name the result R. Then R⟨i⟩ = Tj [hj(xi)] where j = h(xi). Return the result I of componentwise
equality between X and R. That is

I⟨i⟩ =
{
1 if X⟨i⟩ = R⟨i⟩
0 otherwise

Evaluating the hash functions in steps 1 and 2 takes constant time according to Lemma 1. The remaining
operations are scattered reads, loads and componentwise operations, all of which run in constant time. Since
there is only a constant number of operations, pMember runs in constant time. This concludes the proof of
Theorem 2.

Note that both the algorithm for parallel hashing and the dictionary generalizes to the case with w1+ϵ-
bit ultrawords and wϵ inputs in a straight forward manner. In this case, the space is O(n + wϵ) since the
ultraword constants use only wϵ space.

2.4.3 Satellite Data

Suppose we associate some value data(x) with each x ∈ S. We extend the data structure to support the
following operation, where X = ⟨xw−1, . . . , x0⟩ as above.

• pRetrieve(X): returns a pair (I,D) where I is the result of pMember(X) and

D⟨i⟩ =
{
addr(data(xi)) if I⟨i⟩ = 1, i.e if xi ∈ S

undefined otherwise

We return addr(data(x)) instead of data(x) since the data would not fit into an ultraword if data(x) requires
more than one word to store.

We extend the data structure as follows to support pRetrieve. Store two words for each index in Ti. For
each x ∈ Si, the first word in Ti[hi(x)] stores x and the second stores addr(data(x)). The remaining entries
store either 0 or 2w−1, as above.

To do the retrieval, first compute I = pMember(X). However, in step 3, multiply K by ⟨2, . . . , 2⟩ before
the scattered read since each index in Ti now stores two words. Also, add ⟨1, . . . , 1⟩ to P ′+⟨2, . . . 2⟩K and do
a scattered read to compute the ultraword D. The space of the data structure remains O(n+w) (assuming
that data(x) uses constant space), and pRetrieve runs in constant time.

19

2.5 The xtra-fast Trie

In this section we prove Theorem 1 for the special case where ϵ = 1, i.e. where ultrawords consist of w2 bits.
We generalize our result to arbitrary ϵ > 0 in Section 2.6. Our data structure, the xtra-fast trie, supports
predecessor in worst case constant time and insert and delete in amortized expected constant time. In our
description we assume that we have keys of w− 1 bits each and we give a solution that uses O(n+w) space.
At the end of this section we will reduce the space to O(n) and extend the solution to w-bit keys, proving
Theorem 1 for ϵ = 1.

2.5.1 Data Structure

Consider the compacted trie T over the binary representation of the elements in S. For each node v ∈ T
define str(v) to be the bitstring encoded by the path from the root to v in T . Also let min(v) and max(v)
be the smallest and largest leaves in the subtree of v, respectively. By min(v) and max(v) we refer both to a
leaf and to the value the leaf represents.

For each edge (u, v) ∈ T , let label(u, v) be str(u) followed by the first bit on the edge (u, v). Define
key(u, v) to be label(u, v) followed by a single 1-bit and w− |label(u, v)| − 1 zeroes. Note that |key(u, v)| = w
and that the keys of two distinct edges in T always differ. See Fig. 2.2 for an example.

We define the exit edge for an integer x to be the edge in T where the match of x ends. In other words,
it is the edge (u, v) ∈ T such that label(u, v) is a prefix of x and |label(u, v)| is maximum. See Fig. 2.2 for an
example. It is possible that x has no exit edge if the root has fewer than two children.

Our data structure consists of the following:

• A sorted, doubly linked list L of the leaves of T , i.e., the elements of S.

• A dictionary D supporting parallel queries using Theorem 2. For each edge (u, v) ∈ T we store an
entry in D with the key key(u, v) and data(u, v) = (addr(min(v)), addr(max(v))). Here, addr(min(v))
and addr(max(v)) are the addresses to the corresponding elements in L, and we denote the addresses
to min(v) and max(v) as the min- and max-pointer of (u, v).

• The two ultraword constants M ′ and H described in the next section.

Storing L and the ultraword constants takes O(n+w) space combined. Since T is compacted there are O(n)
entries in D, so by Theorem 2 the dictionary also uses O(n+ w) space.

2.5.2 Predecessor Queries

The main idea of the predecessor query for x is to first find the exit edge of x by simultaneously searching
for all prefixes of x in D. Then we use the min- and max-pointer of the exit edge to find the predecessor of
x. If x has no exit edge, then the root does not have an outgoing edge matching the leftmost bit of x. If the
leftmost bit of x is 1, the predecessor of x is the largest leaf in the left subtree of the root, and otherwise x
has no predecessor. Assuming that x has an exit edge, the procedure has three steps.

Step 1: Compute all prefixes of x. Let bw−2bw−3 · · · b0 be the binary representation of x of length
w − 1. We compute the ultraword

X = ⟨bw−2bw−3 · · · b01 , bw−2bw−3 · · · b110 , . . . , 10 · · · 0⟩.

That is, X⟨i⟩ contains the prefix of x of length i followed by a 1-bit and w − i − 1 zeroes. Thus, for any
edge (u, v) ∈ T such that label(u, v) is the length-i prefix of x, we have X⟨i⟩ = key(u, v). We compute X as
follows.

Let M ′ be the constant such that M ′⟨i⟩ consists of i consecutive 1-bits followed by w − i consecutive
0-bits. Let H be the constant where the (i+1)th leftmost bit in H⟨i⟩ is 1 and the remaining bits are zeroes.
First load x into X such that X = ⟨x, x, . . . , x⟩. Then compute X = (X & M ′) | H.

20

Figure 2.2: An xtra-fast trie for S = {001000, 001010, 001011, 101000, 101010, 110110, 110111, 111100}. The
dashed edge and nodes illustrate how the trie would change if x = 110101 were inserted. The exit edge for x
is (u, v) since we match the bitstring 1101 but do not match the next 1 on (u, v). Similarly, the exit edge for
100100 is (s, t). We have that key(u, v) = label(u, v)1000 = 1101000 where the underlined part is what we
append to the labels to disambiguate the keys. Similarly, key(r, s) = 1100000 and key(s, t) = 1010000. The
dictionary entry of (s, u) has key(s, u) = 1110000, and the min- and max-pointer of (s, u) are addr(min(u))
and addr(max(u)). Similarly, the min-pointer of (r, s) is to min(s) = min(t) and the max-pointer is to
max(s) = max(u). Note that if we insert x we would have to update the min-pointer of (s, u), since x < min(v).
However, the min-pointer of (r, s) remains unchanged since min(t) < x

Step 2: Find the exit edge (u, v) of x. First do (I, P) = pRetrieve(X) on D. Then compute c =
compress(I) such that the ith rightmost bit in c is 1 if I⟨i⟩ = 1 and zero otherwise. Note that x has no
exit edge if c = 0. Find the index k of the leftmost bit in c that is 1. Then X⟨k⟩ = key(u, v) where (u, v)
is the exit edge of x. Furthermore, the values stored at the addresses P ⟨k⟩ and P ⟨k⟩ + 1 are the min- and
max-pointers of (u, v), respectively.

Step 3: Find the predecessor of x. Use the min- and max-pointer of (u, v) found in step 2 to retrieve
min(v) and max(v). If x ≥ max(v) then return max(v); otherwise return the element immediately left of
min(v) in L. Note that there might not be an element immediately left of min(v) if x is smaller than than
everything in S, in which case x has no predecessor.

Since we search for all prefixes of x and take the edge corresponding to the longest prefix found, we find
the exit edge (u, v) of x. If x ∈ S, then x = v = max(v) and we correctly return that x is the predecessor of
itself. If x ̸∈ S then the path to where x would have been located if it were in T branches off (u, v) either
to the left (if x < min(v)) or right (if x > max(v)). In the first case, predecessor(x) is the element located
immediately left of min(v) in T , and in the second case predecessor(x) is max(v).

By Theorem 2 the parallel dictionary query in step 2 takes worst case constant time. The remaining
operations are standard operations available in the model, so the procedure runs in constant time.

2.5.3 Insertions

The main idea of the insertion procedure is as follows. Since T is compacted, inserting a new leaf x will cause
only a constant number of edges to be inserted and removed, so we can make these changes sequentially.
Furthermore, some of the at most w − 1 edges on the path from the root to x might have their min- or
max-pointers changed, and we will update these edges in parallel.

Consider inserting x = 110101 in the trie in Fig. 2.2. When x is inserted we add a new leaf for x, as well
as a new node p at the location where the path to x branches off the exit edge (u, v) of x. This removes
the edge (u, v), but adds the three new edges (u, p), (p, x) and (p, v). Furthermore, we must update the
min-pointer of (s, u), because min(v) was replaced by x as the smallest leaf under u. On the other hand,

21

we do not update the min-pointer of (r, s) because min(t) is smaller than x. Note that we do not explicitly
store internal nodes and therefore do not add p anywhere in the data structure.

We now describe the insertion procedure. First we note that if x does not have an exit edge it is because
the root does not have an outgoing edge which shares the same leftmost bit as x. This case is easily solved
by adding an edge from the root to the new leaf x and adding x to either the start or end of L. We will
now assume that x has an exit edge, and also that x branches off its exit edge to the left; the other case is
symmetric.

Step 1: Find the predecessor of x. Do a predecessor query as described in Section 2.5.2, which
determines

• The predecessor of x in L.

• The exit edge (u, v) of x, label(u, v) and data(u, v) = (addr(min(v)), addr(max(v))).

• The result (I, P) of pRetrieve(X) on D.

Step 2: Insert x in L. Insert x immediately to the right of its predecessor in L.

Step 3: Update edges. Let p be the new node that is added on (u, v) when we insert x. We insert (u, p),
(p, x) and (p, v) and remove (u, v) from D. We find the labels of the three edges to insert as follows. We
have that label(u, p) = label(u, v) since (u, p) is the edge (u, v) shortened by adding the node p and since
only the first character of the edge affects the label. By definition, label(p, x) and label(p, v) consist of str(p)
with a zero and a one appended, respectively. We compute str(p) by finding the longest common prefix p̂
of x and min(v). To do so, do bitwise XOR between x and min(v) and find the index k of the leftmost bit
that is 1 in the result. Now k indicates the leftmost bit where x and min(v) differ. To extract the longest
common prefix compute p̂ = x & ∼((1 ≪ (k + 1)) − 1). Given the labels we can easily construct the keys
for the edges.

We now construct the satellite data for the edges. Both the min- and max-pointer for (p, x) are addr(x)
since x is a leaf. For (p, v) they are addr(min(v)) and addr(max(v)), which were determined during the
predecessor query. Finally, the min-pointer for (u, p) is addr(x) and the max-pointer is addr(max(v)).

Step 4: Update min-pointers. We update the min-pointers for the edges on the path from the root
to u that are incorrect after inserting x. Note that inserting x cannot invalidate any max-pointers since we
assumed that x branched off its exit edge to the left. The edges that must be updated are exactly those that
have a min-pointer to min(v), since x has replaced min(v) as the smallest leaf under u.

Consider the result (I, P) from the pRetrieve query. We begin by setting I⟨k′⟩ = 0 for the index k′

corresponding to the exit edge (u, v) of x (we know k′ from the predecessor query). The indices in I that
now contain 1 indicate the edges on the path from the root to u.

Next we identify the edges that needs to be updated by creating I ′ where I ′⟨i⟩ = 1 if and only if both
I⟨i⟩ = 1 and what is stored at address P ⟨i⟩ is the address of min(v). To do so, first do a scattered read of
P and store the result in M . Now M contains addr(min(b)) for each edge (a, b) on the path to u.1 Note the
value of P ⟨i⟩ is arbitrary if I⟨i⟩ = 0, i.e. if no edge has the length-i prefix of x as its label. Load addr(min(v))
into the ultraword V . Let E be the result of componentwise equality between M and V . Then E⟨i⟩ = 1 if
and only if what is stored at address P ⟨i⟩ is addr(min(v)). Finally compute I ′ = I & E.

Now we use P and I ′ to update the incorrect min-pointers. First, load the address of the node for x into
U . Then compute B by blending M (the result of the scattered read of P) and U conditioned on I ′ such
that

B⟨i⟩ =
{
M⟨i⟩ if I ′⟨i⟩ = 0 (i.e. the value already at the address P ⟨i⟩)
U⟨i⟩ if I ′⟨i⟩ = 1 (i.e. the address of x)

1If x branched off to the right of its exit edge, we would do a scattered read of P +⟨1, . . . , 1⟩ to load the max-pointers instead
of min-pointers.

22

Finally, do a scattered write of B to the addresses in P . Hence, what is stored at the address P ⟨i⟩
remains the same if I ′⟨i⟩ = 0 and is replaced by the address of x otherwise.

The predecessor query in step 1 takes constant time. The operations in step 2 and step 4 are all standard
RAM or UWRAM operations. The dictionary updates in step 3 run in amortized expected constant time
by Theorem 2. Since the rest of step 3 consists of standard operations, the running time for insertions is
amortized expected constant.

2.5.4 Deletions

The deletion procedure is essentially the inverse of the insertion procedure. We assume that x is the left
child of its parent p; the other case is symmetric.

Step 1: Find x. Do a predecessor query for x. Since x ∈ S, the predecessor of x is itself. This determines

• The position of x in L.

• The exit edge (p, x) for x, along with label(p, x). Since x ∈ S, this edge must end in the leaf for x.

• The result (I, P) of pRetrieve(X) on D.

Step 2: Update min-pointers. If p is the root (i.e. if |label(p, x)| = 1) we remove the edge (p, x) from
D and remove x from L which completes the deletion of x. Otherwise p is an internal node and must have
another child which we denote by v. Consider the edges on the path to p. Any min-pointer to x should
be replaced by the address of min(v), since min(v) is the successor of x and also in the subtree of all of
these edges. We find min(v) in the node immediately right of x in L. As we did in Step 4 for insertions, we
compute an ultraword I ′′ where I ′′⟨i⟩ = 1 if and only if both I⟨i⟩ = 1 and if what is stored at the address
P ⟨i⟩ is the address of x. Using I ′′, P , and the same algorithm as in Step 4 we replace every min-pointer to
x by the address of min(v).

Step 3: Delete edges. We delete (p, x) and (p, v) from D. Determine label(p, v) by flipping the last bit
in label(p, x). Using the labels we easily find the keys. Note that we do not explicitly delete the edge (u, p)
or insert the edge (u, v). These two edges share the same key, and the min-pointer of (u, p) was changed to
the address of min(v) in step 2.

Step 4: Update L. Remove x from L.

Steps 1, 2 and 4 all take constant time (see Sections 2.5.2 and 2.5.3). The two deletions in step 3 take
amortized constant time according to Theorem 2. The remainder of step 3 takes constant time, so deletions
run in amortized expected constant time.

2.5.5 Reducing to Linear Space and Supporting w-bit Keys

Here, we reduce the space to O(n) and show how to support w-bit keys, concluding the proof of Theorem 1.
The O(w) term in the space bound above is due to the wϵ-parallel dictionary D and O(1) ultraword con-

stants. To avoid this when n = o(w), we will initially support predecessor, insert and delete using the dynamic
fusion tree by Pătraşcu and Thorup [PT14] (based on the fusion tree by Fredman and Willard [FW93]),
which uses linear space and supports all three operations in constant time for sets of size wO(1). Simultane-
ously, we build the ultraword constants we need over the course of Θ(w) insertions, maintaining linear space.
When n ≥ w, the constants have been built and we move all elements into the trie. If at any point n ≤ w/2,
we move all elements from the trie into a fusion tree and remove the trie and the ultraword constants,
leaving us with linear space and Θ(w) insert operations in which to rebuild the constants. Updates still run
in amortized expected constant time since we always do Ω(w) updates before we move O(w) elements.

23

To extend the solution to work with w-bit keys, we partition the input set S into S0 and S1 where
Si = {s | s ∈ S and the leftmost bit of s is i}, and store an xtra-fast trie for each set. Suppose the leftmost
bit of an integer x is i. An insert, delete or predecessor operation on x is performed on the data structure for
Si. Additionally, if i = 1 and the predecessor query on S1 returns that x has no predecessor, we return the
largest element in S0, or report that x has no predecessor if S0 is empty.

2.6 The xtra-fast Trie With Smaller Ultrawords

In this section we show how to match the bounds of Theorem 1 when ultrawords consist of only w1+ϵ bits
(i.e. wϵ components) for any fixed ϵ > 0. The model is otherwise exactly as described in Section 2.2. For
simplicity, we assume that wϵ is an integer to avoid writing ⌊wϵ⌋ throughout the section.

As mentioned, our data structure is based on the y-fast trie by Dan Willard [Wil83], which we briefly
sketched in Section 2.1.2. As before, we describe an O(n + w) space data structure for keys of w − 1 bits,
which can be improved to O(n) space and w-bit keys using the same tricks from Section 2.5.5.

2.6.1 Data Structure

Partition the input set S into t = ⌈n/w⌉ sets S1, . . . , St such that |Si| = w and max(Si) < min(Si+1) for
each i < t. The last set St might be smaller than w. Define S′ = {max(Si) | i = 1, . . . , t − 1}. The data
structure consists of

• The uncompacted xtra-fast trie T over S′, i.e., the xtra-fast trie where we also include non-branching
nodes. Its definition is identical to that in Section 2.5.1, defined over the trie of S′ instead of the
compacted trie.

• A dynamic fusion tree [PT14] over each Si. This word-RAM data structure by Pătraşcu and Thorup
supports insert, delete, and predecessor in constant time and linear space on sets of size wO(1).

• A wϵ-ary search tree B over the set W = {1, . . . , w − 1} defined as follows. Divide W into wϵ + 1
roughly equally-sized consecutive subranges W1, . . . ,Wwϵ+1 (their sizes might differ by 1). Recursively
construct search trees over each subrange. The root v of B stores a pointer to each subtree and the
keys min(W2),min(W3), . . . ,min(Wwϵ+1) in sorted order in an array Iv. The recursion terminates in
a leaf when there are less than wϵ elements in the range. Each leaf v stores the elements it represents
in sorted order in the array Iv, as well as the number of elements |Iv| that is stores.

• The w2-bit ultraword constants M ′ and H from Section 2.5.2 that we used to compute the keys for
the parallel dictionary queries. Each constant is stored in a length-w array.

Throughout the operation of the data structure, we maintain that |Si| = Ω(w) for each i. Therefore,
|S′| = O(n/w). The uncompacted xtra-fast trie uses O(|S′|w+wϵ) = O(n+wϵ) space since each root-to-leaf
path has w edges. Here the wϵ comes from the wϵ-parallel dictionary used in the trie. The dynamic fusion
trees use linear space in total. The tree B uses O(w) space since the leaves use O(w) space and each internal
node is branching. The constants M ′ and H also use O(w) space, so the total space consumption is O(n+w).

2.6.2 Predecessor Queries

Since each ultraword contains only wϵ components, we cannot simultaneously search for all prefixes of a
query x to determine the longest prefix present in the tree. Instead, we will use B to do a wϵ-ary search.
Once we have found the longest prefix, we find the predecessor of x in S′ as in Section 2.5.2, and then
determine the predecessor of x in the corresponding Si using the fusion tree.

To determine the longest prefix of x that occurs in S′ we do the following. Let v be the root node of
B. Read Iv into an ultraword and use the result to do a scattered read relative to the constants M ′ and
H, denoting the resulting ultrawords by M ′

v and Hv. Load x into the ultraword X. As in Section 2.5.2 we

24

compute Xv = (X & M ′
v) | Hv to determine the keys of the prefixes of x of length Iv[0], . . . , Iv[wϵ − 1].

Do a parallel query for Xv in the parallel dictionary; the result Iv indicates which prefixes of x occur in
S′. Compress Iv and find the leftmost 1-bit to determine which subrange contains the length of the longest
prefix of x, and recurse in the corresponding subtree. Note that if v is a leaf, |Iv| < wϵ is possible. To avoid
false positives in the dictionary query we load Iv into the |Iv| rightmost components of an ultraword and
zero out the remaining components by doing bitwise & with (1 ≪ |Iv|w) − 1; this does not lead to false
positives in the parallel member query since 0 is not a valid key for any edge in S′ (see the definition of keys
in Section 2.5.1).

Once the longest prefix of x has been found we find the predecessor of x in S′ as in Section 2.5.2, and
find the predecessor of x in the corresponding Si in constant time using the fusion tree. The time it takes to
determine the longest prefix is the time it takes to search in B. For each node we do a constant number of
scattered reads, bitwise operations, and a parallel member query, all of which takes constant time. The height
of B is O(logwϵ w) = O(1/ϵ) = O(1) since the branching factor of all internal nodes is wϵ + 1, concluding
the proof.

2.6.3 Insertions and Deletions

To insert a new element x we first determine which set Si to add x to using a predecessor query. We then
insert x in Si in constant time using the dynamic fusion tree. If Si becomes too large (e.g., 2w) we split it
by deleting and reinserting half of the elements in another dynamic fusion tree. We also add new separator
element to S′ by manually inserting every new edge; this takes expected O(w) time in total since each
edge can be added to the wϵ-parallel dictionary in amortized expected constant time. The time it takes to
support insertions is amortized expected constant since there are Ω(w) updates between splits. Deletions
are supported similarly, merging adjacent fusion trees if they become too small.

2.7 Conclusions and Open Problems

We have studied the predecessor problem on the UWRAM model of computation. We have given a linear
space data structure that supports predecessor queries in worst case constant time and updates in amortized
expected constant time, even when ultrawords consist of only w1+ϵ bits for any fixed ϵ > 0.

Furthermore, we have shown how to implement a wϵ-parallel dictionary on the UWRAM. The dictionary
supports w (or wϵ) simultaneous membership queries in worst case constant time and individual updates in
amortized expected constant time.

We wonder if it is possible to achieve constant time with high probability for all operations in the
predecessor problem. The limiting factor for our solution is the time for updates in the wϵ-parallel dictionary.
There are dictionaries that achieve constant time with high probability for all operations in the word RAM
model, e.g. [DadH90]. However, such dictionaries seem to require hash functions that are difficult to evaluate
in parallel on the UWRAM. For instance, [DadH90] uses the modulo operator, for which we cannot see an
obvious way to make a component-wise version.

Acknowledgments We would like to thank the anonymous reviewers for their comments, which improved
the presentation of the paper. In particular, we would like to thank the reviewer who suggested that it might
be possible to strengthen the result by restricting the model to w1+ϵ-bit ultrawords.

2.A Blend and 2w-bit Multiplication

Supporting Blend

Given the ultrawords X, Y and I where each component of I is either 0 or 1, we define the componentwise
blend of X, Y , and I to be the ultraword Z such that Z⟨i⟩ = X⟨i⟩ if I⟨i⟩ = 0 and Y ⟨i⟩ if I⟨i⟩ = 1. To
compute the blend in constant time we do as follows. Compute I ′ = ⟨0, . . . , 0⟩ − I; then I ′⟨i⟩ contains only

25

Figure 2.3: Illustrates step 3 of 2w-bit multiplication. Each of the products X+Y +, X+Y −, X−Y + and
X−Y − are left-shifted by respectively w, w/2, w/2 and 0 by shifting in zeroes from the right. Then they
are added together using componentwise addition for 2w-bit components. Since what we sum up in a 2w-bit
component adds up to the product of two w-bit integers, we only need 2w bits to store the result. Hence
the addition will not overflow

1-bits if I⟨i⟩ = 1 and only 0-bits otherwise, since 0− 1 mod 2w = 2w − 1. Then the blend of X and Y can
be computed by (X & ∼ I ′) | (Y & I ′).

Supporting 2w-Bit Componentwise Multiplication

We show how to implement 2w-bit componentwise multiplication in constant time. Let x+ and x− denote
the leftmost and rightmost half of the binary representation of x, respectively. Then, if x is a 2k-bit integer
we have that x = x+2k + x− where x+ = x/2k and x− = x mod 2k. Given X = ⟨0, xw−2, . . . , 0, x2, 0, x0⟩
and Y = ⟨0, yw−2, . . . , 0, y2, 0, y0⟩, recall that the 2w-bit componentwise multiplication of X and Y is the
ultraword Z = ⟨z+w−2, z

−
w−2, . . . , z

+
2 , z

−
2 , z+0 , z

−
0 ⟩ where zi is the 2w-bit product of xi and yi.

The main idea for computing Z is to use the identity

xy = (x+2w/2 + x−)(y+2w/2 + y−)

= x+y+2w + (x+y− + x−y+)2w/2 + x−y−
(2.1)

where x and y are w-bit integers. We simulate this in parallel as follows.

Step 1: Compute x+
i , x−

i , y+i and y−i for all even i. We first construct X+ and X− such that
X+⟨i⟩ = x+

i and X−⟨i⟩ = x−
i for even i and zero otherwise, and similarly for Y . Compute the integer

m = 2w/2 − 1 which consists of w/2 zeroes followed by w/2 ones. Load m into M . Compute X− = X & M
and X+ = (X ≫ w/2) & M . Compute Y + and Y − in the same way.

Step 2: Compute the products of the w/2-bit integers. Use componentwise multiplication to com-
pute each of the ultrawords X+Y +, X+Y −, X−Y + andX−Y −. Since each component of X+, X−, Y + and
Y − is a (w/2)-bit integer, no overflow occurs. The odd components still store 0.

Step 3: Align and add the products. Align the products by left-shifting them the amount specified in
Equation 2.1, i.e.

X+Y + ≪ w X+Y − ≪ w/2 X−Y + ≪ w/2 X−Y − ≪ 0

26

Add the aligned ultrawords using componentwise addition for 2w-bit components (see e.g. Hagerup [Hag98])
and return the result. See Fig. 2.3 for an illustration. Since the sum of the terms added together in a 2w-bit
component exactly correspond to the multiplication of two w-bit integers, the addition will not overflow.

Bitwise &, left- and right-shifts, componentwise multiplication and componentwise additions for arbitrary
component sizes all run in constant time. Each step uses a constant number of these operations, so the
procedure runs in constant time.

27

28

Chapter 3

The Complexity of the Co-Occurrence
Problem

29

The Complexity of the Co-Occurrence Problem

Philip Bille∗

DTU Compute
phbi@dtu.dk

Inge Li Gørtz∗

DTU Compute
inge@dtu.dk

Tord Joakim Stordalen
DTU Compute
tjost@dtu.dk

Abstract

Let S be a string of length n over an alphabet Σ and let Q be a subset of Σ of size q ≥ 2. The
co-occurrence problem is to construct a compact data structure that supports the following query: given
an integer w return the number of length-w substrings of S that contain each character of Q at least once.
This is a natural string problem with applications to, e.g., data mining, natural language processing, and
DNA analysis. The state of the art is an O(

√
nq) space data structure that — with some minor additions

— supports queries in O(log log n) time [CPM 2021].
Our contributions are as follows. Firstly, we analyze the problem in terms of a new, natural parameter

d, giving a simple data structure that uses O(d) space and supports queries in O(log log n) time. The
preprocessing algorithm does a single pass over S, runs in expected O(n) time, and uses O(d+ q) space
in addition to the input. Furthermore, we show that O(d) space is optimal and that O(log log n)-time
queries are optimal given optimal space. Secondly, we bound d = O(

√
nq), giving clean bounds in terms

of n and q that match the state of the art. Furthermore, we prove that Ω(
√
nq) bits of space is necessary

in the worst case, meaning that the O(
√
nq) upper bound is tight to within polylogarithmic factors. All

of our results are based on simple and intuitive combinatorial ideas that simplify the state of the art.

3.1 Introduction

We consider the co-occurrence problem which is defined as follows. Let S be a string of length n over an
alphabet Σ and let Q be a subset of Σ of size q ≥ 2. For two integers i and j where 1 ≤ i ≤ j ≤ n, let
[i, j] denote the discrete interval {i, i+1, . . . , j}, and let S[i, j] denote the substring of S starting at S[i] and
ending at S[j]. The interval [i, j] is a co-occurrence of Q in S if S[i, j] contains each character in Q at least
once. The goal is to preprocess S and Q into a data structure that supports the query

• coS,Q(w): return the number of co-occurrences of Q in S that have length w, i.e., the number of
length-w substrings of S that contain each character in Q at least once.

For example, let Σ = {A, B, C, -}, Q = {A, B, C} and

S = -
1
-
2
-
3
-
4
B
5
C
6
-
7
A
8
C
9

C
10

B
11

-
12

-
13

.

Then

• coS,Q(3) = 0, because no length-three substring contains all three characters A, B, and C.

• coS,Q(4) = 2, because both [5, 8] and [8, 11] are co-occurrences of Q.

• coS,Q(8) = 6, because all six of the length-eight substrings of S are co-occurrences of Q.

∗Supported by Danish Research Council grant DFF-8021-002498

30

Note that only sublinear-space data structures are interesting. With linear space we can simply precompute
the answer to coS,Q(i) for each i ∈ [0, n] and support queries in constant time.

This is a natural string problem with applications to, e.g., data mining, and a large amount of work
has gone towards related problems such as finding frequent items in streams [DLM02, GDD+03, KSP03,
LCK14] and finding frequent sets of items in streams [AH18,CL06,DP13,LL09,LCWC05,MTZ08,YYL+15].
Furthermore, it is similar to certain string problems, such as episode matching [DFG+97] where the goal is to
determine all the substrings of S that occur a certain number of times within a given distance from each other.
Whereas previous work is mostly concerned with identifying frequent patterns either in the whole string or in a
sliding window of fixed length, Sobel, Bertram, Ding, Nargesian and Gildea [SBD+21] introduced the problem
of studying a given pattern across all window lengths (i.e., determining coS,Q(i) for all i). They motivate
the problem by listing potential applications such as training models for natural language processing (short
and long co-occurrences of a set of words tend to represent respectively syntactic and semantic information),
automatically organizing the memory of a computer program for good cache behaviour (variables that are
used close to each other should be near each other in memory), and analyzing DNA sequences (co-occurrences
of nucleotides in DNA provide insight into the evolution of viruses). See [SBD+21] for a more detailed
discussion of these applications.

Our work is inspired by [SBD+21]. They do not consider fast, individual queries, but instead they give
an O(

√
nq) space data structure from which they can determine coS,Q(i) for each i = 1, . . . , n in O(n) time.

Supporting fast queries is a natural extension to their problem, and we note that their solution can be
extended to support individual queries in O(log log n) time using the techniques presented below.

A key component of our result is a solution to the following simplified problem. A co-occurrence [i, j] is
left-minimal if [i + 1, j] is not a co-occurrence. The left-minimal co-occurrence problem is to preprocess S
and Q into a data structure that supports the query

• lmcoS,Q(w): return the number of left-minimal co-occurrences of Q in S that have length w.

We first solve this more restricted problem, and then we solve the co-occurrence problem by a reduction to
the left-minimal co-occurrence problem. To our knowledge this problem has not been studied before.

3.1.1 Our Results

Our two main contributions are as follows. Firstly, we give an upper bound that matches and simplifies the
state of the art. Secondly, we provide lower bounds that show that our solution has optimal space, and that
our query time is optimal for optimal-space data structures. As in previous work, all our results work on
the word RAM model with logarithmic word size.

To do so we use the following parametrization. Let δS,Q be the difference encoding of the sequence
lmcoS,Q(1), . . . , lmcoS,Q(n). That is, δS,Q(i) = lmcoS,Q(i) − lmcoS,Q(i − 1) for each i ∈ [2, n] (note that
lmco(1) = 0 since |Q| ≥ 2). Let ZS,Q = {i ∈ [2, n] | δ(i) ̸= 0} and let dS,Q = |ZS,Q|. For the remainder of the
paper we will omit the subscript on lmco, co, Z, and d whenever S and Q are clear from the context. Note
that d is a parameter of the problem since it is determined exclusively by the input S and Q. We prove the
following theorem.

Theorem 3. Let S be a string of length n over an alphabet Σ, let Q be a subset of Σ of size q ≥ 2, and let
d be defined as above.

(a) There is an O(d) space data structure that supports both lmcoS,Q- and coS,Q-queries in O(log log n)
time. The preprocessing algorithm does a single pass over S, runs in expected O(n) time and uses
O(d+ q) space in addition to the input.

(b) Any data structure supporting either lmcoS,Q- or coS,Q-queries needs Ω(d) space in the worst case, and

any d logO(1) d space data structure cannot support queries faster than Ω(log log n) time.

(c) The parameter d is bounded by O(
√
nq), and any data structure supporting either lmcoS,Q- or coS,Q-

queries needs Ω(
√
nq) bits of space in the worst case.

31

Theorem 3(a) and 3(b) together prove that our data structure has optimal space, and that with optimal
space we cannot hope to support queries faster than O(log log n) time. In comparison to the state of the
art by Sobel et al. [SBD+21], Theorem 3(c) proves that we match their O(

√
nq) space and O(log log n) time

solution, and also that the O(
√
nq) space bound is tight to within polylogarithmic factors. All of our results

are based on simple and intuitive combinatorial ideas that simplify the state of the art.

Given a set X of m integers from a universe U , the static predecessor problem is to represent X such that
we can efficiently answer the query predecessor(x) = max{y ∈ X | y ≤ x}. Tight bounds by Pătraşcu and

Thorup [PT07] imply that O(log log |U |)-time queries are optimal with m logO(1) m space when |U | = mc for
any constant c > 1. The lower bound on query time in Theorem 3(b) follows from the following theorem,
which in turn follows from a reduction from the predecessor problem to the (left-minimal) co-occurrence
problem.

Theorem 4. Let X ⊆ {2, . . . , u} for some u and let |X| = m. Let n, q, and d be the parameters of the
(left-minimal) co-occurrence problem as above. Given a data structure that supports lmco- or co-queries in
ft(n, q, d) time using fs(n, q, d) space, we obtain a data structure that supports predecessor queries on X in
O(ft(2u

2, 2, 8m)) time using O(fs(2u
2, 2, 8m)) space.

In particular, if fs(n, q, d) = d logO(1) d then we obtain an m logO(1) m-space predecessor data structure
on X. If also u = mc, then it follows from the lower bound on predecessor queries that ft(2u

2, 2, 8m) =
Ω(log log u), which in turn implies that ft(n, q, d) = Ω(log log n), proving the lower bound in Theorem 3(b).

The preprocessing algorithm and the proof of Theorem 4 can be found in Appendices 3.A and 3.B,
respectively.

3.1.2 Techniques

The key technical insights that lead to our results stem mainly from the structure of δ.

To achieve the upper bound for lmco-queries we use the following very simple data structure. By defini-
tion, lmco(w) =

∑w
i=2 δ(i). Furthermore, by the definition of Z it follows that for any w ∈ [2, n] we have that

lmco(w) = lmco(wp) where wp is the predecessor of w in Z. Our data structure is a predecessor structure
over the set of key-value pairs {(i, lmco(i)) | i ∈ Z} and answers lmco-queries with a single predecessor query.
There are linear space predecessor structures that support queries in O(log log |U |) time [Wil83]. Here the
universe U is [2, n] so we match the O(d) space and O(log log n) time bound in Theorem 3(a).

Furthermore, we prove the O(
√
nq) upper bound on space by bounding d = O(

√
nq) using the following

idea. In essence, each δ(z) for z ∈ Z corresponds to some length-z minimal co-occurrence, which is a co-
occurrence [i, j] such that neither [i+ 1, j] nor [i, j − 1] are co-occurrences (see below for the full details on
δ). We bound the cumulative length of all the minimal co-occurrences to be O(nq); then there are at most
d = O(

√
nq) distinct lengths of minimal co-occurrences since d = ω(

√
nq) implies that the cumulative length

of the minimal co-occurrences is at least 1 + . . .+ d = Ω(d2) = ω(nq).

To also support co-queries and complete the upper bound we give a straight-forward reduction from the
co-occurrence problem to the left-minimal co-occurrence problem. We show that by extending the above
data structure to also store

∑z
i=2 lmco(i) for each z ∈ Z, we can support co-queries with the same bounds

as for lmco-queries.

On the lower bounds side, we give all the lower bounds for the left-minimal co-occurrence problem and
show that they extend to the co-occurrence problem. To prove the lower bounds we exploit that we can
carefully design lmco-instances that result in a particular difference encoding δ by including minimal co-
occurrences of certain lengths and spacing. Our lower bounds on space in Theorem 3(b) and 3(c) are the
results of encoding a given permutation or set in δ, respectively.

Finally, as mentioned above, we prove Theorem 4 (and, by extension, the lower bound on query time in
Theorem 3(b)) by encoding a given instance of the static predecessor problem in an lmco-instance such that
the predecessor of an element x equals lmco(x).

32

S =

[j,k]︷ ︸︸ ︷· · · · · · · ◦ · · · · · · · ◦︸ ︷︷ ︸
[ℓ1,r1]

· · · · · · S = · · · · · · ◦
ℓi

(ℓ1,k]︷ ︸︸ ︷· · · ◦
ri
· ·

︸ ︷︷ ︸
[s,t]

· ◦
k
· · · ◦

ri+1

· · · · · ·

Figure 3.1: Left (Lemma 2(a)): Any left-minimal co-occurrence [j, k] must contain a minimal co-occurrence
ending at or before k. If k < r1 this contradicts that r1 is the smallest endpoint of a minimal co-occurrence.
Right (Lemma 2(b)): [ℓi, k] is a co-occurrence because it contains [ℓi, ri]. However, [ℓi + 1, k] is not a co-
occurrence; if it were it would contain a minimal co-occurrence [s, t] that ends between ri and k, leading to
a contradiction since ri < t < ri+1.

3.2 The Left-Minimal Co-Occurrence Problem

3.2.1 Main Idea

Let [i, j] ⊆ [1, n] be a co-occurrence of Q in S. Recall that then each character from Q occurs in S[i, j] and
that [i, j] is left-minimal if [i+1, j] is not a co-occurrence. The goal is to preprocess S and Q to support the
query lmco(w), which returns the number of left-minimal co-occurrences of length w.

We say that [i, j] is a minimal co-occurrence if neither [i + 1, j] nor [i, j − 1] are co-occurrences and we
denote the µ minimal co-occurrences of Q in S by [ℓ1, r1], . . . , [ℓµ, rµ] where r1 < . . . < rµ. This ordering
is unique since at most one minimal co-occurrence ends at a given index. To simplify the presentation we
define rµ+1 = n+ 1. Note that also ℓ1 < . . . < ℓµ due to the following property.

Property 1. Let [a, b] and [a′, b′] be two minimal co-occurrences. Either both a < a′ and b < b′, or both
a′ < a and b′ < b.

Proof. If a < a′ and b ≥ b′ then [a, b] strictly contains another minimal co-occurrence [a′, b′] and can therefore
not be minimal itself. The other cases are analogous.

We now show that given all the minimal co-occurrences we can determine all the left-minimal co-
occurrences.

Lemma 2. Let [ℓ1, r1], . . . , [ℓµ, rµ] be the minimal co-occurrences of Q in S where r1 < . . . < rµ and let
rµ+1 = n+ 1. Then

(a) there are no left-minimal co-occurrences that end before r1, i.e., at an index k < r1, and

(b) for each index k where ri ≤ k < ri+1 for some i, the left-minimal co-occurrence ending at k starts at
ℓi.

Proof. See Fig. 3.1 for an illustration of the proof.

(a) If [j, k] is a left-minimal co-occurrence where k < r1, it must contain some minimal co-occurrence that
ends before r1 — obtainable by shrinking [j, k] maximally — leading to a contradiction.

(b) Let ri ≤ k < ri+1. Then [ℓi, k] is a co-occurrence since it contains [ℓi, ri]. We show that it is left-
minimal by showing that [ℓi + 1, k] is not a co-occurrence. If it were, it would contain a minimal
co-occurrence [s, t] where ℓi < s and t < ri+1. By Property 1, ℓi < s implies that ri < t. However,
then ri < t < ri+1, leading to a contradiction.

33

Let len(i, j) = j − i + 1 denote the length of the interval [i, j]. Lemma 2 implies that each minimal co-
occurrence [ℓi, ri] gives rise to one additional left-minimal co-occurrence of length k for k = len(ℓi, ri), . . . , len(ℓi, ri+1)−
1. Also, note that each left-minimal co-occurrence is determined by a minimal co-occurrence in this manner.
Therefore, lmco(w) equals the number of minimal co-occurrences [ℓi, ri] where len(ℓi, ri) ≤ w < len(ℓi, ri+1).
Recall that δ(i) = lmco(i) − lmco(i − 1) for i ∈ [2, n]. Since lmco(1) = 0 (because |Q| ≥ 2) we have
lmco(w) =

∑w
i=2 δ(i). It follows that

δ(w) =

µ∑

i=1

1 if len(ℓi, ri) = w

−1 if len(ℓi, ri+1) = w

0 otherwise

since the contribution of each [ℓi, ri] to the sum
∑w

i=2 δ(i) is one if len(ℓi, ri) ≤ w < len(ℓi, ri+1) and
zero otherwise. We say that [ℓi, ri] contributes plus one and minus one to δ(len(ℓi, ri)) and δ(len(ℓi, ri+1)),
respectively.

However, note that only the non-zero δ(·)-entries affect the result of lmco-queries. Denote the elements
of Z by z1 < z2 < . . . < zd and define pred(w) such that zpred(w) is the predecessor of w in Z, or pred(w) = 0
if w has no predecessor. We get the following lemma.

Lemma 3. For any w ∈ [z1, n] we have that

lmco(w) =

pred(w)∑

i=1

δ(zi) = lmco(zpred(w)).

For w ∈ [0, z1), w has no predecessor in Z and lmco(w) = 0.

Proof. The proof follows from the fact that lmco(w) =
∑w

i=2 δ(i) and δ(i) = 0 for each i ̸∈ Z.

3.2.2 Data Structure

The contents of the data structure are as follows. Store the linear space predecessor structure from [Wil83]
over the set Z, and for each key zi ∈ Z store the data lmco(zi). To answer lmco(w), find the predecessor
zpred(w) of w and return lmco(zpred(w)). Return 0 if w has no predecessor.

The correctness of the query follows from Lemma 3. The query time is O(log log |U |) [Wil83] which is
O(log log n) since the universe is [2, n], i.e., the domain of δ. The predecessor structure uses O(|Z|) = O(d)
space, which we now show is O(

√
nq). We begin by bounding the cumulative length of the minimal co-

occurrences.

Lemma 4. Let [ℓ1, r1], . . . , [ℓµ, rµ] be the minimal co-occurrences of Q in S. Then

µ∑

i=1

len(ℓi, ri) = O(nq).

Proof. We prove that for each k ∈ [1, n] there are at most q minimal co-occurrences [ℓi, ri] where k ∈
[ℓi, ri]; the statement in the lemma follows directly. Suppose that there are q′ > q minimal co-occurrences
[s1, t1], . . . , [sq′ , tq′] that contain k and let t1 < . . . < tq′ . By Property 1, and because each minimal occurrence
contains k, we have

s1 < . . . < sq′ ≤ k ≤ t1 < . . . < tq′

Furthermore, for each si we have that S[si] = p for some p ∈ Q; otherwise [si+1, ti] would be a co-occurrence
and [si, ti] would not be minimal. Since q′ > q there is some p ∈ Q that occurs twice as the first character,
i.e., such that S[si] = S[sj] = p for some i < j. However, then [si + 1, ti] is a co-occurrence because it still
contains S[sj] = p, contradicting that [si, ti] is minimal.

34

By the definition of δ, we have that δ(k) ̸= 0 only if there is some minimal co-occurrence [ℓi, ri] such that
either len(ℓi, ri) = k or len(ℓi, ri+1) = k. Using this fact in conjunction with Lemma 4 we bound the sum of
the elements in Z.

∑

z∈Z

z =
∑

k where δ(k)̸=0

k ≤
µ∑

i=1

len(ℓi, ri) + len(ℓi, ri+1)

=

µ∑

i=1

len(ℓi, ri) +
(
len(ℓi, ri) + len(ri + 1, ri+1)

)

=

µ∑

i=1

2 · len(ℓi, ri) +
µ∑

i=1

len(ri + 1, ri+1)

= O(nq) +O(n)

Since the sum over Z is at most O(nq) we must have d = O(
√
nq), because with d = ω(

√
nq) distinct

elements in Z we have ∑

z∈Z

z ≥ 1 + 2 + . . .+ d = Ω(d2) = ω(nq).

3.3 The Co-Occurrence Problem

Recall that co(w) is the number of co-occurrences of length w, as opposed to the number of left-minimal co-
occurrences of length w. That is, co(w) counts the number of co-occurrences among the intervals [1, w], [2, w+
1], . . . , [n − w + 1, n]. We reduce the co-occurrence problem to the left-minimal co-occurrence problem as
follows.

Lemma 5. Let S be a string over an alphabet Σ, let Q ⊆ Σ and let lmco be defined as above. Then

co(w) =

(
w∑

i=2

lmco(i)

)
− max(w − r1, 0).

Proof. For any index k ≥ w, the length-w interval [k−w+1, k] ending at k is a co-occurrence if and only if
the length of the left-minimal co-occurrence ending at index k is at most w. The sum

∑w
i=2 lmco(i) counts

the number of indices j ∈ [1, n] such that the left-minimal co-occurrence ending at j has length at most w.
However, this also includes the left-minimal co-occurrences that end at any index j ∈ [r1, w−1]. While all of
these have length at most w− 1, none of the length-w intervals that end in the range [r1, w− 1] correspond
to substrings of S, so they are not co-occurrences. Therefore, the sum

∑w
i=2 lmco(i) overestimates co(w) by

w − r1 if r1 < w and by 0 otherwise.

We show how to represent the sequence
∑2

i=2 lmco(i), . . . ,
∑n

i=2 lmco(i) compactly, in a similar way to
what we did for lmco-queries. Recall that the elements of Z are denoted by z1 < . . . < zd, that zpred(x) is the
predecessor of x in Z, and that pred(x) = 0 if x has no predecessor. Then, for any w ≥ 2 we get that

w∑

i=2

lmco(i) =
w∑

i=2

pred(i)∑

j=1

δ(zj)

=

pred(w)∑

k=1

δ(zk)(w − zk + 1)

= (w + 1)

pred(w)∑

k=1

δ(zk)

︸ ︷︷ ︸
lmco(w)

−
pred(w)∑

k=1

zkδ(zk)

(3.1)

35

The first step follows by Lemma 3 and the second step follows because δ(zk) occurs in
∑pred(i)

j=1 δ(zj) for each
of the w − zk + 1 choices of i ∈ [zk, w].

To also support co-queries we extend our data structure from before as follows. For each zk in the
predecessor structure we store

∑k
i=1 ziδ(zi) in addition to lmco(zk). We also store r1. Using Lemma 5

and Equation 3.1 we can then answer co-queries with a single predecessor query and a constant amount
of extra work, taking O(log log n) time. The space remains O(d) = O(

√
nq). This completes the proof of

Theorem 3(a), as well as the upper bound on space from Theorem 3(c).

3.4 Lower Bounds

In this section we show lower bounds on the space complexity of data structures that support lmco- or
co-queries. In Section 3.4.1 we introduce a gadget that we use in Section 3.4.2 to prove that any data
structure supporting lmco- or co-queries needs Ω(d) space (we use the same gadget in Appendix 3.B to prove
Theorem 4). In Section 3.4.3 we prove that any solution to the (left-minimal) co-occurrence problem requires
Ω(

√
nq) bits of space in the worst case.
All the lower bounds are proven by reduction to the left-minimal co-occurrence problem. However, they

extend to data structures that support co-queries by the following argument. Store r1 and any data structure
that supports co on S and Q in time t per query. Then this data structure supports lmco-queries in O(t)
time, because by Lemma 5 we have that

co(w) − co(w − 1)

=

(
w∑

i=2

lmco(i) − max(w − r1, 0)

)
−
(

w−1∑

i=2

lmco(i) − max(w − 1− r1, 0)

)

= lmco(w)−max(w − r1, 0) + max(w − 1− r1, 0)

3.4.1 The Increment Gadget

Let Q = {A, B} and U = {2, . . . , u}. For each i ∈ U we define the increment gadget

Gi = A $ · · · $ B︸ ︷︷ ︸
i

$ · · · $︸ ︷︷ ︸
u

where $ · · · $ denotes a sequence of characters that are not in Q.

Lemma 6. Let Q = {A, B}, U = {2, . . . , u}, and let Gi be defined as above. Furthermore, for some E =
{e1, e2, . . . , em} ⊆ U let S be the concatenation of c1 > 0 copies of Ge1 , with c2 > 0 copies of Ge2 , and so
on. That is,

S = Ge1 · · ·Ge1︸ ︷︷ ︸
c1

. Gem · · ·Gem︸ ︷︷ ︸
cm

Then δ(ei) = ci for each ei ∈ E and δ(e) = 0 for any e ∈ U \ E. Furthermore, m ≤ d ≤ 8m and n ≤ 2uC
where C =

∑m
i=1 ci is the number of gadgets in S.

Proof. Firstly, |Gj | = j + u ≤ 2u since j ∈ U , so the combined length of the C gadgets is at most 2uC.
Now we prove that δ(ei) = ci for each ei ∈ E and δ(e) = 0 for each e ∈ U \E. Consider two gadgets Gj

and Gk that occur next to each other in S.

Gj︷ ︸︸ ︷
A $ · · · $ B︸ ︷︷ ︸

j

$ · · · $︸ ︷︷ ︸
u

Gk︷ ︸︸ ︷
A $ · · · $ B︸ ︷︷ ︸

k

$ · · · $︸ ︷︷ ︸
u

Three of the minimal co-occurrences in S occur in these two gadgets. Denote them by [s1, t1],[s2, t2] and
[s3, t3].

36

︸ ︷︷ ︸
[s1,t1]

A $ · · · $
[s2,t2]︷ ︸︸ ︷

B $ · · · $ A $ · · · $ B︸ ︷︷ ︸
[s3,t3]

$ · · · $

The two first minimal co-occurrences start in Gj . They contribute

• plus one to δ(x) for x ∈ {len(s1, t1), len(s2, t2)} = {j, u+ 2}.

• minus one to δ(x) for x ∈ {len(s1, t2), len(s2, t3)} = {j + u+ 1, k + u+ 1}.

Hence, each occurrence of Gj contributes plus one to δ(j), and the remaining contributions are to δ(x) where
x ̸∈ U . The argument is similar also for the last gadget in S that has no other gadget following it. For each
ei ∈ E there are ci occurrences of Gei so δ(ei) = ci. For each e ∈ U \ E there are no occurrences of Ge so
δ(e) = 0.

Finally, note that each occurrence of GjGk at different positions in S contributes to the same four δ(·)-
entries. Therefore the number of distinct non-zero δ(·)-entries is linear in the number of distinct pairs (j, k)
such that Gj and Gk occur next to each other in S. Here we have no more than 2m distinct paris since Gei

is followed either by Gei or Gei+1 . Each distinct pair contributes to at most four δ(·)-entries so d ≤ 8m.
Finally each Gei contributes at least to δ(ei) so m ≤ d, concluding the proof.

3.4.2 Lower Bound on Space

We prove that any data structure supporting lmco-queries needs Ω(d) space in the worst case. Let U and
Q be defined as in the increment gadget and let P = p2, . . . , pm be a sequence of length m − 1 where each
pi ∈ U (the first element is named p2 for simplicity). We let S be the concatenation of p2 occurrences of G2,
with p3 occurrences of G3, and so on. That is,

S = G2 . . . G2︸ ︷︷ ︸
p2

· · · · · · · · · Gm . . . Gm︸ ︷︷ ︸
pm

Then any data structure supporting lmco on S and Q is a representation of P ; by Lemma 6 we have that
δ(i) = pi for i ∈ [2,m] and by definition we have δ(i) = lmco(i)− lmco(i− 1).

The sequence P can be any one of (u− 1)m−1 distinct sequences, so any representation of P requires

log((u− 1)m−1) = (m− 1) log(u− 1) = Ω(m log u)

bits — or Ω(m) words — in the worst case. By Lemma 6 this is Ω(d).

3.4.3 Lower Bound on Space in Terms of n and q

Here we prove that any data structure supporting lmco needs Ω(
√
nq) bits of space in the worst case.

The main idea is as follows. Given an integer α and some k ∈ {2, . . . , α}, let V be the set of even integers
from {k + 1, . . . , kα}, and let T be some subset of V . We will construct an instance S and Q where

• the size of Q is q = k

• the length of S is n = O(kα2)

• for each i ∈ V we have δ(i) = 1 if and only if i ∈ T .

Then, as above, any data structure supporting lmco-queries on S and Q is a representation of T since
δ(i) = lmco(i)− lmco(i− 1). There are 2Ω(kα) choices for T , so any representation of T requires

log 2Ω(kα) = Ω(kα) = Ω(
√
k2α2) = Ω(

√
nq)

37

C1
1
C2
2

. . . Ck
k
$ · · · $ C1

1+e1
$ · · · $ $ · · · $ Ck−1

k−1+ek−1

≥kα︷ ︸︸ ︷
$ · · · · · · · · · $

︸ ︷︷ ︸
[s1,t1]

C1

[s2,t2]︷ ︸︸ ︷
C2 . . . Ck $ · · · $ C1 $ · · · $ $ · · · $ Ck−1

︸ ︷︷ ︸
[sk,tk]

$ · · · · · · · · · $

Figure 3.2: Top: Shows the layout of the gadget Rj , where $ · · · $ denotes a sequence of characters not in Q.
The first k characters are C1 . . . Ck. For i ∈ [1, k − 1] there is another occurrence of Ci at index i+ ei. Note
that the second occurrence of C1 occurs before the second occurrence of C2, and so on. All other characters
are $. Since |Rj | = 3kα and k − 1 + ek−1 ≤ 2kα, Rj ends with at least kα characters that are not in
Q. Bottom: Shows the k minimal co-occurrences in Rj denoted by [s1, t1], . . . , [sk, tk]. Each of the k − 3
minimal co-occurrences that are not depicted start at the first occurrence of some Ci and ends at the second
occurrence of Ci−1.

bits in the worst case.
The reduction is as follows. Let Q = {C1, . . . , Ck} and let $ be a character not in Q. Assume for now

that |T | is a multiple of k − 1 and partition T arbitrarily into t = O(α) sets T1, . . . , Tt, each of size k − 1.
Consider Tj = {e1, . . . , ek−1} where e1 < e2 < . . . < ek−1. We encode Tj in the gadget Rj where

• the length of Rj is 3kα.

• Rj [1, k] = C1C2 . . . Ck.

• Rj [i+ ei] = Ci for each Ci except Ck. This is always possible since i+ ei < (i+ 1) + ei+1.

• all other characters are $.

See Fig. 3.2 for an illustration both of the layout of Rj and of the minimal co-occurrences contained
within it. There are k minimal co-occurrences contained in Rj which we denote by [s1, t1], . . . , [sk, tk].

• The first one, [s1, t1] = [1, k], starts and ends at the first occurrence of C1 and Ck, respectively.

• For each i ∈ [2, k], the minimal co-occurrence [si, ti] starts at the first occurrence of Ci and ends at the
second occurrence of Ci−1, i.e., [si, ti] = [i, i− 1 + ei−1].

Consider how these minimal co-occurrences contribute to δ. Each [si, ti] contributes plus one to δ(len(si, ti)).
For the first co-occurrence, len(s1, t1) = k (which is not a part of the universe V). Each of the other co-
occurrences [si, ti] has length

len(si, ti) = ti − si + 1 = (i− 1 + ei−1)− i+ 1 = ei−1

Therefore, the remaining minimal co-occurrences contribute plus one to of each the δ(·)-entries e1, . . . , ek−1.
Furthermore, each [si, ti] contributes negative one to δ(len(si, ti+1)), where we define tk+1 = |Rj | + 1.

For i < k we have that len(si, ti+1) = 1+ len(si+1, ti+1) = 1+ ei since si + 1 = si+1. Note that 1 + ei is odd
since ei is even, and therefore not in V . For i = k, we get that ti+1 = tk+1 = |Rj |+1. The last kα (at least)
characters of Rj are not in Q, so len(sk, |Rj |+ 1) > kα and therefore not in V .

Hence, Rj contributes plus one to δ(e1), . . . , δ(ek−1) and does not contribute anything to δ(i) for any
other i ∈ V \ Tj . To construct S, concatenate R1, . . . , Rt. Note that any minimal co-occurrence that crosses

38

the boundary between two gadgets will only contribute to δ(i) for i > kα due to the trailing characters of
each gadget that are not in Q. Since S consists of t = O(α) gadgets that each have length O(kα), we have
n = O(kα2) as stated above.

Finally, note that the assumption that |T | is a multiple of k−1 is not necessary. We ensure that the size is
a multiple of k−1 by adding at most k−2 even integers from {kα+1, . . . , 2kα} and adjusting the size of the
gadgets accordingly. The reduction still works because we add even integers, the size of S is asymptotically
unchanged, and any minimal co-occurrence due to the extra elements will have length greater than kα and
will not contribute to any relevant δ-entries.

Acknowledgements We would like to thank the anonymous reviewers for their comments, which improved
the presentation of the paper.

3.A Preprocessing

Finding Minimal Co-Occurrences To build the data structure, we need to find all the minimal co-
occurrences in order to determine δ. For j ≥ r1, let lm(j) denote the length of the left-minimal co-occurrence
ending at index j. By Lemma 2, lm(ri) = len(ℓi, ri) for each i ∈ [1, µ]. Furthermore, for j ∈ [ri +1, ri+1 − 1]
we have lm(j) = lm(j− 1)+1 since both of the left-minimal co-occurrences ending at these two indices start
at ℓi. However, lm(ri) ≤ lm(ri − 1) for each i ∈ [2, µ]; the left-minimal co-occurrence ending at ri starts at
least one index further to the right than the left-minimal co-occurrence ending at ri − 1 because ℓi−1 < ℓi,
so it cannot be strictly longer.

We determine ℓ1, . . . , ℓµ and r1, . . . , rµ using the following algorithm. Traverse S and maintain lm(j) for
the current index j. Whenever lm(j) ̸= lm(j − 1) + 1 the interval [j − lm(j) + 1, j] is one of the minimal co-
occurrences. Note that this algorithm finds the minimal co-occurrences in order by their rightmost endpoint.
We maintain lm(j) as follows. For each character p ∈ Q let dist(j, p) be the distance to the closest occurrence
of p on the left of j. Then lm(j) is the maximum dist(j, ·)-value. As in [SBD+21], we maintain the dist(j, ·)-
values in a linked list that is dynamically reordered according to the well-known move-to-front rule. The
algorithm works as follows. Maintain a linked list over the elements in Q, ordered by increasing dist-values.
Whenever you see some p ∈ Q, access its node in expected constant time through a dictionary and move it
to the front of the list. The least recently seen p ∈ Q (i.e., the p with the largest dist(j, ·)-value) is found
at the back of the list in constant time. The algorithm uses O(q) space and expected constant time per
character in S, thus it runs in expected O(n) time.

Building the Data Structure We build the data structure as follows. Traverse S and maintain the
two most recently seen minimal co-occurrences using the algorithm above. We maintain the non-zero δ(·)-
values in a dictionary D that is implemented using chained hashing in conjunction with universal hash-
ing [CW79]. When we find a new minimal co-occurrence [ℓi+1, ri+1] we increment D[len(ℓi, ri)] and decre-
ment D[len(ℓi, ri+1)]. Recall that Z = {z1, . . . , zd} where zj < zj+1 is defined such that δ(i) ̸= 0 if and only
if i ∈ Z. After processing S the dictionary D encodes the set {(z1, δ(z1)), . . . , (zd, δ(zd))}. Sort the set to
obtain the array E[j] = δ(zj). Compute the partial sum array over E, i.e the array

F [j] =

j∑

i=1

E[i] =

j∑

i=1

δ(zi) = lmco(zj). (we use 1-indexing)

Build the predecessor data structure over Z and associate lmco(zj) with each key zj .
The algorithm for finding the minimal co-occurrences uses O(q) space and the remaining data structures

all use O(d) space, for a total of O(d + q) space. Finding the minimal co-occurrences and maintaining D
takes O(n) expected time, and so does building the predecessor structure from the sorted input.

Furthermore, we use the following sorting algorithm to sort the d entries in D with O(d) extra space in
expected O(n) time. If d < n/ log n we use merge sort which uses O(d) extra space and runs in O(d log d) =

39

O(n) time. If d ≥ n/ log n we use radix sort with base
√
n, which uses O(

√
n) extra space and O(n) time.

To elaborate, assume without loss of generality that 2k bits are necessary to represent n. We first distribute
the elements into 2k = O(

√
n) buckets according to the most significant k bits of their binary representation,

partially sorting the input. We then sort each bucket by distributing the elements in that bucket according
to the least significant k bits of their binary representation, fully sorting the input. The algorithm runs in
O(n) time and uses O(

√
n) = O(n/ log n) = O(d) extra space.

3.B Lower Bound on Time

We now prove Theorem 4 by the following reduction from the predecessor problem. Let U , Q and Gi be as
defined in Section 3.4.1 and let X = {x1, x2, . . . , xm} ⊆ U where x1 < . . . < xm. Define

S = Gx1
· · ·Gx1︸ ︷︷ ︸
x1

Gx2
· · ·Gx2︸ ︷︷ ︸

x2−x1

. Gxm
· · ·Gxm︸ ︷︷ ︸

xm−xm−1

By Lemma 6 we have that δ(x1) = x1, δ(xi) = xi − xi−1 for i ∈ [2,m] and δ(i) = 0 for i ∈ U \X. Then, if
the predecessor of some x ∈ U is xp, we have

lmco(x) =
x∑

i=2

δ(i) = x1 + (x2 − x1) + . . .+ (xp − xp−1) = xp

On the other hand, if x < x1 then
∑x

i=0 δ(i) = 0, unambiguously identifying that x has no predecessor.
Applying Lemma 6 again, we have d ≤ 8m. Furthermore, there are x1+(x2−x1)+ . . .+(xm−xm−1) =

xm ≤ u gadgets in total so n ≤ 2u2. Hence, given a data structure that supports lmco in ft(n, q, d) time
using fs(n, q, d) space, we get a data structure supporting predecessor queries on X in O(ft(2u

2, 2, 8m)) time
and O(fs(2u

2, 2, 8m)) space, proving Theorem 4.

40

Chapter 4

Sliding Window String Indexing in
Streams

41

Sliding Window String Indexing in Streams

Philip Bille∗,†

phbi@dtu.dk

Johannes Fischer‡

johannes.fischer@cs.tu-dortmund.de

Inge Li Gørtz∗,†

inge@dtu.dk

Max Rishøj Pedersen∗,†

mhrpe@dtu.dk

Tord Joakim Stordalen†

tjost@dtu.dk

† : Technical University of Denmark, DTU Compute, Kgs. Lyngby, Denmark
‡ : Technische Universität Dortmund, Department of Computer Science, Germany

Abstract

Given a string S over an alphabet Σ, the string indexing problem is to preprocess S to subsequently
support efficient pattern matching queries, that is, given a pattern string P report all the occurrences of
P in S. In this paper we study the streaming sliding window string indexing problem. Here the string S
arrives as a stream, one character at a time, and the goal is to maintain an index of the last w characters,
called the window, for a specified parameter w. At any point in time a pattern matching query for a
pattern P may arrive, also streamed one character at a time, and all occurrences of P within the current
window must be returned. The streaming sliding window string indexing problem naturally captures
scenarios where we want to index the most recent data (i.e. the window) of a stream while supporting
efficient pattern matching.

Our main result is a simple O(w) space data structure that uses O(logw) time with high probability
to process each character from both the input string S and any pattern string P . Reporting each
occurrence of P uses additional constant time per reported occurrence. Compared to previous work in
similar scenarios this result is the first to achieve an efficient worst-case time per character from the input
stream with high probability. We also consider a delayed variant of the problem, where a query may
be answered at any point within the next δ characters that arrive from either stream. We present an
O(w+ δ) space data structure for this problem that improves the above time bounds to O(log(w/δ)). In
particular, for a delay of δ = ϵw we obtain an O(w) space data structure with constant time processing
per character. The key idea to achieve our result is a novel and simple hierarchical structure of suffix
trees of independent interest, inspired by the classic log-structured merge trees.

4.1 Introduction

The string indexing problem is to preprocess a string S into a compact data structure that supports efficient
subsequent pattern matching queries, that is, given a pattern string P , report all occurrences of P within
S. In this paper, we introduce a basic variant of string indexing called the streaming sliding window string
indexing (SSWSI) problem. Here, the string S arrives as a stream one character at a time, and the goal is
to maintain an index of a window of the last w characters, for a specified parameter w. At any point in
time a pattern matching query for a pattern P may arrive, also streamed one character at a time, and we
need to report the occurrences of P within the current window. The goal is to compactly maintain the index
while processing the characters arriving in either stream efficiently. We consider two variants of the problem:
a timely variant where each query must be answered immediately, and a delayed variant where it may be
answered at any point within the next δ characters arriving from either stream, for a specified parameter δ.
See Section 4.1.1 for precise definitions.

∗Supported by Danish Research Council grant DFF-8021-002498

42

The SSWSI problem naturally captures scenarios where we want to index the most recent data (i.e. the
window) of a stream while supporting efficient pattern matching. For instance, monitoring a high-rate data
stream system where we cannot feasibly index the entire stream but still want to support efficient queries.
Depending on the specific system we may require immediate answers to queries, or we may be able to afford
a delay that allows for more efficient queries and updates.

The SSWSI problem has not been explicitly studied before in our precise formulation, but for the timely
variant several closely related problem are well-studied. In particular, the sliding window suffix tree prob-
lem [FG89,Lar99,Sen05,BJ18,NAIP03] is to maintain the suffix tree of the current window (i.e., the compact
trie of the suffixes of the window) as each character arrives. With appropriate augmentation the suffix tree
can be used to process pattern matching queries efficiently, leading to a solution to the timely SSWSI prob-
lem. For constant-sized alphabets, the best of these solutions [BJ18] maintains the sliding window suffix tree
in constant amortized time per character while supporting efficient pattern matching queries. The worst-case
time for updates is Ω(w). The other solutions achieve similar amortized time bounds. This amortization
cannot be avoided since explicitly maintaining the suffix tree after the arrival of a new character may incur
Ω(w) changes.

Another closely related problem is the online string indexing problem [AKLL05, Kop12, BI13, Kos94,
AN08,KN17,FG05,AFG+14]. Here the goal is to process S one character at a time (in either left-to-right
or right-to-left order), while incrementally building an index of the string read so far. The best of these
solutions update the index in either constant time per character for constant-sized alphabets [KN17] or
O(log log n + log log |Σ|) time for any alphabet where each character fits in a constant number of machine
words [Kop12]. These solutions all heavily rely on processing the string in right-to-left order to avoid the
inherent linear time suffix tree updates due to appending, as mentioned above. Therefore they cannot be
applied in our left-to-right streaming setting. Alternatively, we can instead apply these solutions on the
reverse of the string S, but then each pattern must be processed in reverse order, which also cannot be done
in our setting. Also, note that these solutions index the entire string read so far. It is not clear if they can
be adapted to efficiently index a sliding window.

Another line of work shows how to maintain a fully dynamic suffix array under insertions and dele-
tions [AB20,AB21,SLLM10,KK22]. These can also be used to solve SSWSI but are more general and lead
to polylogarithmically slower bounds than our results while being more complicated.

Our main result is an efficient and simple solution to the SSWSI problem in both the timely and delayed
variant. Let w denote the size of the window. For the timely variant, we present a string index that uses
O(w) space and processes a character from the stream S in O(logw) time. Each pattern matching query P
is also supported in O(logw) time per character with additional O(occ) time incurred after receiving the last
character of P , where occ is the number of occurrences of P in the current window. The index is randomized
and both time bounds hold with high probability. Compared to previous suffix tree based approaches for
indexing a sliding window, we improve the worst-case time bounds per character in the stream from Ω(w) to
O(logw) with high probability. This is particularly important in the above mentioned applications, such as
high-rate data stream systems. Our solution generalizes to the delayed variant of the problem. If we allow a
delay of δ before answering each query we achieve O(w+ δ) space while improving the above time bounds to
O(log(w/δ)). In particular, if we allow a delay of δ = ϵw for any constant ϵ > 0, we achieve linear space and
optimal constant time (reporting the occurrences still takes O(occ) time, and we do not count the reporting
time towards the delay). Note that δ ≤ w is sufficient delay for optimal time bounds and we can assume
O(w+ δ) = O(w). The results hold on a word RAM and for any alphabet size, assuming that each character
fits into a constant number of machine words.

The key idea to achieve our result is a novel and simple hierarchical structure of suffix trees inspired by
log-structured merge trees [OCGO96]. Instead of maintaining a single suffix tree on the window we maintain
a collection of suffix trees of exponentially increasing sizes that cover the current window. We show how
to efficiently maintain the structure as new characters from the stream arrive by incrementally “merging”
suffix trees, while supporting efficient pattern matching queries within the window.

Our solution uses randomization to construct suffix trees in linear time with high probability. Plug-
ging in a deterministic construction algorithm such as the one by Ukkonen [Ukk95], we obtain a solution

43

using O(logw log |Σ|) time for both queries and updates. With more recent deterministic suffix tree solu-
tions [FG05, CKL15, BGS17] we can improve this to obtain O(logw log log n) time per character for both
queries and updates. Note that the O(log log |Σ|) in the time bounds of [FG05] has been replaced by
O(log log n) here due to an additional sorting step using [Han02].

4.1.1 Setup and Results

We formally define the problem as follows. Let S be a stream over any alphabet Σ where each character
fits in a constant number of machine words. For given integer parameters w ≥ 1 and δ ≥ 0, the δ-delayed
streaming sliding window string indexing ((w, δ)-SSWSI) problem is to maintain a data structure that, after
receiving the first i characters of S, supports

• Report(P): report all the occurrences of P in S[i − w + 1, i] before an additional δ characters have
arrived from either stream.

• Update(): process the next character in the stream S.

In the Report(P) query the pattern string P is also streamed. When P is streamed it interrupts the stream S,
arrives one character at a time, and all characters of P arrive before the streaming of S resumes. Furthermore,
we do not assume that we know the length of P before the arrival of its last character. Although P is streamed
we assume random access to its characters after they arrive, as any pattern that fits in the window is at
most w characters long and we can afford to store it. The delay is counted from after the last character of P
arrives. Characters from S and from new patterns count towards the delay, while reported occurrences do
not (otherwise it would be impossible to answer the query in time if there are more than δ occurrences).

We define the timely streaming sliding window string indexing (w-SSWSI) problem to be (w, 0)-SSWSI,
that is, queries must be answered immediately as the last character of the pattern arrives.

We show the following general main result.

Theorem 5. Let S be a stream and let w ≥ 1 and δ ≥ 0 be integers. We can solve the (w, δ)-SSWSI problem
on S with an O(w+δ) space data structure that supports Update and Report in O(log w

δ+1) time per character
with high probability. Furthermore, Report uses additional worst-case constant time per reported occurrence.

Here, with high probability means with probability at least 1 − 1
wd for any constant d. Theorem 5

provides a trade-off in the delay parameter δ. In particular, plugging in δ = 0 in Theorem 5 we obtain a
solution to the timely SSWSI problem that uses O(w) space and O(logw) time per character for both Update
and Report. Compared to the previous work on sliding window stream indexing [FG89,Lar99, Sen05,BJ18,
NAIP03,ISTA04,SD08] this improves the worst-case bounds on the Update operation from Ω(w) to O(logw)
with high probability and also removes the restriction on the alphabet. At the other extreme, plugging in
δ = ϵw for constant ϵ > 0 in Theorem 5 we obtain a solution to the delayed SSWSI problem that uses
O(w) space and optimal constant time per character with high probability. All our results hold on a word
RAM where each machine word has at least logw bits, and where each character of the alphabet fits into a
constant number of machine words.

4.1.2 Techniques

We obtain our result for the timely variant, but without high probability guarantees, as follows. At all times
we maintain at most logw suffix trees that do not overlap and together cover the window. The trees are
organized by the log-structured merge technique [OCGO96], where the rightmost tree is the smallest and
their sizes increase exponentially towards the left. For each new character that arrives we append its suffix
tree to the right side of our data structure. Whenever there are two trees of the same size next to each other
we “merge” them by constructing a new suffix tree covering them both. Each character from S is involved in
at most logw merges and each merge takes expected linear time, so we spend expected amortized O(logw)
time per character in S. We deamortize the updates by temporarily keeping both trees while merging them

44

in the background. Note that for each adjacent pair of suffix trees we also store a suffix tree approximately
covering them both, referred to as boundary trees (see details below).

We find the occurrences of a pattern P in the window by querying each of these trees, which takes
O(logw) time per character in P . For adjacent pairs of trees larger than |P | we find the occurrences of P
crossing from one into the other using the boundary trees. The remaining trees cover a suffix of the window
of length O(|P |), and we grow a suffix tree to answer queries in this suffix at query time. Our data structure
has some “overhang” on the left side of the window, and we use range maximum queries to report only the
occurrences that start inside the window.

This solution is generalized to incorporate a delay of δ as follows. We store the O(log(w/δ)) largest trees
from the timely solution and leave a suffix of size Θ(δ) of the window uncovered by suffix trees. We answer
queries as follows. If |P | > δ/4 we say that P is long, and otherwise it is short. For long patterns we do as in
the timely case; the suffix tree we grow at query time now must also contain the uncovered suffix, but it still
has size O(|P |) since the uncovered part of the window has length O(δ) = O(|P |). We show how to do this
in O(log(w/δ)) time per character in P . For short patterns we utilize that they are smaller than the delay
to temporarily buffer the queries and later batch process them. We buffer up to O(δ log(w/δ)) work and
deamortize it over Θ(δ) characters, obtaining the same bound as for long patterns. Updates run in the same
bound since each character from S is involved in at most O(log(w/δ)) merges before it leaves the window.

Finally, we improve the time bounds by proving that for any substring S′ of our window, we can construct
the suffix tree over S′ in O(|S′|) time with probability 1 − w−d for any constant d > 1. We do so by
reducing the alphabet Σ′ = {c ∈ S′} of S′ to rank-space {1, 2, . . . , |Σ′|} from which the algorithm by Farach-
Colton et al. [FFM00] can construct the suffix tree in worst-case linear time. For large strings (|S′| > w1/5)
we pick a hash function from Σ → [0, wc] that with high probability is injective on S′, and then we use
radix sort to reduce to rank-space in linear time. For small strings (|S′| ≤ w1/5) we pick a hash function
from Σ → [0, w/ logw] that is injective with (almost) high probability, and use this to manually construct a
mapping into rank space in O(S′) time. This mapping algorithm uses additional O(w/ logw) space, but we
construct at most O(logw) suffix trees at any time so the total space is linear.

4.1.3 Outline

In Section 4.2 we cover the preliminaries, including some useful facts about suffix trees. In Section 4.3 we
give a solution to the timely SSWSI problem that supports each operation in expected logarithmic time per
character. In Section 4.4 we show how to generalize this to incorporate delay, and in Section 4.5 we show
how to get good probability guarantees, proving Theorem 5.

4.2 Preliminaries

Given a string X of length n over an alphabet Σ, the ith character is denoted X[i] and the substring starting
at X[i] and ending at X[j] is denoted X[i, j]. The substrings of the form X[i, n] are the suffixes of X.

A segment of X is an interval [i, j] = {i, i + 1, . . . , j} for 1 ≤ i ≤ j ≤ n. We will sometimes refer to
segments as strings, i.e., the segment [i, j] refers to the string X[i, j]. The definition differs from “substring”
by being specific about position; even if X[1, 2] = X[3, 4] we have [1, 2] ̸= [3, 4]. A segmentation of X is a
decomposition of X into disjoint segments that cover it. For instance, x1 = [1, i] and x2 = [i + 1, n] is a
segmentation of X into two parts. The two segments x1 and x2 are adjacent since x2 starts immediately
after x1 ends, and for a pair of adjacent segments we define the boundary (x1, x2) to be the implicit position
between i and i+ 1.

The suffix tree [Wei73] T over X is the compact trie of all suffixes of X$, where $ ̸∈ Σ is lexicographically
smaller than any letter in the alphabet. Each leaf corresponds to a suffix ofX, and the leaves are ordered from
left to right in lexicographically increasing order. The suffix tree uses O(n) space by implicitly representing
the string associated with each edge using two indices into X. Farach-Colton et al. [FFM00] show that the
optimal construction time for T is sort(n, |Σ|), i.e., the time it takes to sort n elements from the universe Σ.
For alphabets of the form Σ = {0, . . . , nc} for constant c ≥ 1 this implies that T can be built in worst-case

45

O(n) time using radix sort. For larger alphabets we can reduce to the polynomial case in expected linear
time using hashing, building T in expected linear time (see Section 4.5 for details).

The suffix array L of X is the array where L[i] is the starting position of the ith lexicographically smallest
suffix of X. Note that L[i] corresponds to the ith leaf of T in left-to-right order. Furthermore, let v be an
internal node in T and let sv be the string spelled out by the root-to-v path. The descendant leaves of v
exactly correspond to the suffixes of X that start with sv, and these leaves correspond to a consecutive range
[α, β]v in L.

We augment the suffix tree to support efficient pattern matching queries as follows. First, we use the
well-known FKS perfect hashing scheme [FKS84] to store the edges of the suffix tree, so we can for any node
determine if there is an outgoing edge matching a character a ∈ Σ in worst-case constant time. Note that this
construction takes expected linear time. Furthermore, we also build a range maximum query data structure
over L. This data structure supports range maximum queries, i.e., given a range [α, β] return the j ∈ [α, β]
maximizing L[j]. It also supports range minimum queries, defined analogously. The data structure can be
built in linear time and supports queries in constant time [GBT84]. Finally, we preprocess the suffix tree in
linear time such that each internal node v stores the range [α, β]v into L corresponding to the occurrences
of sv.

We can use this structure to efficiently find all the occurrences of P in O(|P | + occ) time, where occ is
the number of occurrences, or the leftmost and rightmost occurrence of P in O(|P |) time. The locus of a
string P is the minimum depth node v such that P is a prefix of sv. First we find the locus by walking
downwards in the suffix tree, matching each character in P in worst-case constant time using the dictionary.
Once we have found v we can report all the occurrences in [α, β]v in O(occ) time. Alternatively, we can find
the rightmost occurrence of P in constant time by doing a range maximum query on the range [α, β]v in L,
which returns the j ∈ [α, β]v maximizing the string position L[j]. We can also find the leftmost occurrence
by doing a range minimum query.

Finally, note that it is possible to deamortize algorithms with expected running time using the standard
technique of distributing the work evenly. Specifically, if an algorithm runs in expected λn time we can do
λ work for n− 1 steps; by linearity of expectation only expected λ work remains for the last step.

4.3 The Timely SSWSI Problem

Here we present a solution for the timely variant that matches the bounds in Theorem 5 in expectation.
Section 4.5 shows how to get the bounds with high probability. Throughout this section we assume without
loss of generality that w is a power of two. Section 4.3.3 briefly mentions how to generalize to arbitrary w.

The main idea is as follows. We maintain a suffix of S of length at least w. This suffix is segmented into
at most logw segments whose sizes are distinct powers of two, in increasing order from right to left. The
length of the suffix we store is at most 20+ . . .+2logw = 2w−1. When a new character arrives, we append a
new size-one segment to our data structure and merge equally-sized segments until they all have distinct sizes
again. We also discard the largest segment when it no longer intersects the window. For each segment we
store a suffix tree, and for every pair of adjacent segments we store a boundary tree approximately covering
them both (see below). To support queries we query the suffix tree for each individual segment, and also
each boundary tree. For the segments larger than the pattern, the boundary trees are sufficient to find the
occurrences crossing the respective boundary. The remaining trees cover a suffix of S that is O(|P |) long,
and we grow a suffix tree at query time to find the remaining occurrences in this suffix.

4.3.1 Data Structure

At any point, the data structure contains a suffix s of S of length w ≤ |s| ≤ 2w − 1 and a segmentation of
s into at most logw segments. Specifically, if |s| = 2b1 + . . . + 2bk for integers b1 < . . . < bk then we have
the segmentation s1, . . . , sk where |si| = 2bi , and s is the concatenation of the strings sk, sk−1, . . . , s1, in
that order. The set {b1, . . . , bk} is unique and corresponds to the 1-bits in the binary encoding of |s|. Three
different configurations can be seen in Figure 4.1.

46

a a t r e

23

21 20
22

t r e e

23

a b e sa na b

Update
22

r e e sa an nb

Update

a

20

a a a a tnnn

23

Figure 4.1: Example of updating the data structure with a window size of w = 8. Here we illustrate the
segments by the suffix trees built over them. Characters outside of the window are gray. As the character
s arrives we construct a new suffix tree of size one, which is then immediately merged with the existing
size-one suffix tree over e into a size-two suffix tree over es, which is then merged to into the final size-four
suffix tree over rees. After receiving a we again have a size-one suffix tree. Note that after three more
updates the suffix tree of size eight will no longer overlap the window and will be discarded.

For each segment si we store the suffix tree Ti over si, along with a range maximum query data structure
over the suffix array of si. For each boundary (si+1, si) we store the boundary tree Bi, which is the suffix tree
over the substring centered at the boundary and extending |si| characters in both directions. We augment
Bi with an additional data structure that we will use for reporting occurrences across the boundary. Let
BLi be the suffix array corresponding to Bi. We define the modified suffix array BL′

i as

BL′
i[j] =

{
BLi[j] if BLi[j] corresponds to a suffix starting in si+1

−∞ if BLi[j] corresponds to a suffix starting in in si

We store a range maximum query data structure over BL′
i. Each of the data structures use O(si) space, so

the whole data structures uses O(s) = O(w) space.
We note a few properties of the data structure. Let S[n] be the most recent character to arrive and let

Wn = S[n − w + 1, n] be the current window. Then Wn is a suffix of s since |s| ≥ w. The largest, and
leftmost, segment sk always has size 2logw = w; it is not larger since logw bits are sufficient to represent
|s| ≤ 2w − 1, and it is always there since |s| ≥ w cannot be represented with logw − 1 bits. For the same
reason, sk always intersects at least partially with Wn, and each of s1, . . . , sk−1 are fully contained in Wn.

4.3.2 Queries

The idea is as follows, as exemplified in Figure 4.2. Any occurrence of a pattern P that is fully contained in a
segment is found using the suffix tree over that segment. Similarly, any occurrence that only crosses a single
boundary far enough away from the end of the window is found in the respective boundary tree. Note that
in the leftmost segment we must be careful to not report any occurrences that start before the left window
boundary. The remaining occurrences are not contained in any of the trees in the data structure (either
because they cross multiple boundaries or because they cross a single boundary (si+1, si) but start more than
|si| characters to the left of the boundary). However, these occurrences are all located within a substring of
size O(m) ending at position S[n], so we build, at query time, a suffix tree to find these occurrences.

Let P be the length-m pattern being queried, S[n] be the most recent character to arrive, and let Wn,
the suffix s, the segmentation s1, . . . , sk, and the indices b1 < . . . < bk be defined as above. As mentioned,
any occurrence of P in Wn must either be fully contained within one of the segments, or it must cross the
boundary between two adjacent segments. We will show how to handle each of these cases separately.

Fully Contained in a Segment Fix a specific segment si. As each character of P arrives we match it
in Ti. When the last character arrives we have a (possibly empty) range [α, β] into the suffix array of si
corresponding to the occurrences of P . If si is not the leftmost segment then it is fully contained in Wn and
we report all the occurrences. Otherwise, si = sk is the leftmost segment, which might overlap only partially
with Wn, and it may contain occurrences of P that are not contained in the window. However, note that the
intersection between Wn and sk is a suffix of sk. Therefore, if an occurrence of P in sk starts inside Wn it

47

T

a b c d

O(m)

Figure 4.2: Illustration of how we answer queries for a pattern P of length m. The lines denoted a, b, c, and
d indicate occurrences of P . The segmentation is illustrated by the trees over the segments. The leftmost
window boundary is marked with a vertical dashed line. Note that the leftmost segment intersects only
partially with the window. The tree T marks the smallest segment of size at least m. The segments to the
right of T are all smaller than m, so they cover at most m +m/2 + . . . + 1 = O(m) characters. To answer
the query we match P in the tree over each segment and in each boundary tree, and we also build a suffix
tree over the segments smaller than m at query time. We find b because the respective boundary tree is
sufficiently large. We find c because it is fully contained in a segment. We find d in the suffix tree that we
build at query time. Note that a is not contained in the window; we avoid reporting it by recursively using
range maximum queries to find the rightmost occurrence of P in the leftmost segment.

also ends inside Wn. We find all such occurrences as follows. Let Lk be the suffix array of sk. As described
in Section 4.2 we find the index j of the rightmost occurrence of P by doing a range maximum query on the
range [α, β] in Lk. If Lk[j] is not inside Wn then none of the occurrences are, and we are done. Otherwise
we recurse on [α, j − 1] and [β, j − 1]. Matching P in the trees of all the segments takes O(logw) overall
time per character of P . Reporting each occurrence takes constant time since range maximum queries run
in constant time.

Crossing a Boundary We now show how to report the occurrences of P that span a boundary. The main
idea is as follows, as illustrated in Figure 4.3. Let si be the smallest segment where |si| ≥ m. Consider any
boundary (sj+1, sj) to the left of si, i.e., where j ≥ i. Since both of these segments have size at least |si| ≥ m,
the boundary tree Bj extends at least m characters in both directions from the boundary. Therefore, all the
occurrences of P crossing the boundary are contained in Bj , and none of them can cross another boundary
as well. Now consider the suffix R of s containing the m− 1 last characters of si and extending to the end
of s. This substring contains all the other boundary-crossing occurrences. Furthermore, all the occurrences
in R cross at least one boundary since the longest consecutive part of a single segment in R is the m − 1
characters in si. Note that the length of R is at most m−1+ |si−1|+ |si−1|/2+ . . .+1 < m−1+2|si−1| < 3m
since |si−1| < m. Thus, the number of boundary-crossing occurrences of P equals the number of occurrences
in R plus the number of occurrences crossing the boundaries (sk, sk−1), (sk−1, sk−2), . . . (si+1, si).

The algorithm for finding the occurrences in the sufficiently large boundary trees is as follows. Fix a
boundary (sx+1, sx). We match each character of P in Bx as it arrives. When the last character arrives we
know if |sx| ≥ m, and also the range [α, β] corresponding to the occurrences of P in the boundary tree. If
|sx| ≥ m (hence x ≥ i) we report the occurrences as follows. As above we do a range maximum query to find
the j maximizing BL′

x[j]. If BL
′
x[j] = −∞ then all occurrences of P start in sx, and there are no occurrences

crossing the boundary. Otherwise, BL′
x[j] corresponds to the starting position of the rightmost occurrence

of P in sx+1. Since all of P has arrived and we now know m, we know that this occurrence crosses the
boundary if and only if BL′

x[j] ≥ |sx| −m+2 (recall that Bx extends |sx| characters in both directions from
the boundary). If it does not cross the boundary, then none of the other occurrences do either. Otherwise
we report BL′

x[j] and recurse on [α, j − 1] and [j + 1, β] to find the remaining occurrences. Matching P
in all boundary trees takes O(logw) overall time per character, and reporting each occurrence with range
maximum queries takes constant time.

We now show how to find the occurrences of P in R with the same bounds. Assume that we know that
2ℓ ≤ m < 2ℓ+1 for some integer ℓ. We build the suffix tree over the last 3 · 2ℓ+1 characters of s, deamortized
over receiving the first 2ℓ−1 characters of P . Over the next 2ℓ−1 characters we match P in the tree, at a rate
of two characters per new character from P . Then, when the 2ℓth character arrives, we have caught up to

48

si+1 si si−1

m− 1 ≤ 2m

Bi

m m

R

Figure 4.3: The segment si is the smallest segment where |si| ≥ m. For each boundary (sj+1, sj) where
j ≥ i, the tree Bj is large enough to find all occurrences of P across the boundary. All other occurrences of P
that cross a boundary must be in R, the string covering the m− 1 rightmost characters of si and extending
to the end of the window. The length of R is no more than m− 1 + |si−1|+ |si−1|/2 + . . .+ 1 < 3m.

the stream P , and we match the remaining m−2ℓ characters as they arrive. When the last character arrives
we have matched P in a tree of size at least 3m, and we can start reporting occurrences. Note that we are
overestimating the size of the tree, and it potentially includes some occurrences of P that are contained in
si. To avoid reporting these, we also build a range maximum query data structure over the suffix array such
that we can use recursive range maximum queries. When deamortized, we construct the tree in expected
constant time per character of P . Matching P also takes constant time per character. We know that m ≤ w,
so we run this algorithm simultaneously for each of the logw different choices for ℓ, using expected O(logw)
time per character in P . Note that the trees use O(w) space in total since the sum of the space is a geometric
sum where the largest term is O(w).

4.3.3 Amortized Updates

We show how to support updates in amortized O(logw) time. Let S[n] be the last character to arrive and as
in the description of the data structure let b1 < b2 < . . . < bk be the positions of the 1-indices in the binary
encoding of |s|. When the new character c = S[n+1] arrives, we update s and the segmentation s1 . . . sk to
create the new suffix s′ with the new segmentation s′1, . . . s

′
k′ . See Figure 4.1 for an example.

If |s| < 2w− 1 then we set s′ = sc. The segmentation of s′ corresponds to the unique binary encoding of
|s′| = |s| + 1, so we update the segmentation analogously to a “binary increment”. One way to do so is as
follows. We create a new segment of size one over c. If there was not already a segment of size one, then we
add the new segment and we are done. Otherwise we merge (see below) the two size-one segments to create
a segment of size two. The process cascades until we reach a size 2b that does not exist in the segmentation
of s (i.e., the smallest index b ̸∈ {b1, . . . , bk}). At this point we replace all of the segments sb−1, . . . , s1
with s′1 covering the last 2b characters of s′. The remaining segments for s′ are the same as the segments
sb+1, . . . , sk. If |s| = 2w − 1 then there is a segment of each size 20, 21, . . . , 2logw. Since the segments have
decreasing size from left to right, the logw− 1 rightmost segments cover the last 20 + . . .+2logw−1 = w− 1
characters of s. Thus, after c arrives, the leftmost segment of size 2logw = w no longer intersects the window.
We remove it by setting s′ = s[w + 1, |s|]c, and update the segmentation as above.

Let sa, sb and sc be three adjacent segments, in that order. To merge sb and sc we combine them into
a new segment sd that spans them both, construct the suffix tree over sd, and construct a range maximum
query data structure on the suffix array of sd. Furthermore, since sa and sd are now adjacent we also
construct the boundary-spanning suffix tree for the boundary (sa, sd) that extends |sd| characters in each
direction. The construction of all of these data structures takes expected O(|sd|) time (see Section 4.2).
Thus, it takes expected constant time per character every time it moves into a new, larger segment. Each
character is contained in at most logw segments before it leaves the window, so the amortized update time
is expected O(logw) per character.

49

Note that all but the last merge are unnecessary to actually compute s′1; in the amortized setting we can
simply determine where the cascade will end and immediately construct the suffix tree over the corresponding
segment. However, the cascading merges will come into play in the deamortized variant.

Also note that if w is not a power of two we can use a similar scheme where we allow either two
simultaneous trees of size 2⌊logw⌋, or one tree of size 2⌈logw⌉. In both cases, there are some straightforward
edge cases for when to remove the leftmost segment.

4.3.4 Deamortized Updates

We now show how to deamortize the updates. Unfortunately the previous construction cannot be directly
deamortized since the suffix tree construction algorithm by Farach-Colton et al. [FFM00] requires access to
the whole string. Therefore, if a new character c causes a cascade of merges resulting in a new segment of
size 2i we have to build the suffix tree over that segment when c arrives.

Instead, we modify the structure slightly. When two segments of size 2i become adjacent we temporarily
keep both while deamortizing the cost of merging them over the next 2i characters of S, doing expected
constant work per character. Note that queries are unaffected, with one exception for reporting occurrences
across the boundaries; there might now be two adjacent segments si+1 and si of the same size that are both
the smallest segment at least as large as |P |. In this case the suffix R extends only m− 1 characters into the
rightmost segment si. The boundary tree for (si+1, si) is large enough to report all occurrence crossing that
boundary since both segments have size at least |P |. Furthermore, R potentially becomes twice as long, so
we adjust the constants of the trees that we grow at query time.

To bound the time for updates we show that we are constructing at most logw suffix trees at any point,
from which it follows that the update time is expected O(logw). To do so we show the following lemma.

Lemma 7. When the construction of a segment of size 2i finishes there is exactly one segment of each size
2i−1, . . . , 20.

Proof. The proof is by induction on i. For i = 1, when two size-one segments become adjacent we merge
them when the next character c from S arrives. This results in a segment of size two, as well as a size-one
segment containing c, proving the base case.

Inductively, consider the first time two segments of size 2i become adjacent. By the induction hypothesis,
there is one segment of each size 20, 21, . . . , 2i−1 to the right of these two segments. For another segment of
size 2i to be constructed, we must first receive one more character, which triggers a merge that eventually
cascades through all i−1 of these segments. For this to happen, 1+(20+21+. . .+2i−1) = 2i more characters
from S must arrive, where the 1 is for the next character to arrive, and 2j is the amount of characters the
jth merge is deamortized over. However, at this point the merge of the two segments of size 2i is complete,
so we constructed two new segments, one of size 2i+1 and one of size 2i. By the induction hypothesis, there
is also one segment of each size 20, . . . , 2i−1, concluding the proof.

Lemma 7 implies that there are never more than two segments of the same size adjacent to each other,
and therefore at most one merging process for each segment size 20, 21, . . . , 2logw. To see this, consider the
first time two segments a and b of size 2i are adjacent. At this point, there are 20 + 21 + . . .+ 2i−1 = 2i − 1
characters to the right of b. When the next segment c of size 2i arrives there are 2i − 1 characters to the
right of that, too. But then there are |c| + 2i − 1 = 2i + 2i − 1 characters to the right of b. Thus 2i new
characters must have arrived in the meanwhile, and the merging of a and b is done.

We obtain the following theorem.

Theorem 6. Let S be a stream and let w ≥ 1 be an integer. We can solve the w-SSWSI problem on S
with an O(w) space data structure that supports Update and Report in expected O(logw) time per character.
Furthermore, Report uses additional worst-case constant time per reported occurrence.

50

4.4 The Delayed SSWSI Problem

In this section we show how to improve the result from Section 4.3 if we are allowed a delay of δ. The main
idea is as follows. As before, we maintain suffix trees of exponentially increasing sizes, although only the
O(log(w/δ)) largest of them. As a result there are fewer trees to query, but also an uncovered suffix of size
Θ(δ) of the window for which we do not have any suffix trees. As in Section 4.3 we denote the part of S
covered by suffix trees by s and we denote the uncovered suffix by t. As above, s is segmented into s1, . . . , sk.

We will first explain how to solve the problem when all patterns are long, that is, |P | > δ/4, and then
when all patterns are short, that is, |P | ≤ δ/4. Finally we show how to combine these solutions. When all
the patterns are long we can afford to construct, at query time, a suffix tree covering t. On the other hand,
when all the patterns are short we can do both updates and queries in an offline fashion; we buffer queries
and updates until we have approximately δ/2 operations to do, at which point we can afford to construct a
suffix tree over t in a deamortized manner. See Figure 4.4 for an example.

Throughout this section we assume without loss of generality that δ is a power of two. Otherwise we
instead use a more restrictive delay of δ′ = 2⌊log δ⌋ and achieve the same asymptotic bounds.

4.4.1 Long Patterns

We first show how to support queries if all patterns have a lengthm > δ/4. We modify the data structure from
Section 4.3 slightly. The smallest tree now has size δ/2 as opposed to 1, so there are Θ(logw − log(δ/2)) =
O(log(w/δ)) segments and boundary trees. The uncovered suffix t has length at most δ.

We answer queries the same way as in Section 4.3.2, with only small modifications. Let P be a pattern
of length m > δ/4. As before, let si be the smallest and rightmost segment with |si| ≥ m. We find any
occurrence within a segment or crossing a single boundary by using the suffix trees over each segment and
the boundary trees to the left of si, as before. The remaining occurrences we again find by growing suffix
trees of exponentially increasing sizes from the right window boundary. The only change is that we now grow
the trees faster, as we must also cover t, and we can afford to let the smallest tree have size δ since we have
m > δ/4 characters in the pattern to deamortize the work over. As above, let R be the string covering the
m−1 last characters of si and extending to the right window boundary, which now also includes t. As |t| < δ
the length of R is |R| < 3m+ δ < 7m. Assuming 2ℓ ≤ m < 2ℓ+1, we build the suffix tree of size 7 · 2ℓ+1 and
match P in it, amortized over the characters of P . As we have m > δ/4 characters to deamortize the work
over, we only do this for each choice of ℓ where 2ℓ+1 ≥ δ, which results in O(logw−log δ) = O(log(w/δ)) work
per character in P . As in Section 4.3.2 we use recursive range maximum queries to avoid double reporting
any occurrences of P that are also in s. As there are also only O(log(w/δ)) segments and boundary trees we
spend O(log(w/δ)) time per character in P . Note that we answer these queries without delay.

Updates are performed as follows. For each segment of δ/2 characters that arrives we construct the suffix
tree over it, deamortized over the next δ/2 characters of S. We merge suffix trees as before, also deamortized
over new characters of S. The induction proof from Section 4.3.4 still works by modifying the base case; the
merging of two trees of size δ/2 takes δ/2 characters, at which point another tree of size δ/2 is constructed.
The inductive step follows from the fact that δ is a power of two. Thus, we spend expected O(log(w/δ))
time per update.

4.4.2 Short Patterns

We now show how to support queries if all patterns have a length m ≤ δ/4. We extend the data structure
with a buffer of size δ. This buffer will contain queries that we have not yet answered and characters for S
that we have not yet processed. The total space is still O(w + δ) = O(w).

Whenever a character from S arrives we append it to both t and to the buffer. When a pattern arrives
we append the full pattern to the buffer, and along with it we store the current position of the right window
boundary. Once the buffer has more than δ/2 characters (patterns and text combined) we immediately
allocate a new buffer of size δ and flush the old buffer as follows. Note that at this point there are strictly
less 3

4δ characters in the buffer since each pattern is short.

51

si si−1 si−2 t

m− 1 < 2m < δ

R

si t

< 2δ
2(m− 1)

Figure 4.4: Left: Example of a query with a long pattern. Here si is the smallest and rightmost segment
with |si| ≥ m. Note that the non-indexed suffix t is less than δ < 4m characters long. Right: Example
of a query with a short pattern. Note that for short patterns, si is always the rightmost segment. Any
occurrence in s cross at most a single boundary and is found using the constructed trees. Any occurrence in
t is found by the suffix tree over t that we construct when we flush the buffer. Any occurrence that cross the
boundary (s, t) is found by the KMP automaton we build over the substring the extends m − 1 characters
in both directions from the boundary, which is hatched in the figure.

When we flush the buffer, we first answer all the buffered queries, and then we process all the buffered
updates. We deamortize this work over the next δ/4 characters that arrive from either stream. To answer
the buffered queries we do as follows. Let P1, . . . , Pℓ be the patterns in the buffer, let mi = |Pi|, and let
M =

∑
1≤i≤ℓ mi. We have M < δ. We start by building a suffix tree over t, along with a range maximum

query data structure over the suffix array of t. This takes expected O(δ) time. An occurrence of Pi is
either contained in s, or it crosses the boundary (s, t), or it is contained in t. Since Pi is smaller than
each segment sj we can find all the occurrences within s using the suffix trees over the segments and the
boundary trees in O(mi log(w/δ)) time. To find the occurrences crossing the boundary we build the KMP
matching automaton [KJP77] for Pi. In it we match the string that is centered at the boundary (s, t) and
extends mi − 1 characters in each direction. This takes O(mi) time. To find the occurrences in t we match
Pi in the suffix tree over t in O(mi) time. In total, this takes O(M log(w/δ)) = O(δ log(w/δ)) time for all
the patterns, or expected O(log(w/δ)) time per character when deamortized. Note however, that after Pi

arrived more characters from S could have arrived and been appended to t. We must therefore take care
not to report any occurrences of Pi that extend past what was the right window boundary when Pi arrived.
The KMP automaton finds the occurrences in left-to-right order, and in t we avoid reporting too far right
using recursive range minimum queries.

Finally, we process each update in the buffer in the order they arrived, using the same procedure as for
long patterns. This takes O(log(w/δ)) time per update and O(δ log(w/δ)) time in total. Thus flushing the
buffer takes expected O(log(w/δ)) time per character since we deamortize the expected O(δ log(w/δ)) work
over δ/4 characters. Since we allocate a new buffer immediately when we begin flushing, we will complete
the flush before the next flush begins.

4.4.3 Both Long and Short Patterns

We now show how to combine the solutions for short and long patterns, to obtain a solution that handles
patterns of any length. The data structure is the same as for small patterns above. As above, we append
each new character to the buffer. However, whenever we start streaming a pattern we also proceed as if P
were long. If P turns out to fit in the buffer without triggering a flush (which might also happen if P is long),
we simply discard the work we did for the long-pattern case. However, if adding P to the buffer results in
more than 3

4δ characters being in the buffer, then P must be long. We immediately start flushing the buffer
(ignoring the characters related to P) and also continue processing P as a long pattern. Note that since we
are potentially streaming a long pattern while batch processing the updates in the buffer, the data structure
might change while we are matching in it. However, it only changes when a merge finishes, replacing a pair
of suffix trees by a larger tree. If this happens we keep the old trees in memory until we are done processing

52

the pattern, at which point we discard them.
We obtain the following theorem.

Theorem 7. Let S be a stream and let w ≥ 1 and δ ≥ 1 be integers. We can solve the (w, δ)-SSWSI problem
on S with an O(w) space data structure that supports Update and Report in expected O(log(w/δ)) time per
character. Furthermore, Report uses additional worst-case constant time per reported occurrence.

4.5 Obtaining High Probability

In this section we show how to improve the time bounds to O(log(w/δ)) with probability 1 − w−d for any
constant d ≥ 1.

The expectation in the time bounds in Section 4.4 comes from the construction of suffix trees (recall
that we also build suffix trees at query time). Below, in Lemma 8, we prove that given a string K of length
k = O(w) we can construct the suffix tree over K in O(k) time with probability 1− 1/w1+ϵ, using additional
O(w/ logw) space. We use this algorithm to construct suffix trees during updates and queries, deamortizing
them as before and doing O(log(w/δ)) work per character that arrives. When a new character arrives
from S or P , at most O(log(w/δ)) = O(logw) suffix tree constructions will finish. At this point, we finish
constructing those trees that did not finish in time, that is, used more more time than what was allotted
to them. By the union bound, the probability that any of them fail to finish in time (and thus incurring
extra construction cost) is no more than c logw/w1+ϵ for some constant c which is no more than 1/w for
large w. Thus, for each character from S or P we spend O(log(w/δ)) time with high probability in w. We
obtain the 1− 1/wd probability bound by probability boosting, running d = O(1) independent copies of the
construction algorithm simultaneously. The algorithm from Lemma 8 uses additional O(w/ logw) space, but
we are never constructing more than O(logw) suffix trees, so the space usage is O(w) in total.

Furthermore, as mentioned in Section 4.2, we previously used an FKS dictionary [FKS84] to store the
edges to support reporting queries in worst-case constant time per character in the pattern. The construction
time of this dictionary is expected linear, so it can no longer be used. Instead we use a dictionary by
Dietzfelbinger and Meyer auf der Heide [DadH90]. If there are n elements in the dictionary it supports
searches in worst-case constant time and any sequence of 1

2n updates takes constant time per update with

probability 1 − 1/nd′
for any constant d′ ≥ 1. We store all the edges of all the suffix trees in one such

dictionary. At all times, we keep Θ(w) dummy-elements in the dictionary to ensure that we get good
probability bounds in terms of w, and we choose d′ large enough that any sequence of O(w) operations (e.g.,
the construction of any one of our suffix trees) runs in O(w) time with probability 1− 1/wd+ϵ.

Universal Hashing Before we prove Lemma 8 we restate some basic facts about universal hashing, intro-
duced by Carter and Wegman [CW79]. Let M,m > 0 be integers, H be a set of functions [0,M] → [0,m],
and h ∈ H be selected uniformly at random. Then H is universal if P [h(x) = h(y) | x ̸= y] ≤ 1/m. Let
R ⊆ [0,M] and |R| = r. It follows from the union bound that h has a collision on R with probability at
most

P [h(x) = h(y) for some x ̸= y] ≤
∑

x ̸=y∈R

P [h(x) = h(y)] =
r(r − 1)

2
· 1

m
<

r2

m
. (4.1)

In particular, if m = rc for constant c ≥ 1 then h is injective (i.e., has no collisions) on R with probability
at least 1− 1/rc−2. Carter and Wegman gave several classes of universal hash functions from which we can
sample a function uniformly at random in constant time.

Fast Suffix Tree Construction We now prove Lemma 8, showing how to construct our suffix trees in
linear time with high probability.

Lemma 8. Given a string K of length k ≤ 2w there is an algorithm that uses O(k + w/ logw) space and
constructs the suffix tree over K in O(k) time with probability 1− 1/w1+ϵ for some ϵ > 0.

53

Proof. Let σ = {K[i] | i ∈ [1, k]} ⊆ Σ be the alphabet of K. We show how to, in O(k) time, find a function
h : Σ → [1, kO(1)] such that h is injective on σ with probability at least 1 − 1/w1+ϵ. If h is injective on σ,
we can construct the suffix tree over K′ where K′[i] = h(K[i]) in time O(sort(k, kO(1))) = O(k) using radix
sort. After the tree is constructed we can substitute for the original alphabet in linear time. Therefore, the
construction algorithm finishes in O(k) time with probability at least 1 − 1/w1+ϵ (otherwise we make no
guarantee on the construction time and we can build the suffix tree in any way).

For some m to be determined later, let f : Σ → [1,m] be chosen uniformly at random from a class of
universal hash functions. By Equation 4.1, the probability that f has a collision on σ is

P [f has collisions on σ] <
|σ|2
m

≤ k2

m
.

We divide into the cases of large trees (k ≥ w1/5) and small trees (k < w1/5). If k is large then w1/5 ≤ k ≤ 2w,
and we set m = w4 so the probability that f has a collision is at most

k2

m
≤ (2w)2

w4
=

4

w2
≤ 1

w1+ϵ

for some ϵ > 0. We check whether f is injective by sorting the set {(x, f(x)) | x ∈ σ} with respect to the
f(·)-values and checking if two consecutive elements (x, f(x)) and (y, f(y)) have x ̸= y and f(x) = f(y).
This takes time O(sort(k,w4)) = O(k) using radix sort since k ≥ w1/5. If f is injective we set h = f ,
concluding the proof of the large case.

If k is small then we allocate an array A of length w/ logw in constant time. For simplicity we assume that
A is initialized such that A[i] = 0 for all i. This can be avoided using standard constant-time initialization
schemes; assume each entry in A contains an arbitrary value initially. We maintain two other arrays B and
C such that if we have written a value to A[i] at least once then A[i] is a pointer to some B[j], B[j] is a
pointer to A[i], and C[j] stores the value most recently written to A[i]. From this we can determine if A[i]
has been initialized (check if the pointers match), and if it has not we can initialize it in constant time.

Then we set m = w/ logw such that the probability that f has a collision is no more than

k2

m
<

w2/5

w/ logw
=

logw

w3/5
=

logw

w1/2
· 1

w1/10
≤ 1

w1/10

for w ≥ 16. We check if f is injective on σ by for each character x in K setting A[f(x)] = x and seeing if two
distinct characters hash to the same index. If f is injective we then arbitrarily assign the values 1, . . . , |σ| to
the now non-zero indices of A and let h(x) = A[f(x)] (at this point we know σ since it is equal to the number
of entries in A that we modified). To boost the probability of success we run this algorithm up to eleven
times with independent choices for f . The probability that all of them fail is at most 1/w11/10 ≤ 1/w1+ϵ

concluding the proof for the small case.

In conjunction with Theorems 6 and 7, this proves Theorem 5.

4.6 Conclusion and Future Work

We have studied two variants of the streaming sliding window string indexing problem; the timely variant,
where queries must be answered immediately, and the delayed variant where a query may be answered at
any point within the next δ characters received, for a specified parameter δ. For a sliding window of size w
we have given an O(w) space data structure that, in the timely variant, supports updates in O(logw) time
with high probability and queries in O(logw) time with high probability per character in the pattern; each
occurrence is reported in additional constant time. For the delayed variant we improved these bounds to
O(log(w/δ)), where each occurrence is still reported in constant time.

One open problem is whether these bounds can be improved. Another is to find efficient solutions when
queries may be interleaved with new updates to the stream. That is, while you are streaming a pattern, new
characters of S might arrive that move the current window.

54

Chapter 5

Rank and Select on Degenerate
Strings

55

Rank and Select on Degenerate Strings

Philip Bille∗

DTU Compute
phbi@dtu.dk

Inge Li Gørtz∗

DTU Compute
inge@dtu.dk

Tord Joakim Stordalen
DTU Compute
tjost@dtu.dk

Abstract

A degenerate string is a sequence of subsets of some alphabet; it represents any string obtainable by
selecting one character from each set from left to right. Recently, Alanko et al. generalized the rank-
select problem to degenerate strings, where given a character c and position i the goal is to find either
the ith set containing c or the number of occurrences of c in the first i sets [SEA 2023]. The problem
has applications to pangenomics; in another work by Alanko et al. they use it as the basis for a compact
representation of de Bruijn Graphs that supports fast membership queries.

In this paper we revisit the rank-select problem on degenerate strings, introducing a new, natural
parameter and reanalyzing existing reductions to rank-select on regular strings. Plugging in standard
data structures, the time bounds for queries are improved exponentially while essentially matching,
or improving, the space bounds. Furthermore, we provide a lower bound on space that shows that the
reductions lead to succinct data structures in a wide range of cases. Finally, we provide implementations;
our most compact structure matches the space of the most compact structure of Alanko et al. while
answering queries twice as fast. We also provide an implementation using modern vector processing
features; it uses less than one percent more space than the most compact structure of Alanko et al. while
supporting queries four to seven times faster, and has competitive query time with all the remaining
structures.

5.1 Introduction

Given a string S over an alphabet [1, σ] the rank-select problem is to preprocess S to support, for any
c ∈ [1, σ],

• rankS(i, c): return the number of occurrences of c in S[1, i]

• selectS(i, c): return the index j of the ith occurrence of c in S

This fundamental string problem has been studied extensively due to its wide applicability, see, e.g., [BN15,
OS07,GMR06,RRS07,PNB17,BCPT15,MN07,FMMN07,BHMS11,BCG+14,NS14,HM10,NN14,GRSV13],
references therein, and surveys [Gag16].

A degenerate string is a sequence X = X1, . . . Xn where each Xi is a subset of [1, σ]. We define its
length to be n, its size to be N =

∑
i |Xi|, and denote by n0 the number of empty sets among X1, . . . , Xn.

Degenerate strings have been studied since the 80s [Abr87] and the literature contains papers on problems
such as degenerate string comparison [AAB+20], finding string covers for degenerate strings [CIK+17], and
pattern matching with degenerate patterns, degenerate texts, or both [Abr87, IMR08].

Alanko, Biagi, Puglisi, and Vuohtoniemi [ABPV23] recently generalized the rank-select problem to the
subset rank-select problem, where the goal is to preprocess a given degenerate string X to support

∗Supported by Danish Research Council grant DFF-8021-002498

56

• subset-rankX(i, c): return the number of sets in X1, . . . , Xi that contain c

• subset-selectX(i, c): return the index of the ith set that contains c

Their motivation for studying this problem is to support fast membership queries on de Bruijn graphs, a
useful tool in pangenomic problems such as genome assembly and pangenomic read alignment (see [ABPV23,
APV23] for details and further references). Specifically, in another work by some of the authors [APV23], they
show how to represent the de Bruijn graph of all length-k substrings of a given string such that membership
queries on the graph can be answered using 2k subset-rank queries. They also provide an implementation
that, when compared to the previous state of the art, improves query time by one order of magnitude while
improving space usage, or by two orders of magnitude with similar space usage.

Their result for subset rank-select is the following [ABPV23]. They introduce the Subset Wavelet Tree, a
generalization of the well-known wavelet tree (see [GGV03]) to degenerate strings. It supports both subset-
rank and subset-select queries in O(log σ) time and uses 2(σ − 1)n+ o(nσ) bits of space in the general case.
In the special case of n = N (which is the case for their representation of de Bruijn Graphs in [APV23])
they show that their structure uses 2n log σ+o(n log σ) bits. We note that their analysis for this special case
happens to generalize nicely to also show that their structure uses at most 2N log σ + 2n0 + o(N log σ + n0)
bits for any N .

Furthermore, in [APV23], Alanko, Puglisi, and Vuohtoniemi present a number of reductions from the
subset rank-select to the regular rank-select problem. We will elaborate on these reductions later in the
paper.

5.2 Our Results

Our contributions are threefold. Firstly, we introduce the natural parameter N and revisit the subset rank-
select problem to reanalyze a number of simple and elegant reductions to the regular rank-select problem,
based on the reductions from [APV23]. We express the complexities in terms of the performance of a
given rank-select structure, achieving flexible bounds that benefit from the rich literature on the rank-select
problem (Theorem 8). Secondly, we show that any structure supporting either subset-rank or subset-select
must use at least N log σ − o(N log σ) bits in the worst case (Theorem 9). By plugging a standard rank-
select data structure into Theorem 8 we, in many cases, match this bound to within lower order terms, while
simultaneously matching the query time of the fastest known rank-select data structures (see below). Note
that any lower bound for rank-select queries also holds for subset rank-select queries since any string is also
a degenerate string. All our results hold on a word RAM with logarithmic word-size. Finally, we provide
implementations of the reductions and compare them to the implementations of the Subset Wavelet Tree
provided in [ABPV23], and the implementations of the reductions provided in [APV23]. Our most compact
structure matches the space of their most compact structure while answering queries twice as fast. We also
provide a structure using vector processing features that matches the space of the most compact structure
while imporving query time by a factor four to seven, remaining competitive with the fast structures for
queries.

We now elaborate on the points above. The reductions are as follows.

Theorem 8. Let X be a degenerate string of length n, size N , and with n0 empty sets over an alphabet
[1, σ]. Let D be a Db(ℓ, σ)-bit data structure for a length-ℓ string over [1, σ] that supports rank in Dr(ℓ, σ)
time and select in Ds(ℓ, σ) time. If n0 = 0 we can solve subset rank-select on X in
(i) Db(N, σ) +N + o(N) bits, Dr(N, σ) +O(1) subset-rank-time, and Ds(N, σ) +O(1) subset-select-time.
Otherwise, if n0 > 0 we can solve subset rank-select on X in
(ii) the bounds in (i) where we replace N by N ′ = N + n0 and σ by σ′ = σ + 1.
(iii) the bounds in (i) with additional Bb(n, n0) bits of space, additional Br(n, n0) time for subset-rank, and
additional Bs(n, n0) time for subset-select. Here B is a data structure on a length-n bitstring that contains
n0 1s, uses Bb(n, n0) bits, and supports rank(·, 1) in Br(n, n0) time and select(·, 0) in Bs(n, n0) time.

57

Here Theorem 8(i) and (ii) are based on the reduction from [APV23, Sec. 4.3], and Theorem 8(iii) is
a variation of Theorem 8(ii) that handles empty sets using a natural, alternative strategy. By plugging
a standard rank-select structure into Theorem 8 we exponentially improve query times while essentially
matching, or improving, space usage compared to Alanko et al. [ABPV23]. For example, consider the rank-
select structure by Golynski, Munro, and Rao [GMR06] which uses ℓ log σ + o(ℓ log σ) bits, supports rank in
O(log log σ) time, and supports select in constant time. These query times are optimal in succinct space, see
e.g. [BN15].

For n0 = 0, plugging this structure into Theorem 8(i) yields an N log σ + N + o(N log σ + N) bit
data structure supporting subset-rank in O(log log σ) time and subset-select in constant time. Compared to
the previous result by Alanko et al. [ABPV23], this improves the constant on the space bound from 2 to
1 + 1/ log σ and improves the query time from O(log σ) for both queries to O(log log σ) for subset-rank and
constant for subset-select. Note that the additional N bits in the space bound are a lower order term when
σ = ω(1).

For n0 > 0, plugging their structure into Theorem 8(ii) gives the same time bounds as above and the
space bound

(N + n0) log(σ + 1) + (N + n0) + o(n0 log σ +N log σ +N + n0)

bits. If n0 = o(N) and σ = ω(1), the space bound is identical to the one above. In any case, the query time
is still improved exponentially.

Alternatively, by plugging it into Theorem 8(iii) the space bound becomes N log σ+o(N log σ) + Bs(n, n0)
bits. For n = o(N log σ) we can choose B to be an (n+ o(n))-bit data structure with constant time rank and
select, such as [CM96,Jac89], again achieving the same space and time bounds as when n0 = 0. Otherwise,
we can plug in any data structure for B that is sensitive to the number of 1-bits in the bitvector. For example,
if n0 = O(log n) we can store the positions of the 1-bits in sorted order using O(n0 log n) = O(log2 n) bits,
supporting select(i, 1) in constant time and rank(i, ·) in O(log n0) = O(log log n) time using binary search.
We can also binary search for select(i, 0) in O(log n0) = O(log log n) time using the fact that — if the ith
position of a 1-bit is pi — there are pi − i zeroes in the prefix ending at pi. There are many such sensitive
data structures that obtain various time-space trade-offs, e.g [OS07,GORR14].

We also show the following lower bound on the space required to support either subset-rank or subset-select
on a degenerate string.

Theorem 9. Let X be a degenerate string of size N over an alphabet [1, σ]. Any data structure supporting
subset-rank or subset-select on X must use at least N log σ − o(N log σ) bits in the worst case.

Thus, applying Theorem 8 in many cases results in succinct data structures, whose space deviates from
this lower bound by at most a lower order term. The three examples above each illustrate this when
respectively (1) σ = ω(1), (2) n0 = o(N) and σ = ω(1), and (3) n = o(N log σ).

Finally, we provide implementations and compare them to variants of the Subset Wavelet Tree [ABPV23]
and the reductions [APV23] implemented by Alanko et al. Specifically, we apply the test framework
from [ABPV23] and run two types of tests: one where the subset rank-select structures are used to support
k-mer queries on a de Bruijn Graph (the motivation for, and practical application of, the subset rank-select
problem), and one where subset-rank queries are tested in isolation. We implement Theorem 8(iii) and plug
in efficient off-the-shelf rank-select structures from the Succinct Data Structure Library (SDSL)1 [GBMP14].
We also implement a variation of another reduction from [APV23, Sec. 4.2], which is more optimized for
genomic test data. The highlight is our most compact structure, which matches the space of their most
compact structure while supporting queries twice as fast, as well as our structure using vector processing,
which matches the most compact structure while supporting queries four to seven times faster.

5.3 Reductions

We now present the reductions from Theorem 8. Let X, D, and B be defined as in Theorem 8. Furthermore,
let V be the data structure from [Jac89], which for a length-ℓ bitstring uses ℓ+ o(ℓ) bits and supports rank

1https://github.com/simongog/sdsl-lite

58

https://github.com/simongog/sdsl-lite

X =

{
A

C

G

} {
A

T

} {
C

} {
T

G

}

X1 X2 X3 X4

S = ACG AT C TG

R = 100 10 1 10 1

S1 S2 S3 S4

Figure 5.1: Left: A degenerate string X over the alphabet {A, C, G, T} where n = 4 and N = 8. Right: The re-
duction from Theorem 8(i) on X. White space is for illustration purposes only. To compute subset-rank(2, A),
we first compute selectR(3, 1) = 6. Now we know that S2 ends at position 5, so we return rankS(5, A) = 2.
To compute subset-select(2, G) we compute selectS(2, G) = 8, and compute rankR(8, 1) = 4 to determine that
position 8 corresponds to X4.

and select in constant time.

5.3.1 Reductions (i) and (ii)

First assume that n0 = 0. For each Xi let the string Si be the concatenation of the characters in Xi in an
arbitrary order, and let the string Ri be a single 1 followed by |Xi| − 1 0s. This is always possible since
|Xi| ≥ 1. Let S (resp. R) be the concatenation of S1, . . . , Sn (resp. R1, . . . , Rn) in that order, with an
additional 1 appended after Rn. The lengths of S and R are respectively N and N +1. See Figure 5.1 for an
example. The data structure consists of D built over S and V built over R, which takes D(N, σ)+N + o(N)
bits.

To support subset-rank(i, c), compute the starting position k = selectR(i + 1, 1) of Si+1 and return
rankS(k − 1, c). To support subset-select(i, c), find the index k = selectS(i, c) of the ith occurrence of c, and
return rankR(k, 1) to determine which set k is in. Since rank and select queries on R take constant time,
subset-rank and subset-select queries take respectively Dr(N, σ) +O(1) and Ds(N, σ) +O(1) time, achieving
the bounds stated in Theorem 8(i).

If n0 ̸= 0, add a new character σ+1 and replace each empty set with the singleton set {σ+1}, and then
apply reduction (i). This instance has N ′ = N + n0 and σ′ = σ + 1, achieving the bounds in Theorem 8(ii).

5.3.2 Reduction (iii)

Let E denote the length-n bitvector where E[i] = 1 if Xi = ∅ and E[i] = 0 otherwise. Let X ′′ denote
the degenerate string obtained by removing all the empty sets from X. The data structure consists of
reduction (i) over X ′′ and B built over E. This takes Db(N, σ) + N + o(N) + Bb(n, n0) bits. To support
subset-rankX(i, c) first compute k = i − rankE(i, 1), mapping Xi to its corresponding set X ′′

k . Then return
subset-rankX′′(k, c). This takes Br(n, n0) + Dr(N, σ) + O(1) time. To support subset-selectX(i, c), find
k = subset-selectX′′(i, c) and return selectE(k, 0), the position of the kth zero in E (i.e., the kth non-empty
set). This takes Bs(n, n0) +Ds(N, σ) +O(1), matching the stated bounds.

5.4 Lower Bound

In this section we prove Theorem 9. The strategy is as follows. Any structure supporting subset-rank or
subset-select on X is a representation of X since we can fully recover X by repeatedly using either of these
operations. We will lower bound the number L of distinct degenerate strings that can exist for a given N and
σ. Any representation of X must be able to distinguish between these instances, so it needs to use at least
log2 L bits in the worst case. Let sufficiently large N and σ = ω(logN) be given and assume without loss of
generality that logN and N/ logN are integers. Consider the class of degenerate strings X1, . . . , Xn where

each |Xi| = logN and n = N/ logN . There are
(

σ
logN

)N/ logN
such degenerate strings, so any representation

59

must use at least

log

(
σ

logN

)N/ logN

=
N

logN
log

(
σ

logN

)

≥ N

logN
log

(
σ − logN

logN

)logN

= N log

(
σ − logN

logN

)

= N log σ − o(N log σ)

bits, concluding the proof.

5.5 Experimental Setup

5.5.1 Setup and Data

The code to replicate our results is available on GitHub2. Our tests are based on the test framework by
Alanko et al. [ABPV23], also available on GitHub3. Like them, we used the following data sets.

1. A pangenome of 3682 E. coli genomes, available on Zenodo4. According to [ABPV23], the data was
collected by downloading a set of 3682 E. Coli assemblies from the National Center for Biotechnology
Information.

2. A human metagenome (SRA identifier ERR5035349) consisting of a set of ≈ 17 million length-502
sequence reads sampled from the human gut from a study on irritable bowel syndrome and bile acid
malabsorption [JDO+20].

We applied two tests. Firstly, we plugged our data structures into the k-mer query test from [ABPV23];
they plug subset rank-select structures into their k-mer index and query a large number of k-mers. Secondly,
we tested the subset rank-select structures in isolation by building the k-mer indices, extracting the subset
rank-select structures, and performing twenty million randomly generated subset-rank queries. For each
measurement we built only the structure under testing, and timed only the execution of the queries. Each
value reported below is the average of five such measurements. Note that, like [ABPV23], we do not test
subset-select queries; only subset-rank queries are necessary for their k-mer index.

All the tests were run on a system with a 3.00GHz i7-1185G7 processor and 32 gigabytes of DDR4
random access memory, running Ubuntu 22.04.3 LTS with kernel version 6.2.0-35-generic. The programs
were compiled using g++ version 11.4.0 with compiler flags -O3, -march=native, and -DNDEBUG.

5.5.2 Data Structures

This section summarizes a representative subset of the data structures we tested; see appendix 5.B for a
description of, and results for, the remaining data structures. We implement both Theorem 8(iii) as well as
variation of the reduction split representation from [APV23, Sec 4.2]; this reduction is optimized for their
k-mer query structure built over genomic data, in which most of the sets are singletons. We name our
variation the dense-sparse decomposition (DSD), which works as follows. The empty sets are handled in the
same way as in Theorem 8(iii). Furthermore, we store a sparse bitvector of length n for each character, i.e.,
A, C, G, and T. For each Xi of size at least two we remove |Xi| − 1 of the characters and set the ith bit in
the corresponding bitvector to 1. What remains are n−n0 singleton sets, i.e., a regular string, for which we
store a rank-select structure. A query thus consists of three rank queries; one to eliminate empty sets, one

2https://github.com/tstordalen/subset-rank-select
3https://github.com/jnalanko/SubsetWT-Experiments/
4https://zenodo.org/record/6577997

60

https://github.com/tstordalen/subset-rank-select
https://github.com/jnalanko/SubsetWT-Experiments/
https://zenodo.org/record/6577997

0 2 3 4 5
Space (bits per k-mer)

0

5

10

15

20

25

30
Ti

m
e (

s p
er

 q
ue

ry
)

Thm1(iii)

SWT (rrr gen.)

SWT (scan)

SWT (rrr)

SWT (split)

Concat (rrr)

Split (ef)
Split (rrr)

Split (plain)

DSD (rrr)

DSD (scan)
SIMD

0 2 3 4
Space (bits per symbol)

0

250

500

750

1000

1250

1500

1750

Ti
m

e (
ns

 p
er

 q
ue

ry
)

Thm1(iii)

SWT (rrr gen.)

SWT (scan)

SWT (rrr)

SWT (split)

Concat (rrr)

Split (ef)
Split (rrr)

Split (plain)

DSD (rrr)

DSD (scan)

SIMD

Figure 5.2: Note that the x-axis is truncated in both plots. The two gray lines represent the performance
of the benchmark solution “Matrix”. The crosses indicate our data structures and the circles indicate the
data structures from [ABPV23,APV23]. Left: Results of the k-mer query test on the metagenome data set.
Right: The result of the subset-rank test on the metagenome data set. The space is in number of bits per
symbol, i.e., bits/N .

in the regular string, and one in the sparse bitvector. In the split representation by [APV23], each such set
is instead removed and all the characters are represented in the additional bitvectors.

The data structures we tested are as follows. Matrix is the benchmark structure from [ABPV23], con-
sisting of one bitvector per character (i.e., a 4×n matrix). Thm 8(iii) is the reduction from Theorem 8(iii),
using a wavelet tree for the string, a bitvector for the length-N indicator string, and a sparse bitvector for
the empty sets. DSD (x), SWT (x), and Split (x) are the DSD, Subset Wavelet Tree, and split repre-
sentation parameterized by x, respectively, where x may be any of the following data structures: (1) scan,
the structure from Alanko et al. [ABPV23, Sec. 5.2], inspired by scanning techniques for fast rank queries
on bitvectors, (2) split, a rank structure for size-four alphabets optimized for the skewed distribution of
singleton to non-singleton sets [ABPV23, Sec 5.3] (not to be confused with the split representation) (3) rrr,
an SDSL wavelet tree using H0-compressed bitvectors, based mainly on the result by Raman, Raman, and
Rao Satti [RRS07], (4) rrr gen., a generalization of RRR to size-four alphabets [ABPV23, Sec. 5.4], (5) ef,
an efficient implementation of rank queries on a bitvector stored using Elias-Fano encoding from [MPRZ21],
and (6) plain, a standard SDSL bitvectors supporting rank in constant time.

Furthermore, [APV23] implements Concat (rrr), which is essentially reduction (ii) using a wavelet tree
with RRR-compressed bitvectors, and we also implement the structure DSD (SIMD). It is based on a
standard idea for compact data structures; we divide the string into blocks, precompute the answer to rank
queries up to each block, and compute partial rank queries for blocks as needed using word parallelism (this
is also an essential idea in the ‘scan’ structure by [ABPV23]). We use SIMD (single instruction, multiple
data) instructions to speed up the partial in-block rank queries, which allows for large blocks and a reduction
in space (see Appendix 5.B). Most computers support SIMD to some extent, allowing the same operation
to be performed on many words simultaneously. We used AVX512, which supports 512-bit vector registers.

61

5.6 Results

The test results for the metagenome data set can be seen in Figure 5.2; the results for the E. Coli data
set are similar. See appendix 5.A for the data belonging to Figure 5.2, and appendix 5.B for the results
of the data structures omitted from this figure. The fastest structure is SWT (scan), but it is large and is
outperformed by the benchmark solution on both parameters. Our unoptimized reduction Thm8(iii) uses
20 − 60% more space than the remaining structures of [ABPV23,APV23] while remaining within a factor
two in query time of most of them. Our fastest structure, DSD (scan), is competitive with both Split (ef)
and Split (rrr). Our most compact structure DSD (rrr) matches the space of the previous smallest structure,
Concat (ef), while supporting queries twice as fast. Our SIMD-enhanced structure uses less than one percent
more space than Concat (ef) while supporting queries four to seven times faster. It is also competitive with
the fast and compact structures Split (ef) and Split (rrr). We note that the entropies for the distributions
of sets in the Metagenome and E. Coli data sets are respectively 2.21 and 2.24 bits (as seen in [ABPV23]),
and that reduction from 2.44 bits (Split (rrr), Metagenome) to 2.28 bits (SIMD, Metagenome) reduces the
distance to the entropy from approximately 10% to 3%, while simultaneously supporting queries faster.

5.A Additional Data

k-mer Queries Subset Rank Queries

E. Coli Metagenome E. Coli Metagenome

Data structure Query Space Query Space Query Space Query Space

(µs) (bpk) (µs) (bpk) (ns) (bps) (ns) (bps)

Matrix 0.63 4.29 0.77 4.62 38.75 4.26 56.98 4.25

DSD (scan) 3.00 2.61 3.75 2.70 210.23 2.57 311.33 2.48

Thm8(iii) 3.87 3.68 4.95 3.91 435.28 3.64 546.89 3.60

DSD (rrr) 13.21 2.38 15.17 2.46 850.99 2.34 1086.11 2.26

SIMD 3.31 2.42 4.16 2.50 320.53 2.37 444.94 2.28

SWT (scan) 1.63 4.53 1.96 4.87 129.44 4.49 170.44 4.49

SWT (split) 4.93 3.17 6.06 3.21 436.69 3.13 620.47 2.96

SWT (rrr gen.) 18.97 2.84 19.79 3.04 789.12 2.81 860.4 2.80

SWT (rrr) 25.33 2.48 27.55 2.62 1384.0 2.45 1610.73 2.41

Split (plain) 2.28 3.30 2.84 3.52 235.22 3.27 298.87 3.24

Split (ef) 2.71 2.69 3.30 2.78 317.71 2.65 390.65 2.56

Split (rrr) 4.70 2.54 5.54 2.65 393.14 2.51 471.30 2.44

Concat(ef) 26.25 2.38 30.53 2.48 1372.2 2.35 1786.65 2.28

Table 5.1: The left half of the table shows the result for the k-mer query test. The times are listed in
microseconds per query, and space in the number of bits per represented k-mer. The right half shows
the result of the subset-rank query test. Times are listed in nanoseconds per query, and space in bits per
symbol (i.e., the number of bits divided by N). There are five groups of data structures, separated by
horizontal lines; the benchmark structure, our reductions, our structure using SIMD, the Subset Wavelet
Trees from [ABPV23], and the reductions from [APV23]. Each group is ordered from fastest to slowest and
largest to smallest, except for Thm8(iii) which breaks space order. Each value in the table is the average of
five measurements.

62

5.B Results for all Data Structures

This section elaborates on the data structures that were omitted from Sections 5.5.2 and 5.6. From [APV23],
we omitted the structure Concat (plain), which is the structure Concat (ef) explained in Section 5.5.2
parameterized with standard SDSL bitvcectors instead. We also omitted Matrix (ef) and Matrix (rrr),
which is the benchmark solution parameterized with different types of bitvectors.

Furthermore, this section includes more parameterizations of our SIMD enhnaced data structure. We
elaborate on the SIMD structure from Section 5.5.2. DSD (SIMD (i)) (which we refer to as SIMD (i) for
simplicity) is the DSD parameterized with the SIMD (i) structure, which supports rank queries on strings
over the alphabet {0, 1, 2, 3}. As described in Section 5.5.2, the main idea is to divide the string into blocks,
precompute the answer to rank queries up to the start of each block, and compute partial rank queries
internally in blocks as needed using SIMD. The width of the block is determined by the parameter i; there
are 512i characters stored per block (recall that the width of the SIMD registers we used was 512 bits).
The blocks are stored as follows. Each character in {0, 1, 2, 3} consists of two bits. We separate the string
represented by the block into two bitstrings; one consisting of the low bits, and one of the high bits. To
compute partial rank queries, we use the operation vpternlogq, which given three vectors and an 8-bit
integer value evaluates any three-variable boolean function bit-wise for the three vectors (the 8-bit integer
describes the result column of the three-variable truth table, which has eight rows). The operation also
accepts an additional integer, used to mask out results if they are not needed for the computation. To
answer rank queries, we traverse the low and high bitstrings, using vpternlogq to find occurrences of the
queried character and the mask to filter out results occurring after the queried index. The version of the
SIMD data structure in Sections 5.5.2 and 5.6 is SIMD (8).

The results for all the structures on the metagenome data set can be seen in Figure 5.3 (k-mer search
test) and Figure 5.4 (rank query benchmark). All the data, for all structures, both data sets, and both tests,
can be seen in Table 5.2.

63

0 2 3 4 5
Space (bits per k-mer)

0

5

10

15

20

25

30

Ti
m

e (
s p

er
 q

ue
ry

)

Thm1(iii)

SWT (rrr gen.)

SWT (scan)

SWT (rrr)

SWT (split)

Concat (rrr)

Concat(plain)Split (ef)

Split (rrr)

Split (plain)

Matrix (rrr)

Matrix (ef)

DSD (rrr)

DSD (scan)

SIMD (4)
SIMD (8)

SIMD (16)

SIMD (32)

Figure 5.3: Note that the x-axis is truncated. Shows the performance of all data structures for the k-mer
search test on the metagenome data set. The two gray lines represent the performance of the benchmark
solution “Matrix”. The crosses indicate our data structures and the circles indicate the data structures
from [ABPV23,APV23].

64

0 2 3 4 5
Space (bits per symbol)

0

250

500

750

1000

1250

1500

1750

Ti
m

e (
ns

 p
er

 q
ue

ry
)

Thm1(iii)

SWT (rrr gen.)

SWT (scan)

SWT (rrr)

SWT (split)

Concat (rrr)

Concat(plain)

Split (ef)

Split (rrr)

Split (plain)
Matrix (rrr)

Matrix (ef)

DSD (rrr)

DSD (scan)

SIMD (4)
SIMD (8)

SIMD (16)

SIMD (32)

Figure 5.4: Note that the x-axis is truncated. Shows the performance of all data structures for the rank
query benchmark. The space is in number of bits per symbol, i.e., bits/N . The two gray lines represent the
performance of the benchmark solution “Matrix”. The crosses indicate our data structures and the circles
indicate the data structures from [ABPV23,APV23].

65

k-mer Queries Subset Rank Queries

E. Coli Metagenome E. Coli Metagenome

Data structure Query Space Query Space Query Space Query Space

(µs) (bpk) (µs) (bpk) (ns) (bps) (ns) (bps)

Matrix 0.63 4.29 0.77 4.62 38.75 4.26 56.98 4.25

Matrix (ef) 0.92 4.07 1.24 4.61 73.9 4.04 94.4 4.25

Matrix (rrr) 5.28 3.38 5.96 3.66 301.7 3.34 367.45 3.37

DSD (scan) 3.0 2.61 3.75 2.7 210.23 2.57 311.33 2.48

Thm8(iii) 3.87 3.68 4.95 3.91 435.28 3.64 546.89 3.6

DSD (rrr) 13.21 2.38 15.17 2.46 850.99 2.34 1086.11 2.26

SIMD (4) 2.98 2.49 3.79 2.58 289.54 2.42 405.88 2.33

SIMD (8) 3.31 2.42 4.16 2.5 320.53 2.37 444.94 2.28

SIMD (16) 3.67 2.39 4.58 2.47 371.87 2.35 500.97 2.26

SIMD (32) 5.35 2.37 6.34 2.45 447.28 2.34 585.65 2.25

SWT (scan) 1.63 4.53 1.96 4.87 129.44 4.49 170.44 4.49

SWT (split) 4.93 3.17 6.06 3.21 436.69 3.13 620.47 2.96

SWT (rrr gen.) 18.97 2.84 19.79 3.04 789.12 2.81 860.4 2.8

SWT (rrr) 25.33 2.48 27.55 2.62 1384.0 2.45 1610.73 2.41

Concat(plain) 2.53 3.74 3.51 4.02 375.44 3.71 491.55 3.7

Concat(ef) 26.25 2.38 30.53 2.48 1372.2 2.35 1786.65 2.28

Split (plain) 2.28 3.3 2.84 3.52 235.22 3.27 298.87 3.24

Split (ef) 2.71 2.69 3.3 2.78 317.71 2.65 390.65 2.56

Split (rrr) 4.7 2.54 5.54 2.65 393.14 2.51 471.3 2.44

Table 5.2: The left half of the table shows the result for the k-mer query test. The times are listed in
microseconds per query, and space in the number of bits per represented k-mer. The right half shows the
result of the subset-rank query test. Times are listed in nanoseconds per query, and space in bits per symbol
(i.e., the number of bits divided by N). There are six groups of data structures, separated by horizontal
lines; the variants of the benchmark structure, our reductions, our structure using SIMD, the Subset Wavelet
Trees from [ABPV23], the “Concat” reduction from [APV23], and the “Split” reduction from [APV23]. Each
group is ordered from fastest to slowest and largest to smallest, except for Thm8(iii) which breaks space
order. Each value in the table is the average of five measurements.

66

Bibliography

[AAB+20] Mai Alzamel, Lorraine A. K. Ayad, Giulia Bernardini, Roberto Grossi, Costas S. Iliopoulos,
Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Comparing degenerate strings. Fundam.
Informaticae, 175(1-4):41–58, 2020.

[AB20] Amihood Amir and Itai Boneh. Update query time trade-off for dynamic suffix arrays. In Proc.
31st ISAAC, volume 181, pages 63:1–63:16, 2020.

[AB21] Amihood Amir and Itai Boneh. Dynamic suffix array with sub-linear update time and poly-
logarithmic lookup time. CoRR, abs/2112.12678, 2021.

[ABPV23] Jarno N. Alanko, Elena Biagi, Simon J. Puglisi, and Jaakko Vuohtoniemi. Subset wavelet trees.
In Proc. 21st SEA, pages 4:1–4:14, 2023.

[Abr87] Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, 1987.

[AFG+14] Amihood Amir, Gianni Franceschini, Roberto Grossi, Tsvi Kopelowitz, Moshe Lewenstein, and
Noa Lewenstein. Managing Unbounded-Length Keys in Comparison-Driven Data Structures
with Applications to Online Indexing. SIAM J. Comput., 43(4):1396–1416, 2014.

[AFGV97] Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeffrey Scott Vitter. On sorting strings in
external memory (extended abstract). In Proc. 29th STOC, pages 540–548, 1997.

[AH18] Daichi Amagata and Takahiro Hara. Mining top-k co-occurrence patterns across multiple
streams (extended abstract). In Proc. 34th ICDE, pages 1747–1748, 2018.

[AHNR98] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear time?
J. Comput. Syst. Sci., 57(1):74–93, 1998.

[Ajt88] Miklós Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Comb., 8(3):235–
247, 1988.

[AKLL05] Amihood Amir, Tsvi Kopelowitz, Moshe Lewenstein, and Noa Lewenstein. Towards real-time
suffix tree construction. In Proc. 12th SPIRE, volume 3772, pages 67–78. Springer, 2005.

[AN08] Amihood Amir and Igor Nor. Real-time indexing over fixed finite alphabets. In Proc. 19th
SODA, pages 1086–1095, 2008.

[And96] Arne Andersson. Faster deterministic sorting and searching in linear space. In Proc. 37th FOCS,
pages 135–141, 1996.

[APV23] Jarno N. Alanko, Simon J. Puglisi, and Jaakko Vuohtoniemi. Small searchable κ-spectra via
subset rank queries on the spectral burrows-wheeler transform. In Proc. ACDA, 2023, pages
225–236, 2023.

67

[BBPV09] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Monotone minimal
perfect hashing: searching a sorted table with O(1) accesses. In Proc. 20th SODA, pages 785–
794, 2009.

[BBV10] Djamal Belazzougui, Paolo Boldi, and Sebastiano Vigna. Dynamic z-fast tries. In Proc. 17th
SPIRE, pages 159–172, 2010.

[BCF+05] Andrej Brodnik, Svante Carlsson, Michael L. Fredman, Johan Karlsson, and J. Ian Munro.
Worst case constant time priority queue. J. Syst. Softw., 78(3):249–256, 2005.

[BCG+14] Jérémy Barbay, Francisco Claude, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich. Efficient
fully-compressed sequence representations. Algorithmica, 69(1):232–268, 2014.

[BCPT15] Djamal Belazzougui, Patrick Hagge Cording, Simon J. Puglisi, and Yasuo Tabei. Access, rank,
and select in grammar-compressed strings. In Proc. 23rd ESA, pages 142–154, 2015.

[BEGV18] Philip Bille, Mikko Berggren Ettienne, Inge Li Gørtz, and Hjalte Wedel Vildhøj. Time-space
trade-offs for Lempel-Ziv compressed indexing. Theor. Comput. Sci., 713:66–77, 2018.

[Bel12] Djamal Belazzougui. Worst-case efficient single and multiple string matching on packed texts in
the word-RAM model. J. Discrete Algorithms, 14:91–106, 2012.

[BF02] Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related prob-
lems. J. Comput. Syst. Sci., 65(1):38–72, 2002.

[BFK06] Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. Cache-oblivious string
B-trees. In Proc. 25th PODS, pages 233–242, 2006.

[BGS17] Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. Deterministic indexing for packed
strings. In Proc. 28th CPM, pages 6:1–6:11, 2017.

[BGS22a] Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. Partial sums on the ultra-wide word
RAM. Theor. Comput. Sci., 905:99–105, 2022. Announced at TAMC 2020.

[BGS22b] Philip Bille, Inge Li Gørtz, and Tord Stordalen. Predecessor on the ultra-wide word RAM. In
Proc. 18th SWAT, pages 18:1–18:15, 2022.

[BHMS11] Jérémy Barbay, Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct indexes for strings,
binary relations and multilabeled trees. ACM Trans. Algorithms, 7(4):52:1–52:27, 2011.

[BI13] Dany Breslauer and Giuseppe F. Italiano. Near real-time suffix tree construction via the fringe
marked ancestor problem. J. Discrete Algorithms, 18:32–48, 2013.

[BJ18] Andrej Brodnik and Matevz Jekovec. Sliding suffix tree. Algorithms, 11(8):118, 2018.

[BLR+15] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and
Oren Weimann. Random access to grammar-compressed strings and trees. SIAM J. Comput.,
44(3):513–539, 2015.

[BN15] Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing
sequences. ACM Trans. Algorithms, 11(4):31:1–31:21, 2015.

[CIK+17] Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Walen. Covering problems for partial words and for indeterminate strings.
Theor. Comput. Sci., 698:25–39, 2017.

[CKL15] Richard Cole, Tsvi Kopelowitz, and Moshe Lewenstein. Suffix Trays and Suffix Trists: Structures
for Faster Text Indexing. Algorithmica, 72(2):450–466, 2015.

68

[CL06] Joong Hyuk Chang and Won Suk Lee. Finding recently frequent itemsets adaptively over online
transactional data streams. Inf. Syst., 31(8):849–869, 2006.

[CM96] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary storage (extended abstract).
In Proc. 7th SODA, pages 383–391, 1996.

[Cor11] Intel Corporation. Intel® advanced vector extensions programming reference. Intel Corporation,
2011.

[CRDI07] Thomas Chen, Ram Raghavan, Jason N. Dale, and Eiji Iwata. Cell Broadband engine archi-
tecture and its first implementation - A performance view. IBM J. Res. Dev., 51(5):559–572,
2007.

[CW79] J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Comput. System
Sci., 18(2):143–154, 1979.

[DadH90] Martin Dietzfelbinger and FriedhelmMeyer auf der Heide. A new universal class of hash functions
and dynamic hashing in real time. In Proc. 17th ICALP, pages 6–19, 1990.

[DFG+97] Gautam Das, Rudolf Fleischer, Leszek Gasieniec, Dimitrios Gunopulos, and Juha Kärkkäinen.
Episode matching. In Proc. 8th CPM, pages 12–27, 1997.

[DHKP97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A reliable
randomized algorithm for the closest-pair problem. J. Algorithms, 25(1):19–51, 1997.

[DKM+94] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans
Rohnert, and Robert Endre Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM
J. Comput., 23(4):738–761, 1994.

[DLM02] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estimation of internet
packet streams with limited space. In Proc. 10th ESA, pages 348–360, 2002.

[DP13] Michele Dallachiesa and Themis Palpanas. Identifying streaming frequent items in ad hoc time
windows. Data Knowl. Eng., 87:66–90, 2013.

[Far97] Martin Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th FOCS,
pages 137–143, 1997.

[FFM00] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suffix tree construction. J. ACM, 47(6):987–1011, 2000.

[FG89] Edward R. Fiala and Daniel H. Greene. Data compression with finite windows. Commun. ACM,
32(4):490–505, 1989.

[FG05] Johannes Fischer and Pawel Gawrychowski. Alphabet-Dependent String Searching with Wex-
ponential Search Trees. In Proc. 26th CPM, pages 160–171, 2005.

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538–544, 1984.

[FLNS15] Arash Farzan, Alejandro López-Ortiz, Patrick K. Nicholson, and Alejandro Salinger. Algorithms
in the ultra-wide word model. In Proc. 12th TAMC, pages 335–346, 2015.

[FMMN07] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed represen-
tations of sequences and full-text indexes. ACM Trans. Algorithms, 3(2):20, 2007.

[FW93] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993.

69

[Gag16] Travis Gagie. Rank and select operations on sequences. In Encyclopedia of Algorithms, pages
1776–1780. 2016.

[GBMP14] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In Proc. 13th SEA, pages 326–337, 2014.

[GBT84] Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and related techniques
for geometry problems. In Proc. 16th STOC, pages 135–143. ACM, 1984.

[GDD+03] Lukasz Golab, David DeHaan, Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro.
Identifying frequent items in sliding windows over on-line packet streams. In Proc. 3rd ACM
IMC, pages 173–178, 2003.

[GGV03] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text
indexes. In Proc. 14th SODA, pages 841–850, 2003.

[GMR06] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations on large
alphabets: a tool for text indexing. In Proc. 15th SODA, pages 368–373, 2006.

[GORR14] Alexander Golynski, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. Optimal indexes for
sparse bit vectors. Algorithmica, 69(4):906–924, 2014.

[GRSV13] Roberto Grossi, Rajeev Raman, Srinivasa Rao Satti, and Rossano Venturini. Dynamic com-
pressed strings with random access. In Proc. 40th ICALP, pages 504–515, 2013.

[GS78] Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In
Proc. 19th FOCS, pages 8–21, 1978.

[Hag98] Torben Hagerup. Sorting and searching on the word RAM. In Proc. 15th STACS, pages 366–398,
1998.

[Han02] Yijie Han. Deterministic sorting in O(n log log n) time and linear space. In Proc. 34th STOC,
pages 602–608, 2002.

[Han04] Yijie Han. Deterministic sorting in O(n log log n) time and linear space. J. Algorithms, 50(1):96–
105, 2004.

[HM10] Meng He and J. Ian Munro. Succinct representations of dynamic strings. In Proc. 17th SPIRE,
pages 334–346, 2010.

[HVDH21] David Harvey and Joris Van Der Hoeven. Integer multiplication in time o(nlog\,n). Annals of
Mathematics, 193(2):563–617, 2021.

[IMR08] Costas S. Iliopoulos, Laurent Mouchard, and Mohammad Sohel Rahman. A new approach to
pattern matching in degenerate DNA/RNA sequences and distributed pattern matching. Math.
Comput. Sci., 1(4):557–569, 2008.

[ISTA04] Shunsuke Inenaga, Ayumi Shinohara, Masayuki Takeda, and Setsuo Arikawa. Compact directed
acyclic word graphs for a sliding window. J. Discrete Algorithms, 2(1):33–51, 2004.

[Jac89] Guy Jacobson. Space-efficient static trees and graphs. In Proc. FOCS, pages 549–554, 1989.

[JDO+20] Ian B Jeffery, Anubhav Das, Eileen O’Herlihy, Simone Coughlan, Katryna Cisek, Michael Moore,
Fintan Bradley, Tom Carty, Meenakshi Pradhan, Chinmay Dwibedi, et al. Differences in fecal
microbiomes and metabolomes of people with vs without irritable bowel syndrome and bile acid
malabsorption. Gastroenterology, 158(4):1016–1028, 2020.

70

[KJP77] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast Pattern Matching in Strings.
SIAM J. Comput., 6(2):323–350, 1977.

[KK22] Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries
and updates. In Proc. 54th STOC, pages 1657–1670, 2022.

[KN17] Gregory Kucherov and Yakov Nekrich. Full-Fledged Real-Time Indexing for Constant Size
Alphabets. Algorithmica, 79(2):387–400, 2017.

[Kop12] Tsvi Kopelowitz. On-line indexing for general alphabets via predecessor queries on subsets of
an ordered list. In 53rd FOCS, pages 283–292, 2012.

[Kos94] S. Rao Kosaraju. Real-time pattern matching and quasi-real-time construction of suffix trees
(preliminary version). In Proc. 26th STOC, pages 310–316, 1994.

[KSP03] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags. ACM Trans. Database Syst., 28:51–55, 2003.

[Lar99] N. Jesper Larsson. Structures of String Matching and Data Compression. PhD thesis, Lund
University, Sweden, 1999.

[LCK14] Yongsub Lim, Jihoon Choi, and U Kang. Fast, accurate, and space-efficient tracking of time-
weighted frequent items from data streams. In Proc. 23rd CIKM, pages 1109–1118, 2014.

[LCWC05] Chih-Hsiang Lin, Ding-Ying Chiu, Yi-Hung Wu, and Arbee L. P. Chen. Mining frequent itemsets
from data streams with a time-sensitive sliding window. In Proc. 5th SDM, pages 68–79, 2005.

[LL09] Hua-Fu Li and Suh-Yin Lee. Mining frequent itemsets over data streams using efficient window
sliding techniques. Expert Syst. Appl., 36(2):1466–1477, 2009.

[LMu+99] R. Leben, M. Miletic, M. S̆pegel, A. Torst, A. Brodnik, and K. Karlsson. Design of high perfor-
mance memory module on PC100. In Proc. Electrotechnical and Computer Science Conference
(ERK), pages 75–78, 1999.

[LP12] Kasper Green Larsen and Rasmus Pagh. I/O-efficient data structures for colored range and
prefix reporting. In Proc. 23rd SODA, pages 583–592, 2012.

[Mil94] Peter Bro Miltersen. Lower bounds for union-split-find related problems on random access
machines. In Proc. 26th STOC, pages 625–634, 1994.

[MN07] Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and extended. Theor. Comput.
Sci., 387(3):332–347, 2007.

[MNSW98] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and
asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37–49, 1998.

[MPRZ21] Danyang Ma, Simon J Puglisi, Rajeev Raman, and Bella Zhukova. On elias-fano for rank queries
in fm-indexes. In Proc. DCC, 2021, pages 223–232, 2021.

[MTZ08] Barzan Mozafari, Hetal Thakkar, and Carlo Zaniolo. Verifying and mining frequent patterns
from large windows over data streams. In Proc. 24th ICDE, pages 179–188, 2008.

[NAIP03] Joong Chae Na, Alberto Apostolico, Costas S. Iliopoulos, and Kunsoo Park. Truncated suffix
trees and their application to data compression. Theor. Comput. Sci., 304(1-3):87–101, 2003.

[NN14] Gonzalo Navarro and Yakov Nekrich. Optimal dynamic sequence representations. SIAM J.
Comput., 43(5):1781–1806, 2014.

71

[NR20] Gonzalo Navarro and Javiel Rojas-Ledesma. Predecessor search. ACM Comput. Surv.,
53(5):105:1–105:35, 2020.

[NS14] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.
ACM Trans. Algorithms, 10(3):16:1–16:39, 2014.

[OCGO96] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. The Log-Structured
Merge-Tree (LSM-Tree). Acta Informatica, 33(4):351–385, 1996.

[OS07] Daisuke Okanohara and Kunihiko Sadakane. Practical Entropy-Compressed Rank/Select Dic-
tionary. In Proc. 9th ALENEX, 2007.

[PNB17] Alberto Ordóñez Pereira, Gonzalo Navarro, and Nieves R. Brisaboa. Grammar compressed
sequences with rank/select support. J. Discrete Algorithms, 43:54–71, 2017.

[PT06] Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Proc. 38th
STOC, pages 232–240, 2006.

[PT07] Mihai Pătraşcu and Mikkel Thorup. Randomization does not help searching predecessors. In
Proc. 18th SODA, pages 555–564, 2007.

[PT14] Mihai Pătraşcu and Mikkel Thorup. Dynamic integer sets with optimal rank, select, and prede-
cessor search. In Proc. 55th FOCS, pages 166–175, 2014.

[Rei13] James Reinders. Intel® AVX-512 instructions. Intel® Corporation, 2013.

[RRS07] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k -ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43, 2007.

[SBB+17] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Giacomo Gabrielli,
Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanaël Prémillieu, Alastair Reid,
Alejandro Rico, and Paul Walker. The ARM scalable vector extension. IEEE Micro, 37(2):26–
39, 2017.

[SBD+21] Joshua Sobel, Noah Bertram, Chen Ding, Fatemeh Nargesian, and Daniel Gildea. AWLCO:
all-window length co-occurrence. In Proc. 32nd CPM, LIPIcs, pages 24:1–24:21, 2021.

[SD08] Martin Senft and Tomás Dvorák. Sliding CDAWG perfection. In Proc. 15th SPIRE, pages
109–120, 2008.

[Sen05] M Senft. Suffix tree for a sliding window: An overview. In Proc. WDS, volume 5, pages 41–46,
2005.

[SLLM10] Mikaël Salson, Thierry Lecroq, Martine Léonard, and Laurent Mouchard. Dynamic extended
suffix arrays. J. Discrete Algorithms, 8(2):241–257, 2010.

[ST83] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary trees. In Proc. 15th
ACM, pages 235–245, 1983.

[SV08] Pranab Sen and Srinivasan Venkatesh. Lower bounds for predecessor searching in the cell probe
model. J. Comput. Syst. Sci., 74(3):364–385, 2008.

[Ukk95] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[vEB77] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space.
Inform. Process. Lett., 6(3):80–82, 1977.

72

[vEBKZ77] Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Math. Syst. Theory, 10:99–127, 1977.

[Wei73] Peter Weiner. Linear pattern matching algorithms. In Proc. 14th SWAT, pages 1–11, 1973.

[Wil83] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Inform.
Process. Lett., 17(2):81–84, 1983.

[YYL+15] Ziqiang Yu, Xiaohui Yu, Yang Liu, Wenzhu Li, and Jian Pei. Mining frequent co-occurrence
patterns across multiple data streams. In Proc. 1th EDBT, pages 73–84, 2015.

73

	Preface
	Contents
	Introduction
	Models of Computation
	Predecessor on the Ultra-Wide Word RAM
	The Complexity of the Co-Occurrence Problem
	Sliding Window String Indexing in Streams
	Rank and Select

	Predecessor on the Ultra-Wide Word RAM
	Introduction
	The Ultra-Wide Word RAM Model
	Computing Multiply-Shift in Parallel
	The w^epsilon-Parallel Dictionary
	The xtra-fast Trie
	The xtra-fast Trie With Smaller Ultrawords
	Conclusions and Open Problems
	Blend and 2w-bit Multiplication

	The Complexity of the Co-Occurrence Problem
	Introduction
	The Left-Minimal Co-Occurrence Problem
	The Co-Occurrence Problem
	Lower Bounds
	Preprocessing
	Lower Bound on Time

	Sliding Window String Indexing in Streams
	Introduction
	Preliminaries
	The Timely SSWSI Problem
	The Delayed SSWSI Problem
	Obtaining High Probability
	Conclusion and Future Work

	Rank and Select on Degenerate Strings
	Introduction
	Our Results
	Reductions
	Lower Bound
	Experimental Setup
	Results
	Additional Data
	Results for all Data Structures

	Bibliography

