Probe-corrected spherical near-field antenna measurements

Larsen, Flemming Holm

Published in:
IEEE Transactions on Antennas and Propagation

Publication date:
1984

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
pi and beta_c = beta0c. Since the four angles, phi, phi', beta_c, and beta0c are mutually independent, the argument of F in (1) may take any value between 0 and pi and, accordingly, F may take any value between 0 and 1, depending on the way the diffracted ray approaches the direction of reflection (incidence). As a result, the calculated corner diffracted field is nonunique for these directions and its behavior in the adjacent transition regions is far from being the true physical behavior. In particular, this should lead to incorrect results for the backscatter from flat plates in the directions close to normal. Indeed, according to (7), the corner diffraction coefficient for nearly normal backscattering is dominated by the term

\[D^c_{rh} \sim \frac{j \tan \beta_c}{8\pi \cos \phi} \left(\frac{\cos^2 \phi/\lambda}{k \cos^2 \beta_c} \right), \tag{2} \]

which diverges as phi \to \pi/2, beta_c \to \pi/2. Although the singularities in the corner diffracted fields emanating from the corners of a given polygonal plate can be shown to cancel one another, the resulting total backscattered field depends on the limiting values of F in (2) for the different edges of the plate. Since the latter are nonunique, so is the value of the backscattered field.

Dissertation Abstract

Probe-Corrected Spherical Near-Field Antenna Measurements

Flemming Holm Larsen, Member, IEEE

Ph.D., LD 36, Electromagnetics Institute, Technical University of Denmark, December 1980.

Manuscript received March 23, 1984.

The author is with Electromagnetics Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark.

REFERENCES