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1 We use the signature (—, 4+, +, +):

uv = é_gd (g“f v + gvr N g‘[v_r)’

Ruva = Fva, u Fua, v+ I‘vaprupf - Pnaprvpr’
Ry = an-f-

A comma denotes ordinary differentiation; a semicolon denotes

covariant differentiation; 167G = 1, ¢ = 1, G is the gravitational

constant, and c is the velocity of light. All other notation is defined

in the text or is standard.

2 For a review of the geometric theory, see Gravitation: An
Introduction to Current Research, edited by L. Witten (Wiley, New
York, 1962), Chap. 9.

3 J. L. Synge, Relativity: The General Theory (Interscience, New
York, 1960), Chap. VIII; K. S. Thorne, Ph.D. thesis, University
Microfilms, Ann Arbor, 196S.

J. L. SAFKO AND L. WITTEN

4 The general solutions to Cases I and II of the possible field
configurations and a particular solution of Case III is given in Ref. 2
and also in a paper by L. Witten, Collog. Theor. Relativity, Centre
Belge Rech. Math., Univ. (Louvain, Belgium), p. 59, 1960.

5 This differs slightly from the line element given in Ref. 4.
1 = 0 requires that we take the limit / — co in the line elements of
Ref. 4. The necessity that / approach co can be argued for on a va-
riety of grounds, which we shall not present here.
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Hypergeometric Functions with Integral Parameter Differences
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For a generalized hypergeometric function ,F,(z) with positive integral differences between certain
numerator and denominator parameters, a formula expressing the ,F,(z) as a finite sum of lower-order
functions is proved. From this formula, Minton’s two summation theorems for p =¢ + 1, z =1 are
deduced, one of these under less restrictive conditions than assumed by Minton.

This paper deals with generalized hypergeometric functions ,Fy(a,, ", a,; by, -, b,;z) having the
special property that, with suitable enumeration of parameters, a; =b; + m;, i =1, 2,---, n, where
my, "+, m, are positive integers and n < min (p, ). It is assumed that p < ¢ + 1 and that no denominator
parameter b is a negative integer or zero. A function of this type may be expressed as a finite sum of
functions in the following way:

P—n q~n
F [b1+m1"‘ 1bn+mnaan+1>”"aa);z]
e by, sbu,byin,, by,
. Jps  ya,+J,;2
— Ay, i Jn —nF—nI:an+1+ ns s Uy ns :l’ 1
h “2:0 Mz— (jl })z ’ ‘ bn+1+Jn:“';bq+Jn ()
where
Jn=j1+“'+jn: (2)
A(] . ] ) — (ml) . (mn)(bz + mz).'fl(bak"“ ma)Jz et (bn + mﬂ)J,.—l(an+l)Jn e (ap)Jn (3)
; R VA in (65, (b2)g, (B s Basda, (B, ’
an
(©), = T(e + NIT(e). @

By the principle of analytical continuation, Eq. (1) is valid whenever the functions involved are all
analytic; restrictions upon the parameters imposed in the proof may thus be removed.
The proof is based upon an Eulerian integral representation given by Erdélyi,! viz.,

F'(pr( — by, + ay) i f“” b1—a1~1
F s 0T p;ba"'aba; X I“tlal t ta
oFalay, "5 ay; by ) = Naren it —opas Xl A=Y )
where
f(t) = tal—l p—qu-—l(a2s * ap; bz, trty, bq; Zt), (6)
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valid when Re a; > 0, b, is not a negative integer or
zero, and larg (1 — z)l < = if p =¢ + 1. Now, as
a, = b, + m,, the branch point of the integrand at
t = 1 disappears, and the integral takes the form
fo f(2)dtf(t — 1ym+1 where C is a closed contour
encircling the point ¢ = 1 counterclockwise and f is
analytic within and on C. From Cauchy’s integral
formula, we then find that Eq. (5) becomes

,,Fq[bl +my,a,, 0,4, z] _ D™f(1) ,
bl’ bz""9bq (bl)m;

D denoting differentiation with respect to f. Applica-

tion of Leibniz’s differentiation formula and the well-

known expression for the derivative of a ,F, then
yields

F[b1+m1’a2".'yap;z]
Pt aq
bl,bza'”>ba

ag+Jj,c 8, +J5 2
8 ”“F"“‘[ L N } ®
This result can itself be applied to each member of its
rths if a, = b, + my, etc. It is easily seen that the
general result (1) is obtained in this way.

A special case (p = 3, ¢ = 2) of Eq. (8) has been
derived by Rosler? from the series representation.

From formula (1) we now derive two summation
theorems for p=¢ + 1, z =1. These have been
given recently by Minton,® the first one, however,
under more restrictive conditions than those given
below.

To deduce the first theorem, we takeg =p — 1 =
n+1,a,,=b=>b,,—1, z=1, and for brevity
a,,» =a. The hypergeometric functions in the
multiple sum of Eq. (1) then become ,F;(1)’s, which
all exist provided that

Re(—a)>m+---+m,— 1.

M

i=0

©®

By Gauss’ summation theorem we then get, after some
rearrangements,

n+2Fn+l(b1 + my, ", bn + my, b’a;

bla.”’bn’b+1;1)

_Te+ O -0 Zep .
- F(b + 1 — a) z .ZDB"(JI’ ’Jn):

i1=0 In=

where
(b+1),,
(a).l,,

Next, the definition (3) is applied, the binomial
coefficients being written in the form (—1)(—m),/j!;

Bn(jl’” ':jn)= (-—l)JnA(jla T ‘ajn)‘

2n

this leads to

B,(j1s* " " sjn) = Bpays " s Jn1)
(bn + mn)Jn-l (_mn)j,.(b + Jn-—l)iu

(bn)Jn-l ]nl (bn + Jn—l)j..
The terms containing j, obviously constitute a
terminating ,F;(1), which is summed by Gauss’ theo-
rem. After some rearrangements we obtain (summa-
tion limits understood)

2 Bn(jl’ e ’]n)
1000 (b + )
n mn —b . .
—on T Tnl-b B,_ s ny)-
) jl.';jn—l 1(j1 Jn-1)

Repeating this procedure, we finally arrive at Minton’s
first theorem,

n+2Fn+1(b1 + ml’ Tty bn + mna ba a,
bla.“:bnab'{'l;l)
_ T + DA = a) 2 (b + M)y (10)
(b +1—a) (CAT
valid under the condition (9), i.e., if the lhs of (10)
exists at all. In Minton’s proof,® a was required to be
negative integral.

The particular case n = 1 of Eq. (10) was obtained
by Mitra* by series manipulations.

The second summation theorem may be deduced
from the first® by letting b — co. It may, however, also
be deduced directly from Eq. (1) by taking q =
p—1l=na,,=—m+---+m,), and z—> 1.
The hypergeometric functions in the multiple sum
of Eq. (1) then reduce to power functions (1 — z),
where h= —a,,, —J, and h >0 for all terms.
When z — 1, all terms of the multiple sum will thus
tend to zero, except the one for which —a,,., = J,,
ie,j,=m;,i=1,2,-+- n; the limit of this term is
A(my, -+, m,). After some reductions we find the
summation formula

n}an(bl + my, - "bn + m,, _'(ml + Tt + m'n);
bl,...’bn;l)
-1 myt++my PN !
(bl)ml e (bn)mn

which is easily transformed to the form given by
Minton.?

It may be of interest to compare Eq. (11) with the
special case of (10) obtained by takingd,, = b, m, = 1
and then replacing n — 1 by n, viz.,
n+1Fn(b1 + mla e ,b” + mn’a;bla tte

Re(=a)>my + -+ m,.
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k=1

sbn; 1)=0,
(12)
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