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Abstract
We present an approach to the analysis and optimisation of heterogeneous multiprocessor embedded systems. The systems are hetero-

geneous not only in terms of hardware components, but also in terms of communication protocols and scheduling policies. When sever-

al scheduling policies share a resource, they are organized in a hierarchy. In this paper, we first develop a holistic scheduling and

schedulability analysis that determines the timing properties of a hierarchically scheduled system. Second, we address design problems

that are characteristic to such hierarchically scheduled systems: assignment of scheduling policies to tasks, mapping of tasks to hard-

ware components, and the scheduling of the activities. We also present several algorithms for solving these problems. Our heuristics

are able to find schedulable implementations under limited resources, achieving an efficient utilization of the system. The developed al-

gorithms are evaluated using extensive experiments and a real-life example.

Keywords: Hierarchical schedulers, multiprocessor embedded systems, static/dynamic communication protocols.
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1. Introduction

There has been a lot of debate in the literature on the suitability of the event-triggered (ET) paradigm as opposed to the

time-triggered (TT) one, for implementation of real-time systems [Aud93], [Kop97], [Xu93]. Several arguments have been

brought concerning composability, flexibility, fault tolerance, jitter control or efficiency in processor utilisation. The same

discussion has also been extended to the communication infrastructure which can also be implemented according to the

time-triggered or event-triggered paradigm.

An interesting comparison of the TT and ET approaches, from a more industrial, in particular automotive, perspective,

can be found in [Lön99]. Their conclusion is that one has to choose the right approach depending on the particularities of

the scheduled tasks. This means not only that there is no single “best” approach to be used, but also that, inside a certain

application the two approaches can be used together, some tasks being time-triggered and others event-triggered.

Hierarchically scheduled systems are systems that have their functionality divided into several sets that are each handled

by a different scheduler. These schedulers also control each other in a hierarchical manner.

The growing amount and diversity of functions to be implemented by the current and future embedded applications (like

for example, in automotive electronics [Koo02]) has shown that, in many cases, time-triggered and event-triggered func-

tions have to coexist on the computing nodes and to interact over the communication infrastructure. When time-triggered

and event-triggered activities have to share the same processing node, a natural way for the execution support can be pro-

vided through a hierarchical scheduler. Similarly, when such heterogeneous applications are mapped over a multiprocessor

architecture, the communication infrastructure should allow for message exchange in both time-triggered and event-trig-

gered manner in order to ensure a straightforward interconnection of heterogeneous functional components.

Safety-critical hard real-time distributed applications running on such hierarchically scheduled multiprocessor architec-

tures are difficult to analyse. Due to the hierarchical nature of the schedulers, various execution interferences have to be

carefully accounted for during the timing analysis that determines the worst-case response times of the system activities.

Moreover, due to the distributed nature of the architecture, message delays have to be taken into consideration during the

analysis. Such an analysis is further complicated by the particular characteristics of the communication protocol that mixes

both static and dynamic transmission of messages.

Once the timing analysis has been provided, the entire system can be optimised by adjusting its configuration param-

eters. Such an optimisation process can be directed by the results from the timing analysis, so that in the end the timing

constraints of the application are satisfied.
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In order to cope with the complexity of designing such heterogeneous embedded systems, only an adequate design en-

vironment can effectively support decisions leading in an acceptable time to cost-efficient, reliable and high performance

solutions. Developing flexible and powerful tools for the design and analysis of such kind of heterogeneous systems repre-

sents the motivation behind the work presented in this paper.

1.1 Related Work

This section presents an overview of the previous research in the area of analysis and system level design for distributed

embedded systems. We concentrate in particular on scheduling and communication synthesis, with focus on the time-trig-

gered and event-triggered aspects.

1.1.1 SCHEDULING AND SCHEDULABILITY ANALYSIS OF REAL-TIME SYSTEMS

Task scheduling and schedulability analysis have been intensively studied for the past decades, one of the reasons being

the high complexity of the targeted problems [Ull75], [Sta94]. The reader is referred to [Aud95] and [Bal98] for surveys on

this topic.

A comparison of the two main approaches for scheduling hard real-time systems (i.e., static cyclic scheduling and fixed

priority scheduling) can be found in [Loc92].

The static cyclic (non-preemptive) scheduling approach has been long considered as the only way to solve a certain class

of problems [Xu93]. This was one of the main reasons why it received considerable attention. Solutions for generating static

schedules are often based on list scheduling in which the order of selection for tasks plays the most important role [Coff72],

[Jor97] (see also Section 3.5). However, list scheduling is not the only alternative, and branch-and-bound algorithms

[Jon97], [Abd99], mixed integer linear programming [Pra92], constraint logic programming [Kuc97], [Eke00], or evolu-

tionary [Sch94] approaches have also been proposed.

Node 1

Static phase Dynamic phase Static phase Dynamic phase

Node 2 Node 3

Bus cycle (Tbus)

Node n...

TT
functionality

ET
functionality

Mapping

Figure 1: Heterogeneous TT/ET Distributed System
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For event-triggered tasks, in this paper we are interested both in static and dynamic priority based scheduling policies.

In our work we will focus our attention on fixed priority scheduling (FPS) and earliest-deadline-first scheduling (EDF). For

both policies, determining whether a set of tasks is schedulable involves two aspects:

 1. The assignment of priorities to system activities, i.e. what priority should be associated with each task and message in

the system so that the task set is schedulable.

 2. The schedulability test, which determines whether all activities in the system will meet their deadlines under the current

policy.

In the case of EDF scheduling, the priorities are assigned dynamically, at run-time, according to the criticality of each

ready task, i.e. tasks that are closer to their deadline will receive higher priorities.

In the case of fixed priority scheduling, the priorities are associated to tasks off-line, before the system is deployed. In

order to solve the problem of assigning priorities to system activities so that the system is schedulable, two main policies

have been developed; they both work under restricted assumptions, i.e. the task set to be scheduled is composed of periodic

and independent tasks mapped on a single processor:

a. rate-monotonic (RM) [Liu73] which assigns higher priorities to tasks with shorter periods; it works under the con-

straint that task deadlines are identical with task periods.

b. deadline-monotonic (DM) [Leu82] which assigns higher priorities to tasks with shorter relative deadlines; this policy

assumes that task deadlines are shorter than task periods.

Under a particular set of restrictions regarding the system specification, such policies are optimal. However, if, for ex-

ample, tasks are not independent, then the optimality does not hold anymore for RM and DM policies. Therefore, in

[Aud93], the authors proposed a priority assignment in the case of tasks with arbitrary release times. Their algorithm is of

polynomial complexity in the number of tasks. However, for the case of multiprocessor/distributed hard real-time systems,

obtaining an optimal solution for priority assignment is often infeasible, due to complexity reasons. A solution based on

simulated annealing has been proposed in [Tin92], where the authors present an algorithm which simultaneously maps the

tasks on processors and assigns priorities to system activities so that the resulted system is schedulable. In order to avoid the

large amount of computation time required by such a general-purpose approach, an optimised priority assignment heuristic

called HOPA has been suggested in [Gut95], where the authors iteratively compute deadlines for individual tasks and mes-

sages in the system, while relying on the DM policy to assign priorities to the tasks. Their algorithm has shown a better

efficiency than the one proposed in [Gut95], both in quality and especially in speed, making it appropriate for being used
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inside a design optimisation loop which requires many iterations. As an example, HOPA has been adapted for the design

optimisation of multi-cluster distributed embedded systems [Pop03b].

For the second aspect of fixed priority scheduling, there are two main approaches for performing schedulability tests:

a. utilisation based tests, in which the schedulability criterion is represented by inequations involving processor utilisa-

tion and utilisation bounds. However, such approaches are valid only under restricted assumptions [Liu73], [Bin01],

[Leu82].

b. response time analysis, in which determining whether the system is schedulable or not requires first the computation

of the worst-case response time of a task or message. The worst case response time of an activity is represented by the

longest possible time interval between the instant when that activity is initiated in the system and the moment when

the same activity is finished. If the worst case response time resulted for each task/message is lower or equal than the

associated deadline for that activity, then the system is schedulable.

Response time analysis is usually more complex but also more powerful than the utilisation based tests. The main reason

for this is because response time analysis can take into consideration more factors that influence the timing properties of

tasks and messages in a system.

The response time analysis in [Leh89] offers a necessary and sufficient condition for scheduling tasks running on a

mono-processor system, under fixed priority scheduling and restricted assumptions (independent periodic tasks with dead-

lines equal with periods). In order to increase the range of target applications, relaxing assumptions is necessary. Moreover,

considering the effects of more and more factors that influence the timing properties of the tasks decreases the pessimism

of the analysis by determining tighter worst case response times and leading to a smaller number of false negatives (which

can appear when a system which is practically schedulable cannot be proven so by the analysis). Over the time, extensions

have been offered to response time analysis for fixed priority scheduling by taking into account task synchronisation

[Sha90], arbitrary deadlines [Leh90], precedence constraints between tasks [Pal99] and tasks with varying execution prior-

ities [Gon91], arbitrary release times [Aud93], [Tin94c], tasks which suspend themselves [Pal98], tasks running on

multiprocessor systems [Tin94a], [Pal98], etc. In [Ric02] and [Ric03], the authors model the multiprocessor heterogeneous

systems as components that communicate through event streams and propose a technique for integrating different local

scheduling policies based on such event-model interfaces. Another compositional approach is presented in [Wan05], where

the authors propose real-time interfaces and a component model that support incremental design of real-time systems.
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1.1.2 COMMUNICATION IN REAL-TIME SYSTEMS

The aspects related to communication in real-time systems are receiving a continuously increasing attention in the liter-

ature. Building safety critical real-time systems requires consideration for all the factors that influence the timing properties

of a system. For the case of distributed systems, in order to guarantee the timing requirements of the activities in the system,

one should consider the effects of communication aspects like the communication protocol, bus arbitration, clock synchro-

nisation, packaging of messages, characteristics of the physical layer, etc. Due to the variety of communication protocols,

scheduling and schedulability analysis involving particular communication protocols has become a prolific area of research.

Following a similar model for determining task response time under rate monotonic analysis, message transmission times

have been analysed for protocols like TTP bus [Kop92], Token Ring [Ple92], [Str89], FDDI [Agr94], ATM [Erm97],

[Han97] and CAN bus [Tin94b].

Usually, communication protocols allow either static (TT) or dynamic (ET) services, influencing several levels in the

design flow and giving more weight in the design output to either flexibility or time-determinism of the system. As a result,

a lot of work has been concentrated on coping with the disadvantages of the TT/ET approaches and on trying to combine

their advantages. For example, in [Pop01a] and [Pop01b], the authors present a method for dealing with flexibility in TTP

based systems by considering consecutive design stages in a so called incremental design flow. In order to combine the ad-

vantages of rigid off-line static scheduling with flexible online fixed priority scheduling, in [Dob01a] and [Dob01b] fixed

priority scheduling is adapted in such a way that it emulates static cyclic schedules which are generated offline.

In the case of bus-based distributed embedded systems, one of the main directions of evolution for communication pro-

tocols is towards mixed protocols, which support both ET and TT traffic. The proponents of the Time-Triggered

Architecture showed that TTP can be enhanced in order to transmit ET traffic, while still maintaining time composability

and determinism of the system, properties which are normally lost in event-triggered systems [Kop92]. A modified version

of CAN, called Flexible Time-Triggered CAN [Alm99], [Alm02], is based on communication cycles which are divided into

asynchronous and synchronous windows. Several other mixed communication protocols can be found in [Wor03], [Fle06].

1.2 Contributions

Our approach considers distributed embedded systems implemented with mixed, event-triggered and time-triggered task

sets, which communicate over bus protocols consisting of both static and dynamic phases.

We have considered that the time-triggered activities are executed according to a static cyclic schedule, while the event-

triggered activities follow a EDF-within-priorities policy1 [Gon03], which is preemptive for the execution of tasks and non-

preemptive for the transmission of messages. We have modelled the heterogeneous communication protocol using UCM.
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The main contributions of this paper are twofold. The first part consists in a holistic schedulability analysis for hetero-

geneous TT/ET task sets which communicate through mixed ST/DYN communication protocols [PopT02], [PopT03a].

Such an analysis presents two aspects:

a. It computes the response times of the ET activities while considering the influence of a static schedule;

b. It builds a static cyclic schedule for the TT activities while trying to minimise the response times of the ET activities.

Second, we show how the scheduling and schedulability analysis can be used inside a design optimisation loop in order

to improve the timing properties of the system.

1.3 Paper Overview

The next section presents the system model we used. In section 3, we present our analysis method for deriving response

times of tasks and of messages in a heterogeneous TT/ET system. In section 4, we first discuss some optimisation aspects

which are particular to the studied systems, and then we define and solve the design optimisation problem that aims at

improving the overall system schedulability. Finally, in section 5 we draw some conclusions and discuss possible research

directions for the future.

2. System Model

In this section we present the system model that we use during scheduling and design optimisation. First, we briefly de-

scribe the hardware architecture and the structure of the bus access cycle. Then, we present the minimal requirements

regarding the software architecture for a system which is able to run both event-triggered and time-triggered activities. The

last part of this section presents the abstract representation which we use for modelling the applications that are assumed

to implement the functionality of the system.

2.1 Hardware Architecture

We consider architectures consisting of nodes connected by a unique broadcast communication channel. Each node con-

sists of:

1. EDF-within priorities allows tasks to be executed according to their fixed priorities, with the exception that in the
case of tasks running at the same level of priority, the scheduling conflicts are solved according to EDF.
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 • a communication controller which controls the transmission and reception of both ST and DYN messages;

 • a CPU for running the processes mapped on that particular node;

 • local memories for storing the code of the kernel (ROM), the code of the processes and the local data (RAM); and

 • I/O interfaces to sensors and actuators.

Such hardware architectures are common in applications such as automotive electronics, robotics, etc. In Figure 2, we il-

lustrate a heterogeneous distributed architecture interconnected by a bus based infrastructure.

2.2 Bus Access

We model the bus access scheme using the Universal Communication Model (see Section 2). The bus access is organised

as consecutive cycles, each with the duration Tbus. We consider that the communication cycle is partitioned into static and

dynamic phases (Figure 2). Static phases consist of time slots, and during a slot only one node is allowed to send ST mes-

sages; this is the node associated to that particular slot. During a dynamic phase, all nodes are allowed to send DYN

messages and the conflicts between nodes trying to send simultaneously are solved by an arbitration mechanism based on

priorities assigned to messages. The bus access cycle has the same structure during each period Tbus. Every node has a

communication controller that implements the static and dynamic protocol services. The controller runs independently of

the node’s CPU.

2.3 Software Architecture

For the systems we are studying, we have designed a software architecture which runs on the CPU of each node. The main

component of the software architecture is a real-time kernel. The real-time kernel contains three schedulers, for SCS, FPS,

and EDF, organized hierarchically (Figure 2.c).

 1. The top-level scheduler is a SCS scheduler, which is responsible for the activation of SCS tasks and transmission of

SCS messages based on a schedule table, and for the activation of the FPS scheduler. Thus, SCS tasks and messages are

Figure 2: System Architecture
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time-triggered (TT), i.e., activated at predetermined points in time, and non preemptable.

 2. The FPS scheduler activates FPS tasks and transmits FPS messages based on their priorities, and activates the EDF

scheduler. Tasks and messages scheduled using FPS are event-triggered (ET), i.e., initiated whenever a particular event is

noted, and are pre-emptable.

 3. The EDF scheduler activates EDF tasks and sends EDF messages based on their deadlines. EDF tasks and messages

are ET and pre-emptable.

When several tasks are ready on a node, the task with the highest priority is activated, and pre-empts the other tasks. Let

us consider the example in Figure 2.d, where we have six tasks sharing the same node. Tasks τ1 and τ6 are scheduled using

SCS, τ2 and τ5 are scheduled using FPS, while tasks τ3 and τ4 are scheduled with EDF. The priorities of the FPS and EDF

tasks are indicated in the figure. The arrival time of these tasks is depicted with an upwards pointing arrow. Under these

assumptions, Figure 2.d presents the worst-case response times of each task. The SCS tasks, τ1 and τ6, will never compete

for a resource because their synchronization is performed based on the schedule table. Moreover, since SCS tasks are non

preemptable and their start time is off-line fixed in the schedule table, they also have the highest priority (denoted with pri-

ority level “0” in the figure). FPS and EDF tasks can only be executed in the slack of the SCS schedule table.

FPS and EDF tasks are scheduled based on their priorities. Thus, a higher priority task such as τ2 will interrupt a lower

priority task such as τ3. In order to integrate EDF tasks with FPS, we use the approach in [Gon03], by assuming that FPS

priorities are not unique, and that a group of tasks having the same FPS priority on a processor are to be scheduled with

EDF. Thus, whenever the FPS scheduler notices ready tasks that share the same priority level, it will invoke the EDF sched-

uler which will schedule those tasks based on their deadlines1. Such a situation is present in Figure 2.d for tasks τ3 and τ4.

There can be several such EDF priority levels within a task set on a processor. Higher priority EDF tasks can interrupt lower

priority FPS tasks (as is the case with τ3 and τ4 which preempt τ5) and EDF tasks. Lower priority EDF tasks will be inter-

rupted by both higher priority FPS and EDF tasks, and SCS tasks.

Every node in the architecture has a communication controller that implements the protocol services. The controller runs

independently of the node’s CPU. We model the bus access scheme using the Universal Communication Model [Dem01].

The bus access is organized as consecutive cycles, each with the duration Tbus. We consider that the communication cycle

is partitioned into static (ST) and dynamic (DYN) phases (Figure 2.b).

 • ST phases consist of time slots, and during a slot only the node associated to that particular slot is allowed to transmit

1. In the discussion in this paper, tasks having the same priority on a processor are considered EDF tasks. However, [Pal98] also
shows how it is possible to handle same-priority FPS tasks by scheduling them using a FIFO policy.
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SCS messages. The transmission times of SCS messages are stored in a schedule table.

 • During a DYN phase, all nodes are allowed to send messages and the conflicts between nodes trying to send simulta-

neously are solved by an arbitration mechanism which allows the transmission of the message with the highest prior-

ity. Hence, the ET messages are organized in a prioritized ready queue. The integration of EDF messages within such

a priority-based arbitration mechanism has been detailed in [Liv98].

TT activities are triggered based on a local clock available in each processing node. The synchronization of local clocks

throughout the system is provided by the communication protocol.

2.4 Application Model

We model an application as a set of task graphs. Nodes represent tasks and arcs represent communication (and implicitly

dependency) between the connected tasks.

 •A task can belong either to the TT or to the ET domain.

We consider that TT tasks are scheduled using SCS,

while ET tasks are scheduled under FPS and EDF.

 •Communication between tasks mapped to different

nodes is performed by message passing over the bus.

Such a message passing is modelled as a communication

task inserted on the arc connecting the sender and the

receiver tasks. The communication time between tasks

mapped on the same node is considered to be part of the task execution time. Thus, such a communication activity is

not modelled explicitly. For the rest of the paper, when referring to messages we consider only the communication

activity over the bus.

 • A message can belong either to the static (ST) or to the dynamic (DYN) domain. We consider that static messages are

those sent during the ST phases of the bus cycle, while dynamic messages are those transmitted during the DYN phases.

 • All tasks in a certain task graph belong to the same domain, either ET, or TT, which is called the domain of the task

graph. The messages belonging to a certain task graph can belong to any domain (ST or DYN). Thus, in the most gen-

eral case, tasks belonging to a TT graph, for example, can communicate through both ST and DYN messages. In this

paper we restrict our discussion to the situation when TT tasks communicate through ST messages and ET tasks com-

Figure 3: Application Model Example
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municate through DYN messages.

 • Each task τij (belonging to the task graph Γi) has a period Tij, and a deadline Dij and, when mapped on node Prock, it

has a worst case execution time Cij(Prock). The node on which τij is mapped is denoted as M(τij). Each ET task also

has a given priority Prioij. Individual release times or deadlines of tasks can be modelled by introducing dummy tasks

in the task graphs; such dummy tasks have an appropriate execution time and are not mapped on any of the nodes

[Ele00a].

 • All tasks τij belonging to a task graph Γi have the same period Ti which is the period of the task graph.

 • For each message we know its size (which can be directly converted into communication time on the particular com-

munication bus). The period of a message is identical with that of the sender task. Also, DYN messages have given

priorities.

Figure 3 shows an application modelled as two task-graphs Γ1 and Γ2 mapped on two nodes, Node1 and Node2. Task-

graph Γ1 is time-triggered and task-graph Γ2 is event-triggered. Data-dependent tasks mapped on different nodes commu-

nicate through messages transmitted over the bus, which can be either statically scheduled, like m1 and m3, or dynamic, like

the messages m2 and m4.

In order to keep the separation between the TT and ET domains, which are based on fundamentally different triggering

policies, communication between tasks in the two domains is not included in the model. Technically, such a communication

is implemented by the kernel, based on asynchronous non-blocking send and receive primitives (using proxy tasks if the

sender and receiver are on different nodes). Such messages are typically non-critical and are not affected by hard real-time

constraints.

3. Scheduling and Schedulability Analysis of Heterogeneous TT/ET Systems

In this section we present an analytic approach for computing task response times and message transmission delays for

heterogeneous TT/ET systems.

3.1 Problem Formulation

Given an application and a system architecture as presented in 2., the following problem has to be solved: construct a cor-

rect static cyclic schedule for the TT tasks and ST messages (a schedule which meets all time constraints related to these

activities), and conduct a schedulability analysis in order to check that all ET tasks and DYN messages meet their dead-

lines. Two important aspects should be noticed:

 1. When performing the schedulability analysis for the ET tasks and DYN messages, one has to take into consideration
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the interference from the statically scheduled TT tasks and ST messages.

 2. Among the possible correct schedules for TT tasks and ST messages, it is important to construct one which favours, as

much as possible, the schedulability of ET tasks and DYN messages.

In the next sections, we will present the schedulability analysis algorithm proposed in [Pal98] for distributed real-time

systems and we will show how we extended this analysis in order to consider the interferences induced by an existing static

schedule. Section 3.2 presents a general view over our approach for the global scheduling and schedulability analysis of het-

erogeneous TT/ET distributed embedded systems. Section 3.3 describes the regular schedulability analysis for FPS and

EDF tasks sharing the same resources, as developed in [Gon03]. Section 3.4 extendS the schedulability analysis so that SCS

tasks are taken into consideration when computing the response times of FPS and EDF activities. In Section 3.5 we present

our complete scheduling algorithm, which statically schedules the TT activities while trying to minimise the influence of

TT activities onto ET ones. The performance of our approach is evaluated in Section 3.6, where we present the experimental

results.

It has to be mentioned that our analysis is restricted, for the moment, to the model in which TT tasks communicate only

through ST messages, while communication between ET tasks is performed by DYN messages. This is not an inherent lim-

itation of our approach. For example, schedulability analysis of ET tasks communicating through ST messages has been

presented in [Pop00a] and [Pop03a].

Figure 4: Scheduling and Schedulability Analysis for Mixed TT/ET Distributed Embedded Systems

Inputs

ET tasks
DYN messages

TT tasks
ST messages

Valid Static

Outputs

Schedule?

Static Cyclic
Scheduling

Schedulability
Analysis

Rij Dij≤

Rij

Activity

Response
times

Start Time



13

3.2 Holistic Scheduling

Figure 4 illustrates our strategy for scheduling and schedulability analysis of heterogeneous TT/ET distributed embedded

systems: the activities to be scheduled are the TT and ET task graphs, consisting of TT tasks/ST messages and ET tasks/

DYN messages respectively. The TT activities are statically scheduled and, as an output, a static cyclic schedule will be

produced. Similarly, the worst case response times of the ET activities are determined using the schedulability analysis

presented in the previous section. As a result, the system is considered schedulable if the static schedule is valid and if the

ET activities are guaranteed to meet their deadlines. For the case of a mixed TT/ET system, building a static cyclic sched-

ule for the TT activities has to take into consideration both the characteristics of the mixed ST/DYN communication

protocol and our assumption that execution of TT tasks is non-preemptible, while the execution of an ET task can be in-

terrupted either by a TT task or by another ET task which has a higher priority. This means that the static schedule will

have not only to guarantee that TT activities meet their deadlines, but also that the interference introduced from such a

schedule will not increase in an unacceptable way the response times of ET activities. In conclusion, an efficient schedul-

ing algorithm requires a close interaction between the static scheduling of TT activities and the schedulability analysis of

the ET activities.

3.3 Schedulability Analysis of Event-Triggered Task Sets

In order to determine if a hierarchically scheduled system is schedulable, we used as a starting point the schedulability

analysis algorithm for EDF-within-FPS systems, developed in [Gon03]. In this section, we present our extension to this

algorithm, which allows us to compute the worst case response times for the FPS and EDF activities when they are inter-

fered by the SCS activities.

An ET task graph Γi is activated by an associated event which occurs with a period Ti. ET tasks (FPS or EDF) and DYN

messages are modelled similarly, by considering the bus as a processing node and accounting for the non-preemptability of

the messages during the analysis. Each activity τij (task or message) in an ET task graph has an offset φij which specifies the

earliest activation time of τij relative to the occurrence of the triggering event. The delay between the earliest possible acti-

vation time of τij and its actual activation time is modelled as a jitter Jij (Figure 5). Offsets are the means by which

dependencies among tasks are modelled for the schedulability analysis. For example, if in Figure 5, task τij+1 is data depen-

dant on task τij, then such a relation can be enforced by associating to τij+1 an offset φij+1 which is equal or greater than the

worst case response time Rij of its predecessor, τij. In this way, it is guaranteed that task τij+1 starts only after its predecessor
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has finished execution. The response time Rij of a task τij is the time measured from the occurrence of the associated event

until the completion of τij. Each task τij has a best case response time Rb,ij.

In [Gon03], the authors have developed a schedulability analysis algorithm for ET tasks running under a hierarchical

FPS/EDF scheduling policy. Response times for the tasks are obtained using workload equations:

 • For FPS tasks, the worst case response times are influenced only by higher priority tasks, so the completion time of an

activation p of task τab is given by the following recursion:

(1)

where p is the number of activations of τab in the busy period, Bab is the blocking time for τab (see [Gon03] for a discussion

regarding the blocking time), and Jij and Tij are the maximum release jitter and the period of τij, respectively. The worst

case response time Rab is then computed as the maximum for all possible values of

. (2)

 • For EDF tasks, the worst case response times are influenced by higher priority tasks and by EDF tasks running at the

same priority level as the task under analysis:

. (3)

In the previous equation, the third term represents the interference from EDF tasks with the same priority, while the last

term captures the interference from higher priority FPS and EDF tasks. Furthermore,

and DA(p) is the deadline of activation number p, when the first activation of τab occurs at time A:

. (4)

The analysed instants A are extracted from situations in which the task under analysis τab has the deadline larger or equal

than the deadline of the other tasks in the system. The worst case response time Rab for a task running under EDF-within-

FPS is then computed as the maximum for all possible values of

(5)

Figure 5: Tasks with Offsets
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A similar technique is used in the more complex case of offset-based analysis (for such extensions, the reader is referred

to [Pal98] and [Pal03]). However, regardless of the analysis used, the technique has to be enhanced to take into consideration

an existing static schedule, allowing us to analyse hierarchically scheduled systems that use a combination of SCS, FPS and

EDF scheduling policies.

Figure 6 represents the pseudocode for the schedulability analysis proposed in [Pal98]. According to this algorithm, the

worst case response time Rij of each task τij is computed by considering all critical instants initiated by each task τik mapped

on the same node M(τij) and with a higher priority than Prioij. According to the same schedulability analysis, jitters are taken

into consideration when the algorithm computes the length of the busy windows and, implicitly, the response times of the

tasks [Pal98]. This means that the length of the busy window depends on the values of task jitters, which, in turn, are com-

puted as the difference between the response times of two successive tasks (for example, if τij precedes τik in Γi, then Jik =

Rij - Rb,ij, like in lines 20-21 in Figure 6). Because of this cyclic dependency (response times depend on jitters and jitters

depend on response times), the process of computing Rij is an iterative one: it starts by assigning Rb,ij to Rij and then com-

putes the values for jitters Jij, busy windows wijk(p) and then again the worst-case response times Rij, until the response times

converge to their final value.

Figure 6: Schedulability Analysis Algorithm

1 do
2 Done = true
3 for each transaction Γi do
4 for each task τij in Γi do
5 for each task τik in Γi do
6 if Prioik ≥ Prioij andM(τik) = M(τij)then
7 for each job p of τij do
8 Consider that τik initiates tc
9 Compute Rij

p

10 if Rij
p > Rij

max then
11 Rij

max = Rij
p

12 endif
13 endfor
14 endif
15 endfor
16 if Rij

max > Rij
max then -- larger Rij found

17 Rij = Rij
max

18 Done = false
19 for each successor τik of τij do
20 Jij = Rij - Rij

b -- update jitters
21 endfor
22 endif
23 endfor
24 endfor
25 while (Done!= true)
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3.4 Schedulability Analysis of Event-Triggered Activities under the Influence of a Static Cyclic

Schedule

Considering the algorithm presented in the previous section as a starting point, we have to solve the following problem:

compute the worst case response time of a set of ET tasks and DYN messages by taking into consideration:

 • The interference from the set of statically scheduled tasks.

 • The characteristics of the communication protocol, which influence the worst case delays induced by the messages

communicated on the bus.

First we introduce the notion of ET demand associated with an FPS or EDF activity τij on a time interval t as the maxi-

mum amount of CPU time or bus time which can be demanded by higher or equal priority ET activities and by τij during

the time interval t. In Figure 7, the ET demand of the task τij during the busy window t is denoted with Hij(t), and it is the

sum of worst case execution times for task τij and two other higher priority tasks τab and τcd. During the same interval t, we

define the availability as the processing time which is not used by statically scheduled activities. In Figure 7, the CPU avail-

ability for the analysed interval is obtained by substracting from t the amount of processing time needed for the SCS activities.

Figure 7 presents how the availability Aq
ij(w) and the demand Hij(w) are computed for a task τij: the busy window of τij

starts at the critical instant q Ti + tc initiated by task τab and ends at moment qTi + tc + wij, when both higher priority tasks

(τab, τcd), all TT tasks scheduled for execution in the analysed interval, and τij have finished execution.

During a busy window t, the ET demand Hij associated with the task under analysis τij is equal with the length of the

busy window which would result when considering only ET activity on the system:

. (6)

During the same busy window t, the availability Aij associated with task τij is:

, , (7)

where is the total available CPU-time on processor M(τij) in the interval [φab, φab + t], and φab is the start time of

task τab as recorded in the static schedule table.

Figure 7: Availability and Demand
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The discussion above is, in principle, valid for both types of ET tasks (i.e., FPS and EDF tasks) and messages. However,

there exist two important differences. First, messages do not preempt each other, therefore, in the demand equation the

blocking term will be non-zero, equal with the largest transmission time of any ET message. Second, the availability for a

message is computed by substracting from t the length of the ST slots which appear during the considered interval; more-

over, because an ET message will not be sent unless there is enough time before the current dynamic phase ends, the

availability is further decreased with CA for each dynamic phase in the busy window (where CA is the transmission time of

the longest ET message).

Our schedulability analysis algorithm determines the length of a busy window wij for FPS and EDF tasks and messages

by identifying the appropriate size of wij for which the ET demand is satisfied by the availability: Hij(wij) ≤ Aij(wij). This

procedure for the calculation of the busy window is included in the iterative process for calculation of response times pre-

sented in Section 3.3. It is important to notice that this process includes both tasks and messages and, thus, the resulted

response times of the FPS and EDF tasks are computed by taking into consideration the delay induced by the bus

communication.

After performing the schedulability analysis, we can check if Rij ≤ Dij for all the ET tasks. If this is the case, the set of

ET activities is schedulable. In order to drive the global scheduling process, as it will be explained in the next section, it is

not sufficient to test if the task set is schedulable or not, but we need a metric that captures the “degree of schedulability” of

the task set. For this purpose we use the function DSch, similar with the one described in [Pop00a]

where N is the number of ET task graphs and Ni is the number of activities in the ET task graph Γi.

Figure 8: Determining the Length of the Busy Window Figure 9: Holistic Scheduling Algorithm

HolisticScheduling(A, M, B, S)
1 while TT_ready_list is not empty
2 select τij from TT_ready_list
3 if τij is a task then
4 schedule_task(τij, M(τij))
5 else -- τij is a message
6 ASAP schedule τij in slot(M(τij))
7 end if
8 end while
9 procedure schedule_task(τij, M(τij))
10 schedule τij in the middle of the slack on M(τij)
11 compute ET respose times and w’max
12 move τij earlier without increasing w’max

end HolisticScheduling

1 wij = p • Cij + Bij
2 do
3 Compute demand Hij(wij)
4 Compute availability Aij(wij)
5 if Hij(wij) > Aij(wij) then
6 wij = Hij(wij) - Aij(wij)
7 endif
8 while Hij(wij) ≥ Aij(wij)
9 return wij
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If the task set is not schedulable, there exists at least one task for which Rij > Dij. In this case, f1 > 0 and the function is

a metric of how far we are from achieving schedulability. If the set of ET tasks is schedulable, f2 ≤ 0 is used as a metric. A

value f2 = 0 means that the task set is “just” schedulable. A smaller value for f2 means that the ET tasks are schedulable and

a certain amount of processing capacity is still available.

Now, that we are able to perform the schedulability analysis for the ET tasks considering the influence from a given

static schedule of TT tasks, we can go on to perform the global scheduling and analysis of the whole application.

3.5 Static Cyclic Scheduling of Time-Triggered Activities in a Heterogeneous TT/ET Environment

As mentioned in the beginning of Section 3.1, building the static cyclic schedule for the SCS activities in the system has

to be performed in such a way that the interference imposed on the FPS and EDF activities is minimum. The holistic sched-

uling algorithm is presented in Figure 9. For the construction of the schedule table with start times for SCS tasks and

messages, we adopted a list scheduling-based algorithm [Coff72] which iteratively selects tasks and schedules them

appropriately.

A ready list contains all SCS tasks and messages which are ready to be scheduled (they have no predecessors or all their

predecessors have been scheduled). From the ready list, tasks and messages are extracted one by one (Figure 9, line 2) to

be scheduled on the processor they are mapped to, or into a static bus-slot associated to that processor on which the sender

of the message is executed, respectively. The priority function which is used to select among ready tasks and messages is

a critical path metric, modified for the particular goal of scheduling tasks mapped on distributed systems [Pop00b]. Let us

consider a particular task τij selected from the ready list to be scheduled. We consider that ASAPij is the earliest time mo-

ment which satisfies the condition that all preceding activities (tasks or messages) of τij are finished and processor M(τij)

is free. The moment ALAPij is the latest time when τij can be scheduled. With only the SCS tasks in the system, the straight-

forward solution would be to schedule τij at ASAPij. In our case, however, such a solution could have negative effects on

the schedulability of FPS and EDF tasks. What we have to do is to place task τij in such a position inside the interval

[ASAPij, ALAPij] so that the chance to finally get a globally schedulable system is maximized.

Figure 10: Static Scheduling Figure 11: Optimised Static Scheduling
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In order to consider only a limited number of possible positions for the start time of a SCS task τij, we take into account

the information obtained from the schedulability analysis described in Section , which allows us to compute the response

times of ET (i.e., FPS and EDF) tasks. We started from the observation that statically scheduling a SCS task τij so that the

length of busy-period of an ET activity is not modified will consequently lead to unchanged worst-case response time for

that ET task. This can be achieved by providing for enough available processing time between statically scheduled tasks so

that the busy period of the ET task does not increase. For example, in Figure 10 we can see how statically scheduling two

SCS tasks τ1 and τ2 influences the busy period w3 of a FPS (or EDF) task τ3. Figure 10.a, presents the system with only τ1

scheduled, situation for which the busy-period w3 is computed. Figure 10.b shows how scheduling another SCS task τ2 too

early decreases the availability during the interval [φ1, φ1 + w3], and consequently leads to an increase of w3 and R3, respec-

tively. Such a situation is avoided if the two SCS tasks are scheduled like in Figure 10.c, where no extra interference is

introduced in the busy period w3. However, during the static scheduling, we have to consider two aspects:

 1. The interference with the FPS and EDF activities should be minimized;

 2. The deadlines of TT activities should be satisfied.

The technique presented in Figure 10 takes care only of the first aspect, while ignoring the second. One may notice that

scheduling a SCS task later increases the probability that we will not be able to find feasible start times for that particular

task or for the SCS tasks which depend on τ2 and are not scheduled yet (for example, in Figure 11.a, task τ2 misses its dead-

line and the resulted static schedule is not valid). We reduce such a risk by employing the technique presented in

Figure 11.b-c, where we first schedule the second task so that we maximize the continuous slack between the jobs of tasks

τ1 and τ2; for this reason, we place τ2 in the middle of the slack between the last SCS task in the first period of the static

schedule (the first job of task τ1), and the first task scheduled in the second period (the second job of task τ1). In such a

situation, the maximum busy period wmax of the ET tasks may increase due to interference from task τ2 (Figure 11.b). How-

ever, considering that such an increase is acceptable (in the sense that no ET tasks miss their deadlines), then we can now

improve the probability of finding a valid static schedule by scheduling the task τ2 earlier in time, as long as the maximum

ET busy period wmax does not increase (Figure 11.c)

The scheduling algorithm is presented in Figure 9. If the selected SCS activity extracted from the ready_list is a task τij,

then the task is first scheduled in the middle of the slack at the end of the period Tss of the static schedule (line 10). In order

to determine the response times of the ET activities and the maximum busy period wmax in the resulted system, the scheduled

application is analysed using the technique in Section (line 11). The value obtained for wmax is then used for determining

how early the task τij can be scheduled without increasing the response times of the ET tasks (line 12). When scheduling a

ST message extracted from the ready list, we place it into the first bus-slot associated with the sender node in which there
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is sufficient space available (line 6). If all SCS tasks and messages have been scheduled and the schedulability analysis for

the ET tasks indicates that all ET activities meet their deadlines, then the global system scheduling has succeeded.

For the case that no correct schedule has been produced, we have implemented a backtracking mechanism in the list

scheduling algorithm, which allows to turn back to previous scheduling steps and to try alternative solutions. In order to

avoid excessive scheduling times, the maximum number of backtracking steps can be limited.

3.6 Experimental Results

For the evaluation of our scheduling and analysis algorithm we generated a set of 2970 tests representing systems of 2 to

10 nodes. The number of tasks mapped on each node varied between 10 and 30, leading to applications with a number of

20 up to 300 tasks. The tasks were grouped in task-graphs of 5, 10 or 15 tasks. Between 20% and 80% of the total number

of tasks were considered as event-triggered and the rest were set as time-triggered. The execution times of the tasks were

generated in such a way that the utilisation on each processor was between 20% and 80%. In a similar manner we assured

that 20% and up to 60% of the total utilisation on a processor is required by the ET activities. All experiments were run on

an AMD Athlon 850MHz PC.

The first set of experiments compares our holistic scheduling algorithm that we proposed above with a similar algorithm

that uses simple list scheduling. In Figure 12.a we illustrate the capacity of our proposed algorithm (based on an improved

list scheduling ILS) to produce schedulable systems, compared to that of simple list scheduling (SLS). The figure shows

that ILS was able to generate between 31-55% more schedulable solutions than when a simple list scheduling was used. In

addition, we computed the quality of the identified solutions, as the percentage deviation of the schedulability degree

(DSchxLS) of the ET activities in the resulted system, relative to the schedulability degree of an ideal solution (DSchref) in

which the static schedule does not interfere at all with the execution of the ET activities:

Figure 12: Performance of the Scheduling and Schedulability Analysis Algorithm
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In other words, we used the function DSch as a measure of the interference introduced by the TT activities on the exe-

cution of ET activities. In fig Figure 12.b, we present the average quality of the solutions found by the two algorithms. For

this diagram, we used only those results where both algorithms managed to find a schedulable solution. It is easy to observe

that the solutions obtained with ILS are constantly at a minimal level of interference, while the SLS heuristic produces so-

lutions in which the TT interference is considerably higher, resulting in significantly larger response times of the ET

activities.

In Figure 12.c we present the average execution times of the our scheduling heuristic. According to expectations, the

execution time for our scheduling and schedulability analysis algorithm increases with the size of the application. However,

even for large applications, the algorithm is still fast enough so that it could be used in certain particular cases like, for ex-

ample, inside a design space exploration loop with an extremely large number of iterations.

4. Design Optimisation Problems

Considering the type of applications and systems described in Section 2, several design optimisation problems can be ad-

dressed. In this paper, we address problems which are characteristic to hierarchically scheduled distributed applications.

In particular, we are interested in the following issues:

 • assignment of scheduling policies to tasks;

 • mapping of tasks to the nodes of the architecture;

 • optimisation of the access to the communication infrastructure;

 • scheduling of tasks and messages.

The goal is to produce an implementation which meets all the timing constraints of the application.

In this paper, by scheduling policy assignment (SPA) we denote the decision whether a certain task should be scheduled

with SCS, FPS or EDF. Mapping a task means assigning it to a particular hardware node.

4.1 Scheduling Policy Assignment

Very often, the SPA and mapping decisions are taken based on the experience and preferences of the designer, considering

aspects like the functionality implemented by the task, the hardness of the constraints, sensitivity to jitter, etc. Moreover,

due to legacy constraints, the mapping and scheduling policy of certain processes might be fixed.

Thus, we denote with PSCS ⊆ P the subset of tasks for which the designer has assigned SCS, PFPS ⊆ P contains tasks to

which FPS is assigned, while PEDF ⊆ P contains those tasks for which the designer has decided to use the EDF scheduling

policy. There are tasks, however, which do not exhibit certain particular features or requirements which obviously lead to
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their scheduling as SCS, FPS or EDF activities. The subset P+ = P \ (PSCS ∪ PFPS ∪ PEDF) of tasks could be assigned any

scheduling policy. Decisions concerning the SPA to this set of activities can lead to various trade-offs concerning, for ex-

ample, the schedulability properties of the system, the size of the schedule tables, the utilization of resources, etc.

Let us illustrate some of the issues related to SPA in such a context. In the example presented in Figure 13 we have an

application1 with six tasks, τ1 to τ6, and three nodes, N1, N2 and N3. The worst-case execution times on each node are given

in the table labeled “Mapping”. Note that an “x” in the table means that the task is not allowed to be mapped on that node

(the mapping of tasks is thus fixed for this example). The scheduling policy assignment is captured by the table labelled

“SPA”. Thus, tasks τ1 and τ2 are scheduled using SCS, while tasks τ5 and τ6 are scheduled with FPS. Similarly, an “x” in

the table means that the task cannot be scheduled with the corresponding scheduling policy. We have to decide which sched-

uling policy to use for tasks τ3 and τ4, which can be scheduled with any of the SCS or FPS scheduling policies.

We can observe that the scheduling of τ3 and τ4 have a strong impact on their successors, τ5 and τ6, respectively. Thus,

we would like to schedule τ4 such that not only τ3 can start on time, but τ4 also starts soon enough to allow τ6 to meet its

deadline. As we can see from Figure 13.a, this is impossible to achieve by scheduling τ3 and τ4 with SCS. Although τ3 meets

its deadline, it finishes too late for τ5 to finish on deadline. However, if we schedule τ4 with FPS, for example, as in

Figure 13.b, both deadlines are met. In this case, τ3 finishes on time to allow τ5 to meet its deadline. Moreover, although τ4

is pre-empted by τ3, it still finishes on time, meets its deadline, and allows τ6 to meet its deadline, as well. Note that using

EDF for τ4 (if it would share the same priority level with τ6, for example) will also meet the deadline. The idea in this ex-

ample is to allow preemption for τ4.

For a given set of preemptable tasks, the example in Figure 14 shows the optimisation of the assignment of FPS and EDF

policies. In Figure 14 we have an application composed of four tasks running on two nodes. Tasks τ1, τ2 and τ3 are mapped

on node N1, and have the same priority “1”, while task τ4 runs on N2. Task τ4 is data dependent of task τ1. All tasks in the

1. Communications are ignored for the examples in this subsection.

Figure 13: Scheduling Policy Assignment Example #1
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system have the same worst case-execution times (20 ms), deadlines (60 ms) and periods (80 ms). Tasks τ2 and τ3 are sched-

uled with EDF, τ4 with FPS, and we have to decide the scheduling policy for τ1, between EDF and FPS.

If τ1 is scheduled according to EDF, thus sharing the same priority level “1” with the tasks on node N1, then task τ4 miss-

es its deadline (Figure 14.a). Note that in the time line for node N1 in Figure 14 we depict several worst-case scenarios: each

EDF task on node N1 is depicted considering the worst-case interference from the other EDF tasks on N1. However, the

situation changes if on node N1 we use FPS for τ1 (i.e., changing the priority levels of τ2 and τ3 from “1” to “2”). Figure 14.b

shows the response times when task τ1 has the highest priority on N1 (τ1 retains priority “1”) and the other tasks are running

under EDF at a lower priority level (τ2 and τ3 share lower priority “2”). Because in this situation there is no interference

from tasks τ2 and τ3, the worst-case response time for task τ1 decreases considerably, allowing task τ4 to finish before its

deadline, so that the system becomes schedulable.

4.2 Mapping

The designer might have already decided the mapping for a part of the tasks. For example, certain tasks, due to constraints

such as having to be close to sensors/actuators, have to be physically located in a particular hardware unit. They represent

the set PM ⊆ P of already mapped tasks. Consequently, we denote with P* = P \ PM the tasks for which the mapping has

not yet been decided.

For a distributed heterogeneous system, the communication infrastructure has an important impact on the design and, in

particular, on the mapping decisions. Let us consider the example in Figure 15 where we have an application consisting of

four tasks, τ1 to τ4, and an architecture with three nodes, N1 to N3. Thus, the bus will have three static slots, S1 to S3 for each

node, respectively. The sequence of slots on the bus is S2 followed by S1 and then S3. We have decided to place a single

dynamic phase within a bus cycle, labelled “DYN” and depicted in gray, preceding the three static slots (see Section for the

Figure 14: Scheduling Policy Assignment Example #2
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details about the bus protocol). We assume that τ1, τ3 and τ4 are mapped on node N1, and we are interested to map task τ2.

Task τ2 is allowed to be mapped on node N2 or on node N3, and its execution times are depicted in the table labelled “map-

ping”. Moreover, the scheduling policy is fixed for each task, such that all tasks are scheduled with SCS.

In order to meet the deadline, one would map τ2 on the node it executes fastest, i.e., node N2 see Figure 15.a. However,

this will lead to a deadline miss due to the bus slot configuration which introduces communication delays. The application

will meet the deadline only if τ2 is counter intuitively mapped on the slower node, i.e., node N3, as depicted in Figure 15.b.

4.3 Bus Access Optimisation

The configuration of the bus access cycle has a strong impact on the global performance of the system. The parameters of

this cycle have to be optimised such that they fit the particular application and the timing requirements. Parameters to be

optimised are the number of static (ST) and dynamic (DYN) phases during a communication cycle, as well as the length and

order of these phases. Considering the static phases, parameters to be fixed are the order, number, and length of slots as-

signed to the different nodes. Let us denote such a bus configuration with B.

4.4 Exact Problem Formulation

As an input we have an application A given as a set of task graphs (Section 2.4) and a system architecture consisting of a

set N of nodes (Section 2.1). As introduced previously, PSCS, PFPS and PEDF are the sets of tasks for which the designer

has already assigned SCS, FPS or EDF scheduling policy, respectively. Also, PM is the set of already mapped tasks.

As part of our problem, we are interested to:

Figure 15: Mapping Example
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 • find a scheduling policy assignment S for tasks in P+ = P \ (PSCS ∪ PFPS ∪ PEDF);

 • decide a mapping for tasks in P* = P \ PM;

 • determine a bus configuration B;

 • determine the schedule table for the SCS tasks and priorities of FPS and EDF tasks;

such that imposed deadlines are guaranteed to be satisfied.

In this paper, we will consider the assignment of scheduling policies at the same time with the mapping of tasks to pro-

cessors. Moreover, to simplify the presentation we will not discuss the optimisation of the communication channel. Such an

optimisation can be performed with the techniques we have proposed in [PopT03b].

5. Design Optimisation Strategy

The design problem formulated in the previous section is NP-complete (the scheduling subproblem, in a simpler context,

is already NP-complete [Ull75]). Therefore, our strategy, outlined in Figure 16, is to divide the problem into several, more

manageable, subproblems. Our OptimisationStrategy has three steps:

 1. In the first step (lines 1–3) we decide on an initial bus access configuration B0 (function InitialBusAccess), and an initial

policy assignment S0 and mapping M0 (function InitialMSPA). The initial bus access configuration (line 1) is deter-

mined, for the ST slots, by assigning in order nodes to the slots (Si = Ni) and fixing the slot length to the minimal

allowed value, which is equal to the length of the largest message in the application. Then, we add at the end of the TT

slots an equal length single ET phase. The initial scheduling policy assignment and mapping algorithm (line 2 in

Figure 16) maps tasks so that the amount of communication is minimized. The initial scheduling policy of tasks in P+ is

set to FPS. Once an initial mapping, scheduling policy assignment and bus configuration are obtained, the application

is scheduled using the HolisticScheduling algorithm (line 3) outlined in Section 3.2.

 2. If the application is schedulable the optimisation strategy stops. Otherwise, it continues with the second step by using

an iterative improvement mapping and policy assignment heuristic, MSPAHeuristic (line 4), presented in Section 5.1,

to improve the partitioning and mapping obtained in the first step.

 3. If the application is still not schedulable, we use, in the third step, the algorithm BusAccessOptimisation presented in

[PopT03b], which optimises the access to the communication infrastructure (line 6). If the application is still unsched-

Figure 16: The General Strategy

OptimisationStrategy(A)
1 Step 1:B0 = InitialBusAccess(A)
2 (M0, S0) = InitialMSPA(A, B0)
3 if HolisticScheduling(A, M0, B0, S0) returns schedulable then stop end if
4 Step 2:(M, S, B) = MSPAHeuristic(A, M0, B0)
5 if HolisticScheduling(A, M, S, B) returns schedulable then stop end if
6 Step 3:B = BusAccessOptimisation(A, M, S, B)
7 HolisticScheduling(A, M, B, S)
end OptimisationStrategy
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ulable, we conclude that no satisfactory implementation could be found with the available amount of resources.

5.1 Mapping and Scheduling Policy Assignment Heuristic

In Step 2 of our optimisation strategy (Figure 16), the following design transformations are performed with the goal to

produce a schedulable system implementation:

 • change the scheduling policy of a task;

 • change the mapping of a task;

 • change the priority level of a FPS of EDF task.

Our optimisation algorithm is presented in Figure 17 and it implements a greedy approach in which every task in the

system is iteratively mapped on each node (line 4) and assigned to each scheduling policy (line 8), under the constraints

imposed by the designer. The next step involves adjustments to the bus access cycle (line 10), which are needed for the case

when the bus cycle configuration cannot handle the minimum requirements of the current internode communication. Such

adjustments are mainly based on enlargement of the static slots or dynamic phases in the bus cycle, and are required in the

case the bus has to support larger messages than before. New messages may appear on the bus due to, for example, remap-

ping of tasks; consequently, there may be new ST messages that are larger than the current static slot for the sender node (or

similarly the bus will face the situation where new DYN messages are larger than the largest DYN phase in the bus cycle).

For more details on the subject of bus access optimisation and adjustment, the reader is referred to [PopT03b].

Figure 17: Policy Assignment and Mapping Heuristic

MSPAHeuristic(A, M, B, S)
13 for each activity τij in the system do
14 for each processor Ni ∈ N in the system do
15 if τij in P* then -- can be remapped
16 M(τij) = Ni
17 end if
18 for policy = SCS, FPS do
19 if τij in P+ then -- the scheduling policy can be changed
20 S(τij) = policy
21 end if
22 adjust bus cycle(A, M, B, S)
23 recompute FPS priority levels
24 for all FPS tasks τab sharing identical priority levels do S(τab) = EDF end for
25 HolisticScheduling(A, M, B, S)
26 if δA < best_δA then
27 best_policyij = S(τij); best_processorij = M(τij)
28 best_δA = δA
29 end if
30 if δA < 0 then
31 return best (M, B, S)
32 end if
33 end for
34 end for
35 end for

end MSPAHeuristic
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Before the system is analysed for its timing properties, our heuristic also tries to optimise the priority assignment of tasks

running under FPS (line 11). The state of the art approach for such a task is the HOPA algorithm for assigning priority levels

to tasks in multiprocessor systems [Gut95]. However, due to the fact that HOPA is computationally expensive to be run

inside such a design optimisation loop, we use a scaled down greedy algorithm, in which we drastically reduce the number

of iterations needed for determining an optimised priority assignment.

Finally, the resulted system configuration is analysed (line 13) using the scheduling and schedulability analysis algo-

rithm presented in Section 3.2. The resulted cost function will decide whether the current configuration is better than the

current best one (lines 14–17). Moreover, if all activities meet their deadlines (δA < 0), the optimisation heuristic stops the

exploration process and returns the current best-so-far configuration (lines 18-20).

6. Experimental Results

For the evaluation of our design optimisation heuristic we have used synthetic applications as well as a real-life example

consisting of a vehicle cruise controller. Thus, we have randomly generated applications of 40, 60, 80 and 100 tasks on

systems with 4 processors. 56 applications were generated for each dimension, thus a total of 224 applications were used

for experimental evaluation. An equal number of applications with processor utilizations of 20%, 40%, 60% and 80% were

generated for each application dimension. All experiments were run on an AMD AthlonXP 2400+ processor, with 512 MB

RAM.

We were first interested to determine the quality of our design optimisation approach for hierarchically scheduled sys-

tems, the MSPAHeuristic (MSPA); see Figure 17. We have compared the percentage of schedulable implementations found

by MSPA with the number of schedulable solutions obtained by the InitialMSPA algorithm described in Figure 5 (line 2),

which derives a straight-forward system implementation, denoted with SF. The results are depicted in Figure 18.a. We can

see that our MSPA heuristic (the black bars) performs very well, and finds a number of schedulable systems that is consid-

erably and consistently higher than the number of schedulable systems obtained with the SF approach (the white bars). On

average, MSPA finds 44.5% more schedulable solutions than SF.

Figure 18: Performance of the Design Optimisation Heuristic
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Second, we were interested to determine the impact of the scheduling policy assignment (SPA) decisions on the number

of schedulable applications obtained. Thus, for the same applications, we considered that the task mapping is fixed by the

SF approach, and only the SPA is optimised. Figure 18.a presents this approach, labelled “MSPA/No mapping”, corre-

sponding to the gray bars. We can see that most of the improvement over the SF approach is obtained by carefully optimising

the SPA in our MSPA heuristic.

We were also interested to find out what is the impact of the processor utilization of an application on the quality of the

implementations produced our optimisation heuristic. Figure 18.b presents the percentage of schedulable solutions found

by MSPA and SF as we ranged the utilization from 20% to 80%. We can see that SF degrades very quickly with the in-

creased utilization, with under 10% schedulable solutions for applications with 40% utilization and without finding any

schedulable solution for applications with 80% utilization, while MSPA is able to find a significant number of schedulable

solutions even for high processor utilizations.

In Figure 18.c 0we show the average runtimes obtained by applying our MSPA heuristic on the examples presented in

Figure 18.a. The upper curve illustrates the average execution times for those applications which were not found schedulable

by our heuristic. This curve can be considered as an upper bound for the computation time of our algorithm. For the exam-

ples that were found schedulable, our heuristic stops the exploration process earlier, thus leading to smaller computation

times, as shown in the lower curve in Figure 18.c. We can see that, considering the complex optimisation steps performed,

our design optimisation heuristic produces good quality results in a reasonable amount of time (for example, the heuristic

will finish on average in less than 500 seconds for applications with 80 tasks that were found schedulable).

Finally, we considered a real-life example implementing a vehicle cruise controller (CC). The process graph that models

the CC has 32 processes, and is described in [Pop04]. The CC was mapped on an architecture consisting of three nodes:

Electronic Throttle Module (ETM), Anti-lock Breaking System (ABS) and Transmission Control Module (TCM). We have

considered a deadline of 250 ms.

In this setting, SF failed to produce a schedulable implementation. Our design optimisation heuristic MSPA was consid-

ered first such that the mapping is fixed by SF, and we only allowed reassigning of scheduling policies. After 29.5 seconds,

the best scheduling policy allocation which was found still resulted in an unschedulable system, but with a “degree of sched-

ulability” three times higher than obtained by SF. When mapping was allowed, and a schedulable system was found after

28.49 seconds.
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7. Conclusions

In this paper we have defined and solved the problem of scheduling heterogeneous ET/TT distributed embedded systems.

We have proposed several alternative solutions for the scheduling algorithm and we have run extensive experiments in order

to compare the efficiency of the alternatives. We have also proposed a design optimisation heuristic for the assignment of

scheduling policies to tasks, the mapping of tasks to hardware components, and the scheduling of the activities such that the

timing constraints of the application are guaranteed. As our experiments have shown, our heuristic is able to find schedulable

implementations under limited resources, achieving an efficient utilization of the system.
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