Fields from point sources using the aperture field method

Appel-Hansen, Jørgen

Published in:
IEEE Transactions on Antennas and Propagation

Link to article, DOI:
10.1109/8.97390

Publication date:
1991

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
the difference in the signal directions is small, but the difference in the polarizations is large. Otherwise, the two approaches have similar performance.

REFERENCES

By using field equivalence principles it is found that the far field may be determined from the aperture plane (xy-plane) distribution of the tangential electric field intensity E_{tan} given by

$$E_{\text{tan}} = -\frac{II}{2j\omega\varepsilon_0} \left\{ \delta'(x)\delta(y)\hat{x} + \delta(x)\delta'(y)\hat{y} \right\}.$$
(3)

This corresponds to a point aperture in a perfectly electrically conducting screen. According to [3], the radiation electric field intensity $E(r)$ at r in a usual spherical r, θ, ϕ-coordinate system is given by

$$E(r) = \frac{jk}{2\pi} \frac{e^{-jkr}}{r} \left\{ (f_x \cos \phi + f_y \sin \phi) \hat{\theta} + (-f_x \sin \phi + f_y \cos \phi) \cos \theta \hat{\phi} \right\}.$$
(4)

where

$$f_x \hat{x} + f_y \hat{y} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{\text{tan}} e^{jk \sin \theta \cos \phi \hat{z} + jk \sin \theta \hat{r}} \, dx \, dy.$$
(5)

Thus

$$f_x = -\frac{II}{2j\omega\varepsilon_0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta'(x)\delta(y) e^{jk \sin \theta \cos \phi \hat{z} + jk \sin \theta \hat{r}} \, dx \, dy$$

and similarly

$$f_y = -\frac{II}{2j\omega\varepsilon_0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x)\delta'(y) e^{jk \sin \theta \cos \phi \hat{z} + jk \sin \theta \hat{r}} \, dx \, dy.$$
(6)

Insertion of (6) and (7) into (4) gives the well-known expression for the E-field of the Hertzian dipole

$$E(r) = \frac{jk}{4\pi} \frac{e^{-jkr}}{r} \mu_0 \sin \theta \hat{\theta}.$$
(7)

REFERENCES

