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A B S T R A C T

Alkaline water electrolysis (AWE) is the most mature electrochemical technology for hydrogen production
from renewable electricity. Thus, its mathematical modeling is an important tool to provide new perspectives
for the design and optimization of energy storage and decarbonization systems. However, current models rely
on numerous empirical parameters and neglect variations of temperature and concentration alongside the
electrolysis cell, which can impact the application and reliability of the simulation results. Thus, this study
proposes a simple four-parameter semi-empirical model for AWE system analysis, which relies on minimal
fitting data, while providing reliable extrapolation results. In addition, the effect of model dimensionality (i.e.,
0D, 1/2D and 1D) are carefully assessed in the optimization of an AWE system. The results indicate that the
proposed model can accurately reproduce literature data from four previous works (R2 ≥ 0.98), as well as new
experimental data. In the system optimization, the trade-offs existing in the lye cooling sizing highlight that
maintaining a low temperature difference in AWE stacks (76–80 ◦C) leads to higher efficiencies and lower
hydrogen costs.

1. Introduction

The mass adoption of renewable energy sources, such as wind and
solar, is the main pathway to mitigate the effects of climate change.
However, the intermittent nature of these power sources creates an
increasing demand for storage and management mechanisms. To ad-
dress this challenge, the integration of green hydrogen production into
the energy system emerges as a promising solution. Hydrogen offers
advantages across various sectors, such as transportation, chemical and
steel industries, as well as power systems [1]. Therefore, the European
Union has established a framework to boost the adoption of renewable
and low-carbon hydrogen, aiming to produce 10 million tonnes and
import 10 million tonnes of renewable hydrogen by 2030 [2].

Green hydrogen can be produced by water electrolysis, a process
that splits water into hydrogen and oxygen using electricity. Among
the available technologies, alkaline water electrolysis stands out by its
readiness and scalability for large-scale production, with an extended
lifetime. However, alkaline water electrolysis exhibits lower efficiency,
lower operating current densities, along with a constrained dynamic op-
erating range compared with other technologies [3]. Thus, optimizing
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the technology design and operating conditions is essential to address
the existing bottlenecks of alkaline electrolysis.

Both experimental and modeling investigations serve as essential
tools in this regard. For instance, numerical models contribute to en-
hancing our understanding of various aspects of hydrogen production,
including energy conversion efficiency, system sizing, thermal energy
management, and optimization. In this context, alkaline electrolysis
models can facilitate decision-making at the system level, such as
energy systems investments and techno-economic evaluations. Thus,
several past studies have proposed models for alkaline electrolysis, and
Table 1 summarizes the most noticeable examples in the literature.

Among the works presented in Table 1, Ulleberg [5] stands out as
an influential work on other models, such as Milewsk et al. [8] and
Sanchez et al. [10].

In this model, the variation of cell voltage due to the current
density and temperature is modeled by fitting six parameters. Similarly,
subsequent works have proposed the use of more parameters (i.e., from
8 to 16) to include the effect of pressure on the cell voltage [10],
capacitance of the double-layer effect [7] or to detail the overpotential
contributions sources [11].
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Table 1
Review on alkaline electrolysis models for system analysis.

Reference Fitting parameters Temperature Pressure Concentration Current density

Hug, et al. (1993) [4] – 30-100 ◦C 1.01 bar – < 0.6 A∕cm2

Ulleberg (2003) [5] 6 30-80 ◦C 7 bar 30 wt% KOH < 0.3 A/cm2

Hammoudi, et al. (2012) [6] – 23-80 ◦C 1.01-7 bar 30 wt% KOH < 0.3 A∕cm2

Ursua et al. (2012) [7] 16 15-65 ◦C 25 bar 30 wt% KOH < 0.4 A∕cm2

Milewsk, et al. (2014) [8] 5 70 ◦C 30 bar 8 M KOH < 0.4 A∕cm2

Sandeep, et al. (2017) [9] 3 30-50 ◦C – 30 wt% KOH < 0.5 A∕cm2

Sanchez, et al. (2018) [10] 8 55-75 ◦C 5-7 bar 35 wt% KOH < 0.5 A∕cm2

Haverkort and Rajaei (2021) [11] 14 27 ◦C – 0.08-6 M KOH < 1 A∕cm2

Jang, et al. (2021) [12] – 80 ◦C 1.01 bar 30 wt% KOH < 2 A∕cm2

De Groot et al. (2022) [13] 4 50-70 ◦C 10-55 bar 30 wt% KOH < 0.7 A∕cm2

The large number of parameters may impose some challenges dur-
ing the fitting procedure, such as difficult solution convergence or
requiring more data for fitting. On the other hand, some authors have
aimed to minimize the number of calibrated parameters by restrict-
ing the validation range (i.e., temperature, pressure, and concentra-
tion) [9], the geometrical characteristics of the electrolyzer [6], or
the diaphragm material [13]. Although this modeling approach can
simplify equations, the application range of the models can be limited
by the fixed conditions imposed.

Additionally, alkaline electrolysis models often neglect the spatial
variations of operating conditions and their impact on thermo-physical
properties, such as density and specific heat. For instance, temperature
fluctuations can affect voltage and current in cells, potentially leading
to undesirable drops in performance. To ensure optimal performance,
the flow rate of the liquid electrolyte can be adjusted to maintain the
desired temperature, thereby efficiently dissipating the energy from wa-
ter electrolysis. However, previous studies such as Jang et al. [12], have
only analyzed the effects of temperature variation on the performance
of the balance of plant due to the limited dimensionality of their elec-
trolysis model (i.e., 0D). Careful consideration of temperature impact
on overall efficiency and cost , including effects on electrochemical
reactions, may be essential for the techno-economic optimization of
alkaline electrolysis systems. On the other hand, integrating detailed
multiphysics models of alkaline electrolysis with system-level simula-
tions and optimizations may be unpractical, because they will require
long computational times to be solved.

Thus, this study aims to address this research gap by proposing a
novel, simplified, semi-empirical alkaline water electrolysis cell model,
designed to be easily extendable to assess thermo-electrochemical cou-
pling effects. The proposed model aims to make it easier to evaluate
temperature dependencies within the alkaline electrolyzer system. To
achieve this goal, a validated zero-dimensional/lumped model has
been extended to a one-dimensional model that solves mass and en-
ergy conservation. This modeling approach is employed to evaluate
and optimize system performance and cost under various inlet-outlet
temperature differences.

The main contributions of this work are summarized below:

1. Propose and validate, with both previous literature and newly
acquired experimental data, a semi-empirical alkaline water
electrolysis model with four parameters, which can be applied
to different types of alkaline electrolyzers.

2. Formulate a one-dimensional water electrolysis model, based on
the physical process, by using ordinary differential equations.
The model can assess the distribution of operational parameters,
such as temperature and pressure, which are compared with
models with reduced dimensions (i.e., 0D, 1/2D).

3. Techno-economic assessment and optimization of the tempera-
ture control, by varying the electrolyte flow rate, at a continuous
range of inlet-outlet gap temperatures.

The paper is structured as follows: Section 2 describes the methodology
adopted in this work, highlighting the proposed semi-empirical model
and calibration methods. Section 3 reports the experimental data ac-
quisition, followed by Section 4 and 5, describing the results obtained
and conclusions, respectively.

2. Methods

In this section, a novel semi-empirical model for alkaline electrol-
ysis, adopting four parameters is proposed, followed by a detailed
description of the calibration process. Moreover, the extension into the
one-dimensional model, assessing the coupling phenomena of electro-
chemical and thermal behavior, solving ordinary differential equations
of mass, and energy balancing, is illustrated using a reference cell [5].
Finally, the techno-economic indicators adopted in this work, for the
assessment of the effects of the temperature control, are explained and
discussed.

2.1. Alkaline electrolysis and electrochemical modeling

Alkaline electrolyzers consist of one or multiple stacks, each
equipped with electrochemical cells that can be electrically connected
in series or parallel. Such cells’ electrodes are partially submerged in
liquid electrolyte that can either be Potassium Hydroxide (KOH) or
Sodium Hydroxide (NaOH) based. For the electrolysis to take place,
water and electricity are supplied to the cell, to initiate the electrolytic
reaction, that splits the water molecules and as the products the hydro-
gen and oxygen gasses. The two electrodes’ reactions are described in
Eqs. (1a) (cathode reaction) and (1b) (anode reaction).

2H2O + 2𝑒− ⟶ 2OH− + H2 (1a)

2OH− ⟶
1
2
O2 + H2O + 2𝑒− (1b)

The performance evaluation of the electrolysis process requires the
perfect knowledge of the hydrogen produced and the electrical power
consumed. While the first can be assessed through Faraday’s law, which
relates the hydrogen gas produced (�̇�H2

) with the electrochemical cell’s
current (𝐼𝑐 𝑒𝑙 𝑙), as described in Eq. (2), the second is assessed indirectly
through the polarization/I-V curve of the cell.

�̇�H2
=

𝐼𝑐 𝑒𝑙 𝑙
2𝐹

(2)

Indeed, the polarization curve describes the relationship between
cell current (𝐼𝑐 𝑒𝑙 𝑙) and voltage (𝑉𝑐 𝑒𝑙 𝑙). The cell voltage (𝑉𝑐 𝑒𝑙 𝑙) can be
model as the sum of the reversible reaction voltage (𝑉𝑟𝑒𝑣) plus the
overpotentials losses (𝜂), as described in Eq. (3).

𝑉𝑐 𝑒𝑙 𝑙 = 𝑉𝑟𝑒𝑣 + 𝜂𝑎𝑐 𝑡 + 𝜂𝑜ℎ𝑚 + 𝜂𝑏𝑢𝑏𝑏𝑙 𝑒 (3)
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Nomenclature

Constants

𝐹 Faraday constant, 96485 [C/mol]
𝐿𝐻 𝑉H2

H2 Low Heating Value, 242 [kJ/mol]
𝑅 Universal gas contant, 8.314 [J/mol K]
Subscripts

𝑎𝑐 𝑡 Activation
𝑎𝑛 Anodic
𝑏𝑢𝑏𝑏𝑙 𝑒 Bubble formation
𝑐 𝑎 Cathodic
𝑐 𝑒𝑙 𝑙 Cell level
𝑑 Diaphram (electrolysis)
𝑒𝑙 Electrolyte
H2 Hydrogen
H2O Water
𝐻 𝐸 𝑋 Heat exchanger
𝑖𝑛 Inlet
O2 Oxygen
OH Hydroxide ions
𝑜ℎ𝑚 Ohmic
𝑜𝑢𝑡 Outlet
𝑝𝑢𝑚𝑝 Water pump
𝑟𝑒𝑓 Reference
𝑟𝑒𝑣 Reseversible
𝑠𝑡𝑎𝑐 𝑘 Stack level
𝑡ℎ Thermo-neutral
Variables

𝛼 Charge transfer coefficient, [-]
𝛿 Reaction distance, [cm]
�̇� Molar flow rate, [mol/s]
�̇� Thermal power, [W]
𝜌 Density, [kg/m3]
𝜎 Ionic conductivity, [S/cm]
𝐴 Area, [cm2]
𝐶 𝐴𝑃 𝐸 𝑋 Capital Expenditure, [e]
𝐶 𝐺 𝑅 Investment costs, [e]
𝐶 𝑝 Specific heat, [J/kg K] or [J/mol K]
𝐶 𝑅𝐹 Capital Recovering Factor, [-]
𝐸 Energy, [kWh] or [Wh]
𝐸𝑎 Activation energy, [J/mol]
𝐻 Enthalpy, [J/mol]
𝐼 Current, [A]
𝑗 Current density, [A/cm2]
𝑘 Arrhenius scale factor, [A/cm2]
𝐿𝐶 𝑂 𝐸 Levelised Cost of Energy, [e/kWh]
𝐿𝐶 𝑂 𝐻 Levelised Cost of Hydrogen, [e/kgH2 ]
𝑀 Molarity, [mol/l]
𝑚 Molality, [mol/kg]
𝑀 𝑊 Molecular Weight, [g/mol]
𝑃 Pressure, [bar] or [Pa]
𝑝 Power, [W]
𝑇 Temperature, [K] or [◦ C]
𝑉 Voltage, [V]
𝑤 Electrolysis cell width, [cm]
𝑤𝑡 Weight concentration, [0-1]

The reversible voltage (𝑉𝑟𝑒𝑣) represents the minimum electrical
potential required for the reaction, while the overpotentials are irre-
versibilities that can be categorized into three main types: activation
(𝜂𝑎𝑐 𝑡), ohmic (𝜂𝑜ℎ𝑚) and concentration (𝜂𝑏𝑢𝑏𝑏𝑙 𝑒), in this case caused by
the formation of gas bubbles.

2.1.1. Reversible voltage
For KOH-based electrolytes, the reversible voltage can be deter-

mined using equations (Eq. (4a)–(4h)), based on the work conducted
by LeRoy et al. [14], Balej [15] and Ursua & Sanchis [7]:

𝑉𝑟𝑒𝑣 = 𝑉𝑟𝑒𝑣,𝑇 + 𝑅𝑇
2𝐹

ln
⎛

⎜

⎜

⎝

𝑃 − 𝑃 3∕2
𝑣,K OH

𝛼H2O

⎞

⎟

⎟

⎠

(4a)

𝑉𝑟𝑒𝑣,𝑇 = 1.5174 − 1.5421 ⋅ 10−3𝑇 + 9.523 ⋅ 10−5𝑇 𝑙 𝑛(𝑇 ) + 9.84 ⋅ 10−8𝑇 2 (4b)

𝑃𝑣,K OH = exp
(

2.302𝑎 + 𝑏 ln(𝑃𝑣,H2O)
)

(4c)

𝑃𝑣,H2O = exp
(

81.6179 − 7699.68
𝑇

− 10.9 ln(𝑇 ) + 9.589110−3𝑇
)

(4d)

𝛼H2O = exp
(

−0.05192𝑚 + 0.003302𝑚2 + 3.177 𝑚 − 2.131𝑚2

𝑇

)

(4e)

𝑚 =
𝑤𝑡K OH
0.0561

(4f)

𝑎 = −0.0151𝑚 − 1.678810−3𝑚2 + 2.258810−5𝑚3 (4g)

𝑏 = 1 − 1.206210−3𝑚 + 5.602410−4𝑚2 − 7.822810−6𝑚3 (4h)

Where 𝑉𝑟𝑒𝑣 is calculated based on the Nernst equation, which is
divided into two parts: the reversible potential (𝑉𝑟𝑒𝑣,𝑇 ) at standard
pressure (1 bar), and the effect of pressure under in non-ideal condi-
tions [15]. The remaining equations involve empirical terms (a and b)
and molality (m, in mol/kg) to determine the thermo-chemical prop-
erties: (i) equilibrium vapor pressure of K OH(aq) (𝑃𝑣,K OH, in bar), (ii)
equilibrium vapor pressure of steam (𝑃𝑣,H2O, in bar) and (iii) chemical
activity of water in K OH(aq) (𝛼H2O). It is notable that these correlations
are dependent on temperature (T, in K) and the concentration of KOH
(𝑤𝑡, weight fraction). In addition, R and F represent the universal gas
constant (in J/(mol.K)) and Faraday constant (in C/mol), respectively.

For NaOH-based electrolyte, the reversible voltage can be calculated
by Eq. (5), assuming that the gases are wet and both electrodes share
the same pressure [16].

𝑉𝑟𝑒𝑣 = 𝑉𝑟𝑒𝑣,𝑇 + 𝑅𝑇
2𝐹

ln

⎛

⎜

⎜

⎜

⎝

1.5
(

𝑃 − 𝑃𝑣,H2O

)

𝑃𝑣,H2O

⎞

⎟

⎟

⎟

⎠

(5)

2.1.2. Activation overpotential
Activation overpotential is related to the kinetics of water elec-

trolysis reaction in both electrodes. It has been observed that, under
relatively high current densities (j, in A∕cm2) the activation overpo-
tential of each electrode can be modeled by the Tafel equation, as
stated in Eq. (6). Since separate electrode information is seldom avail-
able, an overall activation overpotential representing both electrodes is
commonly used.

𝜂𝑎𝑐 𝑡 =
( 1
𝛼

) 𝑅𝑇
2𝐹

ln
(

𝑗
𝑗0

)

(6)

In Eq. (6), the charge transfer coefficient (𝛼) is a fitted dimensionless
parameter in the model. On the other hand, the exchange current
density (𝑗0, in A∕cm2) is calculated by using the Arrhenius equation,
as described in Eq. (7). This equation aims to model the influence
of temperature in the kinetics of water electrolysis by introducing
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two fitting parameters: a reference exchange current density (𝑗0,𝑟𝑒𝑓 , in
A∕cm2) and the activation energy (𝐸𝑎, in J/mol).

𝑗0 = 𝑗0,𝑟𝑒𝑓 exp
(

−
𝐸𝑎
𝑅𝑇

)

→ 𝑙 𝑛(𝑗0) = 𝑙 𝑛(𝑗0, 𝑟𝑒𝑓 ) +
(

−
𝐸𝑎
𝑅𝑇

)

(7)

2.1.3. Ohmic overpotential
The ohmic overpotential regards all voltages of the electrolyzer

cell related to the electronic and ionic charge transport. The largest
contributions for this loss are those related to the ionic charge transport
across the liquid electrolyte and the electrolyzer diaphragm/separator.
Thus, the ohmic overpotential can be estimated from the Ohm’s law as
described in Eq. (8), based on the conductivity of the liquid electrolyte
(𝜎𝑒𝑙, in S/cm) and diaphragm (𝜎𝑑 , in S/cm). In addition, since the
electrolyte heavily influences ohmic losses and the diagram thickness
(𝛿𝑑 , in cm) may be unreported, Eq. (8) can also be simplified to use
solely the electrolyte contribution calibrated by using an equivalent
electrolyte length (𝛿𝑒𝑙, in cm).

𝜂𝑜ℎ𝑚 = 𝑗
(

𝛿𝑒𝑙
𝜎𝑒𝑙

+
𝛿𝑑
𝜎𝑑

)

≈ 𝑗
(

𝛿𝑒𝑙
𝜎𝑒𝑙

)

(8)

As regards the electrolyte ionic conductivity, Gilliam et al. [17] have
proposed an empirical equation with the molarity (M, in mol/l) of KOH
based solution and temperature, as reported in Eq. (9a). The liquid
electrolyte density based on data reported by Ref. [17], as described
in Eq. (9b), is used to estimate the molarity in Eq. (9c).

𝜎𝑒𝑙 = −2.041𝑀 − 0.0028𝑀2 + 0.005332𝑀 𝑇 2 + 207.2𝑀
𝑇

+ 0.001043𝑀3 − 3 ⋅ 10−7𝑀2𝑇 2 (9a)

𝜌 = (5.1998⋅10−6𝑇 3− 8.2381⋅10−3𝑇 2+ 3.2518𝑇 + 622) exp(0.86𝑤𝑡K OH) (9b)

𝑀 =
𝐶K OH
56.1

𝜌 (9c)

In the case of NaOH-based electrolyte, Le Bideau et al. [18] have
proposed another empirical correlation, Eq. (10), based on the weight
fraction of NaOH.

𝜎NaOH(𝑎𝑞) = 3.899 ⋅ 10−1 + 0.1914 ⋅ 10−2(𝑇 + 273.15) + 9.993 ⋅ 10−5𝑤𝑡3NaOH
+ 2.208 ⋅ 10−3𝑤𝑡2NaOH + 3.564 ⋅ 10−2𝑤𝑡NaOH (10)

Regarding the diaphragm ionic conductivity, Vermeiren et al. [19]
have performed tests on a 0.5 mm thick Zirfon-based diaphragm with
KOH based solution at 30% weight concentration. From their results,
is possible to have an empirical correlation for the 𝜎𝑑 at the temper-
ature range of 20-80 ◦C. However, the diaphragm material can vary,
therefore the empirical equation developed by Vermeiren is not suitable
for all alkaline electrolyzers. Hence, in the proposed model, for the
sake of the simplicity and generalization, the term 𝛿𝑒𝑙, considered as
an empirical parameter, includes both electrolyte and diaphragm ohmic
contribution.

2.1.4. Four-parameters semi-empirical model
To summarize the previous sections details, highlighting the four

distinct parameters, that need to be calibrated with the support of the
experimental data, the polarization curve is described through Eq. (11).

𝑉𝑐 𝑒𝑙 𝑙 = 𝑉𝑟𝑒𝑣 +
1
𝜶
⋅
𝑅𝑇
2𝐹

⋅
(

𝑙 𝑛(𝑗) −
(

𝒍𝒏(𝒋𝟎,𝒓𝒆𝒇 ) +
(

−
𝑬𝒂
𝑹

)

⋅
1
𝑇

))

+ 𝑗 ⋅
(

𝜹𝒆𝒍
𝜎𝑒𝑙

)

(11)

Where the parameters are 𝛼 (unitless), 𝑙 𝑛(𝑗0,𝑟𝑒𝑓 ) expressed in
ln(A/cm2), −𝐸𝑎∕𝑅 with temperature unit (K) and 𝛿𝑒𝑙, the reaction
distance expressed in cm.

2.1.5. Bubble overpotential
The bubble overpotential is caused by the formation of bubbles in

the liquid electrolyte at the reactive sites. Such bubbles could cause
two effects. (i) Modification of the activation area of the cell, as the
bubbles would cover a portion of it, and (ii) change of the electrolyte
ionic conductivity. While the first effect would cause an increase of
the overvoltage due to the activation, the last effect would cause an
additional overvoltage for the ohmic part, since the parameters to be
tuned are present in both effects (second and third term of Eq. (11)),
the bubble effects are implicitly included during the calibration phase,
with a variation of the parameters.

Since that from the modeling perspective, it is still a challenging
task to capture its phenomena properly as it considers two different
phases of the electrolyte (liquid+gas), despite many researchers’ ongo-
ing work [6,20,21]. Therefore, to directly capture the bubble formation
physical complexity is far from being easy, and since it can be implicitly
considered during the parameters tuning, thus, with the focus of this
study to have a simple model for system analysis, as a compromise of
the computational effort and physical details, the direct explanation of
the formation of the bubble into the model is neglected.

2.2. Electrochemical model calibration and assessment

The model calibration, i.e. parameters tuning based on the exper-
imental data, and the calibrated model performance assessment are
disclosed in this section. Where during the first step, only a portion
of the available data is used.

2.2.1. Calibration process
The ability of the proposed model to represent different measure-

ments is further tested and calibrated in this work. This is done by using
the experiments presented in the literature by different researchers
from different types of alkaline electrolyzers with different set-ups of
operating conditions. Such operating conditions are namely (i) temper-
ature, (ii) electrolyte weight concentration, and (iii) pressure. Addition-
ally, the model’s robustness, i.e. its ability to have reasonable accuracy,
using the minimum amount of the data available, has been also tested.

The calibration procedure of the model is illustrated in Fig. 1. It can
be divided into 3 steps:

1. Process the data acquired, ensuring at least six data points, span-
ning two different temperatures, to ensure accurate modeling.
Additional data points may also be included.

2. Calibrate the model to the data, using a curve-fitting framework,
commonly used ones are Matlab and Python, adopting the pro-
posed model, assessing the four open parameters (𝛿𝑒𝑙, 𝛼, −𝐸𝑎∕𝑅,
𝑙 𝑛(𝑗0,𝑟𝑒𝑓 )).

3. Reproduce the polarization curves at different temperatures.

During the parameter estimation process, the dataset is split into
two separate datasets. To prove the model’s robustness and avoid the
over-fitting behavior. Indeed, the training dataset, i.e. the data used to
find parameters, is randomly selected. A constraint for the use of a data
set is that at least six data points are present, from at least two different
operating temperatures.

2.2.2. Model performance indicators
To compare the effectiveness and the robustness of the calibrated

model, several data-science prediction performance indicators are
adopted, such as Mean Average Error (MAE), Mean Average Percentage
Error (MAPE), Root Mean Squared Error (RMSE) and Coefficient of
determination/𝑅2.

Where for each dataset, at a given temperature, the cell voltage vec-
tor, that has 𝑛 values [𝑉𝑐 𝑒𝑙 𝑙 ,1,… , 𝑉𝑐 𝑒𝑙 𝑙 ,𝑛], each associated with a predicted
value using the calibrated model, [𝑉𝑐 𝑒𝑙 𝑙 ,1,… , 𝑉𝑐 𝑒𝑙 𝑙 ,𝑛], the performance
indicators are defined in Eqs. (12a)–(12e).
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Fig. 1. Parameters estimation procedure. Divided into three steps: (1) collection of experimental data at different temperatures, (2) parameter estimation, and (3) generation of
polarization curves at different temperatures.

Fig. 2. Thermal model differences: Lumped model vs discretized ODE.

𝑉 𝑐 𝑒𝑙 𝑙 = 1
𝑛

𝑛
∑

𝑖=1
𝑉𝑐 𝑒𝑙 𝑙 ,𝑖 (12a)

𝑀 𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑉𝑐 𝑒𝑙 𝑙 ,𝑖 − 𝑉𝑐 𝑒𝑙 𝑙 ,𝑖| (12b)

𝑀 𝐴𝑃 𝐸 = 100 ⋅ 𝑖 = 1
𝑛

|

|

|

|

|

𝑉𝑐 𝑒𝑙 𝑙 ,𝑖 − 𝑉𝑐 𝑒𝑙 𝑙 ,𝑖
𝑉𝑐 𝑒𝑙 𝑙 ,𝑖

|

|

|

|

|

(12c)

𝑅𝑀 𝑆 𝐸 =

√

√

√

√

𝑖 = 1
𝑛

𝑛
∑

1

(

𝑉𝑐 𝑒𝑙 𝑙 ,𝑖 − 𝑉𝑐 𝑒𝑙 𝑙 ,𝑖
)2 (12d)

𝑅2 = 1 −
∑𝑛

𝑖=1
(

𝑉𝑐 𝑒𝑙 𝑙 ,𝑖 − 𝑉𝑐 𝑒𝑙 𝑙 ,𝑖
)2

∑𝑛
𝑖=1

(

𝑉𝑐 𝑒𝑙 𝑙 ,𝑖 − 𝑉 𝑐 𝑒𝑙 𝑙
)2

(12e)

2.3. Electrochemical and thermal coupling

The thermal behavior of electrolysis directly influences the effi-
ciency of hydrogen production. Hence, an exhaustive mass and heat
transfer model is essential to accurately capture the response of the
electrolyzer.

Since lumped models treat the entire stack as a single point and
cannot capture temperature distribution and evolution (Fig. 2), a more
advanced approach is likely needed. In this study, the Partial Differen-
tial Equations (PDE) along the flow direction are solved using several
simplifications and compared to the typically used lumped approach.
The following simplifications are made:

• The engineering of the stack ensures that each of the cells ex-
periences more or less the same flow, and the stack can thus be
represented by the modeling of a single repeating unit;

• Uniform flow across each cell is also ensured, such that a single
cell can be represented by considering only variations in the flow
direction (a single flow channel);

• The variations within the flow channel are accounted for by the
semi-empirical cell model, in particular reaction distance 𝛿𝑒𝑙;

• Finally only a steady state is considered.

With these assumptions and simplifications, the stack can be repre-
sented with a 1D model describing the variations of species, reaction
rates, and temperature in the flow direction. Consequently, the mass
and energy balance partial differential equations are simplified to a set
of ordinary differential equations:
𝑑 �̇�H2

𝑑 𝐴 =
𝑗
2𝐹

(13a)

𝑑 𝑇
𝑑 𝐴 =

(𝑉𝑐 𝑒𝑙 𝑙 − 𝑉𝑡ℎ)𝑗
�̇�𝑒𝑙𝑐 𝑝𝑒𝑙 + �̇�H2

𝑐 𝑝H2
+ �̇�O2

𝑐 𝑝O2

(13b)

The 1D model is solved by use of the finite volume method, where
mass and energy balances are ensured within each volume. This refined
model enables the assessment of variations in temperature and elec-
trolyte concentration along the flow direction (𝑥 axis). Furthermore,
this model is expanded to the stack level, built upon the electrical
arrangement of the cells, as depicted in Fig. 3.

For each volume all thermo-electrochemical properties are updated
to describe the variation along the electrolyte flow direction (𝑥 axis).
Consequently, the mass and energy balance differential equations are
solved along the electrolyte flow axis, volume by volume:

�̇�H2 ,𝑖 = �̇�H2 ,𝑖−1 +
𝑗𝑖
2𝐹

𝛥𝐴𝑖 (14a)

𝑇𝑖 = 𝑇𝑖−1 +
(𝑉𝑐 𝑒𝑙 𝑙 − 𝑉𝑡ℎ)𝑗𝑖

�̇�𝑒𝑙𝑐 𝑝𝑒𝑙 + �̇�H2
𝑐 𝑝H2

+ �̇�O2
𝑐 𝑝O2

𝛥𝐴𝑖 (14b)

𝑖 = 1, 2, 3,… , 𝑛𝑒𝑙 𝑒𝑚𝑒𝑛𝑡𝑠 (14c)

In each element (𝑖), the molar flow rate and thermal balance are
determined, considering a small finite cell area (𝛥𝐴𝑖). As depicted, both
equations rely on inputs from the electrochemical calculations. More-
over, the temperature outcomes from these equations are subsequently
used in the next element, as boundary conditions, for electrochemical
assessments.

2.3.1. Mass conservation and weight concentration variation
The Eq. (14a) describes the molar mass variation due to the elec-

trolysis process. And it can be extended further for the weight concen-
tration variation assessment.

H2O ↔ H2 +
1
2
O2 ⟶ 𝛥 ̇𝑛H2

= 𝛥 ̇𝑛H2O = 1
2
𝛥 ̇𝑛O2

(15)

𝑤𝑡 =
�̇�K OH

�̇�K OH + �̇�H2O
; (1 −𝑤𝑡) =

�̇�H2O

�̇�K OH + �̇�H2O
→

�̇�K OH
𝑤𝑡

=
�̇�H2O

1 −𝑤𝑡
→ �̇�K OH = �̇�H2O ⋅

𝑤𝑡
1 −𝑤𝑡

(16)

�̇�K OH = 𝑤𝑡
1 −𝑤𝑡

⋅ �̇�H2O,𝑖=1 =
𝑤𝑡

1 −𝑤𝑡
�̇�H2O,𝑖=1 ⋅𝑀 𝑊H2O (17)

Specifically, given the chemical reaction of the electrolysis
(Eq. (15)), the molar rate of the hydrogen produced is equal to the
molar flow rate of the water consumed. Based on the weight concentra-
tion definition (Eq. (16)), the KOH mass flow, assumed to be constant
over the stack, can be assessed given the inlet water flow rate (�̇�H2O),
illustrated in Eq. (17). Therefore the weight concentration variation
over the cell can be described through Eq. (18), with the water molar
flow rate variation described in Eq. (19).

𝑤𝑡𝑖 =
�̇�K OH

�̇�K OH + �̇�H2O,𝑖 ⋅𝑀 𝑊H2O
(18)

�̇�H2O,𝑖 = �̇�H2O,𝑖−1 − 𝛥 ̇𝑛H2O = �̇�H2O,𝑖−1 − 𝛥 ̇𝑛H2
(19)
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Fig. 3. Alkaline 1D stack model simulation flowchart. Starting with the single cell 0D model, extended to the 1D cell model, solving mass and thermal balance, and finally 1D
stack model, based on the electrical configuration among cells.

2.3.2. Thermal energy balance
For the temperature variation assessment, when considering stan-

dard chemical species, their thermodynamic properties, including spe-
cific heat (𝑐𝑝), can be derived using empirical correlations available
in databases such as the one from NASA [22]. However, for the elec-
trolyte, its properties vary considerably with weight fraction, as demon-
strated in experiments reported by Le Bideau et al. [18]. For this
study, the Zaytsev empirical relationship, that is valid for both KOH
and NaOH-based electrolytes, has been employed to account for these
variations [23].

𝑐 𝑝𝑒𝑙 ,𝑚𝑎𝑠𝑠 = 4.236 ⋅ 103 + 1.075𝑙 𝑛
(𝑇 − 273

100

)

+
(

−4.831 ⋅ 103 + 1.576 ⋅ 103𝑤𝑡 + 8(𝑇 − 273))𝑤𝑡 (20)

The specific heat obtained is expressed in [J/kg K]. As all the
balances are molar-based, it is necessary to convert this mass-based
specific heat into a molar-based one [J/mol K]. This conversion can
be achieved using the Eqs. (21a)–(21d), where 𝑘 indicates the number
of chemical species.

𝑐 𝑝𝑒𝑙 = 𝑐 𝑝𝑒𝑙 ,𝑚𝑎𝑠𝑠
𝑀 𝑊𝑒𝑙
1000

(21a)

𝑤𝑡𝑘 =
𝑛𝑘𝑀 𝑊𝑘
𝑚𝑡𝑜𝑡

;𝑚𝑡𝑜𝑡 = 𝑛𝑡𝑜𝑡𝑀 𝑊𝑡𝑜𝑡; 𝑛𝑡𝑜𝑡 =
∑

𝑘
𝑛𝑘 (21b)

∑

𝑘

𝑤𝑡𝑘
𝑀 𝑊𝑘

= 1
𝑀 𝑊𝑡𝑜𝑡𝑛𝑡𝑜𝑡

𝑛𝑘𝑀 𝑊𝑘
𝑀 𝑊𝑘

(21c)

𝑀 𝑊𝑡𝑜𝑡 =
1

∑

𝑘
𝑤𝑡𝑘
𝑀 𝑊𝑘

→ 𝑀 𝑊𝑒 =
1

𝑤𝑡
𝑀 𝑊K OH∕NaOH + (1−𝑤𝑡)

𝑀 𝑊H2O

(21d)

The flowchart of the proposed 0D/lumped electrochemical model,
along with its extension to the 1D cell model using the ODE approach
for thermal behavior, and further into the 1D stack model, is illustrated
in Fig. 3.

The comparison of thermo-electrochemical models at different
scales has been conducted, encompassing three distinct domain-scale
models. These models were developed utilizing the potentiostatic ap-
proach, which involves providing the cell’s voltage as input data.

• 0D model, or lumped model, only a single point is considered for
the whole cell, defined as follows:

0𝐷 ∶ 𝑇𝑖𝑛; 𝑗 = 𝑗𝑖𝑛 = 𝑓 (𝑇𝑖𝑛, 𝑉 , 𝑤𝑡, 𝑃 ) (22)

• 1/2 D model assumes that the distribution of current density
alongside the cell area is linear and, therefore, the average current
density can be determined as the mean value between inlet
and outlet states, as stated in Eq. (23). Since the outlet state
is unknown, an iterative process using a root-finding algorithm
(e.g. Newton or secant method) is employed to determine the
outlet state (i.e., j, T, 𝑛𝑖, etc.) that converges to the fixed value
of 𝑗𝑎𝑣𝑔 .

1∕2𝐷 ∶ 𝑇𝑖𝑛, 𝑇𝑜𝑢𝑡 ∶ 𝑗 = 𝑗𝑎𝑣𝑔 =
𝑗𝑖𝑛 + 𝑗𝑜𝑢𝑡

2
(23)

• 1D model is the model using ODE previously mentioned. It allows
having information for discrete volumes through the stack, as
reported in the following equations :

1𝐷 ∶ 𝑇𝑖; 𝑖 = 1,… , 𝑛𝑒𝑙 𝑒𝑚𝑒𝑛𝑡𝑠; 𝑗 = 𝑗𝑎𝑣𝑔 =
∑𝑛𝑒𝑙 𝑒𝑚𝑒𝑛𝑡𝑠

𝑖=1 𝑗𝑖
𝑛𝑒𝑙 𝑒𝑚𝑒𝑛𝑡𝑠 𝛥𝐴

(24a)
𝛥𝐴 =

𝐴𝑐 𝑒𝑙 𝑙
𝑛𝑒𝑙 𝑒𝑚𝑒𝑛𝑡𝑠

(24b)

2.3.3. Numerical code implementation
The whole model was implemented in Python environment [24],

where several dedicated open-source libraries are adopted. Specifically,
Pandas [25] for the data management, Scipy [26] for the calibration of
the model (i.e. find out the parameters), solving the inverse functions
and solving the finite volume equations, while Scikit-learn [27] is
used for the assessment of the performance indicators. Furthermore,
the implementation of the 1D model can be find in the pseudo-code
structure in Algorithm 1.

Since initial input regards the inlet temperature, rather than the
outlet-inlet temperature difference. When the goal is to set the tem-
perature difference, the initial water flow rate is computed by solving
iteratively the algorithm, such as to get the desired gap tempera-
ture, through Scipy module fsolve, which allows finding the roots of
nonlinear functions.
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Fig. 4. Flow diagram of the alkaline electrolyzers systems, illustrating auxiliary components coupled with electrolyzer stack.

Algorithm 1 Algorithm of finite volume model ( 𝑑 ...𝑑 𝐴 )

1: Input: Calibrated cell model, inlet voltage, temperature, pressure,
and weight concentration

2: Output: Temperature, hydrogen production, water consumption,
and weight concentration variation

3: Initialize vectors for 𝑇𝑐 𝑒𝑙 𝑙 ,𝑖, �̇�𝐻2 ,𝑖, �̇�𝐻2𝑂 ,𝑖, 𝑤𝑡𝑖
4: for 𝑖 in 𝑛𝑒𝑙 𝑒𝑚𝑒𝑛𝑡𝑠 do
5: Assess electrolyte properties (𝐶 𝑝𝑒𝑙, 𝑀 𝑊𝑒𝑙, �̇�𝑒𝑙)
6: Find the current density given the 𝑉𝑐 𝑒𝑙 𝑙,𝑇𝑐 𝑒𝑙 𝑙 ,𝑖 𝑝, 𝑤𝑡𝑖 , through

solving the inverse calibrated polarization curve (𝑗𝑖).
7: Assess the reaction rate for the element on Faraday law

(𝛥 ̇𝑛𝐻2 ,𝑖,𝛥 ̇𝑛𝐻2𝑂 ,𝑖)
8: Assess all species’ thermal properties and evaluate the tempera-

ture increase (𝛥𝑇𝑖)
9: end for

10: return 𝛥𝑇𝑖,𝛥 ̇𝑛𝐻2 ,𝑖,𝛥 ̇𝑛𝐻2𝑂 ,𝑖, 𝑤𝑡𝑖
11: Solve the loop over 𝐴 using Scipy dedicated module for integrals.

2.4. System level approach: temperature control

Another key perspective of having such a model is the possibility of
determining its integration with other plant components and gaining
insights into an optimal operational strategy. For this study, temper-
ature control and its effects on both technological and economical
perspectives, have been assessed. The data regarding the components
specifications can be found in Table 2. The whole alkaline electrolyzer
stack can be connected with all necessary auxiliary components, as
illustrated in Fig. 4.

To compare determine which electrolyte flow rate is optimal, the
system efficiency and the levelized cost of hydrogen are determined and
compared for different flow rates. As evaluation indicators, exploiting
the temperature effects, system-level efficiency and the levelized cost
of the produced hydrogen (�̇�H2

) are adopted.

𝜂𝑡𝑜𝑡 =
𝑁𝑐 𝑒𝑙 𝑙 𝑠�̇�H2 ,𝑐 𝑒𝑙 𝑙𝐿𝐻 𝑉H2

𝑝𝑠𝑡𝑎𝑐 𝑘 + 𝑝𝑝𝑢𝑚𝑝
(25a)

𝐿𝐶 𝑂 𝐻 =
𝐶𝐺 𝑅𝐶 𝑅𝐹 + 𝐸𝑒𝑙𝐿𝐶 𝑂 𝐸 + 𝑅 + 𝐿 + 𝑂 𝑃 𝐸 𝑋𝑜

�̇�H2
𝑡𝑦𝑒𝑎𝑟

(25b)

Where all investment costs (𝐶𝐺 𝑅), that depend on the nominal size
of each component, are discounted in annual costs by using a capital
recovery factor (CRF) [34]. In addition, 𝐸𝑒𝑙 is the electrical energy
consumption and LCOE is the levelized cost of electricity. R and L
account for the replacement cost of the electrolysis stacks and operating
labor, respectively. OPEXo represents other operating costs, such as
taxes, insurance and overhead. Finally, the full load operating hours
(𝑡𝑦𝑒𝑎𝑟) is assumed as 50% of total hours in a year [30].

3. NaOH-based electrolyzer experimental data

The experimental data, which regards a NaOH-based electrolyte
alkaline electrolyzer, is collected from the hydrogen lab of Marche
Polytechnic University (Fig. 5), is acquired for further calibration of
the proposed semi-empirical model. Such lab configuration allows
the assessment of the system-level analysis of the complete hydrogen
value chain, incorporating the water demineralization, hydrogen pro-
duction through the alkaline electrolyzer, hydrogen gas purification
and dehumidification, compression and storage (in metal hydrides),
and lastly the utilization of the hydrogen through a fuel cell. However,
technology-level analysis of each system (for instance the stack level)
is not possible as it would cause overrides and impact the whole lab’s
balance of the plant. Further details can be found in Fig. 6, where
each key component of the lab and the energy flows are disclosed.
The completeness of the hydrogen lab guarantees an overview of the
different systems and their interconnection impacts. Yet, each system
can be analyzed in detail separately, indeed the scope of the works is
focused solely on the alkaline electrolyzer.

The data acquired regards the normal operation of the whole lab,
at the ambient temperature (approximately 20 ◦C). which consists of
hydrogen production, purification, compression, storage, and utiliza-
tion at the same time, such setup is mainly for data acquisition and
monitoring, with the aim to use the collected data for the calibration
of the systems and models, and analyze the impacts of their inter-
connection. Given the focus of the work, only the data regarding the
alkaline electrolyzer is disclosed. Specifically, the normal operation of
means that the electrolyzer would ramp up to the nominal pressure,
heat up the electrolyte finally reach the nominal production rate, and
keep the nominal hydrogen production until the storage system is
full, controlled by the pressure valve, and goes in a stand-by mode,
and back to production when the storage pressure drops to a tar-
get lower threshold. The electrolyzer data is acquired through the
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Table 2
Modeling parameters for alkaline water electrolysis temperature control.
Description Value Ref.

Electrolysis stack
Cell area - Acell [m2] 2.5 [28]
Number of cells - 𝑁𝑐 𝑒𝑙 𝑙 [-] 8000
Pressure [bar] 7 [5]
Max. Temperature [◦ C] 80 [5]
Specific bare module cost [e/m2] 1575 [29]
Stack lifetime - 𝑛𝑙 𝑖𝑓 𝑒 [y] 10 [30]
Present value replace cost - R [e] 1575 ⋅ AcellNcell∕(1 − i′)nlif e [30]
Cost reference year 2023 [29]

Rectifier
Efficiency (%) 95 [31]
Specific bare module cost [USD/kW] 130 [32]
Exchange rate - 2018 [e/USD] 1.18 [33]
Cost reference year 2018 [32]

Lye cooler
Type/Material Plate/Stainless steel
Overall heat transfer coefficient [W/m2.K] 850 [34]
Cooling water inlet/outlet temperature [◦ C] 27/45 [34]
Temperature correction factor 0.8 [34]
Heat exchange area - Ahx Ahx = Q∕(UhxTlmF) [34]
Purchased cost - PEC [USD] 10^(4.666-0.156log10(Ahx)+0.155(log10(Ahx)2) [34]
Bare module cost - CBM [USD] 3.864 ⋅ PEC [34]
Exchange rate - 2001 [e/USD] 1.1 [33]
Cost reference year 2001 [34]

Lye pump
Type/Material Centrifugal/Stainless steel
Efficiency (%) 70 [34]
Pressure difference [bar] 0.3 [10]
Purchased cost - PEC [USD] 10^(3.389+0.054log10(P)+0.154(log10(P)2) [34]
Bare module cost - CBM [USD] 4.86 ⋅ PEC [34]
Exchange rate - 2001 [e/USD] 1.1 [33]
Cost reference year 2001 [34]

Grassroot costs - CGR 168% ∑

CBM,i [34]
Manufacturing costs

Number of hired operators - Nop 12 [34]
Operator salary - Sop [e/y] 64 400 [35]
Labor - L [e/y] NopSop [34]
Other operating expenses - OPEXo [e/y] 9% CGR + 125% L [36]

Others
Interest rate - i 8%
Inflation rate - f 2% [37]
Effective interest rate - i’ (i − f )∕(i + f ) [34]
Full load operating hours - tyear 4380 [30]
Levelized cost of electricity - LCOE [e/MWh] 30–60

Fig. 5. Hydrogen lab at Universita’ Politecnica delle Marche.
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Table 3
ERREDUE G6 alkaline electrolyzer technical data.

System data
Power [kW] 23
Current [A] 40
Pressure [bar] 4

Voltage [Vac] 3x 400
+Neutral

Production
Hydrogen flow rate [Nm3/h] 4
Hydrogen purity [%] 99.3–99.8
Oxygen flow rate [Nm3/h] 2
Oxygen purity [%] 98.5–99.5

H2O spec.
Max. conductibility [𝜇S/cm] 5
Max. consumption [lt/h] 3.4

Cell-to-Stack
Electrical configuration Bipolar
#n stacks 2
#n total cells 160
Cell area [cm2] 450

Human–Machine Interface, tailored for the customized application of
the system, which communicates, through Modbus protocol, directly
with the PLC controller of the machine. Specifically, the controller of
the machine is a PLC controller from ABB series AC500 [38], while the
monitored and saved data are the following ones:

1. Pressures, from both hydrogen and oxygen gasses and also the
system equilibrium pressure. Where slight deviation can be
present among them.

2. Temperatures, of the stacks and the liquid electrolyte.
3. Gasses flow rate, from both hydrogen and oxygen.
4. System level current and voltage.

The electrolyzer is a G6 model from the manufacturer ERREDUE
[39], using 18%wt NaOH (Sodium Hydroxide) based electrolyte, with
a nominal production capacity of 4 Nm3/h with a maximum operating
pressure of 4 bar, and a nominal electrical power of 23 kW. Further-
more, it is composed of two stacks connected in series, achieving overall
160 cylindrical cells, each of them with 450 cm2 of cell area. Further
specification details are illustrated in Table 3.

Using NaOH, instead of KOH-based electrolyte, changes the elec-
trolyte’s thermophysical properties. Such as density, molecular weight
(56.1 g/mol for KOH, 39.997 g/mol for NaOH), and specific heat coef-
ficient, while the electrochemical equations remain mostly the same.
Fortunately, such properties can be assessed through the empirical
relationships, based on the temperature and electrolyte concentration,
that are validated by other researchers, and reported in the review done
by Le Bideau et al. [18].

4. Results and discussion

In this section, results regarding the calibration of the semi-
empirical model, both from literature data (four different datasets)
and acquired experiments are presented. Furthermore, a technological
and economical analysis, from a system-level perspective, assessing
the temperature influence, through the use of the 1D model, is also
reported.

All results are performed with the hardware of 12th Gen Intel(R)
Core(TM) i7-12700H CPU at 2.30 GHz with 16 GB RAM, which com-
pletes the whole finite volume analysis and dimensionality comparison
in approximately 12 seconds, proving the efficient and simple nature
of the model. However, this comes with a good estimation of the
initial guesses of the inversed function (current density, and water flow
rate), which can be only tuned based on the try and error method, as
wrong/no initial guesses could cause no convergence of these functions.

4.1. Model calibration: Literature data

Four different datasets from the literature have been used, all of
them adopting the KOH-based electrolyte, yet operating under differ-
ent pressures, concentrations, and temperatures, not to mention their
geometrical diversity. These datasets are extracted from the following
references: Sakas [28], Ulleberg [5], Sanchez [10] and De Groot [13]’s
work.

The results of the estimation, illustrating the model’s wide applica-
bility, are reported in Fig. 7. Whereas the temperature dependence is
explicitly highlighted, in activation overpotential, other operating con-
ditions influence, namely KOH weight concentration and pressure are
implicitly considered, through the ohmic overpotential and reversible
voltage, respectively.

As shown in Fig. 7, the proposed model four-parameter model ade-
quately represents the data (𝑅2 > 0.98) of the variety of electrolyzers.
Moreover, it is important to note that not all available experimen-
tal data were utilized for parameter determination, and the training
dataset was randomly selected. and as an indication of the model’s
robustness, all performance indicators are reported in Table 5, with a
maximum MAE of 0.0092 V, MAPE of 0.55% and a RMSE of 0.00013
V.

4.2. Model calibration: NaOH based electrolyte experimental data

A dedicated calibration of the Marche Polytechnic University elec-
trolyzer data is reported, not only because of the difference of the type
of the electrolyte, adding an additional level of the model’s general-
izability, compared with ones of literature, but also to highlight some
insights during the acquisition of these data. However, to the best of
the author’s knowledge, no literature data regarding the NaOH-based
electrolyzers were available, which was the difficulty raised in [40].
Thus, no range of parameters can be determined for such type of
electrolyte-based electrolyzer, differently for the KOH-based ones.

For experimental setup, the electrolyzer is configured so that it can
produce the maximum amount of hydrogen, and this can be done with
the following sequential steps:

1. Pressurize the system, until it reaches the target pressure.
2. Heat up the electrolyte using the thermal energy generation from

the electrolysis process. However, such temperature ramping is
a slow process, that could take from 30 min to hours.

3. Reach the nominal hydrogen production rate at the nominal
conditions when both temperature and pressure are at their
target value.

The parameters are acquired dynamically during the lab test, mean-
ing that the pressure and temperature are acquired as time series, as
illustrated in Fig. 8. Indeed, both temperature and pressure vary rather
than being constant.

4.2.1. Experimental data processing
For the experimental set-up considered in this study, since all opera-

tional parameters are acquired dynamically, during a normal operation
of the electrolyzer, consequently, several pre-processing steps for the
data acquired are required, which are:

• Temperature and pressure categorization: Given the continuous
nature of the monitored time-series data, these parameters must
be discretized into appropriate bin widths. For temperature, a bin
width of 5 ◦C is used.

• Data cleaning and outlier removal: This step addresses anomalies
caused by noise during data acquisition, such as removing data
with non-physical values (e.g., temperatures below ambient levels
or unusual voltage spikes).
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Fig. 6. Hydrogen lab layout and systems description.

Fig. 7. Parameters estimation and validation with temperature variation. Where squared-dotted data are from the training dataset, while the others are from the test dataset.

• Convert system-level data to cell-level data to better discern
voltage differences across temperatures and ensure consistency
with the semi-empirical model calibration. This is done by using

the cell area and the number of cells connected in series to form
the electrolyzer. For the electrolyzer examined, the cell area was
450 cm2 with 160 cells. (see Fig. 9).
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Table 4
Semi-empirical model validation: Despite different operational conditions, parameters’ ranges are similar.
Electrolyte Experimental conditions Calibrated parameters

KOH 𝑝 𝑇 𝑤𝑡 𝛿𝑒𝑙 𝛼 −𝐸𝑎

𝑅
𝑙 𝑛(𝑗0,𝑟𝑒𝑓 )

[bar] [◦ C] [-] [cm] [-] [K] [ln( 𝐴
𝑐 𝑚2 )]

Sakas 16 59.6-61.15–70 0.25 0.54 0.12 −6441 13.46
Ulleberg 7 40-50-60-70-80 0.30 0.52 0.15 −5290 9.34
Sanchez 7 55-65-75 0.35 0.67 0.14 −4128 4.77
De Groot 30 50-60-70 0.28 0.41 0.25 −3395 3.23

Parameters range [0,1] [0,0.4] [−8000,-3000] [0,15]

Fig. 8. ERREDUE G6 23 kW electrolyzer acquired data of (i) pressures of gasses, (ii) temperatures, (iii) produced gasses flow rate, and (iV) voltage and current of the system.

4.2.2. Experimental data calibration
After the data processing stage, the experimental data can be cali-

brated with the same procedure as the literature data (see Table 6.).
Where comparing with them , despite having different electrolytes,
which results in a poorer performance, comparing polarization curves,
the ERREDUE electrolyzer is qualitatively comparable with KOH-based
ones.

Where Fig. 10 illustrates the validation of the model with the
acquired time series data. Due to noise presence in the data, the R2

is lower, compared with literature-based datasets. The model does
however still qualitatively reasonably represent the recorded data, with
a maximum MAE of 0.016 V, MAPE of 0.78%, RMSE of 0.0003 with R2

≥ 0.81, as reported in Table 7.

4.3. Model dimensionality comparison

Given the 1-D model has the potential to assess multiple parameters
along the flow direction inside the alkaline stacks, thus, it serves as
the reference due to its higher accuracy for the comparison. Fig. 11

illustrates the difference between models with varying dimensionality.
Where current density is taken as a comparison indicator, at a fixed
potential of 1.8 V. This comparison is conducted under various elec-
trolyte flow rates through the stack for cooling, leading to different
temperature increases across the stack.

The results of the comparison indicate that the 0D model, the
most adopted one, showcases a substantial deviation from the 1-D
model’s current density and, consequently, the hydrogen production
rate. However, the 1/2D model shares almost the same results as the
1D model, and it starts to deviate from it at higher temperature gaps.

4.4. System level temperature control and effects

The reference cell model was consequently assumed to be able to
represent a full stack, which was embedded in the alkaline electrolysis
system shown in Fig. 4. This system was then operated to control
the temperatures across the stack, by adjusting the electrolyte flow
rate by pumping. The purpose is to investigate if increased pumping
and consequent temperature leveling inside the stack will increase or
decrease the overall system efficiency.
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Fig. 9. Scatter-plots and Kernel Density Estimation of the current and voltage of the electrolyzer, categorized based on the temperatures, as can be seen, it is not easy to see the
voltage difference over different temperatures.

Table 5
Calibrated model performance at different temperatures, for each dataset.

MAE MAPE RMSE R2
[V] [%] [V] [–]

Sakas 𝑝 = 16 bar
59.6 ◦C 0.0026 0.14 1.32e−05 0.997
61.15 ◦C 0.0017 0.09 5.77e−06 0.997
70 ◦C 0.0052 0.29 4.08e−05 0.996

Ullerberg 𝑝 = 7 bar
40 ◦C 0.0016 0.09 5.27e−06 0.999
50 ◦C 0.0032 0.29 1.93e−05 0.996
60 ◦C 0.0028 0.17 1.05e−05 0.997
70 ◦C 0.0040 0.25 2.01e−05 0.994
80 ◦C 0.0019 0.12 5.94e−06 0.978

Sanchez 𝑝 = 7 bar
55 ◦C 0.007 0.35 0.0001 0.991
65 ◦C 0.0017 0.08 3.889e−06 0.999
75 ◦C 0.0059 0.30 4.9e−05 0.995

De Groot 𝑝 = 30 bar
50 ◦C 0.0075 0.45 0.00012 0.995
60 ◦C 0.0092 0.55 0.00013 0.994
70 ◦C 0.007 0.47 0.00011 0.995

The results of this investigation are shown in Fig. 12. The figure
shows that indeed, when the temperature difference between the inlet
and outlet of the electrolyzer stack exceeds 1 ◦C, the overall efficiency
achieves the highest efficiencies of approximately 65% (LHV). Since
the model keeps the voltage fixed as an input, these results indicate
that temperature leveling inside the stack is indeed a preference as the
energy consumption by the electrolyte pump, becomes nearly negligible
when compared to the energy needed for the electrolysis. Furthermore,
efficiency variations arise from comparing the two sources of power
consumption. Higher voltages lead to greater thermal energy release,
which in turn increases pump power consumption due to the need for
a higher water flow rate to maintain the same temperature gap.

From an economic perspective, as depicted in Fig. 13, there exists
a distinct zone where the levelized cost of hydrogen (LCOH) reaches
a minimum value. This optimal range spans from 0.1 ◦C to 4 ◦C,

Fig. 10. Measured polarization curves from the NaOH-based electrolyte 23 kW elec-
trolyzer together with model calibration.

regardless of the specific LCOE used. In contrast, LCOH is higher in
the other zones. In the lower gap temperature zone, this is caused by
the elevated operational cost attributed to the operational expenses of
the water pump. Conversely, at the high gap temperature zone, lower
inlet temperatures leads to a lower average current density, i.e. lower
hydrogen production.

5. Conclusion

In this study, the impacts of the electrolyte flow rate in the thermal
management of an alkaline electrolysis stack were investigated using
a 1D model, which was compared with the 0D model formulation
proposed by previous studies. The 1D model is based on a novel
semi-empirical four-parameter alkaline water electrolysis cell mode
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Table 6
Data from the semi-empirical model validation on the data from the ERREDUE 23 kW NaOH based
electrolyzer.
Electrolyte Experimental conditions Calibrated parameters

NaOH 𝑝 𝑇 𝑤𝑡 𝛿𝑒𝑙 𝛼 −𝐸𝑎

𝑅
𝑙 𝑛(𝑗0,𝑟𝑒𝑓 )

[bar] [◦ C] [-] [cm] [-] [K] [ln( 𝐴
𝑐 𝑚2 )]

ERREDUE G6 4.5 25-30-35-40-45 0.18 0.56 0.06 −3501 5.06

Table 7
Calibrated model performance at different temperatures, for NaOH-based electrolyzer
dataset.

MAE MAPE RMSE R2
[V] [%] [V] [–]

ERREDUE G6 𝑝 = 4.5 bar
25 ◦C 0.006 0.29 3.78e−05 0.981
30 ◦C 0.006 0.29 4.55e−05 0.994
35 ◦C 0.006 0.32 6.66e−05 0.974
40 ◦C 0.016 0.78 0.0003 0.812
45 ◦C 0.0033 0.17 1.6e−05 0.992

Fig. 11. Different scales of electrolyzer models’ comparison, at different temperatures
increase over the stack. Where error is the difference between the models’ average
current density, compared with the 1D model’s average current density, in percentage.

that avoids limitations from previous studies, such as (i) fitting using
non-absolute temperature (i.e., Celsius) (ii) polynomial temperature
dependencies and (iii) material specific parameters (i.e., Nafion). Thus,
the proposed model achieves simplicity (i.e., 4 fitting parameters) while
still being accurate and general for multiple cell types.

In order to verify the improvements of the proposed model, its
accuracy and robustness were validated through the use of four ex-
perimental datasets from the literature, covering a wide range of (i)
operational parameters variation, (ii) cell area, and also (iii) electrolyte
type. The results showed that all the data could be well represented
(R2≥0.9) confirming the model ability to simulate the physical process
at the most diverse conditions. Also with only six data points and
considerable experimental noise, the model was shown to achieve a
qualitatively reasonable representation (R2 ≥ 0.81). Moreover, despite

Fig. 12. Influence of temperature difference (inlet to outlet) in system efficiency, at
different operating voltages. The outlet temperature is set as 80 ◦C.

of geometrical and operational differences, all datasets share a similar
range for parameters (Table 4).

Moreover, the effects of model dimensionalities (i.e., 1D, 1/2D, and
0D) in the performance of alkaline electrolysis were investigated using
numerical simulations. The results indicate that the 0D model showed
significant errors in the performance, due to the temperature variation
along the cell, while the 1/2D model achieved similar results to the 1D
model (< 1% difference).

To investigate the performance at different flow rates, the cell-
level model was assumed to be able to represent a stack, and this
was embedded into a system-level model with a representation of heat
exchangers and pumps. The temperature control was carried out by
varying the electrolyte flow rate. This is at a cost of extra power for
running the pumps and having larger auxiliary system components.
Energy-wise there is thus a clear advantage of increasing the electrolyte
flow rate, to have a low-temperature difference across the stack — close
to the maximum allowable temperature, as this decreases the internal
resistance of the cells. Very small temperature differences such as 1-
4 ◦C are to be strived for. Economically, an optimal flow rate exists
where losses from electrolyte pumping and lower hydrogen production
due to higher gap temperature are harmonized. For the cases analyzed,
although quantitative values oscillate, the qualitative trend of the LCOH
does not change, despite different voltages and LCOEs. Specifically,
LCOH can be 2–4 e/kg for the low LCOE case (30 e/MWh) and 4–6
e/kg for the high LCOE case (60 e/MWh).

In addition to the specific cases analyzed, several general insights
can be drawn. Regardless of the LCOE or electrolyzer size, maintaining
an outlet-to-inlet temperature difference of 1-4 ◦C is recommended
for both technical and economic efficiency. And while the proposed
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Fig. 13. Influence of temperature difference (inlet to outlet) in the levelized cost of hydrogen. Outlet temperature set as 80 ◦C. Three distinct zones can be spotted: (i) high
pump operational cost, (ii) optimal range and (iii) low hydrogen production zones.

system-level model holds significant potential, it is important to ac-
knowledge its limitations. Indeed, once properly tuned, the model
proved to be extremely fast to be solved, which makes it suitable
to be adopted for holistic and systematic large-scale energy system
analysis, as incorporating it in the optimization problem for both the
planning (design phase) or scheduling stage (operational phase) of
these systems. However, given that most energy system optimization
commonly adopts Mixed Integer Linear Programming, the nonlinear
nature of the model, necessary to include the required physical details
of alkaline electrolysis, should be taken into account. Additionally,
the formation of water vapor has been included in an implicit way,
rather in a direct and comprehensive way. It is worth noting that these
limitations are unlikely to alter the results discussed in this study.
Nevertheless, the model proposed in this study can be improved by in-
cluding the effects of bubbles, fluid mechanics, and gas diffusion across
the membrane. Furthermore, the proposed model and its temperature
control effects, however, are not validated for the NaOH electrolyzer,
due to the technical bottlenecks, where at the current stage, it does
not allow to change the water flow, nor does it have a pressure and
temperature control yet, therefore, as future investigation, a refinement
of the model, in addition to the validation of the temperature control,
with the proper set-up adjustment, will be carried out.
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