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ABSTRACT
We demonstrate dispersion-engineering of microstructured polymer optical �bres (mPOFs) made of poly(methyl
methacrylate) (PMMA). A signi�cant shift of the total dispersion from the material dispersion is con�rmed
through measurement of the mPOF dispersion using white-light spectral interferometry. The in
uence of strong
loss peaks on the dispersion (through the Kramers-Kronig relations) is investigated theoretically. It is found that
the strong loss peaks of PMMA above 1100 nm can signi�cantly modify the dispersion, while the losses below
1100 nm only modify the dispersion slightly. To increase the nonlinearity of the mPOFs we investigated doping
of PMMA with the highly-nonlinear dye Disperse Red 1. Both doping of a PMMA cane and direct doping of a
PMMA mPOF was performed.

Keywords: Microstructured polymer optical �bre (mPOF), dispersion engineering, in
uence of loss on disper-
sion, dye doping, poly(methyl methacrylate) (PMMA), Disperse Red 1

1. INTRODUCTION
The huge interest in silica photonic crystal �bres (PCFs) has largely been due to the possibility of manipulating
the dispersion pro�le by modifying the microstructure. This has allowed researchers to shift the zero-dispersion
wavelength of silica �bres to below 800 nm by reducing the core size.1 The combination of a small core size
and zero-dispersion wavelength at the operating wavelength of widely available femtosecond Ti:sapphire lasers
led to an extensive research in supercontinuum generation and other nonlinear e�ects in PCFs.2 It is crucial
for the e�ciency of many nonlinear mechanisms that the pump laser wavelength is close to the zero-dispersion
wavelength and that the core size is small.

Recently, work in fabricating PCFs from materials other than silica, such as chalcogenide glasses3 or poly-
mer,4, 5 has intensi�ed. One of the advantages of using alternative materials can be extended wavelength trans-
mission range or a higher inherent material nonlinearity. Depending on the type of polymer used, microstructured
polymer optical �bres (mPOFs) can potentially be made highly-nonlinear. Another advantage is that polymer
materials have a higher bio-compatibility than silica, meaning that it is easier to bond certain types of biosensor
materials to a polymer surface than to silica.6

We have fabricated mPOFs in the polymer poly(methyl methacrylate) (PMMA) with core sizes down to
about 2-3 �m diameter using a simple two-step process. The structured PMMA �bre preform is �rst drawn into
a cane, reducing the structure by a factor of �10. The cane is then inserted into a PMMA tube and drawn into
a �bre, reducing the structure by an additional factor of �30.

We present a characterisation of our small-core mPOFs, including scanning electron microscope (SEM) imag-
ing of the structure, loss measurements and dispersion measurements. The dispersion measurements show that
we have successfully obtained signi�cant modi�cation of the dispersion compared to the dispersion of the bulk
material. We then theoretically investigate the in
uence of the high material losses on the dispersion of mPOFs
made of PMMA. Finally, we demonstrate solution doping of PMMA with the highly nonlinear dye Disperse Red
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Figure 1. Left: Optical microscope image of an mPOF guiding light at 1064 nm. It is clearly seen how the light is con�ned
to the core within the microstructure. Right: Scanning electron microscope image of an mPOF with a pitch � of � 1.5
�m and relative hole size d=� � 0.4. The core diameter is � 2.5 �m.

1 (DR1) using two approaches. First, we have doped a cane and afterwards drawn it into a �bre, as demonstrated
by Large et al. who used the dye Rhodamine 6G.7 Second, we successfully doped an mPOF directly by placing
the �bre in a solution containing the nonlinear dye.

2. DISPERSION-ENGINEERING OF MICROSTRUCTURED POLYMER OPTICAL
FIBRE

Images of PMMA mPOFs are shown in Fig. 1. It is seen how it is possible for us to fabricate mPOFs with
sub-micron air-holes while the core guides light. Because the holes can be made so small, they can be di�cult
to see in an optical microscope and it can be necessary to use SEM-imaging to measure the hole size.

By making the core small enough it is possible to engineer a waveguide-dispersion contribution large enough
to signi�cantly shift the total dispersion pro�le of an mPOF. To �nd the structural parameters (pitch � and
relative hole size d=�) necessary to obtain a particular zero-dispersion wavelength, we calculated the dispersion
for a wide range of structural parameters. The dispersion calculations were made using a mode solver based on
the �nite element method.8 The material dispersion of PMMA was included using

n2(�) = A0 + A1�2 + A2��2 + A3��4 + A4��6 + A5��8 (1)

where A0 = 2:18645820, A1 = �2:4475348 � 10�4 �m�2, A2 = 1:4155787 � 10�2 �m2, A3 = �4:4329781 � 10�4

�m4, A4 = 7:7664259 � 10�5 �m6, and A5 = �2:9936382 � 10�6 �m8. This expression was found as a �t to
the measured refractive index in the range 365{1060 nm for the same type of PMMA as we use9 (the optical
properties of PMMA vary depending on the fabrication method). The results are shown in Fig. 2 where the
zero-dispersion wavelength (vertical axis) is shown as a function of both pitch � (horizontal axis) and relative
hole size d=� (colourscale). Using the �gure one can therefore determine the structural parameters necessary to
obtain a given zero-dispersion wavelength. If, e.g., a zero-dispersion wavelength of 1064 nm is desired, one can
�nd from the �gure that a pitch � = 2:1 �m and relative hole size d=� = 0:6 results in the target zero-dispersion
wavelength of 1064 nm.

To demonstrate the possibility of modifying the total dispersion by engineering a large waveguide dispersion,
we fabricated two mPOFs. The �rst mPOF, termed \LMA" for Large Mode Area, was made with a pitch
� = 11 �m, and d=� = 0:36, so that the core is relatively large (� 18 �m). The total dispersion is then expected
to be dominated by material dispersion. The second mPOF was made with a relatively small core of 3.8 �m
(� = 2:4 �m, d=� = 0:4) and termed \DSF" for Dispersion Shifted Fibre; in this case the waveguide dispersion
is expected to shift the total dispersion signi�cantly away from the material dispersion. The dispersion of the
fabricated mPOFs was measured using white-light spectral interferometry10, 11 and is shown in Fig. 3. It is seen
from the �gure that the measured dispersion of the LMA �bre is very close to the material dispersion of PMMA,
as expected. It is also seen how proper design of the microstructure in the DSF �bre can signi�cantly shift the
dispersion away from the material dispersion. This demonstrates that the extremely useful dispersion-engineering
of silica PCFs1 is also possible in PMMA mPOFs.



Figure 2. The zero-dispersion wavelength of a triangularly structured mPOF made of PMMA, shown as a function of
both pitch � (horizontal axis) and relative hole size d=� (colorscale). Colour available in digital version.
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Figure 3. Comparison of measured and calculated dispersion in PMMA mPOF with and without signi�cant waveguide
contribution. Solid line: calculated dispersion of bulk PMMA; solid line with circles: measured dispersion of LMA
mPOF with relatively large core. Dashed lines: calculated (no circles) and measured (with circles) dispersion of PMMA
dispersion-shifted mPOF with � = 2:4 �m, d=� = 0:4.
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Figure 4. The measured loss in bulk PMMA from Ref. 12 (solid line) and the measured loss in an mPOF (dashed). The
losses for the mPOF �bre could not be measured in wavelength regions with very high loss (around 1180 nm, 1400 nm,
and above 1600 nm).

3. INFLUENCE OF LOSS PEAKS ON DISPERSION
The optical loss spectrum of PMMA exhibits some very signi�cant peaks in the near-infrared due to harmonics
of the vibrational C-H bond.12 The measured loss in bulk PMMA is shown in Fig. 4 together with the measured
loss for an mPOF. It is clear that material losses are dominant in the mPOF �bre.

Since the loss is related to the refractive index of a material through the Kramers-Kronig relations, these
loss peaks could potentially signi�cantly modify the material dispersion in the vicinity of the loss peaks. To
investigate this we used the measured loss of bulk PMMA from Ref. 12. The change in the imaginary part �00

of the susceptibility � due to the loss � is found from13

�(�) = �
2��
n0c0

�00(�); �00(�) � 1: (2)

where n0 is the refractive index in the absence of the loss resonances and c0 is the speed of light in vacuum. The
change in the real part �0 of the susceptibility is then found from the Kramers-Kronig relation13

�0(�) =
2
�

Z 1

0

s�00(s)
s2 � �2 ds; (3)

and �nally the change in refractive index due to the loss is found from13

n(�) � n0 =
�0(�)
2n0

; �0(�) � 1: (4)

For n0 we use the refractive index given by Eqn. (1). The calculated change in refractive index due to the bulk
loss of PMMA is shown in Fig. 5. It is seen that the change in refractive index n is on the order of 10�5, so
initially one could think that the in
uence of loss on dispersion is negligible. However, one must keep in mind that
the change of the slope of n with frequency � is highly important for the dispersion. We have therefore calculated
the dispersion for an mPOF both using the material dispersion in the absence of loss and the calculated material
dispersion in the presence of loss. The result is shown in Fig. 6. It is seen that when the change in material
dispersion due to loss is included, the dispersion can be strongly modi�ed in the vicinity of the loss peaks. This
is most clear around the loss peaks at � 1180 nm and � 1400 nm within the wavelength range shown in the
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Figure 5. The calculated change in refractive index due to loss in PMMA.
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Figure 6. The calculated dispersion for an mPOF with � = 2:0 �m and d=� = 0:6 when only the material dispersion in
absence of loss is taken into account (solid line) and when the in
uence of loss on the refractive index is included (dashed
line).



�gure. For the loss peak around � 1020 nm of about 26 dB/m, the shift in dispersion due to material loss is only
about �5 ps=(nm � km). The change in dispersion due to material loss could, nevertheless, still play a role for
nonlinear optical e�ects, where even a small change in dispersion can lead to a signi�cant change of the output
spectrum.14

4. INCREASING THE NONLINEARITY BY DOPING
Although mPOFs can be fabricated with the same core size as used in highly nonlinear silica PCFs,15 it is still
necessary for the nonlinearity of the polymer material to be su�ciently high to overcome the detrimental e�ects
of the very high transmission losses of typical polymers such as PMMA compared to the low losses obtained in
silica. To estimate the nonlinearity of neat PMMA and compare it to silica we use the nonlinear-index coe�cient
n2 / Re

�
�(3)

�
=n, where �(3) is the third-order susceptibility and n is the refractive index.16 Using the values

stated in Refs. 17 and 18 at � = 1064 nm we obtain

n2;PMMA

n2;silica
=

�(3)
PMMA

�(3)
silica

�
nsilica

nPMMA
=

7 � 10�14 esu
3:1 � 10�14 esu

�
1:44967
1:4795

� 2: (5)

We can thus expect the nonlinearity of neat PMMA to be approximately twice that of silica. However, since
the loss � at 1064 nm in PMMA is approximately 104 times larger than in silica, the �gure of merit n2=� for
PMMA is � 2 � 10�4 that of silica.

We have therefore considered how to increase the nonlinearity of mPOFs. This has been achieved previously
for step-index polymer �bres by adding a highly nonlinear dye to the polymer preform before drawing it into
a �bre.19, 20 The dye was added to the monomer during polymerisation. The chemical processes required for
the polymerisation can be avoided by instead solution doping the polymer. This was recently demonstrated by
drawing a neat PMMA preform into a cane, and then placing the cane in a solution containing the dye Rhodamin
6G.7 The dye then di�uses into the polymer thereby doping it. When the doping is complete the cane is drawn
into an mPOF.

We used a similar procedure for doping a PMMA cane but used the highly-nonlinear dye Disperse Red 1
(DR1). To estimate the nonlinearity of DR1 we again use the values stated in Refs. 17 at � = 1064 nm to obtain

n2;10%DR1=PMMA

n2;silica
�

�(3)
10%DR1=PMMA

�(3)
silica

�
nsilica

nPMMA
=

141 � 10�14 esu
3:1 � 10�14 esu

�
1:44967
1:4795

� 45; (6)

where we neglect the di�erence between nPMMA and n10%DR1=PMMA. The nonlinearity of a 10% solution of DR1
in PMMA is thus expected to be approximately 45 times larger than in silica.

First, DR1 in the form of powder was dissolved in a 50/50 mixture of ethylene glycol and methanol. The
ethylene glycol is used to dissolve the DR1 powder and the methanol is used to increase the di�usion of the dye
into the PMMA.21 The PMMA cane is then placed in a container with the solution containing DR1 and ethylene
glycol/methanol so that the solution �lls the air-holes of the cane, and the dye can then di�use into the core.
After about two days the cane is removed from the solution and residual methanol is removed by heating the
cane to 80 �C. A microscope image of the end face of the cane is shown in Fig. 7. It is seen how some of the
holes have been clogged by undissolved dye powder, while other holes have not been clogged and only contain
air. This has led to a non-uniform doping of the cane, which can be avoided by more thorough dissolution of the
dye powder and/or a lower concentration of dye in the solution.

As an alternative method of doping we also tried taking an mPOF drawn from neat PMMA and placing it in a
solution containing DR1 and ethylene glycol/methanol. By keeping the �bre ends out of the solution we ensured
that any undissolved powder could not clog the air-holes. The dye therefore di�used into the �bre through the
outer surface. A microscope image of the end face of the mPOF after doping is shown in Fig. 8. It is seen
how the doping appears to be uniform over the entire end face of the mPOF. This direct �bre doping method
therefore seems promising for doping �bres made of neat PMMA with a highly-nonlinear dye. The method has
the further advantage that it is also possible to measure the transmission, using an optical spectrum analyser



Figure 7. An optical microscope image of the end face of the cane doped with DR1. Colour available in digital version.

Figure 8. An optical microscope image of the end face of the mPOF directly doped with DR1. Colour available in digital
version.



and a broadband light source, in real-time during doping. One can therefore study the di�usion process over
time and accurately control the dopant concentration in the core.

Finally, we note that the doping is naturally expected to change the dispersion of the mPOF. It is possible
to calculate the refractive index of PMMA doped with DR1 as a function of wavelength22 and therefore also to
calculate the dispersion of mPOFs doped with DR1. Dispersion engineering will therefore also be possible in
these highly-nonlinear doped �bres.

5. CONCLUSIONS
We have demonstrated dispersion-engineering of microstructured polymer optical �bres (mPOFs) by drawing an
mPOF with a relatively small core, and measuring its dispersion to be signi�cantly shifted from the material
dispersion of PMMA. This means that it is possible to draw mPOFs with a zero-dispersion wavelength optimised
for a particular pump wavelength, thereby enhancing the e�ciency of nonlinear e�ects.

We also investigated the in
uence of the strong loss peaks of PMMA on the material dispersion and found
that the dispersion is modi�ed quite signi�cantly in the vicinity of the strongest loss peaks (> 100 dB/m). For
the loss peak of about 26 dB/m at � 1020 nm the dispersion was only modi�ed by about �5 ps=(nm � km).

Finally, we described doping of a cane with the highly-nonlinear dye Disperse Red 1 (DR1). Further, we
found that direct doping of an mPOF made from neat PMMA is also possible, thereby avoiding potential
problems with clogging of the air-holes in the cane with undissolved dye powder. This latter method has the
additional advantage that it is possible to measure the progress of di�usion doping in real-time by making a
simple transmission measurement.
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